QUASI MAXIMUM LIKELIHOOD ESTIMATION FOR STRONGLY MIXING STATE SPACE
MODELS AND MULTIVARIATE LEVY-DRIVEN CARMA PROCESSES
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AssTrRACT. We consider quasi maximum likelihood (QML) estimation for general non-Gaussian discrete-time
linear state space models and equidistantly observed multivariate Lévy-driven continuous-time autoregressive
moving average (MCARMA) processes. In the discrete-time setting, we prove strong consistency and as-
ymptotic normality of the QML estimator under standard moment assumptions and a strong-mixing condition
on the output process of the state space model. In the second part of the paper, we investigate probabilistic
and analytical properties of equidistantly sampled continuous-time state space models and apply our results
from the discrete-time setting to derive the asymptotic properties of the QML estimator of discretely recorded
MCARMA processes. Under natural identifiability conditions, the estimators are again consistent and asymp-
totically normally distributed for any sampling frequency. We also demonstrate the practical applicability of
our method through a simulation study and a data example from econometrics.

1. INTRODUCTION

Linear state space models have been used in time series analysis and stochastic modelling for many
decades because of their wide applicability and analytical tractability (see, e.g., Brockwell and Davis,
1991; Hamilton, 1994, for a detailed account). In discrete time they are defined by the equations

X,=FX, 1 +Zp1, Yo=HX,+W, neZ (1.1)

where X = (X,),cz 1S a latent state process, F, H are coefficient matrices and, Z = (Z,),cz, W = (Wp),ez
are sequences of random variables, see Definition 2.1 for a precise formulation of this model. In this
paper we investigate the problem of estimating the coefficient matrices F, H as well as the covariances of
Z and W from a sample of observed values of the output process ¥ = (Y,,),cz, using a quasi maximum
likelihood (QML) or generalized least squares approach. Given the importance of this problem in practice,
it is surprising that a proper mathematical analysis of the quasi maximum likelihood estimation for the
model (1.1) has only been performed in cases where the model is in the so-called innovations form

X,=FX, | +Ke, Y,=HX,+e, neci, (1.2)

where the innovations & form a martingale difference sequence (Hannan and Deistler, 1988, Chapter 4).
This includes state space models in which the noise sequences Z, W are Gaussian, because then the inno-
vations, which are uncorrelated by definition, form an i.1.d. sequence. Restriction to these special cases
excludes, however, the state space representations of aggregated linear processes, as well as of equidistantly
observed continuous-time linear state space models.

In the first part of the present paper we shall prove consistency and asymptotic normality of the quasi
maximum likelihood estimator for the general linear state space model (1.1) under the assumptions that the
noise sequences Z, W are ergodic, and that the output process Y satisfies a strong-mixing condition in the
sense of Rosenblatt (1956). This assumption is not very restrictive, and is, in particular, satisfied if the noise
sequence Z is i.i. d. with an absolutely continuous component, and W is strongly mixing. Our results are a
multivariate generalization of Francq and Zakoian (1998), who considered the quasi maximum likelihood
estimation for univariate strongly mixing ARMA processes. The very recent paper Boubacar Mainassara
and Francq (2011), which deals with the structural estimation of weak vector ARMA processes, instead
makes a mixing assumption about the innovations sequence & of the process under consideration, which
is very difficult to verify for state space models; their results can therefore not be used for the estimation
of general discretely-observed linear continuous-time state space models. More importantly, their proof
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appears to be incomplete, because a crucial step in the proof of their Lemma 4 is claimed by the authors to
be analogous to the corresponding step in the proof of Francq and Zakoian (1998, Lemma 3). It is, however,
not clear how the argument given there can be modified in order to be compatible with the assumption of
strongly mixing innovations, which is weaker than the assumption of a strongly mixing output process as
employed in Francq and Zakoian (1998).

As alluded to above, one advantage of relaxing the assumption of i. 1. d. innovations in a discrete-time
state space model is the inclusion of sampled continuous-time state space models. These were introduced
in the form of continuous-time ARMA (CARMA) models in Doob (1944) as stochastic processes satisfy-
ing the formal analogue of the familiar autoregressive moving average equations of discrete-time ARMA
processes, namely

a(D)Y() = b(D)DW(), D =d/dt, (1.3)

where a and b are suitable polynomials, and W denotes a Brownian motion. In the recent past, a consid-
erable body of research has been devoted to these processes (see, e. g., Brockwell, 2001a, and references
therein). One particularly important extension of the model (1.3) was introduced in Brockwell (2001b),
where the driving Brownian motion was replaced by a Lévy process with finite logarithmic moments.
This allowed for a wide range of possibly heavy-tailed marginal distribution of the process Y as well as
the occurrence of jumps in the sample paths, both characteristic features of many observed time series,
e. g. in finance (Cont, 2001). Recently, Marquardt and Stelzer (2007) further generalized Eq. (1.3) to the
multivariate setting, which gave researchers the possibility to model several dependent time series jointly
by one linear continuous-time process. This extension is important, because many time series, exhibit
strong dependencies and can therefore not be modelled adequately on an individual basis. In that paper,
the multivariate non-Gaussian equivalent of Eq. (1.3), namely P(D)Y(¢#) = Q(D)DL(¢), for matrix-valued
polynomials P and Q and a Lévy process L, was interpreted by spectral techniques as a continuous-time
state space model of the form

dG(f) = AG(r)dt + BdL(r), Y(1) = CG(1); (1.4)

see Eq. (3.4) for an expression of the matrices A, B and C. The structural similarity between Eq. (1.1) and
Eq. (1.4) is apparent, and it is essential for many of our arguments. Taking a different route, multivariate
CARMA processes can be defined as the continuous-time analogue of discrete-time vector ARMA mod-
els, described in detail in Hannan and Deistler (1988); Liitkepohl (2005). As continuous-time processes,
CARMA processes are suited particularly well to model irregularly spaced and high-frequency data, which
makes them a flexible and efficient tool for building stochastic models of time series arising in the natural
sciences, engineering and finance (e.g. Benth and §altyté Benth, 2009; Fan et al., 1998; Na and Rhee,
2002; Todorov and Tauchen, 2006).

In the univariate Gaussian setting, several different approaches to the estimation problem of CARMA
processes have been investigated (see, e.g., Larsson et al., 2006; Nielsen et al., 2000, and references
therein). Maximum likelihood estimation based on a continuous record was considered in Brown and
Hewitt (1975); Feigin (1976); Pham (1977). Due to the fact that processes are typically not observed con-
tinuously and the limitations of digital computer processing, inference based on discrete observations has
become more important in recent years; these approaches include variants of the Yule—Walker algorithm
for time-continuous autoregressive processes (Hyndman, 1993), maximum likelihood methods (Brockwell
etal., 2011; Duncan et al., 1999), and randomized sampling (Rivoira et al., 2002) to overcome the aliasing
problem. Alternative methods include discretization of the differential operator (Larsson and Soderstrom,
2002; Soderstrom et al., 1997), and spectral estimation (Gillberg and Ljung, 2009; Lahalle et al., 2004;
Lii and Masry, 1995; Masry, 1978). For the special case of Ornstein—Uhlenbeck processes, least squares
and moment estimators have also been investigated without the assumptions of Gaussianity (Hu and Long,
2009; Spiliopoulos, 2009).

In the second part of this paper we consider the estimation of general multivariate CARMA processes
with finite second moments based on equally spaced discrete observations exploiting the results about the
quasi maximum likelihood estimation of general linear discrete-time state space models. Under natural
identifiability assumptions we obtain strongly consistent and asymptotically normal estimators for the co-
efficient matrices of a second-order MCARMA process and the covariance matrix of the driving Lévy
process, which determine the second-order structure of the process. It is a natural restriction of the quasi
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maximum likelihood method that distributional properties of the driving Lévy process which are not de-
termined by its covariance matrix cannot be estimated. However, once the autoregressive and moving
average coefficients of a CARMA process are (approximately) known, and if high-frequency observations
are available, a parametric model for the driving Lévy process can be estimated by the methods described
in Brockwell and Schlemm (2011).

Outline of the paper. The organization of the paper is as follows. In Section 2 we develop a quasi max-
imum likelihood estimation theory for general non-Gaussian discrete-time linear stochastic state space
models with finite second moments. In Section 2.1 we precisely define the class of linear stochastic state
space models as well as the quasi maximum likelihood estimator. The following two sections 2.3 and 2.4
contain the proofs that, under a set of technical conditions, this estimator is strongly consistent and asymp-
totically normally distributed as the number of observations tends to infinity, see Theorems 2.5 and 2.6.

In Section 3 we use the results from Section 2 to establish asymptotic properties of a quasi maximum
likelihood estimator for multivariate CARMA processes which are observed on a fixed equidistant time
grid. As a first step, we review in Section 3.1 their definition as well as their relation to the class of
continuous-time state space models. This is followed by an investigation of the probabilistic properties
of a sampled MCARMA process in Section 3.2 and an analysis of the important issue of identifiability
in Section 3.3. Finally, we are able to state and prove our main result, Theorem 3.17, about the strong
consistency and asymptotic normality of the quasi maximum likelihood estimator for equidistantly sampled
multivariate CARMA processes in Section 3.4.

In the final Section 4, we present canonical parametrizations, and we demonstrate the applicability of

the quasi maximum likelihood estimation for continuous-time state space models with a simulation study
and a data example from economics.
Notation. We use the following notation: The space of m X n matrices with entries in the ring K is denoted
by M,,,(K) or M, (K) if m = n. The set of symmetric matrices is denoted by S,,(K), and the symbols
SER) (S;F(R)) stand for the subsets of positive semidefinite (positive definite) matrices, respectively. AT
denotes the transpose of the matrix A, im A its image, ker A its kernel, o(A) its spectrum, and 1,, € M,,,(K)
is the identity matrix. The vector space R is identified with M, ;(R) so that u = @', ...,umT e R"
is a column vector. [|-|| represents the Euclidean norm, (-,-) the Euclidean inner product, and 0,, € R"
the zero vector. K[X] (K{X}) denotes the ring of polynomial (rational) expressions in X over K, Ig(-) the
indicator function of the set B, and ¢, ,, the Kronecker symbol. The symbols E, Var, and Cov stand for the
expectation, variance and covariance operators, respectively. Finally, we write 9,, for the partial derivative
operator with respect to the mth coordinate and V = ( o, - 0, ) for the gradient operator. When there
is no ambiguity, we use d,, f (%) and Vi f () as shorthands for d,, f(?)lg=9, and Vg f(P)]s=g,, respectively.
A generic constant, the value of which may change from line to line, is denoted by C.

2. QUASI MAXIMUM LIKELIHOOD ESTIMATION FOR DISCRETE-TIME STATE SPACE MODELS

In this section we investigate quasi maximum likelihood (QML) estimation for general linear state space
models in discrete time, and prove consistency and asymptotic normality. On the one hand, due to the
wide applicability of state space systems in stochastic modelling and control, these results are interesting
and useful in their own right. In the present paper they will be applied in Section 3 to prove asymptotic
properties of the QML estimator for discretely observed multivariate continuous-time ARMA processes.

Our theory extends existing results from the literature, in particular concerning the QML estimation
of Gaussian state space models, of state space models whose innovations sequences are martingale dif-
ferences (Hannan, 1969, 1975; Reinsel, 1997), and of weak univariate ARMA processes which satisfy a
strong mixing condition (Francq and Zakoian, 1998). The techniques used in this section are similar to
Boubacar Mainassara and Francq (2011).

2.1. Preliminaries and definition of the QML estimator. The general linear stochastic state space model
is defined as follows.

Definition 2.1 (State space model). An R?-valued discrete-time linear stochastic state space model (F, H,Z, W)

T
of dimension N is characterized by a strictly stationary R¥*¢-valued sequence ( zt wt ) with mean
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zero and finite covariance matrix
Z, T | _ 0 R
E[( W )( zr wl )] _5,,,,,1( &g | mmeL 2.1)

for some matrices Q € S} (R), S € Sj(R), and R € My 4(R); a state transition matrix F' € My(R); and an
observation matrix H € M, y(R). It consists of a state equation

X,=FX,1+Z,, nez (2.2a)

and an observation equation
Y,=HX,+W,, neZ (2.2b)

The RV-valued autoregressive process X = (X, )qez is called the state vector process, and Y = (Y,),ez is
called the output process.

The assumption that the processes Z and W are centred is not essential for our results, but simplifies
the notation considerably. The following lemma collects important probabilistic properties of the output
process Y of such a state space model. Its proof is standard (Brockwell and Davis, 1991, §12.1).

Lemma 2.1. Assume that (F,H,Z,W) is a state space model according to Definition 2.1, and that the
eigenvalues of F are less than unity in absolute value.

i) There exists a unique stationary process Y solving Eqs. (2.2). This process has the moving average
representation Y, =W, + HY, | F*'Z,_,.
ii) If both Z and W have a finite kth moments for some k > 0, then Y has finite kth moments as well.
iii) If the expected value of Y, is finite, it is given by EY,, = EW1 + H 3,77 | F""'BZ,. In particular, if both
Z and W have mean zero, then Y has mean zero as well.

Before we turn our attention to the estimation problem for this class of state space models, we review
the necessary aspects of the theory of Kalman filtering, see Kalman (1960) for the original control-theoretic
account and Brockwell and Davis (1991, §12.2) for a treatment in the context of time series analysis. The
linear innovations of the output process Y are of particular importance for the quasi maximum likelihood
estimation of state space models.

Definition 2.2 (Linear innovations). Let Y = (¥,),cz be an R%-valued stationary stochastic process with
finite second moments. The linear innovations € = (&,),cz of Y are then defined by

&, =Y,-P,1Y,, P,=orthogonal projection onto span{Y, : —oco < v < n}, 2.3)

where the closure is taken in the Hilbert space of square-integrable random variables with inner product
X, Y) > E(X,Y).

This definition immediately implies that the innovations & of a stationary stochastic process Y are sta-
tionary and uncorrelated. The following proposition is a combination of Brockwell and Davis (1991,
Proposition 12.2.3) and Hamilton (1994, Proposition 13.2).

