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Abstract

The computation of shortest paths in weighted and directed networks has been subject to re-
search for more than five decades by now, and it has never lost its relevance in up-to-date ap-
plications. Recently, there has been increasing interest in incorporating time-dependencies
into the modeling of the network. This is motivated by a large field of applications, such
as intelligent transportation systems, internet routing, multi-agent-systems and networked
control systems.
The topic of this thesis is the computation of optimal paths in time-dependent networks.
Although the time-independent optimal path problem is polynomially solvable, the time-
dependent optimal path problem is NP-hard if the cost is different from the travel time, or
the travel time functions do not fulfill the FIFO-property. After providing some background
information on the physical modeling of travel times and travel costs in the time-dependent
road network we formally introduce the mathematical model of time-dependent networks
which is used in this thesis. In this model, we allow negative cost functions and we incorpo-
rate arrival time constraints as well as waiting time constraints into the problem description.
Based on the theory of dynamic programming, we prove the existence of optimal paths and
the lower semicontinuity of the optimal value function both for the optimal path problem
in which all travel time and cost functions are precisely known and for the robust shortest
path problem.
We identify necessary and sufficient conditions for the continuity of the optimal value func-
tion and discuss the cases of piecewise analytic and piecewise linear functions. In particular,
under the assumption that all cost and constraint functions are piecewise analytic, we prove
the following assertions: The optimal value function is directionally differentiable, the set of
points in which the optimal value function is not differentiable is discrete and the optimal
value function is analytic in an open neighborhood of any other point. We also carry out a
complexity analysis for the case in which all travel time, cost and constraint functions are
piecewise linear.
We then consider a problem setting in which the waiting time constraints are formulated
in such a way that admissible paths are constrained to stay close to fastest paths (which
are computable in polynomial time in FIFO-networks). Assuming that waiting is forbidden
everywhere in the network, we discuss the impact of the arrival time constraints on the
complexity of the time-dependent optimal path problem with fixed departure time.
We develop two algorithms, which efficiently solve the problem of computing the optimal
value function and the corresponding optimal paths in time-dependent networks. The first
approach is a generalization of a class of previously published solution methods (decreasing
order of time methods) to heuristic search. In the second approach, assuming that the
time-dependent network has the FIFO-property, we generate an admissible initial solution
in polynomial time and then iteratively and monotonically approximate the optimal value

ix



function. Since an upper bound on the error of the current iterate is maintained throughout
the algorithm, this method allows a trade-off between computation time and accuracy of
the found solution.
Finally, we demonstrate the application of the above theoretical results and algorithmical
solutions in a case study in the time-dependent road network of Ingolstadt.
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1. Introduction

1.1. Motivation

This thesis has been prepared in a cooperative project of the Technische Universität München
and HARMAN International. The aim of the project was the development of a well-founded
and mathematically correct framework for the computation of fuel-optimal routes in a road
network. This task includes the incorporation of a physical model of vehicle dynamics, the
consideration of the influence of the traffic flow, the identification of a small but mean-
ingful set of parameters, which describe the influence of the driver behavior on the fuel
consumption, a theoretical analysis of the existence and properties of solutions and the
generalization of previous routing methods to the resulting problem. Recently, increasing
importance has been dedicated to all means of reducing the fuel consumption produced by
vehicular traffic, urged by the shortage of the reserves of fossil fuel and the global discussion
on climate changes. The minimization of the fuel consumption, or, more generally speaking,
the energy consumption associated with traveling from a given location to a given destina-
tion is however not only relevant for vehicles with combustion engines, but also constitutes
a crucial challenge for the comprehensive launch of electric vehicles.
Since recent research in the field of intelligent transportation systems indicates that the fuel
consumption associated with a given route in the road network significantly varies accord-
ing to changing traffic conditions it is natural to incorporate time-dependencies into the
model. The incorporation of time-dependencies is not only a challenging aspect from the
modeling point of view but also leads to an optimization problem, which is much harder
from a mathematical point of view than its static counterpart. Indeed, it has been shown
that the time-dependent minimum-cost path problem is NP-hard if the cost is different to
the travel time, or the travel time functions do not fulfill the FIFO-property (i.e., if it is
possible to arrive earlier by leaving later).
In order to emphasize that we are considering the minimization with respect to a cost crite-
rion, which may differ from the traveled distance (i.e., the shortest path problem) and the
travel time (i.e., the fastest path problem), we will call the problem under consideration the
time-dependent optimal path problem. Unless otherwise stated, optimality in this thesis
will always be equivalent to the minimization of the cost value, i.e., a generalization of the
(time-independent) shortest path problem.
With respect to the discrete-time time-dependent optimal path problem, the literature on
the continuous-time time-dependent optimal path problem is sparse. This is because a
discrete-time model allows the reduction of the time-dependent optimal path problem to a
time-independent optimal path problem in the so-called time-expanded network in which
the problem can be easily solved. However, the time-expanded network is very large (es-
pecially if a large time frame has to be considered or the original network is already large,
such as the German road network for example, which contains more than 2 million road
segments), which counteracts the development of efficient solution techniques. Moreover,
the consideration of a continuous time variable reflects reality in more detail.

1



1. Introduction

Traditionally, in navigation systems, the optimal path problem is formulated for a fixed
location, a fixed departure time and a fixed destination. In time-independent optimal path
problems and in some time-dependent optimal path problems it is then sufficient to consider
only one point in time at each node in the optimization procedure. In this case, a fixed
departure time is associated with the subproblem of computing an optimal path from some
intermediate location to the destination. However, although waiting is never beneficial in
travel-time weighted FIFO-networks, it can be advantageous at certain nodes in general.
Moreover, if model inaccuracies or perturbations shall be incorporated into the solution
strategy, the computation of optimal paths for fixed departure times is not sufficient. For
this reason, most of this thesis focuses on the problem of computing optimal paths for a
fixed location, a fixed destination and varying departure times.
Since there may be only a few places in the road network, such as, e.g., parking lots or
gas stations, which allow the driver to wait for a certain amount of time before continuing
his travel, we incorporate waiting time restrictions into the model of the time-dependent
network. In order to allow a trade-off between the maximal travel time and the fuel saving
associated with the choice of a route from a given location to a given destination we also
incorporate arrival time constraints into the network model.
In this thesis, we will not take into account the feedback of the route chosen by an individual
commodity on the state of the underlying routing network. This simplification is reasonable
as long as only a small fraction of the commodities traveling in the network choose their
routes according to the decision rules described below, or as long as the choice of a specific
route has no impact on the state of the network. Note however that the routing of all
vehicles in the road network according to the current traffic situation may lead to a new
traffic situation in which the cost associated with the route of each vehicle is increased [31].
We now proceed to listing the contributions and to explaining the organization of this the-
sis. More background information and an overview on the related work will be provided in
the respective sections.

1.2. Contributions

In the following, we provide a brief overview on the main contributions of this thesis.
We provide a general framework for the consideration of time-dependent optimal path prob-
lems, which comprises arrival time restrictions, waiting time restrictions and allows the
incorporation of negative travel cost functions. We prove the existence of optimal paths in
networks with certain problem data and extend these results to the robust optimal path
problem. For the robust optimal path problem we also provide sufficient conditions on the
set of possible network scenarios, which allow the application of dynamic programming in
the time-dependent network without extending the state space. When reduced to a time-
independent network, these conditions generalize the concept of interval data, which is
commonly used in order to ensure the applicability of the dynamic programming approach.
The treatment of the optimal path problem with certain data is carried out in Chapter 4,
the robust optimal path problem is dealt with in Chapter 6.
Assuming that all travel time, cost and constraint functions in the network are piecewise
analytic, we prove that the optimal value function is directionally differentiable, the set
of points in which the optimal value function is not differentiable is discrete and the op-
timal value function is analytic in a neighborhood of any other point. This proof uses

2



1.2. Contributions

Lojaciewicz’s structure theorem for real analytic varieties and Hironaka’s theorem on the
resolution of singularities and generalizes previous results to the case in which waiting in
the network is allowed and subject to optimization. Since in our problem setting a sequence
of continuous parametric optimization problems must be solved along each edge sequence,
the result implicitly yields that the optimal solution of a 1-dimensional parametric opti-
mization problem with analytic data is analytic in an open neighborhood of almost every
point. The crucial property of the optimal value function is however that for every singular
point (i.e., for every point for which there exists no open neighborhood in which the opti-
mal value function is analytic), there exist a one-sided open neighborhood and an analytic
parametrization such that the composition of the parametrization and the optimal value
function can be analytically extended to an open neighborhood, which contains the singular
point. The related results are contained in Section 5.2.
Until now it has been known that, if all travel time and cost functions are piecewise lin-
ear, the number of linear pieces of which the optimal value function of the unconstrained
time-dependent optimal path problem consists grows at least exponentially with the size
of the network in the worst case. Nevertheless, a more detailed analysis of this matter has
been an open question. We have carried out a detailed complexity analysis of the piecewise
linear time-dependent optimal path problem, taking into account both the impact of the
constraints and the FIFO-property. It turns out that both the type of waiting time con-
straints and the FIFO property have a crucial impact on the space and time complexity of
the computation of the optimal value function. In particular, we prove that, if waiting is
prohibited everywhere in a FIFO-network, then the space complexity of the optimal value
function is polynomial in the size of the network, the number of linear pieces of the network
functions and the number of edge sequences which induce optimal paths. Since the latter
is exponential in the size of the network in the worst case, the optimal path problem is
still NP-hard. However, in a general network with general piecewise linear waiting time
constraints, the space complexity of the optimal value function is double exponential in
the size of the network even if there exists a unique edge sequence traversed by all optimal
paths. The complexity analysis of the piecewise linear optimal path problem is carried out
in Section 5.3.
Considering the optimal path problem with fixed departure time in a time-dependent FIFO
network in which waiting is prohibited, we derive a pruning technique, which leads to a
significant reduction of the search space for any optimal path algorithm. This pruning tech-
nique is based on the Lipschitz continuity of the optimal value function and can be applied
both in the cases of constrained and unconstrained arrival times. We then formulate the
arrival time constraints in such a way that admissible paths are constrained to stay close to
fastest paths and carry out a complexity analysis of the time-dependent optimal path prob-
lem with fixed departure time. We prove that the resulting discrete-time problem can be
solved in polynomial time in FIFO-networks if the arrival time constraints are tight enough,
whereas the continuous-time problem is NP-hard unless the arrival time constraints allow
only fastest paths. These results are presented in Chapter 7.
We develop two algorithms which efficiently solve the problem of computing the optimal
value function and the corresponding optimal paths in time-dependent networks. The first
algorithm is presented in Chapter 8 and belongs to the class of decreasing order of time
algorithms. It improves over the methods published in the past by working for arbitrary
continuous travel time and lower semicontinuous cost functions (as opposed to only working
for piecewise linear functions) and by allowing the incorporation of elements of heuristic
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1. Introduction

search. The second algorithm is presented in Chapter 9 and is designed for FIFO-networks
in which the arrival time constraints do not conflict with the earliest arrival and latest de-
parture times. In this case, we first construct an upper bound of the optimal value function,
the associated admissible control policy as well as a lower bound for the optimal value func-
tion in polynomial time. The control policy is then iterated in such a way that a monotone
decreasing sequence of upper bounds and a monotone increasing sequence of lower bounds
are generated, which converge to the optimal value function after a finite number of steps.
Since an upper bound of the error of the current solution is maintained throughout the
algorithm this method allows a trade-off between the computation time and the accuracy
of the found solution.
In order to show the applicability of the presented approach we have carried out a case
study using real-world data from the German city of Ingolstadt. The results imply that,
at least for a moderately-sized network such as the road network of Ingolstadt, continuous-
time time-dependent optimal paths can be computed in reasonable computation time. The
proposed approach also suggests that the potential for savings of the energy consumption
is in the range of 10% for the considered electric vehicle with respect to fastest paths.
Parts of this thesis have been published or submitted for publication in the following articles:
[107], [110], [108].

1.3. Organization of the Thesis

The content of this thesis is structured in three parts. The first part is concerned with the
modeling of the fuel consumption, which must be associated with the edges of the time-
dependent road network in order to enable the computation of fuel-optimal routes. In the
second part, the mathematical formulation of the time-dependent optimal path problem is
provided, the existence of optimal paths is proved, properties of the optimal value function
are derived and a complexity analysis of the time-dependent optimal path problem is car-
ried out. Based on these theoretical results, algorithmic solutions of the time-dependent
optimal path problem are developed in the third part of this thesis.

In particular, Part I contains the description of a physical consumption model, a deriva-
tion of speed distributions on urban roads based on traffic theory, a generalization of the
approach to load-/time-dependent traffic data and the resulting properties of the network
functions.

Part II is concerned with the theoretical treatment of the time-dependent optimal path prob-
lem. In Chapter 3 we introduce the notion of time-dependent networks, time-dependent
paths, the dual of the time-dependent network and the concept of reachability. We formally
define the different types of time-dependent optimal path problems in Chapter 4, prove the
existence of optimal paths and the lower semicontinuity of the optimal value function and
derive the dynamic programming equations, which the optimal value function satisfies. We
conclude this chapter by briefly discussing order relations in time-dependent networks.
In Chapter 5 we address the properties of the optimal value function. In particular, under
weak assumptions, we prove the (Lipschitz-) continuity of the optimal value function in
Section 5.1. We then prove that the optimal value function is directionally differentiable
everywhere and analytic in a neighborhood of almost every point, if the travel time, cost and
constraint functions are analytic, cf. Section 5.2. In Section 5.3, we provide a framework

4
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for the description of one- and two-dimensional piecewise linear functions and carry out a
complexity analysis of the piecewise linear time-dependent optimal path problem.
We generalize the results of the preceding chapters to the robust optimal path problem
in Chapter 6. In particular, we consider a problem setting in which the travel time and
cost functions of the network are not precisely known, but only a certain range of values is
given in which the particular realization must be contained. In this scenario, we prove the
existence of optimal paths, derive properties of the optimal value function and carry out a
complexity analysis of the piecewise linear optimal path problem. These results are based
on the identification of appropriate assumptions under which the principle of dynamic pro-
gramming can be used to compute the optimal value function without extending the state
space by the set of possible scenarios.
In Chapter 7 we consider the computation of optimal paths for a fixed departure time in
FIFO-networks in which waiting is prohibited. We prove the correctness of a pruning prin-
ciple, which allows a significant reduction of the search space and carry out a complexity
analysis for the case in which the admissible arrival times are constrained to stay close to
the earliest arrival times.

Part III is concerned with the algorithmic solution of the time-dependent optimal path
problem. In Chapter 8 we extend the class of decreasing order of time algorithms to heuris-
tic search by presenting a new point of view on the manner in which a node and time
interval can be chosen in one iteration of a decreasing order of time algorithm: In previous
publications, the piecewise linear structure of the network had to be assumed in order to
enable this choice. Our approach is similar to the choice of the iteration node in Dijkstra’s
shortest path algorithm or the A* algorithm. We prove the correctness and termination of
the resulting algorithm and illustrate its progression with a simple numerical example.
We present a second algorithmic approach to the solution of the time-dependent optimal
path problem in Chapter 9, which is applicable in FIFO-networks and allows a trade-off
between the computation time and the accuracy of the found solution. We first compute
an admissible initial control policy as well as a lower and an upper bound of the optimal
value function in polynomial time. We then repeatedly iterate the control policy, thereby
generating a sequence of monotone decreasing upper bounds and monotone increasing lower
bounds of the optimal value function. We prove the correctness and termination of the re-
sulting algorithm and illustrate its progression with a simple numerical example.
Finally, we conclude our discussion of the time-dependent optimal path problem in Chapter
10 by briefly summarizing our results and indicating directions for future research.

In the appendix (i.e., Appendix A), we carry out a case study in the road network of
Ingolstadt, using the traffic data collected in the framework of INI.TUM in the project
“Verkehrslage Ingolstadt” [5] and the parameters of the electric vehicle which is being de-
veloped in the MUTE project [4]. The results confirm the practicality of the approach
which we have chosen in this thesis.
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2. Computation of the Fuel Consumption

In this chapter we provide some background information on the physical modeling of the
travel times and travel costs in the time-dependent road network. In particular, we consider
the travel time and the amount of fuel required by a motor vehicle to travel through the
road segments and junctions of the road network. The discussion of the underlying physical
model is rather meant to be illustrative than restrictive for the definition of time-dependent
networks. The results which we derive for the fuel consumption of combustion-engined
vehicles can easily be extended to the energy consumption of hybrid and electric vehicles.
Indications to the differences in the modeling of the energy balance are provided wherever
they occur.
The computation of the fuel consumption of a motor vehicle or a fleet of vehicles in the road
network is not only relevant in the field of automotive engineering [129, Chapter V.33], [19,
p.416 et seq.], [164] but has also aroused interest in the fields of traffic engineering [103],
[76] and politics [21], [1] due to its environmental and economical impact. Considering only
the major urban areas of the United States of America, traffic congestion caused a total
cost of 47.5 billion $, and a waste of 14.35 billion liters of fuel and 2.7 billion hours of work
time per year in the 1990s [177, p.1]. Since the impact of traffic congestion is increasing,
the reserves of fossil fuel are finite and the global discussion on climate changes enforces
the restrictions on the emission of greenhouse gases, the consideration of fuel consumption
in traffic planning has gained increasing importance in the last two decades.
The deployment of a model of the fuel consumption as the basis of decision making for
route-planning problems in the road network enables the computation of ecological routes.
At this, a route can be classified as ecological if it minimizes the emission of pollutants
(CO2, CO, HC, NOx, carbon black), which are generated by a vehicle on its drive from a
given point of departure to a given destination. Since the amount of emitted pollutants is
minimized by different optimization strategies, the simultaneous minimization of all pollu-
tants is not possible in general. Henceforth, we shall be concerned with the minimization of
CO2, which is equivalent to the minimization of the fuel consumption, because the amount
of emitted CO2 is directly proportional to the amount of consumed fuel [129, p.137]. Con-
sequently, the resulting routes can also be considered as optimal from an economical point
of view. However, the minimization of the amount of fuel (or, more generally, energy) is not
only important for vehicles with combustion engines. At present, one of the core problems
of the development of electric vehicles is the conflict of objectives between the cruising range
and the size and cost of the battery. As a consequence, energy-optimal route planning is
likely to even gain importance in the context of electric mobility [1], see also Appendix A.
The determination of the optimal operating strategy of the vehicle, including the engine
management, gearbox control and determination of optimal acceleration and deceleration
behavior are important factors that influence the reduction of the fuel consumption. Re-
cently, there has been increasing interest in assessing the usability of navigation data for
the purpose of engine management, gearbox control [161],[95] and the determination of
optimal acceleration and deceleration behavior [113]. However, since these quantities are
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Traffic:
speed limit
right-of-way

traffic situation

Environmental influences:
road

weather
front-seat passenger

Driver behavior:
offensive / moderate / defensive

Vehicle:
consumption according to

velocity plot

Figure 2.1.: Influences on the fuel consumption of a vehicle which is traveling in the road
network.

not subject to optimization in the context of route planning at present, we shall not be
further concerned with these topics. For the same reason, the possibility of reducing the
fuel consumption by an optimization of traffic control strategies [89] will be excluded from
the considerations in this thesis.
In order to use fuel consumption as a basis of decision making for route-planning problems
in the road network, a cost value must be associated with each road segment (and possibly
with each junction) of the road network at each point in time. This cost value must be
proportional to the amount of fuel required for passing through the respective road segment
(or junction), and must therefore depend on a variety of influencing factors such as the
vehicle model [81], [103], the traffic situation [103], [76] the driver of the vehicle [90], [150]
and environmental conditions [174]. These influencing factors are illustrated in Figure 2.1.
Considering only the longitudinal dynamics of the vehicle and assuming that the velocity
plots of the drive are given, we compute the resulting fuel consumption in Section 2.1. In
Section 2.2, we introduce a model for determining the characteristics of velocity plots based
on a recently developed model of urban traffic. We motivate a time-dependent generaliza-
tion of these results which is based on historical traffic data in Section 2.3 and derive some
properties of the resulting travel time and travel cost functions in Section 2.4.

2.1. Energy Balance in the Case of Given Velocity Plots

Although the amount of fuel a vehicle requires for driving through a given road segment
or junction depends on a variety of influencing factors, the physical model of the vehicle
constitutes the end of the functional chain, cf. Figure 2.1. In particular, given any velocity
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2.1. Energy Balance in the Case of Given Velocity Plots

plot depending on environmental and traffic conditions as well as driver characteristics, the
introduction and parametrization of the physical model of the vehicle permit the computa-
tion of the total fuel consumption associated with the respective velocity plot [129], [103],
[19], [81]. For this reason we assume in this section that a velocity plot v ∈ C1([0, T ],R)
(in longitudinal direction of the vehicle) with time domain [0, T ] ⊂ R, T > 0, is given, and
we aim at computing the total fuel consumption B in the time interval [0, T ].
For a given velocity plot v we define the acceleration plot a ∈ C0([0, T ],R) (in longitudinal
direction of the vehicle) according to a(t) = d/dt v(t) for all t ∈ [0, T ] and the distance plot
d ∈ C2([0, T ],R) (in longitudinal direction of the vehicle) according to

d(t) =

∫ t

0
v(s)ds, for all t ∈ [0, T ].

Moreover, we assume that an angle of elevation in longitudinal direction of the road α(l) is
given for all l ∈ [0, L], L = d(T ).
In order to keep the vehicle moving at a distance l ∈ [0, L] of the initial point of the drive
and in accordance with the velocity plot v the vehicle must countervail a sum of driving
resistances. These driving resistances consist of [129, p. 74] the climbing resistance Fc, the
rolling resistance Fr, the aerodynamic resistance Fa and the inertial resistance Fi. In order
to model the influence of the braking system of the vehicle, we also introduce the braking
resistance Fb, cp. [19, p. 417]. Introducing the lower heating value Hl of the utilized fuel,
the engine efficiency ηe and the transmission efficiency ηt, the total fuel consumption in the
time interval [0, T ] is given by [129, Chapter V.33], [19, p.416 et seq.], [103]

B =

∫ T

0
max

{
0,

[
Fc(t) + Fr(t) + Fa(t) + Fi(t) + Fb(t)

]
v(t)

Hlηe(t)ηt(t)

}
dt. (2.1)

In order to ease the notation we define the sum F (t) of the driving resistances at time
t ∈ [0, T ] by F (t) = Fc(t) + Fr(t) + Fa(t) + Fi(t) + Fb(t). Note that the quantity F (t)v(t)
equals the mechanical power P (t) which must be provided by the motor of the vehicle in
order to countervail the driving resistances. Since no fuel can be generated in an combustion-
engined vehicle we use the fuel flow rate Q(t) = max

{
0, P (t)/

(
Hlηe(t)ηt(t)

)}
in (2.1) which

was termed the ‘throttle-cutoff’ scenario in [103]. However, in hybrid and electric vehicles
negative power P (t) < 0 can be used to recharge the battery. Consequently, the total
amount of energy required by a hybrid or electric vehicle for traversing a road segment can
be negative if, e.g., α(l)≪ 0 for all l ∈ [0, L].
Denoting by g the gravitational acceleration, by mv the total mass of the vehicle and by crr
the rolling resistance coefficient, the climbing resistance Fc(t) and rolling resistance Fr(t)
at time t ∈ [0, T ] are given by

Fc(t) = mvg sin
(
α
(
d(t)

))
, (2.2)

Fr(t) = crrmvg cos
(
α
(
d(t)

))
. (2.3)

At this, the rolling resistance coefficient crr generally depends on the tire and the road
surface. In the above equation (2.3) we have not accounted for the increase of the rolling
resistance during cornering, and we have neglected the dependence of the rolling resistance
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2. Computation of the Fuel Consumption

on the longitudinal velocity since both effects have been classified as negligible in [129, p.7,
p.15]. Furthermore, we have assumed that the vehicle mass mv is constant throughout the
drive, thus ignoring small variations due to the filling level of the fuel tank.
Denoting by ρa the air density, by Af the frontal area of the vehicle and by cd the drag
coefficient, the aerodynamic resistance Fa(t) at time t ∈ [0, T ] is given by

Fa(t) =
ρaAfcd

2
v(t)2. (2.4)

Note that both the variability of the air density along [0, L] and the influence of the wind
velocity in longitudinal direction of the vehicle have been neglected in (2.4). Both quantities
are hard to predict in applications, and may be considered as system noise in our context.
Denoting by n(t) the gear at time t ∈ [0, T ] and by λ(n) the gear-dependent molding body
surcharge factor, the inertial resistance Fi(t) at time t ∈ [0, T ] is given by

Fi(t) = λ
(
n(t)

)
mva(t). (2.5)

The molding body surcharge factor models the fraction of the moments of inertia with
respect to the vehicle mass mv. Let Iw denote the moment of inertia of the wheels of the
vehicle, let rw denote the radius of the wheels of the vehicle, let Im denote the moment
of inertia of the flywheel in the motor and let gr(n) denote the gear ratio between the
rotational speed of the motor and the wheel axle of the vehicle if the gear n is engaged.
Neglecting the dynamic deformation of the tires and assuming that all wheels have the same
radius, we obtain

Fi(t) = mva(t) +
Iw
r2w
a(t) +

Im
r2w
gr
(
n(t)

)2
a(t), (2.6)

since both the angular velocity and the accelerating moment of the flywheel are scaled by
gr(n), cp. [129, eq. (21.5)]. A more detailed discussion, including the moment of inertia of
the powertrain, can be found in [129, Chapter III.21] but will not be annotated here. Note
that λ(n) is uniquely determined by (2.5) and (2.6).
Denoting by p(t) the break pressure at time t ∈ [0, T ] and by cp(n) a gear-dependent
constant of proportionality, the braking resistance Fb(t) at time t ∈ [0, T ] is given by

Fi(t) = cp
(
n(t)

)
p(t). (2.7)

The braking resistance has been introduced in order to distinguish between deceleration
caused by the motor brake and deceleration caused by an actuation of the brake pedal. Since
kinetic energy is converted to heat when actuating the brake pedal, the total deceleration
a(t) overestimates the effective deceleration am(t) which is relevant for the computation of
the power generated by the motor of the vehicle. Consequently, cp(n) < 0 in (2.7). Since
the brake causes a deceleration of both rectilinear and circular motions, the constant of
proportionality cp(n) at time t ∈ [0, T ] depends on the gear ratio gr and hence on the gear
n(t) at time t ∈ [0, T ], cp. (2.6).
Both the engine efficiency ηm and the transmission efficiency ηt generally depend on the
rotational speed ω(t) of the crankshaft at time t ∈ [0, T ] and the power P (t). While the
variation of the transmission efficiency is minor [106, Table 3.1] (between 0.93 and 0.98),
the dependence of the engine efficiency ηm typically varies between 0.15 and 0.40 and is
described by the so-called engine characteristic map [129, Chapter IV.25], [103]. Sometimes
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2.1. Energy Balance in the Case of Given Velocity Plots

an equivalent description of the engine-characteristic map is used which depends on the
rotational speed ω of the crankshaft and the torque τ on the crankshaft, cf. [129, Figure
25.7].
In addition to the above driving resistances the power required by a number of auxiliary
consumers, such as air conditioning, light or car radio must be provided by the motor of
the vehicle. Denoting the power of the auxiliary consumers at time t ∈ [0, T ] by P0(t), the
so-called basic power consumption, we obtain

B =

∫ T

0
max

{
0,
F (t)v(t) + P0(t)

Hlηe(t)ηt(t)

}
dt. (2.8)

Assuming that all vehicle parameters as well as the velocity plot, the gear selection n(t)
at time t and the brake pressure p(t) at time t are given for all t ∈ [0, T ], equation (2.8)
allows the computation of the total fuel consumption along [0, L] for v ≫ 0. For v → 0, the
fuel flow rate Q(t) = max

{
0,
(
F (t)v(t)+P0(t)

)
/
(
Hlηe(t)ηt(t)

)}
tends to 0 if P0 = 0, which

would require the motor to halt. Since under real operating conditions the clutch is released
and the motor proceeds to move with a certain idle speed ω0, (2.8) must be replaced by

B =

∫ T

0
max

{
0,

2πτ0ω0 + P0(t)

Hlηe(t)ηt(t)

}
dt (2.9)

if v = 0, where τ0 denotes the torque generated by internal friction. If v(t) = 0 for some
t ∈ [0, T ] and v(t) ≫ 0 for some t ∈ [0, T ], a transition between (2.8) and (2.9) must be
realized which models the engaging and disengaging of the clutch. We will not discuss this
topic in detail, but suggest a linear transition as a simple solution. Due to its minor impact
on the fuel consumption, the engaging and disengaging of the clutch is usually left out of
consideration [129, Chapter V.33], [19, p.416 et seq.], [103], and has been discussed here
only for the sake of completeness.
Note that, beside the choice of the velocity plot v, the only influence of the driver on the
fuel consumption in (2.8) are the gear-changing behavior and the braking behavior (i.e., to
which extent the deceleration of the vehicle is caused by the actuation of the brake pedal).
For an electric vehicle, (2.8) and (2.9) become

E =

∫ T

0

F (t)v(t)

ηe(t)ηt(t)
+ P0(t)dt, E =

∫ T

0
max

{
0,

2πτ0ω0

ηe(t)ηt(t)
+ P0(t)

}
dt, (2.10)

since the power required for the auxiliary consumers can be directly taken from the battery
and the recovery of energy is possible during phases of negative energy demands.
Within the framework of this thesis, this method of computing the fuel consumption of
a motor vehicle has been implemented in the project work at HARMAN International.
The above vehicle parameters have been determined from a series of measurements by
using linear regression [109]. The test drives were carried out in a BMW 325i touring [3]
and logged by a blue PiraT [2]. The resulting plots were kindly provided by HARMAN
International for publication and are depicted in Figure 2.2.
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Figure 2.2.: Average fuel flow rate and filling level of the fuel tank, logged during 733 km of test
drives with a BMW 325i. As dependent variables in the regression analysis of the
vehicle parameters the fuel injection sensor, the rotational speed of the motor and the
torque applied by the motor were used. A constant engine characteristic map was
assumed since the measurement noise and the quantization errors were of the same
magnitude as the variations in the engine characteristic map.
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2.2. Characteristic Speed Distributions on Road Segments

2.2. Characteristic Speed Distributions on Road Segments

In this section, we derive a probability distribution of the vehicle speed on an urban road
segment which agrees with the data published in [60] and a recently developed traffic theory
for urban traffic flow [87].
In order to describe the driving behavior in urban areas, several driving patterns (includ-
ing, e.g., average speeds, speed variations, acceleration behavior, gear-changing behavior)
have been introduced and measured [61], [60], [34]. The results have been used to de-
scribe in which manner the driving patterns are influenced by properties of the driver and
the surrounding infrastructure, and in which manner the driving patterns influence the
vehicle exhaust emissions [62]. In accordance with the data published in [60], the accel-
eration and deceleration behavior of a vehicle in urban traffic (within each speed range of
[10k km/h, 10(k + 1) km/h[, k = 0, ..., 11) has been described by half-normal probability
distributions in [8]. The probability distributions of the vehicle speeds [60], accelerations
[60], [8], and decelerations [60], [8], were derived from repeated measurements of the vehicle
speed and acceleration according to a fixed measurement rate 1/∆t (∆t = 0.1 s in [60] and
∆t = 1 s in [8]). Such speed and acceleration data can be used as the input for physical
consumption models such as the model described in Section 2.1, [34], [103].
Let us consider a road segment of length L on which the free flow velocity plots result in
a normal distribution of the measured vehicle speeds Vf ∼ N (µv, σ

2
v), µv, σv ∈ R+

0 . Postu-
lating that the vehicle speeds are normally distributed is a common assumption in traffic
theory and has been empirically verified for highway traffic, see, e.g., [84]. For urban traffic
this is certainly not true (cp., e.g., the data in [60] and the traffic flow model [87]), for which
reason we only assume the free flow speed to be normally distributed. Let us assume that
each of the following events E = Ek, k = 1, ..., 4, can occur on this road segment [87]:

E1: A car drives freely throughout the road segment.

E2: A car accelerates from the speed 0 to some speed V +
0 and continues driving freely

until the end of the road segment.

E3: A car drives freely until it is forced to decelerate from some speed V −
0 to the speed 0

at the end of the road segment and then halts for some time Th.

E4: A car accelerates from the speed 0 to some speed V +
0 in the first half of the road

segment (i.e., [0, L/2]), continues driving freely until it is forced to decelerate in the
second half of the road segment (i.e., [L/2, L]) from some speed V −

0 to the speed 0 at
the end of the road segment and then halts for some time Th.

Clearly, this is a simplification of the velocity plots which occur on a road segment in
reality. However, it captures the presence of junctions in urban traffic [87], and particularizes
the model in [87] by taking into account the acceleration and deceleration processes. We
assume that V +

0 , V
−
0 , Th are independent random variables and that V +

0 , V
−
0 ∼ N (µv, σ

2
v)

and Th ∼ U
(
[0, T ]

)
for some T ∈ R+

0 (which can be interpreted as the duration of the
red phase at a signalized junction). Note that the waiting time at a junction is indeed
uniformly distributed, provided that the traffic is undersaturated and reaches the junction
in a uniformly distributed manner. We further assume that the necessity of accelerating and
decelerating is modeled by two independent and identically distributed (i.i.d.) Bernoulli-
distributed random variables, and that the necessity of each such transition from free flow
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Figure 2.3.: Probability density function facc of the vehicle speed in an acceleration phase of fixed
duration T+ = 5 s. The used parameters were ∆t = 0.1 s and σa = 2m/s2.

to stop (or from stop to free flow) is associated with the probability pt ∈ [0, 1]. Hence,
P{E1} = (1− pt)2, P{E2} = P{E3} = pt(1− pt) and P{E4} = p2t . In the derivation of the
probability distribution of the vehicle speeds we also assume that the travel time of a freely
moving vehicle on a portion [0, l], l ≤ L, of the road segment is given by l/µv. (Note that
this equation is almost surely exact for l → ∞ if the free flow speed process is ergodic.)
Let us finally assume that the acceleration plots of a vehicle on the road segment result
in a half-normal distribution of the measured vehicle accelerations A+, A+ ∼ HN (0, σ2a),
and decelerations A−, −A− ∼ HN (0, σ2a), σa ∈ R+. This assumption constitutes a further
simplification with respect to [8] which we undertake for the clarity of the presentation.
We clearly have P{V ≤ v|E = E1} ∝ P1(v, L) = (L/µv)P{Vf ≤ v}. Here, the constant
of proportionality has been introduced in order to reflect the measurement process, in
which the number of measurements is proportional to the duration of the measurement
time interval [60], [8]. The travel time associated with the event E1 on the road segment is
denoted by T1(L) = L/µv.
Let us now consider the case {E = E2}. Consider an acceleration phase of fixed duration
T+ = K∆t, K ∈ N, an acceleration plot a : [0, T+] → R and an associated velocity plot
v : [0, T+] → R. Assuming that the acceleration values (ak)k=1,...,K , ak = a(k∆t), are
independent and half-normally distributed throughout the acceleration phase, and that a is
constant between two consecutive measurement points, the speeds (vk)k=1,...,K , vk = v(k∆t),

are given by vk =
∑k

i=1 ai∆t. The corresponding probability density function of V is
depicted in Figure 2.3. In the following, we assume that the speed of the vehicle at time
t ≤ T+ during the acceleration phase is given by E[A+]t =

√
2/πσat. (Note that this

equation is almost surely exact for t → ∞ if the acceleration process is ergodic.) If we
assume that the measurement times are uniformly distributed in the acceleration time
interval then this corresponds to the approximation of the probability density function in
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Figure 2.3 by a characteristic function.
In order to derive the distribution of the vehicle speed V2 in the case {E = E2}, we
assume that the driver chooses some V +

0 ∼ N (µv, σ
2
v), accelerates from v(0) = 0 until either

v(t) ≥ V +
0 or the end of the road segment is reached, and continues driving freely until the

end of the road segment is reached. We denote the total travel time for a fixed V +
0 = v+0

by T2(L, v
+
0 ). We further assume that the probability density function f2 of V2 is given by

the equation

f2(v) ∝
∫ ∞

−∞
T2(L, v

+
0 )f0(v

+
0 )fV2|V +

0
(v|V +

0 = v+0 ) dv
+
0 , (2.11)

where f0 : R→ R denotes the probability density function of Vf, V
+
0 and fV2|V +

0
denotes the

conditional probability density function of V2 given V +
0 . Note that this corresponds to the

measurement process which has led to the probability distribution of the vehicle speed in
[60] and the probability distribution of the vehicle acceleration in [8].
Let us assume that some v+0 > 0 has been fixed and let us first consider the acceleration
phase. The equations of motion and the bounded length of the road segment yield v(t) =
E[A+]t and d(t) = E[A+]t2/2 for all t ≤ Tt(v

+
0 ) = max

{
0,min{v+0 /E[A+],

√
2L/E[A+]}

}
.

Hence, if 0 ≤ v+0 ≤
√

2LE[A+], then the traveling through the remaining distance L −
(v+0 )

2/(2E[A+]) takes the time Tf(v
+
0 ) = L/µv − (v+0 )

2/(2E[A+]µv). If v+0 < 0 then the
remaining travel time is Tf(v

+
0 ) = L/µv and if v+0 >

√
2LE[A+] then the remaining travel

time is Tf(v
+
0 ) = 0. In any case we have T2(L, v

+
0 ) = Tt(v

+
0 ) + Tf(v

+
0 ).

Considering measurement times which are uniformly distributed in [0, T2(L, v
+
0 )], we obtain

P{V2 ≤ v|V +
0 = v+0 }=


P{Vf ≤ v}, if v+0 ≤ 0
Tt(v

+
0 )min{1, v/v+0 }+ Tf(v

+
0 )P{Vf ≤ v}

T2(L, v
+
0 )

, if 0 < v+0 ≤
√

2LE[A+]

min{1, v/
√

2LE[A+]}, if v+0 >
√

2LE[A+]

.

Hence,

fV2|V +
0
(v|V +

0 = v+0 ) =


f0(v), if v+0 ≤ 0
Tt(v

+
0 )χ[0,v+0 ](v)/v

+
0 + Tf(v

+
0 )f0(v)

T2(L, v
+
0 )

, if 0 < v+0 <
√

2LE[A+]

χ
[0,
√

2LE[A+]
(v)/

√
2LE[A+], if v+0 >

√
2LE[A+]

.

Using (2.11), we establish

P(V ≤ v|E = E2) ∝ P2(v, L) =

∫ v

−∞
c1(v

′)χ
[0,

√√
8/πLσa]

(v′) + c2f0(v
′) dv′,

where

c1(v) =

∫ ∞

v

1√
2/πσa

f0(v
+
0 ) dv

+
0 ,

c2 =

∫ 0

−∞

L

µv
f0(v

+
0 ) dv

+
0 +

∫ √√
8/πLσa

0

√
8/πLσa − (v+0 )

2√
8/πσaµv

f0(v
+
0 ) dv

+
0 .
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Figure 2.4.: Probability density function facc of the vehicle speed in an acceleration phase of variable
duration. The used parameters were L = 200m, σa = 2m/s2, µv = 15m/s, σv = 5m/s.

Hence, the probability density function of the vehicle speeds in the case {E = E2} is the
superposition of the probability density function of the free flow speed and a weighted char-
acteristic function. The form of the weighted characteristic function (i.e., the contribution
of the acceleration phase) is depicted in Figure 2.4. The existence of the above integrals is
easily verified.
In the case {E = E3}, if T = 0, then we obtain the same probability distribution of the

vehicle speed V3 as in the case {E = E2}, since we have assumed that the terminal speed
is fixed to 0. Taking into account the independence of V −

0 , Th, we obtain

P{V ≤ v|E = E3} ∝ P3(v, L) =

{
P2(v, L), if v < 0

P2(v, L) + T/2, if v ≥ 0

We denote the travel time associated with the event {E = E3, V
−
0 = v−0 , Th = th} on the

road segment by T3(L, v
−
0 , th) = T2(L, v

−
0 ) + th.

In order to obtain the probability distribution of the vehicle speed V4 in the case {E = E4},
reasoning again with the symmetry of the acceleration and deceleration process, we decom-
pose the given road segment into two road segments of length L/2 on one of which E2 occurs
and on the other of which E3 occurs, i.e., P{V ≤ v|E = E4} ∝ P4(v, L) = P2(v, L/2) +
P3(v, L/2). Using the same arguments, we obtain the travel time T4(L, v

+
0 , v

−
0 , th) =

T2(L/2, v
+
0 ) + T3(L/2, v

−
0 , th) associated with the event {E = E4, V

+
0 = v+0 , V

−
0 = v−0 , Th =

th} on the road segment .
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Figure 2.5.: Density function fV on a road segment of length L = 200m. The jumps at v ≈ 65 km/h
and v ≈ 90 km/h result from the finite length of the road segment. The probability of
finding the vehicle at a stop is P(V = 0) ≈ 0.215 and P(V < 0) ≈ 4 · 10−4. The used
parameters were σa = 2m/s2, µv = 15m/s, σv = 5m/s, pt = 0.3, T = 60 s.

Using the mutual independence of all random variables, we finally obtain

P{V ≤ v} =
(1− pt)2P1(v, L) + (1− pt)pt

(
P2(v, L) + P3(v, L)

)
+ p2tP4(v, L)

limv→∞(1− pt)2P1(v, L) + (1− pt)pt
(
P2(v, L) + P3(v, L)

)
+ p2tP4(v, L)

.

(2.12)
Here, it is easily verified that the limit in the denominator of (2.12) exists and is finite. Let
δ0 denote the Dirac measure concentrated at 0 and let ps = P{V = 0} denote the probability
of finding the vehicle at a stop. We decompose the probability measure pV associated with
V according to pV = psδ0+ p̃V , where p̃V possesses the Radon-Nikodym-derivative fV with
respect to the Lebesgue measure on R (i.e., fV is the density function associated with p̃V ).
Hence, V can be modeled by an equation of the type

V = (1− ds)Ṽ , (2.13)

where ds ∈ {0, 1} is a random variable with P{ds = 1} = ps and Ṽ is a random variable
with probability density function (1− ps)−1fV . An example of this probability distribution
is shown in Figure 2.5.
Note that in general the probability of a stop at the beginning and at the end of a road

segment cannot be determined from the road segment alone. Suppose that the considered
road segment connects the junction J2 to the junction J1. Then the probability of stopping
at the end of the road segment may depend on the maneuver at J2, i.e., whether the
car drives straight ahead or performs a right, left or U-turn. Similarly, the probability
of stopping at the beginning of a road segment may depend on the maneuver at J1. In
order to model these dependencies, the differences between the speed distributions (and
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2. Computation of the Fuel Consumption

cost values, respectively) associated with the different maneuvers must be associated with
the junctions. The resulting optimal path problem must then be solved in the dual road
network, cf. Section 3.4.
We will use the above methodology to compute the fuel consumption of a vehicle traveling
through a given road segment in Subsection 2.4.2. Let us conclude this section by computing
the total expected travel time T associated with the road segment. The independence of
the random variables yields

T = (1− pt)2E
[
T1(L)

]
+ (1− pt)pt

(
E
[
T2(L, V

+
0 )
]
+ E

[
T3(L, V

−
0 , Th)

])
+ p2tE

[
T4(L, V

+
0 , V

−
0 , Th)

]
. (2.14)

Above, we have already seen that T1(L) = L/µv. Next we compute

E
[
T2(L, V

+
0 )
]
=

∫ ∞

−∞
T2(L, v

+
0 )f0(v

+
0 ) dv

+
0

=
L

µv
+

∫ √√
8/πLσa

0

2v+0 µv − (v+0 )
2√

8/πσaµv
f0(v

+
0 ) dv

+
0 +

∫ ∞√√
8/πLσa

(√
2πL

σa
− L

µv

)
f0(v

+
0 ) dv

+
0 .

