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Eigenvalue Estimates and Mutual Information
for the Linear Time-Varying Channel

Brendan Farrell, Member, IEEE, and Thomas Strohmer

Abstract—We consider linear time-varying channels with addi-
tive white Gaussian noise. For a large class of such channels we
derive rigorous estimates of the eigenvalues of the correlation ma-
trix of the effective channel in terms of the sampled time-varying
transfer function and, thus, provide a theoretical justification for
a relationship that has been frequently observed in the literature.
We then use this eigenvalue estimate to derive an estimate of the
mutual information of the channel. Our approach is constructive
and is based on a careful balance of the tradeoff between approxi-
mate operator diagonalization, signal dimension loss, and accuracy
of eigenvalue estimates.

Index Terms—Approximate diagonalization, eigenvalue esti-
mates, mutual information, time-varying channel, Weyl–Heisen-
berg system.

I. INTRODUCTION

A. Motivation

T HE linear, time-invariant (LTI) channel with impulse re-
sponse

(1)

and additive white Gaussian noise with variance has normal-
ized capacity

(2)

for signals band-limited to . This classical result is,
of course, due to Shannon [1], and is probably the most fun-
damental result in information theory. We refer to [2] for the
mathematical steps and the information-theoretic details for es-
tablishing (2).

The linear, time-varying (LTV) channel is given by

(3)
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Motivated by Shannon’s groundbreaking result, it has been a
longstanding desire of engineers and mathematicians to derive
a characterization of the capacity of time-varying channels in
terms of the associated time-varying transfer function, analo-
gous to (2). While such a characterization seems still quite out
of reach for the general case, our aim in this paper is to get one
step closer to this ambitious goal. The mathematical foundation
for Shannon’s famous result is the fact that in the time-invariant
case the (generalized) eigenvalues of the channel matrix are di-
rectly related to samples of the transfer function. Thus, it is nat-
ural to ask to what extent such a relationship carries over to the
time-varying case, which is what we plan to answer in this paper.

For information-theoretic studies of some special cases of
time-varying channels we refer the reader to [3] and its vast list
of references. In this paper we focus on the class of time-varying
channels whose spreading function decays at an exponential rate
both in time and frequency. This channel class is motivated by
physical properties of channel propagation and includes for in-
stance underspread channels [4], [5].

B. Contributions

A precise formulation of the results of this paper requires sev-
eral steps of preparation. Therefore, we delay the rigorous pre-
sentation of our results to later sections, and instead give an in-
formal description of our contributions.

The main result of our paper shows that the eigenvalues of
the correlation matrix of the effective channel can be well ap-
proximated via sampling values of the autocorrelation of the
time-varying transfer function. We derive rigorous bounds for
the accuracy of this approximation. Our approach is construc-
tive and is based on a careful balance of the tradeoff between
approximate matrix diagonalization, signal dimension loss, and
accuracy of eigenvalue estimates. While the proof of the eigen-
value estimate is quite delicate, this will come as no surprise to
the expert in pseudodifferential operator theory, since charac-
terizing the spectrum of a pseudodifferential operator (which is
essentially an operator of the form (3)) via its symbol has always
been a difficult task.

We then show how this eigenvalue estimate can be used to
derive an estimate of the mutual information of these channels.
Recall that for the time-invariant case the mutual information
(and thus, in turn, the capacity) is precisely captured by the sam-
pled Fourier transform of the autocorrelation of the impulse re-
sponse, as the time interval is extended to infinity. Building on
our eigenvalue estimates, we rigorously relate the mutual in-
formation to samples of the Fourier transform of the “twisted
auto-convolved” spreading function.
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C. Remarks on the Proof Strategy

A few comments on the proof strategy seem in order. Two
different types of signal sets will play an important role:
Weyl–Heisenberg signals and prolate spheroidal wave func-
tions. The reader may wonder why we do not stick with just
one of these two types. The reason is that each of the two has
some major advantages, but also some significant limitations.
Thus, by introducing both types, Weyl–Heisenberg signals
and prolate spheroidal wave functions (PSWFs), we can fully
utilize the positive properties of each set, while mitigating its
negative properties with the other set.