Proposition 2.2. Assume that Y is the output process of the state space model (2.2), that at least one of
the matrices Q and S is positive definite, and that the absolute values of the eigenvalues of F are less than
unity. Then the following hold.

i) The discrete-time algebraic Riccati equation
-1
Q=FQF" +Q-|FQH" + R|[HQH" + S| [FQH" + R]T (2.4)

has a unique positive semidefinite solution Q € Sy,(R).
it) The absolute values of the eigenvalues of the matrix F — KH € My(R) are less than one, where

K = [FOH" + R|[HOHT + S| € Mya(®) (2.5)

is the steady-state Kalman gain matrix.
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iii) The linear innovations € of Y are the unique stationary solution to

X,=(F-KH)X,., +KY,_;, €, =Y,-HX, neZ (2.6a)
Using the backshift operator B, which is defined by BY, = Y,_,, this can be written equivalently as
&n={ls—H[ly—(F-KH)B]" KB}Y, =Y, - H Z (F - KH) " 'KY,_,. (2.6b)
v=1

The covariance matrix V = Eg,&! € S (R) of the innovations & is given by
V =Ee,el = HQH" +35. 2.7)

iv) The process Y has the innovations representation

A

X,=FX, +Ke, Y,=HX,+&, neczZ (2.82)

which, similar to Egs. (2.6), allows for the moving average representation

Y,={l,-H[ly - FBI"' KB|Y, =&, + HZ F'Ke,.,, neZ (2.8b)
v=1
We now consider parametric families of state space models. For some parameter space ® C R", r € N,
the mappings
F(.) O MN(R), H(.) 0 - Md,N, (29&)
together with a collection of strictly stationary stochastic processes Zg, Wy, & € 0O, with finite second
moments determine a parametric family (Fy, Hy, Zy, Wy)geo Of linear state space models according to

Definition 2.1. For the variance and covariance matrices of the noise sequences Z, W we use the notation
(cf. Eq. (2.1)) Qy =EBZy,Z}, .Sy = EWy, W,  and Ry = EZy,W} . which defines the functions

Q(.) 10— SX,(R), S(.) 10— S;, R(.) 10— MN’d(R). (Zgb)

It is well known (Brockwell and Davis, 1991, Eq. (11.5.4)) that for this model, minus twice the logarithm
of the Gaussian likelihood of # based on a sample y’ = (Y, ..., Y;) of observations can be written as

L L
L@y =) lpy= ) [dlog2n +logdet Vi + &), Vy'E9,] (2.10)

n=1 n=1

where &y, and Vy are given by analogues of Eqs. (2.6a) and (2.7), namely
gon ={la— Hy[ly - (Fy - KgHg)BI" Ky B}Y,, n€Z. — Vyp=HyQyH) +Sy, 2.11)

and Ky, Qg are defined in the same way as K, Q in Egs. (2.4) and (2.5). In the following we always assume
that yl = (Y9,.15- - -» Yg,.1) is a sample from the output process of the state space model (F,, Hy,, Zs,, Wa,)
corresponding to the parameter value #y. We therefore call  the true parameter value. It is important
to note that &g, are the true innovations of Yy, and that therefore Esﬂo,nsgo’n = Vy,, but that this relation
fails to hold for other values of ¥. This is due to the fact that &g is not the true innovations sequence of
the state space model corresponding to the parameter value ©}. We therefore call the sequence &y pseudo-
innovations.

The goal of this section is to investigate how the value ¥y can be estimated from y’ by maximizing
Eq. (2.10). The first difficulty one is confronted with is that the pseudo-innovations &y are defined in
terms of the full history of the process ¥ = Yg,, which is not observed. It is therefore necessary to
use an approximation to these innovations which can be computed from the finite sample y*. One such
approximation is obtained if, instead of using the steady-state Kalman filter described in Proposition 2.2,
one initializes the filter at n = 1 with some prescribed values. More precisely, we define the approximate
pseudo-innovations &g via the recursion

Xgn=Fyp—KgHyg) Xgp1 +KgYy1, &9, =Y,—HyXy,, neN, (2.12)
and the prescription )A(,M = Xﬂ,ini[ial. The initial values X,y,inma] are usually either sampled from the sta-
tionary distribution of Xy, if that is possible, or set to some deterministic value. Alternatively, one can

additionally define a positive semidefinite matrix g iniia and compute Kalman gain matrices Ky, recur-
sively via Brockwell and Davis (1991, Eq. (12.2.6)). While this procedure might be advantageous for small
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sample sizes, the computational burden is significantly smaller when the steady-state Kalman gain is used.
The asymptotic properties which we are dealing with in this paper are expected to be the same for both
choices because the Kalman gain matrices Ky, converge to their steady state values as n tends to infinity
(Hamilton, 1994, Proposition 13.2).

The quasi maximum likelihood estimator 3L for the parameter ¢ based on the sample y is defined as

A

9" = argming,o . 2@, y), (2.13)

where ,,2’;(0, yb) is obtained from .Z (¥, y*) by substituting &3, from Eq. (2.12) for &3 ,, that is
L

L
Z@,y") = Z Iy = Z [d1og 27 +logdet Vy + &), V;' 8. (2.14)
n=1

n=1
2.2. Technical assumptions and main results. Our main results about the quasi maximum likelihood
. . . . . . AL .
estimation for discrete-time state space models are Theorem 2.5, stating that the estimator ¢ given by
. . . oL
Eq. (2.13) is strongly consistent, which means that ¢ converges to ¥ almost surely, and Theorem 2.6,
. . . AL . .
which asserts the asymptotic normality of ¥/ with the usual L!'/? scaling. In order to prove these results,
we need to impose the following conditions.
Assumption D1. The parameter space ® is a compact subset of R".
Assumption D2. The mappings F(, H), Q(), S (), and R, in Egs. (2.9) are continuous.
The next condition guarantees that the models under consideration describe stationary processes.

Assumption D3. For every ¥ € 0, the following hold:

1) the eigenvalues of Fy have absolute values less than unity,
ii) at least one of the two matrices Qg and S g is positive definite,
iii) the matrix Vy is non-singular.

The next lemma shows that the assertions of Assumption D3 hold in fact uniformly in ¥.

Lemma 2.3. Suppose that Assumptions D1 to D3 are satisfied. Then the following hold.
i) There exists a positive number p < 1 such that, for all 9 € ©, it holds that

max {|4] : 1 € o (Fy)} < p. (2.15a)
ii) There exists a positive number p < 1 such that, for all 9 € O, it holds that
max {|4] : 1 € o (Fyg — KgHy)} < p, (2.15b)

where Ky is defined by Egs. (2.4) and (2.5).
iii) There exists a positive number C such that HVI;1 ” < C for all 8.

Proof. Assertion i) is a direct consequence of Assumption D3, i), the assumed smoothness of & +— Fy
(Assumption D2), the compactness of ® (Assumption D1) and the fact (Bernstein, 2005, Fact 10.11.2)
that the eigenvalues of a matrix are continuous functions of its entries. The claim ii) follows with the same
argument from Proposition 2.2, ii) and the fact that the solution of a discrete-time algebraic Riccati equation
is a continuous function of the coefficient matrices (Lancaster and Rodman, 1995, Chapter 14),(Sun, 1998).
Moreover, by Eq. (2.7) and what was already said, the function & — Vy is continuous, which shows that
Assumption D3, iii) holds uniformly in ¢ as well, and so iii) is proved. O

For the following assumption about the noise sequences Z and W we use the usual notion of ergodicity
(see, e. g., Durrett, 2010, Chapter 6).

T
Assumption D4. The process ( Wy~ Zj ) is ergodic.

The assumption that the processes Z, and Wy, are ergodic implies via the moving average representa-
tion in Lemma 2.1, i) and Krengel (1985, Theorem 4.3) that the output process Y = Yy, is ergodic. As a
consequence, the pseudo-innovations &y defined in Eq. (2.11) are ergodic for every ¥ € ©.

Our first identifiability assumption precludes redundancies in the parametrization of the state space
models under consideration and is therefore necessary for the true parameter value ¥, to be estimated
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consistently. It will be used in Lemma 2.11 to show that the quasi likelihood function given by Eq. (2.14)
asymptotically has a unique global minimum at .

Assumption D5. For all ¢y # ¢ € O, there exists a z € C such that
Hy [y = (Fy — KoHp) 2™ Ky # Hy, [1y = (Fa, = Ko, H,) 2] Koy, (2.16a)

or
Vg # Vg,. (2.16b)

Assumption D5 can be rephrased in terms of the spectral densities fy, of the output processes Yy of
the state space models (Fy, Hy, Zy, Wg). This characterization will be very useful when we apply the
estimation theory developed in this section to state space models that arise from sampling a continuous-
time ARMA process.

Lemma 2.4. If, for all 9y # & € O, there exists an w € [—n, ] such that fy,(w) # fYﬂo (w), then Assump-
tion D5 holds.

Proof. We recall from Hamilton (1994, Eq. (10.4.43)) that the spectral density fy, of the output process Yy

) N
of the state space model (Fy, Hy, Z3, Wy) is given by the expression fy,(w) = Qn)'u4 (e"") Vg iy (e‘“") ,
w € [-x, 7], where %(z) == Hy [1y — (Fy — KgHg)z]™' Ky + z. If Assumption D5 does not hold, we have

that both J€(z) = 3,(z) for all z € C, and Vy = Vy,, and, consequently, that fy,(w) = fyﬂ0 (w), for all
w € [-n, rr], contradicting the assumption of the lemma. O

Under the assumptions described so far we obtain the following consistency result.

AL
Theorem 2.5 (Consistency of @ ). Assume that (Fg, Hy, Zgy, Wg)gco IS a parametric family of state space
models according to Definition 2.1, and let y* = (Yg,1,...,Yg, 1) be a sample of length L from the out-
put process of the model corresponding to 9. If Assumptions DI to D5 hold, then the quasi maximum

oL . 7y . . . oL
likelihood estimator ¥ = argming.q £ (8, y") is strongly consistent, that is 9 — & almost surely, as
L — 0.

We now describe the conditions which we need to impose in addition to Assumptions D1 to D5 for the
asymptotic normality of the quasi maximum likelihood estimator to hold. The first one excludes the case
that the true parameter value ¥ lies on the boundary of the domain @.

Assumption D6. The true parameter value # is an element of the interior of @.

Next we need to impose a higher degree of smoothness than stated in Assumption D2 and a stronger
moment condition than Assumption D4.

Assumption D7. The mappings F(y, H), O, S, and R, in Egs. (2.9) are three times continuously
differentiable.

By the results of the sensitivity analysis of the discrete-time algebraic Riccati equation in Sun (1998),
the same degree of smoothness, namely C3, also carries over to the mapping ¢ — V.

Assumption D8. The process ( Wgo Z;U )T has finite (4 + 6)th moments for some § > 0.

By Lemma 2.1, ii), Assumption D8 implies that the process Y has finite (4 + 6)th moments. In the
definition of the general linear stochastic state space model and in Assumption D4, it was only assumed
that the sequences Z and W are stationary and ergodic. This structure alone does not entail a sufficient
amount of asymptotic independence for results like Theorem 2.6 to be established We assume that the
process Y is strongly mixing in the sense of Rosenblatt (1956), and we impose a summability condition on
the strong mixing coefficients, which is known to be sufficient for a Central Limit Theorem for Y to hold
(Bradley, 2007; Ibragimov, 1962).

Assumption D9. Denote by ay the strong mixing coefficients of the process ¥ = Yy,. There exists a
constant § > 0 such that 3, [y (m)]5 < oo.
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In the case of exponential strong mixing, Assumption D9 is always satisfied, and it is no restriction to
assume that the ¢ appearing in Assumptions D8 and D9 are the same. It has been shown in Mokkadem
(1988); Schlemm and Stelzer (2011) that, because of the autoregressive structure of the state equation
(2.2a), exponential strong mixing of the output process Yy, can be assured by imposing the condition
that the process Zy, is an i.i.d. sequence whose marginal distributions possess a non-trivial absolutely
continuous component in the sense of Lebesgue’s decomposition theorem, see e. g., Halmos (1950, §31,
Theorem C) or Lebesgue (1904).

Finally, we require another identifiability assumption, that will be used to ensure that the Fisher infor-
mation matrix of the quasi maximum likelihood estimator is non-singular. This is necessary because the

. . L . . oL . . .
asymptotic covariance matrix in the asymptotic normality result for ¢} is directly related to the inverse of
that matrix. Assumption D10 is formulated in terms of the first derivative of the parametrization of the
model only, which makes it relatively easy to check in practice; the Fisher information matrix, in contrast,
is related to the second derivative of the logarithmic Gaussian likelihood.

For j € N and ¢ € O, the vector ¥y ; € RU4 g defined as

T
AT
[1j+1 ®K;® H.?] [ (vec1y)  (vecFg)T --- (Vec FI;) ] , (2.17)
vec Vy

V=

where ® denotes the Kronecker product of two matrices, and vec is the linear operator that transforms a
matrix into a vector by stacking its columns on top of each other.

Assumption D10. There exists an integer jy € N such that the [(jo + 2)d?] x r matrix Vb, j, has rank r.

Our main result about the asymptotic distribution of the quasi maximum likelihood estimator for dis-
crete-time state space models is the following theorem. Equation (2.19) shows in particular that this as-
ymptotic distribution is independent of the choice of the initial values Xy initial-

N
Theorem 2.6 (Asymptotic normality for ¥ ). Assume that (Fy, Hg, Z g9, Wg)geo is a parametric family of
state space models according to Definition 2.1, and let y* = (Yg,1,...,Yg,1) be a sample of length L
from the output process of the model corresponding to ¥. If Assumptions DI to D10 hold, then the maxi-

. . AL . 7y . . .o . .
mum likelihood estimator 9~ = argming g £ (3, yb) is asymptotically normally distributed with asymptotic
covariance matrix 2 = J-'IJ7, that is

«/Z(&L - 00) LL> N (0.5), (2.18)
where
1= lim L™ Var (V9.2 (do.y")), J= lim L7'V5.Z (90.5"). (2.19)

2.3. Proof of Theorem 2.5 — Strong consistency. In this section we prove the strong consistency of the

. . o1 . oL . . .
quasi maximum likelihood estimator ¥ . As a first step we show that the stationary pseudo-innovations
processes defined by the steady-state Kalman filter are uniformly approximated by their counterparts based
on the finite sample y*~.

