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Decay of covariances, uniqueness of ergodic component and scaling

limit for a class of ∇φ systems with non-convex potential
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Abstract

We consider a gradient interface model on the lattice with interaction potential which is a non-
convex perturbation of a convex potential. Using a technique which decouples the neighboring
vertices sites into even and odd vertices, we show for a class of non-convex potentials: the
uniqueness of ergodic component for ∇φ- Gibbs measures, the decay of covariances, the scaling
limit and the strict convexity of the surface tension.
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1 Introduction

Phase separation in R
d+1 can be described by effective interface models. In this setting we ignore

overhangs and for x ∈ Z
d, we denote by φ(x) ∈ R the height of the interface above or below the site

x. Let Λ be a finite set in Z
d with boundary

∂Λ := {x /∈ Λ, ||x− y|| = 1 for some y ∈ Λ}, where ‖x− y‖=

d
∑

i=1

|xi − yi| (1)

and with given boundary condition ψ such that φ(x) = ψ(x) for x ∈ ∂Λ. Let Λ̄ := Λ ∪ ∂Λ and let
dφΛ =

∏

x∈Λ dφ(x) be the Lebesgue measure over R
Λ. For a finite region Λ ⊂ Z

d, the finite Gibbs

measure νψΛ on R
Zd with boundary condition ψ for the field of height variables (φ(x))x∈Zd over Λ is

defined by

νψΛ(dφ) =
1

ZψΛ
exp

{

−βHψ
Λ(φ)

}

dφΛδψ(dφZd\Λ), with ZψΛ =

∫

RZd
exp

{

−βHψ
Λ (φ)

}

dφΛδψ(dφZd\Λ)

(2)

where δψ(dφZd\Λ) =
∏

x∈Zd\Λ δψ(x)(dφ(x)); νψΛ is characterized by the inverse temperature β > 0

and the Hamiltonian Hψ
Λ on Λ, which we assume to be of gradient type:

Hψ
Λ (φ) =

∑

i∈I

∑

x∈Λ
x+ei∈Λ∪∂Λ

U(∇iφ(x)), (3)
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where
I = {−d,−d+ 1, . . . ,−1, 1, 2, . . . , d}

and where we introduced for each x ∈ Z
d and each i ∈ I, the discrete gradient

∇iφ(x) = φ(x+ ei) − φ(x),

that is, the interaction depends only on the differences of neighboring heights. Note that ei, i =
1, 2, . . . d denote the unit vectors and e−i = −ei. We thus have a massless model with a continuous
symmetry. U ∈ C2(R) is a function with quadratic growth at infinity:

U(η) ≥ A|η|2 −B, η ∈ R (4)

for some A > 0, B ∈ R. Our state space R
Zd being unbounded, such models are facing delocalization

in lower dimensions d = 1, 2, and no infinite Gibbs state exists in these dimensions. Instead of looking
at the Gibbs measures of the (φ(x))x∈Zd , Funaki and Spohn proposed to consider the distribution
of the gradients (∇iφ(x))i∈I,x∈Zd

under ν (see Definition 2 below) in the so-called gradient Gibbs

measures, which in view of the Hamiltonian (3), can also be given in terms of a Dobrushin-Landford-
Ruelle description.

Assuming strict convexity of U :

0 < C1 ≤ U ′′ ≤ C2 <∞ (5)

Funaki and Spohn showed in [14], the existence and uniqueness of ergodic gradient Gibbs measures
for every tilt u ∈ R

d, see also Sheffield [21]. Moreover, they also proved that the corresponding free
energy, or surface tension, σ ∈ C1(Rd) is convex. Both results are essential for the derivation of the
hydrodynamical limit of the Ginzburg Landau model.

In fact under the strict convexity assumption (5) of U , much is known for the gradient field. At
large scales it behaves much like the harmonic crystal or gradient free fields which is a Gaussian
field with quadratic U . In particular Naddaf and Spencer [20] showed that the rescaled gradient
field converges weakly as ǫց 0 to a continuous homogeneous Gaussian field, that is

Sǫ(f) = ǫd/2
∑

x∈Zd

∑

i∈I
(∇iφ(x) − ui)fi(ǫx) → N(0, σ2

u(f)) as ǫ→ 0, f ∈ C∞
0 (Rd; Rd)

where the convergence takes place under ergodic ν with tilt u (see also Giacomin et al. [16] and
Biskup and Spohn [3] for similar results). This scaling limit theorem derived at standard scaling
ǫd/2, is far from trivial, since, as shown in Delmotte and Deuschel [8], the gradient field has slowly
decaying, non absolutely summable covariances, of the algebraic order

|covν(∇iφ(x),∇jφ(y))| ∼ C

1 + ‖x− y‖d . (6)

The aim of this paper is to relax the strict convexity assumption (5). Our potential is of the form

U(∇iφ(x)) = V (∇iφ(x)) + g(∇iφ(x))

where V, g ∈ C2(R) are such that

C1 ≤ V ′′ ≤ C2, 0 < C1 < C2 and − C0 ≤ g′′ ≤ 0, with C0 > C2 (7)

and
‖g′′‖L1(R) <∞ or ‖g′′‖L2(R) <∞ or ‖g′‖L1(R) <∞. (8)

(For the case of a non-convex perturbation g with compact support, see Remark 24).
Our main result shows that if the inverse temperature β is sufficiently small, that is if:

√

β

C1
‖g′′‖L1(R) ≤

C1

2C2

√
d
, (9)
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or

(β)1/4||g′′||L2(R) <
(C1)

3/2

2(C2)3/4d1/4
(10)

or

(β)3/4||g′||L2(R) ≤
(C1)

3/2

2(C2)5/4
1

(2d)3/4
, (11)

then the results known in the strict convex case hold. In particular we have uniqueness of the ergodic
component at every tilt u ∈ R

d, strict convexity of the surface tension, scaling limit theorem and
decay of covariances. As stated above, the hydrodynamical limit for the corresponding Ginzburg-
Landau model, should then essentially follow from these results.

Note that uniqueness of the ergodic measures is not true at any β for this type of models:
Biskup and Kotecky give an example of non convex U which can be described as the mixture of
two Gaussians with two different variances, where two ergodic gradient Gibbs measures coexists at
u = 0 tilt, cf. Biskup and Kotecky [2] (see also Figure 4: Example (a) below). For similar results for
discrete models, see [12]. The situation at lower temperature (i.e. large β) is again quite different:
using renormalization group techniques, Adams et al. show the strict convexity for small tilt u, cf.
[1].

In a previous paper with S. Mueller, cf. [7], we have proved strict convexity of the surface tension
for moderate β in a regime similar to (9). The method used in [7], based on two scale decomposition
of the free field, gives less sharp estimates for the temperature, however it is more general and
could be applied to non bipartite graphs. In this paper we use a different technique, which relies
on the bipartite property of our model. We consider the distribution of the even gradient (that is
of φ(y) − φ(x) where both x, y are even): which is again a gradient field and show that under the
condition (9), that the resulting Hamiltonian is strictly convex. The main idea, similar to [7], is that
convexity can be gained via integration (see also Brascamp et al. [5] for previous use of the even/odd
representation). In fact we show more: the Hamiltonian associated to the even variables admits an
random walk representation, cf. Helffer and Sjöstrand [17] or Deuschel [10], which is the key tool
in deriving covariance estimates such as (6) and scaling limit theorems. The other ingredient is the
fact, that given the even gradients, the conditional law of the odd variables is simply a product law.
Of course this is a special feature of our bipartite model, in particular it would be quite challenging
to iterate the procedure, a scheme which could possibly lower the temperature towards the transition
βc. Note that iterating the scheme is an interesting open problem.

The rest of the paper is presented as follows: in Section 2 we define the model and recall
the definition of gradient Gibbs measures. Section 3 presents the odd/even characterization of the
gradient field, in particular our main result, Theorem 10, shows that the random walk representation
holds for the even sites under the condition (5). Section 3 also presents a few examples, in particular
we show that our criteria gets very close to the Biskup-Kotecky transition, cf. example 3.3.2. In
section 4, we give a proof of the uniqueness of the ergodic component. In view of the product law for
conditional distribution of the odd sites given the even gradient, this follows immediately from the
uniqueness of the even gradient ergodic measures. Here we adapt the dynamical coupling argument
of [14] to our situation. Section 5 deals with the decay of covariances, the proof is based on the
random walk representation for the even sites which allows us to use the result of [8]. Section 6
shows the scaling limit theorem, here again we focus on the even variables and apply the random
walk representation idea of [16]. Finally section 7 proves the strict convexity of the surface tension,
or free energy, which follows from the convexity of the Hamiltonian for the even gradient. We also
show a few useful equalities dealing with the derivative of σ, since they play an important role for
the hydrodynamic limits of the Ginzburg Landau model.
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2 General Definitions and Notations

2.1 φ-Gibbs Measures

For A ⊂ Z
d, we shall denote by FA the σ-field generated of R

Zd generated by {φ(x) : x ∈ A}.

Definition 1 The probability measure ν ∈ P (RZd) is called a Gibbs measure for the φ-field (φ-Gibbs
measure for short), if its conditional probability of FΛc satisfies the DLR equation

ν( · |FΛc)(ψ) = νψΛ(·), ν − a.e. ψ,

for every finite Λ ⊂ Z
d.

It is known that the φ-Gibbs measures exist under condition (4) when the dimension d ≥ 3,
but not for d = 1, 2, where the field ”delocalizes” as Λ ր Z

d, c.f. [13]. An infinite volume limit

(thermodynamic limit) for νψΛ and Λ ր Z
d exists only when d ≥ 3.

2.2 ∇φ−Gibbs Measures

2.2.1 Notation on Z
d

Let (Zd)∗ := {b = (xb, yb) | xb, yb ∈ Z
d, ‖xb − yb‖ = 1, b directed from xb to yb}; note that each

undirected bond appears twice in (Zd)∗. Let Λ∗ := (Zd)∗ ∩ (Λ × Λ), ∂Λ∗ := {b = (xb, yb) | xb ∈
Z
d \ Λ, yb ∈ Λ, ‖xb − yb‖ = 1} and Λ∗ := {b = (xb, yb) ∈ (Zd)∗ | xb ∈ Λ or yb ∈ Λ}.

The height variables φ = {φ(x);x ∈ Z
d} on Z

d automatically determines a field of height
differences ∇φ = {∇φ(b); b ∈ (Zd)∗}. One can therefore consider the distribution µ of ∇φ-field
under the φ-Gibbs measure µ. We shall call µ the ∇φ-Gibbs measure. In fact, it is possible to
define the ∇φ-Gibbs measures directly by means of the DLR equations and, in this sense, ∇φ-Gibbs
measures exist for all dimensions d ≥ 1.

A sequence of bonds C = {b(1), b(2), . . . , b(n)} is called a chain connecting y and x, x, y ∈ Zd,
if yb1 = y, xb(i) = yb(i+1) for 1 ≤ i ≤ n − 1 and xb(n) = x. The chain is called a closed loop if
xb(n) = yb(1) . A plaquette is a closed loop A = {b(1), b(2), b(3), b(4)} such that {xb(i) , i = 1, . . . , 4}
consists of 4 different points.

The field η = {η(b)} ∈ R
(Zd)∗ is said to satisfy the plaquette condition if

η(b) = −η(−b) for all b ∈ (Zd)∗ and
∑

b∈A
η(b) = 0 for all plaquettes A in Z

d, (12)

where −b denotes the reversed bond of b. Let χ be the set of all η ∈ R
(Zd)∗ which satisfy the

plaquette condition and let L2
r , r > 0 be the set of all η ∈ R

(Zd)∗ such that

|η|2r :=
∑

b∈(Zd)∗

|η(b)|2e−2r|xb| <∞.