For the eigenvalue estimate we rely on a set of well localized
Weyl–Heisenberg signals whose span is close to the span of the
PSWFs in a sense that will be formalized in the proof. While the
PSWFs are optimally localized in an -sense, their lack of suf-
ficient temporal decay (except for the first few PSWFs) prohibits
us from linking the eigenvalues of , the correlation matrix
of the effective channel, to the associated time-varying transfer
function. The off-diagonal entries of the resulting matrix would
have at best linear decay, which is simply insufficient for any
reasonable estimate. On the other hand, the excellent localiza-
tion properties of the Weyl–Heisenberg set yield an approximate
diagonalization of the channel, so that the off-diagonal entries
of decay exponentially, which allows us to obtain a rather
tight eigenvalue estimate.

The mutual information will depend on the type and number
of transmission signals. We use a signaling set consisting
of about mutually orthonormal -bandlimited sig-
nals which are “essentially localized” to a time interval of
length . The associated signal space, rigorously defined
in Definition 2.1, will be denoted by . It is not
difficult to construct a linear independent, well-localized set
of Weyl–Heisenberg signals. However, due to the infamous
Balian–Low theorem (see Section III-A) such a set will be
necessarily incomplete in , which in turn implies that
the number of Weyl–Heisenberg signals inside is
somewhat smaller than , the approximate dimension
of . This dimension loss makes a direct estimate
of the mutual information somewhat cumbersome. And that is
where PSWFs come into play. We (approximately) represent

via the PSWFs, and then quantify the (small)
dimension loss between the Weyl–Heisenberg set and the
PSWFs. Combining this estimate with our eigenvalue estimate
enables us then to estimate the mutual information in terms of
the time-varying transfer function.

D. Connections to Prior Work

Our work is related to previous research on two aspects of
time-varying channels. Previous authors have discussed diag-
onalizing the channel and giving the capacity in terms of sin-
gular values [6]–[8], and other authors have focused on deter-
mining transmission signals with various useful properties [9],
[10]. Our paper is probably closest in spirit to [11], where the
authors derive estimates for the noncoherent capacity for cer-
tain time-varying channels by carefully combining signal design
with approximate diagonalization.

Much of the mathematical approach to time-varying chan-
nels from a time-frequency analysis perspective originated with
Kozek [9], [12], [13]. While he addresses issues such as the
composition and estimation of time-varying channel operators
and the time-frequency localization of transmission signals, his
focus is a WSSUS model. Here we work with a deterministic
channel.

The remainder of the paper is organized as follows. At the
end of this section we introduce mathematical tools and notation
used throughout the paper. Section II describes our setup, the
channel model and the signal model. We derive the eigenvalue
estimate in Section III and present the estimate of the mutual
information in Section IV.

E. Mathematical Tools and Notation

Let be a function in . The modulation operator
is defined by

(4)

and the translation operator is defined by

(5)

for all . The Fourier transform of a function
is given by

(6)

We also write for . The Fourier transform of a function in
two variables is defined by extending (6) in the usual way to two
dimensions. Sometimes we need to take the Fourier transform
of a function with respect to the first or the second
variable only. In this case we write or , respectively.
When no interval is given, integration is over all of . For a
complex-valued function , we denote its complex conjugate
by . The eigenvalues of a matrix are denoted by .

The Weyl pseudodifferential operator is defined as

(7)

Here, is called the symbol and its Fourier transform, , is
called the spreading function. We can express the composition
of two pseudodifferential operators , in terms of their
symbols. There holds , where
denotes the twisted product of and , and

is called the twisted convolution of and , see [14]. This can
be seen as a generalization of the composition rule of two time-
invariant operators via ordinary convolution.