Lemma 2.7. Under Assumptions DI to D3, the pseudo-innovations sequences &y and &y defined by the
Kalman filter equations (2.6a) and (2.12) have the following properties.
i) If the initial values )A(,g,im‘,mz are such that supy.q ||)A(,9‘,~,,,~,,~al|| is almost surely finite, then, with probability

one, there exist a positive number C and a positive number p < 1, such that supg.e Hs.aﬂ - égﬂH < Cp",
n € N. In particular, &y, , converges to the true innovations &, = &g, , at an exponential rate.

ii) The sequences &g are linear functions of Y, that is there exist matrix sequences (cg.),,, Such that
(o)
Eon=Yo+ Y co,¥uy, nel (2.20)
v=1

The matrices cg, are uniformly exponentially bounded, that is there exist a positive constant C and a
positive constant p < 1, such that supy.e “c,p,‘,“ <Cp’,velN
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Proof. We first prove part i) about the uniform exponential approximation of & by &. Iterating the Kalman
equations (2.6a) and (2.12), we find that, for n € N,

n—1

£9n =Y, — Hy (Fy — KgHg)" ' Xy, - Z Hy (Fy — KgHg) ™' KyY,y,
v=1

and
n—1
&9, =Y, — Hy (Fy — KgHg)"™" X initial — Z Hy (Fg — KgHg) "' KyY,oy.
v=1
Thus, using the fact that, by Lemma 2.3, the spectral radii of Fy — KygHy are bounded by p < 1, it follows
that

sup (|69, — &a.0|| = sup ||Ho (Fy — KoHg)"™" (X0 — Xo mivia)|
IO IO
<IlHll@) "~ sup || Xg.0 — X micial|
JeO®

where ||Hl|;~@) ‘= supgce l|Hyll denotes the supremum norm of H(,, which is finite by the Extreme Value
Theorem. Since the last factor is almost surely finite by assumption, the claim follows. For part ii), we
observe that Eq. (2.6a) and Lemma 2.3, ii) imply that &y has the infinite-order moving average represen-
tation gy, = Y, — Hy >0 (Fy — KgHg) ' KyY,_,, with uniformly exponentially bounded coefficients
cyy =—Hy(Fy - K,gH,g)"’1 Ky. Explicitly, |lcg, |l < [|H|| @) [IK]l.~@) p”’l. This completes the proof. O

Lemma 2.8. Let . and .Z be given by Egs. (2.10) and (2.14). If Assumptions DI to D3 are satisfied, then
the sequence L' supy.q

D/?T(ﬂ,yl‘) - Z, y")| converges to zero almost surely, as L — oo.

Proof. We first observe that

L
| 2@, 5" - 2@.y| = 3" [85,V5' 0. - 85, V5" 50,
1

=
L

= Z [(é‘ﬂ,n - 8,9,,,)T Vi;lé,g’n + 83;” Vl;l (Bon — 8,9,,1)].
n=1

The fact that, by Lemma 2.3, iii), there exists a constant C such that “Vl;1 “ < C, for all & € O, implies that

1 = v, )
75 '3(0,#) - 3(0,yL)’ <7 ;p [328 \|89.4]| + sup ||s,9,n||}. 2.21)

Lemma 2.7, ii) and the assumption that ¥ has finite second moments imply the finiteness of the expectation
E supyee ”8,9,,1“. Applying Markov’s inequality, one sees that, for every positive €,

00

[e9) pn
P 4 nll =7 \E - s
22l smlend > ) <=spllen 7 <

n=1

because p < 1. The Borel-Cantelli Lemma shows that p" supy.q ||8,9‘,,H converges to zero almost surely,

as n — co. In an analogous way one can show that p" supg.e “éﬁ’n” converges to zero almost surely, and,
consequently, so does the Cesaro mean in Eq. (2.21). The claim thus follows. O

Lemma 2.9. Assume that Assumptions D3 and D4 as well as the first part of Assumption D5, Eq. (2.16a),
hold. If €91 = 89,1 almost surely, then 9 = .

Proof. Assume, for the sake of contradiction, that ¢ # ;. By Assumption D5, there exist matrices

Cj € My(R), j € Ny, such that, for |z| < 1,

Hy [y = (Fg = KoHg)2) ™ Ky = Hy, [1y = (Fg, = Ko, Ho,2] ' Kg, = > Cj2, (2.22)

J=Jo
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where Cj, # 0, for some jo > 0. Using Eq. (2.6b) and the assumed equality of &9,; and &,,, this equation
implies that 0, = 32, C;Y,_; almost surely; in particular, the random variable C;, Y, is almost surely
equal to a linear combmatlon of the components of Y,,, n < 0. It thus follows from the interpretation of the
innovations sequence Eﬂo as linear prediction errors for the process Y that Cj &g, o is equal to zero, which
implies that EC 108,90,0890 Ne i =Co V,90C = 0q4. Since Vy, is assumed to be non-singular, this implies that
the matrix Cj; is the null matrix, a contradlctlon to Eq. (2.22). |

Lemma 2.10. [f Assumptions DI to D4 hold, then, with probability one, the sequence of random functions
d — L 1.2@,y") converges, as L tends to infinity, uniformly in & to the limiting function 2 : ® — R
defined by

2() = dlog(2m) +logdet Vy + Egjy | Vy'ey,. (2.23)

Proof. In view of the approximation results in Lemma 2.8, it is enough to show that the sequence of
random functions & — L' . Z(#, y") converges uniformly to 2. The proof of this assertion is based on the
observation following Assumption D4 that for each ¢ € ® the sequence &y is ergodic and its consequence
that, by Birkhoff’s Ergodic Theorem (Durrett, 2010, Theorem 6.2.1), the sequence L'72@, yh converges
to 2(¥) point-wise. The stronger statement of uniform convergence follows from Assumption D1 that © is
compact by an argument that is inspired by the proof of Ferguson (1996, Theorem 16): for § > 0, we write

Bs(®) = {# € O : || — d|| < 6| for the open ball of radius ¢ around &. The sequences o = (o and
= —d.n/)nez
Ef, = (Ef"‘ﬂ)nez’ which are defined by
gg’n = linf [slg,’n VI;,l Eyn— Esg,,l VI;,I 8,9/,1] and Ef,’n = sup [sg,,n VI;,I Eyn— Esg,’l VI;,I & ,,l] ,
&' €Bs(9) & eBs()

are strictly stationary, ergodic and monotone in 6. By Lemma 2.7, ii) there exists an integrable random
variable Z such that 0'5 < Z for all 6 and all # € @. Since, moreover, sT 91 ‘/';18,9,1 is almost surely a

continuous function of 0 and g‘; thus converges to 8 V g9 — By 1V0 &y, almost surely, as 6 — 0,

it follows from the Ergodic Theorem and Lebesgue’s Dommated Convergence Theorem (Klenke, 2008,
Corollary 6.26) that

L

1 _

= 2,09, BoG — Ele), Vy' e, — Eej Vg 6| = 0. (2.24)
n=1

=dn L—oo

h

and similarly for Ef,. Since, for any ¢ € Bs(#), it holds that

it follows that

sup
b EB(,‘(I?)

L

Z 8,9/ Esl,, WV 8,9/,1 <
=1

Letting L tend to infinity on both sides of this inequality, we see that, almost surely,

limsup sup

<[Bcj |+ [E75, |
Lo By | L

Zs',nV Ey .y — EEI,IV &y

By Eq. (2.24) one finds, for every € > 0 and every ¢ € ©, a 6(¢,#) > 0 such that ‘ng, ]’ + |EE§’1| < €, for

all 6 < 6(e, ). The collection of balls {Bsg) ()} covers O, and since the domain © is assumed to be
compact, one can extract a finite subcover {Bsg,)(#)},_, . Defining 6(e) to be the minimum of the radii

.....
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6(e,¥), i =1,...,k, it follows that, with probability one,

lim sup sup |— Zsl,”v E9n — Es],lv.,, &9.1
L—oo  §cO
1 &
=limsu max sup |- gl Viley, -EBel Vi'e
= P 1 p dn’ 9 €dn 9179 9.1
L—o0 i=1,..., 0635(“7) =1
< max {|Eo-‘s(“”)| Ea_"’(“’)'}
for all 6 < d(e). Intersecting over a sequence €, which converges to zero proves the result. O

Lemma 2.11. Under Assumptions D1 to D3 and D5, the function 2 : ® — R, as defined in Eq. (2.23),
has a unique global minimum at .

Proof. We first observe that the difference &9 — &9,,1 is an element of the Hilbert space spanned by the
random variables {¥,,n < 0}, and that &y, is, by definition, orthogonal to this space. This implies that the
expectation E (g9, — 8,90,1)T Vlgls,y(,,l is equal to zero and, consequently, that 2(¥#) can be written as

2 = dlog(2n) + Esgo,lvlglsﬁo,l +E (9.1 — &9,1)" Vy' (891 — €9,,1) + log det V.

In particular, since Esgo’IV';O‘ £9,1 = Ir [V,;()IES%,IS,?OJ] = d, it follows that 2(y) = logdet Vi, + d(1 +
log(2r)). The elementary inequality x — logx > 1, for x > 0, implies that tr M — logdet M > d for all
symmetric positive definite d X d matrices M € S;"(R) with equality if and only if M = 1,. Using this
inequality for M =V V, , we thus obtain that, for all # € ©,

2() - 2) =d + tr [Vy'Beg, 185, || - logdet (V;! Vs)
+E (891 — 9,1)" Vy' (891 — £9,1) — Egy | Vy' €9,
>E (891 — €9,1)" V;' (891 — €9,1) >0
It remains to argue that this chain of inequalities is in fact a strict inequality if & # d. If Viy # Vy,, the first
inequality is strict, and we are done. If Vy = Vjy,, the first part of Assumption D5, Eq. (2.16a), is satisfied.

The second inequality is an equality if and only if €9 = &g, almost surely, which, by Lemma 2.9, implies
that & = . Thus, the function 2 has a unique global minimum at . |

of Theorem 2.5. We shall first show that the sequence L‘l.i’;(f?L, yL), L € N, converges almost surely
to 2(y) as the sample size L tends to infinity. Assume that, for some positive number e, it holds that

SUPgeo |L -1 2@, yb) — 2(3)| < e. It then follows that
LZ@ ) < L' 2o, y") < 200) + ¢ and L' Z@ 35 > 28" - € > 2@ - €,

where it was used that 19L is defined to minimize DQT(', yb) and that, by Lemma 2.11, ¢y minimizes 2().
In particular, it follows that |L’1.$ (f?L, yh - e@(ﬂo)‘ < €. This observation and Lemma 2.10 immediately
imply that

P (lﬁﬁL,yL) — Q(ﬂo)) >P (sup
L L—co =0

1. ~
TZ@.y" - g(a)’ — 0) =1. (2.25)

To complete the proof of the theorem, it suffices to show that, for every neighbourhood U of ), with

probability one, 19L will eventually lie in U. For every such neighbourhood U of ), we define the real
number §(U) = infyee\yv L) — 2(d), which is strictly positive by Lemma 2.11. Then the following
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sequence of inequalities holds:
P({?L o 00) —p (VU Ay: 9 cU VL> L(,)
=P (VU L, : Q(f?L) - 2@y) <6(U) VYL > l@)

ou
>IP’(\/UEIL0 ( )

L 20"y - 20, )'

oUu
<% VL>L())

o
<% VL>L())

0
<% VL>L())—1.

and 'zgﬁL,yL) - Q(QA?L)

>P (VU ALy : %?(f?L, b - 2@)

+ ]P’(VU Ly : sup

L 2.3 - 2
Je® L

The first probability in the last line is equal to one by Eq. (2.25), the second because, by Lemma 2.10, the
random functions & > L' .Z(d, y*) converge almost surely uniformly to the function & > 2(). It thus

follows that P (tA?L Z—_) 190) = 1, which proves the theorem. m]

2.4. Proof of Theorem 2.6 — Asymptotic normality. In this section we prove the assertion of Theo-
oL

rem 2.6, namely that the distribution of L'/? (0 - 00) converges to a normal random variable with mean

zero and covariance matrix Z = J~'IJ~!, an expression for which is given in Eq. (2.19). First, we collect

basic properties of d,,&9,, and 0,,&9,, where 9,, = /09" denotes the partial derivative with respect to the
mth component of #; the following lemma mirrors Lemma 2.7.

Lemma 2.12. Assume that Assumptions D1 to D3 and D7 hold. The pseudo-innovations sequences €y and
&y defined by the Kalman filter equations (2.62) and (2.12) have the following properties.

i) If, for k € {1,...,r}), the initial values )A(,y,,-,,i,ml are defined such that both supy.e ||X:9,initial” and

SUPgeo ||6kj(,9‘,~,,,~,,~al|| are almost surely finite, then, with probability one, there exist a positive number C

and a positive number p < 1, such that supy.q ||0k8,9,,, - aké.,,n” <Cp'neN
ii) Foreachk € {1,...,r}, the random sequences 0;&y are linear functions of Y, that is there exist matrix

sequences ( & ))v v such that

OEgn = Z ¥y neL. (2.26)

The matrices c( )

, are uniformly exponentially bounded, that is there exist a positive constant C and a
| :,V|\Cp ,veN

iii) If, for k,1 € {1,...,r}, the initial values )A(g,,-,,,',,-al are defined such that supy.q ||)A(,9,,<,,,',,-a1”, as well as

positive constant p < 1, such that supg.g ||c

SUPyeo ||6,-X,9,,Am-,,'al||, i € {k,l}, and supy.q ”c’)i ZX,y,ini,ia1|| are almost surely finite, then, with probability
one, there exist a positive number C and a positive number p < 1, such that supg.e ||(9ils,9,n - 62’15:.9,,1“ <
Cp',nelN.

iv) For each k,l € {1,...,r}, the random sequences 8,% /&9 are linear functions of Y, that is there exist

matrix sequences (cff?) . ,such that
vz

02 890 = Z VY, nez. (2.27)

(kD)
DAY

positive constant p < 1, such that supy.g ||c

The matrices c;,"’ are uniformly exponentially bounded, that is there exist a positive constant C and a

|( )“ Cp¥,veN
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Proof. Analogous to the proof of Lemma 2.7, repeatedly interchanging differentiation and summation and
using the fact that, as a consequence of Assumptions D1 to D3 and D7, both d; [H,; (Fg — KgHyg)'™! K,g]

and 6,%,1 [H,y (Fg — KgHyg)"™! K,y] are uniformly exponentially bounded in v. O

Lemma 2.13. Foreachd € O and everym = 1,...,r, the random variable 9,,.Z (¥, yL) has finite variance.

Proof. By Assumption D8 and the exponential decay of the coefficient matrices cg, and cf,"? proved in
Lemma 2.7, ii) and Lemma 2.12, ii), it follows that
0o 4 0o 4
4 4 4 4
Elleaa|" <|{C D p } EIYi[[* <oo and E |0 < [CZ,D } EIY;]* < co.
v=0 v=0
Consequently, the Cauchy—Schwarz inequality implies that, for some constant C,

? =E |— tr [Vlgls,g,nsg’n O V,t;)] +2 (Bmsg’n) V,;lsﬂ,n ?

1/2
<c {E leoal* + (2 ool 2 o) } <o

which proves that 8,,.Z (¢, y*) has finite second moments. O

E |(9m (8§,n V;ls,y,n)

We need the following multivariate covariance inequality which is a consequence of Davydov’s inequal-
ity and the multidimensional generalization of an inequality used in the proof of Francq and Zakoian (1998,
Lemma 3). For a positive real number a, we denote by |« the greatest integer smaller than or equal to a.