Using the symmetry of the acceleration and the deceleration process as well as the mutual
independence of all random variables we obtain E

[
T3(L, V

−
0 , Th)

]
= E

[
T2(L, V

+
0 )
]
+ T/2

and E
[
T4(L, V

+
0 , V

−
0 , Th)

]
= 2E

[
T2(L/2, V

+
0 )
]
+ T/2.

2.3. Historical Traffic Data

In the last two decades there has been increasing interest in incorporating time-dependencies
into the modeling of the road network. This is due to the fact that both travel times [87],
[13], and fuel consumption [21], [103], [76] vary strongly under different traffic conditions.
The most common approach to describing the time-dependency of the road network is the
measurement of the average vehicle speeds, using, e.g., floating-car data [119], [155], [173],
[57], inductive loops [41], [55], [141], or airborne systems [64]. Another widely spread method
is the simulation of traffic flow [33], e.g., with software tools, such as VISSIM [6], [115]. An
example plot of such average speeds (which is contained in a commercially available digital
map of Germany) has been kindly provided by HARMAN International for publication, see
Figure 2.6.
The measurement of the traffic density, scattering parameters of the vehicle speeds or

parameters describing vehicle accelerations requires a large amount of data and an appro-
priate measurement infrastructure to be available in large parts of the road network. Since
a spatially inclusive and comprehensive construction of such infrastructure has not yet been
completed, such measurements are only sporadically available and rarely contained in the
digital maps which are used for infrastructure and route planning purposes. In order to use
the methodology which we have developed in the preceding section, we must therefore de-
rive a method for estimating the distribution parameters µv, σv, σa, T , pt for varying traffic
conditions.
Let us assume that a measured (space- and time-averaged, cp. Subsection 2.4.1) speed v̄(t)
is given for each time t ∈ R, from which the (average) travel time T (t) (cf. (2.14)) at time
t ∈ R can be computed as T (t) = L/v̄(t). Assuming that the traffic remains undersaturated
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2.3. Historical Traffic Data

Figure 2.6.: Evolution of the average speed on an urban road segment throughout one day. The
unit of the horizontal axis is 20min, the unit of the vertical axis is km/h.

throughout the day, we may use [87, Eqs.(74),(76)], i.e.,

v̄(u) =

v0 ln
(
1 +

(
1− (1 + δ)u

)
Tlosv0(

1−s(1+δ)u
)
L

)
(1−u)Tlosv0(
1−s(1+δ)u

)
L

+ v0
δu

1− u
, ρ(u) =

uQ̂

v̄(u)
, (2.15)

in order to estimate the traffic density ρ(t) associated with v̄(t). Here, u denotes the
utilization of the outflow capacity, and the fit parameters in the above equations are the lost
service time Tlos, the length of the road segment L, the speed limit v0, the outflow capacity
Q̂ and the safety factor δ (which has been introduced in order to cope with variations in the
inflow), as well as the the number of signal phases s at the junction (which is supposed to
be situated at the end of the road segment). Although this is a simplification (if the average
speed v̄(t) is small, then the traffic is usually saturated) this approach has been empirically
verified, see [87, Fig. 6].
The traffic density ρ which results from (2.15) corresponds to the average density on the
considered road segment, including all vehicles which are queued at the junction. Using
[87, Eq.(34)] we compute the average number of delayed vehicles ∆N to obtain the average
density ρf of freely moving vehicles

ρf(u) =
Lρ(u)−∆N(u)

L−∆N(u)lveh
, where ∆N(u) =

(
L

v̄(u)
− L

v0

)
uQ̂. (2.16)

Here, lveh denotes the average vehicle length. We suppose a vehicle whose drive is not
affected by the junction to be driving through traffic with the density ρf.
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2. Computation of the Fuel Consumption

Let us now consider the free flow speeds, which we have assumed to be normally-distributed
in the last section. This assumption does not only coincide with empirical observations but
also with a traffic theory which is based on a gas-kinetic foundation. The theoretical results
not only suggest that the speed distribution is normal (in the absence of junctions), but
also provide relations between the traffic density, the average speed and the variance of
the average speed. Taking into account that these derivations are based on the absence
of junctions we apply this methodology only to the estimation of µv, σv from ρf, i.e., for a
traffic situation in which we have excluded the influence of junctions.
In a traffic model which is based on the application of the theory of dense gases and granular
materials to the Boltzmann-like traffic model by Paveri-Fontana, the equilibrium relations
[83, Eq. (103), (104)], [85, Eq. (20.60), (20.62)] have been suggested between (the equi-
librium variables) ρf, µv, σv. Note that the formulas in [85] also take speed and variance
variations between the lanes into account which we neglect here for simplicity. Setting β = 0
[83] (resp., B = 0 [85]), i.e., neglecting the effect which results from an overbraking caused
by a slower vehicle in front, we obtain:

µv(ρf) = v0 − τ(ρf)(1− p(ρf))ρfχ(ρf)σv(ρf), σv(ρf) =

√
A(ρf)µv(ρf)

1−A(ρf)
. (2.17)

Here, v0 is the average speed associated with the density ρf = 0 (i.e., the speed limit in
urban traffic), χ is a factor which takes into account the increase of the rate of interaction
between vehicles caused by their finite space requirements (i.e., a space requirement > 0), τ
denotes the effective relaxation time, p denotes the probability of overtaking and A denotes
the individual fluctuation strength [85, Chapter 20.2]. Although the asymptotic behavior of
these model functions can be derived, empirical data must generally be used to determine
χ, τ, p, A. It has been verified that this approach allows a very precise description of the
measured speed data, cp. [83], [84], [85].
While ρ, ρf can be determined from v̄ using a few fit parameters (cf. (2.15) and (2.16)), the
determination of µv, σv from (2.17) requires a number of model functions. We now describe
a simplistic approach to determining these model functions from a few fit parameters.
At this, we take the asymptotic and qualitative behavior into account which has been
observed in empirical data. In order to maintain µv(0) = v0, (dµv/dρf)(0) = 0, µv(ρf) ≤
(ρmax − ρf)/(ρmaxρfTr) as well as µv(ρf) ≈ (ρmax − ρf)/(ρ2maxTr) for ρf ≈ ρmax [85, Chapter
20.3], we choose the ansatz

µv(ρf) =


v0 + v2ρ

2
f + v3ρ

3
f , if 0 < ρf ≤ ρ0

ρmax − ρf
ρ2maxTr

, if ρ0 < ρf ≤ ρmax
. (2.18)

Here, ρmax is the maximal density, Tr is the reaction time of the driver [85, Chapter 20.3]
and ρ0 is the density at which the transition between the two asymptotic behaviors occurs.
Once we have fixed ρmax, Tr, v0, we determine ρ0, v2, v3 in such a way that ρf 7→ µv(ρf) is
continuously differentiable and µv(ρ̂f) = µ̂v for one measured pair (ρ̂f, µ̂v).
Furthermore, using [85, Eq. (20.88)], we obtain

σv(ρf) =

√(
v0 − µv(ρf)

)(
1− ρf/ρmax − ρfTrµv(ρf)

)
τ(ρf)

(
1− p(ρf)

)
ρ

. (2.19)
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2.4. Properties of the Network Functions

Note that we can now determine the fluctuation strength A from (2.18), (2.19) if the product
τ(1 − p) is known. In order to obtain the correct asymptotic behavior (cp. [85, Chapter
20.3]) of σv we must take into account that p ∈ [0, 1] and the relaxation time remains finite
for ρf → ρmax. Taking into account [85, Eq. (20.112), Fig. 20.9], a quadratic interpolation
of ρf 7→ τ(ρf)

(
1− p(ρf)

)
constitutes the lowest-order polynomial interpolation which yields

a reasonable result. In particular, we suggest a fit function

τ(ρf)
(
1− p(ρf)

)
≈ a0(0.0143 + 0.0843ρf + 0.0014ρ2f ) (2.20)

with the parameter a0 which can be chosen in such a way that σv(ρ̂f) = σ̂v for one mea-
sured pair (ρ̂f, σ̂v). The parameter a0 corresponds to the scaling of the relaxation time in
the absence of obstacles [85, Chapter 20.2].
Clearly, if more measurement data is available, more sophisticated methods can be applied
to determine the model functions which are contained in (2.17). However, if few empirical
data is available, the estimation of µv, σv from (2.18)-(2.20) seems to be a reasonable ap-
proach.
Assuming that σa and pt do not depend on the time of day, we determine the value of T
from (2.14), using the values of µv(t), σv(t) which we have determined from (2.15)-(2.20).
Note that, following the derivation in [87], pt and T depend on the utilizations of all road
segments which discharge into the junction situated at the end of the considered road seg-
ment. However, if we assume that the utilization of all road segments which discharge into
the junction increases in a similar manner, we may approximate the resulting effect by a
variation of T only. An example of such distributions for varying average speeds is given in
Appendix A, in which we apply the described methodology to traffic data measured in the
German city of Ingolstadt.

2.4. Properties of the Network Functions

In this section, we derive some properties of the travel time and travel cost functions asso-
ciated with the road segments in the road network.

2.4.1. Travel Times

The models which we have introduced in the preceding sections of this chapter lead to a
stochastic description of the velocity plots of a vehicle passing through a road segment.
An even more general approach is used in gas-kinetic traffic models [86, Section III.E], [40,
Chapter 5], in which the velocity v of a vehicle on a road segment is a random variable
depending on the position d on the road segment and the time t. In other traffic models
(see also [97], for a review, see, e.g., [86], [40]) the focus is on the macroscopic characteristics
of the traffic flow rather than on the characteristics of the vehicles which form the traffic
flow. In these models, the velocity of the traffic flow on a road segment is commonly a
deterministic variable depending on the position d on the road segment and the time t.
Following these approaches (and thereby considering an even more general framework than
in the preceding sections), we show that a physical interpretation of the travel time function
which is derived from the velocity plots on a road segment satisfies the non-passing property
[162], [44].
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2. Computation of the Fuel Consumption

We first consider the deterministic case.

Lemma 2.4.1 Let v : R+
0 × R → R+

0 be a continuous function which is globally Lipschitz-
continuous in the first variable and let L > 0. For each t ∈ R define dt : [t,∞)→ R+

0 ,

d′t(s) = v
(
dt(s), s

)
, s ∈ [t,∞),

dt(t) = 0.

and denote τ : R→ R+
0 ,

τ(t) = min
{
θ ∈ R+

0 : dt(t+ θ) ≥ L
}
. (2.21)

Then, for all t1, t2 ∈ R, there holds

t2 ≥ t1 =⇒ t2 + τ(t2) ≥ t1 + τ(t1). (2.22)

Proof Suppose that there exist t1, t2 ∈ R with t2 > t1, such that (2.22) does not hold.
As v is nonnegative and dt(t) = 0 for all t ∈ R, we have dti(s) ≥ 0 for all s ∈ [ti,∞),
i = 1, 2. In particular, we have dt1(t2) ≥ 0. Next, according to (2.21), there exists a
s+ ∈ (t2,∞) such that dt1(s

+) > dt2(s
+). Consequently, there exists a s0 ∈ [t2, s

+), such
that dt1(s0) = dt2(s0) = l0. Now, dt1 |[s0,s+] and dt2 |[s0,s+] satisfy the initial value problems

d′ti(s) = v
(
dti(s), s

)
, s ∈ [s0, s

+],

dti(s0) = l0,

i = 1, 2. Since v is continuous and globally Lipschitz-continuous in the first variable, the
Picard-Lindelöf theorem [116, p.140] implies that dt1 |[s0,s+] = dt2 |[s0,s+], a contradiction. �

Interpreting the quantities v, L in Lemma 2.4.1 as the velocity plot on and the length of
the road segment, respectively, and interpreting τ as the travel time function, Lemma 2.4.1
implies that the physical modeling of the time-dependent road network implies the FIFO-
property, cp. Definition 3.2.7.
We now address the stochastic modeling of the velocity plots. The following result implies
the stochastic consistency of the (physically modeled) travel time functions in a stochastic
time-dependent road network, cp. (6.1).

Lemma 2.4.2 Denote by Cv the set of continuous functions mapping R×R+
0 to R+

0 which
are globally Lipschitz-continuous in the first variable, denote by Cτ the set of continuous
functions mapping R to R+

0 and denote by C1d
(
[t,∞)

)
the set of continuously differentiable

functions mapping [t,∞) to R+
0 , t ∈ R. Let (Ω,F ,P) be a probability space, let L > 0, let

v : Ω→ Cv be a random variable and for each t ∈ R define dt : Ω→ C1d
(
[t,∞)

)
,

ddt(ω)

ds
(s) = v

(
dt(ω)(s), s

)
, s ∈ [t,∞),

dt(ω)(t) = 0.

and denote τ : Ω→ Cτ ,

τ(ω)(t) = min
{
θ ∈ R+

0 : dt(ω)(t+ θ) ≥ L
}
. (2.23)
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Then, for all t1, t2 ∈ R, there holds

t2 ≥ t1 =⇒ P
{
t2 + τ(t2) ≤ c

}
≤ P

{
t1 + τ(t1) ≤ c

}
, ∀c ∈ R. (2.24)

Proof Since, for each ω ∈ Ω, τ(ω) satisfies (2.22) according to Lemma 2.4.1, we obtain
{ω ∈ Ω : t2 + τ(ω)(t2) ≤ c} ⊂ {ω ∈ Ω : t1 + τ(ω)(t1) ≤ c} for all c ∈ R. This implies (2.24).
�

Let us now come back to the non-stochastic modeling of the travel times and relate the
above results to the quantities which are contained in digital maps of the road network.
Since the measurement of the position- and time-dependent vehicle speeds would require an
appropriate measurement infrastructure to be available in large parts of the road network
and an extensive amount of memory in order to be stored, such precise speed data are
usually not contained in the digital maps which are available for routing purposes. Instead,
a position-independent mean speed v̄ : R → R+

0 is commonly introduced, which is (in case
of a non-stochastic modeling and using the notation of Lemma 2.4.1) defined as

v̄(t) =
L

τ(t)
=

1

τ(t)

∫ t+τ(t)

t
v
(
dt(s), s

)
ds. (2.25)

Hence, the time-dependent speed in the digital map is commonly a space- and time-average
of the position- and time-dependent vehicle speeds on the road segment. Clearly, under
the assumptions of Lemma 2.4.2, the travel time function τ(t) = L/v̄(t) still satisfies the
FIFO-property.
We finally discuss some of the impacts of the modeling in Section 2.2 on the travel time
function τ . Let us assume that the distribution parameters µv, σv, σa, pt, T have been fixed.
Observe that, assuming that the free flow speed process is ergodic, the definition of the
travel time T1(L) almost surely equals the average travel time of traveling infinitely often
through the road segment on which E1 occurs every time. In a more realistic modeling of τ ,
some probabilistic variation should be associated with T1(L) in order to take into account
that the road segment is only traveled through once when the travel time τ is incurred.
Similar considerations hold for T2(L, v0), T3(L, v0, th), T4(L, v

+
0 , v

−
0 , th). Disregarding this

observation, we obtain a compact positive range of the mapping

(k, v+0 , v
−
0 , th) 7→


T1(L), if k = 1
T2(L, v

+
0 ), if k = 2

T3(L, v
−
0 , th), if k = 3

T4(L, v
+
0 , v

−
0 , th), if k = 4

. (2.26)

Observe that, if the parameters L = 150m, σa = 1.5m/s2, µv = 15m/s, T = 60 s have been
fixed, then T1(L) = 10 s and T4(L, µv, µv, T ) ≈ 82 s. Hence, a very large variation of the
travel times is caused by the presence of junctions in urban traffic. Although such variations
are likely to average out over long routes, their magnitude renders a precise prediction of
the travel time of the entire route almost impossible.
While we assume that the travel times are given by one value (e.g., defined by (2.14)) in the
Chapters 3-5, we understand the travel time rather as a set-valued mapping (e.g., defined
by (2.26)) in Section 6.
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2.4.2. Travel Cost

In the following, we describe in which manner the models introduced in the Sections 2.1-
2.3 can be combined in order to associate a fuel consumption with each road segment at
each time. Let us assume that some parameters L, pt, T , σa, µv, σv have been determined
according to Section 2.3 for some road segment at some point in time t, and that these pa-
rameters correspond to a space- and time-average of the velocity plots of a vehicle departing
on the road segment at time t. Let us further assume that the basic power consumption
P0 of the vehicle and the angle of elevation in longitudinal direction of the road segment
α are constant, and that a gear changing behavior (v, a) 7→ ñ(v, a) and a braking behavior
(v, a) 7→ p̃(v, a) have been fixed. Note that this implies that the effective acceleration (resp.,
deceleration) which must be applied by the motor is given by ẽ(v, a)a for some ẽ(v, a) ∈ R,
cp. Section 2.1. Furthermore, we assume that the vehicle acceleration and deceleration A
is normally distributed during the free flow behavior , i.e., A ∼ N (0, σ2a). We denote by
f0, fA, fA+ the probability density functions associated withN (µv, σ

2
v),N (0, σ2a),HN (0, σ2a),

respectively.
In order to adapt the vehicle model introduced in Section 2.1, we must take into account
that the power P which can be generated by a motor is bounded by some Pmin, Pmax, i.e.,
Pmin ≤ P ≤ Pmax. (For a combustion engine there holds Pmin = 0.) This results in a re-
striction 0 ≤ v ≤ vmax of the vehicle speeds, vmax ∈ R+, and a speed-dependent restriction
of the effective accelerations amin(v) ≤ ẽ(v, a)a ≤ amax(v), amin(v), amax(v) : [0, vmax] → R
[129, Chapters 29, 32]. Since any reasonable set of parameters σa, µv, σv leads to a very
small probability of violating these constraints we have neglected the thereby defined driv-
ing limits in the derivation of the speed- and acceleration distributions. In the following,
we take the driving limits into account by setting

P̃ (v, a, α) =



2πτ0ω0 + P0

η̃(0, 0, 0)
, if v ≤ 0

F̃ (v, a, α)v + P0

η̃(v, a, α)
, if v ∈ (0, vmax] and ẽ(v, a)a ∈ [amin(v), amax(v)]

Pmin, if v ∈ (0, vmax] and ẽ(v, a)a < amin(v)

Pmax,
if v ∈ (0, vmax] and ẽ(v, a)a > amax(v)

or v > vmax

,

where F̃ (v, a, α) is the sum of the driving resistances and η̃(v, a, α) is the product of the
engine and the transmission efficiency, cp. (2.8). Note that the definitions in Section 2.1
imply that both quantities can be written as functions of the vehicle speed and acceleration
if a gear-changing behavior and a braking behavior have been fixed.
With the event {E = E1} we associate the fuel consumption

B1(L) =

∫ L/µv

t=0

∫ ∞

v=−∞

∫ ∞

a=−∞

P̃ (v, a, α)

Hl
fA(a)f0(v) da dv dt,

Observe that, assuming that the free flow speed process is ergodic, the definition of the fuel
consumption B1(L) almost surely equals the average fuel consumption associated with an
infinitely often repeated travel through the road segment on which E1 occurs every time.
Next, we associate the fuel consumption B2(L, v

+
0 ) with the event {E = E2, V

+ = v+0 } on
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the road segment. If v+0 ≤ 0, we obtain

B2(L, v
+
0 ) =

∫ L/µv

t=0

∫ ∞

v=−∞

∫ ∞

a=−∞

P̃ (v, a, α)

Hl
fA(a)f0(v) da dv dt,

if 0 < v+0 ≤
√√

8/πLσa, then

B2(L, v
+
0 ) =

∫ v+0 /(
√

2/πσa)

t=0

∫ ∞

a=0

P̃ (
√
2/πσat, a, α)

Hl
fA+(a) da dt

+

∫ L/µv−(v+0 )2/(
√

8/πσaµv)

t=0

∫ ∞

v=−∞

∫ ∞

a=−∞

P̃ (v, a, α)

Hl
fA(a)f0(v) da dv dt, (2.27)

and if v+0 >
√√

8/πLσa, then

B2(L, v
+
0 ) =

∫ √√
2πL/σa

t=0

∫ ∞

a=0

P̃ (
√

2/πσat, a, α)

Hl
fA+(a) dadt. (2.28)

Note that, assuming again that both the acceleration and the free flow speed process are
ergodic, the definition of the fuel consumption B2(L, v

+
0 ) almost surely equals the average

fuel consumption associated with an infinitely often repeated travel through the road seg-
ment on which E2, v

+
0 occur every time. Similarly, E[B2(L, V

+
0 )] can be interpreted as an

infinitely often repeated travel through the road segment on which E2 occurs every time.
By replacing P̃ (

√
2/πσat, a, α) by P̃ (

√
2/πσat,−a, α) in (2.27) and (2.28) and by adding

thP̃ (0, 0, 0)/Hl to the resulting fuel consumption (cp. (2.9)), we obtain the fuel con-
sumption B3(L, v

−
0 , th) for the event {E = E3, V

−
0 = v−0 , Th = th}. Finally, we estab-

lish the fuel consumption B4(L, v
+
0 , v

−
0 , th) = B2(L/2, v

+
0 ) + B3(L/2, v

−
0 , th) for the event

{E = E4, V
+
0 = v+0 , V

−
0 = v−0 , Th = th}. Disregarding the observation that each of the values

B1(L), B2(L, v
+
0 ), B3(L, v

−
0 , th), B4(L, v

+
0 , v

−
0 , th) corresponds to the average fuel consump-

tion over an infinite number of times the vehicle is traveling through the road segment, we
obtain a compact range of the mapping

(k, v+0 , v
−
0 , th) 7→


B1(L), if k = 1
B2(L, v

+
0 ), if k = 2

B3(L, v
−
0 , th), if k = 3

B4(L, v
+
0 , v

−
0 , th), if k = 4

. (2.29)

In case of a combustion engine we have Pmin = 0 which results in a compact nonnegative
range of the fuel consumption defined by (2.29). Let us illustrate this range by considering
the parameters of the electric vehicle which are provided in Table A.1, assuming that the
brake pedal is never actuated, α, τ0 = 0, and assuming that L = 150m, σa = 1.5m/s2,
µv = 15m/s, σv = 4m/s2, T = 60 s have been fixed. Then B1(L) ≈ 0.06 kWh and
B4(L, µv, µv, T ) ≈ 0.14 kWh. The same magnitude of variation of the fuel consumption was
observed in [103, Table 2] between free and congested traffic.
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2. Computation of the Fuel Consumption

Finally, we define

B = (1− pt)2E
[
B1(L)

]
+ (1− pt)pt

(
E
[
B2(L, V

+
0 )
]
+ E

[
B3(L, V

−
0 , Th)

])
+ p2tE

[
B4(L, V

+
0 , V

−
0 , Th)

]
. (2.30)

While we assume that the travel costs β are given by one value (e.g., defined by (2.30)) in the
Chapters 3-5, we understand the travel costs rather as a set valued-mapping (e.g., defined by
(2.29)) in Chapter 6. By choosing the distribution parameters, the gear changing behavior
and the braking behavior in such a way that the characteristics of the traffic situation and
the driver are taken into account, we can therefore associate a road-, traffic- and driver-
dependent consumption value to each road segment in the road network. (Note that driving
patterns related to speed, acceleration and gear-changing behavior were identified as the
five most significant influence factors on the exhaust emissions in [34].)
Depending on whether the motor is switched off, idling, or fuel is being tanked up while
the vehicle is at rest, we define the cost δ(∆t) of waiting for some time ∆t ∈ R+

0 according
to δ(∆t) = 0, according to (2.9) or according to δ(∆t) = q∆t, q < 0, respectively. (Here, q
can be interpreted as the fuel flow rate during the tanking process.)
We conclude this section by discussing the cost of driving in a circle of length L in the
road network. In order to derive a lower bound of this cost we assume that p, P0 ≡ 0 (i.e.,
no energy is lost by an actuation of the brake pedal or auxiliary consumers). We further
assume that a gear-changing behavior has been fixed. Given a vehicle speed v and a vehicle
acceleration a, we denote by λ̃(v, a) the resulting molding body surcharge factor, cf. Section
2.1. Let us assume that a differentiable velocity plot v : [0, T ] → R+, T ∈ R+, is given,
let d : [0, T ] → R+

0 , d(t) =
∫ t
0 v(s) ds, denote the associated distance plot with d(T ) = L,

and let a differentiable height plot h : [0, L] → R be given with h(0) = h(L). Denote
vd : [0, L] → R+, vd(l) = v(d−1(l)), ad : [0, L] → R+, ad(l) = v′(d−1(l)). By substituting
l = d(t) in (2.8) (which equals the energy consumption in (2.10) if Hl = 1) and using
(2.2)-(2.6), we obtain

B =

∫ L

0

mvg sin
(
α(l)

)
+mvgcrr cos

(
α(l)

)
+ 0.5ρaAfcdvd(l)

2 + λ̃(vd(l), ad(l))mvad(l)

Hlη̃(vd(l), ad(l))
dl,

where α(l) = arctan(h′(l)). Taking into account the constraints hd(0) = hd(L), 0 ≤ vd ≤
vmax, amin(vd) ≤ ẽ(vd, ad)ad ≤ amax(vd), −αmax ≤ α ≤ αmax for some αmax ∈ R+, one
might derive a lower bound for any circle of length L in the road network by minimizing
over all function h, vd out of appropriate function spaces. Closed solutions can easily be
derived if λ̃, η̃ are constant functions, and solutions have also been found for given height
plots h [113], [95]. However, this shall not be topic of this thesis. We only note that,
since the potential energy in the initial and terminal position in one traversal of the circle
coincide and the kinetic energy of the vehicle is bounded, there exists a N ∈ N, such that
the total amount of energy incurred for traveling N times through the circle is positive. For
simplicity, we assume that N = 1 in this thesis.
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Part II.

The Time-Dependent Optimal
Path Problem

29





3. Time-Dependent Networks

Many applications in which networks are used for modeling or optimization purposes, such
as, e.g., intelligent transportation systems [101], [38], [153], internet routing [124], multi-
agent-systems [136] and networked control systems [17], involve time-dependencies whose
incorporation into the network model lead to the notion of time-dependent networks. In
these systems, there need to be considered either a time-dependent variation of the travel
times and travel costs along the edges of the network, a time-dependent change in the
topology and connectivity of the network, or both of these features. This allows not only
for a more realistic modeling of the underlying physical systems, but gives also rise to a
great number of new phenomena. In Section 3.1 we motivate the introduction of time-
dependent networks based on the example of the road network. In the following sections
of this chapter, we introduce time-dependent networks, discuss time constraints and turn
restrictions, and define certain classes of time-dependent networks which are of particular
relevance in practical and theoretical considerations.

3.1. The Road Network as a Time-Dependent Network

The main task of an automotive navigation system is to provide the user with guiding
instructions, which conduct the driver of the vehicle from his present location to a prede-
termined destination. These instructions must take the structure of the road network into
account, be consistent with the local traffic rules, and should determine a route of a certain
quality. Common measures for quality are the traveled distance, the time required to reach
the destination and the number of turn maneuvers involved. In order to compute such a
route a digital map is required, which contains all information which is necessary for the
determination of the present location, the route and the route guidance. Before focusing
on the mathematical description of time-dependent networks, we give a brief overview of
the digital map which is the data base according to which the time-dependent network is
defined.
Digital maps of the road network usually contain a large number of information which are
not relevant for the definition of the time-dependent network. For instance, information
about green spaces, lakes, rivers or residential areas are only of geographical interest and
are commonly used only for the map display. Similarly, geometrical information about the
precise course of a certain road may be useful for the determination of the current position
of the vehicle, but are not relevant for the computation of a route, since the vehicle is con-
strained to stay on the road. The integral component of the digital map which is essential
for the computation of a route in the road network is the so-called topological information,
containing the description which road segments are connected by junctions. An appropriate
mathematical model for this description is a graph, in which the junctions correspond to
the nodes and the road segments correspond to the edges of the graph. In order to take
into account that certain roads, such as, e.g., one-way roads, can only be traveled in one
direction, it is convenient to use a directed graph. In the directed graph of the road network,
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a directed edge between two nodes is introduced if the road segment which connects the
corresponding junctions can be passed through in the respective direction.
In the digital map certain attributes such as distance, travel time or travel cost are associ-
ated to each road segment and each junction of the road network. These attributes serve
as a means for determining the quality of a route and as a basis of decision-making in the
computation of optimal routes. The incorporation of these attributes into the description
of the directed graph leads to a weighted and directed graph, in which a cost value (or a
vector of cost values) is associated with each node and edge. Weighted and directed graphs
are also termed networks [79].
Certain attributes, such as travel time or fuel consumption, depend on the current traffic
situation on the respective road segment or at the respective junction, cp. Part I. Since
the traffic situation underlies temporal and seasonal changes, the latest digital maps con-
tain a time-dependent description of the corresponding cost values, which are derived from
historical traffic data [41], [119], see also Section 2.3. In order to compute routes which are
optimal with respect to the predictable variations in the traffic situation, the cost values
associated with a node or segment in the network must be replaced by cost functions which
depend on the point in time at which the vehicle is predicted to reach the respective node
or segment. This leads to the definition of time-dependent networks in Section 3.2. In the
context of time-dependent network flows a model has been developed in which the travel
time and cost functions depend on the current state of the network, i.e., the current traffic
flow in the road network [114]. Since our interest is in the determination of an optimal
route for a single vehicle and not a set of optimal routes for a fleet of vehicles, we assume
that the network functions are not affected by the routing decision and depend only on the
time variable.
The incorporation of time-dependent travel time and travel cost functions allows an an-
ticipatory optimization of routes in the road network. In the past, the computation of
optimal routes in the road network was only based on static cost criteria and dynamic traf-
fic information replacing the cost values contained in the digital map. Such dynamic traffic
information is for instance provided by the traffic message channel (TMC), transmitting
additional attributes for certain road segments in the case of exceptional traffic situations,
such as, e.g., traffic jams [177, Chapters 8, 11]. Since these attributes can only be used for
the correction of the static cost values when an exceptional situation has already occurred,
only near-term reoptimization of the currently traveled route is possible. An anticipatory
avoidance of certain road segments which are jammed during each rush-hour is only possible
if a time-dependent network is used for the computation of the optimal route. Assuming
that all traffic changes are predictable from historical traffic data, the time-dependent ap-
proach clearly leads to routes of better quality.
However, not all changes in the traffic situation are predictable. Random - or at least hardly
predictable - events, such as accidents and weather conditions significantly codetermine the
traffic situation. Considering traffic models which incorporate a human element of uncer-
tainty, even the same conditions may lead to different situations (cf., e.g., [102, Chapter
2.4], [86, p.1088, eq. (15)], [156]). A realistic mapping of the influence of the traffic situa-
tion on the computation of optimal routes in the road network must therefore result in a
time-dependent and uncertain model. We introduce such a model in Chapter 6. Of course,
dynamic traffic information can be used to further improve the network description based
on current exceptional events.
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3.2. Notation

In this section, we introduce time-dependent networks as well as some basic notation from
graph theory and control theory. Moreover, we present a network transformation which
allows the decoupling of the discrete and continuous state transitions in the time-dependent
network. Finally, we introduce the FIFO-property of time-dependent networks, which has
a strong impact on the complexity of computing optimal paths. The following definition
of a continuous-time time-dependent network is similar to the definition of a discrete-time
time-dependent network in [36].

Definition 3.2.1 A time-dependent network is a quintuple G = (V,E, τ ;β, δ), where V
denotes the (finite) set of nodes, E the (finite) set of directed edges (i.e., E is a multiset
over the cartesian product V ×V ), τ : E×R→ R+

0 the travel time function, β : E×R→ R
the travel cost function and δ : V × R× R+

0 → R the waiting cost function.

Remark 3.2.2 The second argument of τ, β denotes the departure time on the edge de-
termined by the first argument. The third argument of δ denotes the waiting time at the
node specified by the first argument, whereas the waiting time interval begins at the time
determined by the second argument.

The definition of the time-dependent network, Definition 3.2.1, allows the directed graph
(V,E) to be a multigraph. In particular, there may be more than one edge e ∈ E connecting
the same two nodes v, v′ ∈ V . In order to express that e ∈ E is one element of the multiset
corresponding to (v, v′) ∈ V × V , we denote e ∼ (v, v′). Furthermore, we denote the
cardinality of a set S by |S|, and the power set of S by P(S). The following definition
introduces some basic objects of graph theory.

Definition 3.2.3 The head function is denoted by ω : E → V and the tail function is
denoted by α : E → V (i.e., if e ∼ (v, v′), then α(e) = v and ω(e) = v′).
For each v ∈ V , the set E−(v) of edges terminating in v and the set E+(v) of edges
emanating from v are defined as

E−(v) = {e ∈ E : e ∼ (v′, v), v′ ∈ V },
E+(v) = {e ∈ E : e ∼ (v, v′), v′ ∈ V },

respectively. By deg+(v) = |E+(v)|, we denote the outdegree of v, by deg−(v) = |E−(v)| we
denote the indegree of v.
For each v ∈ V , the set V −(v) of the predecessors of v and the set V +(v) of the successors
of v are defined as

V −(v) = {v′ ∈ V : ∃e ∈ E, e ∼ (v′, v)},
V +(v) = {v′ ∈ V : ∃e ∈ E, e ∼ (v, v′)},

respectively.

In the context of static networks, the set of nodes V can be understood as the set of possible
states, whereas the set of edges E specifies the possible state transitions. Since in a time-
dependent network the travel time function τ and the cost functions β, δ depend on the
time variable, it is convenient to define the state space X = V ×R. In particular, each state
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x ∈ X is a pair (v, t), consisting of a node v ∈ V and a time t ∈ R.
In many applications, such as, e.g., railway networks, it may be necessary and optimal to
wait at certain states in the network, before traversing the next edge. For this reason, we
specify the state transitions in the time-dependent network by a pair u = (∆t, e), consisting
of a waiting time ∆t ∈ R+

0 and an edge e ∈ E. In view of the control-theoretic formulation
of the optimal path problem, we call the pair u = (∆t, e) a control action. Similar to static
networks, a control action u = (∆t, e) can only be applied at states x = (v, t) ∈ X with
e ∈ E+(v). The state transition resulting from the application of such a control action u
in the state x is specified by the control-to-state mapping φ :

∪
(v,t)∈V×R

{
{(v, t)} × {R+

0 ×
E+(v)}

}
→ V × R,

φ
(
(v, t), (∆t, e)

)
=
(
ω(e), t+∆t+ τ(e, t+∆t)

)
. (3.1)

In particular, the application of (∆t, e) in (v, t) corresponds to the actions of waiting at v
during the time interval [t, t+∆t] and traversing e at time t+∆t. Note that this definition
excludes the possibility of waiting for several time intervals at some node v before departing
on some edge e ∈ E+(v). In case of cumulative waiting cost functions, i.e., if the cost of
waiting is defined as the integral over a time-dependent waiting cost potential, the exclu-
sion of multiple waiting is no restriction, since the cost of multiple waiting equals the cost
of waiting once for the entire time interval [47, p.21], [138]. This approach is commonly
used in the context of time-dependent network flows [158], [133] and the characterization
of optimal time-dependent paths by linear programming [142].
Our presentation of time-dependent networks is closely related to hybrid control theory
[32], [82]. In time-dependent networks, both the state variable x = (v, t) and the control
variable u = (∆t, e) are composed of a discrete variable (v ∈ V and e ∈ E, respectively)
and a continuous variable (t ∈ R and ∆t ∈ R+

0 , respectively). The continuous time variable
t fulfills the initial value problem ṫ = 1, t(0) = 0. In the framework of hybrid control, the
computation of optimal paths corresponds to the computation of optimal control strate-
gies, and the cost values of these paths define the optimal value function. To the best of
our knowledge, the control-theoretic approach has not yet been applied in the literature
of time-dependent networks. However, since it allows for a simple notation and an clearer
presentation of the dynamic programming equations, we will pursue this approach here.
One important question in mathematical systems theory is in which manner the system
behaves, depending on a variation of the initial state or a variation of the system input [88,
Chapter 3]. The most elementary concept on which such considerations are based is the
notion of continuity, i.e., whether the resulting state depends continuously on the initial
state and the control input, cf. [88, Definition 3.1.1.]. We equip the discrete sets V,E with
the discrete topology and (subsets of) R∪ {±∞} with the order topology generated by the
open intervals and open rays. It is easily seen that φ is continuous if τ is continuous, at
which the continuity of τ is equivalent to the continuity of the partial functions t 7→ τ(e, t)
for all e ∈ E.
In the following, we will consider the problem of computing optimal paths in a time-
dependent network with state space and control constraints. Such constraints arise in
many applications. For example, taking into account an earliest departure time and a lat-
est arrival time in route-planning applications already constrain the set of admissible arrival
times at the nodes of the road network. Moreover, there may be only a few places in the
road network, such as, e.g., parking lots, which allow the driver to wait for a certain amount
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of time before continuing his travel. Consequently, both the arrival times and the waiting
times at the nodes are subject to constraints in certain applications. Note that turn restric-
tions constitute a third kind of constraint, which we will deal with in Section 3.4.
We now precisely formulate the state space and control constraints. To each v ∈ V , we
associate a set T (v) ⊂ R of admissible arrival times. The resulting state space is

X =
∪
v∈V

{
{v} × T (v)

}
. (3.2)

We associate a nonempty set ∆T (x) ⊂ R+
0 of admissible waiting times to each state x ∈ X.

Note that v 7→ T (v) defines a point-to-set mapping T : V → P(R) and x 7→ ∆T (x) defines
a point-to-set mapping ∆T : X → P(R+

0 ).

Definition 3.2.4 A control action u ∈ R+
0 ×E is admissible for a given state x = (v, t) ∈ X,

if
u ∈ ∆T (x)× E+(v) and φ(x, u) ∈ X. (3.3)

A mapping µ : X → R+
0 × E is called an admissible control policy if, for all x ∈ X, the

control action u = µ(x) is admissible for x.

Remark 3.2.5 In view of equation (3.3), a control u which is admissible for x = (v, t) ∈ X
must account for the control constraint u ∈ ∆T (x) × E+(v), as well as the state space
constraint φ(x, u) ∈ X. This allows a flexible network description, since both the control
constraints and the state space constraints may change independently of one another in
different applications.

Remark 3.2.6 The incorporation of the state space constraints allows an implicit incorpo-
ration of a varying network topology as follows: Suppose that associated with each edge in
the network there is a set of points in time at which the traversal of the respective edge is ad-
missible. We then replace each edge e ∈ E by a virtual node ve, a virtual edge e1 ∼ (α(e), ve)
and the edge e2 ∼ (ve, ω(e)) as depicted in Figure 3.1. The travel time and cost on e1, e2
are given by

τ(e1, t) = 0, τ(e2, t) = τ(e, t),

β(e1, t) = 0, β(e2, t) = β(e, t),

for all t ∈ R, respectively. Moreover ∆T (ve, t) = {0} and δ(ve, t, 0) = 0 for all t ∈ R. We
define T (ve) as the set of all points in time at which the traversal of the edge e is admissible.
In the resulting network, all constraints on the traversal times of the edges are formulated
as state space constraints. We will henceforth only consider networks with a fixed topology.

We associate the cost δ(v, t,∆t) + β(e, t + ∆t) with the application of a control action
(∆t, e) ∈ R+

0 ×E in (v, t) ∈ V ×R. This sum corresponds to the cost of waiting at v during
the time interval [t, t+∆t] in addition to the cost of traversing e at time t+∆t. In order to
illustrate the sequential structure of the corresponding state transitions, the split network
has been introduced in [47, p.27]. Since the split network turns out to be very useful for
algorithmic purposes, we now recapitulate its construction. For simplicity, we assume that
the directed graph (V,E) contains no multiple edges.
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α(e) ω(e)
e

α(e) ve ω(e)
e1 e2

Figure 3.1.: Replacing the edge e by the virtual node ve and the edges e1, e2.

Each original node v ∈ V is split into two virtual nodes vw and vnw with

E−(vw) =
{
(v′nw, vw) : ∃e ∈ E, e ∼ (v′, v)

}
, E+(vw) = {(vw, vnw)},

E−(vnw) = {(vw, vnw)}, E+(vnw) =
{
(vnw, v

′
w) : ∃e ∈ E, e ∼ (v, v′)

}
.

The node set Vs and edge set Es of the transformed graph is defined accordingly. Next,

Ts(vw) = T (v), ∆Ts(vw, t) = ∆T (v, t),

Ts(vnw) = R, ∆Ts(vnw, t) = {0}.

Note that the arrival time at v now corresponds to the arrival time at vw, and all resulting
time restrictions at vnw are implicitly taken into account by the sets of admissible waiting
times associated with vw. Clearly, the definition of the control constraints implies that
waiting is only possible at vw. The set of all waiting nodes of the split network is denoted
by Vw and the set of all nodes of the split network at which waiting is prohibited is denoted
by Vnw. Finally, we define the travel time function τs and the cost functions βs, δs of the
split network for all t ∈ R.

τs(es, t) =

{
0, if es ∼ (vw, vnw) for some v ∈ V
τ(e, t), if ∃e ∈ E, e ∼ (v, v′) with es ∼ (vnw, v

′
w)

,

βs(es, t) =

{
0, if es ∼ (vw, vnw) for some v ∈ V
β(e, t), if ∃e ∈ E, e ∼ (v, v′) with es ∼ (vnw, v

′
w)

,

δs(vw, t,∆t) = δ(v, t,∆t), ∀∆t ∈ R+
0 , δs(vnw, t, 0) = 0.