We denote χr = χ ∩ L2
r equipped with the norm | · |r. For φ = (φ(x))x∈Zd and b ∈ (Zd)∗, we define

the height differences ηφ(b) := ∇φ(b) = φ(yb) − φ(xb). Then ∇φ = {∇φ(b)} satisfies the plaquette

condition. Conversely, the heights φη,φ(0) ∈ R
Zd can be constructed from height differences η and

the height variable φ(0) at x = 0 as

φη,φ(0)(x) :=
∑

b∈C0,x

η(b) + φ(0), (13)

where C0,x is an arbitrary chain connecting 0 and x. Note that φη,φ(0) is well-defined if η = {η(b)} ∈ χ.
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2.2.2 Definition of ∇φ-Gibbs measures

We next define the finite volume ∇φ-Gibbs measures. For every ξ ∈ χ and finite Λ ⊂ Z
d the space

of all possible configurations of height differences on Λ∗ for given boundary condition ξ is defined as

χΛ∗,ξ = {η = (η(b))b∈Λ∗ ; η ∨ ξ ∈ χ},

where η ∨ ξ ∈ χ is determined by (η ∨ ξ)(b) = η(b) for b ∈ Λ∗ and = ξ(b) for b 6∈ Λ∗.

Remark 2 Note that χΛ∗,ξ is an affine space such that dimχΛ∗,ξ = |Λ| (at least when Z
d \ Λ is

connected). Indeed, fixing a point x0 /∈ Λ, we consider the map JΛ : χΛ∗,ξ ∋→ φ = {φ(x)} ∈ R
Λ

defined by

φ(x) =
∑

b∈Cx0,x
(η ∨ ξ)(b)

for a chain Cx0,x connecting x0 and x ∈ Λ. JΛ is then well-defined and diffeomorphic.

The finite volume ∇φ-Gibbs measure in Λ (or more precisely, in Λ∗) with boundary condition ξ is
defined by

µΛ,ξ(dη) =
1

ZΛ.ξ
exp







−β
2

∑

b∈Λ∗

U(η(b))







dηΛ,ξ ∈ P (χΛ∗,ξ),

where dηΛ,ξ denotes a uniform measure on the affine space χΛ∗,ξ and ZΛ,ξ is the normalization
constant. Let P (χ) be the set of all probability measures on χ and let P2(χ) be those µ ∈ P (χ)
satisfying Eµ[|η(b)|2] <∞ for each b ∈ (Zd)∗.

Remark 3 For every ξ ∈ χ and a ∈ R, let ψ = φξ,a be defined by (13) and consider the measure νψΛ .

Then µΛ,ξ is the image measure of νψΛ under the map J ′
Λ : {φ(x)}x∈Λ → {η(b) := ∇(φ∨ψ)(b)}, b ∈ Λ∗.

Note that the image measure is determined only by ξ and is independent of the choice of a. Similarly,
let J̃ ′

Λ : {φ(x)}x∈Zd → {η(b)}b∈χ := ∇(φ ∨ ψ)(b), b ∈ Λ∗ and = ∇ψ(b) otherwise.

Definition 4 The probability measure µ ∈ P (χ) is called a Gibbs measure for the height differences
(∇φ-Gibbs measure for short), if it satisfies the DLR equation

µ( · |F(Zd)∗\Λ∗)(ξ) = µΛ,ξ(·), µ− a.e. ξ,

for every finite Λ ⊂ Z
d, where F(Zd)∗\Λ∗ stands for the σ-field of χ generated by {η(b); b ∈ (Zd)∗\Λ∗}.

We will define by

G(H) := {µ ∈ P2(χ) : µ is ∇φ− Gibbs measure such that µΛ,ξ has Hamiltonian Hξ
Λ}.

3 Even/Odd Representation

3.1 Notation on the Even Subset of Zd

As Z
d is a bipartite graph, we will label the vertices of Z

d as even and odd vertices, such that every
even vertex has only odd nearest neighbor vertices and vice-versa. Let Ed := {a = (a1, a2, . . . , ad) ∈
Z
d | ∑d

i=1 ai = 2p, p ∈ Z}, Od := {a = (a1, a2, . . . , ad) ∈ Z
d | ∑d

i=1 ai = 2p+ 1, p ∈ Z} and Od
Λ :=

Od∩Λ. Let ΛE ⊂ Ed finite. We will next define the bonds in Ed in a similar fashion to the definitions
for bonds on Z

d. Let (Ed)∗ := {b = (xb, yb) | xb, yb ∈ Ed, ‖xb − yb‖ = 2, b directed from xb to yb},
(ΛE )∗ := (Ed)∗ ∩ (ΛE × ΛE), (ΛE )∗ := {b = (xb, yb) ∈ (Ed)∗ | xb ∈ ΛE or yb ∈ ΛE} ∂(ΛE )∗ := {b =
(xb, yb) | xb ∈ Ed \ΛE , yb ∈ ΛE , ‖xb − yb‖ = 2}, ∂−ΛE :=

{

y ∈ ΛE | y = yb for some b ∈ ∂(ΛE )∗
}

and
∂ΛE :=

{

y /∈ ΛE | y = yb for some b ∈ ∂(ΛE )∗
}

.
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Figure 1: The bonds of 0 in E2

An even plaquette is a closed loop AE = {b(1), b(2), . . . , b(n)}, where b(i) ∈ (Ed)∗, n ∈ {3, 4}, such

that {xb(i) , i = 1, . . . , n} consists of n different points in Ed. The field η = {η(b)} ∈ R
(Ed)∗ is said to

satisfy the even plaquette condition if

η(b) = −η(−b) for all b ∈ (Ed)∗ and
∑

b∈AE

η(b) = 0 for all even plaquettes in Ed. (14)

Let χE be the set of all η ∈ R
(Ed)∗ which satisfy the even plaquette condition. For each b = (xb, yb) ∈

(Ed)∗ we define the even height differences ηE(b) := ∇Eφ(b) = φ(yb) − φ(xb). The heights φη
E ,φ(0)

can be constructed from the height differences ηE and the height variable φ(0) at a = 0 as

φη
E ,φ(0)(a) :=

∑

b∈CE
0,a

ηE (b) + φ(0), (15)

where a ∈ Ed and CE
0,a is an arbitrary path in Ed connecting 0 and a. Note that φη,φ(0)(a) is well-

defined if ηE = {ηE (b)} ∈ χE . We also define χE
r similarly as we define χr. As on Z

d, let P (χE) be the
set of all probability measures on χE and let P2(χ

E) be those µ ∈ P (χE) satisfying Eµ[|ηE (b)|2] <∞
for each b ∈ (Ed)∗.
Remark 5 Let η ∈ χ. Using the plaquette condition property of η, we will define η|(Ed)∗ from η

thus: if b1 = (x, x+ei), b2 = (x+ej , x) and bE = (x+ei, x+ej), we define η|(Ed)∗(b
E) = η(b1)+η(b2).

Note that η|(Ed)∗ ∈ χE for η|(Ed)∗ thus defined.

3.2 Definition of ∇Eφ-Gibbs measures

For every ξ ∈ χE and finite ΛE ⊂ Ed the space of all possible configurations of height differences on
(ΛE )∗ for given boundary condition ξE is defined as

χE
(ΛE )∗,ξE

= {ηE = (ηE (b))
b∈(ΛE )∗

; ηE ∨ ξE ∈ χE},

where ηE ∨ ξE ∈ χE is determined by (ηE ∨ ξE )(b) = ηE(b) for b ∈ (ΛE)∗ and = ξE(b) for b 6∈ (ΛE )∗.
The φE -Gibbs measure ν(2) and the ∇Eφ-Gibbs measure µ(2) can be defined similarly to the

φ-Gibbs measure and the ∇φ-Gibbs measure in Subsections 2.1 and 2.2.2.

Remark 6 Note that χE
(ΛE )∗,ξE

is an affine space such that dimχE
(ΛE )∗,ξE

= |ΛE | (at least when

Ed \ΛE is connected). Indeed, fixing a point x0 /∈ ΛE , we consider the map KΛE : χE
(ΛE )∗,ξE

∋→ φE =

{φ(x)} ∈ R
ΛE

defined by

φE(x) =
∑

b∈Cx0,x
(ηE ∨ ξE)(b)

for a chain Cx0,x connecting x0 and x ∈ Λ. KΛE is then well-defined and diffeomorphic. Similarly,

let K̃ΛE : χE → φE = {φ(x)} ∈ R
Ed :=

∑

b∈Cx0,x(η
E ∨ ξE)(b), η ∈ χE

(ΛE )∗,ξE
and = ψξ

E ,a(x) similarly

defined as in (15) otherwise.
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Remark 7 For every ξE ∈ χE and a ∈ R, let ψE = φξ
E ,a be defined by (15) and consider the

measure ν
(2)

ΛE ,ψE . Then µ
(2)

ΛE ,ψE is the image measure of ν
(2)

ΛE ,ψE under the map K ′
ΛE : {φ(x)}x∈ΛE →

{ηE (b) := ∇E(φE ∨ ψE)(b)}, b ∈ (ΛE )∗. Note that the image measure is determined only by ξE and
is independent of the choice of a.

3.3 Restriction of a ∇φ-Gibbs measure to Ed

Let θ(x) = (φ(x+ e1), . . . , φ(x+ ed), φ(x − e1), . . . , φ(x− ed)) and φE = (φ(x))x∈Ed . (16)

Definition 8 Let ΛE be a finite set in Ed. We define a finite set ΛΛE ⊂ Z
d associated to ΛE as

follows: if x ∈ ΛE , then x ∈ ΛΛE and x+ei ∈ ΛΛE for all i ∈ I. Note that by definition, ∂ΛΛE = ∂ΛE

(see Figures 2 and 3).

Lemma 9 Let ν be a φ-Gibbs measure with finite Gibbs measure νψΛ , with Hamiltonian Hψ
Λ as in

(3). Then ν|Ed := ν(2) ∈ P (REd) is a φ-Gibbs measure with finite Gibbs measure ν
(2)

ΛE ,ψE , such that

ν
(2)

ΛE ,ψE has Hamiltonian H
(2)

ΛE ,ψE , where

H
(2)

ΛE ,ψE (φE ) :=
∑

x∈OdΛ
ΛE

Fx(θ(x)), with Fx(θ(x)) = − log

∫

R

e−2β
P

i∈I U(∇iφ(x)) dφ(x) (17)

and Fx are functions of the even gradients (see Remark 11).

Proof. Let FZd := σ
(

φ(x), x ∈ Z
d
)

and FEd := σ
(

φ(x), x ∈ Ed
)

.

Set
Hx(φ) =

∑

i∈I
U(∇iφ(x)).

To prove the statement of the lemma, we will use the fact that ν is a Gibbs measure, which means
that for all Λ finite sets in Z

d and for all A ∈ FZd we have

ν(A|FΛc)(ψ) = νψΛ(A) =
1

ZψΛ

∫

A
e−βH

ψ
Λ (φ) dφΛδψ(dφZd\Λ), (18)

where δψ(dφZd\Λ) =
∏

x∈Zd\Λ δψ(x)(dφ(x)). Note first that (cf (3))

Hψ
Λ (φ) =

∑

x∈Λ̄

Hx(φ) = 2
∑

x∈OdΛ

Hx(φ).