We set , which is the Fourier transform of the
“twisted autocorrelation” of . Since takes values in ,

is defined by .
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II. CHANNEL MODEL AND SIGNAL MODEL

We first derive an equivalent representation of the channel
model (3). We set . Several manipulations
and applications of the Fourier transform yield [14]

(8)

This allows us to equivalently express the linear time-varying
channel as a pseudodifferential operator

(9)

The integral in (9) has the interpretation that the received signal
is a weighted sum of shifted and modulated copies of the orig-
inal signal. Using the Weyl form allows us to express the channel
as an operator that has further useful relationships to other forms
that will be helpful in our proof. See [14] for further background
on such operators.

Our model is now given by the following steps and
is illustrated in (10)–(14). First the random variable

is mapped to a set of orthonormal
transmission signals as coefficients (10). The signal passes
through the channel given by (11) and is corrupted by
AWGN (12). The received signal is mapped to a sequence
of random variables by taking the inner product with the
detection signals (13)

(10)

(11)

(12)

(13)

(14)

The reader will have noticed that we use a different set of sig-
nals at the transmitter and the receiver. The mutual informa-
tion between and , depends on the transmission sig-
nals and the number of transmission signals, but as
long as is an orthonormal basis for or a tight
frame, then is independent of the receive signals. It is
clear that the transmission signals should form a lin-
early independent set. As already briefly indicated, later the
Balian–Low theorem will force us to select the linearly inde-
pendent set of transmission signals from a set of functions that
is also incomplete in . Obviously, this implies a dimen-
sion loss of the signal space which manifests itself in an addi-
tional error term in our main estimate of the mutual informa-
tion. An additional dimension loss would occur if we also used
an incomplete signaling set at the receiver. However, at the re-
ceiver we are not restricted to linearly independent signaling sets
(thus, the Balian–Low theorem is no longer an obstacle), and,

therefore, we will use a different, and, in fact, overcomplete, sig-
naling set at the receiver.

Now we introduce and discuss our requirement on the trans-
mission signals. We require that they are -localized to a time-
frequency rectangle, which we formalize with the following def-
inition.

Definition 2.1: We define the space by

and

Given the intervals we denote by
the associated PSWFs similar to [15], [25].1 Let be the orthog-
onal projection onto the span of . By Theorem 12
in [15] for every

(15)

In other words, is well approximated by the first
elements of the PSWFs and is essentially

-dimensional.
There are several reasons for restricting our transmission sig-

nals to this space. Firstly, any real-world communication signal
has finite duration and (essentially) finite bandwidth. The above
model is a standard way to describe this property in a mathemat-
ically meaningful way [15]. Secondly, for time-varying chan-
nels it is more insightful to have expressions for eigenvalue es-
timates or mutual information for finite time intervals (and of
course finite bandwidth) than for infinite time, as is also reflected
in the papers [2], [6], [11]. Thus, it is useful to require some form
of time-frequency localization of the transmission signals. We
note that we could have chosen the signal space with somewhat
different localization conditions, such as for instance using ex-
actly time-limited signals. However, our symmetric localization
condition in Definition 2.1 lends itself to a somewhat shorter
proof (admittedly, in spite of the overall length of our proof, the
reader might find that using the term “shorter” is not appropriate
here).

III. EIGENVALUE ESTIMATES FOR TIME-VARYING CHANNELS

A. Weyl–Heisenberg Systems, Time-Frequency Localization
and Mutual Information

We assume that the reader is familiar with frame theory and
refer to [14] for background.

Definition 3.1: For a given function (the window
function) and given parameters , we denote the associ-
ated Gabor system or Weyl–Heisenberg system by

, . The redundancy of this system is
. (Note that is necessary for to be a frame for

[14].)