Lemma 2.14. Let X be a strictly stationary, strongly mixing d-dimensional stochastic process with finite
(4 + 8)th moments for some 6 > 0. Then there exists a constant C, such that for all d X d matrices A, B,
everyn € Z, A € N, and time indices v,v' € No, u, 1/ =0,1...,[A/2], it holds that

6/(6+2)
Cov (X!, AX,-: X!, BXuia ) < ClAIIB] [ax (H)] : (2.28)

where ax denotes the strong mixing coefficients of the process X.

Proof. We first note that the bilinearity of Cov(-;-) and the elementary inequality M;; < [IM||, M € M;(R),
imply that

d
Cov (X1, AX, i X0 p  BXyinyw) = Y AijByCov(Xi X X0, X0, )

i, j,s,t=1

<d*||All||B]| max dCov(Xi X/
i,

n—-vp—y

N t
Xn+A—;1Xn+A—,u’) .

Josst=1,...,

Since the projection which maps a vector to one of its components is measurable, it follows that the random
variable X/_, X/ is measurable with respect to F MY the o-algebra generated by { X : —co < k < n — min{y,v'}}.
Similarly, the random variable X7 A_HX; A is measurable with respect to %7, ax{ ) Davydov’s in-
equality (Davydov, 1968, Lemma 2.1) implies that there exists a universal constant K such that

XX

i J
XX n+A—pn+A—p’

X [ax (A — max {u, u’} + min {v,v'})]

A 5/(2+6)
e

where it was used that A — max {u, u’} + min{v,v'} > |A/2], and that strong mixing coefficients are non-
increasing. By the Cauchy—Schwarz inequality the constant C satisfies

246 1/(2+6)
)

. . 2+6\1/(2+0)
Cov (X’ X .xt X )<K(E )

n=v=>n—y" > Cn+ A—p n+ Ay

5/(2+65)

X x/ E Xy Xnia

n—-v<=in—y’

2+5)1/(2+5) ( 2+5)l/(2+6)

o\ 22
C= K(E < K (BIX,72)

and thus does not depend on n, v, V', u, i/, A, nor on i, j, s, t. O
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The next lemma is a multivariate generalization of Francq and Zakoian (1998, Lemma 3). In the proof
of Boubacar Mainassara and Francq (2011, Lemma 4) this generalization is used without providing details
and, more importantly without imposing Assumption D9 about the strong mixing of Y. In view of the de-
rivative terms 9,,&3,, in Eq. (2.30) it is not clear how the result of the lemma can be proved under the mere
assumption of strong mixing of the innovations sequence €g,. We therefore think that a detailed account,
properly generalizing the arguments in the original paper (Francq and Zakoian, 1998) to the multidimen-
sional setting, is justified.

Lemma 2.15. Suppose that Assumptions D1 to D3, D8 and D9 hold. Then, for every @ € ©, the sequence
L™ Var Vg 23, y") of deterministic matrices converges to a limit I(®) as L — oo.

Proof. Ttis enough to show that, for eachd € ®, and all k,/ = 1,. .., r, the sequence of real-valued random
variables Ig‘ L]), defined by

L L
15 = ZZ V(e 6)), (2.29)
n=1

t=1

h I

converges to a limit as L tends to infinity, where f;m; = Ouly,, is the partial derivative of the nth term in

expression (2.10) for Z (i, y"). It follows from well-known differentiation rules for matrix functions (see,
e. g. Horn and Johnson, 1994, Sections 6.5 and 6.6) that

6 = w[Vy' (La - 80,48, V5") 0nVe)| +2(0ne},) V' 80 (2.30)

By the assumed stationarity of the processes &y, the covariances in the sum (2.29) depend only on the

difference n — t. For the proof of the lemma it suffices to show that the sequence cf,k’i) Cov (f(k) 553 A :9)
A € Z, is absolutely summable for all k,/ = 1,...,r, because then the Dominated Convergence Theorem
implies that
15 = Z (L=1AD ¢y —— > ey <. (2.31)
A€eZ

(k, 1) (k )
19 =N’

N ' kDI g finite, we first use the blhnearlty of Cov(-; -) to estimate

In view of the of the symmetry c, it is no restriction to assume that A € N. In order to show that

' ®D| <4 'COV ((0e5,) Vi €9, (816D ,.) V,;ls,y,m)‘
+[Cov (] Vy'enneh, Vi 0Va st [Vy' Eainsh Vi arVal)| +
+2|Cov (tr[V;" 80,85, Vi 0V s (3185 ,.0) Vi Bomea)| +
+2|Cov ((3sh,) Vs o tr[ Vi Boneash ea Ve O1Va )|

Each of these four terms can be analysed separately. We give details only for the first one, the arguments
for the other three terms being similar. Using the moving average representations (2.20) and (2.26) for &gy,
Oreg and 0,gy, it follows that

T 1. . T -1
‘Cov (((9;{8&’”) Vy €9 (3180,,, . A) Vg 8,9,,HA)’
(o]

= 3 |y (YL Vi o Yar YE s 5T Vi o Yoa)|

YANTNTES )
This sum can be split into one part I in which at least one of the summation indices v, v/, y and p’ exceeds
A/2, and one part I~ in which all summation indices are less than or equal to A/2. Using the fact that, by
the Cauchy—Schwarz inequality,

T (k).T T (l)T
[Cov (Y1, Vy e Yurss Y, Vi o Yna )
Al

<[[va' e eaue | ENYI,




QML ESTIMATION FOR STRONGLY MIXING STATE SPACE MODELS AND MCARMA PROCESSES 15

it follows from Assumption D8 and the uniform exponential decay of “c,g,‘,” and ”cf?my)” proved in Lemma 2.7,
ii) and Lemma 2.12, ii) that there exist constants C and p < 1 such that

T ), T y,—1 T N.T A2
= Y |ov (YL Vi o Yar YE sl Vi o Ya )| < Co™2 (232)
VAN )
max{v,y ' }>A/2

For the contribution from all indices smaller than or equal to A/2, Lemma 2.14 implies that

14721 6/(2+06)
I_ = Z |COV YZ; y g()vTV', Cl’ v Ln—vs Yn+A —u g)ﬂTVﬂ Cl’y'Yn+A—# )| < C I:CZY (\‘EJ)} . (233)
vV ' =0

It thus follows from Assumption D9 that the sequences 'c(k l)| A € N, are summable, and Eq. (2.31)
completes the proof of the lemma. O

Lemma 2.16. Let & and & be given by Egs. (2.10) and (2.14). Assume that Assumptions DI to D3
and D7 are satisfied. Then the following hold.

i) For each m = 1,...,r, the sequence L71/2 SUPgeo

Bmg\(ﬂ, yb - 0,2, yL)| converges to zero in
probability, as L — oo.
ii) For all k,l = 1,...,r, the sequence L! SUPyeo

6,@:?7(0, yh - (9%1,,? @, yL)‘ converges to zero almost
surely, as L — oo.

Proof. Similar to the proof of Lemma 2.8. O

Lemma 2.17. Under Assumptions D1, D3 and D7 to D9, the random variable L™/ Zvﬂ,,s?(ﬂo, yb) is asymp-
totically normally distributed with mean zero and covariance matrix ().

Proof. Because of Lemma 2.16, i) it is enough to show that L™1/2Vy % (00, yL) is asymptotically normally
distributed with mean zero and covariance matrix /(). We begin the proof by recalling the equation

L
8, L@, y") = Z {tr[vy! (10— &9.8),, V") 0iVa | + 2(0i€h,) Vi ' ). (2.34)

n=1
which holds for every component i = 1,...,r. The facts that ]Es,ao‘,,sgon equals Vy,, and that &y, ,

is orthogonal to the Hilbert space generated by {Y,,¢ < n}, of which 6,~8£n is an element, show that
Eo;.¢ (00, yL) = 0. Using Eq. (2.20), expression (2.34) can be rewritten as

L

0.2 ()= Y[, - Y]« 78 570

m,n
n=1 n=1

where, for every m € N, the processes Y and Z are defined by

YO, =t [Vl @Va)| + D {=te[Valeo, Yur Yo, 5 Vol @iVa))| + 2¥0_,c5 Vylcp, v Yoo ),
v,v'=0
(2.35a)
24y =Ufl + Vi 2.350)

and

uo, =i i (= [Valeonw¥ursYi_ch, Vol @:Va,)] +2Y 1 e Vol ca,w Yurv ),
v=0 v

Vr(r? = Z Z —1tr V Cﬂo vYn vYn ycﬂy V (a Vﬂn)] +2YZ vC ,(;)Z:V_ Cdov Y”_V/}‘

v=m+1v'=0

It is convenient to also introduce the notations

un=( Y8 o ¥0 ) and Za=(20 - Z0 ). (2.36)
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The rest of the proof proceeds in three steps: first we show that, for each natural number m, the sequence
LV23 [Ynn — BY,na] is asymptotically normally distributed with asymptotic covariance matrix I,,, and
that 7,, converges to I(fy) as m tends to infinity. In the second step we prove that L™12 ¥, [ Z,.. = EZun]
goes to zero uniformly in L, as m — oo, and the last step is devoted to combining the first two steps to
prove the asymptotic normality of L™'/?Vy.% (ﬂo, yL).

Step 1. Since Y is stationary, it is clear that Y, is a stationary process. Moreover, the strong mixing
coefficients ay, (k) of Y, satisfy ay, (k) < ay(max{0,k — m}) because V,,, depends only on the finitely
many values Y,,_,,, ..., Y, of Y (see Bradley, 2007, Remark 1.8 b)). In particular, by Assumption D9, the
strong mixing coefficients of the processes Y,, satisfy the summability condition Y[y, (k)]*/?*9 < co.
Since, by the Cramér—Wold device, weak convergence of the sequence L™V/2 Y [V, —EY,.,] to a
multivariate normal distribution with mean zero and covariance matrix X is equivalent to the condition that,
for every vector u € R”, the sequence L™!/?u” Zﬁz 1 [Ymn — BY ] converges to a one-dimensional normal
distribution with mean zero and variance u’Xu, we can apply the Central Limit Theorem for univariate
strongly mixing processes (Herrndorf, 1984),(Ibragimov, 1962, Theorem 1.7) to obtain that

1 L
ﬁ Z [ym,n - Eym,n] L—)Lo: r/V(Ora Im)a Where Im = Z COV (ym,n; ym,11+A) . (237)
n=1

AeZ

The claim that 7, converges to /() will follow if we can show that

Cov (Vi Y0 ) — Cov (€ s€) ), VYA€LZ (2.38)

mn> “mntA) o o’ Jo.ntA

and that 'Cov (Y,Sf,)n; Yr(r?n . A)' is dominated by an absolutely summable sequence. For the first condition, we

note that the bilinearity of Cov(-; -) implies that
Cov (Y0¥ )= Cov(€y € ) =Cov(YE: ¥y ., —€) )+Cov(Y¥ ¢ ey ).

mn> < mn+A do.n’ “Fgn+A mn’ = mn+A Jdo.n+A do.n” “do.n+A

These two terms can be treated in a similar manner so we restrict our attention to the second one. The
definitions of Yy, (Eq. (2.352)) and £, (Eq. (2.29)) allow us to compute

k - - )T v~
y®o _ b~ Z [tr[v,,;c,,U,VY,l_VY,{_V,cg,V,V,,Ola,-v,,o] —2¥] DTV leg, Yoy |.

mn do,n n=v=d,v
AY
max{v,V' }>m

As a consequence of the Cauchy—Schwarz inequality, Assumption D8 and the exponential bounds in
Lemma 2.7, 1), we therefore obtain that Var (Y,(,iC ) — t’g‘[)) n) < Cp™ independent of n. The L?-continuity of

B

Cov(-; -) thus implies that the sequence Cov (Y,gf),, - 5.(9]:]),”; €gz’n . A) converges to zero as m tends to infinity at

an exponential rate uniformly in A. The existence of a summable sequence dominating ‘Cov (Y,Sf’)n; Y;E?m A)‘
is ensured by the arguments given in the proof of Lemma 2.15, reasoning as in the derivation of Egs. (2.32)
and (2.33).

Step 2. In this step we shall show that there exist positive constants C and p < 1, independent of L, such

that
l L
tr Var (—L Z zm,n] < Cp™,  Zomn given in Eq. (2.36). (2.39)
n=1
Since
1 < 1 < 1 <
tr Var(— Zm,n] <2 ltr Var (— (L[mn) + tr Var (— (Vm,n]] , (2.40)

it suffices to consider the latter two terms. We first observe that

1 <& 1 <
tr Var| — Upp|=—1r Cov (U p; U

n=1 nn'=1

r L-1

:%Z >@w=lan < 3 k] (2.41)

k=1 A=-L+1 k=1 AeZ

~
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where

1*D = coy (U(k) uy®

m,A mn> =~ m n+A)
m

D Cov(—tr[Vyca Yur Yy Vol oV, | + Yo, Vol v Yoy ;

nv.?v

v,u=0
VW' =m+1

T (1) T
—te[Valconu¥ueau¥non o€ Va0V |+ Yia 0ot Vil oy Yoea ).

As before, under Assumption D8, the Cauchy—Schwarz inequality and the exponential bounds for ”6‘,90,\,”

and Hcf,kU)VH imply that |uf:2| < Cp™. By arguments similar to the ones used in the proof of Lemma 2.14 it
can be shown that Davydov’s inequality implies that for m < |A/2] it holds that

oo |A/2] A 5/(2+6) = , /
‘u;/::l) <CZ Z Z pV+v ey’ [ay ({ZJ)] +C Z Z YV s

v=0 v'=m+1 pp’=0 v,v'=0

arfp ) )

It thus follows that, independent of the value of k and /,

' (k,) ‘ kD] | 11(kl) < Cp™ {m+ Z[ay (A)](5/(2+6)},

A= m+

max{jp' 1>[A/2)

and therefore, by Eq. (2.41), that tr Var (L"/ ek, (le,n) < Cp™. In an analogous way one can show that
tr Var (L’l/2 ZL Vo n) Cp™, and thus the claim (2.39) follows with Eq (2.40).

Step 3.1In step 1 it has been shown that L™V2 Y [Y,., — BV, L—) A(0,,1,), and that I, ——

m—oo

I(#y). In particular, the limiting normal random variables with covariances I, converge weakly to a normal
random variable with covariance matrix /(). Step 2 together with the multivariate Chebyshev inequality
implies that, for every € > 0,

L

1 oL _
\/ZV,QX (00,_)’ ) \/Z ; [«ym,n E«ym,n]

RS Cr
< lim lim sup — tr Var Znn| < lim —p" = 0.
( VL Z ] 2

m—)oo L—oo 62

lim limsup P [

m—o0 L—oco

Brockwell and Davis (1991, Proposition 6.3.9) thus completes the proof. O

A very important step in the proof of asymptotic normality for quasi maximum likelihood estimators is
to establish that the Fisher information matrix J, evaluated at the true parameter value, is non-singular. We
shall now show that Assumption D10 is sufficient to ensure that J~! exists for linear state space models.
For vector ARMA processes, formulae similar to Egs. (2.43) below have been derived in the literature (see,
e. g., Klein et al., 2008; Klein and Neudecker, 2000), but have not been used to derive criteria for J being
non-singular. Our arguments are similar to Boubacar Mainassara and Francq (2011, Lemma 4).