Figure 2: The graph of ΛE Figure 3: The graph of ΛΛE
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Let ΛE be a finite set in Ed; we define δψ(dφEd\ΛE ) =
∏

x∈Ed\ΛE δψ(x)(dφ(x)) . Let A ∈ FEd ⊂ FZd ,
dφΛE =

∏

x∈ΛE dφ(x) and dφOdΛ
ΛE

=
∏

x∈OdΛ
ΛE

dφ(x). Then, by integrating out the odd height

variables and due to (18) and ∂ΛΛE = ∂ΛE , we have for every ψ ∈ R
Zd such that ψ|Ed = ψE

νψΛ
ΛE

(A) = Eν(1A|F(Λ
ΛE )c)(ψ) =

1

ZψΛ
ΛE

∫

R
Λ
ΛE

1A(φ)e
−βHψ

Λ
ΛE

(φ)
dφΛ

ΛE
δψ(dφZd\Λ

ΛE
)

=
1

ZψΛ
ΛE

∫

R
Λ
ΛE

1A(φ)e
− P

x∈Od
Λ
ΛE

2βHx(φ)

dφOdΛ
ΛE

dφΛEδψ(dφZd\Λ)

=
1

ZψΛ
ΛE

∫

RΛE
1A(φ)

(

∫

R

Od
Λ
ΛE

e
−2β

P

x∈Od
Λ
ΛE

Hx(φ)

dφOdΛ
ΛE

)

dφΛEδψ(dφZd\Λ
ΛE

)

=
1

ZψΛ
ΛE

∫

RΛE
1A(φ)

∏

x∈OdΛ
ΛE

(∫

R

e−2βHx(φ) dφ(x)

)

dφΛEδψ(dφEd\ΛE )

=
1

ZψΛ
ΛE

∫

A
e
−

P

x∈Od
Λ
ΛE

FΛ
x (φ(x+e1),...,φ(x−ed))∏

i∈I

∏

x∈OdΛ
ΛE

dφ(x+ ei)δψ(dφEd\ΛE )

= ν
(2)

ΛE ,ψE (A), (19)

where ZψΛ
ΛE

= Zψ
E

ΛE is the normalizing constant and ΛE and Od
Λ

ΛE
are the restrictions of ΛΛE to the

set of the evens, respectively of the odds . It follows from formula (19) that Eν(1A|F(Λ
ΛE )c) ∈ F(ΛE )c .

Since for every ΛE ⊂ Ed we have that F(ΛE )c ⊂ F(Λ
ΛE )c , we have by using (19) that for every A ∈ FEd

ν(2)(A|F(ΛE )c)(ψ
E ) = ν(A|F(ΛE )c)(ψ

E ) = Eν

(

Eν(1A|F(Λ
ΛE )c)|F(ΛE )c

)

(ψE )

= Eν

(

νΛ
ΛE

(A)|F(ΛE )c

)

(ψE ) = ν
(2)

ΛE ,ψE (A).

Therefore ν|Ed satisfies the DLR equations. �

Remark 10 Note that the new Hamiltonian H(2) depends on β through the functions Fx.

Remark 11 Note that for any constant C2d = (C,C, . . . , C) ∈ R
2d, by using the change of variables

φ(x) → φ(x) + C in the integral formula for Fx in (17), we have

Fx(θ(x)) = Fx(θ(x) +C2d).

In particular, this means that for any i ∈ I

Fx(θ(x)) = Fx(φ(x+ e1) − φ(x+ ei), . . . , φ(x− ed) − φ(x+ ei)). (20)

Therefore we are still dealing with a gradient system, even though this is no longer a two-body
gradient system. Fx, and consequently H(2), are functions of the even height differences by (20) and
(17).

Lemma 12 Let G be a FZd-measurable and bounded function. Then for all Gibbs measures ν and

all ψ ∈ R
Zd, we have

Eν (G|FEd) (ψ) =

∫

RZd
G(φ)

∏

x∈Od
νψx ( dφ(x))δψ(dφEd), with δψ(dφEd) =

∏

x∈Ed
δψ(x)(dφ(x)), (21)

νψx ( dφ(x)) = e−2β
P

i∈I U(ψ(x+ei)−φ(x)) dφ(x)
Z(θ(x)) and Z(θ(x)) =

∫

R
e−2β

P

i∈I U(ψ(x+ei)−φ(x)) dφ(x).

8



Proof. Using a standard argument, it is enough to consider G with finite support. From the DLR
equations for ν, we have

Eν

(

G|FZd\Odn

)

(ψ) =

∫

RΛ̄

G(φ)
∏

x∈Odn

νψx ( dφ(x))δψ(dφZd\Odn), with Od
n = {x ∈ Od : ||x|| ≤ n}.

Since F
Zd\Odn+1

⊆ FZd\Odn for all n ∈ N and ∩∞
n=1FZd\Odn = FEd , we have by the convergence of

conditional expectations

Eν (G|FEd) (ψ) = lim
n→∞

Eν

(

G|FZd\Odn

)

.

Let us denote by Pψn ∈ P (RZd) the measure defined by

Pψn (A) :=

∫

A

∏

x∈Odn

νψx ( dφ(x))δψ(dφZd\Odn) = ⊗x∈Odnν
ψ
x ⊗x∈Zd\Odn δψ(x)( dφ(x)).

Then by the Kolmogorov’s extension of measures for infinite product measures, ν ∈ P (RZd) defined
by

ν(A) =

∫

A

∏

x∈Od
νψx ( dφ(x))δψ(dφEd)

is the unique extension of Pn such that Pn(A) = ν(pr−1
n (A)), with pr(φ) := φ′ ∈ R

Zd such that
φ′(x) = φ(x), if x ∈ Od

n and φ′(x) = ψ(x) otherwise. We also have limn→∞ Pn(A) = ν(A). The
claim follows. �

We will define by

GE(H) := {µ(2) ∈ P2(χ
E) : µ(2) is ∇Eφ− Gibbs measure such that µ

(2)

ΛE ,ψE has Hamiltonian H
(2)

ΛE ,ψE}.

Lemma 13 Let µ ∈ G(H). Then µ|(Ed)∗ := µ(2) ∈ GE (H(2)), where H(2) is defined as in (17).

Proof. Let F(Zd)∗ := σ
(

η(b), b ∈ (Zd)∗
)

and F(Ed)∗ := σ
(

ηE(b), b ∈ (Ed)∗
)

.

Fixing a ∈ R, for all Λ finite sets in Z
d with Z

d \ Λ connected and for all A ∈ F(Zd)∗ , we have by
Remark 3 that

µΛ,ξ(A) = E
νψΛ

(1A ◦ J̃ ′
Λ), with ψ given by (13). (22)

For all B ∈ FEd and ΛE finite sets in Ed with Ed \ ΛE connected, we have by Remark 6

ν
(2)

ΛE ,ψE (B) = E
µ

(2)

ΛE ,ξE

(1B ◦ K̃Λ), with ξE(b) = ∇Eψ(b), b ∈ χE . (23)

Let ΛE be a finite set in Ed and let A ∈ F(Ed)∗ ⊂ F(Zd)∗ ; then since µ ∈ G(H), by using Lemma 9,

(22) and (23), we have for every ξ ∈ χ such that ξ|(Ed)∗ = ξE ∈ χE (recall Remark 5)

µΛ
ΛE ,ξ(A) = EνΛ

ΛE ,ψ
(1A◦J̃ ′

Λ) = E
ν
(2)

ΛE ,ψE

(1A◦
(

J̃ ′
Λ

)

|Ed
) = E

µ
(2)

ΛE ,ξE

(1A◦
(

J̃ ′
Λ

)

|Ed
◦K̃ΛE ) = µ

(2)

ΛE ,ξE
(A),

(24)

where for the last equality we used the fact that
(

J̃ ′
Λ

)

|Ed
◦ K̃ΛE = Id. It follows from (24) that

µΛ
ΛE ,ξ ∈ F

(Ed)∗\(ΛE )
∗ . Then using F

(Ed)∗\(ΛE )
∗ ⊂ F

(Zd)∗\(Λ
ΛE )

∗ and (24), we have

µ(2)(A|F
(Ed)∗\(ΛE )

∗)(ξE ) = µ(A|F
(Ed)∗\(ΛE )

∗)(ξE ) = Eµ

(

Eµ

(

A|F
(Zd)∗\(Λ

ΛE )
∗

)

|F
(Ed)∗\(ΛE )

∗

)

(ξE)

= µ
(2)

ΛE ,ξE
(A).

�
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Remark 14 Let ν be a φ-Gibbs measure as in Lemma 9 and let G be a F(Zd)∗ -measurable and
bounded function. Then in view of Lemma 12 and Remark 14, Eν (G|FEd) is F(Ed)∗-measurable and

Eν (G|FEd) = Eν

(

G|F(Ed)∗
)

.

Lemma 15 Let G be a F(Zd)∗-measurable and bounded function. Then for all µ ∈ G(H) and all
ξ ∈ χ, we have

Eµ

(

G|F(Ed)∗
)

(ξ) =

∫

RZd
G(∇φ)

∏

x∈Od
νψx ( dφ(x))δψ(dφEd), (25)

where νψx have been defined in Lemma 12 and ψ is given by (13).

Proof. First note that for Λ = {x} ∈ Od, from the DLR conditions for µ we have µ( · |F
(Zd)∗\{x}∗)(ξ) =

µx,ξ(·). Note now that F(Ed)∗ = ∩x∈OdF(Zd)∗\{x}∗ ,∀x ∈ Od. Then for arbitrary x ∈ Od
n

Eµ(G|∩x∈OdnF(Zd)∗\{x}∗) = Eµ(Eµ(G|F(Zd)∗\{x}∗)|∩x∈OdnF(Zd)∗\{x}∗) = Eµ(Eµx,ξ(G)|∩x∈OdnF(Zd)∗\{x}∗),

where E
µξx

(G) is F
(Zd)∗\{x}∗-measurable. Repeating the above reasoning for all x ∈ Od

n and noting

the fact that E⊗
x∈Odn

µx,ξ⊗
b∈(Zd)∗\(Odn)∗

δξ(b)(η(b))(G) is ∩x∈OdnF(Zd)∗\{x}∗-measurable, it follows that

µ(·| ∩x∈Odn F(Zd)∗\{x}∗)(ξ) = ⊗x∈Odnµx,ξ ⊗b∈(Zd)∗\(Odn)∗
δξ(b)(η(b)).

Therefore, by Kolmogorov’s extension theorem applied to product measures

µ( · |F(Ed)∗)(ξ) = lim
n→∞

µ( · | ∩x∈Odn F(Zd)∗\{x}∗)(ξ) = ⊗x∈Odµx,ξ. (26)

The statement of the lemma follows now from (26) and Remark 3. �

Corollary 16 Let l ∈ I be a chosen fixed element in I and let G be a F(Zd)∗-measurable and bounded

function. Then for all µ ∈ G(H) and all ξ ∈ χ, Eµ

(

G|F(Ed)∗
)

can be written as a function of the

even gradients. More precisely

Eµ

(

G|F(Ed)∗
)

(ξ) =

∫

G(∇φl)
∏

x∈Od
µξ,lx ( dφ(x)), (27)

where φl is obtained from φ by making in (21) for all x ∈ Od, the change of variables φ(x) →
φ(x) + φ(x+ el), that is for all i ∈ I, ∇iφ(x) → φ(x+ ei) − φ(x+ el) − φ(x). We defined by

µξ,lx ( dφ(x)) =
1

Z(∇E
l θ(x))

exp

(

−2β
∑

i∈I
U(ξ(b(x+ei,x+el)) − φ(x))

)

dφ(x), (28)

where b(x+ei,x+el) is the bond (x+ei, x+el) and which depends only on the even gradients ∇Eφ, with

Z(∇E
l θ(x)) := Z(φ(x+ e1) − φ(x+ el), . . . , φ(x− ed) − φ(x+ el)).