1The minor and trivial difference to [15], [25] is that we consider and
not .
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Proposition 3.2: Let , and set
, where is the frame operator corresponding to

. Then ( and )
is an orthonormal system and there exist constants and

such that

Proof: A fundamental theorem due to Lyubarskii, Seip
and Wallsten states that is a frame for if and
only if [17]–[19]. By Theorem 5.1.6 and Corollary
7.3.2 in [14], is a tight frame for

with frame constant . Now we use the Weyl–Heisen-
berg biorthogonality relations [20]–[22], which state that if

on , then
. A ready consequence of this

essential theorem is that is
an orthonormal set [14]. Note that does not span

). By Theorem 5 in [23], up to a factor ,
the exponential decay of and is preserved in and .
Finally, Theorem IV.2 in [24] implies that if is the window
function for the orthonormal set based on the initial window

, then is the corresponding window function for .

Let and be as in the previous proposition. We construct
our signals by setting , and . The signals
are then defined by:

D1) ;
D2) ;
D3) .

Here, stands for “transmit” and stands for “receive”.

Definition 3.3: A function is exponentially lo-
calized to the region if there exist constants

and such that

and (16)

for all and all .
The Balian–Low theorem [14] precludes the existence of an

orthonormal Weyl–Heisenberg basis for with
well-localized window function. In particular, and could
never have exponential decay. On the other hand [as, for in-
stance, Proposition (3.2) shows] it is not difficult to construct
an orthonormal system that is incomplete in or an over-
complete system with a that is exponentially well lo-
calized in time and frequency. Thus, the Balian–Low theorem
is the reason why we use a signaling set at the transmitter drawn
from an incomplete system for (implying ) and an
overcomplete signaling set at the receiver.

While mutual information is not the main topic of this sec-
tion, we take the opportunity to address a nontrivial aspect as-
sociated with mutual information that arises from using a tight

frame instead of an orthonormal basis as receive functions. If we
used an orthonormal basis at the receiver, then the noise covari-
ance matrix, in the proof below, would be a multiple of
the identity, and this proposition would be simple and standard.
Using a unit-norm tight frame rather than an orthonormal basis
does not change the eigenvalues, but it does make the property
addressed in the proposition below more delicate. The exponen-
tial localization at the receiver and the -property at
the transmitter, however, deliver the necessary approximations
for this proposition to hold.

Proposition 3.4: Let , , be or-
thonormal transmission signals contained in , and
let be a tight frame of exponentially localized re-
ceiver signals (with frame bound 1). Let and

where is AWGN of variance . Denote

(17)

Then

(18)

Proof: Let be the orthogonal projec-
tion onto , and let and

be the coefficient operators given
by and for

. The mutual information is

Assume has rank , and arrange all eigenvalues in
nonincreasing order. We must show that

for . Note that and have the
same nonzero eigenvalues.

Since decays exponentially in both variables and each
, using the Cauchy-Schwartz inequality

shows that each is exponentially localized a time-fre-
quency rectangle slightly larger than . Thus,
the range of is exponentially localized in time and fre-
quency, and so any eigenvectors of corresponding to
nonzero eigenvalues, since they belong to the range of ,
are similarly exponentially localized, which holds as well for

for all . In particular, for all in the range of
, there exist positive constants such that
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Let be an eigenvector of corresponding
to the nonzero eigenvalue . Then for some

in the range of . Now

(19)

(20)

(21)

The convergence in lines (20) and (21) is exponential. While
exponential convergence is not necessary, without sufficient lo-
calization of all the functions involved, convergence at all does
not hold a priori for (20) and (21). For

The remaining eigenvectors of are in the kernel of
. Thus

(22)

(23)

where lines (22) and (23) are consequences of the first half of
the proof.

B. Eigenvalue Estimates

We are ready to give a rigorous formulation of our main re-
sult, which states that the eigenvalues of the correlation matrix

can be well approximated by samples of , the twisted
autocorrelation of the time-varying transfer function.