This transformation is illustrated in Figure 3.2. It is easily seen that the split network is
a time-dependent network in the sense of Definition 3.2.1 and that there is a one-to-one
correspondence between x ∈ X, u ∈ U(x) and the corresponding state and control pairs
in the split network. Note that the split network never has to be explicitly generated, it
rather serves as an illustrative model on which the algorithms in this thesis are based, cf.
Chapter 8 and Chapter 9. For simplicity of notation, we will henceforth omit the subscript
“s” when discussing the split-network.
In the following definition, we introduce a class of time-dependent networks, which has

been subject to extensive research, especially in the context of the minimization of the travel
time [137], [39], [49].

Definition 3.2.7 A function f : R → R, satisfies the FIFO-property, if for all t, t′ ∈ R,
there holds

t′ ≥ t =⇒ t′ + f(t′) ≥ t+ f(t). (3.4)
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v

(
∆t, (v, v′)

)(
∆t, (v, v′′)

)

(a) Original node and control actions

vw vnw

(
∆t, (vw, vnw)

) (
0, (vnw, v

′
w)
)(

0, (vnw, v
′′
w)
)

(b) Virtual nodes and control actions

Figure 3.2.: Splitting of the node v into the virtual nodes vw, vnw. The labels of the arrows
correspond to the control actions, which are applied at their tails, respectively.

f satisfies the strong FIFO-property, if for all t, t′ ∈ R, there holds

t′ > t =⇒ t′ + f(t′) > t+ f(t). (3.5)

A time-dependent network G = (V,E, τ ;β, δ) satisfies the FIFO-property, if for all e ∈ E
the partial mappings t 7→ τ(e, t) satisfy (3.4). G satisfies the strong FIFO-property, if for
all e ∈ E the partial mappings t 7→ τ(e, t) satisfy (3.5). Time-dependent networks which
satisfy the (strong) FIFO-property are called (strong) FIFO-networks.

It has been shown that the FIFO-property has a strong impact on the structure of fastest
paths and on the complexity of the computation of fastest paths in time-dependent networks
[137]. We will generalize these results to the case in which the optimization is subject to
state space and control constraints in Section 3.5. Moreover, we will prove that the FIFO-
property has a strong impact on the complexity of computing the optimal value function if
all network functions are piecewise linear, cf. Section 5.3. Note that Lemma 2.4.1 implies
that the road network satisfies the FIFO-property, which is also known as the non-passing
property in the field of intelligent transportation systems [162].

3.3. Paths in Time-Dependent Networks

In graph theory, a path is defined as a concatenated sequence of nodes of the graph [92].
In a time-dependent context, this sequence must not only consist of nodes, but also of
the corresponding points in time. In our setting, we may identify these paths with the
trajectories in the state space, when a sequence of admissible controls is applied in an
initial state x0 ∈ X.

Definition 3.3.1 A sequence of controls u = (uk)k=1,2,... is called admissible for a given
state x0 ∈ X, if uk is admissible for xk−1, k = 1, 2, ..., where

xk = φ
(
xk−1, uk

)
, k = 1, 2, ... . (3.6)

The set of all finite control sequences which are admissible for x0 is denoted by U(x0).
A path p is a sequence of states p =

(
x0, x1, ...

)
, such there exists a sequence of controls

u = (uk)k=1,2,... ∈ U(x0), which fulfills (3.6).
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Remark 3.3.2 Obviously, a path p is uniquely determined by the control-to-state mapping,
if an initial state x0 and an admissible control sequence u ∈ U(x0) are given, cf. (3.1),
(3.6). In the following, we denote p = Φ(x0, u), and call Φ the control-to-path mapping.
The set of all paths in G subject to the time constraints T,∆T is denoted by

P = X ∪ Φ

(∪
x∈X

{
{x} × U(x)

})
. (3.7)

Note that P includes paths p of length 0, which correspond to the states in the time-dependent
network.

Let x0 ∈ X, u ∈ U(x0) and p = Φ(x0, u) with u = (uk)k=1,...,n, p = (xk)k=0,...,n. We define
the length of the control sequence u by |u| = n and denote the k-th control action uk of u
by uk, k = 1, ..., n. Similarly, we define the (topological) length of the path p by |p| = n
and denote the k-th state xk of p by pk, k = 0, ..., n. Moreover, we denote the subsequences
(uk)k=i,...,j , 1 ≤ i ≤ j ≤ |u|, and (pk)k=i,...,j , 0 ≤ i ≤ j ≤ |p|, by ui:j and pi:j , respectively.
For any path p ∈ P and any i, j ∈ N with 0 ≤ i ≤ j ≤ |p|, pi:j is called a subpath of p.
Finally, with a slight abuse of notation, for u|u| = (∆t, e) we denote ω(u) = ω(e).
In a similar manner as in time-independent networks we define simple time-dependent paths
and circles.

Definition 3.3.3 If p =
(
(vk, tk)

)
k=0,...,n

∈ P is a time-dependent path, then the sequence

of nodes (vk)k=0,...,n is called the topological path associated with p.
p is called simple, if (vk)k=0,...,n is simple, i.e., if vk ̸= vl for all k, l ∈ {0, ..., n} with k ̸= l.
p is called a circle, if (vk)k=0,...,n is a circle, i.e., if v0 = vn.

As in the time-independent case, a time-dependent path p is simple if and only if no subpath
of p is a circle.
With the application of the finite control sequence u =

(
(∆tk, ek)

)
k=1,...,|u| in x0, we as-

sociate the sum of the costs of the application of each control action in the corresponding
state on the path Φ(x0, u) =

(
(vk, tk)

)
k=0,...,|u|. In order to ease the notation, we introduce

the path cost function B :
∪
x∈X

{
{x} × U(x)

}
→ R,

B(x0, u) =
|u|∑
k=1

[
δ(vk−1, tk−1,∆tk) + β(ek, tk−1 +∆tk)

]
. (3.8)

Definition 3.3.4 A path p∗ is called optimal with respect to an initial state x0 ∈ X and a
goal node v′ ∈ V , if there exists a finite control sequence u∗ ∈ U(x0) with p∗ = Φ(x0, u

∗),
ω(u∗) = v′ and

B(x0, u∗) = inf
{
B(x0, u) : u ∈ U(x0), ω(u) = v′

}
. (3.9)

In this case, u∗ is called an optimal control sequence (with respect to x0 and v′). For a fixed
goal node v′ ∈ V , we define the optimal value function b∗ : X → R ∪ {±∞} by

b∗(x0) = inf
{
B(x0, u) : u ∈ U(x0), ω(u) = v′

}
. (3.10)
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3.3. Paths in Time-Dependent Networks

Remark 3.3.5 By convention, we set infu∈U f(u) = ∞ and supu∈U f(u) = −∞ if U = ∅
and f is a real-valued function depending on u. This implies, that b∗(x0) = ∞ if and only
if there exists no finite path from x0 to v′ × T (v′).

Remark 3.3.6 In order to obtain b∗(v′, t) = 0 for all t ∈ T (v′), we assume that there is one
additional control action “termination” in U(v′, t). The application of this control action
generates no additional cost and leads to a terminal state in which no further control action
can be applied, cp. [25, Chapter 2.1].

In Definition 3.3.4, the optimality relates to a given goal node and a varying initial state.
In the same manner, we define an optimal value function with respect to a given source
node and a varying terminal state. In order to facilitate the notation, we introduce the path
travel time function T :

∪
x∈X

{
{x} × U(x)

}
→ R+

0 ,

T (x0, u) =
|u|∑
k=1

[
∆tk + τ(ek, tk−1 +∆tk)

]
, (3.11)

where x0 ∈ X, u =
(
(∆tk, ek)

)
k=1,...,|u| ∈ U(x0) and Φ(x0, u) =

(
(vk, tk)

)
k=0,...,|u|. Note

that T and B coincide if β ≡ τ and δ(v, t,∆t) = ∆t for all v ∈ V , t ∈ R, ∆t ∈ R+
0 . Using

the function T , the arrival time at the terminal node v|u| ∈ V of the path p = Φ((v0, t0), u)
is given by t0 + T ((v0, t0), u).

Definition 3.3.7 A path p∗ is called optimal with respect to a source node v0 ∈ V and a
terminal state (v′, t′) ∈ X, if there exist a departure time t0 ∈ T (v0) and a finite control
sequence u∗ ∈ U(v0, t0) with p∗ = Φ((v0, t0), u∗), p∗|p∗| = (v′, t′) and

B
(
(v0, t0), u∗

)
= inf

{
B
(
(v0, t), u

)
: u ∈ U(v0, t), ω(u) = v′, t+ T

(
(v0, t), u

)
= t′

}
. (3.12)

In this case, u∗ is called an optimal control sequence (with respect to v0 and (v′, t′)). For a
fixed source node v0 ∈ V , we define the reverse optimal value function b∗ : X → R ∪ {±∞}
by

b∗(v
′, t′) = inf

{
B
(
(v0, t), u

)
: u ∈ U(v0, t), ω(u) = v′, t+ T

(
(v0, t), u

)
= t′

}
. (3.13)

In the sequel, we will mostly consider the optimization with respect to a given goal node
and varying initial state. (See Section 4.1 for an overview over possible variants of the
optimal path problem.) In order to distinguish whether the optimality relates to a given
goal node or a given source node, we will use ‘∗’ as a superscript or subscript, respectively
(cp., Definition 3.3.4 and Definition 3.3.7). Note that if G is a strong FIFO network and
either waiting is forbidden everywhere or it is never optimal to wait, then both problems are
conjugate and can be transformed to each other by reversing the time axis and appropriately
transforming the travel time and cost functions [45].
The existence of a path connecting any given pair of nodes in a static directed graph can
be guaranteed if the graph is strongly connected [79, Chapter 16], [135, Chapter 3]. In
particular, if v, v′ are any two nodes in the graph, then there exists a path from v to
v′ and a path from v′ to v if and only if both nodes are contained in the same strongly
connected component of the graph. As a consequence, a variety of solution techniques has
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been developed to compute the maximal connected components of a graph, see, e.g., [135,
Algorithm 3.1, Algorithm 5.3], [79, Corollary 16.8], [9, Chapter 8.6].
The determination of connected components of a time-dependent network is complicated by
the augmentation of the state space by the time variable and the state transitions specified
by the travel time function τ . Since τ ≥ 0 it is impossible to travel backwards in time, and
consequently there can be no pair of states which are reachable one from another if τ > 0.
Moreover, the definition of state space and control constraints causes further difficulties in
the computation of the set of states which are reachable from a given initial state (or a set
of initial states). Since b∗(x) = ∞ if and only if v′ × T (v′) is not reachable from x, the
computation of the optimal value function is intimately related with the determination of
reachable subsets of the state space. We will consider this task in more detail in Section
3.5. It is clear that the computation of reachable subsets of the state space requires the
computation of earliest arrival times and latest departure times, and hence the computation
of fastest paths [142].
Fastest paths are optimal paths in a time-dependent network in which the travel costs
equal the travel times and the waiting costs equal the waiting times. In order to avoid the
definition of a second time-dependent network we replace B by T in Definition 3.3.4 and
Definition 3.3.7 to obtain the optimal travel time function t∗ : X → R+

0 ∪ {∞}

t∗(x0) = inf
{
T (x0, u) : u ∈ U(x0), ω(u) = v′

}
(3.14)

with respect to a given goal node v′ ∈ V , and the reverse optimal travel time function
t∗ : X → R+

0 ∪ {∞}

t∗(v
′, t′) = inf

{
T
(
(v0, t), u

)
: u ∈ U(v0, t), ω(u) = v′, t+ T

(
(v0, t), u

)
= t′

}
(3.15)

with respect to a given source node v0 ∈ V . In the following, the corresponding control
sequences will be called time-optimal control sequences, and the corresponding paths will
be called fastest paths. As before, in order to distinguish whether the optimality relates
to a given goal node or a given source node, we will use ‘∗’ as a superscript or subscript,
respectively.
In some applications the computation of optimal paths is subject to additional constraints
which are based on optimal travel time, or on a combination of both cost criteria. For
example, the travel time associated with a fuel-optimal route might be constrained to be no
longer than 110% of the travel time of a fastest route. In order to adapt such constraints to
our model, we can define the set of admissible arrival times T (v) depending on the optimal
travel time. We will explicitly deal with such problems in Section 7.3.
Let us conclude this section with the discussion of a simple example. Consider the time-
dependent network in Figure 3.3, which is a FIFO-network. Let T (v0) = T (v′) = R and
consider the departure time t0 = 0 at the source node v0. If waiting is forbidden at v0,
i.e., if ∆T (v0, t0) = {0} for all t0 ∈ R, then the cost associated with the control sequence
u = (uk)k=1,...,n,

uk =

{
(0, e1), k < n
(0, e2), k = n

, (3.16)

is 2 + 21−n. Since all admissible control sequences are of the form (3.16), there exists no
finite optimal control sequence and no finite optimal path in this example. This situation
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v0 v′

e1

e2

τ(e1, t) =
|2− t|

2
, τ(e2, t) = 1,

β(e1, t) =
|2− t|

2
, β(e2, t) = |4− 2t|,

δ(v0, t,∆t) = ∆t.

Figure 3.3.: Time-dependent network in which no finite optimal path needs to exist.

contrasts to the static case, in which (given that the goal node is reachable from the source
node) a simple optimal path exists if all costs are nonnegative, cp. [9, Section 4.1]. In order
to deal with such situations, a concept of infinite paths has been developed which defines
an infinite path as the limit of an invariant generation sequence (see [138] for details).
Considering a sequence of control sequences of the form (3.16) with increasing length n, the
corresponding sequence of paths would be invariant and their limit would be optimal in the
sense of [138]. Since infinite paths are not practicable in applications, we will focus on finite
paths in the sequel. In Section 4.2 we will prove the existence of (finite) optimal paths under
fairly weak assumptions, and in Chapter 6 we will extend these results to time-dependent
networks with uncertain travel times.
Now consider the case in which unrestricted waiting is allowed at the source node v0, i.e.,
∆T (v0, t0) = R+

0 for all t0 ∈ R. In this case, it is easily seen that an optimal control
sequence is given by u = (2, e2), resulting in the travel cost 2. Hence, in contrast to the
computation of fastest paths in FIFO-networks, any optimization procedure must take the
hybrid structure of the time-dependent network into account, optimizing with respect to
both the optimal edge and the optimal waiting time. We will discuss two solution techniques
in the Chapters 8 and 9.

3.4. Turn Restrictions and the Dual Network

In the preceding sections of this chapter we have introduced time-dependent networks with
state space and control constraints. In this section we additionally consider turn restrictions,
which can be understood as constraints on the set of admissible control sequences. A
description of such turn restrictions is contained in most digital maps of the road network
and must be incorporated into the routing process in automotive navigation systems. Since
certain turn restrictions may be relevant only for a small group of vehicles (e.g., trucks),
they are usually defined separately from the road network. Motivated by the practical
relevance of these constraints, we extend the results in [105], [7], [172], [11] to time-dependent
networks with state-space and control constraints. In particular, starting with a time-
dependent network with turn restrictions, we construct a time-dependent network without
turn restrictions and prove the one-to-one correspondence of the paths in both networks.

Definition 3.4.1 A time-dependent network with turn restrictions Gρ is an octupel Gρ =
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3. Time-Dependent Networks

(V,E, ρ, τ, σ;β, δ, ι), where G = (V,E, τ ;β, δ) is a time-dependent network and

ρ :
∪
v∈V

{
E−(v)× E+(v)} → {0, 1},

σ :
∪
v∈V

{
E−(v)× E+(v)} × R→ R+

0 ,

ι :
∪
v∈V

{
E−(v)× E+(v)} × R→ R,

are a turn restriction function, a turn travel time function and a turn cost function, respec-
tively. A control sequence u =

(
(∆tk, ek)

)
k=1,...,n

is said to respect the turn restrictions ρ if

ρ(ek, ek+1) = 1 for all k = 1, ..., n− 1.

Remark 3.4.2 The first argument (e−, e+) ∈ E × E of σ, ι denotes the turn maneuver at
the node v = ω(e−) = α(e+) which is effected at the point in time specified by the second
argument.

As in Section 3.2, we associate a set of admissible arrival times Tρ(v) ⊂ R to each v ∈ V ,
define the state space Xρ =

∪
v∈V

{
{v} × Tρ(v)

}
and a set of admissible waiting waiting

times ∆Tρ(x) ⊂ R+
0 for each x ∈ Xρ.

The functions σ, ι allow an explicit modeling of the time and cost which are necessary
to perform a turn maneuver in the network. They are commonly used in the field of
automotive navigation systems since they allow a larger set of criteria with respect to which
a path can be optimized [172]. Moreover, they allow a more realistic modeling of a moving
object in the network, since straight-ahead driving is usually associated with a lower travel
time and cost than a turn maneuver. The incorporation of the turn travel time and turn
cost require a slight modification of the definition of the state transitions (3.1) and the
associated cost (3.8), which are defined as follows for time-dependent networks with turn
restrictions. Let (v0, t0) ∈ Xρ and u = (uk)k=1,...,n with uk = (∆tk, ek) ∈ R+

0 ×E. The path
p =

(
(vk, tk)

)
k=0,...,n

associated with the application of u in (v0, t0) is given by

vk = ω(ek), k = 1, ..., n,

tk = tk−1 +∆tk + τ(ek, tk−1 +∆tk)

+ σ
(
ek, ek+1, tk−1 +∆tk + τ(ek, tk−1 +∆tk)

)
, k = 1, ..., n− 1,

tn = tn−1 +∆tn + τ(en, tn−1 +∆tn).

As a consequence of this definition, waiting in the road network takes place before traversing
a road segment and after crossing a junction. The control sequence u is said to be admissible
for x ∈ Xρ in Gρ, if ∆tk ∈ ∆Tρ(vk−1, tk−1), ek ∈ E+(vk−1, (vk, tk) ∈ Xρ for all k = 1, ..., n,
and u respects the turn restrictions. The set of all control sequences which are admissible
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3.4. Turn Restrictions and the Dual Network

for x ∈ Xρ in Gρ is denoted by Uρ(x). In a similar manner as in Section 3.3 we define Bρ,

Bρ
(
(v0, t0), u

)
=

n−1∑
k=1

[
δ(vk−1, tk−1,∆tk) + β(ek, tk−1 +∆tk)

+ ι
(
ek, ek+1, tk−1 +∆tk + τ(ek, tk−1 +∆tk)

)]
+ δ(vn−1, tn−1,∆tn) + β(en, tn−1 +∆tn), (3.17)

where vk, tk are defined above for k = 1, ..., n.
Turn restrictions and turn costs complicate the application of the principle of dynamical
programming, which is the basic principle of almost all practically relevant solution tech-
niques for the computation of optimal paths such as, e.g., [66], [56], [80], [123], [138], [127],
[143], [144], [38], [39], [47], [54]. Since turn restrictions are no state-dependent constraints,
the optimal control sequence associated with an intermediate state depends on the manner
in which this state has been reached from the initial state. This violates the principle of
optimality [22]. In order to avoid this problem, the state space must be modified appropri-
ately. Among the possible transformations of static networks, the dual network has proven
to be the most suitable [7], [172]. Note that modeling each junction as two sets of nodes
(i.e., access nodes to the junction and departure nodes from the junction) and a set of
edges (i.e., the possible turns in the junction) leads to a significant increase in the number
of nodes and edges of the resulting network. Since the worst-case time complexity of all
optimal path algorithms is O(f(|E|, |V |)), where f is a superlinear function of the number
of nodes and edges, this network transformation has proven to be inefficient. Both network
transformations are illustrated in Figure 3.4.
There are several notions of duality in graph theory, including combinatorial and geometric
duality [79, Chapter 11]. We will use a concept of duality which differs from those defini-
tions and which follows the concepts introduced in [105] and used in [7], [172], [91]. Note
that the dual network was termed auxiliary network in [11].

Definition 3.4.3 Let Gρ = (V,E, ρ, τ, σ;β, δ, ι) denote a time-dependent network with turn
restrictions. For each v ∈ V , let Tρ(v) ⊂ R denote the set of admissible arrival times at
v and, for each x ∈ Xρ, let ∆Tρ(x) ⊂ R+

0 denote the set of admissible waiting times at x. We
define the time-dependent network with turn restrictions GTρ = (V T , ET , ρT , τT , σT ;βT , δT , ιT )
by

V T = E,

ET =
{
(e−, e+) ∈ V T × V T : e− ∈ E−(v), e+ ∈ E+(v), ρ(e−, e+) = 1

}
,

and

τT (eT , t) = τ(e−, t) + σ(eT , t+ τ(e−, t)), if eT = (e−, e+) ∈ E × E,
βT (eT , t) = β(e−, t) + ι(eT , t+ τ(e−, t)), if eT = (e−, e+) ∈ E × E,

δT (vT , t,∆t) = δ(α(e), t,∆t), if vT = e ∈ E,
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v
e−1 e+1

e−2

e+2

(a) Original graph (V,E), only straight-ahead driving is allowed by
a turn restriction function ρ.

e−1 e+1

e−2

e+2

v

(b) Transformed graph (V ′, E′) resulting from the splitting of the junction
into access nodes, departure nodes and turns.
|V ′| =

∑
v∈V (deg−(v) + deg+(v)) = 2|E|, |E′| ≤ |E| +

∑
v∈V (deg−(v) ·

deg+(v))

e−1

e+2

e−2

e+1

v

(c) Dual graph (V T , ET ) in which the primal edges are interpreted as nodes.
|V T | = |E|, |ET | ≤

∑
v∈V (deg−(v) · deg+(v))

Figure 3.4.: Illustration of two possible network transformations which allow the incorpo-
ration of turn restrictions into dynamic-programming-based algorithms.
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as well as ρT ≡ 1, σT ≡ 0, ιT ≡ 0. Moreover, we define

T Tρ (v
T ) = Tρ(α(e)), if vT = e ∈ E,

∆T Tρ (v
T , t) = ∆Tρ(α(e), t), if vT = e ∈ E.

GTρ is called the dual of Gρ, and T
T
ρ ,∆T

T
ρ are called the dual constraints of Tρ,∆Tρ.

Remark 3.4.4 Note that the introduction of time-dependent turn restrictions would result
in constraints on the traversal times of the edges in the dual network. Such constraints
might be used, e.g., to model the impact of traffic lights in the road network [11]. As we
have mentioned in Remark 3.2.6, the incorporation of such constraints into the concept of
time-dependent networks is possible but will not be pursued in this thesis.

It is easily seen that GTρ is indeed a time-dependent network with turn restrictions in the

sense of Definition 3.4.1. We will denote the state space of GTρ by XT
ρ , the set of admissible

controls for xT ∈ XT
ρ by UTρ (x

T ) and the path cost function will be denoted by BTρ , cf.
(3.17).
Note, that the turn restrictions and turn costs in the dual network are trivial and allow
the definition of the equivalent time-dependent network GT = (V T , ET , τT ;βT , δT ) with
constraints T T = T Tρ ,∆T

T = ∆T Tρ , in which the set of admissible control sequences UT (xT )

for xT ∈ XT = XT
ρ satisfies UT (xT ) = UTρ (x

T ). A similar equivalence of the time-dependent
network with and without turn restrictions holds for the second dual. In the second dual
of the road network each node corresponds to an unrestricted turn at a junction and each
edge corresponds to the same road segment as in the primal network.
In order to use the dual network for the computation of optimal paths in the primal network,
we need a further extension of Definition 3.4.3, which allows a one-to-one correspondence
between the initial and terminal states of the paths in the primal and the dual network [7],
[172], [11]. Let V0 ⊂ V be a set of source nodes and let V ′ ⊂ V be a set of goal nodes with
V0 ∩ V ′ = ∅. We define the time-dependent network G̃ = (Ṽ , Ẽ, τ̃ ; β̃, δ̃) by

Ṽ = V T ∪ V0 ∪ V ′, (3.18)

Ẽ = ET ∪
∪
v0∈V0

{
{v0} × E+(v0)

}
∪
∪
v′∈V ′

{
E−(v′)× {v′}

}
, (3.19)

τ̃(ẽ, t) =


τT (eT , t), if ẽ = eT ∈ ET
0, if ẽ ∈ V0 × E
τ(e−, t), if ẽ = (e−, v′) ∈ E × V ′

, (3.20)

β̃T (ẽ, t) =


β(eT , t), if ẽ = eT ∈ ET
0, if ẽ ∈ V0 × E
β(e−, t), if ẽ = (e−, v′) ∈ E × V ′

, (3.21)

δ̃T (ṽ, t,∆t) =

{
δT (vT , t,∆t), if ṽ = vT ∈ V T

0, if ṽ ∈ V0 ∪ V ′ . (3.22)
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In G̃, we consider the state space and control constraints given by

T̃ (ṽ) =

{
T T (vT ), if ṽ = vT ∈ V T

Tρ(v), if ṽ ∈ V0 ∪ V ′ , (3.23)

∆̃T (ṽ, t) =

{
∆T T (vT , t), if ṽ = vT ∈ V T

{0}, if ṽ ∈ V0 ∪ V ′ . (3.24)

It is easily seen, that G̃ is indeed a time-dependent network in the sense of Definition 3.2.1.
The associated state space X̃, admissible control sequences Ũ and path cost function B̃ are
defined as in (3.2) and Section 3.3.

Theorem 3.4.5 Let Gρ = (V,E, ρ, τ, σ;β, δ, ι) be a time-dependent network with turn re-
strictions and let the arrival time and waiting time restrictions be given by Tρ,∆Tρ. Let

X̃, Ũ , B̃ be defined as above and denote

Υρ =
∪

x=(v,t)∈Xρ:v∈V0

{(x, u) : u ∈ Uρ(x), ω(u) ∈ V ′},

Υ̃ =
∪

x̃=(ṽ,t)∈X̃:ṽ∈V0

{(x̃, ũ) : ũ ∈ Ũ(x̃), ω(ũ) ∈ V ′}.

There exists a bijective mapping Ψ : Υρ → Υ̃ satisfying Bρ(x, u) = B̃
(
Ψ(x, u)

)
.

Proof Let (x, u) ∈ Υρ, x = (v, t), u =
(
(∆tk, ek)

)
k=1,...,n

and v′ = ω(u). We define x̃ = x

and ũ = (ũk)k=1,...,n+1 by

ũ1 =
(
0, (v, e1)

)
,

ũk =
(
∆tk−1, (ek−1, ek)

)
, k = 2, ..., n,

ũn+1 =
(
∆tn, (en, v

′)
)
.

As an immediate consequence of the above construction (3.18)-(3.24) we obtain x̃ ∈ X̃ and
ũ ∈ Ũ(x̃). Clearly, ω(ũ) ∈ V ′. An easy computation yields Bρ(x, u) = BTρ (xT , uT ).
Now let (x̃, ũ) ∈ Υ̃, ũ =

(
(∆tk, ẽk)

)
k=1,...,n

. We define x = x̃ and u = (uk)k=1,...,n−1 by

uk−1 =
(
∆tk, α(ẽk)

)
, k = 2, ..., n.

As an immediate consequence of the above construction (3.18)-(3.24) we obtain x ∈ Xρ and

u ∈ Uρ(x). An easy computation yields Bρ(x, u) = B̃(x̃, ũ). �

Based on the result in Theorem 3.4.5, we can compute optimal paths in the extended dual
network G̃ instead of computing optimal paths in the primal network with turn restrictions
Gρ. The correspondence of the paths in Gρ and G̃ is illustrated in Figure 3.5. Henceforth,
we will only consider time-dependent networks without turn restrictions.

3.5. Reachability in Time-Dependent Networks

The computation of optimal paths in time-dependent networks is intimately related to the
computation of the reachable subsets of the state space, since b∗(x) < ∞ if and only if
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v0 v1 v2 v3
e1 e2 e3

δ(v0, ·, ·)
β(e1, ·)

δ(v1, ·, ·)
β(e2, ·)

δ(v2, ·, ·)
β(e3, ·)

ι((e1, e2), ·) ι((e2, e3), ·)

(a) Path in Gρ

v0 e1 e2 e3 v3
(v0, e1) (e1, e2) (e2, e3) (e3, v3)

δ(α(e1), ·, ·)
β(e1, ·) + ι((e1, e2), ·)

δ(α(e2), ·, ·)
β(e2, ·) + ι((e2, e3), ·)

δ(α(e3), ·, ·)
β(e3, ·)

(b) Path in G̃

Figure 3.5.: Correspondence of the paths and costs in Gρ and G̃.

there exists an admissible control sequence u ∈ U(x) with ω(u) = v′. Let us consider a
time-dependent network G = (V,E, τ ;β, δ) with arrival time constraints T and waiting time
constraints ∆T . Let us further suppose that a source node v0 ∈ V and a goal node v′ ∈ V
are given. When computing an optimal path from some x0 ∈ {v0} × T (v0) to {v′} × T (v′),
we only need to take into account those states xR ∈ X which are reachable from x0, and for
which there exists a u ∈ U(xR) with ω(u) = v′. Keeping this simple observation in mind
when constructing solution methods can lead to a significant decrease in computational
complexity.
In this section, we introduce the sets of reachable points in time associated with the nodes of
the network. We generalize the concept of strong connectivity to time-dependent networks
and prove that the sets of reachable points in time can be computed in polynomial time
under appropriate assumptions.

Definition 3.5.1 Let a time-dependent network G = (V,E, τ ;β, δ) with arrival time con-
straints T and waiting time constraints ∆T as well as a source node v0 ∈ V and a goal node
v′ ∈ V be given. For v ∈ V , we define the set of reachable points in time TR(v) by

TR(v) =
{
t ∈ T (v) : ∃p ∈ P with p0 ∈ {v0} × T (v0), p|p| ∈ {v′} × T (v′)

and pk = (v, t) for some k ∈ {0, ..., |p|}
}
. (3.25)

The reachable part of the state space is denoted by

XR =
∪
v∈V

{
{v} × TR(v)

}
. (3.26)

Observe that, according to the above definition, a source node v0 ∈ V and a goal node
v′ ∈ V must be fixed in order to define TR(v) for v ∈ V .
The following lemma generalizes the concept of strong connectivity [9, p.27] to time-
dependent networks.
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Lemma 3.5.2 Let a time-dependent network G = (V,E, τ ;β, δ) with arrival time con-
straints T and waiting time constraints ∆T as well as a source node v0 ∈ V and a goal
node v′ ∈ V be given. Suppose that τ is continuous, T (v) = R for all v ∈ V and (V,E) is
strongly connected. If

lim
t→−∞

t+ τ(e, t) = −∞, ∀e ∈ E, (3.27)

and there exists a continuous function ∆t : X → R+
0 with ∆t(x) ∈ ∆T (x) for all x ∈ X and

lim
t→−∞

t+∆t(v, t) = −∞, ∀v ∈ V, (3.28)

then TR(v) = R for all v ∈ V .

Proof Let v ∈ V . Since (V,E) is strongly connected, there exists a connected edge sequence
(ek)k=1,...,k0 with α(e1) = v0, ω(ek0) = v and a connected edge sequence (e′k)k=1,...,k′ with
α(e′1) = v, ω(e′k′) = v′. Let t0 ∈ R be arbitrary but fixed. Since ∆t(x) ∈ ∆T (x) for all
x ∈ X and T (v) = R for all v ∈ V , the control sequence u(t0) =

(
uk(t0)

)
k=1,...,k0+k′

and the

path p(t0) =
(
xk(t0)

)
k=0,...,k0+k′

defined recursively by x0(t0) = (v0, t0),

uk(t0) =
(
∆t
(
xk−1(t0)

)
, ek
)
, xk(t0) = φ

(
xk−1(t0), uk(t0)

)
, k = 1, ..., k0,

uk(t0) =
(
∆t
(
xk−1(t0)

)
, e′k−k0

)
, xk(t0) = φ

(
xk−1(t0), uk(t0)

)
, k = k0 + 1, ..., k0 + k′,

are admissible. Let θk : R→ R, θk(t0) = t0 + T
(
(v0, t0), u1:k(t0)

)
, k = 1, ..., k0 + k′. An in-

duction over k yields the continuity of θk and (3.27) and (3.28) imply that limt0→−∞ θk(t0) =
−∞. Since τ,∆t ≥ 0 we also have limt0→∞ θk(t0) = ∞. As a consequence of the inter-
mediate value theorem [68, p.97, Satz 1], for each t ∈ R there exists a t0(t) ∈ R with
θk0
(
t0(t)

)
= t. Using p

(
t0(t)

)
= Φ

((
v0, t0(t)

)
, u
(
t0(t)

))
in (3.25) yields TR(v) = R. �

In the remainder of this section, we assume that 0 ∈ ∆T (x) for all x ∈ X. If 0 ̸∈ ∆T (x)
for some x ∈ X, but ∆T (x) is closed for all x ∈ X, then we define the real-valued function
∆T : X → R+

0 , ∆T (v, t) = min∆T (v, t), denote

∆̃T (v, t) = ∆T (v, t)−∆T (v, t),

τ̃(e, t) = ∆T (α(e), t) + τ
(
e, t+∆T (α(e), t)

)
,

β̃(e, t) = β
(
e, t+∆T (α(e), t)

)
,

δ̃(v, t,∆t) = δ
(
v, t,∆t+∆T (v, t)

)
,

and consider the transformed time-dependent network G̃ = (V,E, τ̃ ; β̃, δ̃) with the con-

straints specified by T, ∆̃T . It is easily seen that 0 ∈ ∆̃T (x) for all x ∈ X. Moreover, if
τ,∆T are both continuous and satisfy (3.4), then G̃ is a FIFO network. Note that this con-
struction does not affect the existence of optimal paths if ∆T is continuous, cp. Assumption
4.2.3.
In many applications the computation of optimal paths is subject to an earliest departure
time t ∈ R at the initial location v0 and a latest arrival time t ∈ R at the destination
v′. We incorporate such (additional) constraints into our model by replacing T (v0) by
T (v0) ∩ [ t,∞) and T (v′) by T (v′) ∩ (−∞, t ]. In order to keep the notation simple, we
assume that t ∈ T (v0), t ∈ T (v′) and that these replacements have already been performed
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when defining the sets of admissible arrival times T (v0), T (v
′). The earliest departure time

at v0 and the latest arrival time at v′ are then given by t = minT (v0) and t = maxT (v′),
respectively.
The earliest arrival time at v ∈ V with respect to the initial state (v0, t0), t0 ∈ T (v0), is
defined as

t t0(v) =

{
t0, if v = v0
inf{t0 + T

(
(v0, t0), u

)
: u ∈ U(v0, t0), ω(u) = v}, if v ̸= v0

,

the latest departure time at v ∈ V with respect to the terminal state (v′, t′), t′ ∈ T (v′), is
defined as

tt′(v) =

{
t′, if v = v′

sup{t ∈ T (v) : ∃u ∈ U(v, t), ω(u) = v′, t+ T
(
(v, t), u

)
= t′}, if v ̸= v′

.

By allowing the variation of the possible departure and arrival times we define the earliest
arrival time tR(v) at v ∈ V with respect to the source node v0 and the latest departure time
tR(v) at v ∈ V with respect to the goal node v′:

tR(v) =

{
t, if v = v0
inft0∈T (v0) t t0(v), if v ̸= v0

, (3.29)

tR(v) =

{
t, if v = v′

supt′∈T (v′) tt′(v), if v ̸= v′
. (3.30)

Using the FIFO-property and an inductive argument, it is easily seen that tR(v) = tt(v)
and tR(v) = tt(v) in a time-dependent FIFO-network without arrival time and waiting time
constraints. In the next lemma, we prove the equivalence of the fastest path problem in
time-dependent FIFO-networks with and without certain time constraints.

Assumption 3.5.3 Let G = (V,E, τ ;β, δ) be a time-dependent FIFO-network with con-
tinuous travel time function. Let a source node v0 ∈ V and a goal node v′ ∈ V be given
and denote t = minT (v0), t = maxT (v′). Denote by t˜t(v) the earliest arrival time of a

path from (v0, t ) to v and by t̃t(v) the latest departure time of a path from v to (v′, t ) in

the unconstrained network, let T̃R(v) = [ t˜t(v),∞)∩ (−∞, t̃t(v)] for v ∈ V and suppose that

T̃R(v0) ̸= ∅, T̃R(v′) ̸= ∅,

0 ∈ ∆T (v, t), ∀(v, t) ∈ X, (3.31)

T (v) ⊃ T̃R(v), ∀v ∈ V. (3.32)

Lemma 3.5.4 Let G = (V,E, τ ;β, δ) be a time-dependent network in which Assumption
3.5.3 holds and let v ∈ V with T̃R(v) ̸= ∅. Then there exist a simple fastest path without
waiting from (v0, t) to

(
v, t˜t(v)) and a simple fastest path without waiting from

(
v, t̃t(v)

)
to

(v′, t). The computation of these paths can be carried out in O
(
|E|+ |V | log |V |

)
time.

Proof It is sufficient to prove the assertion for time-optimal control sequences and fastest
paths emanating from v0. The result for time-optimal control sequences and fastest paths
terminating in v′ then follows in a similar manner as in [45]. According to [137, Corol-
lary 1 and Section 3.2], there exists a simple fastest path p =

(
(vk, tk)

)
k=0,...,n

from

49



3. Time-Dependent Networks

(v0, t0) to
(
v, t˜t(v)) in the unconstrained network which is generated by some u(v0, v) =(

(0, ek)
)
k=1,...,n

at (v0, t0), t0 = t. We now prove that u(v0, v) ∈ U(v0, t0) in the constrained

network. Since t˜t(v) ≤ tt(v), this implies that t˜t(v) = tt(v), p is a fastest path and u(v0, v)
is a time-optimal control sequence in the constrained case.
We clearly have uk(v0, v) ∈ ∆T (vk−1, tk−1)×E+(vk−1), since 0 ∈ ∆T (v, t) for all (v, t) ∈ X.
It remains to show that (vk, tk) ∈ X for all k = 1, ..., n. Since the FIFO-property implies
that t 7→ t + τ(e, t) is monotone increasing in t ∈ R for all e ∈ E, t0 = t and an induction
over k immediately yield tk ≥ t˜t(vk) for all k = 1, ..., n. Now, suppose that tK > t̃t(vK)

for some K ∈ {1, ..., n − 1}. Let u(v, v′) denote a control sequence connecting
(
v, t̃t(v)

)
to

(v′, t) in the unconstrained network. Then the concatenation of uK+1:n(v0, v) and u(v, v′)
defines a control sequence whose application at (vK , tK) generates a path which terminates
at some (v′, t′). Since tn < t̃t(vn) by assumption, the FIFO-property and an inductive
argument yield t′ ≤ t. This contradicts the fact that t̃t(vK) is the latest departure time at

vK . Consequently, tk ∈ T̃R(vk) ⊂ T (vk) for all k = 1, ..., n, and hence u(v0, v) ∈ U(v0, t0).
A slightly modified version of Dijkstra’s shortest path algorithm [56] can be used to com-
pute simple fastest paths without waiting in an unconstrained FIFO network [10]. Using Fi-
bonacci heap implementation [69], this algorithm can be implemented in O(|E|+|V | log |V |)
time. �

Remark 3.5.5 Note that in sparse networks, i.e., networks in which |E| = O(|V |), the
complexity bound of Lemma 3.5.4 becomes O(|V | log |V |). The road network, in which the
number of roads emanating from any junction is bounded, is a sparse network and satisfies
the FIFO-property according to Lemma 2.4.1.

The preceding Lemma shows that, under Assumption 3.5.3, tR(v) and tR(v) can be deter-
mined from fastest paths with fixed departure time t at v0 and fixed arrival time t at v′ in
the unconstrained network, respectively. In particular, tR(v) = t˜t(v) and tR(v) = t̃t(v) for
all v ∈ V . The following result provides the structure of the set of reachable points in time
TR(v), cf. Definition 3.5.1.

Lemma 3.5.6 Let G = (V,E, τ ;β, δ) be a time-dependent network in which Assumption
3.5.3 holds. Then TR(v) = [ tR(v),∞) ∩ (−∞, tR(v)] for all v ∈ V .

Proof Let (v, t) ∈ X be arbitrary but fixed. Clearly, if t < tR(v), there is no feasible path
from v0 to (v, t), which departs at v0 at or after tR(v0). Similarly, if t > tR(v), there is
no feasible path from (v, t) to v′, which terminates at v′ at or before tR(v

′). Suppose that
tR(v) ≤ tR(v) and let t ∈ [ tR(v), tR(v)]. We now construct a feasible path from v0 through
(v, t) to v′, which departs at or after tR(v0) and terminates at or before tR(v

′). Denote
by u(v0, v), u(v, v

′) control sequences corresponding to fastest paths from
(
v0, tR(v0)

)
to

v, and from v to
(
v′, tR(v

′)
)
, respectively. Without loss of generality, we may assume

that u(v0, v), u(v, v
′) satisfy ui(v0, v), uj(v, v

′) ∈ {0} × E for all i = 1, ..., |u(v0, v)|, j =
1, ..., |u(v, v′)|. As a consequence of the FIFO-property and the same reasoning as in Lemma
3.5.4, we obtain u(v, v′) ∈ U(v, t) for all t ∈ [ tR(v), tR(v)]. Similarly, we obtain the existence
of a t0 ∈ TR(v0) such that

u(v0, v) ∈ U(v0, t0) ⇐⇒ t0 ∈ [ t, t0].

Suppose that t0 + T
(
(v0, t0), u(v0, v)

)
< tR(v), denote n = |u(v0, v)|, and denote p =

Φ
(
(v0, t0), u(v0, v)

)
=
(
(vk, tk)

)
k=0,...,n

. Then we must have tK = tR(vK) for some K < n.
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However, this contradicts the fact that tR(vK) is the latest departure time at vK , since

tK + T
(
(vK , tK), uK+1:n(v0, v)

)
< tR(v),

and hence there exists an t̃K > tK such that

t̃K + T
(
(vK , t̃K),

(
uK+1:n(v0, v), u(v, v

′)
))
≤ tR(v) + T

(
(v, tR(v)), u(v, v

′)
)
= t.

Hence, t0 + T
(
(v0, t0), u(v0, v)

)
= tR(v). Since τ is continuous, for any t ∈ TR(v), [68, p.97,

Satz 1] yields the existence of a t0(t) ∈ TR(v0) such that t0(t) + T
((
v0, t0(t)

)
, u(v0, v)

)
= t

and
(
u(v0, v), u(v, v

′)
)
∈ U

(
v0, t0(t)

)
. �

By combining Lemma 3.5.4 and Lemma 3.5.6 we obtain the following corollary:

Corollary 3.5.7 Let G = (V,E, τ ;β, δ) be a time-dependent network in which Assumption
3.5.3 holds. Then TR(v) can be determined in O

(
|E|+ |V | log |V |

)
time for all v ∈ V .
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4. Optimal Paths in Time-Dependent
Networks

In this chapter, we first provide an overview over different problem variants of the time-
dependent optimal path problem, cf. Section 4.1. In Section 4.2, we prove the lower
semicontinuity of the optimal value function and the existence of optimal paths in time-
dependent networks with arrival time and waiting time constraints. This result can easily
be extended to the case in which the travel time function may assume negative values,
which is of particular interest in the context of time-dependent optimal flow problems. We
derive the dynamic programming equations which are associated with the time-dependent
optimal path problem in Section 4.3 and conclude this chapter by briefly discussing order
relations on time-dependent networks, cf. Section 4.4.