Proof. The proof is a simple consequence of Lemma 15 and Remark 14. �
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3.4 Random Walk Representation

3.4.1 Definition and Theorems

For i ∈ I, let
DiF (y1, . . . , yd, y−1, . . . , y−d) :=

∂

∂yi
F (y1, . . . yd, y−1, . . . , y−d).

Definition 17 Let x ∈ Od. We say that Fx satisfies the random walk representation, if there
exists c, c̄ > 0 such that for all i, j ∈ I

Di,iFx = −
∑

j∈I,j 6=i
Di,jFx and c ≤ −Di,jFx ≤ c̄ for i 6= j.

The main result of this section is:

Theorem 18 (Random Walk Representation) Let U ∈ C2(R) be such that it satisfies (4). We also
assume that V, g ∈ C2(R) satisfy (7). Then, if

√

β

C1
||g′′||L1(R) <

C1

2C2

√
d
, (29)

there exists c, c̄ > 0 such that for all x ∈ Od, Fx satisfies the random walk representation.

Lemma 19 Suppose x ∈ Od. Then for all j ∈ I, we have

DjFx(θ(x)) = −
∑

i∈I,i6=j
DiFx(θ(x)), Dj,jFx(θ(x)) = −

∑

i∈I,i6=j
Di,jFx(θ(x)), (30)

and for all i ∈ I, i 6= j

Di,jFx(θ(x)) = −4β2covνx
(

U ′(∇iφ(x)), U ′(∇jφ(x))
)

, (31)

where νx have been defined in Lemma 12 and Eνx and covνx are respectively the expectation and the
covariance with respect to the measure νx.

Proof. For all j ∈ I, from (20) we have

DjFx(θ(x)) =
∂

φ(x+ ej)
Fx(φ(x+ e1) − φ(x+ ej), . . . , φ(x− ed) − φ(x+ ej))

= −
∑

i∈I,i6=j
DiFx(φ(x+ e1) − φ(x+ ej), . . . , φ(x− ed) − φ(x+ ej)) (32)

and for i 6= j

DiFx(θ(x)) =
∂

φ(x+ ei)
Fx(φ(x+ e1) − φ(x+ ej), . . . , φ(x− ed) − φ(x+ ej))

= DiFx(φ(x+ e1) − φ(x+ ej), . . . , φ(x− ed) − φ(x+ ej)). (33)

It follows now from (32) and (33) that

DjFx(θ(x)) = −
∑

i∈I,i6=j
DiFx(θ(x)). (34)

By differentiating with respect to φ(x+ ei) and φ(x+ ej) in Fx, we have for for all i, j ∈ I, i 6= j

Di,jFx(θ(x)) = −4β2covνx
(

U ′(∇iφ(x)), U ′(∇jφ(x))
)

. (35)

The second assertion in (30) follows now immediately from (34) and (35). �

The following lemma is elementary to prove by using Taylor expansion and will be needed for
the proof of Theorem 18:
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Lemma 20 (Representation of Covariances)
Let k ∈ N. For all L2-functions F,G ∈ C1(Rk; R), with bounded partial derivatives and for all

measures ν ∈ P (Rk) such that φ ∈ L2(ν) and with bounded derivatives, we have

covν(F,G) =
1

2

∫∫

[F (φ) − F (ψ)] [G(φ) −G(ψ)] ν( dφ)ν( dψ)

=
1

2

∫∫

[(φ− ψ) ·DF (φ,ψ)] [(φ− ψ) ·DG(φ,ψ)] ν( dφ)ν( dψ)

where we denote by

DF (φ,ψ) :=

∫ 1

0
DF (ψ + t(φ− ψ)) dt, DG(φ,ψ) :=

∫ 1

0
DG (ψ + s(φ− ψ)) ds

and by

DF (φ) :=
(

D1F (φ), . . . ,DkF (φ)
)

.

Proof of Theorem 18 It follows from Definition 17 and Lemma 19 that, in order to prove that
the random walk representation holds for Fx, all we need is to show that there exist cl, cu > 0 such
that

cl ≤ covνx
(

U ′(∇iφ(x)), U ′(∇jφ(x))
)

≤ cu.

We have U = V + g, where C1 ≤ V ′′ ≤ C2. Then using Lemma 20 for V ′(∇iφ(x)) and V ′(∇jφ(x)),
we see that

0 ≤ C2
1varνx(φ(x)) ≤ C1covνx(φ(x), V ′(∇jφ(x))) ≤ covνx(V

′(∇iφ(x)), V ′(∇jφ(x)))

≤ C2covνx(φ(x), V ′(∇jφ(x))). (36)

Since g′′ < 0, we have

covνx(g
′(∇iφ(x)), g′(∇jφ(x))) = covνx(−g′(∇iφ(x)),−g′(∇jφ(x))),

and we can use Lemma 20 to obtain

0 ≤ covνx(g
′(∇iφ(x)), g′(∇jφ(x))) ≤ C2

0varνx(φ(x)). (37)

By using Lemma 20 for covνx(V
′(∇iφ(x)), g′(∇jφ(x))) and similarly for covνx(V

′(∇jφ(x)), g′(∇iφ(x))),
we have

− C0covνx(φ(x), V ′(∇jφ(x))) ≤ covνx(V
′(∇jφ(x)), g′(∇iφ(x))) < 0, (38)

From (36), (37) and (38), it follows that to find an upper bound for covνx (U ′(∇iφ(x)), U ′(∇jφ(x))),
we need to find an upper bound for covνx(φ(x)), V ′(∇jφ(x))) and for varνx(φ(x)); to find a lower
bound, we need to find a lower bound for covνx(φ(x)), V ′(∇jφ(x))) and covνx(g

′(∇iφ(x)), V ′(∇jφ(x))).
Note now that from (36), we have

covνx(φ(x), V ′(∇jφ(x))) ≤ 1

2dC1
covνx

(

V ′(∇jφ(x)),
∑

i∈I
V ′(∇iφ(x)))

)

. (39)

Using integration by parts, we have

covνx

(

V ′(∇jφ(x)),
∑

i∈I
V ′(∇iφ(x)

)

=
1

β
Eνx

(

V ′′(∇jφ(x))
)

− covνx

(

V ′(∇jφ(x)),
∑

i∈I
g′(∇iφ(x))

)

. (40)

12



By using the Cauchy-Schwarz inequality and (36), we have

0 ≤ −covνx(V
′(∇jφ(x)), g′(∇iφ(x))) ≤

√

varνx(V
′(∇jφ(x)))

√

varνx(g
′(∇iφ(x)))

≤
√

C2covνx(φ(x), V ′(∇jφ(x)))
√

varνx(g
′(∇iφ(x))).(41)

Then we estimate varνx(g
′(∇iφ(x))) by applying Lemma 20 to get

varνx(g
′(∇iφ(x)))

=
1

2

∫∫

(φ(x) − ψ(x))2
[∫ 1

0
g′′ (ψ(x) − φ(x+ ei) + t(φ(x) − ψ(x))) dt

]2

νx( dφ)νx( dψ)

=
1

2

∫∫

[

∫ φ(x)−φ(x+ei)

ψ(x)−φ(x+ei)
g′′ (s) ds

]2

νx( dφ)νx( dψ) ≤ 1

2
||g′′||2L1(R), (42)

where for the second equality we made the change of variable s = ψ(x)−φ(x+ ei)+ t(φ(x)−ψ(x)).
From (39), (40) and (42), we now get the upper bound

covνx(φ(x), V ′(∇jφ(x))) ≤ C2

2dβC1
+

√
C2

C1

√
2
||g′′||L1(R)

√

covνx(φ(x), V ′(∇jφ(x))), (43)

from which we get

covνx(φ(x), V ′(∇jφ(x))) ≤
( √

C2

2
√

2C1

||g′′||L1(R) +
1

2

√

C2

2C2
1

||g′′||2
L1(R)

+ 2
C2

dβC1

)2

. (44)

Also, by using (36), we get from (44)

varνx(φ(x))) ≤ 1

C1

( √
C2

2
√

2C1

||g′′||L1(R) +
1

2

√

C2

2C2
1

||g′′||2
L1(R)

+ 2
C2

dβC1

)2

:= σ2. (45)

The upper bound now follows from (36), (37), (44) and (45). To find a lower bound, note now that
from (36) we get

covνx(φ(x), V ′(∇jφ(x))) ≥ 1

2dC2
covνx

(

V ′(∇jφ(x)),
∑

i∈I
V ′(∇iφ(x))

)

.

By using (40) and (38), we get

covνx(φ(x), V ′(∇jφ(x))) ≥ C1

2dC2β
. (46)

From (36), (37), (41) and (42), we get

covνx
(

U ′(∇iφ(x)), U ′(∇jφ(x))
)

≥
√

covνx(φ(x), V ′(∇jφ(x)))

[

C1

√

covνx(φ(x), V ′(∇jφ(x))) −
√

C2/2||g′′||L1(R)

]

.

(47)

The lower bound now follows from (46) and (47). �

Remark 21 In order to get the random walk representation, the condition (29) is not unique. The
condition can be replaced by other conditions on the perturbation g by estimating the bound on
covνx(V

′(∇iφ(x)), g′(∇jφ(x))) by a different method. For example
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• To prove (10), we use the Cauchy-Schwartz inequality and (36)

∣

∣covνx(V
′(∇iφ(x)), g′(∇jφ(x)))

∣

∣ ≤
√

varνx(V
′(∇iφ(x)))

√

varHx(g
′(∇jφ(x)))

≤
√

C2covνx(φ(x), V ′(∇iφ(x)))
√

varνx(g
′(∇jφ(x))).

But

varνx(g
′(∇jφ(x))

=
1

2

∫∫

(φ(x) − ψ(x))2
[∫ 1

0
g′′ (ψ(x) + t(φ(x) − ψ(x)) − φ(x+ ej)) dt

]2

νx( dφ)νx( dψ)

≤ 1

2

∫∫

(φ(x) − ψ(x))2
∫ 1

0

[

g′′ (ψ(x) + t(φ(x) − ψ(x)) − φ(x+ ej))
]2

dt νx( dφ)νx( dψ)

=
1

2

∫∫

(φ(x) − ψ(x))

∫ φ(x)−φ(x+ej)

ψ(x)−φ(x+ej)

[

g′′ (s)
]2

ds νx( dφ)νx( dψ)

≤ 1

2
||g′′||2L2(R)

∫∫

|φ(x) − ψ(x)| νx( dφ)νx( dψ)

≤ 1

2
||g′′||2L2(R)

√

∫∫

(φ(x) − ψ(x))2 νx( dφ)νx( dψ)

=
1√
2
||g′′||2L2(R)

√

varHx(φ(x)) ≤ ||g′′||2L2(R)

√

covνx(φ(x), V ′(∇iφ(x)))

2C1
,

where we used Lemma 20 for the first and third equality, Jensen’s inequality for the first and
third inequality and (36) for the last inequality. The rest of the argument to obtain the bound
in (10) follows the same steps as the proof of Theorem 18.