Lemma 2.18. Assume that Assumptions DI to D4, D7 and D10 hold. With probability one, the matrix
J =1lim;_, L’IV'Z,D? (o, yb) exists and is non-singular.

Proof. We note that, by Lemma 2.16, ii), it is enough to show that lim; L_1V§.$ (@, yF) exists and is
non-singular. As seen earlier, foreveryi = 1,...,r,

Oilgn = tr|[Vy' (La — £9.8),Vy'") 0iVa| +2(0ig),,) V' €0 (2.42)
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Consequently, the second partial derivatives are given by
B jlan =t [V (32Va) = Vy' @iVa) V' (0,Va) = Vy' g8}, V5" (32 ,V0)
+Vy' (Vo) V' €908y, V5" (0:Va) + Vy' €08}, V' 0:Va) Vy' (0,Va)
~Vy' @Va) Vy' (9iganeh, )| +2(0785,) Vo' ean +2(0i8),) Va' (9:80.)
—2tr I:V';If;ﬂ,n ((9,8;”) V,;I (6 jS,y’,,)] .

By Lemma 2.1, iii), Egy, ,» = 04, and by Eq. (2.7), Esﬂo,nsgo L= Vo, The sequence &y, being the innova-
tions of the process Y implies that &g, , is orthogonal to the Hilbert space spanned by {Y;, ¢ < n}, of which,
by Eq. (2.20), both 0,8y, , and 6%’ &9 arE elements. It thus follows that

E (07 1, = tr [ V5! (0:Va,) V! (8;Va, )| + 2E [(0:8),,) Va' (0,80.)] -
Equations (2.20), (2.26) and (2.27), the ergodicity of Y, and Krengel (1985, Theorem 4.3) imply that the
sequence 82 jl,go is ergodic, and Birkhoft’s Ergodic Theorem shows that

L
%Vf,f (90.5") = % z:; Vilan = B[Vyla,u] = Ji + I,

where

Ji = 2B|(Voga,1) V! (Vogs,n)| and Jo = (w[Vy 2 0:Va,) V5! (9;V,) V;J/z])i]_. (2.43)

T

J, is positive semidefinite because it can be written as J, = ( b, ... b, ) ( b, ... b, ) where
b, = (V,;OI/ ’® V.;Ol/ 2) vec (0, Vy,). Since J; is positive semidefinite as well, proving that J is non-singular
is equivalent to proving that for any non-zero vector ¢ € R”, the numbers ¢ J;c, i = 1,2, are not both zero.
Assume, for the sake of contradiction, that there exists such a vector ¢ = (cy, ..., ¢;)!. The condition ¢’ J; ¢
implies that, almost surely, >,;_, ck0k&g,, = 04 for all n € Z. It thus follows from the infinite-order moving
average representation (2.8b) that

(o] r

Z Z Ck (ak'ﬂﬂ(),v)sﬂ(],—v = Od’

v=l k=1
where the Markov parameters .#y, are given by .#y, = —HﬂF:;_lK.?, v > 1. Since the sequence &y,
is uncorrelated with positive definite covariance matrix, it follows that Y, _, cx (Or#,v) = 04, for every
v € N. Using the relation vec(ABC) = (CT ® A) vec B (Bernstein, 2005, Proposition 7.1.9), we see that the
last display is equivalent to Vy ([Kg0 ® H,go] vec Ff,;l) ¢ = 0, for every v € N. The condition ¢’ J,¢ = 0
implies that (Vg vec V) ¢ = 0,2. By the definition of ¢ ; in Eq. (2.17) it thus follows that Vgiry, ¢ =
0, 42> for every j € N, which, by Assumption D10, is equivalent to the contradiction that ¢ = 0,. m]

of Theorem 2.6. Since 3L converges almost surely to ¢y by the consistency result proved in Theorem 2.5,
and 4 is an element of the interior of ® by Assumption D6, the estimate 9" is an element of the interior
of ® eventually almost surely. The assumed smoothness of the parametrization (Assumption D7) implies
that the extremal property of 9" can be expressed as the first order condition V,ﬁ?\({?l‘, yb) = 0,. A Taylor
expansion of ¢ — V,,i’?ﬂ, yb) around the point %y shows that there exist parameter vectors ¢; € ® of the
form; =9 + c,-(tA9L — ), 0 < ¢; < 1, such that

0, = L2V, 200,y + 1 V3 2@y (3" - ), (.44

where VéﬁﬂL, y5) denotes the matrix whose ith row, i = 1,...,r, is equal to the ith row of Vﬁj\(ﬂi, yh.
By Lemma 2.17 the first term on the right hand side converges weakly to a multivariate normal random
variable with mean zero and covariance matrix I = I(#y). As in Lemma 2.10 one can show that the

sequence (19 - L’IV??(Q\(#, y"‘))LEN of random functions converges almost surely uniformly to the contin-

uous function ¢ — V;Q(ﬁ) taking values in the space R™>". Since on the compact space © this function
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is bounded in the operator norm obtained from identifying R™"™" with the space of linear functions from
R” to M,(R), that sequence is almost surely uniformly bounded, and we obtain that

< sup

1 — 1 —
HZV?,.,%@LJL) - V3P0,
IO

1 —
zvg.f(ﬂ,y%

9" = doll == 0,

because, by Theorem 2.5, the second factor almost surely converges to zero as L tends to infinity. It follows
from Lemma 2.18 that L~'V3.2(#", y%) converges to the matrix J almost surely, and thus from Eq. (2.44)

that L1/2 (19L - 190) KNy% (0,., J’IIJ’I), as L — co. This shows Eq. (2.18) and completes the proof. o

In practice, one is interested in also estimating the asymptotic covariance matrix =, which is useful in
constructing confidence regions for the estimated parameters or in performing statistical tests. This prob-
lem has been considered in the framework of estimating weak VARMA processes in Boubacar Mainassara
and Francq (2011) where the following procedure has been suggested, which is also applicable in our set-

N — (AL N
up. First, J(dy) is estimated consistently by J© = L7'V2 % (0 , yL). For the computation of J* we rely on

the fact that the Kalman filter can not only be used to evaluate the Gaussian log-likelihood of a state space
model but also its gradient and Hessian. The most straightforward, but computationally burdensome way
of achieving this is by direct differentiation of the Kalman filter equations, which results in increasing the
number of passes through the filter to r + 1 and r(r + 3)/2 for the gradient and the Hessian, respectively.
More sophisticated algorithms, including the Kalman smoother and/or the backward filter have been de-
vised and can be found in Kulikova and Semoushin (2006); Segal and Weinstein (1989). The construction
of a consistent estimator of / = I(i}y) is based on the observation that I = Y sz Cov(£y, n, Cg,n+a), Where
Loon = Vo [log det Vg, + 8.?0,,,‘/,;0‘800,:1]- Assuming that (€, ,)ne+ admits an infinite-order AR represen-
tation ®(B)ly,, = Uy,, where ®(z) = 1, + 372, ®,;7' and (U,),a+ is a weak white noise with covariance
matrix Xy, it follows from the interpretation of //(2m) as the value of the spectral density of ({g,,)nen+ at
frequency zero that I can also be written as I = @~ (1)Zy®(1)~!. The idea is to fit a long autoregression to
¢ &L,n)n: 1,..L» the empirical counterparts of (£g,,)nen+ Which are defined by replacing ¥ with the estimate

oL . .. .. . . .
¢ in the definition of €y, ,. This is done by choosing an integer s > 0, and performing a least-squares
regression of {5 on Cy ,...,0p . s+1 < n < L. Denoting by dLiz) = 1, + > (i)fszi the ob-

J n—s
tained empirical autoregressive polynomial and by X£ the empirical covariance matrix of the residuals of
the regression, it was claimed in Boubacar Mainassara and Francq (2011, Theorem 4) that under the addi-

. . Toas sa 71 )
tional assumption E [||3,,||8+‘5] < oo the spectral estimator /- = (Cl)f(l)) XL (CDf(l)) converges to I in

probability as L, s — oo if s/L — 0. The covariance matrix of {9L is then estimated consistently as

= | N A

SL_ L (fLY ' FL(fL

B =7 (1) () (2.45)
In the simulation study performed in Section 4.2, this estimator for Z performs convincingly.

3. QUASI MAXIMUM LIKELIHOOD ESTIMATION FOR LLEVY-DRIVEN MULTIVARIATE CONTINUOUS-TIME ARMA PROCESSES

In this section we pursue the second main topic of the present paper, a detailed investigation of the
asymptotic properties of the quasi maximum likelihood estimator of discretely observed multivariate con-
tinuous-time autoregressive moving average processes. We will make use of the equivalence between
MCARMA and continuous-time linear state space models, as well as of the important observation that the
state space structure of a continuous-time process is preserved under equidistant sampling, which allows for
the results of the previous section to be applied. The conditions we need to impose on the parametrization
of the models under consideration are therefore closely related to the assumptions made in the discrete-time
case, except that the mixing and ergodicity assumptions D4 and D9 are automatically satisfied (Marquardt
and Stelzer, 2007, Proposition 3.34).

We start the section with a short recapitulation of the definition and basic properties of Lévy-driven con-
tinuous-time ARMA processes; this is followed by a discussion of the second-order properties of discretely
observed CARMA process, leading to a set of accessible identifiability conditions. Section 3.4 contains
our main result about the consistency and asymptotic normality of the quasi maximum likelihood estimator
for equidistantly sampled MCARMA processes.
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3.1. Lévy-driven multivariate CARMA processes and continuous-time state space models. A natural
source of randomness in the specification of continuous-time stochastic processes are Lévy processes. For
a thorough discussion of these processes we refer the reader to the monographs Applebaum (2004); Bertoin
(1996); Sato (1999).

Definition 3.1 (Lévy process). A two-sided R”-valued Lévy process (L(t)),s is a stochastic process, de-
fined on a probability space (Q, %, P), with stationary, independent increments, continuous in probability,
and satisfying L(0) = 0,, almost surely.

The class of Lévy processes includes many important processes such as Brownian motions, stable pro-
cesses, and compound Poisson processes as special cases, which makes them very useful in stochastic
modelling. Another advantage is that the property of having stationary independent increments implies
that Lévy process have a rather particular structure which makes many problems analytically tractable.
More precisely, the Lévy—Itd6 decomposition theorem asserts that every Lévy process can be additively
decomposed into a Brownian motion, a compound Poisson process, and a square-integrable pure-jump
martingale, where the three terms are independent. This is equivalent to the statement that the characteris-
tic function of a Lévy process L has the special form Ee/™X") = exp{ryL(u)}, u € R™, t € R*, where the
characteristic exponent ¢ is given by

1 )
yh@) =iyt u) - S, 2u) + f [ = 1 = i, )Ly | (). 3.1

m

yE € R™ is called the drift vector, ¢ is a non-negative definite, symmetric m X m matrix called the
Gaussian covariance matrix, and the Lévy measure v* satisfies the two conditions v*({0,,}) = 0 and
me min(||x||2 ,Dvl(dx) < co. For the present purpose it is enough to know that a Lévy process L has
finite kth absolute moments, k > 0, that is E ||L()||* < o, if and only if ﬁxnm llx|lF vE(dx) < oo (Sato, 1999,

Corollary 25.8), and that the covariance matrix & of L(1), if it exists, is given by 9 + f“ xxTvE(dx)
Sato (1999, Example 25.11).

x||>1

Assumption L1. The Lévy process L has mean zero and finite second moments, which means that '~ +
L . . 2 L . .
anzl xv=(dx) is zero, and that the integral Lx”% [lx]|* v*(dx) is finite.

Just like i.1. d. sequences are used in time series analysis to define ARMA processes, Lévy processes
can be used to construct (multivariate) continuous-time autoregressive moving average processes, called
(M)CARMA processes. If L is a two-sided Lévy process with values in R” and p > ¢ are integers, the
d-dimensional L-driven MCARMA(p, g) process with autoregressive polynomial

20 P() = 1020 + AP+ + A, € My(R[Z]) (3.2a)
and moving average polynomial
20 0) = Boz? + Biz7! + ...+ By € Myn(R[z]) (3.2b)

is defined as the solution to the formal differential equation P(D)Y(r) = Q(D)DL(¢), D = (d/d¢). It is often
useful to allow for the dimensions of the driving Lévy process L and the L-driven MCARMA process to be
different, which is a slight extension of the original definition of Marquardt and Stelzer (2007). The results
obtained in that paper remain true if our definition is used. In general, the paths of a Lévy process are
not differentiable, so we interpret the defining differential equation as being equivalent to the state space
representation

dG(t) = AG(t)dt + BdAL(), Y() =CG(t), teR, (3.3)
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where A ,B, and C are given by

0 1, o ... O
0 0o 1, .
A=l oo | Mpa®), (3.4a)
0 ... 0 14
A, A, .. . =AY
T p-j-1
B=(B - By ) €Mun®R), Bpj=—lo. | D ABpji—Bej|,  (34b)
i=1
C=(140,...,0) € My pq(R). (3.4¢)

It follows from representation (3.3) that MCARMA processes are special cases of linear multivariate con-
tinuous-time state space models, and in fact, the class of linear state space models is equivalent to the class
of MCARMA models (Schlemm and Stelzer, 2011, Corollary 3.4). By considering the class of linear state
space models, one can define representations of MCARMA processes which are different from Eq. (3.3)
and better suited for the purpose of estimation.

Definition 3.2 (State space model). A continuous-time linear state space model (A, B, C, L) of dimension
N with values in R? is characterized by an R"-valued driving Lévy process L, a state transition matrix
A € My(R), an input matrix B € My,,(R), and an observation matrix C € M, x(R). It consists of a state
equation of Ornstein—Uhlenbeck type

dX () = AX(t)dr + BdL(t), te€R, (3.5a)
and an observation equation
Y =CX(t), teR. (3.5b)
The R¥-valued process X = (X(£)),cg is the state vector process, and Y = (Y (t)),cx the output process.