4.1. Problem Variants and Literature Overview

The computation of shortest paths in weighted and directed networks has been subject to
research for more than five decades by now, but it has never lost its relevance in up-to-date
applications. Although the main ideas for solving the problem date back to the 1950ies,
cf. [56] and [23], there has been a great number of improvements in the fields of algorithm
engineering, discrete optimization and operations research, see, e.g., [80], [69], [162], [20].
Besides these direct applications, shortest path problems also arise as subproblems in net-
work optimization [92], [158], [133], and even - as a consequence of certain discretization
procedures - in the field of continuous control theory [96].
In [42], the optimal path problem in time-dependent networks has been explicitly intro-
duced after it had been indirectly mentioned in the context of maximal flows in [67]. Based
on these early results a variety of different network models and optimization problems have
been introduced. There are two approaches to modeling the time variable of the time-
dependent network, i.e., the discrete-time approach followed in, e.g., [38], [10], [35], [36] and
the continuous-time approach followed in, e.g., [138], [47], [54], [142]. While the problem
of computing optimal paths in a discrete-time time-dependent network can be analyzed
and solved with the methods of graph theory and discrete mathematics, both discrete and
continuous methods must generally be involved if the time-variable is continuous and the
resulting time-dependent network is a hybrid mathematical system. Furthermore, the opti-
mization problems can be distinguished between the optimization with respect to the travel
time [101], [137], [10], [47] and the optimization with respect to a cost different from travel
time [39], [48], [10], [38], [138].
The time-dependent optimal path problem can be formulated both as a linear program in
the space of positive Borel measures [142] and based on the theory of dynamic program-
ming [138]. While we pursue the latter approach, the characterization of optimal paths by
optimal flows in the network allows a number of interesting theoretical results such as the
development of a duality theory [133], [158]. However, the restriction of the travel times
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to be constant functions and the size of the associated linear program essentially limit the
applicability of the linear programming formulation of the time-dependent optimal path
problem in applications in which the underlying network is large or the assumption of con-
stant travel times is too restrictive.
Due to the relevance of the travel time for the determination of the cost of a path, optimal
path problems in which the cost is different from travel time bear a certain resemblance
to multicriterial optimal path problems [25, Section 2.3.4], [163]. Thus it is not surprising
that the optimal path problem in time-dependent networks is generally NP-hard if the cost
is different from travel time. This can be proved by a reduction to the number partition
problem [10, Theorem 2]. Considering a time-dependent network with a discrete time vari-
able in which variations of the travel time and cost functions take place only at a finite
number of points in time, an algorithm has been developed which computes optimal paths
in pseudo-polynomial time [38]. However, no similar results hold if the time variable is con-
tinuous, cf. Theorem 7.3.3. If the time-dependent network satisfies the FIFO property (cf.
Definition 3.2.7) and waiting is either unrestricted or forbidden everywhere in the network,
the time-dependent fastest path problem is of the same order of complexity as the optimal
path problem in static networks [137]. In particular, the worst-case time complexity of the
fastest path problem is O(|V | log |V |+ |E|). However, if the FIFO-property is violated and
waiting is forbidden, then the fastest path problem is NP-hard [137].
As a consequence of these hardness results, few computational experiments have been car-
ried out concerning the computation of optimal paths in time-dependent networks with
cost different from travel time. By contrast, considering the computation of fastest paths
in FIFO-networks, a variety of speed-up techniques have been developed, which allow the
computation of fastest paths in a split second even in very large networks such as the Eu-
ropean road network [132], [54], [53]. Our computational results in Appendix A show that
such query times are not yet attainable even in the small network of the German city of
Ingolstadt if the cost is different from travel time.
As we have motivated in Chapter 2 and Section 3.1 by means of the road network, the
travel times and travel costs cannot be determined or predicted with certainty in many
applications. In order to cope with this situation the optimal path problem has been ex-
tended to stochastic networks [134], [139], [123], and time-dependent stochastic networks
[167], [70], [128], [71], [72], [104]. Since the stochastic time-dependent optimal path problem
does not allow closed analytic solutions in general [70], we are considering the uncertain
time-dependent optimal path problem in the framework of worst-case-optimization, namely
in the framework of min-max-control [25, Section 1.6], [176], [27], [99], [179], [152], in Chap-
ter 6.
In any of the above problem settings there are again a number of different optimal path
problems. Without raising the claim of completeness, we have illustrated the most common
problem variants of the time-dependent optimal path problem in Figure 4.1. The one-to-one
optimal path problem consists of the computation of optimal paths from one source node
to one goal node, whereas the one-to-all optimal path problem consists of the computation
of optimal paths from one source node to all other nodes in the network. Since most opti-
mal path algorithms are based on the principle of dynamic programming, most one-to-one
solution methods rely on one-to-all solution methods which are terminated as soon as the
goal node is reached with the optimal cost. The all-to-one optimal path problem consists
of the computation of optimal paths to one goal node from all other nodes in the network
and is equivalent to the one-to-all optimal path problem if the direction of optimization
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Figure 4.1.: Problem variants of the time-dependent optimal path problem.
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can be reversed without changing the mathematical structure of the optimization problem.
Finally, the all-to-all optimal path problem consists of the computation of optimal paths
between any pair of nodes in the network.
In time-dependent networks, the direction of optimization cannot be generally reversed
without changing the mathematical structure of the optimization problem. The computa-
tion of fastest paths in FIFO-networks constitutes an exception of this situation. Yet, if the
travel time function is not bijective or waiting times must be considered in the optimization
procedure, we must distinguish between the forward (cp. Definition 3.3.4) and the reverse
optimal path problem (cp. Definition 3.3.7). Let us assume that one source node v0 ∈ V
to one goal node v′ ∈ V have been fixed (i.e., let us consider the one-to-one optimal path
problem), which can be seen as a problem variant from which the other variants can be
constructed. In the forward problem, we then further distinguish between a fixed departure
time and a varying departure time (taking values in a certain set of departure times). Here,
for each departure time t0 under consideration, the optimal path from (v0, t0) to v′ must
be determined, whereat the arrival time t′ ∈ T (v′) is arbitrary. Similarly, in the reverse
optimal path problem, we distinguish between a fixed arrival time and a varying arrival
time (taking values in a certain set of arrival times). At this, for each arrival time t′ under
consideration, the optimal path from v0 to (v′, t′) must be determined, whereat the depar-
ture time t0 ∈ T (v0) at v0 is arbitrary.
As we have anticipated in Section 3.3, we will mostly consider the optimization with respect
to a given goal node and varying initial state. In particular, we will develop solution tech-
niques for the one-to-one and the all-to-one forward optimal path problem with fixed and
varying departure time, cf. Chapters 8, 9. In the remainder of this chapter, we will derive
the theoretical foundation of these methods, which we extend to the situation of uncertain
travel times and costs in Chapter 6.

4.2. Existence of Optimal Paths

After recalling some properties of point-to-set mappings at the beginning of this section,
we will address the question under which assumptions finite optimal paths exist. We will
consider both the case of forward optimal paths (cf. Theorem 4.2.4) and the case of reverse
optimal paths (cf. Theorem 4.2.9). The results which we present in this section extend the
state of the art both by considering a more general network model and by relaxing some of
the usually imposed assumptions [138].
In the unconstrained and continuous case, using cumulative waiting functions, there always
exists a finite optimal path if the cost functions fulfill certain growth conditions [138]. This
result is based on the continuity of the optimal value function and on the non-negativity
of the cost functions. In [143] the continuity of the cost functions was relaxed to lower
semicontinuity, but the positivity of the cost functions had to be guaranteed starting from
a certain point in time. Considering cost values which are related to energy consumption,
we believe that this assumption is too restrictive, cf. Section 2.1 and Subsection 2.4.2. It
may generally be possible to gain energy by traveling from a state of high potential to a
state of low potential. Nevertheless, if both the potential energy and the kinetic energy
of a commodity traveling in the network are bounded, it is not possible to gain an infinite
amount of energy. Hence, we will assume that the cost associated with each control action is
bounded from below, and that the cost along each circle in the network is strictly positive.
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(By a circle, we mean a control sequence u with ω(u) = α(u). Note that the corresponding
edge sequence is a circle in the graph (V,E).) Similar assumptions have been used to prove
the finiteness of optimal paths in static networks [92, Lemma 2.132] and in a network-flow
formulation of the time-dependent optimal path problem [112]. We will now extend this
result to time-dependent networks with state space and control constraints.
For this purpose, we first recall some properties of lower-semicontinuous functions. Let Y
be a topological space. An extended real-valued function f : Y → R∪{±∞} is called lower
semicontinuous, if for any y ∈ Y and any ϵ > 0 there exists a neighborhood UY of y, such
that f(UY ) ⊂ [f(y) − ϵ,∞] [30]. It is well known (see, e.g., [30][Theorem 2.6]) that lower
semicontinuous functions attain their minimum on compact sets. The following definition
is adopted from [65, Definition 2.2.1, Definition 2.2.2, p.13] for completeness:

Definition 4.2.1 Let T, Y be topological spaces and Γ be a point-to-set mapping from T to
subsets of Y .

(i) Γ is upper semicontinuous at t0 ∈ T if, for each open set UY ⊂ Y containing Γ(t0)
there exists a neighborhood UT ⊂ T of t0, such that for each t ∈ UT , Γ(t) ⊂ UY . If Γ
is upper semicontinuous at each point of T with Γ(t) compact for each t ∈ T , then Γ
is said to be upper semicontinuous.

(ii) Γ is lower semicontinuous at t0 ∈ T if, for each open set UY ⊂ Y satisfying UY ∩
Γ(t0) ̸= ∅ there exists a neighborhood UT ⊂ T of t0, such that for each t ∈ UT ,
Γ(t) ∩ UY ̸= ∅. If Γ is lower semicontinuous at each point of T , then Γ is said to be
lower semicontinuous.

(iii) Γ is continuous in T if it is both upper and lower semicontinuous.

(iv) Let tn ∈ N for all n ∈ N such that limn→∞ tn = t0 and t0 ∈ T . Γ is closed at t0 if
yn ∈ Γ(tn) for each n ∈ N and limn→∞ yn = y0 together imply y0 ∈ Γ(t0). If Γ is
closed at each point of T , then Γ is said to be closed in T .

(v) Γ is uniformly compact near t0 ∈ T if there exists an open neighborhood UT ⊂ T of t0
such that cl

(∪
t∈UT

Γ(t)
)
is compact. If Γ is uniformly compact near each point of T ,

then Γ is said to be uniformly compact.

By graph(Γ) = {(t, y) ∈ T × Y : y ∈ Γ(t)} we denote the graph of Γ and by supp(Γ) = {t ∈
T : Γ(t) ̸= ∅} we denote the support of Γ.

It is easily seen that the graph and the support of an upper semicontinuous point-to-set
mapping are closed. Moreover, it is well-known that upper semicontinuous point-to-set
mappings are closed [65, p.13]. The following lemma will be used to combine the waiting
time restrictions with the state space constraints.

Lemma 4.2.2 Let T, Y, Z denote topological spaces, f : T × Y → Z a continuous func-
tion, Λ : T → P(Y ) an upper semicontinuous point-to-set mapping, and suppose that Y
is locally compact and satisfies the second axiom of countability. If C ⊂ Z is a closed set,
then the point-to-set mapping Γ : T → P(Y ), Γ(t) = {y ∈ Λ(t) : f(t, y) ∈ C} is upper
semicontinuous.
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Proof Suppose that there is a t0 ∈ T , such that Γ is not upper semicontinuous in t0. Then,
there exists an open set UY ⊂ Y containing Γ(t0), such that there is no open neighborhood
UT of t0 with Γ(t) ⊂ UY for all t ∈ UT . Hence, there is a sequence (tn)n∈N, limn→∞ tn = t0,
such that for each n ∈ N there exists at least one yn ∈ Γ(tn)\UY . Since (tn)n∈N is convergent,
{tn}n∈N is compact. As Λ is upper semicontinuous, for every n ∈ N and for any open set UnY
containing Λ(tn), there exists an open neighborhood UnT of tn, such that Λ(t) ⊂ UnY for all
t ∈ UnT . Since Y is locally compact and Λ(tn) is compact for all n ∈ N, we may choose the
(UnY )n∈N in such a way, that the closure cl(UnY ) of U

n
Y is compact. Furthermore, as {tn}n∈N

is compact, we may choose a finite number of the (UnT )n∈N, say (UnT )n=1,...,N , N ∈ N, with
{tn}n∈N ⊂

∪N
n=1 U

n
T . This implies, that KY =

∪N
n=1 cl(U

n
Y ) is compact and contains Λ(tn)

for all n ∈ N. Hence, as Y satisfies the second axiom of countability [93, Definition 10.10],
we may (possibly after choosing a subsequence) assume that limn→∞ yn = y0 ∈ KY . Since
Λ is upper semicontinuous, it is also closed, and we obtain y0 ∈ Λ(t0). As f is continuous
and C is closed, we also obtain f(t0, y0) ∈ C, and hence y0 ∈ Γ(t0). On the other hand, we
have assumed that yn ∈ Y \ UY , which implies y0 ∈ Y \ UY and thus y0 ̸∈ Γ(t0), because
Y \UY is closed. This is a contradiction. As Λ(t0) is closed, C is closed and f is continuous,
Γ(t0) = Λ(t0) ∩ {y ∈ Y : f(t0, y) ∈ C} is closed. Since Λ(t0) is compact, Γ(t0) is compact.
�

In the remainder of this section, we assume that a time-dependent networkG = (V,E, τ ;β, δ)
with arrival time constraints T and waiting time constraints ∆T is given. We will also
shortly denote this triple by (G,T,∆T ). Note that, if a goal node has been fixed, the opti-
mal value function is uniquely determined by (G,T,∆T ).
In the following theorem we establish the existence of the solution to the forward optimal
path problem.

Assumption 4.2.3 Let G = (V,E, τ ;β, δ) denote a time-dependent network. Suppose that
τ is continuous and β, δ are lower semicontinuous. Suppose that T (v) is a closed set for
all v ∈ V and that the point-to-set mapping ∆T is upper semicontinuous. Further, suppose
that there exist B,B◦ ∈ R, B◦ > 0, such that

B
(
(v, t), u

)
≥ B, ∀u ∈ U(v, t) with |u| = 1, (4.1)

B
(
(v, t), u

)
≥ B◦, ∀u ∈ U(v, t) with ω(u) = α(u). (4.2)

Theorem 4.2.4 Let G = (V,E, τ ;β, δ) denote a time-dependent network in which Assump-
tion 4.2.3 holds and let v0, v

′ ∈ V . Then, for any t0 ∈ TR(v0), there exists a finite optimal
path from (v0, t0) to v′ and the partial function t0 7→ b∗(v0, t0) is lower semicontinuous on
TR(v0).

Proof Let (e1, ..., en) denote a finite, connected edge sequence from v0 to v
′. Denote vk−1 =

α(ek) for k = 1, ..., n, and ω(en) = vn = v′. Note that the choice of this specific edge
sequence imposes additional constraints on the set of admissible controls at each (vk, t) ∈ X,

k = 0, ..., n − 1. We denote T̃n = T (vn), and for k = 0, ..., n − 1, we define ∆̃T k : T (vk) →
P(R+

0 ),

∆̃T k(t) =
{
∆t ∈ ∆T (vk, t) : t+∆t+ τ(ek, t+∆t) ∈ T̃k+1

}
, (4.3)

T̃k = supp(∆̃T k). (4.4)
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By backwards induction, as τ is continuous, ∆T is upper semicontinuous and T̃n is closed,
Lemma 4.2.2 implies that ∆̃T k is an upper semicontinuous point-to-set mapping and T̃k is
closed for all k = 0, ..., n− 1. Note that the set of admissible control actions at (vk, t) ∈ X
along (e1, ..., en) is given by ∆̃T k(t)× {ek}, cf. (3.3).
We now analyze the optimal-cost function b̃∗ along this edge sequence by backwards induc-
tion. Since the cost of each circle is strictly positive, we have

b̃∗(vn, t) = b̃∗(v′, t) = b∗(v′, t) = 0

for all t ∈ T̃n = T (v′). Clearly, b̃∗(vn, ·) is lower semicontinuous. As the determination
of the optimal cost function along (e1, ..., en) is a decision problem over a finite number of
stages, [25, Proposition 1.3.1] yields

b̃∗(vk, t) = inf
∆t∈∆̃Tk(t)

bk(t,∆t), k = 0, ..., n− 1, (4.5)

where

bk(t,∆t) = δ(vk, t,∆t) + β(ek, t+∆t) + b̃∗
(
vk+1, t+∆t+ τ(ek, t+∆t)

)
.

Since bk is a real-valued lower semicontinuous function and t 7→ ∆̃T k(t) is an upper semi-
continuous point-to-set mapping, [65, Theorem 2.2.1] implies that t 7→ b̃∗(vk, t) is lower

semicontinuous on T̃k. Moreover, as ∆̃T k(t) is compact and nonempty for each t ∈ T̃k, the
minimum in (4.5) is attained by some ∆t∗k(t), k = 0, ..., n− 1.
Next, if N ∈ N, we observe that any control sequence u with |u| ≥ N |V |+ |V | − 1 contains
at least N circles, which implies

B
(
(v0, t0), u

)
≥ (|V | − 1)B +NB◦. (4.6)

Now, for t0 ∈ TR(v0), there exists a (finite) control sequence u0 ∈ U(v0, t0) with ω(u0) = v′.
Let B0 = B

(
(v0, t0), u0

)
. (4.6) implies that the length of an optimal control sequence

u∗ ∈ U(v0, t0) is bounded from above by

|u∗| ≤ |V | − 1 +
B0 − (|V | − 1)B

B◦
|V |. (4.7)

As there is only a finite number of edge sequences of bounded length, there exists an optimal
path from (v0, t0) to v

′.
We now prove the lower semicontinuity of the partial function t 7→ b∗(v0, t) at t0 ∈ TR(v0).
Let tk ∈ TR(v) for k ∈ N with limk→∞ tk = t0. For each k ∈ N there exists a uk ∈ U(v0, tk)
with B

(
(v0, tk), uk) = b∗(v0, tk). Let (ek1, ..., e

k
n(k)) be the edge sequence applied by the

optimal control sequence uk, k ∈ N. As there is only a finite number of edge sequences of
bounded length, there exists a k0 ∈ N such that for all K > k0 there either holds

(i) n(K) > |V | − 1 + |V |
(
B0 − (|V | − 1)B

)
/B◦, or

(ii) there exists a k ≤ k0 such that (ek1, ..., e
k
n(k)) = (eK1 , ..., e

K
n(K)).
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(4.6) implies that

n(K) > |V | − 1 +
B0 − (|V | − 1)B

B◦
|V | =⇒ b∗(v0, tk) > b∗(v0, t0). (4.8)

Let E denote the (finite) set of all edge sequences (e1, ..., en) with n ≤ |V |−1+|V |
(
B0−(|V |−

1)B
)
/B◦ and (e1, ..., en) = (ek1, ..., e

k
n(k)) for infinitely many k ∈ N. For each (e1, ..., en) ∈ E ,

let

T̃(e1,...,en) =
{
t ∈ T (v0) : ∃(∆tk)k=1,...,n such that

(
(∆tk, ek)

)
k=1,...,n

∈ U(v0, t)
}
.

For each (e1, ..., en) ∈ E , we obtain that t0 ∈ T̃(e1,...,en) since T̃(e1,...,en) is the support of an
upper semicontinuous point-to-set mapping and hence closed. The lower semicontinuity of
the optimal value function along each (e1, ..., en) ∈ E together with (4.8) yields the lower
semicontinuity of the partial function t 7→ b∗(v0, t) at t0 ∈ TR(v0). �

Remark 4.2.5 In Theorem 4.2.4, we have implicitly assumed that the set of admissible
waiting times ∆T (v, t) is compact for each (v, t) ∈ X (cf. Definition 4.2.1). This assump-
tion can be relaxed if the waiting cost function is uniformly divergent, i.e.,

lim
∆t→∞

δ(v, t,∆t) =∞, uniformly in (v, t) ∈ X,

and ∆T (v, t) is closed for each (v, t) ∈ X. (In this case, for each B0 > 0, there exists a
∆t > 0 such that δ(v, t,∆t) > B0 for all ∆t > ∆t and we may consider the modified waiting
time restrictions ∆T (v, t)∩ [0,∆t] without changing the optimal value function.) Note, that
a similar growth condition has been assumed in [138], in order to show that each optimal
path has an associated finite waiting policy.

Remark 4.2.6 We are only considering nonnegative travel times in our model, cf. Def-
inition 3.2.1. However, in the context of optimal flows in time-dependent networks it is
essential to allow the travel times to assume negative values when computing optimal paths
in the residual network [112]. It can be seen from the proofs of Lemma 4.2.2 and Theo-
rem 4.2.4, that the result of Theorem 4.2.4 also holds for a continuous travel time function
τ : E × R→ R.

The existence of optimal paths from v0 to v′ is only guaranteed if the departure time at v0
satisfies t0 ∈ TR(v0). Using the results of Section 3.5 we immediately obtain the following
corollary.

Corollary 4.2.7 If Assumption 4.2.3 and the assumptions of Lemma 3.5.2 hold, then for
any (v0, t0) ∈ X and any v′ ∈ V there exists an optimal path from (v0, t0) to v

′.

Proof From Lemma 3.5.2 we obtain t0 ∈ TR(v0) for all t0 ∈ T (v0) = R. The result now
follows from Theorem 4.2.4. �

We now address the question under which assumptions an optimal solution of the reverse
optimal path problem exists. Here, the situation is complicated by the fact that for each
traversal of an edge e ∈ E, we have to consider the set of all possible departure times. In
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particular, instead of considering the time transition t 7→ t + τ(e, t), we have to consider
the mapping t′ 7→ {t ∈ R : t + τ(e, t) = t′}. In order to analyze the reverse optimal path
problem, we introduce the point-to-set mapping τ−1 : E × R→ P(R),

τ−1(e, t′) = {t ∈ R : t+ τ(e, t) = t′}. (4.9)

Note, that τ−1 is not the inverse function of τ , but rather a notation. However, if G satisfies
the strong FIFO property, then t′ 7→ τ−1(e, t′) is indeed the inverse of t 7→ t + τ(e, t) for
each e ∈ E. In order to establish the existence of reverse optimal paths and the lower
semicontinuity of the reverse optimal value function we first prove the following preliminary
lemma.

Lemma 4.2.8 Suppose that the travel time function τ is continuous, T (v) is a closed set
for all v ∈ V and that the point-to-set mapping ∆T is upper semicontinuous. If either

(i) limt→−∞ τ(e, t) = −∞ for all e ∈ E, and there exists a real-valued function ∆T :
X → R+

0 such that, for each v ∈ V , ∆T (v, t̃) ⊂ [0,∆T (v, t)] for all t̃ ∈ T (v) with
t̃ ≤ t, or

(ii) T (v) is bounded from below for all v ∈ V ,

then the point-to-set mapping Λ : E × R→ P(R2),

Λ(e, t′) =
{
(t,∆t) ∈ R2 : t ∈ T

(
α(e)

)
,∆t ∈ ∆T

(
α(e), t

)
, t+∆t ∈ τ−1(e, t′)

}
(4.10)

is upper semicontinuous.

Proof First, we prove that Λ(e, t′) is compact for each (e, t′) ∈ E×R. Let e ∈ E, s : R2 →
R, s(t,∆t) = t + ∆t, and ∆Te : T

(
α(e)

)
→ P(R+

0 ), ∆Te(t) = ∆T
(
α(e), t

)
. Obviously, s

is continuous and ∆Te is upper semicontinuous. Since graph(∆Te) is closed and s, τ are
continuous Λ(e, t′) = graph(∆Te) ∩ s−1(τ−1(e, t′)) is closed. Suppose that (i) holds. Then
there exists a t ∈ T

(
α(e)

)
such that t + ∆t + τ(e, t + ∆t) < t′ for all (t,∆t) ∈ R × R+

0

with t + ∆t < t. Since τ ≥ 0 there holds t + ∆t ≤ t′ for all (t,∆t) ∈ τ−1(e, t′). Using
0 ≤ ∆t ≤ ∆T (t′), we obtain t−∆T (t′) ≤ t ≤ t′ for all (t,∆t) ∈ Λ(e, t′). Now, suppose that
(ii) holds. Then minT (α(e)) ≤ t ≤ t′ and 0 ≤ ∆t ≤ t′−minT

(
α(e)

)
for all (t,∆t) ∈ Λ(e, t′).

In either case, Λ(e, t′) is bounded and hence compact.
Next, we prove that τ−1 is closed. Let e ∈ E and t′n ∈ T

(
ω(e)

)
for all n ∈ N such

that limn→∞ t′n = t′0 and t′0 ∈ T
(
ω(e)

)
. Let tn ∈ τ−1(e, t′n) for n ∈ N with limn→∞ tn = t0,

t0 ∈ R. The continuity of τ implies t′0 = limn→∞ τ(e, tn) = τ(e, t0) and hence t0 ∈ τ−1(e, t′0).
We now prove that Λ is upper semicontinuous. Suppose that there is a e ∈ E and a
t′0 ∈ T

(
ω(e)

)
such that Λ is not upper semicontinuous in (e, t′0). Then there exists an open

set UΛ ⊂ R2 with Λ(e, t′0) ⊂ UΛ and a sequence of real numbers {t′n}n∈N with t′n ∈ T
(
ω(e)

)
and limn→∞ t′n = t′0, as well as a sequence {(tn,∆tn)}n∈N satisfying (tn,∆tn) ∈ Λ(e, t′n)
and (tn,∆tn) ̸∈ UΛ for all n ∈ N. As {t′n}n∈N is convergent, from a similar reasoning as
above, we obtain the existence of a compact set K ⊂ R2 with Λ(t′n) ⊂ K for all n ∈ N.
Consequently, {(tn,∆tn)}n∈N must contain a convergent subsequence, which (without loss of
generality) we again denote by {(tn,∆tn)}n∈N. Since T

(
α(e)

)
is closed and tn ∈ T

(
α(e)

)
for

all n ∈ N, we obtain t0 = limn→∞ tn ∈ T
(
α(e)

)
. Similarly, since ∆tn ∈ ∆Te(tn) and ∆Te is

upper semicontinuous (and hence closed) we obtain ∆t0 = limn→∞∆tn ∈ ∆Te(t0). Finally,
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since s is continuous and τ−1 is closed we obtain t0 + ∆t0 ∈ τ−1(e, t′0), and consequently
(t0,∆t0) ∈ Λ(e, t′0) ⊂ UΛ. This is a contradiction, as UΛ is open and (tn,∆tn) ̸∈ UΛ for all
n ∈ N. �

We are now ready to prove the analogon of Theorem 4.2.4 for the reverse optimal path
problem.

Theorem 4.2.9 Let G = (V,E, τ ;β, δ) be a time-dependent network in which Assumption
4.2.3 holds and suppose that either

(i) limt→−∞ τ(e, t) = −∞ for all e ∈ E, and there exists a real-valued function ∆T :
X → R+

0 such that, for each v ∈ V , ∆T (v, t̃) ⊂ [0,∆T (v, t)] for all t̃ ∈ T (v) with
t̃ ≤ t, or

(ii) T (v) is bounded from below for all v ∈ V .

Let a source node v0 ∈ V and a goal node v′ ∈ V be given. Then, for any t′ ∈ TR(v′), there
exists a (finite) reverse optimal path from v0 to (v′, t′) and the partial function t′ 7→ b∗(v

′, t′)
is lower semicontinuous on TR(v

′).

Proof In a similar manner as in the proof of Theorem 4.2.4 we consider a finite connected
edge sequence (e1, ..., en) from v0 to v′. Along this edge sequence we use the principle of
dynamic programming [25, Proposition 1.3.1], which yields for the optimal cost function b̃∗
of this subproblem

b̃∗(α(e1), t) = 0, (4.11)

b̃∗(ω(ek), t) = inf
(t,∆t)∈Λ(ek,t)

bk(t,∆t), k = 1, ..., n , (4.12)

where Λ is defined in Lemma 4.10 and

bk(t,∆t) = δ(α(ek), t,∆t) + β(ek, t+∆t) + b̃∗
(
α(ek), t+∆t+ τ(ek, t+∆t)

)
.

Since b̃∗(α(e1), t) is lower semicontinuous and Λ is upper semicontinuous, by forward in-
duction [65, Theorem 2.2.1] yields the lower semicontinuity of b̃∗ and the existence of a
minimizing argument in (4.12). The rest of the proof follows as in the proof of Theorem
4.2.4. �

Corollary 4.2.10 If the assumptions of Theorem 4.2.9 with (i) rather than (ii) and the
assumptions of Lemma 3.5.2 hold, then for any v0 ∈ V and any (v′, t′) ∈ X there exists an
optimal path from v0 to (v′, t′).

Proof From Lemma 3.5.2 we obtain t′ ∈ TR(v
′) for all t′ ∈ T (v′) = R. The result now

follows from Theorem 4.2.9. �

4.3. Dynamic Programming in Time-Dependent Networks

Similar to the time-independent case, the algorithmic solution of time-dependent optimal
path problems is usually based on the principle of dynamic programming [137], [138], [143],
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[144], [35], [38], [47], [39], [49], [132], [54]. Based on the results in the previous section,
we hereafter present the dynamic programming equations both for the forward and the
reverse optimal path problem. Due to the hybrid structure of time-dependent networks
these equations are of a hybrid nature, requiring the simultaneous optimization with respect
to the optimal edge and the optimal waiting time. We show how these equations can be
decoupled by using the split network which we have introduced in Section 3.2.
We begin by considering the forward optimal path problem. As in the previous section, we
assume that a time-dependent network G = (V,E, τ ;β, δ) with arrival time constraints T
and waiting time constraints ∆T is given.

Proposition 4.3.1 Suppose that Assumption 4.2.3 holds and that a goal node v′ ∈ V
is given. The optimal value function b∗ defined in (3.10) satisfies the following dynamic
programming equations:

b∗(v′, t) = 0, ∀t ∈ T (v′), (4.13)

b∗(v, t) = min
u∈U(v,t)
u=(∆t,e)

[
b∗
(
φ((v, t), u)

)
+ δ(v, t,∆t) + β(e, t+∆t)

]
,

∀v ∈ V \ {v′}, t ∈ T (v). (4.14)

Proof As a consequence of (4.2) and since B◦ > 0, we observe that b∗(v′, t) ≥ 0 for all
t ∈ T (v), and that the termination of the path from v′ to v′ in the initial state leads to the
optimal cost b∗(v′, t) = 0 for all t ∈ T (v′). Since we have already proved the existence of
optimal paths in Theorem 4.2.4, the result follows from standard arguments, see, e.g., [26,
Proposition 3.1.1]. �

Referring to the result of Proposition 4.3.1, we define the optimal control policy µ∗ : XR →
(R+

0 × E) ∪ {“termination”},

µ∗(v′, t) = “termination”, ∀t ∈ TR(v′), (4.15)

µ∗(v, t) = argmin
u∈U(v,t)
u=(∆t,e)

[
b∗
(
φ((v, t), u)

)
+ δ(v, t,∆t) + β(e, t+∆t)

]
,

∀v ∈ V \ {v′}, t ∈ TR(v). (4.16)

The optimal control policy can be used to construct the optimal control sequence u∗ with
respect to a given initial state x0 ∈ X and the terminal node v′ ∈ V as follows:

u∗k = µ∗(xk−1), k = 1, 2, ... , (4.17)

xk = φ(xk−1, u
∗
k), k = 1, 2, ... . (4.18)

The above recursion terminates as soon as µ∗(xk) = “termination” for some k ∈ N.
Note that due to the definition of the optimal control policy in (4.15)-(4.16), there holds
B(x0, u∗) = b∗(x0). Since Theorem 4.2.4 implies that infinite control sequences cause infinite
cost the recursion terminates after a finite number of steps. The characterization (4.17)-
(4.18) of optimal control sequences is commonly used for the algorithmic reconstruction of
the optimal path p∗ = (xk)k=0,1,..., cp. Chapter 8 and Chapter 9.
Since the simultaneous optimization of ∆t and e in (4.14) is not convenient for algorithmic
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purposes, we will also use an alternative version of the optimality equations, which is based
on the split network, cf. Section 3.2. In the split network, the optimality equation (4.14) is
decoupled and takes the form

b∗(vw, tw) = min
∆t∈∆T (vw,tw)

[
b∗(vnw, tw +∆t) + δ(vw, tw,∆t)

]
, (4.19)

b∗(vnw, tnw) = min
e∈E+(vnw):

tnw+τ(e,tnw)∈T (ω(e)w)

[
b∗
(
ω(e)w, tnw + τ(e, tnw)

)
+ β(e, tnw)

]
. (4.20)

Remark 4.3.2 In order to solve (4.20) at a given node v ∈ V , the minimum function of
the cost functions

{
b∗
(
ω(e), t + τ(e, t)

)
+ β(e, t)

}
e∈E+(v)

must be computed for all t ∈ R.
Note that this involves the computation of the intersections of two functions, a task which
is not explicitly solvable in the nonlinear case, and which may be adherent to an unknown
number of arithmetic operations in general. Yet, if all network functions (i.e., τ, β, δ,∆T )
are piecewise linear, the minimum function can be efficiently and explicitly computed [47]. In
order to solve (4.19), a parametric optimization problem must be solved [18], [78]. Although
efficient solution strategies have been developed (see, e.g., [78], [145]), this is not a simple
task in general. Let us again consider the case in which the network functions are piecewise
linear (see, e.g., [149] for properties of piecewise linear programs): In this case, the problem
of determining the optimal waiting policy breaks down to the problem of choosing one of
the line segments resulting from the time constraints and the piecewise linear structure of
(t,∆t) 7→ b∗(vnw, t+∆t) + δ(vw, t,∆t) in the t-∆t-plane. (If the waiting cost function and
the optimal value function are linear on a polygon contained in the t-∆t-plane, then the
edges of the polygon contain an optimal solution for all t, cp. Section 5.3.) Therefore, the
problem of computing the optimal waiting policy is equivalent to finding the line segment
with minimal associated cost. This task is equivalent to determining the optimal edge policy
in (4.20).

Referring to (4.19), (4.20), the optimal control policy µ∗ for (v, t) ∈ X, v ̸= v′ can be
determined from the optimal waiting policy at vw

µ∗w :
∪

vw∈Vw

{
{vw} × TR(vw)

}
→ R+

0 ,

µ∗w(vw, tw) = argmin
∆t∈∆T (vw,tw)

[
b∗(vnw, tw +∆t) + δ(vw, tw,∆t)

]
, (4.21)

and the optimal edge policy at vnw

µ∗nw :
∪

vnw∈Vnw

{
{vnw} × TR(vnw)

}
→ E, (4.22)

µ∗nw(vnw, tnw) = argmin
e∈E+(vnw):

tnw+τ(e,tnw)∈T (ω(e)w)

[
b∗
(
ω(e)w, tnw + τ(e, tnw)

)
+ β(e, tnw)

]
, (4.23)

as follows (cp. (3.1) and Figure 4.2):

µ∗(v, t) =
(
µ∗w(vw, t), µ

∗
nw

(
vnw, t+ µ∗w(vw, t)

))
. (4.24)
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For completeness, we now briefly consider the reverse optimal path problem.

Proposition 4.3.3 Suppose that Assumption 4.2.3 holds and that a source node v0 ∈ V is
given. Let Λ denote the point-to-set mapping defined in (4.10). The optimal value function
b∗ defined in (3.13) satisfies the following dynamic programming equations:

b∗(v0, t
′) = 0, ∀t′ ∈ T (v0), (4.25)

b∗(v, t
′) = min

(t,∆t,e)∈R2×E−(v):
(t,∆t)∈Λ(e,t′)

[
b∗(α(e), t) + δ(α(e), t,∆t) + β(e, t+∆t)

]
,

∀v ∈ V \ {v0}, t′ ∈ T (v). (4.26)

Proof As a consequence of (4.2) and since B◦ > 0, we observe that b∗(v0, t
′) ≥ 0 for all

t′ ∈ T (v0), and that the termination of the path from v0 to v0 in the initial state leads to
the optimal cost b∗(v0, t

′) = 0 for all t′ ∈ T (v0). Since we have already proved the existence
of optimal paths in Theorem 4.2.9, the result follows from standard arguments, see, e.g.,
[26, Proposition 3.1.1]. �

In general, an optimal control policy for the reverse optimal path problem must not only
specify the control action which must have been implied in a preceding state x ∈ X to reach
a certain state x′ ∈ X from the source node v0, but due to the fact that τ−1 is set-valued,
the preceding state must also be specified. This situation is illustrated by formulating the
equivalent of (4.26) in the split network:

b∗(vw, t
′
w) = min

(tnw,e)∈R×E−(vw):
tnw∈τ−1(e,t′w)

[
b∗(α(e)nw, tnw) + β(e, tnw)

]
, (4.27)

b∗(vnw, tnw) = min
(tw,∆t)∈T (vw)×R+

0 :
∆t∈∆T (vw,tw),tw+∆t=tnw

[
b∗(vw, tw) + δ(vw, tw,∆t)

]
. (4.28)

The state transitions in the split network are depicted in Figure 4.2. Note that tnw is
subject to optimization in (4.27), whereas the choice of tw already determines the waiting
time ∆t = tnw − tw in (4.28). Since, for some x = (v, t) ∈ X, the specification of the
edge terminating in v uniquely determines the preceding node on a path through x, the
specification of the corresponding departure time suffices for the unique reconstruction of
reverse optimal paths. This approach has been carried out in [138] but will not be pursued
here, since we will only be concerned with the algorithmic solution of the forward optimal
path problem.
Since the computation of optimal waiting policies is costly in terms of computation time (cf.
Theorem 5.3.21), it is of particular importance in real-time applications to identify network
structures and problem variants in which this optimization can be avoided. Clearly, this is
the case if ∆T (x) contains only one element for all x ∈ X. In this case, we may assume
that ∆T (x) = {0} and δ(x, 0) = 0 by appropriately transforming the network functions,
cp. Section 3.5. Suppose that it can be shown that µ∗(x) ∈ {0} × E for all x ∈ X, i.e.,
that it is never optimal to wait. This holds, e.g., for the computation of fastest paths under
Assumption 3.5.3. In this case the dynamic programming equations are crucially simplified
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4. Optimal Paths in Time-Dependent Networks

(α(e)w, tw) (α(e)nw, tnw) (ω(e)nw, t
′
w)

∆t e

Figure 4.2.: State transitions in the split network. In the forward problem, the optimization
first takes place with respect to the edge e, then with respect to the waiting
time ∆t. In the reverse problem, the optimization first takes place with respect
to the waiting time ∆t, then with respect to both the departure time tnw and
the edge e.

and take the form:

b∗(v′, t) = 0, ∀t ∈ T (v′),

b∗(v, t) = inf
e∈E+(v):

t+τ(e,t)∈T (ω(e))

[
b∗
(
ω(e), t+ τ(e, t)

)
+ β(e, t)

]
, ∀v ∈ V \ {v′}, t ∈ T (v).

If a source node v0 ∈ V and a fixed departure time t0 at v0 are given, according to the above
equations, the optimal path problem can be solved by slightly modified static optimal path
algorithms [137], [39], [54]. Similarly, the equations for the reverse optimal value function
become:

b∗(v0, t
′) = 0, ∀t′ ∈ T (v0),

b∗(v, t
′) = inf

e∈E−(v):
τ−1(e,t′)∈T (α(e))

[
b∗
(
α(e), τ−1(e, t′)

)
+ β

(
e, τ−1(e, t′)

)]
, ∀v ∈ V \ {v0}, t′ ∈ T (v).

Based on the similarity of the above dynamic programming equations, a network transfor-
mation has been introduced in [45], which allows the solution of the reverse optimal path
problem using algorithms designed for the solution of the forward optimal path problem.

4.4. Order Relations on Time-Dependent Networks

The purpose of this section is mainly the introduction of a concept of comparability of
time-dependent networks. After providing the definition, we will prove a basic result, which
we will use in the derivation of the solution method in Chapter 9.

Definition 4.4.1 Let G1 = (V1, E1, τ1;β1, δ1), G2 = (V2, E2, τ2;β2, δ2) be time-dependent
networks with arrival time constraints T1, T2 and waiting time constraints ∆T1,∆T2, re-
spectively. Denote by X1 the state space associated with (G1, T1,∆T1), by X2 the state
space associated with (G2, T2,∆T2) and let V = V1 ∩ V2, X = X1 ∩X2.

We denote G1

∗
≤ G2 if, for any fixed goal node v′ ∈ V , the optimal value function b∗1 as-

sociated with (G1, T1,∆T1) and the optimal value function b∗2 associated with (G2, T2,∆T2)
satisfy

b∗1(x0) ≤ b∗2(x0), ∀x0 ∈ X. (4.29)

If G1

∗
≤ G2 and G2

∗
≤ G1, we denote G1

∗
= G2.
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Theorem 4.4.2 Let G1 = (V1, E1, τ1;β1, δ1) and G2 = (V2, E2, τ2;β2, δ2) be time-dependent
networks with arrival time constraints T1, T2 and waiting time constraints ∆T1,∆T2, respec-
tively. Denote by X1 the state space associated with (G1, T1,∆T1), by X2 the state space
associated with (G2, T2,∆T2). If

V1 ⊃ V2, E1 ⊃ E2,

T1(v) ⊃ T2(v), ∀v ∈ V, ∆T1(x) ⊃ ∆T2(x), ∀x ∈ X,

and

τ1(e2, t2) = τ2(e2, t2), ∀e2 ∈ E2, t2 ∈ T2
(
α(e2)

)
, (4.30)

β1(e2, t2) ≤ β2(e2, t2), ∀e2 ∈ E2, t2 ∈ T2
(
α(e2)

)
, (4.31)

δ1(x2,∆t2) ≤ δ2(x2,∆t2), ∀x2 ∈ X2,∆t2 ∈ ∆T2(v2, t2), (4.32)

then G1

∗
≤ G2.