Theorem 3.5 (Eigenvalue Estimate): Assume the same setup
as in Proposition 3.4. Furthermore, suppose that

(24)

Let . Then for , there exists an index
pair such that

(25)

Remark: Our decay condition (24) on the spreading function
comprises the standard conditions of exponential decay of delay
spread and compact support of the Doppler spread [5]. More-
over, we could have imposed an underspread condition on the
spreading function, see [16] for various notions of underspread
channels. It is not hard to see that condition (41) includes (or
can be easily adapted to) several forms of underspread channels.
This would result in somewhat different constants in the error
estimate at the cost of a slightly longer proof, but the essence
of the theorem would remain the same. Furthermore, one can
replace the exponential decay condition by some form of (prac-
tically less justified) polynomial decay and show that the error
term in (25) would then decrease at a corresponding polynomial
rate.

To prove Theorem 3.5 we cannot use PSWFs, but instead in-
troduce exponentially localized signals. The reason is that the
PSWFs decay linearly [25] and, thus, do not permit the bounds
obtained in the main two lemmas of this section. This is heuris-
tically explained by the fact that the PSWFs are the approxi-
mate eigenfunctions of the operator that restricts in time and fre-
quency, which is a much different operator than a time-varying
channel, for which the exponentially localized signals are ap-
proximate eigenfunctions. This is seen formally in the off-diag-
onal decay in the matrix in Proposition 3.7 below. However,
since both sets of signals are localized, the spaces that they span
are close, which is a point that we formalize later in the proof
of Theorem 4.1. Thus, the general idea is the standard linear al-
gebra approach of working with the same space, but switching
to a basis that allows for approximate diagonalization.

We first need an auxiliary result.

Lemma 3.6: For , let and de-
note their cross-ambiguity and cross-Wigner distributions [14].
If and for ,
then

and

Proof: The proof is contained in the proof of Theorem 2.4
in [26], when one views both distributions as short-time Fourier
transforms, as explained in [14].

A key ingredient in our proof of Theorem 3.5 is the following
lemma, which shows that the entries of the matrix defined in
(27) decay exponentially fast as we move away from the main
diagonal. The approximate diagonalization of via a properly
designed Weyl–Heisenberg systems is well known in a qualita-
tive sense [11], [13], [27]. What is new in the following lemma
is that we give a precise quantitative formulation of this state-
ment. This quantitative version is important in the subsequent
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steps, where it will give rise to explicit and rigorous bounds on
the approximation of the eigenvalues of by samples of the
twisted autocorrelation of the time-varying transfer function.

Lemma 3.7: Assume that

(26)

that the signals are given according to properties D1–D3 above
and that

(27)

Then

Proof: The following two essential identities hold for pseu-
dodifferential operators, cf. [14]

(28)

(29)

The system is given by , where

, and by Proposition (3.2)

(30)

(31)

Lemma 3.6 implies

(32)

where we have used the bound

The following lemma shows that the eigenvalues of are
well approximated by its diagonal entries.

Lemma 3.8: Assume again the hypotheses of Proposition 3.7.
Then for , there exists an index pair such
that

(33)

Proof:

where was defined in Section II. Using the esti-
mate from the proof of Lemma 3.7, we have that

. Using the identity in (29)

Next

(34)

(35)

We now have an estimate on the off-diagonal sums of the matrix
and may apply the Gershgorin disc theorem to obtain the

claim.

Having established that the spectrum of is very close
to its diagonal entries, we next show that in turn the diagonal
of is well approximated by the samples of the associated
twisted autocorrelation .
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Lemma 3.9: Assume again the hypotheses of Proposition 3.4
and that

Let . Then

Proof: We first look at . The diagonal entries of
are

(36)

(37)

since is a tight Weyl–Heisenberg frame [Proposition
(3.2)]

(38)

(39)

(40)

Setting , by the Riemann–Lebesgue Lemma

We use Lemma 3.6 and the fact that
, cf. [14]

These two bounds prove the lemma.

Proof of Theorem 3.5: The estimate (25) follows now
readily by applying the triangle inequality to the left-hand-side
of (25), and then using Lemma 3.8 and Lemma 3.9.