(b) Another possible condition, condition (11), is obtained using the same steps as in the proof of
Theorem 18. To obtain it, we estimate by yet another different method

∣

∣covνx(V
′(∇iφ(x)), g′(∇jφ(x)))

∣

∣ ≤
√

varνx(V
′(∇iφ(x))

√

varνx(g
′(∇jφ(x))

≤ (C2)
3/4(2dβ)1/4

√

covνx(φ(x)), V ′(∇iφ(x)))||(g′)2||L1(R),

where we used the Cauchy-Schwarz inequality for the first inequality, (36) and Lemma 22
below, for the second inequality.

Lemma 22 If h ∈ L1(R), then we have

|Eνx(h)| ≤
√

2dβC2||h||L1(R).

Proof. Using integration by parts and Cauchy-Schwartz, we have

|Eνx(h)| =

∣

∣

∣

∣

Eνx

(

∂

∂y

(
∫ y

−∞
h(z) dz

))∣

∣

∣

∣

=

∣

∣

∣

∣

Eνx

(

H ′
x(y)

(
∫ y

−∞
h(z) dz

))∣

∣

∣

∣

≤ E1/2
νx

(

(H ′
x)

2
)

E1/2
νx

(

(
∫ y

−∞
h(z) dz

)2
)

= E1/2
νx (H ′′

x)E1/2
νx

(
∫ y

−∞
h(z) dz

)2

≤
√

2dβC2||h||L1(R).

Note that we also used property (4) and integration by parts in the above formula. �
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Remark 23 Note that if we consider the case where U is strictly convex such that C1 ≤ U ′′ ≤ C2,
in view of (36), (46) and (43), the one step integration preserves the strict convexity of the new
Hamiltonian

C2
1

2dβC2
≤ covνx

(

U ′(∇iφ(x)), U ′(∇jφ(x))
)

≤ C2
2

2dβC1
.

Remark 24 Note that we can extend the results to the case where we have a perturbation with
compact support (See also Example (b) and the graph below). More precisely, assume that U =
Y + h, where U satisfies (4), D1 ≤ Y ′′ ≤ D2 and −D0 ≤ h′′ ≤ 0 on [a, b] and 0 < h′′ < D3 on
R \ [a, b], with a, b ∈ R and h′′(a) = h′′(b) = 0. Set

g(s) = h(s)1{s∈[a,b]} +
[

h(b) + h′(b)(s − b)
]

1{s>b} +
[

h(a) + h′(a)(s − a)
]

1{s<a}

and

V (s) = Y (s) + h(s)1{s/∈[a,b]} −
[

h(b) + h′(b)(s − b)
]

1{s>b} −
[

hi(a) + h′(a)(s − a)
]

1{s<a}.

Thus, we have V, g ∈ C2(R), with −D0 ≤ h′′(s) = g′′(s) ≤ 0 for s ∈ [a, b] and g′′(s) = 0 for
s ∈ R \ [a, b] and D1 ≤ V ′′(s) = Y ′′(s) + h′′(s)1{s/∈[a,b]} ≤ D2 +D3. Note that this procedure can
also be extended to the case where h′′ changes sign more than once.

-5

5

10

-2 0 2 s
h(s)
Y(s)

Figure 4: Example of Y and h for Remark 24

3.4.2 Examples

(a) Let p ∈ (0, 1) and 0 < k2 < k1. Let

U(s) = − log

(

pe−k1
s2

2 + (1 − p)e−k2
s2

2

)

.

Set a = k1
k2

. Take p > a−1 in order that the potential U is non-convex. If

0 < (β)3/4p(1 − p)1/4(a− 1)1/4 ≤ 1

2(2d)3/4(π)1/4
,

then (11) is satisfied and the RW representation holds. If β = 1 and k1 ≫ k2, the above
condition is equivalent to p < p0, where p0 ≈ 1

2(2d)3/4π1/4a
−1/4. This is close to, for d = 2, the

critical point pc, such that pc
1−pc = a−1/4, of [2], where uniqueness of ergodic states is violated

for this example of potential U .

The computations follow. Take

V ′′(s) =
pk1e

−k1 s
2

2 + (1 − p)k2e
−k2 s

2

2

pe−k1
s2

2 + (1 − p)e−k2
s2

2
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U(s)

0 s

Figure 5: Example (a)

2

4

6

8

U(s)

-4 -2 0 2 4 s

Figure 6: Example (b)

and

g′′(s) = − p(1 − p)(k1 − k2)
2s2

p2e−(k1−k2) s
2

2 + 2p(1 − p) + (1 − p)2e(k1−k2) s
2

2

.

We have

k2 ≤ V ′′(s) ≤ pk1 + (1 − p)k2 and − p(k1 − k2)

1 − p
≤ g′′(s) ≤ 0,

where the lower bound inequality for g′′(s) follows from the fact that g′′(s) attains its minimum

for s ≥
√

2
k1−k2 . Then

||g′(s)||L2(R) ≤
2p

1 − p
(k1 − k2)

1/4(π)1/4 + o

(

2p

1 − p
(k1 − k2)

1/4(π)1/4
)

.

By using condition (11), the RW representation holds.

(b) U(s) = s2 + a − log(s2 + a), where 0 < a < 1. Let 0 < β < a

4d(2+ 2
25a)

2 . Then the RW

representation holds.

Then, using the notation from Remark 24, take Y (s) = s2 and h(s) = − log(s2 + a). We have

Y ′′(s) = 2, so D1 = D2 = 2; also h′′(s) = 2 s2−a
(s2+a)2

, with − 2
a ≤ h′′(s) ≤ 0 for s ∈ [−√

a,
√
a]

and 0 < h′′(s) ≤ 2
25a otherwise. Then C0 = 2

a , C1 = 2,C2 = 2 + 2
25a and ||g′′(s)||L1(R) = 2√

a
.

By using condition (29), the RW representation holds.

4 Uniqueness of ergodic component

In this section, we extend to a class of non-convex potentials, the uniqueness of ergodic component
result, proved for strictly convex potentials in [14].

We denote by S the class of all shift invariant µ ∈ P2(χ) which are stationary and by ext S those
µ ∈ S which are ergodic with respect to shifts (for definitions of shift-invariance and ergodicity, see
for example page 122 in [15]). For each u ∈ R

d, we denote by (ext S)u the family of all µ ∈ ext S
such that Eµ (η(bei)) = ui, i = 1, 2 . . . d, where we denoted by bei the bond (ei, 0). We will prove
that

Theorem 25 Let U = V +g, where U satisfy (4) and V and g satisfy (7) and (29). Then for every
u ∈ R

d, there exists at most one ergodic and shift-invariant µu ∈ G(H) such that Eµu (η(bei)) =
ui, i = 1, 2 . . . d.

The proof will be done in 2 steps: first, we will prove the uniqueness of ergodic, shift-invariant
µEd := µ(2) ∈ GE (H(2)) and then we will use this result combined with the properties of the ∇Eφ-
Gibbs measure to extend the result to µ.
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4.1 Uniqueness of ergodic component for the even

Let F ∈ C2(R2d; R) be such that for all (a1, a2, . . . , ad, a−1, . . . , a−d) ∈ R
d and for all c ∈ R

F (a1, . . . , ad, a−1, . . . , a−d) = F (a1 + c, . . . , ad + c, a−1 + c, . . . , a−d + c). (48)

Note that from property (48), by the same reasoning as in Lemma 19 we have that for all j ∈ I, (30)
holds. Assume that there exist c− > 0 and c+ > 0 such that for all (a1, a2, . . . , ad, a−1a−d) ∈ R

2d

c− ≤ Di,jF (a1, a2, . . . , ad, a−1, . . . , a−d) ≤ c+. (49)

Let
L = {F ∈ C2(R2d; R) | F satisfies (48) and (49)}.

The proofs in this section follow very closely the arguments from [14]. To make the current paper
self-contained, we will sketch proofs for all the theorems in the section. There are three main
ingredients necessary in proving uniqueness of ergodic component for a Hamiltonian satisfying (48)
and (49). These steps are: the study of the dynamics of the height variables (which dynamics are
generated by SDE), a coupling argument and the use of the ergodicity.

4.1.1 Dynamics

Suppose the dynamics of the even height variables φt = {φt(a)} ∈ R
Ed are generated by the SDE

dφt(a) = −
∑

x∈Od,|x−a|=1

∂

∂φ(a)
Fx(φt(x+ e1), . . . , φt(x+ e−d)) dt+

√
2dWt(a), a ∈ Ed (50)

where for all x ∈ Od, Fx ∈ L and {Wt(a), a ∈ Ed} is a family of independent Brownian motions.
Note that in (50), for each x ∈ Od such that |x− a| = 1, there exists i ∈ I such that a = x+ ei.

The dynamics for the even height differences ηE = {ηEt (b)} ∈ (Ed)∗ are determined by the SDE

dηEt (b) = dφt(xb) − dφt(yb) = −
∑

x∈Od,|x−xb|=1

∂

∂φ(xb)
Fx(φt(x+ e1), . . . , φt(x+ e−d)) dt

+
∑

x∈Od,|x−yb|=1

∂

∂φ(yb)
Fx(φt(x+ e1), . . . , φt(x+ e−d)) dt

+
√

2d[Wt(xb) −Wt(yb)], (51)

where b = (xb, yb) ∈ (Ed)∗.
Lemma 26 (a) The solution of (51) satisfies ηEt ∈ χE for all t > 0.

(b) If φt is a solution of (50), then ηEt := ∇Eφt is a solution of (51).

(c) If ηEt is a solution of (51) and we define φt(0) through (50) for x = 0 and ∇Eφt(b) = ηEt (b),

with φ0(0) ∈ R, then φt := φη
E
t ,φt(0) is a solution of (50).

(d) For each ηE ∈ χE
r , r > 0 the SDE (51) has a unique χE

r -valued continuous solution ηEt starting
at ηE0 = ηE .