Proof Let a goal node v′ ∈ V = V1 ∩ V2 and an initial state x0 ∈ X = X1 ∩X2 be given.
Let U1(x0) denote the set of admissible control sequences in G1 subject to T1,∆T1, let
U2(x0) denote the set of admissible control sequences in G2 subject to T2,∆T2, and let the
functions B,Φ in G1, G2 be distinguished by the index 1, 2, respectively. Since V1 ⊃ V2 we
obtain V = V2, and since T1(v) ⊃ T2(v) for all v ∈ V we obtain X = X2 ⊂ X1. Now,
∆T1(x) ⊃ ∆T2(x) for all x ∈ X implies that U1(x0) ⊃ U2(x0) for all x0 ∈ X. Moreover,
(4.30) implies that Φ1(x0, u) = Φ2(x0, u) and (4.31), (4.32) imply that B1(x0, u) ≤ B2(x0, u)
for all u ∈ U2(x0) and all x0 ∈ X. Let x0 ∈ X and define

u∗2 = argmin
u∈U2(x0):ω(u)=v′

B2(x0, u).

Then u∗2 ∈ U1(x0) and we obtain

b∗2(x0) = B2(x0, u∗2) ≥ B1(x0, u∗2) ≥ min
u∈U1(x0):ω(u)=v′

B1(x0, u) = b∗1(x0).

�

Remark 4.4.3 Theorem 4.4.2 can be used to construct contraction hierarchies for the op-
timal path problem. This approach has led to a significant reduction of the computation
time of time-independent optimal path problems [154], [74], and time-dependent fastest path
problems [51], [54], [52].
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5. Properties of the Optimal Value
Function

In this chapter, we only consider the forward optimal path problem and suppose that a
time-dependent network G = (V,E, τ ;β, δ) with arrival time constraints T and waiting
time constraints ∆T is given. We also assume that a goal node v′ ∈ V has been fixed.
In Section 5.1, we prove that the optimal value function is (Lipschitz-) continuous under
some additional assumptions. We impose more mathematical structure on the definition
of the waiting time restrictions in Section 5.2 and prove that the optimal value function is
piecewise analytic if the network functions are. In Section 5.3 we are concerned with time-
dependent networks in which all network functions are piecewise linear. Due to the explicit
solvability (with a finite number of arithmetic operations) of all involved subproblems, such
networks are of particular importance in practical applications. At this, we consider both
the lower semicontinuous case of Section 4.2 and the continuous case of Section 5.1. We
show that both the type of waiting time constraints, the piecewise linear structure of the
network functions and the FIFO property of the time-dependent network have a strong
impact on the time and space complexity of computing the optimal value function. Finally,
we conclude this chapter by briefly discussing periodical time-dependent networks in Section
5.4.

5.1. Continuity

Before proving the continuity of the optimal value function in Theorem 5.1.3, we first present
a result on the set of reachable states which is used in the proof of the theorem. We then
prove in Theorem 5.1.10 that the optimal value function is even Lipschitz-continuous under
some additional assumptions.

Assumption 5.1.1 Let v0 ∈ V be a fixed source node, suppose that τ,∆T are continuous
and suppose that T (v0) = [ t,∞) for some t ∈ R. Denote T̃ (v0) = T (v0) and T̃ (v) = R
for all v ∈ V \ {v0}. For each (v, t) ∈ X, let t̃R denote the earliest arrival time at v in
(G, T̃ ,∆T ), and let Ũ(v, t) denote the set of control sequences which are admissible for (v, t)
in (G, T̃ ,∆T ). Suppose that T (v) ⊃ [ t̃R(v),∞) for all v ∈ V .

Lemma 5.1.2 Let v0 ∈ V be a fixed source node and suppose that Assumption 5.1.1 holds.

(i) For all v ∈ V and all t ≥ t̃R(v), there holds U(v, t) = Ũ(v, t). In particular, if
(v′, t′) = φ

(
(v, t), u

)
for some u ∈ Ũ(v, t), t ≥ t̃R(v), then t′ ≥ t̃R(v′).

(ii) If, in addition to the above assumptions, there exists a T ◦ ∈ R+ such that

T
(
(v, t), u

)
≥ T ◦, ∀u ∈ U(v, t) with ω(u) = α(u), (5.1)

then TR(v) = [ t̃R(v),∞) for all v ∈ V .
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Proof (i) We first show that Ũ(v0, t0) = U(v0, t0) for all t0 ∈ T (v0). Let t0 ∈ T (v0).
We clearly have U(v0, t0) ⊂ Ũ(v0, t0). Let u ∈ Ũ(v0, t0) and denote p =

(
(vk, tk)

)
k=0,...,n

=

Φ
(
(v0, t0), u). According to the definition of t̃R(v), v ∈ V , we obtain tk ≥ t̃R(vk), k = 0, ..., n.

As T (v) ⊃ [ t̃R(v),∞) for all v ∈ V , this implies that u ∈ U(v0, t0).
Now, let v ∈ V and t ≥ t̃R(v). Clearly, we have t ∈ T (v). Suppose that u ∈ Ũ(v, t)\U(v, t) is
such that u1:|u|−1 ∈ U(v, t), and denote v′ = ω(u). Then t′ = t+ T

(
(v, t), u

)
̸∈ T (v′), which

implies that t′ < t̃R(v
′). By definition of t̃R(v) there exists a sequence (ti)i∈N with ti ∈ T (v0)

for all i ∈ N, and for each i ∈ N, there exists a sequence (ui,j)j∈N with ui,j ∈ Ũ(v0, ti) for
all j ∈ N, such that

t̃R(v) = lim
i→∞

lim
j→∞

ti + T
(
(v0, ti), ui,j

)
.

Let (ui,j , u) ∈ Ũ(v0, ti) be the control sequence which results from the concatenation of ui,j
and u. If t = t̃R(v), then the continuity of T implies that

t′ = lim
i→∞

lim
j→∞

ti + T
(
(v0, ti), (ui,j , u)

)
≥ t̃R(v′).

This contradicts the fact that t′ < tR(v
′). If t > t̃R(v), then the continuity of T implies

that there exist i0, j0 ∈ N, such that

t > ti0 + T
(
(v0, ti0), ui0,j0

)
.

Let ui0,j0 =
(
(∆tk, ek)

)
k=1,...,n

. Since ∆T is continuous there exist continuous functions

µw,1, ..., µw,n : T (v0)→ R+
0 satisfying µw,k(ti0) = ∆tk and

ũ(t0) =
(
(µw,1(t0), e1), ..., (µw,n(t0), en)

)
∈ Ũ(v0, t0), ∀t0 ∈ T (v0).

Let θ : T (v0) → R, θ(t0) = t0 + T
(
(v0, t0), ũ(t0)

)
. Since τ, µw,1, ..., µw,n are continuous, θ

is continuous. As θ(t0) ≥ t0 and θ(ti0) < t, [68, p.97, Satz 1] implies that there exists a
t0(t) ∈ T (v0) such that θ

(
t0(t)

)
= t. Let

(
ũ
(
t0(t)

)
, u
)
∈ Ũ

(
v0, t0(t)

)
be the control sequence

which results from the concatenation of ũ
(
t0(t)

)
and u. Then,

t̃R(v
′) > t′ = t0(t) + T

((
v0, t0(t)

)
,
(
ũ
(
t0(t)

)
, u
))
,

contradicting the definition of t̃R(v
′).

(ii) The assertion follows in a similar manner as above by using the fact that the earliest
arrival times are attained due to the existence of fastest paths and the lower semicontinuity
of the earliest arrival time function (cf. Theorem 4.2.4 using T ◦ ∈ R+ and τ ≥ 0). �

Theorem 5.1.3 Suppose that ∆T is a continuous point-to-set mapping, τ, β, δ are contin-
uous and there exist B,B◦ ∈ R, B◦ > 0, such that (4.1) and (4.2) hold.

(i) Let a source node v0 ∈ V be given and let Assumption 5.1.1 hold, then the partial
mapping t0 7→ b∗(v0, t0) is continuous on T (v0).

(ii) If X = V × R and (V,E) is strongly connected, then b∗ is continuous.

Proof (i) Let (e1, ..., en) be an edge sequence with α(e1) = v0 and ω(en) = v′. Denote

vk = ω(ek), k = 1, ..., n, and ∆̃T k, T̃k as in (4.3), (4.4), k = 0, ..., n−1. Lemma 5.1.2 implies
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v0δ(v0, ·, ·) = 0 v′

τ(e1, ·) = 2, β(e1, ·) = 1

τ(e2, ·) = 1, β(e2, ·) = 2

Figure 5.1.: Example network in which the optimal value function is not continuous. All
network functions are constant, assuming the values depicted in the drawing.
Moreover, T (v0) = R, T (v′) = (−∞, 0] and ∆T (v0, ·) = {0}.

that ∆̃T k(t) = ∆T (vk, t) for all t ∈ T̃k and hence T̃k = supp(∆̃T k) = T (vk), k = 0, ..., n−1.
Using [65, Theorem 2.2.2] instead of [65, Theorem 2.2.1] in the backward induction along
the edge sequence (e1, ..., en), we obtain the continuity of the optimal-cost function along
(e1, ..., en). In a similar manner as in Theorem 4.2.4 we then obtain the continuity of the
partial mapping t0 7→ b∗(v0, t0) on TR(v0) = T (v0).
(ii) For any source node v0 ∈ V , as (V,E) is strongly connected, there exists a n ∈ N and
at least one connected edge sequence (e1, ..., en) ∈ En such that α(e1) = v0 and ω(en) = v′.
Lemma 5.1.2 implies that TR(v0) = R for any source node v0 ∈ V and we may repeat the
reasoning of (i) for any v0 ∈ V . Consequently, b∗ is continuous. �

Remark 5.1.4 It is not possible to renounce Assumption 5.1.1 in order to establish the
continuity of the optimal value function, as can be seen from the simple example depicted
in Figure 5.1. Obviously, the optimal value function at v0 is discontinuous at t0 = −2.

Remark 5.1.5 Similar results to Lemma 5.1.2 and Theorem 5.1.3 can be established for
the reverse optimal path problem considering T (v′) = (−∞, t ] for some t ∈ R, cp. Theorem
4.2.9.

We will now establish the Lipschitz-continuity of the optimal value function under some
additional assumptions. This property will be used in Section 7.2 to construct a pruning
criterion for the forward optimal path problem. In particular, based on the result of Theo-
rem 5.1.10, we will formulate decision rules in Lemma 7.2.1 and Corollary 7.2.5, which allow
the identification of certain suboptimal paths in the search tree of an arbitrary optimal path
algorithm. In order to prove the Lipschitz-continuity of the optimal value function we intro-
duce the notion of uniformly linearly continuous point-to-set mappings, cp. [65, Definition
2.2.4].

Definition 5.1.6 Let Γ be a point-to-set mapping from T ⊂ Rm to subsets of Rn. Then Γ
is said to be uniformly linearly continuous on T0 ⊂ T if there exists a value LΓ > 0 such
that for all t, t′ ∈ T0 there holds

inf
x′∈Γ(t′)

∥x− x′∥ ≤ LΓ∥t− t′∥, ∀x ∈ Γ(t). (5.2)

For simplicity, in the next two results we utilize the 1-norm on Rn, i.e., ∥x∥ =
∑n

i=1 |xi| for
x = (x1, ..., xn) ∈ Rn. Note that the triangle inequality in (R, | · |) implies |x+ y| ≤ ∥(x, y)∥
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for x, y ∈ R.
The following Lemma is a generalization of [65, Theorem 2.2.12], in which a more general
form of the constraints is allowed and in which the parameter occurs both in the definition
of the constraints and the objective function of the parametric optimization problem.

Lemma 5.1.7 Let f : Rm+n → R be Lipschitz-continuous with constant Lf and let Γ :
Rm → P(Rn) be a uniformly linearly continuous point-to-set mapping with constant LΓ.
Then the function f∗ : Rm → R,

f∗(t) = inf
x∈Γ(t)

f(t, x), (5.3)

is Lipschitz-continuous with constant Lf (1 + LΓ).

Proof First we observe that as a consequence of [65, Theorem 2.2.8], for each t ∈ Rm, the
minimum in (5.3) is attained by some x∗ ∈ Γ(t). Next, for t, t′ ∈ Rm there holds

∥f∗(t)− f∗(t′)∥ ≤
∥∥∥∥ min
x∈Γ(t)

f(t, x)− min
x′∈Γ(t′)

f(t, x′)

∥∥∥∥
+

∥∥∥∥ min
x′∈Γ(t′)

f(t, x′)− min
x′∈Γ(t′)

f(t′, x′)

∥∥∥∥ . (5.4)

Let
x∗ ∈ argmin

x∈Γ(t)
f(t, x), x′∗ ∈ argmin

x′∈Γ(t′)
f(t, x′), x′′∗ ∈ argmin

x′∈Γ(t′)
f(t′, x′).

Since Γ is uniformly linearly continuous, there exists a x̃′ ∈ Γ(t′) such that ∥x∗ − x̃′∥ ≤
LΓ∥t− t′∥. The Lipschitz-continuity of f implies

f(t, x∗) ≥ f(t, x̃′)− LfLΓ∥t− t′∥ ≥ min
x′∈Γ(t′)

f(t, x′)− LfLΓ∥t− t′∥

= f(t, x′∗)− LfLΓ∥t− t′∥. (5.5)

Moreover, there exists a x̃ ∈ Γ(t) such that ∥x̃− x′∗∥ ≤ LΓ∥t− t′∥, which yields

f(t, x′∗) ≥ f(t, x̃)− LfLΓ∥t− t′∥ ≥ min
x∈Γ(t)

f(t, x)− LfLΓ∥t− t′∥

= f(t, x∗)− LfLΓ∥t− t′∥. (5.6)

Combining (5.5) and (5.6), we obtain∥∥∥∥ min
x∈Γ(t)

f(t, x)− min
x′∈Γ(t′)

f(t, x′)

∥∥∥∥ ≤ LfLΓ∥t− t′∥. (5.7)

Next, the Lipschitz-continuity of f implies

f(t, x′∗) ≥ f(t′, x′∗)− Lf∥t− t′∥ ≥ min
x′∈Γ(t′)

f(t′, x′)− Lf∥t− t′∥

= f(t′, x′′∗)− Lf∥t− t′∥ (5.8)
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and

f(t′, x′′∗) ≥ f(t, x′′∗)− Lf∥t− t′∥ ≥ min
x′∈Γ(t′)

f(t, x′)− Lf∥t− t′∥

= f(t, x′∗)− Lf∥t− t′∥. (5.9)

Combining (5.8) and (5.9), we obtain∥∥∥∥ min
x′∈Γ(t′)

f(t, x′)− min
x′∈Γ(t′)

f(t′, x′)

∥∥∥∥ ≤ Lf∥t− t′∥. (5.10)

The assertion now follows from (5.4), (5.7) and (5.10). �

Lemma 5.1.8 Suppose that τ, β, δ are Lipschitz-continuous with constants Lτ , Lβ, Lδ, and
∆T is a uniformly linearly continuous point-to-set mapping with constant L∆T . Let a source
node v0 ∈ V be given and suppose that either Assumption 5.1.1 holds or X = V × R and
(V,E) is strongly connected. Let (e1, ..., en) be a connected edge sequence with α(e1) = v0
and ω(en) = v′, and denote vk = ω(ek), k = 1, ..., n. Then the optimal cost function
b̃∗ :

∪n
k=0

(
{vk} × T (vk)

)
→ R ∪ {∞} along (e1, ..., en),

b̃∗(vk, tk) = inf
{
B
(
(vk, tk), u

)
: u =

(
(∆ti, ei)

)
i=k+1,...,n

∈ U(vk, tk)
}
,

is Lipschitz-continuous with constant

L = (1 + L∆T )(Lβ + Lδ)
(1 + L∆T + Lτ + L∆TLτ )

n − 1

L∆T + Lτ + L∆TLτ
. (5.11)

Proof Denote ∆̃T k, T̃k as in (4.3), (4.4), k = 0, ..., n − 1. Lemma 5.1.2 implies that

∆̃T k(t) = ∆T (vk, t) for all t ∈ T̃k and hence T̃k = supp(∆̃T k) = T (vk), k = 0, ..., n − 1.

Consequently, ∆̃T k is uniformly linearly continuous with constant L∆T . [25, Proposition
1.3.1] yields (cp. the proof of Theorem 5.1.3) for all t ∈ T (vk)

b̃∗(vk, t) = inf
∆t∈∆T (vk,t)

bk(t,∆t), k = 0, ..., n− 1,

where we used the function bk : graph(∆̃T k)→ R,

bk(t,∆t) = δ(vk, t,∆t) + β(ek+1, t+∆t) + b̃∗
(
vk+1, t+∆t+ τ(ek+1, t+∆t)

)
,

k ∈ {0, ..., n − 1}, to simplify the notation. We now prove by backwards induction that
t 7→ b̃∗(vk, t) is Lipschitz-continuous with constant Lk for each k = 0, ..., n, whereat Ln = 0
and

Lk =
[
Lδ + Lβ + (1 + Lτ )Lk+1

]
(1 + L∆T ). (5.12)

Clearly, t 7→ b̃∗(vn, t) is Lipschitz-continuous with constant Ln since b̃∗(vn, ·) ≡ 0. Now, let
k ∈ {0, ..., n − 1} and suppose that t 7→ b̃∗(vk+1, t) is Lipschitz-continuous with constant

Lk+1. The Lipschitz-continuity of τ, β, δ implies that for all (t,∆t), (t′,∆t′) ∈ graph(∆̃T k)
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there holds∣∣bk(t,∆t)− bk(t′,∆t′)∣∣ ≤ ∣∣δ(vk, t,∆t)− δ(vk, t′,∆t′)∣∣
+
∣∣β(ek+1, t+∆t)− β(ek+1, t

′ +∆t′)
∣∣

+
∣∣∣̃b∗(vk+1, t+∆t+ τ(ek+1, t+∆t)

)
− b̃∗

(
vk+1, t

′ +∆t′ + τ(ek+1, t
′ +∆t′)

)∣∣∣
≤ Lδ

∥∥(t,∆t)− (t′,∆t′)
∥∥+ Lβ

(
|t− t′|+ |∆t−∆t′|

)
+ Lk+1

(
|t− t′|+ |∆t−∆t′|+

∣∣τ(ek+1, t+∆t)− τ(ek+1, t
′ +∆t′)

∣∣)
≤ (Lδ + Lβ)

∥∥(t,∆t)− (t′,∆t′)
∥∥+

+ Lk+1

(∥∥(t,∆t)− (t′,∆t′)
∥∥+ Lτ

∥∥(t,∆t)− (t′,∆t′)
∥∥).

We now obtain (5.12) from the above inequality and Lemma 5.1.7. Using (5.12), an easy
inductive calculation shows that the Lk, k = 0, ..., n, are given by

Lk = (1 + L∆T )(Lβ + Lδ)
n−1∑
j=k

[
(1 + L∆T )(1 + Lτ )

]n−j−1
. (5.13)

Substituting i = n − j − 1 in (5.13) and using the formula for the geometric series we
establish

Lk = (1 + L∆T )(Lβ + Lδ)
n−1−k∑
i=0

[
(1 + L∆T )(1 + Lτ )

]i
= (1 + L∆T )(Lβ + Lδ)

[
(1 + L∆T )(1 + Lτ )

]n−k − 1

(1 + L∆T )(1 + Lτ )− 1
.

Since L∆T , Lτ , Lβ, Lδ ≥ 0 we obtain L ≥ Lk for all k = 0, ..., n. �

In order to generalize the result of Lemma 5.1.8 to the optimal value function of the time-
dependent network, we must establish a bound on the topological length of optimal paths.
The following Lemma shows that such a bound exists under mild assumptions which are
satisfied in most practical applications.

Lemma 5.1.9 (i) Let Assumption 4.2.3 hold, suppose that T (v) is compact for all v ∈ V
and τ : E × R→ R+. Then for any v0, v

′ ∈ V the topological length N of an optimal
path from v0 to v′ is bounded from above by

N ≤ maxT (v′)−minT (v0)

T
, (5.14)

where
T = min

(v,t)∈X
min

(∆t,e)∈U(v,t)
T
(
(v, t), (∆t, e)

)
> 0.

(ii) Let v0, v
′ ∈ V be given and suppose that either Assumption 5.1.1 holds or X = V ×R

and (V,E) is strongly connected. Suppose that there exists a B ∈ R+ such that, for
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all (v, t) ∈ X, there holds

B
(
(v, t), u

)
≤ B, ∀u ∈ U(v, t) with |u| = 1. (5.15)

Then the topological length N of an optimal path from v0 to v′ is bounded from above
by

N ≤ |V | − 1 +
|V |B − (|V | − 1)B

B◦
|V |. (5.16)

Proof (i) Since τ is continuous and X is compact, graph(∆T ) is compact and hence T > 0.
Hence, for each admissible control sequence u of length n we obtain T

(
(v, t), u

)
≥ nT . Since

a control sequence u ∈ U(v0, t0), t0 ∈ T (v0), with ω(u) = v′ must satisfy T
(
(v, t), u

)
≤

maxT (v′)−minT (v0) we obtain (5.14).
(ii) If either Assumption 5.1.1 holds or X = V × R and (V,E) is strongly connected, then
there exists a simple connected edge sequence (e1, ..., en) ∈ En with n ≤ |V | and continuous
functions µw,k : T (v0) → R+

0 , k = 1, ..., n, with u(t0) =
(
(µw,k(t0), ek)

)
k=1,...,n

∈ U(v0, t0)

for all t0 ∈ T (v0). Now, (5.15) yields B
(
(v0, t0), u(t0)

)
≤ nB ≤ |V |B. Inserting this result

into (4.7) we obtain (5.16). �

Theorem 5.1.10 Suppose that τ, β, δ are Lipschitz-continuous with constants Lτ , Lβ, Lδ,
∆T is a uniformly linearly continuous point-to-set mapping with constant L∆T and there
exist B,B◦,B ∈ R, B◦,B > 0, such that (4.1), (4.2) and (5.15) hold. Denote

L∗ = (1 + L∆T )(Lβ + Lδ)
(1 + L∆T + Lτ + L∆TLτ )

N − 1

L∆T + Lτ + L∆TLτ
,

with

N = |V | − 1 +
|V |B − (|V | − 1)B

B◦
|V |.

(i) If Assumption 5.1.1 holds, then the partial mapping t0 7→ b∗(v0, t0) is Lipschitz-
continuous on T (v0) with constant L∗.

(ii) If X = V × R and (V,E) is strongly connected, then, for each v0 ∈ V , the partial
mapping t0 7→ b∗(v0, t0) is Lipschitz-continuous on R with constant L∗.

Proof The result follows directly from Theorem 5.1.3, Lemma 5.1.8 and Lemma 5.1.9. �

5.2. Directional Differentiability

The results of the previous section on the properties of the optimal value function require
very little mathematical structure in the problem formulation. We are next concerned with
matters of differentiability which require the time-dependent network to be specified more
precisely. In particular, we need to further specify the structure of the point-to-set mapping
∆T . In the remainder of this chapter, we assume that

∆T (x) = [∆T (x),∆T (x)], ∀x ∈ X, (5.17)

where ∆T ,∆T : X → R+
0 with ∆T (x) ≤ ∆T (x) for all x ∈ X. We could similarly assume

that ∆T (x) consists of a finite union of sets of the form (5.17). All results derived below
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5. Properties of the Optimal Value Function

also hold in this more general setting. However, in order to keep the notation as simple as
possible, we have introduced the particular form of the waiting time constraints (5.17). In
order to derive the directional differentiability of the optimal value function, we assume that
the partial mappings t 7→ ∆T (v, t) and t 7→ ∆T (v, t), v ∈ V , t ∈ T (v), as well as the net-
work functions τ, β, δ have additional properties. Note, that due to the switching between
edge sequences traversed by optimal paths at different points in time we cannot expect the
optimal value function to be differentiable on XR. Such breakpoints not only occur as a
result of the switching of an edge sequence but also as a consequence of the parametric
optimization problems (4.5) which must be solved along each edge sequence, cp. [30, Ex-
ample 4.11]. In order to obtain the differentiability of the optimal value function, a certain
class of differentiability of the cost and constraint functions (we can interpret ∆t ∈ ∆T (x)
as the inequality constraints −∆t ≤ ∆T (x) and ∆t ≤ ∆T (x)), certain constraint qualifica-
tions (see, e.g., [65, Section 2.3], [78, Section 2.4], [30, Section 2.3.4]) and certain regularity
assumptions are usually assumed [65, Section 2.4, Chapter 3], [78, Section 2.2]. Although
the constraint qualifications are trivially satisfied by the simple structure of the inequality
constraints given by (5.17) and the set of problems for which the regularity assumption
holds is dense in the strong topology on C3(R2,R) [78, Theorem 2.2.9] (see [78, Theorem
2.5.1] for a statement including the constraints), we do not pursue this approach here, since
the eventual switching of the optimal edge sequence obstructs the global differentiability of
the optimal value function. The best we can generally expect is to obtain the directional
differentiability of the partial functions t 7→ b∗(v, t) for each v ∈ V and t ∈ TR(v), cp. [30,
Section 4.3].
Using implicit function theorem results (cp. [65, Section 2.4]), even if the cost and constraint
functions are n times continuously differentiable and the constraint qualifications and reg-
ularity assumptions hold, the optimal value function can only be shown to be (n− 1) times
continuously differentiable in general. This is due to the characterization of the optimal
waiting policy as a zero of the derivative of the cost function at interior points of the domain
of admissibility. Consequently, along an edge sequence of (topological) length k, the opti-
mal value function can only be shown to be max{0, n−k} times continuously differentiable.
Next, it can be seen from the proof of Theorem 4.2.4 that the optimal value function is the
pointwise minimum of the optimal cost functions along the edge sequences connecting the
terminal node to the source node. Consequently, even if an upper bound for the topological
length of optimal paths is known, the set of intersection points between these cost functions
can contain accumulation points, thereby foiling even the directional differentiability of the
optimal value function. In order to avoid this situation, we consider piecewise analytic
functions in the following. According to the above discussion, they constitute the largest
class of functions which allow the directional differentiability of the optimal value function
in general. Similar assumptions were imposed on the network functions in the context of
time-dependent optimal flows [133], [112].
Note that the restriction of ∆T (x) to a finite number of connected components for each
x ∈ X is necessary in order to establish that the optimal value function is piecewise analytic.
(Consider Γ(t) = {0} ∪

∪
n∈N{

1
n}, f(t, x) = sin(tx) and f∗(t) = minx∈Γ(t) f(t, x). Then the

intersections between the partial functions t 7→ f(t, 1n), n ∈ N, and t 7→ f(t, 0) contain the
accumulation point π.)
Since we must consider (lower semi-) continuous functions on closed domains in order to
obtain the existence of optimal solutions we must first be concerned with an appropriate
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definition of differentiability on closed sets. After introducing two concepts of piecewise
analytic functions and proving a number of preliminary lemmas we present the main result
of this section, Theorem 5.2.14.
Let n ∈ N and Θ ⊂ Rn be an open set. We denote the set of k-times continuously differen-
tiable functions f : Θ → R by Ck(Θ). We call f : Θ → R real analytic if, for each y ∈ Θ,
the function f may be represented by a convergent power series in some neighborhood of
y, cp., [118, Definition 1.6.1]. The set of all real analytic functions f : Θ → R are denoted
by Cω(Θ).
Let us now consider the case in which Θ is a closed set. In case of pathological closed sets,
a very general definition of k-times continuously differentiable functions has been formu-
lated by Whitney, see, e.g., [168], [118, Definition 2.3.5]. We are henceforth concerned with
closed connected sets which have a smooth boundary and consist mostly of inner points.
For such a set Θ ⊂ Rn, we may also consider a k-times continuously differentiable (resp.,
real analytic) function f as the restriction of a function f̃ which is k-times continuously
differentiable (resp., real analytic) on an open set Θ̃ containing Θ.

Definition 5.2.1 Let n ∈ N and Θ ⊂ Rn be a closed connected set, such that Θ = cl(int(Θ))
and such that there exists a (n − 1)-dimensional analytic variety MΘ over an open set
UΘ ⊂ Rn containing Θ with bd(Θ) ⊂MΘ. Let f : Θ→ R.
We say that f ∈ PCω(Θ), if there exists a (n− 1)-dimensional analytic variety M over an
open set UΘ ⊂ Rn containing Θ such that bd(Θ) ⊂ M and for each connected component
Θ′ of Θ \M there holds f |cl(Θ′) ∈ Cω

(
cl(Θ′)

)
.

Remark 5.2.2 It is easily seen that the sum of two piecewise analytic functions f, g with
appropriate domain is a again a piecewise analytic function by using [118, Proposition 1.1.4]
and observing that for Mf = {x ∈ Rn : zf (x) = 0} and Mg = {x ∈ Rn : zg(x) = 0} we
obtain Mf ∩Mg = {x ∈ Rn : zf (x) · zg(x) = 0}.

Even when considering parametric optimization problems in which only analytic functions
occur in the problem formulation, the optimal value function is not necessarily piecewise
analytic. Consider the function f(t, x) =

∫ x
0 sin(ξ2)dξ − x sin(t) for (t, x) ∈ [0, 1] × R and

the optimization problem
f∗(t) = min

x∈[t,1]
f(t, x). (5.18)

Clearly f ∈ Cω(R2), t, 1 ∈ Cω(R), and we have

∂xf(t, x) = sin(x2)− sin(t), ∂2xf(t, x) = 2x cos(x2).

It is easy to verify that for t > 0 the curve t 7→ (t,
√
t) contains local minima of (5.18).

However, the function f∗(t) = f(t,
√
t) is not in Cω

(
[0, 1]

)
as (f∗)′(t) = −

√
t cos(t) is not

differentiable at t = 0. Nevertheless, the function t 7→ f∗(t2) is in Cω
(
[0, 1]

)
. In order to

cope with such situations we introduce the following type of functions:

Definition 5.2.3 Let T ⊂ R be a closed interval with non-empty interior and f : T → R.
We say that f ∈ C1,ω(T ), if f ∈ C1

(
T
)
, f |int(T ) ∈ Cω

(
int(T )

)
, and if T has a left boundary

point t, then there exists γ ∈ Cω
(
[0, 1]

)
satisfying

γ
(
[0, 1]

)
⊂ T, γ(0) = t, γ′(s) > 0, ∀s ∈ (0, 1], (5.19)

f ◦ γ ∈ Cω
(
[0, 1]

)
, (5.20)
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and if T has a right boundary point t, then there exists γ ∈ Cω
(
[−1, 0]

)
satisfying

γ
(
[−1, 0]

)
⊂ T, γ(0) = t, γ′(s) > 0, ∀s ∈ [−1, 0), (5.21)

f ◦ γ ∈ Cω
(
[−1, 0]

)
. (5.22)

For T ⊂ R and f : T → R, we say that f ∈ PC1,ω(T ) if there exists a 0-dimensional
analytic variety M over an open set UT ⊂ R containing T such that bd(T ) ⊂ M and for
each connected component T ′ of T \M there holds f |cl(T ′) ∈ C1,ω

(
cl(T ′)

)
.

Remark 5.2.4 If UT ⊂ R is an open set and h ∈ Cω(UT ) is not the zero-function, then
the zero set M = {t ∈ UT : h(t) = 0} of h contains no accumulation point in UT , cp.
[118, Corollary 1.2.6]. Hence instead of restricting the breakpoints of f to the zero set of
an analytic function as in Definition 5.2.1, we could have required M ∩K to be finite for
each compact K ⊂ T in Definition 5.2.3.

Remark 5.2.5 In [133], [112], a piecewise analytic function f : T → R, T ⊂ R, was
defined as a lower semicontinuous function which is analytic on each subset of its domain
on which it is continuous. At this, it was assumed that T is a closed interval which contains
only a finite number of breakpoints of f . It has then been shown that the optimal value
function is piecewise analytic and lower semicontinuous (in the above sense) if the network
functions are piecewise analytic and lower semicontinuous (in the above sense). Continuing
the approach we have chosen in Section 5.1, we are able to prove an even stronger result,
i.e., the continuity and the directional differentiability of the optimal value function at any
point of its domain. Note that, if T ⊂ R is a closed interval and f ∈ PC1,ω(T ), then f is
directionally differentiable at any t ∈ T , cp. Remark 5.2.4.

Remark 5.2.6 In order to ease the notation, if Θ is as in Definition 5.2.1, D is a discrete
set and f : Θ×D → R, we will denote f ∈ PCω(Θ×D) if the partial mappings y 7→ f(y, d)
are in PCω(Θ) for all d ∈ D. Similarly, if T is as in Definition 5.2.3, D is a discrete set
and f : T ×D → R, we will denote f ∈ PC1,ω(T ×D) if the partial mappings t 7→ f(t, d)
are in PC1,ω(T ) for all d ∈ D.

In a similar manner as in Remark 5.2.2, if T ⊂ R, f ∈ PC1,ω(T ) and g ∈ PCω(T ), we obtain
f + g ∈ PC1,ω(T ) by using [118, Proposition 1.6.7] and the local reparametrizations of f
specified in Definition 5.2.3.

Lemma 5.2.7 Let UΘ ⊂ R2 be an open neighborhood of the origin, f ∈ C1(UΘ) and suppose
that 0 is a local and isolated minimum of the optimization problem minx∈R:(0,x)∈Θ f(0, x).
Then, for any ϵ > 0, there exists an ϵt > 0, such that for each t ∈ (−ϵt, ϵt) there ex-
ists a x∗(t) ∈ (−ϵ, ϵ) such that x∗(t) is a local minimum of the optimization problem
minx∈R:(t,x)∈Θ f(t, x).

Proof Let ϵ > 0. Since f ∈ C1(UΘ) and 0 is a local and isolated minimum, there holds
∂xf(0, 0) = 0, and there exists an ϵx > 0 with 2ϵx < ϵ, such that ∂xf(0, x) < 0 for all
x ∈ (−2ϵx, 0) and ∂xf(0, x) > 0 for all x ∈ (0, 2ϵx). As ∂xf(0,−ϵx) < 0, ∂xf(0, ϵx) > 0 and
f ∈ C1(UΘ), there exists an ϵt > 0, such that

∂xf(t,−ϵx) < 0, ∀t ∈ (−ϵt, ϵt), (5.23)

∂xf(t, ϵx) > 0, ∀t ∈ (−ϵt, ϵt). (5.24)
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Since the set Cx = [−ϵx, ϵx] is compact, the optimization problem minx∈Cx f(t, x) contains
a solution for each t ∈ (−ϵt, ϵt). As a consequence of (5.23) and (5.24), the solution cannot
be a boundary point of Cx. �

Lemma 5.2.8 Let ϵf , ϵg > 0 and f ∈ Cω([0, ϵf ]), g ∈ Cω([0, ϵg]) with f(0) = g(0) = 0 and
f ′(t) > 0 for all t ∈ (0, ϵf ], g

′(t) > 0 for all t ∈ (0, ϵg]. Denote by n the multiplicity of the
zero 0 of f , i.e., n = min{k ∈ N : f (k)(0) ̸= 0}, and denote by N the multiplicity of the zero
0 of g, i.e., N = min{k ∈ N : g(k)(0) ̸= 0}. Suppose that there exists a m ∈ N such that
N = nm. Then there exists an ϵh > 0, such that h : [0, ϵh]→ R, h(t) = f−1

(
g(t)

)
satisfies

h ∈ Cω([0, ϵh]), h(0) = 0 and h′(t) > 0 for all t ∈ (0, ϵh].

Proof Let {ak}k∈N denote the coefficients of the power series expansion of f in 0, i.e., f(t) =∑∞
k=0 akt

k for all t ∈ [0, R), where R > 0 denotes the radius of convergence of this power
series expansion. Since 0 is a zero with multiplicity n, we have ak = 0 for k = 0, ..., n − 1,
and consequently we may denote f(t) = tna(t), whereat a(t) = an +

∑∞
k=n+1 akt

k−n. [118,
Corollary 1.2.3] implies that a ∈ Cω

(
(−R,R)

)
. By definition of n, there holds an ̸= 0, and

since f ′(t) > 0 for all t ∈ (0, ϵf ], we have an > 0. Denote p(t) = tn. As an > 0, there
exists a b > 0, such that an = a(0) = p(b) = bn, and there holds p′(b) = nbn−1 ̸= 0. As
a consequence of the inverse function theorem [118, Theorem 1.4.3], there exists an open
neighborhood Up of b, on which there exists an analytic inverse function p−1 of p. We choose
ϵ̃f > 0 in such a way that ϵ̃f < min{R, ϵf}, 0 ̸∈ a

(
(−ϵ̃f , ϵ̃f )

)
, a
(
(−ϵ̃f , ϵ̃f )

)
⊂ Up, and define

rf : (−ϵ̃f , ϵ̃f ) → R, rf (t) = tp−1
(
a(t)

)
. According to [118, Proposition 1.6.7], there holds

rf ∈ Cω
(
(−ϵ̃f , ϵ̃f )

)
,

rf (t)
n = tn

[
p−1
(
a(t)

)]n
= tna(t) = f(t), ∀t ∈ [0, ϵ̃f )

and r′f (0) = p−1
(
a(0)

)
= b > 0. Clearly, there holds rf (0) = 0 and, possibly after choosing

a smaller ϵ̃f > 0, we may assume that r′f (t) > 0 for all t ∈ (−ϵ̃f , ϵ̃f ). In a similar manner

we obtain the existence of ϵ̃g ∈ (0, ϵg] and rg ∈ Cω
(
(−ϵ̃g, ϵ̃g)

)
satisfying rg(t)

N = g(t) for all
t ∈ [0, ϵ̃g), rg(0) = 0 and r′g(t) > 0 for all t ∈ (−ϵ̃g, ϵ̃g).
As a consequence of the inverse function theorem [118, Theorem 1.4.3], since r′f (0) > 0,
there exists an open neighborhood Uf of rf (0) = 0, on which there exists an analytic inverse
function r−1

f of rf . We choose ϵr > 0 in such a way that [0, ϵr] ⊂ Uf , and for s ∈ [0, ϵnr ] we

define f̂(s) = r−1
f (s1/n). Then

(f̂ ◦ f)(t) = r−1
f

(
f(t)1/n

)
= r−1

f

((
rf (t)

n
)1/n)

= t, ∀t ∈ r−1
f

(
[0, ϵr]

)
(f ◦ f̂)(s) = rf

(
f̂(s)

)n
= rf

((
r−1
f (s1/n)

))n
= s, ∀s ∈ [0, ϵnr ].

Hence f̂ is the inverse function of f . Since rg(0) = 0 and r′g(t) > 0 for all t ∈ (−ϵ̃g, ϵ̃g),
there exists an ϵh ∈ (0ϵ̃g] such that rg([0, ϵh]) ⊂ [0, ϵ

1/m
r ]. Finally, for t ∈ [0, ϵh], there holds

h(t) = f−1
(
g(t)

)
= r−1

f

((
rg(t)

N
)1/n)

= r−1
f

(
rg(t)

m
)
.

Since rg ∈ Cω
(
(−ϵ̃g, ϵ̃g)

)
, (−ϵ̃g, ϵ̃g) is an open superset of [0, ϵh], r

−1
f ∈ C

ω(Uf ) and Uf is an

open superset of [0, ϵr] ⊃ rg
(
[0, ϵh]

)m
, we obtain h ∈ Cω

(
[0, ϵh]

)
. Moreover, as rg(0) = 0
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and r−1
f (0) = 0, there holds h(0) = 0 and using [68, Kapitel 15, Satz 3] we establish

h′(t) =
(
r−1
f

)′(
rg(t)

m
)
·mrg(t)m−1 · r′g(t) =

mrg(t)
m−1r′g(t)

r′f

(
r−1
f

(
rg(t)m

)) > 0, ∀t ∈ (0, ϵh],

since each of the factors is positive for t ∈ (0, ϵh]. �

Lemma 5.2.9 Let T ⊂ R be a compact interval with non-empty interior and let f1, f2 ∈
C1,ω(T ). Then the function f∗ : T → R,

f∗(t) = min
{
f1(t), f2(t)

}
satisfies f∗ ∈ PC1,ω(T ).

Proof Let T12 = {t ∈ T : f1(t) = f2(t)}. We first show that either (1) T12 = ∅ or (2)
T12 = T or (3) T12 is a finite set.
Suppose that neither of the cases (1), (2), (3) has occurred. Since T12 contains an infinite
number of points and T is compact, T12 contains an accumulation point t0. If t0 ∈ int(T )
then the identity theorem for real analytic functions [118, Corollary 1.2.6] yields f1 = f2
on int(T ). Since f1, f2 ∈ C1(T ) we must even have f1 = f2 on T , i.e., T12 = T which we
have precluded. Hence t0 ∈ bd(T ). Without loss of generality we may assume that t0 is
the left boundary point of T and t0 = 0. Let γ

i
∈ Cω

(
[0, 1]

)
be such that (5.19) and (5.20)

hold for fi, i = 1, 2. Let ni denote the multiplicity of the zero 0 of γ
i
, i = 1, 2, and denote

N = n1n2, U0 = γ
1

(
[0, 1]

)
∩ γ

2

(
[0, 1]

)
. Since γ

i
(0) = 0, γ′

i
(s) > 0 for all s ∈ (0, 1] and γ

i
is

continuous, i = 1, 2, there exists an ϵ0 > 0 such that [0, ϵ0] ⊂ U0. We now define

γ̃i(t) = γ−1
i

(tN ), t ∈ [0, ϵ
1/N
0 ], i = 1, 2.

Lemma 5.2.8 implies that there exist ϵi > 0 such that γ̃i ∈ Cω([0, ϵi]), γ̃i(0) = 0 and γ̃′i(t) > 0

for all t ∈ (0, ϵi], i = 1, 2. Consequently, using [118, Proposition 1.6.7], t 7→ fi

(
γ
i

(
γ̃i(t)

))
is

in Cω([0, ϵi]) for i = 1, 2, and

t 7→ fi

(
γ
i

(
γ̃i(t)

))
= fi

(
γ
i

(
γ−1
i

(tN )
))

= fi(t
N ), i = 1, 2.

Since T12 contains the accumulation point 0 and t 7→ tN is bijective on R+
0 , [118, Corollary

1.2.6] yields f1(t
N ) = f2(t

N ) for all t ∈ [0, ϵ0]. Since fi|int(T ) ∈ Cω
(
int(T )

)
for i = 1, 2,

we even obtain f1 = f2 on int(T ) ∪ {t0}. A similar reasoning for the right boundary point
yields f1 = f2 on T , i.e., T12 = T .
We now consider the cases (1), (2), (3) separately. If either (1) or (2) has occurred then
f∗(t) = fi(t) for an i∗ ∈ {1, 2} and the assertion follows. Let us assume that the case (3)
has occurred. Let [ t, t ] denote the closure of an arbitrary connected component of T \ T12.
It is sufficient to prove that f∗|[ t,t ] ∈ C1,ω

(
[ t, t ]

)
.