A solution Y to Eq. (3.5) is called causal if, for all ¢, Y () is independent of the o-algebra generated by
{L(s) : s > t}. Every solution to Eq. (3.5a) satisfies

!
X(0) = e IX(s) + f AWBAL(), Vs,teR, s<t, (3.6)

N

where the stochastic integral with respect to L is well-defined by Protter (1990, Theorem 3.9). The inde-
pendent-increment property of Lévy processes implies that X is a Markov process. The following can be
seen as the multivariate extension of Brockwell et al. (2011, Proposition 1) and recalls conditions for the
existence of a stationary causal solution of the state equation (3.52) for easy reference. We always work
under the following assumption.

Assumption E. The eigenvalues of the matrix A have strictly negative real parts.
Proposition 3.1 (Sato and Yamazato (1983, Theorem 5.1)). If Assumptions E and L1 hold, then Eq. (3.52)
has a unique strictly stationary, causal solution X given by X(t) = f_t . e BdL(u), which, for fixedt € R,
has the same distribution as fooo e BAL(u). Moreover, X(t) has mean zero and second-order structure
Var(X(£)) =T = f eAuByL gl e uqy, (3.7a)
0

Cov (X(t + h), X(0)) =yy(h) = e*'Ty, h>0, (3.7b)

where the variance Ty satisfies ATy + TgyAT = —BZEBT.

It is an immediate consequence that the output process Y has mean zero and autocovariance function
R 3 h + yy(h) given by yy(h) = Ce*"'T'\CT, h > 0, and that Y itself can be written succinctly as a moving
average of the driving Lévy process as

Y() = f B g(t—wydL(u), t€R; g(t) = CeM Bl (0). (3.8)

00



22 SCHLEMM, E. AND STELZER, R.

As in Marquardt and Stelzer (2007, Proposition 3.30) one shows the following result about the existence
of moments.

Proposition 3.2. Let Y be the output process of the state space model (3.5) driven by the Lévy process L.
If L(1) is in L"(Q, P) for some r > 0, then so are Y(t) and the state vector X(¢t), t € R.

Equation (3.8) which, in conjunction with Eq. (3.4), serves as the definition of a multivariate CARMA
process with autoregressive and moving average polynomials given by Eq. (3.2), shows that the behaviour
of the process Y depends on the values of the individual matrices A, B, and C only through the products
Ce’'B, t € R. The following lemma relates this analytical statement to an algebraic one about rational
matrices, allowing us to draw a connection to the identifiability theory of discrete-time state space models.

Lemma 3.3. Two matrix triplets (A, B, C), (A, B, C) of appropriate dimensions satisfy Ce*'B = Ce'B for
allt € R ifand only if C(z1 — A)™'B = C(z1 = A)"'B for all z € C.

Proof. If we start at the first equality and replace the matrix exponentials by their spectral representations
(see Lax, 2002, Theorem 17.5), we obtain

f e?C(z1 - A)'Bdz = f e“C(z1 - A)'Bdz, VteR, (3.9)
Y ¥

where 7 is a closed contour in C winding around each eigenvalue of A exactly once, and likewise for y.
Since we can always assume that y = ¥ by taking y to be R times the unit circle, R > max{|1]| : 1 € o4 U0z},
we can write Eq. (3.9) as

fezt [C(Zl —A)'B-C(z1 - A)’IB] dz=0, VteR. (3.10)
Y

Since the rational matrix function A(z) = C(z1—A)"'B—C(z1—-A)~! B has only poles with modulus less than
R, it has an expansion around infinity, A(z) = Y-, Anz™", Ay € M4(C), which converges in a region {z € C :
|z| > r} containing y. Using the fact that this series converges uniformly on the compact set y and applying
the Residue Theorem from complex analysis (Dieudonné, 1968, 9.16.1), which implies fy e“z7"dz = "/n!,

Eq. (3.10) becomes .-, ;—"!A,Hl = Oy. Consequently, by the Identity Theorem (Dieudonné, 1968, Theorem
9.4.3), A, is the zero matrix for all n > 1, and since A(z) — 0 as z — oo, it follows that A(z) = 0g,,- O

Because of its importance for the following discussion, the rational matrix function H : z — C(zly —
A)~!'Bis given a special name: it is called the transfer function of the state space model (3.5) and is closely
related to the spectral density fy of the output process Y, which is defined as fy(w) = fR e hyy(h)dh — the
matrix transform of yy. Before we make this relation explicit, we prove the following lemma.

Lemma 3.4. For any real number v, and matrices A, B, L Iy as in Eq. (3.72), it holds that
f eMBELB e tdy = e M Te Y. (3.11)
—

Proof. We define the functions /,7 : R — My(R) by I(v) = fj’ e BSLBT eA"udy and r(v) = e 'Tye™'".

Clearly, both [ : v — [(v) and r : v — r(v) are differentiable functions of v; taking the derivatives yields
d d
1) =e " BxLBTe " and ) = —Ae ™ Toe ™ — e A e ™.
v %

Using Proposition 3.1 one sees immediately that (d/dv)I(v) = (d/dv)r(v), for all v € R. Hence, [/ and r
differ only by an additive constant. Since /(0) equals 7(0) by the definition of Iy, the constant is zero, and
l(v) = r(v) for all real numbers v. |

Proposition 3.5. Let Y be the output process of the state space model (3.5), and denote by H : 7 +—
C(zly — A)7'B its transfer function. Then the relation fy(w) = 2r) 'H{iw)XXH(=iw)" holds for all real
w; in particular, w — fy(w) is a rational matrix function.
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Proof. First, we recall (Bernstein, 2005, Proposition 11.2.2) that the Laplace transform of any matrix A is
given by its resolvent, that is, (z/ — A)™! = fooo e #eA"du, for any complex number z. We are now ready to
compute

1 1 _
— H(iw)2E H(=iw)T =—C(iwly — A) ' BELBT (~iwly — AT) ' CT
2w 2w
1 00 ) S
=—(C [ f e iwneAuqy Byl BT f e“"veAT"dv] dnCT.
27T 0 0
Introducing the new variable 4 = u — v, and using Lemma 3.4, this becomes

iC ’foo fw e iwheAhAy By L BT oAV 1 dy
271' |Jo —y

CT

1 r 00 00 ) r 00 0 ) .
=2—c f f g iwheAheAv B L BT AV qpdy + f f g iwheAhoAv py L pT oA thdv] cT
T 1Jo 0 0 -y

1 . 0
=2_c f e WheAMT dh + f e e hdh] cT.
JT 1Jo _

00

By Eq. (3.7b) and the fact that the spectral density and the autocovariance function of a stochastic process
are Fourier duals of each other, the last expression is equal to (27)~! f_ o:o e “hyy(h)dh = fy(w), which
completes the proof. O

A converse of Proposition 3.5, which will be useful in our later discussion of identifiability, is the
Spectral Factorization Theorem. Its proof can be found in Rozanov (1967, Theorem 1.10.1) and also in
Caines (1988, Theorem 4.1.4).

Theorem 3.6. Every positive definite rational matrix function f € S} (C{w}) of full rank can be factorized
as f(w) = Q)" 'W(iw)W(=iw)T, where the rational matrix function z — W(z) € Mgy (R{z}), called a
spectral factor, has full rank. For fixed N, the spectral factor W is uniquely determined up to an orthogonal
transformation W(z) — W(2)O, for some orthogonal N X N matrix O.

3.2. Equidistant observations. We now turn to properties of the sampled process Y = (Yﬁ,h)),,ez which
is defined by Yﬁ,h) = Y(nh) and represents observations of the process Y at equally spaced points in time.
A very fundamental observation is that the linear state space structure of the continuous-time process is
preserved under sampling, as detailed in the following proposition. Of particular importance is the explicit
formula (3.14) for the spectral density of the sampled process Y.

Proposition 3.7. Assume that Y is the output process of the state space model (3.5). Then the sampled
process Y has the state space representation

nh
X, =X, + NP N = f e BdL(w), YW = CcxW, (3.12)
(n=1h

The sequence (Nf,m)neZ is i. i. d. with mean zero and covariance matrix
h ,
Yo = f e“BEE BT A dy. (3.13)
0
Moreover; the spectral density of Y, denoted by f: " s given by
) -1 . -1
V) = C(e1y —eM) EW (eLy — ") T (3.14)

in particular, fl(,h) D-mn] > S (R {ei’"}) is a rational matrix function.

Proof. Egs. (3.12) follow from setting ¢t = nh, s = (n — 1)h in Eq. (3.6). That the sequence (Z,),cz is 1.1.d.
as well as expression (3.13) for £/ are immediate consequences of the Lévy process L having independent,
homogeneous increments. Expression (3.14) is an application of Hamilton (1994, Eq. (10.4.43)). |
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In the following we analyse further the sampled state space model (3.12), in particular we will derive
conditions for it to be minimal in the sense that the process Y is not the output process of any state
space model of dimension less than N, and for the noise covariance matrix ¥ given in Eq. (3.13) to be
non-singular. We begin by recalling some well-known notions from discrete-time realization and control
theory. For a detailed account we refer to Astrom (1970); Caines (1988); Sontag (1998), which also explain
the origin of the terminology.

Definition 3.3 (Algebraic realization). Let H € M, ,,(R{z}) be a rational matrix function. A matrix triple
(A, B, C) is called an algebraic realization of H of dimension N if H(z) = C(z1y—A)~'B, where A € My(R),
B e My, (R), and C € Myn(R).

Every rational matrix function has many algebraic realizations of various dimensions. A particularly
convenient class are the ones of minimal dimension, which have a number of useful properties.

Definition 3.4 (Minimality). Let H € M,;,,(R{z}) be a rational matrix function. A minimal realization
of H is an algebraic realization of H of dimension smaller than or equal to the dimension of every other
algebraic realization of H. The dimension of a minimal realization of H is the McMillan degree of H.

Two other important properties of algebraic realizations, which are intimately related to the notion of
minimality and play a key role in the study of identifiability, are introduced in the following definitions.

Definition 3.5 (Controllability). An algebraic realization (A, B, C) of dimension N is controllable if the
controllability matrix € = [ B AB --- A"'B ] € M, ,y(R) has full rank, i.e., if rank € = N.

Definition 3.6 (Observability). An algebraic realization (A, B, C) of dimension N is observable if the ob-
servability matrix & = [ cT (AT ... (CA™H ]T € Myyn(R) has full rank, i. e., if rank & = N.

Remark 3.7. We will often say that a state space system (3.5) is minimal, controllable or observable if the
corresponding transfer function has this property.

The next theorem characterizes minimality in a useful way in terms of controllability and observability.

Theorem 3.8 (Hannan and Deistler (1988, Theorem 2.3.3)). A realization (A, B, C) is minimal if and only
if it is both controllable and observable.

Lemma 3.9. For all matrices A € My(R), B € My,(R), £ € S} *(R), and every real number t > 0, the
linear subspaces im [B,AB, e AN"B] and im ﬂ e BY BT eA udy are equal.

Proof. The assertion is a straightforward generalization of Bernstein (2005, Lemma 12.6.2). O

Corollary 3.10. Ifthe triple (A, B, C) is minimal of dimension N, and X is positive definite, then the N X N
matrix Y. = foh e BEBT A du has full rank N.

Proof. By Theorem 3.8, minimality of (A, B, C) implies controllability, i. e. full rank of the controllability
matrix [ B AB --- AM'B ] By Lemma 3.9, this is equivalent to ¥ having full rank. ]

Proposition 3.11. Assume that Y is the d-dimensional output process of the state space model (3.5) with
(A, B, C) being a minimal realization of McMillan degree N. Then a sufficient condition for the sampled
process Y™ to have the same McMillan degree, is the Kalman—Bertram criterion

A=A #2h ik, V(4,2 € o(A) x 0(A), Vk € Z\{0}. (3.15)

Proof. We will prove the assertion by showing that the N-dimensional state space representation (3.12)
is both controllable and observable, and thus, by Theorem 3.8, minimal. Observability has been shown
in Sontag (1998, Proposition 5.2.11) using the Hautus criterion (Hautus, 1969). The key ingredient in
the proof of controllability is Corollary 3.10, where we showed that the autocovariance matrix £ of NP,
given by Eq. (3.13), has full rank; this shows that the representation (3.12) is indeed minimal and completes
the proof. O

Remark 3.8. Since, by Hannan and Deistler (1988, Theorem 2.3.4), minimal realizations are unique up
to a change of basis (4, B,C) — (TAT~!,TB,CT™"), for some non-singular N x N matrix T, and such a
transformation does not change the eigenvalues of A, the criterion (3.15) does not depend on what particular
triple (A, B, C) one chooses.



QML ESTIMATION FOR STRONGLY MIXING STATE SPACE MODELS AND MCARMA PROCESSES 25

Uniqueness of the principal logarithm (Higham, 2008, Theorem 1.31) implies the following.

Lemma 3.12. Assume that the matrices A, B € My(R) satisfy " = "8 for some h > 0. If the spectra
04,0 of A, Bsatisfy |ImA| < w/h forall A € 04 U op, then A = B.

Lemma 3.13. Assume that A € My(R) satisfies Assumption E. For every h > 0, the linear map #
MyR) > My(R), M — j(;h e MeA udy is injective.

Proof. If we apply the vectorization operator vec : My(R) — RV * and use the well-known identity (Bern-
stein, 2005, Proposition 7.1.9) vec(UVW) = (WT ® U)vec(V) for matrices U,V and W of appropriate
dimensions, we obtain the induced linear operator

h
- 2 2
veco# ovec RV 5 RV, VCCMHf e @ eMdu vec M.
0

To prove the claim that the operator . is injective, it is thus sufficient to show that the matrix &7 =
foh et ® etdu € My (R) is non-singular. We write A ® A := A ® 1y + 1y ® A. By Bernstein (2005, Fact

11.14.37), o/ = foh e“®udy and since (A @ A) = {A + p : A, u € o(A)} (Bernstein, 2005, Proposition
7.2.3), Assumption E implies that all eigenvalues of the matrix A ® A have strictly negative real parts; in
particular, A & A is invertible. Consequently, it follows from Bernstein (2005, Fact 11.13.14) that &/ =
Ao A [e(AeaA)h - lNz]. Since, for any matrix M, it holds that o-(e™) = {e?, 1 € o"(M)} (Bernstein, 2005,
Proposition 11.2.3), the spectrum of e“®Y" is a subset of the open unit disk, and it follows that &7 is
invertible. o

3.3. Overcoming the aliasing effect. One goal in this paper is the estimation of multivariate CARMA
processes or, equivalently, continuous-time state space models, based on discrete observations. In this
brief section we concentrate on the issue of identifiability, and we derive sufficient conditions that prevent
redundancies from being introduced into an otherwise properly specified model by the process of sampling,
an effect known as aliasing (Hansen and Sargent, 1983; McCrorie, 2003).