Proof. The proofs for (a), (b) and (c) are immediate, so we will concentrate on the proof for (d).
For every θt(x) and θ̄t(x), by expanding DjFx(θt(x)) in Taylor series around θ̄t(x) to get

DjFx(θt(x)) −DjFx(θ̄t(x)) =
∑

k∈I
φ̃t(x+ ek)

∫ 1

0
Dj,kFx

(

θ̄t(x) + y
(

θt(x) − θ̄t(x)
))

dy. (52)

By using now the fact that Fx ∈ F , we obtain global Lipschitz continuity in χE
r of the drift term of

the SDE in (51), from which a standard method of of successive approximations gives existence and
uniqueness of the solution in (51). �

First, we will prove
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Lemma 27 Let φt and φ̄t be two solutions for (50) and set φ̃t(a) := φt(a) − φ̄t(a), where a ∈ Ed.
Then for every finite ΛE ⊂ Ed, we have

∂

∂t

∑

a∈ΛE

(φ̃t(a))
2 = −2

∑

x∈OdΛ
ΛE

∑

{j∈I|

x+ej∈ΛE}

[

DjFx(φt(x+ e1), . . . , φt(x+ e−d))

−DjFx(φ̄t(x+ e1), . . . , φ̄t(x+ e−d))

]

φ̃t(x+ ej), (53)

and
∂

∂t

∑

a∈ΛE

(φ̃t(a))
2 ≤ −c−

∑

b∈(ΛE )∗

[

∇E φ̃t(b)
]2

+ 2c+
∑

b∈∂(ΛE )∗

|φt(yb)|
∣

∣

∣
∇E φ̃t(b)

∣

∣

∣
. (54)

Proof. Let a ∈ ΛE . Then from (50), we have

∂

∂t
(φ̃t(a))

2 = −2
∑

x∈OdΛ
ΛE
,|x−a|=1

[

∂

∂φ(a)
Fx(φt(x+ e1), . . . , φt(x+ e−d))

− ∂

∂φ(a)
Fx(φ̄t(x+ e1), . . . , φ̄t(x+ e−d))

]

φ̃t(a). (55)

By summing now over all a ∈ ΛE in (55), we get (53). For simplicity of notation, we will denote as
before by θt(x) := (φt(x+ e1), . . . , φt(x+ e−d)) and by θ̄t(x) :=

(

φ̄t(x+ e1), . . . , φ̄t(x+ e−d)
)

. To
find an upper bound for the sum, we expand now DjFx(θt(x)) in Taylor series around θ̄t(x) to get

DjFx(θt(x)) −DjFx(θ̄t(x)) =
∑

k∈I
φ̃t(x+ ek)

∫ 1

0
Dj,kFx

(

θ̄t(x) + y
(

θt(x) − θ̄t(x)
))

dy. (56)

Then

∂

∂t

∑

a∈ΛE

(φ̃t(a))
2

= −2
∑

x∈OdΛ
ΛE

∑

{j∈I,

x+ej∈ΛE}

∑

k∈I
φ̃t(x+ ek)φ̃t(x+ ej)

∫ 1

0
Dj,kFx

(

φ̄t(x) + y
(

φt(x) − φ̄t(x)
))

dy

= 2
∑

x∈OdΛ
ΛE

∑

{j∈I,

x+ej∈ΛE}

∑

k∈I,k 6=j

[

φ̃t
2
(x+ ej) − φ̃t(x+ ek)φ̃t(x+ ej)

]

∫ 1

0
Dj,kFx

(

yφt(x) + (1 − y)φ̄t(x)
)

dy

=
∑

x∈OdΛ
ΛE

∑

{j,k∈I,j 6=k|

x+ej ,x+ek∈ΛE}

[

φ̃t(x+ ej) − φ̃t(x+ ek)
]2
∫ 1

0
Dj,kFx

(

yφt(x) + (1 − y)φ̄t(x)
)

dy

+2
∑

x∈OdΛ
ΛE

∑

{j∈I,

x+ej∈ΛE}

∑

{k∈I|

x+ek∈∂Λ
E}

[

φ̃t
2
(x+ ej) − φ̃t(x+ ek)φ̃t(x+ ej)

]

∫ 1

0
Dj,kFx

(

yφt(x) + (1 − y)φ̄t(x)
)

dy

≤ −c−
∑

b∈(ΛE )∗

[

∇E φ̃t(b)
]2

+ 2c+
∑

b∈∂(ΛE )∗

|φt(yb)|
∣

∣

∣
∇E φ̃t(b)

∣

∣

∣
, (57)

where we used (56) in the first equality, (30) in the second equality, symmetry and the fact that
Dj,kFx = Dk,jFx in the third equality and (49) in the inequality on the last line.

�
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4.1.2 Coupling Argument

Let N+ = {f0
ij | f0

ij = ei + ej , where i, j ∈ I, j 6= −i, i ≤ j, j ≥ 1}. Let us define now a generator set

in Ed:
eEi = ei + ei+1, i = 1, 2, . . . d− 1 and eEd =

{

ed − e1 d even
ed + e1 d odd

For each u ∈ Rd, let ũi, i = 1, 2, . . . , d be defined as follows:

ũi = ui + ui+1, i = 1, 2, . . . , d− 1 and ũd =

{

ud − u1 d even
ud + u1 d odd

For x ∈ (Ed)∗, we define the even shift operators σEx : R
Ed → R

Ed , for even heights by σEx (y) =

φ(y − x) for y ∈ Ed and φ ∈ R
Ed and for even height differences by (σExη)(b) = η(b − x), for

b ∈ (Ed)∗ and η ∈ χE . Then shift-invariance and ergodicity for µ(2) are defined in the usual way.
We denote by SE the class of all shift invariant (with respect to the even shifts) µ ∈ P2(χ

E) which
are stationary for the SDE (50) and by ext SE those µE ∈ SE which are ergodic with respect to
the even shifts. For each u ∈ R

d, we denote by
(

ext SE)
ũ

the family of all µE ∈ ext SE such that

EµE

(

ηEt
(

beEi

))

= ũi, i = 1, 2 . . . d, where beEi
is the even bond (eEi , 0) . We will prove that µE is

unique.
For clarity purposes, we will sketch the coupling argument used in [14] to prove uniqueness of

µE . Suppose that there exist µE ∈
(

ext SE)
ũ

and µ̄E ∈
(

ext SE)
ṽ

for u, v ∈ R
d. Let us construct two

independent-χE
r valued random variables ηE = {ηE (b)} and η̄E = {η̄E (b)} on a common probability

space (Ω, F, P ) in such a manner that ηE and η̄E are distributed by µE and µ̄E respectively. We
define φ0 = φη,0 and φ̄0 = φη̄,0.Let φt and φ̄t be two solutions of the SDE (50) with common

Brownian motions having initial data φ0 and φ̄0. Since µE , µ̄E ∈ SE , we conclude that ηEt =
(

ηE
)φt

and η̄E =
(

ηE
)φ̄t are distributed by µE and µ̄E respectively, for all t ≥ 0. Let ũ, ṽ ∈ R

d be such that

ũi = EµE

(

ηEt
(

beEi

))

and ṽi = Eµ̄E

(

η̄Et
(

beEi

))

. We claim that:

Lemma 28 There exists a constant C > 0 independent of ũ, ṽ ∈ R
d such that

¯limT→∞
1

T

∫ T

0

d
∑

i=1

EP

[

(

ηEt (eEi ) − η̄Et (eEi )
)2
]

dt ≤ C|ũ− ṽ|2. (58)

Proof. Step 1. For simplicity of notation, we will label for this proof the d2 elements of N+ as
f0
1 , f

0
2 , . . . , f

0
d2 . By applying Lemma 27 to the differences {φ̃t(x) := φt(x) − φ̄t(x)}, where x ∈ Ed

and by using the fact that the distribution of (ηE , η̄E ) = (∇Eφt,∇E φ̄t) on χE
r × χE

r is shift-invariant
on the evens , one obtains just as in [14] for every T > 0, ΛE

N := [−N,N ]d ∩ Ed ⊂ Ed, where N ∈ N

∫ T

0
g(t) dt ≤ 2d2

c−|ΛE
N |

EP





∑

x∈ΛE
N

(φ̃0(x))
2



+
(2c+c0)

2d2

(c−N)2

∫ T

0
sup

y∈∂ΛE
N

‖φ̃t(y)‖2|L2(P ) dt, (59)

where

g(t) =
d2
∑

i=1

EP
[

(∇φ̃t(fi))2
]

and c0 := sup
{N≥1}

{

N
|∂(ΛE )∗|
|(ΛE )∗|

}

<∞.

Step 2. Next we derive, just as in [14], the following bound on the boundary term: For each
ǫ > 0 there exists an l0 ∈ N such that

sup
y∈∂EdΛ

‖φ̃t(y)‖2
L2(P ) ≤ C1

(

ǫ2N2 +N2|ũ− ṽ|2 +N−2t

∫ t

0
g(s) ds

)

(60)

for every t > 0 and l ≥ l0, where C1 > 0 is a constant independent of ǫ, l, and t.
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The main ingredient necessary for us to to be able to reproduce the proof in Step 2 of [14] is the
mean ergodic theorem for co-cycles, which we can use because Ed is a sub-algebra (see for example
[4], [19] or [18]) and apply it to µE ∈ (ext SE)u to obtain

lim
‖x‖→∞,

x∈Ed

1

‖x‖‖φ
ν,0(x) − x · ũ‖L2(µE ) = 0.

In order to use the same reasoning as in Step 2 of [14], we also need to prove

∣

∣

∣

∣

∣

∣

∣

∣

1

|ΛE
[N/2]|

∑

x∈ΛE
[N/2]

φ̃t(x)

∣

∣

∣

∣

∣

∣

∣

∣

L2(P )

≤
∣

∣

∣

∣

∣

∣

∣

∣

1

|ΛE
[N/2]|

∑

x∈ΛE
[N/2]

φ̃0(x)

∣

∣

∣

∣

∣

∣

∣

∣

L2(P )

+
c+|∂(ΛE

[N/2])
∗|

d2|ΛE
[N/2]|

∫ t

0

d2
∑

i=1

||∇φ̃t(fi)||L2(P )

(61)
To prove the above statement, note first that by using (50) we have

∂

∂t











∑

a∈ΛE
[N/2]

φ̃t(a)











= −2
∑

x∈Λ
ΛE
[N/2]

∩Od

∑

{j∈I|

x+ej∈ΛE
[N/2]

}

[

DjFx (θt(x)) −DjFx
(

θ̄t(x)
)

]

= −2
∑

x∈Λ
ΛE
[N/2]

∩Od

∑

{j∈I|

x+ej∈∂
−ΛE

[N/2]
}

[

DjFx (θt(x)) −DjFx
(

θ̄t(x)
)

]

, (62)

where for the second equality we used (30). By using Taylor’s expansion and (33) in (62), we get

|DjFx (θt(x)) −DjFx
(

θ̄t(x)
)

| ≤ c+
∑

k∈I|x+ek∈∂−ΛE
[N/2]

,x+ei∈∂ΛE
[N/2]

∣

∣

∣
φ̃t(x+ ek) − φ̃t(x+ ei)

∣

∣

∣
. (63)

Then, applying (62) and (63) to the left-hand side of (61), we have

∣

∣

∣

∣

∣

∣

∣

∣

1

|ΛE
[N/2]|

∑

x∈ΛE
[N/2]

φ̃t(x)

∣

∣

∣

∣

∣

∣

∣

∣

L2(P )

≤
∣

∣

∣

∣

∣

∣

∣

∣

1

|ΛE
[N/2]|

∑

x∈ΛE
[N/2]

φ̃0(x)

∣

∣

∣

∣

∣

∣

∣

∣

L2(P )

+
c+

|ΛE
[N/2]|

∑

b∈∂(ΛE
[N/2]

)∗

∫ t

0
||∇Eφs(b)||L2(P ) ds.

(61) follows immediately now by using the shift-invariance property on the evens in the above
equation. With these estimates, the proof from Step 2 in [14] can now be immediately reproduced.

Step 3 The desired estimate (58) follows now by using the same arguments as in Step 3 of [14]
and by using the fact that

∫ T

0

d
∑

i=1

EP

[

(

ηEt (eEi ) − η̄Et (eEi )
)2
]

dt ≤
∫ T

0
g(t) dt.

�

Theorem 29 For every u ∈ R
d, there exists at most one µEu ∈

(

ext SE)
ũ
.

Proof. By using Lemma 28, the proof follows the same arguments as in [14], so it will be omitted.
�

4.2 Proof of Theorem 25

Note first that any µ ∈ G(H) is reversible under the dynamics ηt defined by the (51). In particular,
G ⊂ S.

Suppose now that there exist µ, µ̄ ∈ G(H) ergodic and shift-invariant such that Eµ (ηt(bei)) =

ui, i = 1, 2 . . . d for u ∈ R
d. Note now that Eµ

(

ηEt
(

beEi

))

= Eµ̄

(

ηEt
(

beEi

))

= ũi, i = 1, 2 . . . d.
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Hence, from Lemma 13, we get that µ|(Ed)∗ , µ̄|(Ed)∗ ∈ GE (H(2)). Since for all ηE ∈ χE , with ηE (b) =

φ(yb)−φ(xb), b = (xb, yb) ∈ (Ed)∗, we can write ηE (b) = η(b1)+η(b2), b1, b2 ∈ (Zd)∗, shift-invariance
and ergodicity under the even shifts for µ|(Ed)∗ , µ̄|(Ed)∗ follow immediately from the similar properties
for µ, µ̄. We also have reversibility for the even (see for example [15]).