Since f1, f2 ∈ C1(T ) we immediately obtain f∗|[ t,t ] ∈ C1
(
[ t, t ]

)
. Moreover, since f∗(t) =

fi∗(t) for all t ∈ [ t, t ] and an i ∈ {1, 2}, there holds f∗|(t,t) ∈ Cω
(
(t, t)

)
. Let us now construct

a curve γ∗ ∈ Cω
(
[0, 1]

)
such that (5.19) and (5.20) hold for f∗. If t is the left boundary point

of T then we may set γ∗ = γ
i∗
. Otherwise there exists an ϵ > 0 such that [ t, t + 2ϵ) ⊂ T .

We may then set γ∗(s) = t+ ϵs. The assertion follows in a similar manner for t. �
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Lemma 5.2.10 Let θ, θ ∈ R with θ < θ and let T ⊂ R be a compact interval. Let γ ∈ Cω(T )
with θ ≤ t + γ(t) ≤ θ for all t ∈ T and f ∈ C1,ω

(
[ θ, θ ]

)
. Then the function f∗ : T 7→ R,

f∗(t) = f
(
t+ γ(t)

)
, satisfies f∗ ∈ PC1,ω(T ).

Proof Let Tθ = {t ∈ T : t+ γ(t) = θ}. Since γ ∈ Cω(T ) and T is compact, it follows from
the identity theorem for real analytic functions [118, Corollary 1.2.6] that there are three
possibilities for the structure of Tθ: (1) Tθ = ∅, (2) Tθ = T and (3) Tθ is a finite set. A
similar assertion holds for Tθ = {t ∈ T : t+ γ(t) = θ}. We first assume that Tθ = ∅.
In the case of (1), since t 7→ t + γ(t) is analytic on an open superset of T , the mapping
t 7→ f

(
t+γ(t)

)
is analytic on an open superset of T . In the case of (2), since t 7→ t+γ(t) = θ

is constant, the mapping t 7→ f
(
t+ γ(t)

)
is analytic on an open superset of T . In the case

of (3), let T ′ be the closure of a connected component of T \ Tθ. As t+ γ(t) ∈ (θ, θ) for all
t ∈ int(T ′), we obtain that f∗|int(T ′) ∈ Cω

(
int(T ′)

)
. Since f∗ is the composition of functions

which are the restriction of continuously differentiable functions on open supersets of their
respective domains, we also obtain f∗|T ′ ∈ C1(T ′). Let tbd ∈ bd(T ′). Without loss of
generality we assume that tbd is the left boundary point of T ′ and that tbd = θ = 0. We
now construct a curve γ∗ ∈ Cω

(
[0, 1]

)
satisfying γ∗

(
[0, 1]

)
⊂ T ′, γ∗(0) = 0 with (γ∗)′(s) > 0

for all s ∈ (0, 1], such that the mapping t 7→ f
(
γ∗(t) + γ(γ∗(t))

)
is in Cω

(
[0, 1]

)
. By

assumption, the mapping t 7→ d(t) = t + γ(t) is in Cω
(
T ′), d(0) = 0 and there exists an

ϵ > 0 such that d′(t) > 0 for all t ∈ (0, ϵ]. Let γ ∈ Cω
(
[0, 1]

)
be such that (5.19) and (5.20)

hold for f , let n denote the multiplicity of the zero 0 of d (recall that we have assumed that
d is non-constant in the case (3)) and define

γ̃∗( s̃ ) = d−1
(
γ( s̃n)

)
.

From the power series expansion of s 7→ γ(s) we immediately obtain that 0 is a zero of
s 7→ γ(sn) with multiplicity N = nm for some m ∈ N. Lemma 5.2.8 implies that there is an
ϵ̃ > 0 such that γ̃∗ ∈ Cω([0, ϵ̃]), γ̃∗(0) = 0 and (γ̃∗)′( s̃ ) > 0 for all s̃ ∈ (0, ϵ̃]. Consequently,
using [118, Proposition 1.6.7],

s̃ 7→ f∗
(
γ̃∗( s̃ )

)
= f

(
d
(
γ̃∗( s̃ )

))
= f

(
d
(
d−1
(
γ( s̃n)

)))
= f

(
γ( s̃n)

)
is in Cω([0, ϵ̃]). By defining γ∗(s) = γ̃∗( ϵ̃s) we obtain the desired curve γ∗ ∈ Cω

(
[0, 1]

)
satisfying γ∗

(
[0, 1]

)
⊂ T , γ∗(0) = tbd with (γ∗)′(s) > 0 for all s ∈ (0, 1], such that f∗ ◦ γ̃∗ ∈

Cω
(
[0, 1]

)
.

In a similar manner we can construct such a curve for each t ∈ Tθ if Tθ is a finite set. If
Tθ = T then Tθ = ∅ and the assertion follows in a similar manner as if Tθ = ∅ and Tθ = T .
�

Lemma 5.2.11 Let T ⊂ R be a compact interval with non-empty interior and let Γ,Γ ∈
Cω(T ). Suppose that Γ(t) ≤ Γ(t) for all t ∈ T and denote Γ : T → P(R), Γ(t) = [ Γ(t),Γ(t)],
Θ = graph(Γ) and

θ = min
{
t+ x ∈ R : (t, x) ∈ Θ

}
, θ = max

{
t+ x ∈ R : (t, x) ∈ Θ

}
.

Let g ∈ Cω(Θ), f ∈ C1,ω
(
[ θ, θ ]

)
, denote h : Θ→ R, h(t, x) = g(t, x)+ f(t+x), and suppose
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that
M =

{
(t, x) ∈ int(Θ) : ∂xh(t, x) = 0

}
is a 1-dimensional real analytic variety. Then for each (tbd, xbd) ∈ bd(M), there exists
an open neighborhood Ubd of (tbd, xbd), such that M ∩ Ubd = M0 ∩M1, where Mi is the
finite disjoint union of connected i-dimensional real analytic manifolds, i = 0, 1, with M0 ⊂
bd(M1). Moreover, for each connected component M ′

1 of M1 with (tbd, xbd) ∈ bd(M ′
1),

there exists a curve γ = (γ1, γ2) with γ1, γ2 ∈ Cω
(
[0, 1]

)
such that

γ(0) = (tbd, xbd), γ
(
(0, 1]

)
⊂M ′

1, Dγ(s) ̸= 0, ∀s ∈ (0, 1], (5.25)

h ◦ γ ∈ Cω
(
[0, 1]

)
. (5.26)

Proof We separately consider different characterizations of boundary points. First, we
assume that tbd + xbd ̸∈ {θ, θ}.
Since there exists a real analytic continuation ĥ of h to an open neighborhood Ubd of
(tbd, xbd) (cp. [118, Definition 1.2.7]), the set

Mbd =
{
(t, x) ∈ Ubd : ∂xĥ(t, x) = 0

}
is an analytic variety of top dimension d ∈ {0, 1}, cp. [118, Chapter 5]. Note that, if
Mbd were an analytic variety of dimension 2, then the power series expansion of h in an
inner point of Mbd would yield ∂xh ≡ 0 and hence M could not be a 1-dimensional variety.
The Lojaciewicz Structure Theorem for analytic varieties [118, Theorem 5.2.3] yields that
Mbd =M0∪M1, whereMi is the finite disjoint union of connected i-dimensional real analytic
manifolds, i = 0, 1, with M0 ⊂ bd(M1). Note that, if Mbd were a 0-dimensional analytic
variety Mbd =M0, since Ubd ∩M ̸= ∅ and M0 ⊂ bd(M1), M could not be a 1-dimensional
analytic variety. Let M ′

1 be a connected component of M ∩ Ubd with (tbd, xbd) ∈ bd(M ′
1).

If (tbd, xbd) ∈ M1, then we may choose γ : [−1, 1] → Mbd as a real analytic local
parametrization of the connected component of M1 containing M ′

1 ∪ {(tbd, xbd)}. With-
out loss of generality, possibly after an appropriate transformation of the curve parameter,
we may assume that γ(0) = (tbd, xbd) and γ

(
(0, 1]

)
⊂M ′

1. Since γ is a local parametrization
of a real analytic manifold, we have Dγ(s) ̸= 0 for all s ∈ [−1, 1], cp. [118, Definition 1.9.1].
Since t+ x ̸∈ {θ, θ} for all (t, x) ∈M ⊂ int(Θ) we obtain (h ◦ γ)|[0,1] ∈ Cω

(
[0, 1]

)
.

If (tbd, xbd) ∈ M0, then Hironaka’s theorem on the resolution of singularities of real ana-
lytic varieties [118, Theorem 5.1.6] yields that there is a blowup π : Y → Ubd, such that the
proper transform MY of

{
(t, x) ∈ Ubd : ∂xĥ(t, x) = 0

}
in Y is a real analytic manifold. Let

γY : [−1, 1]→ Y be a real analytic local parametrization of MY with π
(
γY (0)

)
= (tbd, xbd)

and π
(
γY
(
(0, 1]

))
⊂M ′

1. Since γY is a local parametrization of a real analytic manifold we

have DγY (s) ̸= 0 for all s ∈ [−1, 1], and since π is a projection, π is real analytic. With-
out loss of generality, possibly after restricting the domain of γY to a smaller interval and
rescaling the curve parameter, we may assume that π is injective on γY

(
(0, 1]

)
⊂ π−1(M ′

1).
By setting γ(s) =

(
γ1(s), γ2(s)

)
= π

(
γY (s)

)
for s ∈ [0, 1], we obtain γ1, γ2 ∈ Cω

(
[0, 1]

)
.

Possibly after restricting s to a smaller parameter interval and rescaling the curve γ, we
obtain that Dγ(s) ̸= 0 for all s ∈ (0, 1]. Since t+ x ̸∈ {θ, θ} for all (t, x) ∈ M ⊂ int(Θ) we
obtain (h ◦ γ)|[0,1] ∈ Cω

(
[0, 1]

)
.

We now consider the case in which tbd + xbd ∈ {θ, θ}. Without loss of generality we only
consider the case in which tbd + xbd = θ and θ = 0. Let γ ∈ Cω

(
[0, 1]

)
be such that (5.19)
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and (5.20) hold for f and let Θ[0,1] = {(t, x) ∈ Θ : 0 ≤ t+ x ≤ 1}, ψ : Θ[0,1] → R2,

ψ(t, x) =
(
ψ1(t, x), ψ2(t, x)

)
=
(
t, γ(t+ x)− t

)
(5.27)

and Θ̃[0,1] = ψ(Θ[0,1]). Observe that Θ̃[0,1] ⊂
{
(t̃, x̃) ∈ R2 : 0 ≤ t̃ + x̃

}
. Obviously, ψ is

continuous, and since γ′(s) > 0 for all s ∈ (0, 1], ψ : Θ[0,1] → Θ̃[0,1] is bijective. Hence, there

exists a continuous bijective inverse ψ−1 of ψ on Θ̃[0,1]. A simple calculation yields

ψ−1( t̃, x̃ ) =
(
t̃, γ−1( t̃+ x̃ )− t̃

)
. (5.28)

Moreover, ψ(tbd, xbd) = (tbd, xbd) and ψ1(t, x)+ψ2(t, x) = γ(t+x), and since γ ∈ Cω
(
[0, 1]

)
there exists a real analytic continuation of ψ to an open neighborhood of (tbd, xbd). By
the assumptions on f and γ, using [118, Proposition 1.6.7], there also exists an analytic

continuation ( t̃, x̃ ) 7→ h̃( t̃, x̃ ) of the mapping (t, x) 7→ h
(
ψ(t, x)

)
to an open neighborhood

Uψ of (tbd, xbd). We choose Uψ in such a way that there also exists an analytic continuation
of ψ to Uψ. Now we have

∂x̃h̃(t, x) = ∂xh
(
ψ(t, x)

)
γ′(t+ x), ∀(t, x) ∈ Uψ ∩Θ

and γ′(t+x) > 0 for all (t, x) ∈ Uψ∩int(Θ). The Lojaciewicz Structure Theorem for analytic

varieties [118, Theorem 5.2.3] implies that there is an open neighborhood Ũψ ⊂ Uψ of

(tbd, xbd) such that
{
( t̃, x̃ ) ∈ Ũψ : ∂x̃h̃( t̃, x̃ ) = 0

}
= M̃0∪M̃1, where M̃i is the finite disjoint

union of connected i-dimensional real analytic manifolds, i = 0, 1, and M̃0 ⊂ bd(M̃1). Let

Ũ> =
{
( t̃, x̃ ) ∈ Ũψ : t̃ + x̃ > θ = 0

}
. Observe that (M̃0 ∪ M̃1) ∩ Ũ> also is the disjoint

union of a finite disjoint union of connected i-dimensional real analytic manifolds, i = 0, 1.
For the open neighborhood Ubd = ψ(Ũψ) of (tbd, xbd) we obtain

M ∩ Ubd = ψ
(
(M̃0 ∪ M̃1) ∩ Ũ>

)
= ψ(M̃0 ∩ Ũ>) ∪ ψ(M̃1 ∩ Ũ>),

whereat ψ(M̃0∪Ũ>) ⊂M is the finite disjoint union of connected 0-dimensional real analytic

manifolds, ψ(M̃1 ∪ Ũ>) is the finite disjoint union of connected 1-dimensional real analytic

manifolds and ψ(M̃0∩Ũ>) ⊂ bd
(
ψ(M̃1∩Ũ>)

)
. LetM ′

1 ⊂M∩Ubd be a connected component
of M ∩Ubd with (tbd, xbd) ∈ bd(M ′

1). Then there exists a connected real analytic manifold

M̃ ′
1 ⊂ M̃1 with ψ(M̃ ′

1 ∩ Ũ>) = M ′
1. If ψ−1(tbd, xbd) ∈ M̃ ′

1 then there exists a real analytic

local parametrization γ̃ : [−1, 1]→ M̃ of M̃ ′
1 with

γ̃(0) = (tbd, xbd), γ̃
(
(0, 1]

)
⊂ ψ−1(M ′

1), Dγ̃(s) ̸= 0, ∀s ∈ [−1, 1]. (5.29)

If ψ−1(tbd, xbd) ∈ M̃0 then [118, Theorem 5.1.6] yields in a similar manner as above that
there exist γ̃1, γ̃2 ∈ Cω[−1, 1], such that γ̃ = (γ̃1, γ̃2) satisfies γ̃(0) = (tbd, xbd), γ̃

(
(0, 1]

)
⊂

ψ−1(M ′
1) and Dγ̃(s) ̸= 0 for all s ∈ (0, 1]. Since h̃ is real analytic on Ũψ we obtain

h̃ ◦ γ̃ ∈ Cω
(
[−1, 1]

)
. We now set γ : [0, 1]→ cl(M ′

1), γ = (γ1, γ2),

γ(s) = ψ
(
γ̃(s)

)
. (5.30)

Since there exists an analytic continuation of ψ to Ũψ, [118, Proposition 1.6.7] implies that
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γ1, γ2 ∈ Cω
(
[0, 1]

)
. Clearly, γ(0) = (tbd, xbd) and γ

(
(0, 1]

)
⊂M ′

1. Moreover,

Dγ(s) =

(
γ̃′1(s)
γ′
(
γ̃1(s) + γ̃2(s)

)[
γ̃′1(s) + γ̃′2(s)

]
− γ̃′1(s)

)
.

It remains to prove that Dγ(s) ̸= 0 for all s ∈ (0, 1]. Let s ∈ (0, 1] and suppose that
γ̃′1(s) = 0. Note that this implies γ̃′2(s) ̸= 0. Since γ̃( s̃ ) ∈ Ũ>, there holds γ̃1(s)+ γ̃2(s) > 0,
and we obtain γ′

(
γ̃1(s) + γ̃2(s)

)
> 0, which yields

γ′
(
γ̃1(s) + γ̃2(s)

)[
γ̃′1(s) + γ̃′2(s)

]
− γ̃′1(s) = γ′

(
γ̃1(s) + γ̃2(s)

)
γ̃′2(s) ̸= 0,

and hence Dγ(s) ̸= 0 for all s ∈ (0, 1]. Finally, we observe that

(h ◦ γ)(s) = h
(
ψ
(
γ̃(s)

))
= ( h̃ ◦ γ̃ )(s), ∀s ∈ [0, 1].

Since t+ x ̸∈ {θ, θ} for all (t, x) ∈M ⊂ int(Θ) this implies h ◦ γ ∈ Cω
(
[0, 1]

)
. �

Lemma 5.2.12 Let T ⊂ R be a compact interval and let Γ,Γ ∈ Cω(T ). Suppose that
Γ(t) ≤ Γ(t) for all t ∈ T and denote Γ : T → P(R), Γ(t) = [ Γ(t),Γ(t)], Θ = graph(Γ) and

θ = min{t+ x ∈ R : (t, x) ∈ Θ}, θ = max{t+ x ∈ R : (t, x) ∈ Θ}.

Let g ∈ Cω(Θ), f ∈ C1,ω
(
[ θ, θ ]

)
and denote h : Θ → R, h(t, x) = g(t, x) + f(t + x). Then

the optimal value function f∗ : T → R,

f∗(t) = min
x∈[ Γ(t),Γ(t)]

h(t, x) (5.31)

satisfies f∗ ∈ PC1,ω(T ).

Proof The candidates for a minimizer of (5.31) at t ∈ T are Γ(t),Γ(t) and x ∈
(
Γ(t),Γ(t)

)
satisfying ∂xh(t, x) = 0. We first discuss the mappings t 7→ h

(
t,Γ(t)

)
and t 7→ h

(
t,Γ(t)

)
,

cf. [78, eq. (2.2.5), p.24].
Clearly, the mappings t 7→ g

(
t,Γ(t)

)
and t 7→ g

(
t,Γ(t)

)
are in Cω(T ), cf. [118, Proposition

1.6.7]. Lemma 5.2.10 implies that t 7→ f
(
t+Γ(t)

)
and t 7→ f

(
t+Γ(t)

)
are in PC1,ω(T ). Con-

sequently, using [118, Proposition 1.6.7], we obtain that t 7→ h
(
t,Γ(t)

)
and t 7→ h

(
t,Γ(t)

)
are in PC1,ω(T ).
We next consider candidates for local minima x ∈

(
Γ(t),Γ(t)

)
, t ∈ T . Let

S =
{
(t, x) ∈ T × R : x ∈

(
Γ(t),Γ(t)

)}
.

If S = ∅ then we obtain

f∗(t) = min
{
h
(
t,Γ(t)

)
, h
(
t,Γ(t)

)}
. (5.32)

Lemma 5.2.9 implies that in this case f∗ ∈ PC1,ω(T ). Let us assume that S ̸= ∅. The set

M =
{
(t, x) ∈ S : ∂xh(t, x) = 0

}
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is either empty or an analytic variety of dimension d ∈ {0, 1, 2}, cp. [118, Chapter 5], and
contains all candidates for local minima in S. If M = ∅ then the assertion follows from
(5.32). In the following we assume that M ̸= ∅. We will now separately consider each
possible dimension d of M .
d = 0: The Lojaciewicz Structure Theorem for analytic varieties [118, Theorem 5.2.3] states
that each (t, x) ∈ M is isolated, hence Lemma 5.2.7 implies that M contains no minimum
of (5.31). Consequently, the assertion follows from (5.32).
d = 2: Since int(M) ̸= ∅ all derivatives of h vanish at some (t, x) ∈ int(M) ⊂ S. The power
series expansion of h then yields ∂xh ≡ 0 on S. As h ∈ C1(Θ) and Θ = cl(S) we even have
∂xh ≡ 0 on Θ. Consequently, the partial function x 7→ h(t, x) is constant for each t ∈ T
and the assertion follows from (5.32).
d = 1: We first show that M is locally the finite union of 0- and 1-dimensional real analytic
manifolds.
Let (t0, x0) ∈ S. If (t0, x0) ̸∈M , since M is closed in S, there exists an open neighborhood
U (t0,x0) of (t0, x0), such that U (t0,x0) ∩M = ∅. If (t0, x0) ∈ M , the Lojaciewicz structure
theorem for analytic varieties [118, Theorem 5.2.3] implies that there exists an open neigh-

borhood U (t0,x0) of (t0, x0), such that M ∩ U (t0,x0) = M
(t0,x0)
0 ∪M (t0,x0)

1 , where M
(t0,x0)
i is

the finite disjoint union of connected i-dimensional real analytic manifolds, i = 0, 1, and

M
(t0,x0)
0 ⊂ bd

(
M

(t0,x0)
1

)
.

Let (t0, x0) ∈ graph(Γ)∪graph(Γ). If (t0, x0) ̸∈ bd(M), since cl(M) is closed in Θ, there ex-
ists an open neighborhood U (t0,x0) of (t0, x0), such that U (t0,x0)∩M = ∅. If (t0, x0) ∈ bd(M),
then Lemma 5.2.11 implies that there exists an open neighborhood U (t0,x0) of (t0, x0), such

that M ∩ U (t0,x0) = M
(t0,x0)
0 ∪M (t0,x0)

1 , where M
(t0,x0)
i is the finite disjoint union of con-

nected i-dimensional real analytic manifolds, i = 0, 1, and M
(t0,x0)
0 ⊂ bd

(
M

(t0,x0)
1

)
.

Since T is compact and Γ,Γ are continuous, Θ is compact. Consequently, the open cover
{U (t0,x0)}(t0,x0)∈Θ of Θ contains a finite subcover. This implies that M = M0 ∪M1, where
Mi is the finite disjoint union of connected i-dimensional real analytic manifolds, i = 0, 1,
and M0 ⊂ cl(M1). Hence, there are only a finite number I ∈ N0 of tci ∈ T , i ∈ {1, ..., I},
such that x 7→ h(tci , x) is constant. Let J ∈ N0 be the number of t0j ∈ T , j ∈ {1, ..., J}, such
that

(
{t0j} × R

)
∩M0 ̸= ∅. Since I, J ∈ N0, it is sufficient to prove that f∗ has the desired

properties on the closure of each connected component of T \
(∪I

i=1{tci} ∪
∪J
j=1{t0j}

)
.

Let T ′ be the closure of such a connected component, and denote

M ∩ int
(
graph(Γ|T ′)

)
=

K∪
k=1

M ′
k, (5.33)

where K ∈ N0 and M ′
k is a connected 1-dimensional real analytic manifold for each k. If

K = 0 then the assertion follows from (5.32). In the following we assume that K ∈ N, and
for each k ∈ {1, ...,K}, we denote

T ′
k =

{
t ∈ T ′ : ∃x ∈ Γ(t) such that (t, x) ∈ cl(M ′

k)
}
.

Obviously, T ′
k is a closed interval. Moreover, as a consequence of the identity theorem for

real analytic functions [118, Corollary 1.2.6], for each k ∈ {1, ...,K} and each t ∈ int(T ′
k),

the set
{
x ∈ Γ(t) : (t, x) ∈ cl(M ′

k)
}

is finite, since we have assumed that the mapping
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x 7→ h(t, x) is non-constant for all t ∈ int(T ′
k). We define f̃∗k : T ′

k → R,

f∗k (t) = min
(t,x)∈cl(M ′

k)
h(t, x), (5.34)

and claim that

f∗(t) = min
{
h
(
t,Γ(t)

)
, h
(
t,Γ(t)

)
, min
k∈{1,..,K}:

t∈T ′
k

f∗k (t)
}
, ∀t ∈ T ′. (5.35)

This characterization of f∗ is obviously correct for t ∈ int(T ′), cf. (5.33), (5.34). Moreover,
[65, Theorem 2.2.8] implies that f∗ is continuous. Hence, (5.35) also holds at the boundary
points of T ′. We next analyze M ′

k and f∗k in more detail in order to establish that f∗|T ′ ∈
PC1,ω(T ′).
As M ′

k ⊂ M1 ⊂ M , M is closed in S, M0 ⊂ bd(M1) and graph(Γ|int(T ′)) ∩ M0 = ∅,
there holds bd(M ′

k) ⊂ bd
(
graph(Γ|T ′)

)
. Moreover, since M0 is the finite disjoint union

of connected 0–dimensional real analytic manifolds, the set of boundary points bd(M ′
k) is

finite. (If the set of boundary points were not finite, since bd
(
graph(Γ|T ′)

)
is compact,

the set of boundary points would contain an accumulation point. Using real analytic local
parametrizations of the boundary curve and M ′

k in a neighborhood of the accumulation
point, the identity theorem [118, Corollary 1.2.6] would yield M ′

k ⊂ bd
(
graph(Γ|T ′)

)
, a

contradiction.) We denote bd(M ′
k) =

∪L
l=1{(tbdl , xbdl )} for some L ∈ N0.

We next observe that cl(M ′
k) is compact since graph(Γ|T ′) is compact. Suppose that there

is an infinite number of (tt, xt) ∈M ′
k such that the tangent space to M ′

k at (tt, xt) is given
by {(t, x) ∈ R2 : t = 0}. Since cl(M ′

k) is compact, the set of all such points contains
an accumulation point (tt0, x

t
0). Assume that (tt0, x

t
0) ∈ M ′

k. As x 7→ ∂xh(t, x) is non-
constant for each t ∈ int(T ′), using a real analytic parameterization of M ′

k in an open
neighborhood of the accumulation point, [118, Corollary 1.2.6] implies thatM ′

k ⊂ {tt0}×R, a
contradiction to the construction of T ′. We now separately discuss the different possibilities
for (tt0, x

t
0) ∈ bd(M ′

k).
Lemma 5.2.11 implies that, for each for each (tt0, x

t
0) ∈ bd(M ′

k), there exists a curve γ =
(γ1, γ2) with γ1, γ2 ∈ Cω

(
[0, 1]

)
, γ(0) = (tt0, x

t
0), γ

(
(0, 1]

)
⊂ M ′

k and Dγ(s) ̸= 0 for all
s ∈ (0, 1]. Now, [118, Corollary 1.2.6] implies that γ1 is constant. However, if γ1 is constant,
then x 7→ ∂xh(t

t
0, x) must be constant and hence M ′

k ⊂ {tt0} × R, a contradiction to the
construction of T ′.
Let (ttn, x

t
n), n = 1, ..., N , N ∈ N0, denote the points of M ′

k at which the tangent space
to M ′

k is given by {(t, x) ∈ R2 : t = 0}. Furthermore, let Pk ∈ N denote the number of

connected components of T ′
k \
(∪L

l=1{tbdl }∪
∪N
n=1{ttn}

)
and let T ′′

k,p denote the closure of the
p-th such connected component, p = 1, ..., Pk. Observe that the number Qk,p of connected
components of M ′

k ∩ graph(Γ|int(T ′′
k,p)

) is finite, Qk,p ∈ N0, and let M ′′
k,pq denote the q-th

such connected component, q = 1, ..., Qk,p. Note that, for each t ∈ int(T ′′
k,p), there exists

exactly one x ∈ Γ(t) with (t, x) ∈M ′′
k,pq, and for each t ∈ bd(T ′′

k,p), there exists exactly one
x ∈ Γ(t) with (t, x) ∈ bd(M ′′

k,pq). We denote this unique x ∈ Γ(t) by xpq(t) in the following,
p = 1, ..., Pk, q = 1, ..., Qk,p. On T ′′

k,p we then obtain the following characterization of f∗k :

f∗k (t) = min
q∈{1,...,Qk,p}

h
(
t, xpq(t)

)
. (5.36)
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We now prove that t 7→ f∗k,pq(t) = h
(
t, xpq(t)

)
satisfies f∗k,pq ∈ C1,ω(T ′′

k,p). By inserting (5.36)
into (5.35) for all k ∈ {1, ...,K} and all p ∈ {1, ..., Pk}, and by applying Lemma 5.2.9 to
(5.35) on every non-empty set

∩
(k,p)∈Kp

T ′′
k,p with

Kp =
{
(kr, pr)r=1,...,R : (kr)r=1,...,R ∈ P

(
{1, ...,K}

)
, pr ∈ {1, ..., Pkr}

}
,

it then follows that f∗ ∈ PC1,ω(T ′) and hence f∗ ∈ PC1,ω(T ).
Since M ′′

k,pq is connected f∗k,pq is continuous. Let t ∈ int(T ′′
k,p). Then there exists a real

analytic local parametrization γ = (γ1, γ2) of M ′′
k,pq in a neighborhood U ′′

pq of
(
t, xpq(t)

)
with γ1, γ2 ∈ Cω

(
[−1, 1]

)
, γ(0) =

(
t, xpq(t)

)
and γ′1(s) ̸= 0 for all s ∈ [−1, 1]. The real

analytic inverse function theorem [118, Theorem 1.4.3] implies that there exists an inverse
function γ−1

1 of γ1 in a neighborhood U ′′
0 of γ1(0), such that γ−1

1 ∈ Cω(U ′′
0 ). We obtain

f∗k,pq(t) = h
(
t, γ2

(
γ−1
1 (t)

))
,

which is in Cω(U ′′
0 ) according to [118, Proposition 1.6.7]. Furthermore,

(f∗k,pq)
′(t) = ∂th

(
t, γ2

(
γ−1
1 (t)

))
+ ∂xh

(
t, γ2

(
γ−1
1 (t)

))
γ′2
(
γ−1
1 (t)

)
(γ−1

1 )′(t)

= ∂th
(
t, γ2

(
γ−1
1 (t)

))
, (5.37)

as ∂xh
(
t, xpq(t)

)
= 0.

Let tbd ∈ bd(T ′′
k,p). Without loss of generality we assume that tbd is the left boundary point

of T ′′
k,p. We have already shown that there exists a curve γ = (γ1, γ2) with γ1, γ2 ∈ Cω

(
[0, 1]

)
,

γ(0) =
(
tbd, xpq(tbd)

)
and Dγ(s) ̸= 0 for all s ∈ (0, 1], such that γ(s) ∈ cl(M ′′

k,pq) for all

s ∈ [0, 1] and h◦γ ∈ Cω
(
[0, 1]

)
. As a consequence of the construction of T ′′

k,p, we obtain that

γ′1(s) > 0 for all s ∈ (0, 1]. Since γ(s) ∈ cl(M ′′
k,pq) for all s ∈ [0, 1], there holds ∂xh

(
γ(s)

)
= 0

for all s ∈ [0, 1]. Consequently, for each s ∈ (0, 1], there holds

d

ds
(f∗k,pq ◦ γ1)(s) = ∂th

(
γ(s)

)
γ′1(s) + ∂xh

(
γ(s)

)
γ′2(s) = ∂th

(
γ(s)

)
γ′1(s). (5.38)

If the directional derivative in direction 1 of f∗k,pq at tbd, D1f
∗
k,pq(tbd), exists, then it is given

by, cf. [65, Definition 2.3.2],

D1f
∗
k,pq(tbd) = lim

t→0+

f∗k,pq
(
tbd + t

)
− f∗k,pq

(
tbd
)

t

= lim
s→0+

f∗k,pq
(
γ1(s)

)
− f∗k,pq

(
γ1(0)

)
γ1(s)− γ1(0)

= lim
s→0+

[
f∗k,pq

(
γ1(s)

)
− f∗k,pq

(
γ1(0)

)]
/
[
s− 0

][
γ1(s)− γ1(0)

]
/
[
s− 0

] ,

where we have used that γ1(s)→ tbd
+ for s→ 0+. As

lim
s→0+

f∗k,pq
(
γ1(s)

)
− f∗k,pq

(
γ1(0)

)
s− 0

=
d

ds
(f∗k,pq ◦ γ1)(0), lim

s→0+

γ1(s)− γ1(0)
s− 0

= γ′1(0),
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using (5.38), we obtain the existence of D1f
∗
k,pq(tbd). Using (5.37), we establish

D1f
∗
k,pq(tbd) = ∂th

(
tbd
)
= lim

t→tbd+
(f∗k,pq)

′(t).

Now Whitney’s extension theorem [118, Theorem 2.3.6] yields the existence of f̃∗k,pq ∈ C1(R)
with f∗k,pq = f̃∗k,pq|T ′′

k,p
. �

Lemma 5.2.13 Let T, T ′ ⊂ R be compact intervals, let Γ,Γ ∈ Cω(T ) with Γ(t) ≤ Γ(t) for
all t ∈ T and denote Γ(t) = [ Γ(t),Γ(t)]. Let

θ = min{t+ x ∈ R : t ∈ T, x ∈ Γ(t)}, θ = max{t+ x ∈ R : t ∈ T, x ∈ Γ(t)}

and f ∈ Cω
(
[ θ, θ ]

)
. If {(t, x) ∈ graph(Γ) : f(t + x) ∈ T ′} ̸= ∅, then there exists a N ∈ N,

compact intervals Tn ⊂ T and functions Γn,Γn ∈ Cω(Tn), n = 1, ..., N , such that

{x ∈ Γ(t) : f(t+ x) ∈ T ′} =
∪

n∈{1,...,N}:
t∈Tn

[ Γn(t),Γn(t)], ∀t ∈ T. (5.39)

Proof If f is constant then we have {x ∈ Γ(t) : f(t+x) ∈ T ′} = Γ(t). Hence, in this case the
assertion holds. Let us assume that f is not constant. Since f is continuous, the boundary
points of f−1(T ′) are given by f−1

(
bd(T ′)

)
. Since [ θ, θ ] is compact and f ∈ Cω

(
[ θ, θ ]

)
, [118,

Corollary 1.2.6] yields that the set f−1
(
bd(T ′)

)
is finite. Consequently, f−1(T ′) consists of

a finite number K ∈ N of compact intervals, say Hk, k = 1, ...,K. We define the functions
Λk,Λk : T → R by Λk(t) = max{Γ(t),minHk − t} and Λk(t) = min{Γ(t),maxHk − t},
k = 1, ...,K. Obviously, Λk,Λk ∈ PCω(T ). Next we define T ′

k = {t ∈ T : Λk(t) ≤ Λk(t)}
and Ψk = Λk|T ′

k
, Ψk = Λk|T ′

k
. Since Λk,Λk ∈ PCω(T ), T ′

k is the finite union of compact
intervals. Moreover, T ′

k can be decomposed into a finite number Nk ∈ N of intervals on
each of which Ψk,Ψk are analytic, k = 1, ...,K. For k ∈ {1, ...,K} denote the closure of the
n-th such interval by Tj , j =

∑k−1
i=1 Ni+n, n = 1, ..., Nk, and let Γj ,Γj be the restriction of

Ψk,Ψk on the respective connected component Tj of T
′
k. This construction yields (5.39). �

Theorem 5.2.14 Suppose that τ, β ∈ PCω(E × R), δ ∈ PCω(V × R × R+
0 ), ∆T ,∆T ∈

PCω(X) and there exist B,B◦ ∈ R, B◦ > 0, such that (4.1) and (4.2) hold.

(i) Let a source node v0 ∈ V be given and let Assumption 5.1.1 hold, then the partial
mapping t0 7→ b∗(v0, t0) is in PC1,ω

(
T (v0)

)
.

(ii) If X = V × R and (V,E) is strongly connected, then b∗ ∈ PC1,ω(X).

Proof We first assume that τ, β ∈ Cω(E×R), δ ∈ Cω(V ×R×R+
0 ), ∆T ,∆T ∈ Cω(X). We

proceed in a similar manner as in the proof of Theorem 4.2.4. Let (e1, ..., en) denote a finite,

connected edge sequence from v0 to v′. Denote vk = ω(ek), k = 1, ..., n, and ∆̃T k, T̃k as in

(4.3), (4.4), k = 0, ..., n − 1. Lemma 5.1.2 implies that ∆̃T k(t) = ∆T (vk, t) for all t ∈ T̃k
and hence T̃k = supp(∆̃T k) = T (vk), k = 0, ..., n − 1. Along the edge sequence (e1, ..., en),
for each k = 0, ..., n− 1, we must solve the following parametric optimization problem, cp.
(4.5):

b̃∗(vk, t) = inf
∆t∈∆̃Tk(t)

bk(t,∆t), t ∈ T̃k,
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5.2. Directional Differentiability

where

bk(t,∆t) = δ(vk, t,∆t) + β(ek, t+∆t) + b̃∗
(
vk+1, t+∆t+ τ(ek, t+∆t)

)
and b̃∗(vn, t) ≡ 0 is in Cω(T̃n) ⊂ PC1,ω(T̃n).
We will now prove by backwards induction that t 7→ b̃∗(vk, t) is in PC1,ω(T̃k). According
to Remark 5.2.4, it is sufficient to prove that, for an arbitrary compact interval K ⊂ T̃k,
t 7→ b̃∗(vk, t) is in PC1,ω(K), k = 0, ..., n−1. Let k ∈ {0, ..., n−1} and K ⊂ T̃k be a compact
interval. Since ∆T is continuous, graph(∆T |{vk}×K) is compact, the set

T ′
k+1 = {t+∆t+ τ(ek, t+∆t) ∈ R : (t,∆t) ∈ graph(∆T |{vk}×K)}

is a compact interval. (Recall that Lemma 5.1.2 implies that T ′
k+1 ⊂ T (vk+1).) Using

the induction hypothesis, i.e., using the fact that t 7→ b̃∗(vk+1, t) is in PC1,ω(T̃k+1), there
exists a decomposition of T ′

k+1 into Ik ∈ N compact intervals T ′
k+1,i, i = 1, ..., Ik, such

that t 7→ b̃∗(vk+1, t) is in C1,ω(T ′
k+1,i) for each i ∈ {1, ..., Ik}. By construction, we have

{(t,∆t) ∈ graph(∆T |{vk}×K) : t +∆t + τ(ek, t +∆t) ∈ T ′
k+1,i} ̸= ∅ for each i ∈ {1, ..., Ik}.

Lemma 5.2.13 implies that, for each i ∈ {i, ..., Ik}, there are Jk,i ∈ N and compact intervals
Tk,ij ⊂ K, j = 1, ..., Jk,i, as well as analytic functions ∆T k,ij ,∆T k,ij ∈ Cω(Tk,ij), j =
1, ..., Jk,i, satisfying

{∆t ∈ ∆T (vk, t) : t+∆t+ τ(ek, t+∆t) ∈ T ′
k+1,i} =

∪
j∈{1,...,Jk,i}:

t∈Tk,ij

[∆T k,ij(t),∆T k,ij(t)],

for all t ∈ K. We define the point-to-set mapping ∆Tk,ij : Tk,ij → P(R+
0 ),

∆Tk,ij(t) = [∆T k,ij(t),∆T k,ij(t)].

By construction of T ′
k+1, Tk,ij ,∆Tk,ij , i = 1, ..., Ik, j = 1, ..., Jk,i, we have

K =

Ik∪
i=1

Jk,i∪
j=1

Tk,ij , ∆̃T k(t) =

Ik∪
i=1

∪
j∈{1,...,Jk,i}:

t∈Tk,ij

∆Tk,ij(t), ∀t ∈ K.

Lemma 5.2.12 implies that the function fk,ij : Tk,ij → R,

fk,ij(t) = min
∆t∈∆Tk,ij(t)

bk(t,∆t), (5.40)

satisfies fk,ij ∈ PC1,ω(Tk,ij). Now

b̃∗(vk, t) = min
i∈{1,...,Ik},j∈{1,...,Jk,i}:

t∈Tk,ij

fk,ij(t).

Using Lemma 5.2.9 on every nonempty set of the form
∩
i∈I
∩
j∈Ji

Tk,ij with I ⊂ {1, ..., Ik}
and Ji ⊂ {1, ..., Jk,i}, we obtain that t 7→ b̃∗(vk, t) is in PC1,ω(T̃k). Consequently, by

backwards induction, t 7→ b̃∗(v0, t) is in PC1,ω(T̃0).
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LetKi = T (v0)∩[i, i+1] for i ∈ Z. Since the optimal cost function along each connected edge
sequence from v0 to v′ is in PC1,ω

(
T (v0)

)
, the partial function t0 7→ b∗(v0, t0) is bounded

on each non-empty set Ki, i ∈ Z. Let i ∈ Z with Ki ̸= ∅. As in the proof of Theorem 4.2.4
we see that the number of edge sequences which may possibly be traversed by an optimal
path from v0 to v′ with departure time t0 ∈ Ki is finite. Let E denote this finite set of edge
sequences. For each ϵ ∈ E let b̃∗ϵ (v0, t0) denote the optimal cost along ϵ with departure time
t0 ∈ Ki at v0. As

b∗(v0, t0) = min
ϵ∈E

b̃∗ϵ (v0, t0),

the assertion follows from Lemma 5.2.9.
Let us now assume that τ, β ∈ PCω(E×R), δ ∈ PCω(V ×R×R+

0 ) and ∆T ,∆T ∈ PCω(X).
By further decomposing, for each k ∈ {0, ..., n − 1}, Tk,ij with respect to the breakpoints
of τ, β,∆T ,∆T and ∆Tk,ij with respect to the breakpoints of δ, the assertion follows in a
similar manner as above. �

Remark 5.2.15 We conjecture that the result of Theorem 5.2.14 can be slightly generalized
by letting τ, β ∈ PC1,ω(E × R), δ1 ∈ PCω(V × R × R+

0 ), δ2 ∈ PC1,ω(V × R) and defining
δ(v, t,∆t) = δ1(v, t,∆t)+δ2(v, t+∆t). In order to prove this conjecture it would be necessary
to show that the sum and concatenation of two PC1,ω-functions of appropriate domain are
again a PC1,ω-functions by using a similar technique as in the proof of Lemma 5.2.9.

We conjecture that similar assertions as in Lemma 5.2.8 - Theorem 5.2.14 can be proved
if the word “analytic” is replaced by the word “algebraic”. Furthermore, using the above
techniques, it seems possible to prove similar results as in [133], [112]. In this case it would
be possible to replace the assumption on the continuity of the piecewise analytic functions
by an appropriate concept of lower semicontinuous piecewise analytic functions. We will
pursue none of these approaches here and leave them as a topic for further research.

5.3. Piecewise Linearity

In this section we consider a problem setting which is of particular importance in practical
applications. Although we have shown that the optimal value function is (almost, cp. Defi-
nition 5.2.3) piecewise analytic if the network functions are, the computation of the optimal
value function is rather nontrivial in this general case. This is due to the characterization of
the candidates for optimal waiting times as the zeros of certain nonlinear mappings, which
is itself a nontrivial problem, regardless of the parametric structure which is additionally
imposed by the variation of the departure times.
For this reason we now consider the case in which the network functions are piecewise linear,
and we prove that the optimal value function and the optimal control policy are both piece-
wise linear. Piecewise linear network models are not only used in the consideration of the
time-dependent optimal path problem [47], [162], [98], [51], but are also a common means
of describing electrical networks [120]. After introducing a suitable concept of piecewise
linear functions in Subsection 5.3.1, we carry out a complexity analysis in Subsection 5.3.2,
which is based on the structure of the set of breakpoints of the piecewise linear functions.
Such an analysis has been suggested in [54], but to the best of our knowledge no results
have been published on this topic so far.
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Since the solution of a one-dimensional linear equation requires a constant number of arith-
metic operations, measuring the complexity of piecewise linear function by the structure of
the set of breakpoints is not only natural when considering the space complexity, but also
when considering the time complexity of the computation of the optimal value function. We
show in Subsection 5.3.2, that both the manner in which the waiting times are constrained,
the specific form of the waiting cost function and the FIFO-property of the travel time
function have a crucial impact on the complexity of the computation of the optimal value
function in time-dependent networks.