Remark: In the proof of this theorem we rely on using
Weyl–Heisenberg systems. Instead we could have resorted to
orthonormal Wilson bases [14], which do not suffer from the
Balian–Low Theorem. However, it would have resulted in a
less elegant relationship between eigenvalues and samples of

. In particular, (28) and (29) would have to be replaced by
more complicated expressions.

IV. FROM ESTIMATING EIGENVALUES TO ESTIMATING

MUTUAL INFORMATION

For the time-invariant case, the mutual information is pre-
cisely captured by samples of the Fourier transform of the auto-
correlation of the impulse response when one allows .
At the core of this relationship is the fact that the (generalized)
eigenvalues of the channel are directly linked to samples of the
transfer function. It turns out that for our class of time-varying
channels a similar connection is true in an approximate sense.
Using the eigenvalue estimate from the previous section we will
show that one can obtain an estimate of the mutual information
via samples of the Fourier transform of the “twisted auto-con-
volved” spreading function. This is the contents of the following
theorem.

Theorem 4.1 (Mutual Information Estimate): Assume that
the spreading function in the system model satisfies

(41)

and the AWGN has variance . Let be
a set of orthonormal functions contained in , where

for some . Let
denote the resulting mutual information of the system given in
lines (10)–(14). Then there exist constants , and
small constants such that

(42)

(43)

(44)

(45)

where and . The parameters
and have the relationship that as and
as . The numbers and depend on the parameters

and , but remain small as and increase.
Before we proceed to the proof of this theorem, it seems pru-

dent to comment on the statement of this theorem and the var-
ious elements that come into play here.

Remark 1: In a nutshell, our theorem shows that
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and quantifies rigorously in which sense this approximation is
true. The error due to estimating the mutual information from
the samples is given in (43) and is the conceptually more im-
portant one for this paper. The error in (44) results from the
transition from the system in to the PSWFs,
and the error (45) is due to the fact that the number of the con-
structed Weyl–Heisenberg signals used is less than the number
of PSWFs corresponding to the time-frequency region.

Remark 2: The factor is necessary for our construction and
is greater than 1, see Proposition 3.2 and the subsequent discus-
sion. While taking very close to 1 would make the error in (45)
very small, it would increase the error in (43). We can, however,
take to be fairly close to 1, such as . This issue of
the tradeoff between time-frequency localization and loss of di-
mensions in signal space has also been pointed out in [11].

We need the following lemma for the proof of Theorem 4.1.

Lemma 4.2: Let and . Then

Proof: Using Lemmas 3.8 and 3.9

Proof of Theorem 4.1: Let denote the projection of
onto the span of the PSWFs corresponding to

. From (15) we obtain

(46)

for all . We write for the projection
onto the set and for the Gram matrix of

, i.e.,

(47)

Then . Note that the diagonal entries of
are positive and, since are orthonormal, that the

eigenvalues of have absolute value at most 1. By inequality
(46)

so that . Therefore

and

If , then set for
. Let be a permutation of the integers

. Then

We consider the first eigenvalue difference in the expression
above. Applying Theorem A.46 in [28] we obtain

(48)

Let where and . Then
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where we have used (15) in the penultimate step. Hence

(49)

Concerning the second difference of eigenvalues recall that
according to Theorem A.37 of [28] there exists a permutation
such that

(50)

Using (49), (50) and the concavity of the function, we
compute

We will return to (50) twice, taking to be the cardinality of
and of our constructed set.

We look at the system from Section III-A. The signal
is exponentially localized around the point . We

select those signals that are contained in . For some
positive constants and , these are those signals with indices

and . We set
and . We denote by the projection operator
from onto the span of . Now we use (50)
twice: once with for the cardinality of
the set , as assumed in the statement of the theorem, and
once for , where the cardinality satisfies

The arguments above then yield

(51)

(52)

The estimation of the eigenvalues is given by
the Lemmas 3.8 and 4.2. Applying these two lemmas together
with inequality (52) complete the proof of the theorem.
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