Therefore µ|(Ed)∗ , µ̄|(Ed)∗ ∈
(

ext SE)
ũ
, so we can apply Theorem 29 to get µ|(Ed)∗ = µ̄|(Ed)∗ .

Then for any A ∈ F(Zd)∗ , we have Eµ(1A|F(Ed)∗),Eµ̄(1A|F(Ed)∗) ∈ F(Ed)∗ . From Lemma 15 we have
Eµ(1A|F(Ed)∗) = Eµ̄(1A|F(Ed)∗) and thus

µ(A) = Eµ(1A) = Eµ(Eµ(1A|F(Ed)∗)) = Eµ̄(Eµ(1A|F(Ed)∗)) = Eµ̄(Eµ̄(1A|F(Ed)∗)) = Eµ̄(A) = µ̄(A).

�

5 Covariance

We will extend in this section the covariance estimates of [8] to the class of non-convex potentials
U = V + g which satisfy (4) such V and g satisfy (7) and (29).

Let F ∈ C1
b (χr), where C1

b (χr) denotes the set of differentiable functions with bounded deriva-
tives depending on finitely many coordinates. For every b = (x, x+ ei) ∈ (Zd)∗, let

∂bF =
∂

∂∇eiφ(x)
F (∇φ) and ||∂bF ||∞ = sup

∇φ
|∂bF (∇φ)|.

We define ∂bEF and ||∂bEF ||∞ similarly for bE ∈ (Ed)∗.
Remark 30 Let k ∈ I fixed. Take bE = (x + ej, x + el) ∈ (Ed)∗. By the change of variables
φ(x + el) + φ(x + ej) = α1 and φ(x + el) − φ(x + ej) = α2, we have φ(x + el) = α1+α2

2 and
φ(x+ ej) = α1−α2

2 . Let F (∇φk) = F ((φ(z + es) − φ(z + ek) − φ(z)))s∈I,z∈Od . Using the chain rule

∂bEF (∇φk) =
∂

∂α2
F (∇φk) =

sgn(φ(x+ l))

2

∑

{y∈Od:||y−(x+el)||=1, ||y−(x+ej)||6=1}

∂F (∇φk)
∂(y+s,y+k)φ

− sgn(φ(x+ j))

2

∑

{y∈Od:||y−(x+ej)||=1, ||y−(x+el)||6=1}

∂F (∇φk)
∂(y+s,y+k)φ

+sgn(φ(x+ l))δ(l,j)(s, k)
∂F (∇φk)
∂(y+s,y+k)φ

,

(64)

where for all s ∈ I, ∂F (∇φ)

∂(y+s,y+k) denotes the partial derivatives DmF such that m is the index which
gives the position in F of φ(y + es) − φ(y + ek) − φ(y), sgn(φ(x+ s)) denotes the sign of φ(x+ es)
in that term and δ(l,j)(s, k) = 1 if {l, j} = {s, k} and 0 otherwise.

Remark 31 With the same notation as the one from Remark 30, we have
∣

∣

∣

∣

∣

sup
∇φk

∂bEF (∇φk)
∣

∣

∣

∣

∣

≤
∑

b:b∼bE
sup
∇φ

|∂bF (∇φ)| =
∑

b:b∼bE
||∂bF ||∞,

where b ∼ bE are b = (x, x+ es) ∈ (Zd)∗, x ∈ Od such that s ∈ {l, j}. The remark is easy to prove,
by using Remark 30 and by noting that, using a similar approach to calculating ∂bEF (∇φk) as for
Remark 30, we get for b1 = (x, x+ el) and b2 = (x+ ej, x)

∂bF (∇φk) = ∂b1F (∇φk) + ∂b2F (∇φk).

Theorem 32 Let u ∈ R
d. Assume U = V + g, where U satisfies (4) and V and g satisfy (7) and

(29). Let F,G ∈ C1
b (χr). Then there exists C > 0 such that

|covµu(F (∇φ), G(∇φ))| ≤ C
∑

b,b′∈(Zd)∗

||∂bF ||∞||∂b′G||∞
1 + ‖b1 − b′1‖d

.
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Proof. We have

covµu(F (∇φ), G(∇φ)) = Eµu

[

covµu(F (∇φ), G(∇φ)|F(Ed)∗)
]

+covµu

(

Eµu [F (∇φ)|F(Ed)∗ ],Eµu [G(∇φ)|F(Ed)∗ ]
)

,

where by Lemma 15 and Corollary 28 with l = k, we have

Eµu(F (∇φ)|F(Ed)∗)(ξ) =

∫

F (∇φk)
∏

y∈Od
(µu)

ξ,k
y dφ(y), (65)

where (µu)
ξ,k
y are defined as in (28); a similar formula holds for G. Note that under µu( · |F(Ed)∗),

the gradients (∇φi(x), x ∈ Od, i ∈ I) are independent. Thus, there exists c′ > 0 such that

∣

∣

∣
covµu(F (∇φ), G(∇φ)|F(Ed)∗)

∣

∣

∣
≤ c′

∑

b∈(Zd)∗

||∂bF ||∞||∂bG||∞varµu(∇φ(b)|F(Ed)∗)

≤ c′σ2
∑

b∈(Zd)∗

||∂bF ||∞||∂bG||∞, (66)

where for the first inequality we used Lemma 3.1 in [9] and for the last inequality we used (45).
Next, in view of Lemma 13, Theorem 18 and the fact that Theorem 6.2 in [8] can be adapted to the
case of the infinite even lattice with strictly convex potential, there exists c′′ > 0 such that

∣

∣

∣covµu(F̂ , Ĝ)
∣

∣

∣ ≤ c′′
∑

bE , b̃E∈(Ed)∗

||∂bE F̂ ||∞||∂b̃E Ĝ||∞
1 + ‖bE1 − b̃E1‖d

, F̂ = Eµu [F (∇φ)|F(Ed)∗ ] and Ĝ = Eµu [G(∇φ)|F(Ed)∗ ].

(67)
We need to estimate now ∂bE F̂ and ∂bE Ĝ. But

∂bE F̂ = ∂bEEµu [F (∇φ)|F(Ed)∗ ] = ∂bE





∫

F (∇φk)
∏

y∈Od
(µu)

ξ,k
y dφ(y)





= ∂bE





∫

F (∇φk)
∏

y∈Od

1

Z(∇E
kθ(y))

e−
P

i∈I U(φ(y+ei)−(φ(y+ek)+φ(y))) dφ(y)





=

∫

∂bEF (∇φk)
∏

y∈Od

1

Z(∇E
kθ(y))

e−
P

i∈I U(φ(y+ei)−(φ(y+ek)+φ(y))) dφ(y)

−covµu



F (∇φk), ∂bE





∑

y∈Od

∑

i∈I
U(φ(y + ei) − (φ(y + ek) + φ(y)))





∣

∣

∣

∣

F(Ed)∗



 , (68)

from which, by using also Remark 31

|∂bE F̂ | ≤
∑

b:b∼bE
||∂bF ||∞+

∣

∣

∣

∣

∣

∣

covµu



F (∇φ), ∂bE





∑

y∈Od

∑

i∈I
U(φ(y + ei) − (φ(y + ek) + φ(y)))





∣

∣

∣

∣

F(Ed)∗





∣

∣

∣

∣

∣

∣

.

(69)
By Remark 30, we have for bE = (x+ el, x+ ej) ∈ (Ed)∗

∂bE





∑

y∈Od

∑

i∈I
U(φ(y + ei) − (φ(y + ek) + φ(y)))
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=
sgn(φ(x+ l))

2

∑

i∈I

∑

{y∈Od:||y−(x+el)||=1, ||y−(x+ej)||6=1}
U ′(φ(y + ei) − (φ(y + ek) + φ(y)))

−sgn(φ(x+ j))

2

∑

i∈I

∑

{y∈Od:||y−(x+ej)||=1, ||y−(x+el)||6=1}
U ′(φ(y + ei) − (φ(y + ek) + φ(y)))

+sgn(φ(x + l))δ(l,j)(s, k)U
′(φ(y + ei) − (φ(y + ek) + φ(y))). (70)

By applying (70) and then (66) to the covariance in (69), coupled with another application of
Remark 30 to the resulting ∂bEU

′ terms and using |U ′′| ≤ C0 + C2, we get for some c′′′ > 0

∣

∣

∣

∣

∣

∣

covµu



F (∇φ), ∂bE





∑

y∈Od

∑

i∈I
U(φ(y) − (φ(y + ek) − φ(y + ei)))





∣

∣

∣

∣

F(Ed)∗





∣

∣

∣

∣

∣

∣

≤ c′′′(C0+C2)
∑

bE∈(Ed)∗: y+ek∈b
E

or y+ei∈b
E

||∂bEF ||∞varµu(∇φ(b)|F(Ed)∗) ≤ c′′′σ2(C0+C2)
∑

b∈(Ed)∗: y+ek∈b
E

or y+ei∈b
E

||∂bEF ||∞.

(71)

The statement of the theorem follows now from (69), (71), (66), (67) and Remark 31. �

6 Scaling Limit

We will extend next the scaling limit results results from [16] to a class of non-convex potentials.

Theorem 33 Let u ∈ R
d. Assume U = V + g, where U satisfies (4) and V and g satisfy (7) and

(29). Set

Sǫ(f) = ǫd/2
∑

x∈Zd

∑

i∈I
(∇iφ(x) − ui)fi(ǫx),

where f ∈ C∞
0 (Rd; Rd). Then

Sǫ(f) → N(0, σ2
u(f)) as ǫ→ 0, where σ2

u(f) > 0.

Proof. For simplicity, we will only prove that for all i ∈ I

Sǫ,i(f) → N(0, σ2
u(f)) as ǫ→ 0, where Sǫ,i(f) = ǫd/2

∑

x∈Zd

f(xǫ)(∇iφ(x) − ui).

Sǫ,i(f) = ǫd/2
∑

x∈Zd

f(xǫ) [φ(x+ ei) − φ(x) − ui] = ǫd/2
∑

x∈Ed
f(xǫ) [φ(x+ 2ei) − φ(x) − 2ui]

−ǫd/2
∑

x∈Ed
f(xǫ) [φ(x+ 2ei) − φ(x+ ei) − ui] + ǫd/2

∑

x∈Od
f(xǫ) [φ(x+ ei) − φ(x) − ui]

= ǫd/2
∑

x∈Ed
f(xǫ) [φ(x+ 2ei) − φ(x) − 2ui]

+ǫd/2
∑

x∈Ed

[

f((x+ ei)ǫ) − f(xǫ)
]

[φ(x+ 2ei) − φ(x+ ei) − ui] = Seǫ (f) +Rǫ(f).