5.3.1. Piecewise Linear Functions

Usually, a piecewise linear function f : Rm → R is defined via a set of linear functions fi :
Rm → R, i ∈ I, I ⊂ N, such that f(x) = fi(x) for some i ∈ I and f is continuous, see, e.g.,
[29], [120]. The continuity of f implies that the set of breakpoints of f , i.e., the set of all x ∈
Rm for which there exists no open neighborhood on which f is linear, has a linear structure.
Since the optimal value function is only lower semicontinuous in general, cf. Theorem 4.2.4,
we henceforth also consider discontinuous piecewise linear functions. However, we retain
the assumption that the set of breakpoints has a linear structure. Our approach is similar
to the one followed recently in [165]. Since we require a finite representation of f (in view
of space complexity) and a finite number of operations to compute the zeros of f (in view
of time complexity), we restrict ourselves to the following definition.

Definition 5.3.1 Let T ⊂ R be the finite union of closed intervals and points, and let
f : T → R. Suppose that there exist N0, N1 ∈ N, points tn0 ∈ T , n0 = 1, ..., N0, and open
intervals Tn1 ⊂ T (open in R), n1 = 1, ..., N1, such that

T =

(
N0∪
n0=1

{tn0}

)
∪

(
N1∪
n1=1

Tn1

)

and f |Tn1
is linear, n1 = 1, ..., N1. We say that f ∈ PL1c(T ), f ∈ PL1lsc(T ), f ∈ PL1usc(T )

if f is continuous, lower semicontinuous, upper semicontinuous, respectively. We denote
PL1(T ) = PL1c(T ) ∪ PL1lsc(T ) ∪ PL1usc(T ).

Remark 5.3.2 If T is unbounded, Definition 5.3.1 precludes periodical piecewise linear
functions (except for constant functions) from the following discussion. However, we will
see in Section 5.4 that, under weak assumptions, it is sufficient to consider only a compact
time interval in order to compute the optimal value function in a periodical time-dependent
network.

Let T ⊂ R be the finite union of closed intervals and points and let f ∈ PL1(T ). We now
show that there are minimal numbers N0, N1 ∈ N and a unique minimal decomposition
of T into points tn0 ⊂ T , n0 = 1, ..., N0, and open sets Tn1 ⊂ T , n1 = 1, ..., N1, which
satisfy Definition 5.3.1: Let T ′ be the set of all t ∈ T such that there exists no open
neighborhood UT ⊂ T of t (open in R) on which f is linear. In any decomposition of T
into open intervals and points according to Definition 5.3.1, no point of T ′ can be contained
in an open interval by construction. Since f ∈ PL1(T ), T ′ is finite, say |T ′| = N0 ∈ N,
and by construction N0 is minimal. Now, by construction, the set T \ T ′ contains a finite
and minimal number N1 ∈ N of connected components, each of which is an open interval.
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Figure 5.2.: f ∈ PL1lsc([0, 3]) with #f = (2, 2, 3). Values which are attained are marked by
filled circles, values which are not attained are drawn as unfilled circles.

These minimal numbers play an important role in the consideration of the complexity
of concatenating, summing and computing the pointwise minimum of a finite number of
PL1(T )-functions. We also need the following number, in the definition of which we assume
that the minimal unique decomposition {tn0}n0=1,...,N0 , {Tn1}n1=1,...,N1 is given: Let N0,1

be the number of points tn0 , n0 ∈ {1, ..., N0}, for which there exists a n1 ∈ {1, ..., N1} such
that tn0 ∈ bd(Tn1) and f |Tn1∪{tn0} is linear. Without loss of generality we assume that
these points are {tn0}n0=1,...,N0,1 . We further denote N0,0 = N0 −N0,1.

Definition 5.3.3 Let T ⊂ R be the finite union of closed intervals and points and let
f ∈ PL1(T ). Let {tn0}n0=1,...,N0, {Tn1}n1=1,...,N1, N0,0, N0,1, N1 ∈ N be as defined above.
We define

#f = (N0,0, N0,1, N1),

call the points {tn0}n0=1,...,N0,1 half-isolated of (T, f) and call the points {tn0}n0=N0,1+1,...,N0

isolated of (T, f).

Remark 5.3.4 In the following, for N,N ′ ∈ Nk0, k ∈ N, with N = (N1, ..., Nk), N
′ =

(N ′
1, ..., N

′
k) we denote N ≤ N ′ if Ni ≤ N ′

i for all i = 1, ..., k. This eases the notation of
complexity bounds for sums, concatenations and pointwise minima of PL1-functions.

We have illustrated the measure of complexity of a PL1lsc
(
[0, 3]

)
-function f in Figure 5.2.

Obviously, for a linear function f : R → R we have #f = (0, 0, 1), and for a piecewise
linear and continuous function f : R→ R consisting of N1 linear pieces, there holds #f =
(0, N1 − 1, N1).
In the following lemmas we have summarized some simple results on the decomposition of
the domain and on the complexity of PL1-functions. These results include the number of
arithmetic operations which are necessary to carry out certain computations. At this, we
assume that the PL1-functions are stored in the following manner:
Let T be a finite union of closed intervals and points, let f ∈ PL1(T ) and let {t′n0

}n0=1,...,N0

be the points in the minimal decomposition of (T, f). We uniquely characterize f by
the array of sextuples (tn0 , Df

−
n0
, f−n0

, fn0 , f
+
n0
, Df+n0

)n0=1,...,N0 , which has the property that
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tn0 < tn0+1 for all n0 = 1, ..., N0 − 1 and
∪N0
n0=1{t′n0

} =
∪N0
n0=1{tn0}. Here,

f−n0
=

{
limt→tn0

− f(t), if (tn0 − ϵ, tn0 ] ⊂ T for some ϵ > 0

∞, otherwise
,

fn0 = f(tn0),

f+n0
=

{
limt→tn0

+ f(t), if [tn0 , tn0 + ϵ) ⊂ T for some ϵ > 0

∞, otherwise
,

and

Df−n0
=

 lim
t→tn0

−

f(t)− f−n0

t− tn0

, if (tn0 − ϵ, tn0 ] ⊂ T for some ϵ > 0

∞, otherwise

,

Df+n0
=

 lim
t→tn0

+

f(t)− f+n0

t− tn0

, if [tn0 , tn0 + ϵ) ⊂ T for some ϵ > 0

∞, otherwise

.

The function f ∈ PL1lsc([0, 3]) in Figure 5.2 would then be characterized by
0 ∞ ∞ 1 1 0.6
1 0.6 1.6 0.8 0.8 0.2
2 0.2 1 0.5 1.8 −0.6
3 −0.6 1.2 1 ∞ ∞

 ,
where each line stands for one sextuple. This representation simplifies the derivation of the
number of arithmetic operations which are necessary to carry out the computations in the
following lemmas.

Lemma 5.3.5 Let T ⊂ R be the finite union of closed intervals and points and let f ∈
PL1(T ) with #f = (N0,0, N0,1, N1). Then N1 ≤ N0,0 +N0,1 + 1.
If f is continuous, then N1 ≤ N0,1 + 1 and N0,1 ≤ 2N1.

Proof Let the decomposition of T according to the discussion preliminary to Definition
5.3.3 be given by the N1 open intervals Tn1 , n1 = 1, ..., N1, and N0 = N0,0 + N0,1 points
tn0 , n0 = 1, ..., N0. By induction over N1 it is easily seen that the intervals Tn1 , n1 =
1, ..., N1, contain at least N1−1 disjoint boundary points. At this, the minimum is attained
if each boundary point of each Tn1 , n1 = 1, ..., N1, is an inner point of T = R. Since∪N1
n1=1 bd(Tn1) ⊂

∪N0
n0=1{tn0}, this implies N1 ≤ N0 + 1. Moreover, if f is continuous, then

the boundary points of the Tn1 , n1 = 1, ..., N1, are given by tn0 , n0 = 1, ..., N0,1, and we
obtain N1 ≤ N0,1 + 1. Conversely, since each open interval is bounded by at most two
boundary points, we obtain N0,1 ≤ 2N1. �

Lemma 5.3.6 Let T, T ′ ⊂ R be the finite union of closed intervals and points, let f, g ∈
PL1(T ) with #f = (Nf

0,0, N
f
0,1, N

f
1 ), #g = (Ng

0,0, N
g
0,1, N

g
1 ) and let h ∈ PL1c(T ′) with

#h = (Nh
0,0, N

h
0,1, N

h
1 ). Let Nf

0 = Nf
0,0 +Nf

0,1, N
g
0 = Ng

0,0 +Ng
0,1, N

h
0 = Nh

0,0 +Nh
0,1.

(i) If c ∈ R \ {0} then #(cf) = #f and cf can be computed in O(Nf
0 ) arithmetic opera-

tions.
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(ii) Let ⋆ ∈ {+, ·}. Then

#(f ⋆g) ≤
(
Nf

0,0+N
g
0,0+min{Nf

0,1, N
g
0,1}, N

f
0,1+N

g
0,1+min{Nf

0,0, N
g
0,0}, N

f
0 +N

g
0+1

)
,

and if f, g are continuous, then Nf
0,0 = Ng

0,0 and

#(f ⋆ g) ≤
(
Nf

0,0, N
f
0,1 +Ng

0,1, N
f
0,1 +Ng

0,1 + 1
)
.

Moreover, if the decomposition of T according to the discussion preliminary to Defi-
nition 5.3.3 is identical for f and g, and g is continuous, then #(f ⋆ g) = #f .

In any case, f ⋆ g can be computed in O
(
Nf

0 +Ng
0

)
arithmetic operations.

(iii) Let T̃ ⊂ T be a closed interval or a point. Then the set h−1(T̃ ) consists of at most
Nh

0 + 1 connected components and can be computed in O(Nh
0 ) arithmetic operations.

If T̃ is a point, then h−1(T̃ ) contains at most Nh
0 + 1 boundary points,

If h is monotonically increasing and T ′ is a closed interval, then the set h−1(T̃ ) consists
of at most one connected component and can be computed in O

(
log(Nh

0 )
)
arithmetic

operations.

(iv) Let h̃ = h|T ′∩h−1(T ). There holds

#(f ◦ h̃ ) ≤
(
(Nh

0 + 1)Nf
0,0 +Nh

0 , (N
h
0 + 1)Nf

0,1 +Nh
0,1, (N

h
0 + 1)Nf

0 +Nh
0 + 1

)
,

and if f is continuous, then

#(f ◦ h̃ ) ≤
(
(Nh

0 + 1)Nf
0,0 +Nh

0 , (N
h
0 + 1)Nf

0,1 +Nh
0,1, (N

h
0 + 1)Nf

0,1 +Nh
0,1 + 1

)
,

and f ◦ h̃ can be computed in O(Nh
0N

f
0 ) arithmetic operations.

Assume that h is monotonically increasing and T ′ is a closed interval. Then

#(f ◦ h̃ ) ≤ (Nf
0,0 +Nh

0,0, N
f
0,1 +Nh

0,1, N
f
0 +Nh

0,1 + 1 ),

and if f is continuous, then

#(f ◦ h̃ ) ≤ (Nf
0,0 +Nh

0,0, N
f
0,1 +Nh

0,1, N
f
0,1 +Nh

0,1 + 1 ),

and f ◦ h̃ can be computed in O
(
log(Nh

0 )N
f
0

)
arithmetic operations.

(v) Suppose that g ∈ PL1c(T ′) with #g = (Ng
0,0, N

g
0,1, N

g
1 ), and the decomposition of T ′

according to the discussion preliminary to Definition 5.3.3 is identical for g and h,
then #(f ◦ h+ g) ≤ #(f ◦ h), and f ◦ h+ g can be computed in O(Nh

0N
f
0 ) arithmetic

operations. If h is monotonically increasing and T ′ is a closed interval, then f ◦h+ g
can be computed in O

(
log(Nh

0 )N
f
0

)
arithmetic operations.

Proof The result (i) is obvious.

(ii) Denote #(f ⋆ g) = (Nf⋆g
0,0 , N

f⋆g
0,1 , N

f⋆g
1 ). If t ∈ T is an isolated point of (T, f ⋆ g), then

either t is an isolated point of (T, f), or t is an isolated point of (T, g), or t is a half-isolated
point of both (T, f) and (T, g) and there only exist linear continuations of f and g to disjoint

open intervals. This implies Nf⋆g
0,0 ≤ Nf

0,0 +Ng
0,0 +min{Nf

0,1, N
g
0,1}. If f, g are continuous,

94



5.3. Piecewise Linearity

then f ⋆ g is continuous and the isolated points of (T, f), (T, g), (T, f ⋆ g) coincide and are

given by the isolated points of T . Consequently, Nf
0,0 = Ng

0,0 = Nf⋆g
0,0 . Moreover, if the

decomposition of T according to the discussion preliminary to Definition 5.3.3 is identical
for f and g, and g is continuous, then each isolated point t of (T, g) must be an isolated point

of T , and hence t is also an isolated point of (T, f) and (T, f ⋆g). This implies Nf⋆g
0,0 = Nf

0,0.
If t ∈ T is a half-isolated point of (T, f ⋆ g), then there exists no open neighborhood of t
on which both f and g are linear. Furthermore, if t is an isolated point of (T, f) then t

must also be an isolated point of (T, g). This implies Nf⋆g
0,1 ≤ N

f
0,1+N

g
0,1+min{Nf

0,1, N
g
0,1}.

If f and g are continuous and t is a half-isolated point of (T, f ⋆ g), then t cannot be an
isolated point of T , i.e., t cannot be an isolated point of (T, f) or (T, g). This implies

Nf⋆g
0,1 ≤ Nf

0,1 + Ng
0,1. Moreover, if the decomposition of T according to the discussion

preliminary to Definition 5.3.3 is identical for f and g, and g is continuous, then we obtain
Nf⋆g

0,1 ≤ N
f
0,1. Now, the remaining inequalities follow from Lemma 5.3.5 and the observation

that each isolated or half-isolated point of (f ⋆ g, T ) must be an isolated or half-isolated
point of either (T, f) or (T, g). In order to determine the function f ⋆ g, we parallely run
through the array representations of f and g in increasing order of the first elements. For
each half-isolated or isolated point of f and g we compute the sextupel associated with f ⋆g
from the representations of f and g in constant time. The resulting sextupel is stored unless
the left- and right-sided limits of f ⋆ g coincide with the value (f ⋆ g)(t) and the left- and
right-sided derivatives of f ⋆ g coincide. Since this decision requires a constant number of
arithmetic operations, f ⋆ g can be computed in O

(
Nf

0 +Ng
0

)
arithmetic operations.

(iii) We first assume that h is monotone increasing and T ′ is a closed interval. As T̃ is
connected, the set h−1(T̃ ) is connected. Let (t′n0

, Dh−n0
, h−n0

, hn0 , h
+
n0
, Dh+n0

)n0=1,...,N0 be
the array representation of h. As h is continuous and monotone increasing, there holds
h−n0

= hn0 = h+n0
and hn0 ≤ hn′

0
if n0 < n′0. In order to determine (the existence of) the

boundary points of h−1(T̃ ), we first determine the maximal index n−0 with hn−
0
< min T̃ (if

no such index exists then either the left boundary point of h−1(T̃ ) is minT ′, or there exists
no left boundary point) and the minimal index n+0 with hn+

0
> max T̃ (if no such index exists

then either the right boundary point of h−1(T̃ ) is maxT ′, or there exists no right boundary
point). We can determine these indices by bisection in O

(
log(Nh

0 )
)
arithmetic operations.

The boundary points of h−1(T̃ ) are then contained in (tn−
0
, tn−

0 +1] and (tn+
0 −1, tn+

0
], and can

be computed in constant time since h|(t
n−
0
,t
n−
0 +1

] and h|(t
n+
0 −1

,t
n+
0
] are linear.

We next assume that h is not monotonically increasing and that T̃ = { t̃ } is a point. We
now prove that h−1({ t̃ }) contains at most Nh

0 + 1 boundary points. This also implies that
h−1({ t̃ }) consists of at most Nh

0 + 1 connected components. (Unless h−1({ t̃ }) = R, each
connected component has at least one boundary point. Since Nh

0 +1 ≥ 1, the assertion also
holds if h−1({ t̃ }) = R.) Let {t′n0

}n0=1,...,Nh
0
, {T ′

n1
}n1=1,...,Nh

1
be the decomposition of T ′ with

respect to h as in the discussion preliminary to Definition 5.3.3. The assertion obviously
holds if Nh

0 = 0, because then T ′ = R and h is linear. Let us assume that Nh
0 > 0. If t′ is

a boundary point of h−1({ t̃ }), then either h properly intersects the constant function t̃ on
some T ′

n1
, n1 ∈ {1, ..., Nh

1 }, or t′ ∈
∪
n0∈{1,...,Nh

0 }
{t′n0
}. Moreover, if h properly intersects the

constant function t̃ at some t′ ∈ T ′
n1
, n1 ∈ {1, ..., Nh

1 }, then bd(T ′
n1
)∩
∪
n0∈{1,...,Nh

0,1}
{t′n0
} = ∅

and h−1({ t̃ }) ∩ T ′
n1

= {t′}. Hence, as h is continuous, for each such intersection, |bd(T ′
n1
)|

points in {t′n0
}n0=1,...,Nh

0
cannot be boundary points of h−1({ t̃ }). Since we have assumed
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that Nh
0 > 0, there holds |bd(T ′

n1
)| ≥ 1, and hence h−1({ t̃ }) contains at most Nh

0 + 1
boundary points. In order to compute the connected components, we must check whether
h(t′n0

) = t̃ for n0 = Nh
0,1 + 1, ..., Nh

0 . Moreover, for each interval cl(T ′
n1
), n1 = 1, ..., Nh

1 ,

we must solve one linear equation in order to determine whether cl(T ′
n1
) ∩ h−1( t̃ ) ̸= ∅ and

whether cl(T ′
n1
) ⊂ h−1({ t̃ }). Now, using Lemma 5.3.5, the assertion follows as in (ii). If T̃

is a closed interval with nonempty interior, then the assertion follows in a similar manner
by considering the boundary points of T̃ , and by observing that each connected component
of h−1(T̃ ) has nonempty interior.

(iv) Let #(f ◦ h̃ ) = (Nf◦h̃
0,0 , N

f◦h̃
0,1 , N

f◦h̃
1 ). If t′ ∈ T ′ is an isolated point of (T ′∩h−1(T ), f ◦ h̃ ),

then either t′ is an isolated point of (T ′, h), or t = h(t′) is an isolated point of (T, f), or t′ is a
half-isolated point of (T ′, h), h(t′) is a half-isolated point of (T, f) (and a boundary point of
a connected component with nonempty interior of T ) and t′ is an isolated point of h−1(T ).
It is easily seen that the last case cannot occur if h is monotone increasing. (iii) yields

Nf◦h̃
0,0 ≤ (Nh

0 +1)Nf
0,0 +Nh

0 and, if h is monotonically increasing and T ′ is a closed interval,

Nf◦h̃
0,0 ≤ N

f
0,0 +Nh

0,0. If t
′ ∈ T ′ is a half-isolated point of (T ′ ∩ h−1(T ), f ◦ h̃ ), then either t′

is a half-isolated point of (T ′, h), or t = h(t′) is a half-isolated point of (T, f). (iii) yields

Nf◦h̃
0,1 ≤ (Nh

0 +1)Nf
0,1+N

h
0,1 and, if h is monotonically increasing and T ′ is a closed interval,

Nf◦h̃
0,1 ≤ N

f
0,1 +Nh

0,1. Since each half-isolated point of (T ′, h) results either in an isolated or

a half-isolated point of (T ′ ∩ h−1(T ), f ◦ h̃ ), there holds Nf◦h̃
0,0 +Nf◦h̃

0,1 ≤ (Nh
0 + 1)Nf

0 +Nh
0 .

Now the remaining inequalities follow from Lemma 5.3.5. The assertions on the order of
the number of necessary arithmetic operations follow as in (ii).
Using the same arguments as in (ii) and (iv), we obtain (v). �

Lemma 5.3.7 Let T ⊂ R be a closed interval, N0,1 = |bd(T )|, let fn : T → R, n = 1, ..., N ,
be a family of linear functions and let the function f∗ : T → R be defined by

f∗(t) = min
n=1,...,N

fn(t), ∀t ∈ T. (5.41)

Then f∗ ∈ PL1c(T ) is continuous and concave with #f∗ ≤ (0, N0,1 +N − 1, N).
Moreover, f∗ can be computed from f in O(N2) arithmetic operations.

Proof We prove the assertion by induction. Since #f1 = (0, N0,1, 1) and each linear
function is continuous and concave the assertion follows if N = 1. Now suppose that
f∗N−1 : T → R, defined by

f∗N−1(t) = min
n=1,...,N−1

fn(t), ∀t ∈ T

is concave and f∗N−1 ∈ PL
1
c(T ) with #f∗N−1 ≤ (0, N0,1+N−2, N−1). Clearly f∗ ∈ PL1c(T )

as the pointwise minimum of two PL1c(T )-functions. Next, f∗ is concave, because for every
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t, t′ ∈ T and every λ ∈ [0, 1] there holds

f∗(λt+ (1− λ)t′) = min
{
f∗N−1

(
λt+ (1− λ)t′

)
, fN

(
λt+ (1− λ)t′

)}
≥ min

{
λf∗N−1(t) + (1− λ)f∗N−1(t

′), λfN (t) + (1− λ)fN (t′)
}

≥ λmin
{
f∗N−1(t), fN (t)

}
+ (1− λ)min{f∗N−1(t

′), fN (t
′)}

= λf∗(t) + (1− λ)f∗(t′).

Since f∗N−1 is concave and fN is linear, there are at most 2 proper intersections of f∗N−1

and fN . If there is no proper intersection then either f∗ = f∗N−1 or f∗ = fN and the
assertion follows. If there is exactly one proper intersection then #f∗ ≤ #f∗N−1+(0, 1, 1) ≤
(0, N0,1+N −1, N). Finally, if there are exactly two proper intersections, say t, t′ ∈ T , then
there must be k ≥ 1 breakpoints of f∗N−1 in [t, t′]. Consequently, #f∗ = #f∗N−1+(0, 2, 2)−
(0, k, k) ≤ (0, N0,1 +N − 1, N).
We again proceed inductively in order to prove the result on the number of arithmetic
operations. Clearly, if N = 1 then f∗ can be computed in 0 operations. Now let us
suppose that we have already computed f∗N−1. We first compute the the intersections
(tN,i, yN,i), i = 1, ..., I, I ∈ {0, 1, 2}, of f∗N−1 and fN . Since f∗N−1 is continuous and fN
is linear, this can be implemented by running through the array representation of f∗N−1,
solving N − 1 linear equations and checking whether the found solutions are contained
in the considered intervals. Hence, we can compute all intersections in O(N) arithmetic
operations. On each connected component of T \

∪I
i=1{tN,i} we either have f∗ = fN ≤ f∗N−1

or f∗ = f∗N−1 ≤ fN . By comparing the directional derivatives of f and f∗N−1 at one
boundary point of each connected component we determine which function outvalues the
other. Since O

(∑N
n=2[(n− 1) + 1]

)
= O(N2), the assertion follows. �

It is obvious that the optimal value function is piecewise linear if all network functions
are piecewise linear, the admissible and optimal waiting times always equal zero, and no
state space constraints are imposed [47]. In Subsection 5.3.2, we will extend this result to
the case in which waiting for a waiting time unequal to zero may be necessary and (or)
optimal and certain arrival time constraints are imposed at the nodes. Here, the situation
is complicated by the partial waiting cost functions (t,∆t) 7→ δ(v, t,∆t), v ∈ V , and by the
consideration of the parametric optimization problem (4.5). We now introduce a certain
kind of 2-dimensional piecewise linear functions which turn out to be convenient when
studying the complexity of the optimal value function.
In the following, a set S ⊂ R2 is called a closed line segment if there exist x, y ∈ R2 and a
closed Interval I ⊂ R such that S = {s ∈ R2 : s = x + t(y − x), t ∈ I}. Similarly, S ⊂ R2

is called an open line segment if there exist x, y ∈ R2 and an open interval I ⊂ R, such
that S = {s ∈ R2 : s = x + t(y − x), t ∈ I}. Moreover, a set Θ ⊂ R2 is a closed polygon if
Θ = cl(int(Θ)) and there exists a finite set of line segments {Sn}n=1,...,N , N ∈ N, such that

bd(Θ) =
∪N
n=1 Sn. Note that these definitions also allow line segments of infinite length

and unbounded polygons.

Definition 5.3.8 Let Θ ⊂ R2 be the finite union of closed polygons, closed line segments
and points, and let f : Θ→ R. Suppose that there exist M0,M1 ∈ N, points (t′m0

, x′m0
) ∈ Θ,
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m0 = 1, ...,M0, and open line segments S′
m1
⊂ Θ, m1 = 1, ...,M1, such that{

(t′, x′) ∈ Θ : ̸ ∃UΘ ⊂ Θ open in R2, (t′, x′) ∈ UΘ, such that f |UΘ
is linear

}
=

(
M0∪
m0=1

{
(t′m0

, x′m0
)
})
∪

(
M1∪
m1=1

S′
m1

)
=: Θ′(f) (5.42)

and f |S′
m1

is linear, m1 = 1, ...,M1. We say that f ∈ PL2c(Θ), f ∈ PL2lsc(Θ), f ∈ PL2usc(Θ),
if f is continuous, lower semicontinuous, upper semicontinuous, respectively. We denote
PL2(Θ) = PL2c(Θ) ∪ PL2lsc(Θ) ∪ PL2usc(Θ).

Remark 5.3.9 Note that Θ′(f) is a closed set since Θ is closed and the set{
(t′, x′) ∈ Θ : ∃UΘ ⊂ Θ open in R2, (t′, x′) ∈ UΘ, such that f |UΘ

is linear
}

is open in R2 by construction.

Remark 5.3.10 It can be easily seen that the generalization of Definition 5.3.1 and Def-
inition 5.3.8 to arbitrary dimensions n ∈ N is possible. However, the consideration of the
measures of complexity and the notation of these functions become more difficult in higher
dimensions. We have separately introduced the classes PL1,PL2 in order to simultane-
ously introduce a notation which is appropriate for the consideration of the complexity of
the time-dependent optimal path problem in Subsection 5.3.2.

Let Θ ⊂ R2 be the finite union of closed polygons, closed line segments and points and let f ∈
PL2(Θ). In the following, we will use a particular (not necessarily minimal) decomposition
of Θ′(f) into points and open line segments. First, we prove that there exists a unique
minimal decomposition corresponding to Definition 5.3.8, from which we then construct
another decomposition which turns out to be convenient when studying the parametric
optimization problem (4.5), cp. Figure 5.3. Let Θ∗

0 be the set of all points (t′, x′) ∈ Θ
for which there exists no open line segment S′ ⊂ Θ with (t′, x′) ∈ S′ on which f is linear.
This also implies that for each (t′, x′) ∈ Θ∗

0, there exists no open neighborhood of (t′, x′) on
which f is linear. Consequently, in any decomposition of Θ′(f) corresponding to Definition
5.3.8, each point (t′, x′) ∈ Θ∗

0 must be in the set of (isolated) points. By construction Θ∗
0

is minimal and by assumption M∗
0 = |Θ∗

0| ∈ N. Let Θ∗
1 be the set of all points (t′, x′) ∈ Θ

for which there exists an open line segment S′ containing (t′, x′) on which f is linear, but
there exists no open neighborhood of (t′, x′) on which f is linear. By construction we
have Θ∗

1 ∩ Θ∗
0 = ∅ and Θ′(f) = Θ∗

0 ∪ Θ∗
1. In any decomposition of Θ′(f) corresponding to

Definition 5.3.8, each (t′, x′) ∈ Θ∗
1 must be contained either in a line segment or in the set of

(isolated) points, and each connected component of Θ∗
1 is the union of open line segments.

By construction there is a unique decomposition of each connected component into open line
segments whose mutual intersection is either a point or empty. This decomposition defines
the minimal number of line segments, thereby simultaneously minimizing the number of
(isolated) points. By assumption, the number M∗

1 ∈ N of such line segments is finite.
From this decomposition we construct the required decomposition as follows: Let Θ′′

0 denote
the set of all (t′, x′) ∈ Θ∗

1 for which there exists a line segment S′ ⊂ Θ∗
1 with (t′, x′) ∈ bd(S′)

in the minimal decomposition of Θ′(f), and let Θ′
0 = Θ∗

0 ∪Θ′′
0. As the number of open line

segments in the minimal decomposition of Θ′(f) is finite, the set Θ′′
0 is finite. We denote
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M0 = |Θ′
0|, Θ′

0 = {(t′m0
, x′m0

)}m0=1,...,M0 and Θ′
1 = Θ∗

1 \Θ′′
0. Let M1 ∈ N denote the number

of line segments in the unique minimal decomposition of Θ′
1 into open line segments, and let

{S′
m1
}m1=1,...,M1 denote these line segments. (Note, that the number of these line segments

is finite as Θ′′
0 is a finite set.)

Due to the structure of the parametric optimization problem (4.5) we distinguish between
line segments which are parallel to the t-axis and line segments which are not parallel to
the t-axis in the (t, x)-plane R2. We denote by π : R2 → R the orthogonal projection to the
first axis of coordinates, π(t, x) = t. Let

Θ1,1 =
∪

m1=1,...,M1

|π(S′
m1

)|>1

S′
m1
, Θ1,0 =

∪
m1=1,...,M1

|π(S′
m1

)|=1

S′
m1
. (5.43)

As for PL1-functions, we partition the set Θ′
0 into two sets: Let M0,1 be the number

of points (t′m0
, x′m0

), m0 ∈ {1, ...,M0}, for which there exists a m1 ∈ {1, ...,M1} such
that (t′m0

, x′m0
) ∈ bd(S′

m1
), f |S′

m1
∪{(t′m0

,x′m0
)} is linear, and S′

m1
⊂ Θ′

1,1. Without loss of

generality we assume that these points are {(t′m0
, x′m0

)}m0=1,...,M0,1 . We further denote
M0,0 =M0 −M0,1 and

Θ0,1 =

M0,1∪
m0=1

{
(t′m0

, x′m0
)
}
. Θ0,0 =

M0∪
m0=M0,1+1

{
(t′m0

, x′m0
)
}
, (5.44)

In order to define a measure of the complexity of PL2-functions which is appropriate for
the consideration of the parametric optimization problem (4.5), we must introduce some
more notation: We denote {tn0}n0=1,...,N0 = π(Θ0,0∪Θ0,1∪Θ1,0), and by {Tn1}n1=1,...,N1 we

denote the connected components of π(Θ) \
∪N0
n0=1{tn0}. Note that, by assumption, both

sets are finite and, by construction, Tn1 is an open interval for each n1 ∈ {1, ..., N1}. Let
N0,1 be the number of points tn0 , n0 = 1, ..., N0, such that either for each (tn0 , x

′) ∈ Θ′(f)
there exists an open line segment S′ ⊂ π−1

(
(−∞, tn0)

)
∩ Θ1,1 with (tn0 , x

′) ∈ bd(S′) such
that f |S′∪{(tn0 ,x

′)} is linear, or for each (tn0 , x
′) ∈ Θ′(f) there exists an open line segment

S′ ⊂ π−1
(
(tn0 ,∞)

)
∩Θ1,1 with (tn0 , x

′) ∈ bd(S′) such that f |S′∪{(tn0 ,x
′)} is linear. Without

loss of generality we assume that these points are {tn0}n0=1,...,N0,1 . We further denote
N0,0 = N0 −N0,1. Finally, let

J0 = max
n0=N0,1+1,...,N0

∣∣∣{x′ ∈ R : (tn0 , x
′) ∈ Θ0,0 ∪Θ0,1 ∪Θ1,1

}∣∣∣,
J1 = max

n1=1,...,N1

max
t∈Tn1

∣∣∣{x′ ∈ R : (t, x′) ∈ Θ1,1

}∣∣∣,
I0 = max

t̃∈R

∣∣∣{(t′, x′) ∈ Θ0,1 : t
′ + x′ = t̃

}∣∣∣,
I1 = max

t̃∈R

∣∣∣{m1 ∈ {1, ...,M1} : ∃! (t′, x′) ∈ S′
m1
, t′ + x′ = t̃

}∣∣∣.

Definition 5.3.11 Let Θ ⊂ R2 be the finite union of closed polygons, closed line segments
and points and let f ∈ PL2(Θ). Let N0,0, N0,1, J0, I0, N1, J1, I1 be as defined above. We
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(b) Decomposition which is used for the
definition of the measure of complexity.

Figure 5.3.: (a) Decomposition of the domain of f ∈ PL2lsc
(
[1, 4]2

)
into M∗

0 = 8 points and
M∗

1 = 10 line segments. (b) Decomposition of the domain of f into M0 = 12
points and M1 = 15 line segments. Points (t′, x′) for which there exists no
adjacent line segment S′ such that f |S′∪{(t′,x′)} is linear are drawn as unfilled

circles. There holds #f = (2, 2, 5, 2, 3, 5, 6).

define
#f = (N0,0, N0,1, J0, I0, N1, J1, I1).

We have illustrated the measure of complexity of a PL2lsc
(
[1, 4]2

)
-function f in Figure 5.3.

The notion of the complexity of a PL2-function is not quite obvious at first appearance, but
it will be easily understood in view of Lemma 5.3.12 and Lemma 5.3.13. As an illustrative
example, considering Θ = {(t′, x′) ∈ R2 : t′, x′ ≥ 0 ∧ |t′ + x′| ≤ 1} and a continuous
linear function f : Θ → R, we obtain #f = (0, 2, 0, 2, 1, 2, 2). Simple expressions for the
complexity of functions f ∈ PL2c(Θ) can also be derived if Θ′(f) forms a regular triangular
grid.
We now show that the notions of the complexity of PL1- and PL2-functions are appropriate
when studying parametric optimization problems of the form (4.5). At this, we assume that
the PL2-functions are stored in the following manner:
Let Θ be the finite union of closed polygons, line segments and points, let f ∈ PL2(Θ) and
let {(t′m0

, x′m0
)}m0=1,...,M0 and {S′

m1
}m1=1,...,M1 be as described preliminary to Definition

5.3.11. Let further {P ′
m2
}m2=1,...,M2 be the collection of the connected components of Θ \

Θ′(f), M2 ∈ N. Observe that each Pm2 , m2 ∈ {1, ...,M2}, is an open polygon and that
M2 ≤ J1N1. Finally, let {tn0}n0=1,...,N0 and {Tn1}n1=1,...,N1 be as described preliminary to
Definition 5.3.11. We uniquely characterize f by 3 linked lists Ll, l = 0, 1, 2, of objects [43,
Chapter 10.2]: The first list containsM0 objects O

0
m0

, each of which contains the coordinates
of one point (t′m0

, x′m0
), m0 ∈ {1, ...,M0}, the respective value of f , and one pointer. The

second list contains M1 objects O1
m1

, each of which consists of a set of inequalities which
uniquely characterize a line segment S′

m1
, m1 ∈ {1, ...,M1}, the 3 coefficients of the linear

function f |S′
m1

and a pointer. The third list containsM2 objects O
2
m2

, each of which consists
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of a set of inequalities which uniquely characterize an open polygon P ′
m2

, m2 ∈ {1, ...,M2},
the 3 coefficients of the linear function f |P ′

m2
and one pointer. (We will describe below in

which manner the pointers are set.)
In order to efficiently solve the subproblems that arise in the computation of optimal paths
we further store two functions: The first function, GetPartialFunctions, is a linked list of
objects OGPF

i , i = 1, ..., IGPF, each object consisting of a point set and a linked list of pointers.
Let supp(OGPF

i ) denote the point set associated with OGPF
i , i = 1, ..., IGPF. The point sets are

given by {tn0}n0=1,...,N0 and {Tn1}n1=1,...,N1 , and the objects OGPF
i , i = 1, ..., IGPF, are linked

in such a way that ti < ti+1 for all ti ∈ supp(OGPF
i ), ti+1 ∈ supp(OGPF

i+1), i = 1, ..., IGPF − 1.
The pointers in OGPF

i , i ∈ {1, ..., IGPF}, point to the objects Olm ⊂ (supp(OGPF
i )× R), i.e., to

the objects in the linked lists Ll, l = 0, 1, 2. The pointer in the respective object Olm in the
linked list Ll, l ∈ {0, 1, 2}, m ∈ {1, ...,Ml}, is set in such a way that it points to OGPF

i .
The second function, GetDecomposition, is a linked list of objects OGD

i , i = 1, ..., IGD, each
object consisting of a point set and a linked list of pointers. Observe that the mapping

t̃ 7→
{
(l,m) ∈ {0, 1, 2}×N : m ≤Ml, supp(O

l
m)∩{(t′+x′) ∈ R2 : t′+x′ = t̃ } ̸= ∅

}
, (5.45)

is piecewise constant. The point sets associated with the objects OGD
i , i = 1, ..., IGD, are

given by the maximal connected components of R on which the mapping (5.45) is con-
stant. Let supp(OGD

i ) denote the point set associated with OGD
i , i = 1, ..., IGD. The point

sets are linked in such a way that t̃i < t̃i+1 for all t̃i ∈ supp(OGD
i ), t̃i+1 ∈ supp(OGD

i+1),
i = 1, ..., IGD − 1. The pointers in OGD

i , i ∈ {1, ..., IGD}, point to the objects Olm with
supp(Olm) ∩ {(t′ + x′) ∈ R2 : t′ + x′ = t̃ } ̸= ∅, l ∈ {0, 1, 2},m ∈ {0, ...,Ml}. Let us denote
the pointers associated with some object OGD

i , i = 1, ..., IGD, by ai,j , j = 1, ..., Ji, Ji ∈ N
and let supp(ai,j) denote the point set associated with the object the pointer ai,j points to.
The pointers are linked in such a way that supp(ai,j), supp(ai,j+1) are adjacent point sets
with the property that tj < tj+1 for all (tj , x

′
j) ∈ supp(ai,j), (tj+1, x

′
j+1) ∈ supp(ai,j+1),

j = 1, ..., Ji − 1.
We compute the functions GetPartialFunctions and GetDecomposition in a preprocess-
ing step, and use them to trade off the space complexity of storing PL2-functions to the
time complexity of solving the time-dependent optimal path problem.

Lemma 5.3.12 Let Θ ⊂ R2 be the finite union of closed polygons, closed line segments and
points. Let π : R2 → R denote the orthogonal projection to the first coordinate axis, denote
T = π(Θ), define

Γ : T → P(R), Γ(t) = π−1(t) ∩Θ,

and suppose that Γ(t) is compact for each t ∈ T . Let f ∈ PL2lsc(Θ) with #f = (N0,0, N0,1, J0,
I0, N1, J1, I1), and let the function f∗ : T → R be defined by

f∗(t) = min
x′∈Γ(t)

f(t, x′).

Let Θ0,0,Θ0,1,Θ1,0,Θ1,1 ⊂ Θ be a characterization of the breakpoints of f as in (5.43),
(5.44) and define

Λ : T → P(R), Λ(t) = π−1(t) ∩ (Θ0,0 ∪Θ0,1 ∪Θ1,1).
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Then f∗ ∈ PL1lsc(T ) with #f∗ ≤ (N0,0, N0,1 +N1(J1 − 1), N1J1) and

f∗(t) = min
x′∈Λ(t)

f(t, x′). (5.46)

Moreover, f∗ can be computed from f in O
(
N0,0J0 +N1J

2
1

)
arithmetic operations.

Proof Since Θ consists of a finite number of closed polygons, closed line segments and
points, Γ(t) is closed for each t ∈ T . As π(Θ0,0 ∪Θ0,1 ∪Θ1,0) is a finite set which is closed
in T , Γ is upper semicontinuous at each t ∈ T . Since Γ(t) is compact for each t ∈ T ,
Γ is upper semicontinuous. Since f is lower semicontinuous, [65, Theorem 2.2.1] implies
that f∗ is lower semicontinuous. Next, we show that (5.46) holds. Let t ∈ T and let
x∗ ∈ argminx′∈Γ(t) f(t, x

′). Suppose that x∗ ̸∈ Λ(t). Since Θ \ (Θ0,0,Θ0,1,Θ1,1) is open
in Θ, there exists a maximal connected component S′ of Γ(t) \ Λ(t) with x∗ ∈ S′, such
that f |S′ is linear. As x∗ ∈ argminx′∈Γ(t) f(t, x

′), f |S′ must be constant. Let x′′ ∈ bd(S′).
Then x′′ ∈ Λ(t) and, since f is lower semicontinuous, f(t, x′′) ≤ limx′→x′′ f(t, x

′) = f(t, x∗).
Consequently, (5.46) holds.
Let {tn0}n0=1,...,N0 and {Tn1}n1=1,...,N1 be as described preliminary to Definition 5.3.11.
For each n1 ∈ {1, ..., N1}, Tn1 is an open interval and graph(Λ|Tn1

) ⊂ Θ1,1 consists of
a finite number J ≤ J1 of line segments Sj , j = 1, ..., J , on each of which f is lin-
ear. By γj : Tn1 → R we denote the linear function satisfying

(
t, γj(t)

)
∈ Sj for all

t ∈ Tn1 and by f̃j : cl(Tn1) → R we denote the linear continuation of t 7→ f
(
t, γj(t)

)
to

cl(Tn1). Let f̃∗ : cl(Tn1) → R, f̃∗(t) = minj=1,...,J f̃j(t) and observe that f̃∗(t) = f∗(t)

for all t ∈ Tn1 . Lemma 5.3.12 yields that f̃∗ ∈ PL1c
(
cl(Tn1)

)
, f̃∗ is concave and satisfies

#f̃∗ ≤
(
0, J1 − 1 + |bd(Tn1)|, J1

)
. Note that

∪N1
n1=1 bd(Tn1) ⊂

∪N0
n0=1{tn0}. For each tn0 ,

n0 = 1, ..., N0,1, there exists an adjacent Tn1 , n1 ∈ {1, ..., N1}, such that f can be continu-
ously continued to each (tn0 , x

′) ∈ graph(Λ|{tn0}) from some S′ ⊂ graph(Λ|Tn1
) ⊂ Θ1,1 with

(tn0 , x
′) ∈ bd(S′). This yields #f∗ ≤ (N0,0, N0,1 +N1(J1 − 1), N1J1).