For ease of notation we choose to parametrize the state matrix, the input matrix, and the observation
matrix of the state space model (3.5), as well as the driving Lévy process L; from these one can always
obtain an autoregressive and a moving average polynomial which describe the same process by applying a
left matrix fraction decomposition to the corresponding transfer function, see Patel (1981) and the upcom-
ing Theorems 4.2 and 4.3. We hence assume that there is some compact parameter set @ C R”, and that,
for each ¢ € @, one is given matrices Ay, By and Cy of matching dimensions, as well as a Lévy process
Ly. A basic assumption is that we always work with second order processes (cf. Assumption L1).

Assumption C1. For each @ € 0, it holds that ELy = 0,,,, that E ||Ly(1)|/* is finite, and that the covariance
matrix X5 = ELy(1)Ly(1)" is non-singular.

To ensure that the model corresponding to # describes a stationary output process we impose the ana-
logue of Assumption E.
Assumption C2. For each # € O, the eigenvalues of Ay have strictly negative real parts.

Next, we restrict the model class so as to only contain minimal algebraic realizations of a fixed McMillan
degree.

Assumption C3. For all ¢ € O, the triple (Ay, By, Cg) is minimal with McMillan degree N.

Since we shall base the inference on a quasi maximum likelihood approach and thus on second-or-
der properties of the observed process, we require the model class to be identifiable from these available
information according to the following definitions.

Definition 3.9 (L>-equivalence). Two stochastic processes, irrespective of whether their index sets are
continuous or discrete, are L2-observationally equivalent if their spectral densities are the same.

Definition 3.10. A family (Yy,d € ®) of continuous-time stochastic processes is identifiable from the
spectral density if, for every @, # 5, the two processes Yy, and Y, are not L?-observationally equivalent.
It is h-identifiable from the spectral density, h > 0, if, for every ¢ # 9, the two sampled processes Y:?hl)

and Yf;? are not L?-observationally equivalent.
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Assumption C4. The collection of output processes K(®) := (Yg,d € O) corresponding to the state space
models (Ay, By, Cy, Ly) is identifiable from the spectral density.

Since we shall use only observations of Y at discrete points in time separated by a sampling interval
h, it would seem more natural to impose the stronger requirement that K(®) be h-identifiable. We will
see, however, that this is implied by the previous assumptions if we additionally assume that the following
holds.

Assumption C5. For all ¢ € O, the spectrum of Ay is a subset of {z € C : —n/h < Imz < 7/h}.

Theorem 3.14 (Identifiability). Assume that ® > ¢ +— (A,g, By, Cyg, 25) is a parametrization of continuous-
time state space models satisfying Assumptions CI to C5. Then the corresponding collection of output

processes K(O) is h-identifiable from the spectral density.

Proof. We will show that for every ¢,%, € ©, #, # i,, the sampled output processes Yf,hl) and Yf,}?(h) are
not L*-observationally equivalent. Suppose, for the sake of contradiction, that the spectral densities of the
sampled output processes were the same. Then the Spectral Factorization Theorem (Theorem 3.6) would
imply that there exists an orthogonal N X N matrix O such that

Cy, (eiwlN _ eAalh)z:;ll)»l/zO — Cﬂz(eiwlN _ eAazh)zg'z)»l/2’ < w<n,

where ng’_)’l/ 2 i = 1,2, are the unique positive definite matrix square roots of the covariance matrices

foh eA"i“B,giZg_Bg_eA';f”du, defined by spectral calculus. This means that the two triples

(eA-’1 h 25711]),1/20’ C,,l) and (eA"zh, 21(;‘2)’1/2, C,yz)

are algebraic realizations of the same rational matrix function. Since Assumption C5 clearly implies the
Kalman—Bertram criterion (3.15), it follows from Proposition 3.11 in conjunction with Assumption C3 that
these realizations are minimal, and hence from Hannan and Deistler (1988, Theorem 2.3.4) that there exists
an invertible matrix 7' € My(R) satisfying

eAﬂlh = TﬁleAﬂth, zg’])’l/z() = Tﬁlz:;;)’]/z, C,gl = C,sz, (3.16)

Ay, Th

It follows from the power series representation of the matrix exponential that 7-'e*%"T equals el 4o,
Under Assumption C5, the first equation in conjunction with Lemma 3.12 therefore implies that Ay, =
T~'Ay,T. Using this, the second of the three equations (3.16) gives

f,h]) _ fo‘h Moy (TilBﬂz) 252 (Tle.vz)T i “du,

which, by Lemma 3.13, implies that (T~'By,)Z; (T~'By,)" = By, Z§1 Bgl. Together with the last of the
equations (3.16) and Proposition 3.7 it follows that, for every w € [, 7],

fo,() =Cy,(iwly — Ag,) ™' By, 2§ B (—iwly — Ay )~ Cj
=Cy,(iwly — A,yz)“BﬂZZlL,ngz(—iwlN - Agz)-lcgz = fy,(w);
this contradicts Assumption C4 that Yy, and Yy, are not L2-observationally equivalent. O

3.4. Asymptotic properties of the QML estimator. In this section we apply the theory that we developed
in Section 2 for the quasi maximum likelihood estimation of general discrete-time linear state space mod-
els to the estimation of continuous-time linear state space models or, equivalently, multivariate CARMA
processes. We have already seen that a discretely observed MCARMA process can be represented by a
discrete-time state space model and that, thus, a parametric family of MCARMA processes induces a para-
metric family of discrete-time state space models. More precisely, Egs. (3.12) show that the process of
sampling with spacing & maps the continuous-time state space models (Ay, By, Cy, Lg)gco to the discrete-
time state space models

nh
(. CoNg.0), 0 N = [ e BaaLy (3.17)
’ (n=1)h
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which are not in the innovations form (1.2). The quasi maximum likelihood estimator {9L’(h) is defined by
Eq. (2.14), applied to the state space model (3.17), that is
A

9" = argminy o L@, yb "), (3.182)

L
gh)(ﬂ’yL,(h)) =Z[dlog27r+logdet V.(ﬁh) A(h)TV(h) La(h)

& . (3.18b)

n=1

alh

where & ) are the pseudo-innovations of the observed process Y = Yf;:}), which are computed from the

sample yL ) = (Y(lh), e Y(h)) via the recursion

Ko = (" = K'Co) Koo + KLY &) =Y = CoXy,, nel.

n-1°

The initial value X, #.1 may be chosen in the same ways as in the discrete-time case. The steady-state Kalman
gain matrices Kf,h) and pseudo-covariances Vf,h) are computed as functions of the unique positive definite

solution Qf;') to the discrete-time algebraic Riccati equation
") _ AshGATh | ) _ [ Agh () ~T W T [adoh W 71"

Qf) = ettt + 1 — [V Cl[Coal Ch| [y Ch]

namely
#) _ [aAshy® T ® T Vo = (h)
Ky =[etmaycl]|cay'ch| = Q) C}.

In order to obtain the asymptotic normality of the quasi maximum likelihood estimator for multivariate
CARMA processes, it is therefore only necessary to make sure that Assumptions D1 to D10 hold for
the model (3.17). The discussion of identifiability in the previous section allows us to specify accessible
conditions on the parametrization of the continuous-time model under which the quasi maximum likelihood

estimator is strongly consistent. In addition to the identifiability assumptions C3 to C5, we impose the
following conditions.

Assumption C6. The parameter space ® is a compact subset of R".

Assumption C7. The functions # — Ay, @ — By, ¥ > Cy, and & — Zs are continuous. Moreover, for
each ¥ € O, the matrix Cy has full rank.

Lemma 3.15. Assumptions C1 to C3, C6 and C7 imply that the family (eA"h, Cy, Nl(;’), 0)'%@ of discrete-time
state space models satisfies Assumptions D1 to D4.

Proof. Assumption D1 is clear. Assumption D2 follows from the observation that the functions A + e*
and (A4, B,%) — foh eA“BY.BT A "dy are continuous. By Assumptions C2, C6 and C7, and the fact that the
eigenvalues of a matrix are continuous functions of its entries, it follows that there exists a positive real
number € such that, for each ¢ € ©, the eigenvalues of Ay have real parts less than or equal to —e. The
observation that the eigenvalues of e? are given by the exponentials of the eigenvalues of A thus shows that
Assumption D3, i) holds with p := e™" < 1. Assumption C1 that the matrices E.I‘,: are non-singular and the

minimality assumption C3 imply by Corollary 3.10 that the noise covariance matrices fo;’) = ENg’LN:;’ZL’T
are non-singular, and thus Assumption D3, ii) holds. Further, by Proposition 2.2, the matrices Qg are non-
singular, and so are, because the matrices Cy are assumed to be of full rank, the matrices Vy; this means
that Assumption D3, iii) is satisfied. Assumption D4 is a consequence of Proposition 3.7, which states that
the noise sequences Ny are i.i.d. and in particular ergodic; their second moments are finite because of
Assumption C1. O

. . o1 . AL.(h) . .
In order to be able to show that the quasi maximum likelihood estimator ¢ ® is asymptotically normally
distributed, we impose the following conditions in addition to the ones described so far.

Assumption C8. The true parameter value ¥ is an element of the interior of ®.

Assumption C9. The functions & — Ay, & — By, & — Cy, and & — 25 are three times continuously
differentiable.

Assumption C10. There exists a positive number ¢ such that E ||L,90(1)||4+(s < 0.
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Lemma 3.16. Assumptions C8 to C10 imply that Assumptions D6 to D8 hold for the model (3.17).

Proof. Assumption D6 is clear. Assumption D7 follows from the fact that the functions A — e* and
(A,B,X) — foh e BEBT e “du are not only continuous, but infinitely often differentiable. For Assump-
tion D8 we need to show that the random variables N := Ny, ; have bounded (4 + §)th absolute moments.
It follows from Rajput and Rosinski (1989, Theorem 2.7) that N is infinitely divisible with characteristic
triplet (v, X, v) and that

1
3 _ 4+6
f ll[|** v(dx) <f [[e04=9 By || dsf ]I+ v 9(dx).
[lx]I>1 0 |lx]|>1

The first factor on the right side is finite by Assumptions C6 and C9, the second by Assumption C10 and
the well known equivalence of finiteness of the ath absolute moment of an infinitely divisible distribution
and finiteness of the ath absolute moments of the corresponding Lévy measure restricted to the exterior
of the unit ball (Sato, 1999, Corollary 25.8). The same corollary shows that E|IN|*° < oo and thus
Assumption D8. O

Our final assumption is the analogue of Assumption D10. It will ensure that the Fisher information

. . . o . AL . . . .
matrix of the quasi maximum likelihood estimator ¢ is non-singular by imposing a non-degeneracy
condition on the parametrization of the model.

Assumption C11. There exists a positive index jj such that the [( Jo + 2)d2] X r matrix

(W).T T T o 17

vec Vy 99,

has rank r.

Theorem 3.17 (Consistency and asymptotic normality for 3L’(h)). Assume that (Ay, By, Cy, Ly)gco IS a
parametric family of continuous-time state space models, and denote by y» = (Y.(;;).w e, Yg?‘ ;) a sample
of length L from the discretely observed output process corresponding to the parameter value ¥y € O.
Under Assumptions C1 to C7 the quasi maximum likelihood estimator . argming.g .,?\(0, yEMy s

strongly consistent, that is
~L(h) a.s.
—

) 9. (3.19)

Lo

If, moreover, Assumptions C8 to C11 hold, then 3L’(h) is asymptotically normally distributed, that is
VL ({?L’(") - 00) — H(0.2), (3.20)

where the asymptotic covariance matrix Z = J-'1J7" is given by
T -1 L _ 1 ~1g2 L
1=lim L™ Var (Vo (90.5")). = lim L7'V5.2 (30.5"). (3.21)

Proof. Strong consistency is a consequence of Theorem 2.5 if we can show that the parametric family
(eA”h, Cy,Ny, 0) 9eo of discrete-time state space models satisfies Assumptions D1 to D5. The first four of
these are shown to hold in Lemma 3.15. For the last one, we observe that, by Lemma 2.4, Assumption D5
is equivalent to the family of state space models (3.17) being identifiable from the spectral density. Under
Assumptions C3 to C5 this is guaranteed by Theorem 3.14.

In order to prove Eq. (3.20), we shall apply Theorem 2.6 and therefore need to verify Assumptions D6
to D10 for the state space models (eA"h, Cg,Ny, 0) seo The first three hold by Lemma 3.16, the last one as a
reformulation of Assumption C11. Assumption D9, that the strong mixing coefficients « of a sampled mul-
tivariate CARMA process satisfy 3, [a(m)]?*® < oo, follows from Assumption C1 and Marquardt and
Stelzer (2007, Proposition 3.34), where it was shown that MCARMA processes with a finite logarithmic
moment are exponentially strongly mixing. O
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4. PRACTICAL APPLICABILITY

In this section we complement the theoretical results from Sections 2 and 3 by commenting on their
applicability in practical situations. Canonical parametrizations are a classical subject of research about
discrete-time dynamical systems, and most of the results carry over to the continuous-time case; without
going into great detail we present the basic notions and results about these parametrizations. The assertions
of Theorem 3.17 are confirmed by means of a simulation study for a bivariate non-Gaussian CARMA
process. Finally, we estimate the parameters of a CARMA model for a bivariate time series from economics
using our quasi maximum likelihood approach.

4.1. Canonical parametrizations. We present parametrizations of multivariate CARMA processes that
satisfy the identifiability conditions C3 and C4, as well as the smoothness conditions C7 and C9; if, in
addition, the parameter space ® is restricted so that Assumptions C2, C5, C6 and C8 hold, and the driving
Lévy process satisfies Assumption C1, the canonically parametrized MCARMA model can be estimated
consistently. In order for this estimate to be asymptotically normally distributed, one must additionally
impose Assumption C10 on the Lévy process and check that Assumption C11 holds — a condition which
we are unable to verify analytically for the general model; for explicit parametrizations, however, it can be
checked numerically with moderate computational effort. The parametrizations we are to present are well-
known from the discrete-time setting; detailed descriptions with proofs can be found in Deistler (1983);
Hannan and Deistler (1988); Liitkepohl and Poskitt (1996); Reinsel (1997) or, from a slightly different
perspective, in the control theory literature Gevers (1986); Gevers and Wertz (1984); Guidorzi (1975). We
begin with a canonical decomposition for rational matrix functions.

Theorem 4.1 (Bernstein (2005, Theorem 4.7.5)). Let H € My,,(R{z}) be a rational matrix function of
rank r. There exist matrices S1 € My;[R[z]) and S, € M,,(R[z]) with constant determinant, such that
H=8,MS,, where

_ diag{€;/¥ilie;  Orm—r

M € Mym(R{z}), 4.1)
Od—r,r Od—r,m—r
and €, ... €, Y1,..., ¥, € R[z] are monic polynomials uniquely determined by H satisfying the following
conditions:
i) foreachi=1,...,r, the polynomials € and y; have no common roots,
ii) foreachi=1,...,r — 1, the polynomial €; divides the polynomial €.\, and

iii) foreachi=1,...,r — 1, the polynomial ;| divides the polynomial ;.
The triple (S 1, M, S ) is called the Smith—-McMillan decomposition of H.