We can show CLT for Seǫ,i(f) since the summation is concentrated on the even sites; the proof uses
the same arguments as in [16] and is based on the Random Walk Representation. Also, since by
Theorem 32

∣

∣covµu(∇iφ(x),∇jφ(y))
∣

∣ ≤ C

(‖x− y‖ + 1)d
,
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we have

varµu(Rǫ,i(f)) ≤ ǫd
∑

x,y∈Ed
|∇if(xǫ)||∇if(yǫ)||covµu(φ(x+ ei) − φ(x), φ(y + ei) − φ(y))

∣

∣

≤ ǫd
∑

x,y∈Ed
|∇if(xǫ)||∇if(yǫ)| C

(‖x− y‖ + 1)d
,

where ∇if(xǫ) = f((x + ei)ǫ) − f(xǫ). Expanding f((x + ei)ǫ) in Taylor expansion around xǫ, we
have ∇if(xǫ) = Dif(a)ǫ, for some a ∈ Rd. As f ∈ C∞

0 (Rd), there exist M,N > 0 such that for
all x ∈ R

d with |ǫx| ≤ N we have f(ǫx) ≤ M , |Dif(ǫx)| ≤ M and both functions equal to 0 for
|ǫx| > N . Therefore

varµu(Rǫ,i(f)) ≤
∑

x,y∈Ed,
|ǫx|≤N,|ǫy|≤N

ǫd+2M2C

(‖x− y‖ + 1)d
≤ ǫd+2M2C

∑

y∈Ed,
|ǫy|≤N

∫ N
ǫ

−N
ǫ

. . .

∫ N
ǫ

−N
ǫ

dx1 dx2 . . . dxd
(

∑d
i=1 |xi − yi| + 1

)d

≤ ǫ2C(d,N,M) log (1 + 2dN/ǫ) ≤ 2dNC(d,N,M)ǫ,

where C(d,N,M) is a positive constant depending on d,M and N . It follows that Rǫ,i(f) → 0 as
ǫ→ 0 in probability. �

7 Surface tension

We will extend here to the family of non-convex potentials satisfying (4), (7) and (29), the surface
tension strict convexity result from [14] and [11]. Additionally, in Theorem 37 we prove a series of
surface tension equalities, which are important for the derivation of the hydrodynamic limit.

Let T
d
N = (Z/NZ)d = Z

d mod (N) be the lattice torus in Z
d and let u ∈ R

d. Then, we define
the surface tension on the torus T

d
N as

σβ
TN

(u) = − 1

|TdN |d
log

Zβ
TN

(u)

Zβ
TN

(0)
, Zβ

TN
(u) =

∫

R
Td
N

exp(−βHTN
(φ+ 〈·, u〉))

∏

x∈TdN \{0}
dφ(x)

and where HTN
is the Hamiltonian on the torus T

d
N given by

HTN
(φ) =

∑

i∈I

∑

x∈TdN

U(∇iφ(x)) =
∑

i∈I

∑

x∈TdN

[V (∇iφ(x)) + g(∇iφ(x))] .

Note that we define u−i = −ui for i = 1, 2, . . . , d. Just as in the previous sections, let us label the
vertices of the torus as odd and even; let the set of odd vertices on the torus be O

d
N and the set of

even vertices be E
d
N . Then we can of course first integrate all the odd coordinate first and then:

Zβ
TN

(u) =

∫

R
Ed
N





∫

R
Od
N

exp(−βHTN
(φ+ 〈·, u〉)

∏

x∈OdN

dφ(x)





∏

x∈EdN\{0}
dφ(x)

=

∫

R
Ed
N

exp(−βH
EdN

(φ, u))
∏

x∈EdN \{0}
dφ(x),

where HEN
(φ, u) is the induced Hamiltonian on the even. It is easy to see that

HEN
(φ, u) = HEN

(φ+ 〈·, u〉 , 0).
Then, defining the even surface tension on E

d
N as

σβ
EN

(u) = − 1

|EdN |
log

Zβ
EN

(u)

Zβ
EN

(0)
, with Zβ

EN
(u) =

∫

R
Ed
N

exp(−βHEN
(φ+ 〈·, u〉 , 0))

∏

x∈EdN \{0}
dφ(x),

we obtain the following result by integrating out the odds
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Lemma 34

σβ
EN

(u) =
1

2
σβ

TN
(u).

We will next prove strict convexity for the even surface tension, uniformly in N .

Lemma 35 Suppose that V, g ∈ C2(R) such that they satisfy (7) and (29). Then, for all N = 2k,
we have

D2σβ
EN

(u) ≥ C|EdN |Id, ∀ u ∈ R
d. (72)

That is, the even surface tension is uniformly convex, uniformly in N .

Proof. First note that if N = 2k, we can write HEN
(φ, u) as

HEN
(φ, u) =

∑

x∈OdN

Fx(θ, u), with Fx(θ(x), u) = − log

∫

R

e−2β
P

i∈I U(∇iφ(x)+ui) dφ(x) (73)

and where, just as in (16), θ(x) = (φ(x + e1), . . . , φ(x − ed)). Note that for all i ∈ I, we have
u−i = −ui. Then

σβ
EN

(u) = − 1

|EdN |
log

∫

EdN
e
−

P

x∈Od
N
Fx(θ(x),u)∏

i∈I
∏

x+ei∈EdN
dφ(x+ ei)

∫

EdN
e
−

P

x∈Od
N
Fx(θ(x),0)∏

i∈I
∏

x+ei∈EdN
dφ(x+ ei)

.

As the denominator of σEN
(u) doesn’t depend on u, it is enough to focus on the term

REN
(u) := log

∫

EdN

e
−

P

x∈Od
N
Fx(θ(x),u)∏

i∈I

∏

x+ei∈EdN

dφ(x+ ei). (74)

Note now that by Theorem 18, we have that for each x ∈ Od
Λ, Fx is convex, that is

(

D2Fx(θ)(θ̄)
)

(θ̄) ≥ c1
∑

i,j∈I,
i6=j

∣

∣θ̄(x+ ei) − θ̄(x+ ej)
∣

∣

2
. (75)

Because by Theorem 18 the Fx fulfill the random walk representation, we can apply to RN
Lemma 3.2 in [7], (75) and the fact that for all i ∈ I, we have u−i = −ui, to get the statement of
the lemma. �

We consider the finite volume Gibbs measures µ̃N,u ∈ P (χ
TdN

) with periodic boundary conditions

which, for each u ∈ R
d, are defined by

µ̃N,u( dη̃) = Z−1
N,ue

− 1
2

P

b∈(Td
N

)∗
V (η̃(b)+ub)

dη̃N ∈ P (χ
TdN

).

Here dη̃N is the uniform measure on the affine space χ
TdN

and ZN,u is the normalizing constant.

The law of {η(b) := η̃(b) + ub} under µ̃N,u is denoted by µN,u.

Lemma 36 µN,u converges weakly to µu ∈ ext G.

Proof. Tightness of the family {µN,u}N is known for non-convex potentials with quadratic growth
at ∞ (see Remark 4.4 page 152 in [15]). Therefore a limiting measure exists by taking N → ∞
along a suitable sub-sequence. Note now that Theorem 32 can be also adapted to the torus case;
this is due to the fact that for N even, the Fx fulfill the random walk representation on T

d
N and

that Theorem 6.2 in [8] can be also proved for the torus, because the torus is translation invariant.
Using Theorems 25, the proof follows now the same reasoning as the proof of Theorem 3.2 in [14]. In
particular, because of the uniqueness of ergodic gradient Gibbs measures for each u, µN,u converges
weakly to µu. �

Let

∇σ
TdN

=
(

D1σ
TdN
, . . . ,Ddσ

TdN

)

, where Diσ
TdN

=
∂σ

TdN

∂ui
, i = 1, . . . d.
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Theorem 37 Suppose that V, g ∈ C2(R) are such that they satisfy (7) and (29) and such that for
all i ∈ I, U is symmetric. Then we have

(a) limN→∞ σβ
TN

(u) = σT (u), σT ∈ C1(Rd);

(b) σT is strictly convex as a function of u;

(c) Eµu [η(b)] = ub;

(d) Eµu [U
′(η(ei)] = DiσT (u), for all i = 1, . . . d;

(e) Eµu [
∑d

i=1 η(ei)U
′(η(ei)] = u · ∇σT (u) + 1, for all i = 1, . . . d;

(f) |∇σ(u) −∇σ(v)| ≤ C|u− v| for some C > 0.

Proof.

(a) Using that lim supN→∞
1

|TdN | log EµN,u

[

e
α

P

b∈(Td
N

)∗
η2(b)

]

<∞ for some α > 0 (see Remark 4.4

page 152 in [15]) and noting from Lemma 36 that µ̃N,u converges weakly to µ̃u as N → ∞,
the proof now follows the same steps as the proof of Theorem 3.4.(0) in [14].

(b) Since by (a), limN→∞ σβ
TN

(u) = σT (u), every sub-sequence of σβ
TN

(u) will converge to σT (u),
in particular for N = 2k. The statement of the theorem follows immediately by using now

Lemma 34 and Lemma 35 applied to the sub-sequence
(

σβ
TN

(u)
)

N
, with N = 2k.

(c) , (d) and (e) follow just as in [14], so their proofs will be omitted.

(f) Let N = 2k. Define

µE
N,u( dφE) =

1

ZE
N,u

e
−P

x∈ON
Fx(θ(x),u)

dφEN ,

where dφEn =
∏

x∈EdN\{0} φ(x) and ZE
N,u is the normalizing constant. Due to the fact that the

random walk representation holds on the set of the evens and to Theorem 29, one can show as
in [14] that for N = 2k, µE

N,u converges weakly to µE
u ∈

(

ext SE
)

ũ
, where the same notations

as in the uniqueness of ergodic component section apply. Note now from (73) that

EµN,u

[

U ′(∇iφ(x)
]

= EµE

N,u

[

DiFx(θ(x), u)
]

, where x ∈ O
d
N .

Using now (d), the weak convergence of µN,u to µu and the weak convergence of µE
N,u to µE

u,
we get

Eµu [U
′(η(ei)] = EµE

u

[

DiFx(θ(x), u)
]

= DiσT (u). (76)

Using the random walk representation and Taylor expansion, we have

∣

∣DiFx(θ(x)) −DiFx(θ̄(x))
∣

∣ ≤ c+
∑

k∈I
∣

∣φ(x+ ek) − φ̄(x+ ek)
∣

∣ . (77)

The bound in (f) is now a simple consequence of (76), (77) and Lemma 28.

�
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[17] Helffer, B., Sjöstrand, J., On the correlation for Kac-like models in the convex case, J. Statis.
Phys., 74, 349-409., (1994).

[18] Keynes, H.B., Markley, N.G., Sears, M., Ergodic Averages and Integrals of Co-cycles, Acta.
Math Univ. Comenianao, Vol LXIV, 1, 123-139, (1995).

[19] Kozlov, S.M., The method of averaging and walks in inhomogeneous environments, Russian
Math. Surveys, 40, pp. 73-145, (1985).

27



[20] Naddaf, A., Spencer, T., On homogenization and scaling limit of some gradient perturbations
of a massless free field, Commun. Math. Phys., 183, 55-84, (1997).

[21] Sheffield, S., Random surfaces: large deviations principles and gradient Gibbs measure classifi-
cations, Asterisque, 304, (2005).

28


	Introduction
	General Definitions and Notations
	-Gibbs Measures
	-Gibbs Measures
	Notation on Zd
	Definition of -Gibbs measures


	Even/Odd Representation
	Notation on the Even Subset of Zd
	Definition of E-Gibbs measures
	Restriction of a -Gibbs measure to Ed
	Random Walk Representation
	Definition and Theorems
	Examples


	 Uniqueness of ergodic component
	Uniqueness of ergodic component for the even
	Dynamics
	Coupling Argument

	Proof of Theorem  ??

	Covariance
	Scaling Limit
	Surface tension