The degrees v; of the denominator polynomials i; in the Smith-McMillan decomposition of a rational
matrix function H are called the Kronecker indices of H, and they define the vector v = (vy,...,v,) € N9,
where we set v, = O fork = r+1,...,d. They satisfy the important relation Zle v; = 0y (H), where 6,,(H)
denotes the McMillan degree of H, that is the smallest possible dimension of an algebraic realization of H,
see Definition 3.4. For 1 < i, j < d, we also define the integers v;; = min{v; + I;;> ;;, v;}, and if the Kronecker
indices of the transfer function of an MCARMA process Y are v, we call Y an MCARMA,, process.

Theorem 4.2 (Echelon state space realization, Guidorzi (1975, Section 3)). For positive integers d and m,
let H € My,,(R{z}) be a rational matrix function with Kronecker indices v = (v1,...,vq). Then a unique
minimal algebraic realization (A, B, C) of H of dimension N = 6y,(H) is given by the following structure.

.....

0 -+ e e e 0 0
. . . lv,-—l
Aijz : : +6i,j : , (423)
0 v e e e 0 0
gl o @y, 0 - 0 0 --- 0

(ii)) B = (b;j) € My ,,(R) unrestricted,
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(iii) ifvi>0,i=1,...,d, then

10 ... 0:00 ...0
) o Ocd-1).v,
C= 1 0 ... 0 : : . (4.2b)
Oca-1y o
O(d—2),vz . 1.0 ... 0

If v; = 0, the elements of the ith row of C are also freely varying, but we concentrate here on the
case where all Kronecker indices v; are positive. To compute v as well as the coeflicients «;;; and b;;
for a given rational matrix function H, several numerically stable and efficient algorithms are available in
the literature (see, e.g., Rozsa and Sinha, 1975, and the references therein). The orthogonal invariance
inherent in spectral factorization (see Theorem 3.6) implies that this parametrization alone does not ensure
identifiability. In the case m = d, one remedy is to restrict the parametrization to those transfer functions H
satisfying H(0) = H, for a non-singular matrix Hy. To see how one must constrain the parameters a;x, b;;
in order to ensure this normalization, we work in terms of left matrix fraction descriptions.

Theorem 4.3 (Echelon MCARMA realization, Guidorzi (1975, Section 3)). For positive integers d and
m, let H € M4,,(R{z}) be a rational matrix function with Kronecker indices v = (v1,...,vq). Assume that
(A, B, C) is a realization of H, parametrized as in Egs. (4.2). Then a unique left matrix fraction description
P~'Q of H is given by

P@ = pi@l, o 0@ =[ai@]e1a s (4.3)
where
Pif@) =612 = D aiud ™, 4@ = Y Koe w7 (4.4)
k=1 k=1

.....

is a block matrix with blocks T;; € M, (R) given by

—Qjjo2 ... Wy, o ... 0 0 0 o1
00 10

0 : : o

: : 0 1 0 0

: : X

0 ... ... .0 0 00

The orders p,q of the polynomials P, Q satisfy p = max{vy,...,vs} and ¢ < p — 1. Using this
parametrization, there are different ways to impose the normalization H(0) = Hy € My,,(R). One
first observes that the special structure of the polynomials P and Q implies that H(0) = P(0)"'Q(0) =
—(a;j )i‘jl (Ky,+..+v.1+1,j)ij- The canonical state space parametrization (A, B, C) given by Egs. (4.2) therefore
satisfies H(0) = —CA™'B = H, if one makes the coefficients «; ;1 functionally dependent on the free pa-
rameters «;j,, m = 1,...v;; and b;; by setting a;;; = —[(K,,l+m+vk71+1,1)k1H51],‘j, where «;; are the entries
of the matrix K appearing in Theorem 4.3 and H; !'is a right inverse of Hy. Another possibility, which
has the advantage of preserving the multi-companion structure of the matrix A, is to keep the a;;; as free
parameters, and to restrict some of the entries of the matrix B instead. Since |det K| = 1 and the matrix 7 is
thus invertible, the coeflicients b;; can be written as B = T~' K. Replacing the (v +...+v;_1 + 1, j)th entry
of K by the (i, j)th entry of the matrix —(ax1)iHo makes some of the b;; functionally dependent on the
entries of the matrix A, and results in a state space representation with prescribed Kronecker indices and
satisfying H(0) = Hy. This latter method has also the advantage that it does not require the matrix Hy to
possess a right inverse. In the special case that d = m and Hy = —1g, it suffices t0 set &+ 4y, +1,j = @ij1,
fori,j = 1,...,d. Examples of normalized low-order canonical parametrizations are given in Tables 1
and 2.
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TaBLE 1. Canonical state space realizations (A, B, C) of normalized (H(0) = —1,) rational transfer
functions in M,(R{z}) with different Kronecker indices v; the number of parameters, n(v), includes
three parameters for a covariance matrix .

v | n) P@2) 0@) X))
an | (5 (5 n) |00
(1,2)) 10 ( Z—_ﬂfl 12—1_9:9;— s ) ( ﬁﬁzﬂi s ﬂ7zﬂ-i2- s ) @1
en| 1 (Zz_;ilz;_ﬂfz Z__ﬂf%) ﬁﬂ'ﬁt ” ﬂszﬂ: 193) @.1)

2 _ _ _ _
L g e v e |

TaBLE 2. Canonical MCARMA realizations (P, Q) with order (p, g) of normalized (H(0) = —1,)
rational transfer functions in M,(R{z}) with different Kronecker indices v; the number of parame-
ters, n(v), includes three parameters for a covariance matrix .

4.2. A simulation study. In order to get a better feeling for how the quasi maximum likelihood estima-
tion procedure performs in reality, we present a simulation study for a bivariatte CARMA process with
Kronecker indices (1,2), i.e. CARMA indices (p,q) = (2,1). As the driving Lévy process we chose a
zero-mean normal-inverse Gaussian (NIG) process (L(f)),cr. Such processes have been found to be useful
in the modelling of stock returns and stochastic volatility, as well as turbulence data (see, e. g., Barndorft-
Nielsen, 1997, 1998; Barndorff-Nielsen et al., 2004; Rydberg, 1997). The distribution of the increments
L(r) — L(t — 1) of a bivariate normal-inverse Gaussian Lévy process is characterized by the density

o exp(dk) exp({Bx)) 1+ ag(x)
2r explag(x)) g(x)?

nc(x p,a,B,6,A) = , xeR?

where

§0) = &+ (x - A -, @ =~ (B.AB) >0,

and p € R? is a location parameter, & > 0 is a shape parameter, 8 € R? is a symmetry parameter, § > 0 is
a scale parameter and A € M3 (R), detA = 1, determines the dependence between the two components of
(L(?))ser. For our simulation study we chose parameters

5/4 -1)2
12 1

1
-—=3,2),

4.6
2431 0

=1, a=3, B=(,17, A:(
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resulting in a skewed, semi-heavy-tailed distribution with mean zero and covariance matrix

. 82 -28 )\ [ 04751 -0.1622
T 3132\ -28 64 |7\ -0.1622 03708

A sample of 350 independent replicates of the bivariate CARMA | , process (Y (¥));er driven by a normal-in-
verse Gaussian Lévy process (L(?)),er With parameters given in Eq. (4.6) were simulated on the equidistant
grid 0,0.01, ...,2000 by applying an Euler scheme to the stochastic differential equation (3.5) making use
of the canonical parametrization given in Table 1. For the simulation, the initial value X(0) = 03 and
917 = (-1,-2,1,-2,-3,1,2) was used. Each realization was sampled at integer times (2 = 1), and quasi
maximum likelihood estimates of 9, ..., 97 as well as (g, ¥y, ¥10) := vech =X were computed by numer-
ical maximization of the quasi log-likelihood function using a differential evolution optimization routine
(Price et al., 2005) in conjunction with a subspace trust-region method (Branch et al., 1999; Byrd et al.,
1988). In Table 3 the sample means and sampled standard deviations of the estimates are reported. More-
over, the standard deviations were estimated using the square roots of the diagonal entries of the asymptotic
covariance matrix (2.45) with s(L) = |L/log L3, and the estimates are also displayed in Table 3. One

A7)

parameter | sample mean | bias sample std. dev. | mean est. std. dev.
% -1.0001 0.0001 0.0354 0.0381
g -2.0078 0.0078 0.0479 0.0539
D3 1.0051 -0.0051 0.1276 0.1321
Dy -2.0068 0.0068 0.1009 0.1202
Js -2.9988 -0.0012 0.1587 0.1820
Je 1.0255 -0.0255 0.1285 0.1382
g 2.0023 -0.0023 0.0987 0.1061
Jg 0.4723 -0.0028 0.0457 0.0517
) -0.1654 0.0032 0.0306 0.0346
Po 0.3732 0.0024 0.0286 0.0378

TaBLE 3. Quasi maximum likelihood estimates for the parameters of a bivariate NIG-driven
CARMA, , process observed at integer times over the time horizon [0,2000]. The second col-
umn reports the empirical mean of the estimators as obtained from 350 independent simulated
paths; the third and fourth columns contain the resulting bias and the sample standard deviation
of the estimators, respectively, while the last column reports the average of the expected standard
deviations of the estimators as obtained from the asymptotic normality result Theorem 3.17.

sees that the bias, the difference between the sample mean and the true parameter value, is very small in
accordance with the asymptotic consistency of the estimator. Moreover, the estimated standard deviation is
always slightly larger than the sample standard deviation, yet close enough to provide a useful approxima-
tion for, e. g., the construction of confidence regions. In order not to underestimate the uncertainty in the
estimate, such a conservative approximation to the true standard deviations is desirable in practice. Overall,
the estimation procedure performs very well in the simulation study.

4.3. Application to weekly bond yields. In this section we provide an illustrative data example and apply
the techniques established in the preceding sections to the bivariate weekly series of Moody’s seasoned
Aaa and Baa corporate bond yields from October 1966 through April 2009; these data are available from
the Federal Reserve Bank of St. Louis. We first took the logarithm of the data and the resulting series was
seen to have a unit root in each component, so the next step in the data preparation was differencing at lag 1.
Using a moving window of length 52 — corresponding to a period of one year — we removed the stochas-
tic volatility effects displayed by the differenced time series to obtain data with no obvious departure from
stationarity. Figure 1 shows the weekly bond log-yields after differencing and devolatilization. We have
fitted bivariate CARMA processes of McMillan degrees n = 2, 3,4 using the quasi maximum likelihood
method described in Section 3.4 and employing the canonical parametrizations of Section 4.1. The numer-
ical values of & as well as their standard errors estimated by the square root of the diagonal entries in the
approximate asymptotic covariance matrix éf defined in Eq. (2.45), can be found in Table 4. The last row
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FiGure 1. Weekly series of Moody’s seasoned Aaa and Baa corporate bond yields after differenc-
ing and devolatilization

displays the value of twice the negative logarithm of the Gaussian likelihood of the observations under the
model corresponding to the estimated parameter value ¥#. The quality of the fit can be assessed from Fig. 2

(@.B) (1, 1) (1,2) 2,1 (2,2)
B Jo@) | 4 oW | 4 Jow) | 4 | oW
D -1.1326 [ 0.1349 | -1.1538 [ 0.1401 [ -1.3776 | 0.0320 [ -0.0010 | 0.0336
D, 0.2054 | 0.1171 | 0.2307 | 0.1008 | -2.4033 | 0.0197 | -1.1601 | 0.5964
D5 0.3316 | 0.1206 | -0.2528 | 0.1716 | 0.0228 | 0.0050 | -0.0098 | 0.0268
D4 -1.0935 | 0.1065 | -0.0362 | 0.0472 | -4.9948 | 0.1096 | 0.1829 | 0.7429
s 2.4105 | 0.2324 | -1.2516 | 0.1286 | -4.6276 | 0.1538 | 1.4646 | 0.3931
de 2.2483 | 0.2061 | -2.5747 | 0.4595 | -0.0153 | 0.0108 | 1.3662 | 0.4039
9, 2.7055 | 0.2116 | 1.6345 | 0.2940 | -1.2442 | 0.0391 | -0.7438 | 0.2387
s 2.8552 | 0.1966 | 0.2573 | 0.0492 | -1.7563 | 0.7209
Bo 3.5702 | 0.2151 | 2.4302 | 0.1370 | -2.6936 | 0.6694
Do 4.9076 | 0.3888 | 2.9784 | 0.2766 | 1.7369 | 0.5381
. 4.1571 | 0.5043 | -3.6136 | 3.0265
d1a 2.8483 | 2.5122
D13 44848 | 0.3327
4 5.5079 | 0.1803
s 7.0218 | 1.4357

| 2@.y" | 9,893.8 9,850.4 9,853.0 9,840.7

TaBLE 4. QML estimates of the parameters of an MCARMA,, ; model for weekly yields of
Moody’s seasoned corporate bonds. The marginal standard deviations o(¢;) are estimated from
the asymptotic covariance matrix in Theorem 3.17. The parameters whose confidence region to
the level 5% contains zero are marked in bold.

where we compare the autocorrelation functions of the fitted models with the empirical autocorrelation
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function of the data. One sees how the fit becomes better as one increases the model order in accordance
with an increasing value of the Gaussian likelihood; in particular, the autocorrelations of the second com-
ponent at higher lags are better captured by the higher order models. This phenomenon is well known from
the estimation of discrete-time parametric processes where penalty terms in the likelihood together with
order selection criteria like the Akaike Information Criterion (AIC) or the Bayesian Information Criterion
(BIC) are used to formalize the trade-off between goodness of fit and model complexity. Understanding
their applicability in a continuous-time set-up remains a problem for future research.

Autocorrelations - First component Crosscorrelations — First-second component
1 1} — (L1}
--(1,2)
0.8 -2
c
5 S (22)
i 0.6 1
Q
504
o
0.2
0 cdeviliniigi
0 2 4 6 8 0 2 4 6 8
Lags Lags
Crosscorrelations — Second-First component Autocorrelations — Second component
1
0.8
S
B 0.6
Q
5 0.4
o
0.2
0
0 2 4 6 8 0 2 4 6 8
Lags Lags

Ficure 2. Empirical auto- and crosscorrelations of the weekly bond data from Fig. 1
compared to the theoretical auto- and crosscorrelations of estimated MCARMA,, 3 mod-
els, for different Kronecker indices (a, 8)
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