Since the minimum of J real numbers can be computed in J arithmetic operations, and
such a minimum has to be computed for each t ∈ T ′ =

∪N0
N0,1+1{tn0}, at which J ≤

J0 for all t ∈ T ′, the computation of f∗|T ′ requires O(N0,0J0) arithmetic operations.
(Here we access the values of f in O(N0,0J0) arithmetic operations by using the func-
tion GetPartialFunctions.) As we may use Lemma 5.3.7 for the closure of each of the N1

remaining time intervals in π(Θ) (we again use the function GetPartialFunctions in order
to access the partial linear functions in O(N1J1) arithmetic operations), the result follows.
�

We next prove two simple lemmas which will be useful when applying the piecewise linear
approach to the time-dependent optimal path problem.

Lemma 5.3.13 Let Θ ⊂ R2 be the finite union of closed polygons, closed line segments
and points and let T̃ ⊂ R be the finite union of closed intervals and points. Denote Θ̃ =
{(t′, x′) ∈ Θ : t′ + x′ ∈ T̃}. Let g ∈ PL2lsc(Θ) with #g = (Ng

0,0, N
g
0,1, J

g
0 , I

g
0 , N

g
1 , J

g
1 , I

g
1 ),

f ∈ PL1lsc(T̃ ) with #f = (Nf
0,0, N

f
0,1, N

f
1 ) and let the function h : Θ̃ → R be defined by

h(t′, x′) = g(t′, x′)+f(t′+x′). Then h ∈ PL2lsc(Θ̃) with #h = (Nh
0,0, N

h
0,1, J

h
0 , I

h
0 , N

h
1 , J

h
1 , I

h
1 ),

102



5.3. Piecewise Linearity

satisfying

Nh
0,0 ≤ N

g
0 + Ig1N

f
0,0, Nh

0,1 ≤ N
g
0,1 + Ig1N

f
0,1, Jh0 ≤ J

g
0 +Nf

0 , Ih0 ≤ I
g
0 + Ig1 ,

Nh
1 ≤ N

g
1 + Ig1N

f
0 , Jh1 ≤ J

g
1 +Nf

0 , Ih1 ≤ I
g
1 + Ig0 ,

where Nf
0 = Nf

0,0 +Nf
0,1. Moreover, h can be computed from f, g in O

(
(Ng

0 + Ig1N
f
0 )(J

g
0 +

Jg1 + 2Nf
0 )
)
arithmetic operations.

Proof First, we observe that Θ̃ is the finite union of closed polygons, closed line segments
and points since {(t′, x′) ∈ R2 : t′+x′ ∈ T̃} is the finite union of closed polygons and closed
line segments. Furthermore, if g̃, f̃ ∈ PL2lsc(Θ̃), then it is obvious from Definition 5.3.8 that

h = g̃ + f̃ ∈ PL2lsc(Θ̃). Let g̃ = g|
Θ̃
, let f̃ : Θ̃ → R be defined by f̃(t′, x′) = f(t′ + x′) and

let {t̃n0}n0=1,...,Nf
0
denote the minimal number of breakpoints of f according to Definition

5.3.1. For each (t′, x′) ∈ int(Θ̃) with t′ + x′ ̸= t̃n0 for all n0 = 1, ..., Nf
0 there exists an

open neighborhood of (t′, x′) on which f̃ is linear. Moreover, for each (t′, x′) ∈ int(Θ̃) with
t′+x′ = t̃n0 for some n0 ∈ {1, ..., Ng

0 } there exists no open neighborhood of (t′, x′) on which f̃

is linear, but f̃ is linear on the connected component C ′ of {(t′′, x′′) ∈ int(Θ̃) : t′′+x′′ = t̃n0}
which contains (t′, x′). Since C ′ is either an open line segment or a point, we obtain
f̃ ∈ PL2lsc(Θ̃).

Let Θg
0,0,Θ

g
0,1,Θ

g
1,0,Θ

g
1,1 denote the decomposition of Θ with respect to g, let Θ̃g̃

0,0, Θ̃
g̃
0,1, Θ̃

g̃
1,0,

Θ̃g̃
1,1 denote the decomposition of Θ̃ with respect to g̃ and let Θ̃h

0,0, Θ̃
h
0,1, Θ̃

h
1,0, Θ̃

h
1,1 denote

the decomposition of Θ̃ with respect to h according to (5.43) and (5.44).
If (t′, x′) ∈ Θ̃h

0,0, then either (t′, x′) ∈ Θg
0,0, or (t′, x′) ∈ Θg

0,1 and t′ + x′ = t̃n0 for some

n0 ∈ {1, ..., Nf
0 }, or (t′, x′) ∈ Θg

1,1 ∪Θg
1,0 and t′ + x′ = t̃n0 for some n0 ∈ {Nf

0,1 + 1, ..., Nf
0 }.

This yields Nh
0,0 ≤ Ng

0 + Ig1N
f
0,0. Next, we observe that the lower semicontinuity of f, g

implies that, if (t′, x′) ∈ Θg
0,0, then (t′, x′) ̸∈ Θh

0,1. Hence, if (t′, x′) ∈ Θ̃h
0,1, then either

(t′, x′) ∈ Θg
0,1, or (t′, x′) ∈ Θg

1,1 ∪ Θg
1,0 and t′ + x′ = t̃n0 for some n0 ∈ {1, ..., Nf

0,1}. This

yields Nh
0,1 ≤ Ng

0,1 + Ig1N
f
0,1. From the above reasoning it is easily seen that the number

of additional points in the decomposition of π(Θ̃) bounded from above by Ig1N
f
0 . Hence,

Nh
0 ≤ N

g
0 + Ig1N

f
0 and Nh

1 ≤ N
g
1 + Ig1N

f
0 .

Let t′ ∈ π(Θ̃). If (t′, x′) ∈ π−1(t′)∩ (Θ̃h
0,0∪ Θ̃h

0,1∪ Θ̃h
1,1) then either (t′, x′) ∈ π−1(t′)∩ (Θg

0,0∪
Θg

0,1 ∪ Θg
1,1) or x′ + t′ = t̃n0 for some n0 ∈ {1, ..., Nf

0 }. This yields Jh0 ≤ Jg0 + Nf
0 and

Jh1 ≤ J
g
1 +Nf

0 .

Let t̃ ∈ T̃ . If (t′, x′) ∈ Θ̃h
0,1 with t′ + x′ = t̃, then either (t′, x′) ∈ Θg

0,1 with t′ + x′ = t̃,

or (t′, x′) ∈ Θg
1,1 ∪ Θg

1,0 and t′ + x′ = t̃ = t̃n0 for some n0 ∈ {1, ..., Nf
0,1}. This yields

Ih0 ≤ Ig0 + Ig1 . Next, we observe that the lower semicontinuity of f and g implies that

(Θ̃h
1,1 ∪ Θ̃h

1,0) \ (Θ
g
1,1 ∪ Θg

1,0) ⊂
∪Nf

0
n0=1{(t′, x′) ∈ Θ̃ : t′ + x′ = t̃n0}. Hence, if

∣∣{(t′, x′) ∈ S′ :

t′ + x′ = t̃ }
∣∣ = 1 for some open line segment S′ ⊂ Θ̃h

1,1 ∪ Θ̃h
1,0, then the thereby defined

intersection point {(t′0, x′0)} = {(t′, x′) ∈ S′ : t′ + x′ = t̃ } satisfies either (t′0, x
′
0) ∈ Θg

0,1

with t′0 + x′0 = t̃ = t̃n0 for some n0 ∈ {1, ..., Nf
0,1}, or (t′0, x

′
0) ∈ Θg

1,1 ∪ Θg
1,0. This implies

Ih1 ≤ I
g
0 + Ig1 .

In order to compute h from f, g, we use GetDecomposition and GetPartialFunctions.
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Since we can solve linear equations in constant time, we can modify the elements in one
object of the object lists Ll in constant time, l ∈ {0, 1, 2}. Since there are O(Nh

0 J
h
0 +N

h
1 J

h
1 )

objects in all lists Ll, l ∈ {0, 1, 2}, we can modify all objects in O(Nh
0 J

h
0 +Nh

1 J
h
1 ) time. We

use the function GetDecomposition in order to determine which objects must be changed
(resp., generated or deleted) in which manner. Since we can insert (resp., remove) elements
into a linked list (resp., from a linked list) in constant time, we can perform the necessary
modifications of the functions GetDecomposition, GetPartialFunctions, in O(Nh

0 J
h
0 +

Nh
1 J

h
1 ) arithmetic operations. (Observe that there exists a pointer from each object of

GetDecomposition to the objects in the object lists Ll, and a pointer from each object in
the object lists Ll to the objects of GetPartialFunctions.) Using Lemma 5.3.5 and the
above upper bounds for Nh

0 , J
h
0 , N

h
1 , J

h
1 , the assertion follows. �

The next lemma is a special case of the preceding results.

Lemma 5.3.14 Let T ′ ⊂ R be a closed interval with int(T ′) ̸= ∅, θ, θ ∈ R with θ < θ and
Θ = T ′ × [ θ, θ ]. Let T̃ ⊂ R be a closed interval with int(T̃ ) ̸= ∅ and denote Θ̃ = {(t′, x′) ∈
Θ : t′+x′ ∈ T̃}. Let π : R2 → R denote the orthogonal projection to the first coordinate axis
and denote T = π(Θ̃). Let g ∈ PL2c(Θ) be a linear function with #g ≤ (0, Ng

0,1, 0, 2, 1, 2, 2),

let f ∈ PL1c(T̃ ) with #f = (0, Nf
0,1, N

f
1 ) and let the function f∗ : T → R be defined by

f∗(t) = min
x′∈[ θ,θ ]

g(t, x′) + f(t+ x′).

Then f∗ ∈ PL1c(T ) with #f∗ ≤ (0, 6Nf
0,1 + 4, 6Nf

0,1 + 3) and f∗ can be computed from g, f

in O
(
Nf

0,1 log(N
f
0,1)
)
arithmetic operations.

Proof From [65, Theorem 2.2.8] it immediately follows that f∗ is continuous. In a similar
manner as in Lemma 5.3.12 we see that h : Θ̃→ R, h(t′, x′) = g(t′, x′) + f(t′ + x′), satisfies
h ∈ PL2c(Θ̃). Let Θ̃0,0, Θ̃0,1, Θ̃1,0, Θ̃1,1 ⊂ Θ̃ be the characterization of the breakpoints of h
as in (5.43), (5.44) and define

Λ : T → P(R), Λ(t) = π−1(t) ∩ (Θ̃0,0 ∪ Θ̃0,1 ∪ Θ̃1,1).

In a similar manner as in Lemma 5.3.12 we see that the parametric optimization can be
restricted to x′ ∈ Λ(t) for each t ∈ T . graph(Λ) consists of Nf

0,1 line segments

S′
n1

= {(t′, x′) ∈ Θ̃ : t′ + x′ = t̃n1}, n1 = 1, ..., Nf
0,1,

determined by the breakpoints t̃1, ..., t̃Nf
0,1

of f , and the two line segments S′
θ = {(t′, x′) ∈

Θ̃ : x′ = θ}, S′
θ
= {(t′, x′) ∈ Θ̃ : x′ = θ}. Moreover, there are at most 2Nf

0,1 mutual inter-
sections of the line segments S′

θ, S
′
θ
, S′

1, ..., S
′
Nf

0,1

, whose projections to the first coordinate

axis decompose T into at most K = 2Nf
0,1 + 1 open intervals T1, ..., TK , cp. Lemma 5.3.5.

Since g is linear, there holds g(t′, x′) = g0 + gt′t
′ + gx′x

′ for some g0, gt′ , gx′ ∈ R. Moreover,

for each n1 ∈ {1, ..., Nf
0,1}, (t′, x′) 7→ f(t′ + x′) = f(t̃n1) is constant on S′

n1
, which implies

that for each n1 ∈ {1, ..., Nf
0,1} there exists a hn1 ∈ R, such that

h(t′, t̃n1 − t′) = (hn1 + g0 + t̃n1gx′) + (gt′ − gx′)t′, ∀t′ ∈ π(S′
n1
).
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Consequently, for any n1, n
′
1 ∈ {1, ..., N

f
0,1}, the functions t 7→ h(t, t̃n1−t) and t 7→ h(t, t̃n′

1
−

t), defined on π(S′
n1
) and π(S′

n′
1
), respectively, cannot properly intersect each other. Hence,

on each Tk, k = 1, ...,K, it is sufficient to consider the line segments S′
θ, S

′
θ
, S′

n∗
1(k)

in order

to compute f∗, where

n∗1(k) = argmin
n1∈{1,...,Nf

0,1}:
Tk⊂π(S′

n1
)

h(t, t̃n1 − t), t ∈ Tk.

The continuity of f∗ and Lemma 5.3.7 yield that #f∗|cl(Tk) ≤ (0, 4, 3). As T =
∪K
k=1 cl(Tk)

is a closed interval and K ≤ 2Nf
0,1 + 1, we obtain that #f∗ ≤ (0, 6Nf

0,1 + 4, 6Nf
0,1 + 3).

In order to compute n∗1(k) for all k ∈ {1, ...,K}, we first determine which line segments are

relevant for k = 1 in O(Nf
0,1) arithmetic operations. We then sort the cost functions by

building a binary heap in O
(
Nf

0,1 log(N
f
0,1)
)
arithmetic operations. Observe that, while k is

increasing, only the line segment with minimal index is removed and the line segment with
index one greater than the actually maximal index is inserted. Since the insertion (resp.,
removal) of an element into a binary heap (resp., from a binary heap) can be implemented

in logarithmic time, we can compute n∗1(k) for all k ∈ {1, ...,K} in O
(
Nf

0,1 log(N
f
0,1) +

K log log(Nf
0,1)
)
arithmetic operations. As K ≤ 2Nf

0,1+1, f∗ can be computed from g, f in

O
(
Nf

0,1 log(N
f
0,1)
)
arithmetic operations. �

The next two lemmas are concerned with the relation between piecewise linear functions
and point-to-set mappings.

Lemma 5.3.15 Let T ⊂ R be the finite union of closed intervals and points and let the
point-to-set mapping Γ : T → P(R) be given by Γ(t) = [ Γ(t),Γ(t)] with Γ ∈ PL1lsc(T ),
Γ ∈ PL1usc(T ) and Γ(t) ≤ Γ(t) for all t ∈ T . Then Γ is an upper-semicontinuous point-
to-set mapping and graph(Γ) is the finite union of compact polygons and line segments. If
Γ,Γ ∈ PL1c(T ), then Γ is a continuous point-to-set mapping.

Proof First we show that Γ is an upper semicontinuous point-to-set mapping. For each
compact K ⊂ T , since Γ is lower semicontinuous, we have Γ(K) ⊂ [g,∞) for some g ∈ R.
Similarly, for each compact K ⊂ T , since Γ is upper semicontinuous, we have Γ(K) ⊂
(−∞, g] for some g ∈ R. Consequently Γ(t) ⊂ [g, g] for all t ∈ K. Since Γ(t) is closed
for all t ∈ T this implies that Γ(t) is compact for all t ∈ T . Now, let t ∈ T and UΓ ⊂ R
be an open set such that Γ(t) ⊂ UΓ. Since Γ(t) is lower semicontinuous and Γ is upper
semicontinuous we obtain the existence of an open neighborhood UT ⊂ T of t ∈ T such that
Γ(t) = [Γ(t),Γ(t)] ⊂ UΓ for all t ∈ UT . The result for Γ,Γ ∈ PL1c(T ) follows in a similar
manner. Next we show that graph(Γ) is the finite union of compact polygons, line segments
and points: Let T ′ be a maximal open subset of T on which both Γ and Γ are linear. The
number of such sets is finite, cl

(
graph(Γ|T ′)

)
is either a closed polygon or a closed line

segment, and as Γ is upper semicontinuous there also holds cl
(
graph(Γ|T ′)

)
⊂ graph(Γ).

Moreover, the set of all points t ∈ T for which there exists no open neighborhood on which
both Γ and Γ are linear is finite, and for each such t, graph(Γ|{t}) is either a closed line
segment or a point. �
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Lemma 5.3.16 Let T ′ ⊂ R be a closed interval with int(T ′) ̸= ∅ and let the point-to-set
mapping Γ : T ′ → P(R) be given by Γ(t′) = [ Γ(t′),Γ(t′)] with Γ,Γ ∈ PL1c(T ′), #Γ ≤
(0, N0,1, N1), #Γ ≤ (0, N0,1, N1) and Γ(t′) ≤ Γ(t′) for all t′ ∈ T ′. Let T̃ ⊂ R be a closed
interval or a point and let π : R2 → R denote the orthogonal projection to the first coordinate
axis. Then the set T = π

(
{(t′, x′) ∈ graph(Γ) : t′ + x′ ∈ T̃}

)
consists of at most N0,1 + 1

connected components.

Proof Let us first assume that T̃ is a point, T̃ = { t̃ }. Denote γ : T ′ → R, γ(t′) = t̃ − t′,
then T = π

(
graph(Γ)∩graph(γ)

)
. Note that Γ−γ,Γ−γ ∈ PL1c(T ′) with #Γ−γ = #Γ and

#Γ− γ = #Γ. Lemma 5.3.6 (ii) and (iii) imply that the zero set of (Γ− γ)(Γ− γ) contains
at most 2N0,1+1 boundary points. Each boundary point of each connected component of T
is either a boundary point of T ′ or a boundary point of a connected component of the zero
set of (Γ−γ)(Γ−γ). Let Nb denote the number of bounded connected components of T and
let Nu ≤ 2 denote the number of unbounded connected components of T . If T = R then
the assertion is obviously true. Henceforth, we assume that T ̸= R. Since each bounded
connected component of T has 2 boundary points, each unbounded connected component of
T has 1 boundary point and T ′ has at most 2−Nu boundary points, the maximal number
of connected components of T is bounded from above by the objective function value of the
following linear program:

maxNb +Nu, subject to

2Nb +Nu ≤ (2N0,1 + 1) + (2−Nu),

Nu ≤ 2,

Nb, Nu ≥ 0.

It is easily seen that the maximal value of the objective function is N0,1 + 1.

In a similar manner we establish the assertion if T̃ is a closed interval with int(T̃ ) ̸= ∅, by
considering bd(T̃ ). �

Lemma 5.3.17 Let T ′ ⊂ R be a closed interval with int(T ′) ̸= ∅ and let the point-to-
set mapping Γ : T ′ → P(R) be given by Γ(t′) = [ Γ(t′),Γ(t′)] with Γ,Γ ∈ PL1c(T ′) and
Γ(t′) ≤ Γ(t′) for all t′ ∈ T ′. Let T̃ ⊂ R be a closed interval or a point and let π : R2 → R
denote the orthogonal projection to the first coordinate axis. If Γ,Γ satisfy (3.4), then the
set T = π

(
{(t′, x′) ∈ graph(Γ) : t′ + x′ ∈ T̃}

)
consists of at most one connected component.

Proof Let Θ̃ = {(t′, x′) ∈ graph(Γ) : t′ + x′ ∈ T̃} and let (t′1, x
′
1), (t

′
2, x

′
2) ∈ Θ̃ be arbitrary

but fixed. We now show that there exists a continuous curve from (t′1, x
′
1) to (t′2, x

′
2) which

is contained in Θ̃. Without loss of generality we assume that t′1 + x′1 ≤ t′2 + x′2 and define
the curve γ1 : T ′ → R2 by γ1(s) = (t′1 + s, x′1 − s). Let s1 ∈ R+

0 be maximal such that
t′1+s1 ≤ t′2 and γ1(s) ≥ Γ(t′1+s) for all s ∈ [0, s1]. Next, we define γ2 : (s1,∞)→ R2, γ2(s) =
(t′1+s,Γ(t

′
1+s)), denote s2 = t′2−t′1, define γ3 : [s2,∞)→ R2, γ3(s) = (t′2,Γ(t

′
1+s2)+s−s2)

and set s3 = x′2−Γ(t′1 + s2) + s2. Since t
′ 7→ Γ(t′) satisfies (3.4) and s 7→ (t′1 + s) + (x′1− s)

is constant, γ1(s) ∈ Θ̃ for all s ∈ [0, s1]. Since t′ 7→ Γ(t′) satisfies (3.4), γ2(s) ∈ Θ̃ for all
s ∈ (s1, s2). Finally, since γ3(s2), γ3(s3) ∈ Γ(t′2) and s2+γ3(s2), s3+γ3(s3) ∈ T̃ , there holds

106



5.3. Piecewise Linearity

x′

t′

b

(t′1, x
′
1)

b

(t′2, x
′
2)

Θ̃

γ([0, s3])

Figure 5.4.: The curve γ in (5.47).

γ3(s) ∈ Θ̃ for all s ∈ [s2, s3]. Now, since Γ is continuous, the curve γ : [0, s3]→ Θ̃,

γ(s) =


γ1(s), 0 ≤ s ≤ s1
γ2(s), s1 < s < s2
γ3(s), s2 ≤ s ≤ s3

(5.47)

is a continuous curve which connects (t′1, x
′
1) and (t′2, x

′
2), see also Figure 5.4. �

Before applying the above methodology to the time-dependent optimal path problem we
prove the following recursion formulas.

Lemma 5.3.18 (i) Let a, b ∈ N with b ≤ 2 ≤ a, then ak+1 ≥ ak + bak−1.

(ii) Let a0, c, d, e ∈ N, b ∈ R+
0 and an ∈ N be defined by

an = c
(
an−1 + b+ edn−1

)2
, ∀n ∈ N.

Then
an = O

(
c2

n−1(a0 + b+ ed)2
n
)
, ∀n ∈ N.

(iii) Let a0, c0, c1, c ∈ N and an ∈ N be defined by

an = c1(an−1 + c) + c0, ∀n ∈ N.

Then

an = cn1 (a0 + c) +

n−1∑
k=1

ck1(c+ c0) + c0, ∀n ∈ N.

Proof (i) The assertion holds if and only if (a− 1/2)2 ≥ b+1/4. This is true if b ≤ 2 ≤ a.
(ii) We first compute

a1 = c(a0 + b+ ed0)2 = O
(
c2

1−1(a0 + b+ ed)2
1
)
.
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Hence, the assertion is true for n = 1. Now assume that the assertion holds for an. Then

an+1 = O
(
c
(
c2

n−1(a0 + b+ ed)2
n
+ b+ edn

)2)
= O

(
c2

n+1−1(a0 + b+ ed)2
n+1

+ c(b+ edn)2 + 2c2
n
(a0 + b+ ed)2

n
(b+ edn)

)
= O

(
c2

n+1−1(a0 + b+ ed)2
n+1
)
,

since 2n ≥ 2n for all n ∈ N.
(iii) Obviously, the assertion is correct for n = 1. Suppose that the assertion holds for
k = 1, ..., n. Then

an+1 = c1

(
cn1 (a0 + c) +

n−1∑
k=1

ck1(c+ c0) + c0 + c
)
+ c0

= cn+1
1 (a0 + c) +

n−1∑
k=1

ck+1
1 (c+ c0) + c1c0 + c1c+ c0

= cn+1
1 (a0 + c) +

n∑
k=1

ck1(c+ c0) + c0.

�

5.3.2. Complexity Analysis of the Piecewise Linear Optimal Path
Problem

After having introduced an appropriate concept of piecewise linear functions and an appro-
priate concept of the complexity of piecewise linear functions, we have proved some basic
results on the summation, concatenation, pointwise minimum and parametric minimization
of piecewise linear functions. We are now ready to apply the methodology of Subsection
5.3.1 to the time-dependent optimal path problem.
At this, we assume that the partial functions τe : R→ R+

0 , τe(t) = τ(e, t), and βe : R→ R,
βe(t) = β(e, t) are in PL1c(R) for each e ∈ E with an identical decomposition of R according
to the discussion preliminary to Definition 5.3.3. Moreover, we assume that T (v) is a closed
interval for all v ∈ V . We further assume that ∆T (v, t) = [∆T (v, t),∆T (v, t)] for all (v, t) ∈
X, at which the partial functions t 7→ ∆T v(t) = ∆T (v, t) and t 7→ ∆T v(t) = ∆T (v, t) are
in PL1c

(
T (v)

)
for all v ∈ V . For each v ∈ V , we denote the graph of the partial point-to-set

mapping t 7→ ∆T (v, t) by Θv. Finally, we assume that, for each v ∈ V , the partial functions
δv : Θv → R, δv(t,∆t) = δ(v, t,∆t), are in PL2c(Θv).
Since τ, β are derived from historical traffic data [41], [119], see also Section 2.3, which
is usually stored according to a certain fixed discretization in the digital map, the above
assumptions on {τe}e∈E , {βe}e∈E are no restriction in most practical applications, see, e.g.,
[171], [75] and the references therein. Since waiting time constraints in the road network
are usually given by earliest and latest departure times with respect to a given arrival time,
neither the assumption on the structure of ∆T is a restriction in this particular application.
Furthermore, the results which we prove below can easily be generalized to the general case
by using Lemma 5.3.6, Lemma 5.3.15, Lemma 5.3.12 and Lemma 5.3.13.
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In the remainder of this section, we always assume the above continuous and piecewise
linear structure of the partial network functions. We also assume that there exists a C ∈ N,
C ≥ 2, such that

#τe ≤ (0, C − 1, C), #βe ≤ (0, C − 1, C), ∀e ∈ E, (5.48)

#∆T v ≤ (1, C, C), #∆T v ≤ (1, C, C), ∀v ∈ V, (5.49)

#δv ≤ (1, C, C,C,C,C,C), ∀v ∈ V. (5.50)

Note that, if C = 1, then the partial network functions {τe}e∈E , {βe}e∈E would be constant.
The above assumptions on the (finite) complexity are no restriction in the case of a compact
state space X. However, if X is unbounded, they imply that there exist t, t ∈ R such that
all partial functions are linear for t ∈ (−∞, t ] and t ∈ [ t,∞). Such an assumption has also
been imposed in [47] in order to prove that the time-dependent optimal path problem is
solvable in finite time. We will show in Corollary 5.4.3 that, under weak assumptions, it is
sufficient to consider only a compact time interval in order to compute the optimal value
function in a periodical time-dependent network.
We now prove that the time-dependent optimal path problem with piecewise linear prob-
lem data is solvable in finite time. We also derive the order of the number of arithmetic
operations which are necessary in order to compute the partial function t0 7→ b∗(v0, t0).
The results in Theorem 5.3.21 imply that both the manner in which the waiting times are
constrained, the specific form of the waiting cost function and the FIFO-property of the
travel time function have a crucial impact on the complexity of the computation of the
optimal value function.

Lemma 5.3.19 Let v0, v
′ ∈ V be given and suppose that Assumption 4.2.3 holds. Let

(e1, ..., en) ∈ En be a connected edge sequence with α(e1) = v0 and ω(en) = v′, let

T̃0 =
{
t0 ∈ T (v0) : ∃u =

(
(∆tk, ek)

)
k=1,...,n

∈ U(v0, t0)
}
,

Nbd =
∣∣bd(T (v′))∣∣ and let b̃∗0 : T̃0 7→ R,

b̃∗0(t0) = inf
{
B
(
(v0, t0), u

)
: u =

(
(∆tk, ek)

)
k=1,...,n

∈ U(v0, t0)
}

denote the optimal cost function along the edge sequence (e1, ..., en). Then b̃∗0 ∈ PL1c(T̃0)
and, denoting #b̃∗0 = (N0

0,0, N
0
0,1, N

0
1 ), we obtain:

(i) There holds N0
0,0 ≤ C2n, and N0

0,1, N
0
1 are of order

O
(
C3·2n−3

(
Nbd + 2 + C2

)2n)
.

Moreover, b̃∗0 can be computed in

O
(
C9·2n−1−5

(
Nbd + 2 + C2

)3·2n−1
)

arithmetic operations.
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(ii) If X = V × R, then N0
0,0 = 0, and N0

0,1, N
0
1 are of order

O
(
C3·2n−322

n

)
.

Moreover, b̃∗0 can be computed in

O
(
C9·2n−1−523·2

n−1

)
arithmetic operations.

(iii) If G is a FIFO-network and the functions ∆T v,∆T v satisfy (3.4) for each v ∈ V ,
then N0

0,0 ≤ 1, and N0
0,1, N

0
1 are of order

O
(
C2n−1

(
Nbd +

7

4
C
)2n)

.

Moreover, b̃∗0 can be computed in

O
(
C3·2n−1−2

(
Nbd +

7

4
C
)3·2n−1

)
arithmetic operations.

(iv) If G is a FIFO-network, the functions ∆T v,∆T v are constant for each v ∈ V and δv
is linear for each v ∈ V , then N0

0,0 ≤ 1, and N0
0,1, N

0
1 are of order

O
(
(6C)n(Nbd + C)

)
.

Moreover, b̃∗0 can be computed in

O
(
n(6C)n−1(Nbd + C) log(Nbd + C)

)
arithmetic operations.

(v) If G is a FIFO-network, ∆T (v, t) = {0} and δ(v, t, 0) = 0 for each (v, t) ∈ X, then
N0

0,0 ≤ 1, and N0
0,1, N

0
1 are of order

O
(
Cn+Nbd

)
.

Moreover, b̃∗0 can be computed in

O
(
(Cn2 + nNbd) log(C)

)
arithmetic operations.

Proof Denote vk = ω(ek), k = 1, ..., n, and ∆̃T k, T̃k as in (4.3), (4.4), k = 0, ..., n−1. Since
the result of Lemma 5.3.19 is trivial if T̃0 = ∅, we assume in the following that T̃k ̸= ∅ for
all k = 0, ..., n. Next, we denote θk, βk : R → R, θk(t) = t + τ(ek+1, t), βk(t) = β(ek+1, t),
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δk : Θvk → R, δk(t,∆t) = δ(vk, t,∆t). As t 7→ ∆T (vk, t) and t 7→ ∆T (vk, t) are PL1c
(
T (vk)

)
-

functions, Lemma 5.3.15 yields that ∆̃T k is a continuous point-to-set mapping and that
graph(∆̃T k) is the finite union of closed polygons, closed line segments and points for each
k = 0, ..., n − 1. This also implies that T̃k is the finite union of closed intervals and points
for each k = 0, ..., n− 1.
Next, we denote b̃∗n : T̃n → R, b̃∗n(t) = 0. Since T̃n = T (vn) is a closed interval, we either have
#b̃∗n = (1, 0, 0) or #b̃∗n = (0, Nbd, 1). Moreover, for k = 0, ..., n− 1, we denote b̃∗k : T̃k → R,

b̃∗k(t) = inf
∆t∈∆̃Tk(t)

bk(t,∆t),

where bk : graph(∆̃T k)→ R,

bk(t,∆t) = βk(t+∆t) + b̃∗k+1

(
θk(t+∆t)

)
+ δk(t,∆t).

Furthermore, we define the auxiliary functions hk : θ−1
k (T̃k+1) → R, hk(t) = βk(t) +

b̃∗k+1

(
θk(t)

)
, k = 0, ..., n−1. By backwards induction, we immediately obtain from [65, Theo-

rem 2.2.8], Lemma 5.3.13 and Lemma 5.3.12 that b̃∗k ∈ PL
1
c(T̃k) with #b̃∗k = (Nk

0,0, N
k
0,1, N

k
1 )

for some Nk
0,0, N

k
0,1, N

k
1 ∈ N0, and that hk, bk are continuous. We denote Nk

0 = Nk
0,0 +Nk

0,1

for k = 0, ..., n, and we denote the number of connected components of T̃k by Ñk.
Let us consider the assertion (i):
Since #θk = #τek+1

, using Lemma 5.3.6 (iii), we deduce that θ−1
k (T̃k+1) consists of at

most CÑk+1 connected components. Now, Lemma 5.3.6 (iv) and (v) yield that hk ∈
PL1c

(
θ−1
k (T̃k)

)
with #hk = (Nhk

0,0, N
hk
0,1, N

hk
1 ), satisfying Nhk

0,1 ≤ CNk+1
0,1 + C. As h is con-

tinuous and θ−1
k (T̃k+1) consists of at most CÑk+1 connected components we also have

Nhk
0,0 ≤ CÑk+1. Moreover, as in the proof of Lemma 5.3.6 (iv), we see that Nhk

0,0 + Nhk
0,1 ≤

CNk+1
0,1 + C. Using Lemma 5.3.13, we obtain that bk ∈ PL2c

(
graph(∆̃T k)

)
with #bk =

(N bk
0,0, N

bk
0,1, J

bk
0 , I

bk
0 , N

bk
1 , Jbk1 , I

bk
1 ), satisfying

N bk
0,1 ≤ C + C(CNk+1

0,1 + C),

N bk
1 ≤ C + C(CNk+1

0 + C),

Jbk1 ≤ 2C + CNk+1
0 ,

Now, Lemma 5.3.12 yields

Nk
0,1 ≤ C + C(CNk+1

0,1 + C) +
[
C + C(CNk+1

0 + C)
]
·
[
2C + CNk+1

0 − 1
]
. (5.51)

Since θ−1
k (T̃k+1) consists of at most CÑk+1 connected components, Lemma 5.3.16 yields

Ñk ≤ C2Ñk+1. By induction, since Ñn = 1, we obtain that Ñk ≤ (C2)n−k. Now, the
continuity of b̃∗k immediately yields Nk

0,0 ≤ Ñk = O
(
(C2)n−k

)
. According to Lemma 5.3.5

it is sufficient to consider the recursion of the Nk
0,1, k = 0, ..., n, in order to establish the
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5. Properties of the Optimal Value Function

assertion (i). From (5.51), using Nk+1
0 ≤ Nk+1

0,1 + Ñk+1 and C ≥ 2, we obtain

Nk
0,1 ≤ C3

(
Nk+1

0,1 + 2 + C2n−2k−2
)2
.

From Lemma 5.3.18 (ii) we obtain

Nk
0,1 = O

(
C3·2n−k−3

(
Nbd + 2 + C2

)2n−k
)
. (5.52)

From the estimates for the necessary numbers of arithmetic operations in Lemma 5.3.6,
Lemma 5.3.12 and Lemma 5.3.13 it is easily seen that the dominating order is given by
O
(
N bk

1 (Jbk1 )2
)
. Hence, b̃∗n−1 can be computed from b̃∗n, βn−1, τn−1, δn−1 in O(C4) arithmetic

operations, since Nbd = O(1). Using (5.52), we further obtain that b̃∗k can be computed

from b̃∗k+1, βk, τk, δk in

O
(
C9·2n−k−1−5

(
Nbd + 2 + C2

)3·2n−k−1
)

arithmetic operations for k = 0, ..., n− 2. Using Lemma 5.3.18 (i), we establish that

O(C4) +
n−2∑
k=0

O
(
C9·2n−k−1−5

(
Nbd + 2 + C2

)3·2n−k−1
)

= O
(
C9·2n−1−5

(
Nbd + 2 + C2

)3·2n−1
)
.

Let us now consider the assertion (ii):
From Lemma 3.5.2 it follows that T̃k = R for all k = 0, ..., n. As hk, bk, b̃

∗
k are continuous,

there hold Nhk
0,0 = N bk

0,0 = Jbk0 = Nk
0,0 = 0. Using Lemma 5.3.13, we obtain that

N bk
0,1 ≤ C + C(CNk+1

0,1 + C),

N bk
1 ≤ C + C(CNk+1

0,1 + C),

Jbk1 ≤ 2C + CNk+1
0,1 ,

Now, Lemma 5.3.12 yields

Nk
0,1 ≤ C + C(CNk+1

0,1 + C) +
[
C + C(CNk+1

0,1 + C)
]
·
[
2C + CNk+1

0,1 − 1
]
. (5.53)

According to Lemma 5.3.5 it is sufficient to consider the recursion of the Nk
0,1, k = 0, ..., n,

in order to establish the assertion (ii). Since C ≥ 2 we obtain from (5.53) that

Nk
0,1 ≤ C3

(
Nk+1

0,1 + 2
)2
.

Using Lemma 5.3.18 (ii) we establish, since Nbd = 0,

Nk
0,1 = O

(
C3·2n−k−322

n−k

)
. (5.54)
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From the estimates for the necessary numbers of arithmetic operations in Lemma 5.3.6,
Lemma 5.3.12 and Lemma 5.3.13 it is easily seen that the dominating order is given by
O
(
N bk

1 (Jbk1 )2
)
. Hence, b̃∗n−1 can be computed from b̃∗n, βn−1, τn−1, δn−1 in O(C4) arithmetic

operations. Using (5.54), we further obtain that b̃∗k can be computed from b̃∗k+1, βk, τk, δk in

O
(
C9·2n−k−1−523·2

n−k−1

)
arithmetic operations for k = 0, ..., n− 2. Using Lemma 5.3.18 (i), we establish that

O(C4) +

n−2∑
k=0

O
(
C9·2n−k−1−523·2

n−k−1

)
= O

(
C9·2n−1−523·2

n−1

)
.

Let us now assume that G is a FIFO-network and that for each v ∈ V the partial functions
t 7→ ∆T (v, t), t 7→ ∆T (v, t) satisfy (3.4). (Note, that this assumption holds in the cases
(iii), (iv), (v) of Lemma 5.3.19.) Lemma 5.3.6 (iii) yields that θ−1

k (T̃k+1) consists of at most

as many connected components as T̃k+1. Using Lemma 5.3.17 and an inductive argument,
we obtain that Ñk = 1, for all k = 0, ..., n. Now, Lemma 5.3.6 (iv) and (v) yield that
hk ∈ PL1c

(
θ−1
k (T̃k)

)
with #hk = (Nhk

0,0, N
hk
0,1, N

hk
1 ), satisfying Nhk

0,1 ≤ C + Nk+1
0,1 . As h is

continuous and θ−1
k (T̃k+1) consists of at most 1 connected component we also have Nhk

0,0 ≤ 1

and Nhk
0,0 +Nhk

0,1 ≤ C +Nk+1
0,1 . Using Lemma 5.3.13, we obtain that

N bk
0,1 ≤ C + C(C +Nk+1

0,1 ),

N bk
1 ≤ C + C(C +Nk+1

0,1 ),

Jbk1 ≤ 2C +Nk+1
0,1 ,

Let us now consider the assertion (iii):
Lemma 5.3.12 yields

Nk
0,1 ≤ C + C(C +Nk+1

0,1 ) +
[
C + C(C +Nk+1

0,1 )
]
·
[
2C +Nk+1

0,1 − 1
]
. (5.55)

According to Lemma 5.3.5 it is sufficient to consider the recursion of the Nk
0,1, k = 0, ..., n,

in order to establish the assertion (ii). Since C ≥ 2 we obtain from (5.55) that

Nk
0,1 ≤ C

(
Nk+1

0,1 +
7

4
C
)2
.

Using Lemma 5.3.18 (ii) we establish

Nk
0,1 = O

(
C2n−k−1

(
Nbd +

7

4
C
)2n−k

)
. (5.56)

From the estimates for the necessary numbers of arithmetic operations in Lemma 5.3.6,
Lemma 5.3.12 and Lemma 5.3.13 it is easily seen that the dominating order is given by
O
(
N bk

1 (Jbk1 )2
)
. Hence, b̃∗n−1 can be computed from b̃∗n, βn−1, τn−1, δn−1 in O(C4) arithmetic

operations, since Nbd = O(1). Using (5.56), we further obtain that b̃∗k can be computed
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from b̃∗k+1, βk, τk, δk in

O
(
C3·2n−k−1−2

(
Nbd +

7

4
C
)3·2n−k−1

)
arithmetic operations for k = 0, ..., n− 2. Using Lemma 5.3.18 (i), we establish that

O(C4) +

n−1∑
k=0

O
(
C3·2n−k−1−2

(
Nbd +

7

4
C
)3·2n−k−1

)
= O

(
C3·2n−1−2

(
Nbd +

7

4
C
)3·2n−1

)
.

Let us now consider the assertion (iv):
Lemma 5.3.14 yields

Nk
0,1 ≤ 6C(Nk+1

0,1 + C) + 6C + 4.

Using Lemma 5.3.18 (iii) we establish

Nn−k
0,1 = O

(
(6C)n−k(Nbd + C)

)
. (5.57)

From the estimates for the necessary numbers of arithmetic operations in Lemma 5.3.6,
and Lemma 5.3.14 it is easily seen that the dominating order is given by O

(
Nhk

0,1 log(N
hk
0,1)
)
.

Hence, b̃∗n−1 can be computed from b̃∗n, βn−1, τn−1, δn−1 in O
(
(C+Nbd) log(C+Nbd)

)
. Using

(5.57), we further obtain that b̃∗k can be computed from b̃∗k+1, βk, τk, δk in

O
(
(n− k)(6C)n−k−1(Nbd + C) log(Nbd + C)

)
arithmetic operations for k = 0, ..., n − 2. Integrating

∑n
k=0 kq

k−1 with respect to q and
using the formula for the geometric series [68, p.8], we establish that

O
(
(C +Nbd) log(C +Nbd)

)
+ (Nbd + C) log(Nbd + C)

n−2∑
k=0

O
(
(n− k)(6C)n−k−1

)
= O

(
n(6C)n−1(Nbd + C) log(Nbd + C)

)
.

Finally, we consider the assertion (v):
In this case we obtain b̃∗k ≡ hk for each k = 0, ..., n. A simple inductive argument yields

Nk
0,1 ≤ Nbd + (n− k)C = O

(
C(n− k) +Nbd

)
. (5.58)

From the estimates for the necessary numbers of arithmetic operations in Lemma 5.3.6
(iv), (v), we obtain that b̃∗k can be computed from b̃∗k+1, τ, β in O

(
(C(n− k)+Nbd) log(C)

)
arithmetic operations. Hence, b̃∗0 can be computed in

n−1∑
k=0

O
(
(C(n− k) +Nbd) log(C)

)
= O

(
(Cn2 + nNbd) log(C)

)
arithmetic operations. �

Remark 5.3.20 The estimates of the complexity of the optimal cost function in Lemma
5.3.19 are not optimal. Better estimates can be proved by explicitly solving the recursions
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5.3. Piecewise Linearity

in the proof of Lemma 5.3.19 for the first few steps and by then deriving recursion formulas
with smaller constants. However, since this approach yields the same qualitative (quadratic,
exponential, double-exponential) results, we have restricted ourselves to the estimates in
Lemma 5.3.19.

Theorem 5.3.21 Let v0, v
′ ∈ V be given, suppose that Assumption 4.2.3 holds and denote

Nbd =
∣∣bd(T (v′))∣∣. Suppose further that, for each t0 ∈ TR(v0), there exists an optimal

control sequence u∗(t0) ∈ U(v0, t0) of topological length n(t0) = |u∗(t0)|, such that

sup
t0∈TR(v0)

n(t0) ≤ N, (5.59)∣∣∣∣ ∪
t0∈TR(v0)

{
(e1, ..., en(t0)) ∈ E

n(t0) : u∗(t0) =
(
(∆tk, ek)

)
k=1,...,n(t0)

}∣∣∣∣ ≤M, (5.60)

for some N,M ∈ N. Then the function b∗0 : TR(v0) 7→ R, b∗0(t0) = b∗(v0, t0), satisfies
b∗0 ∈ PLlsc

(
TR(v0)

)
, and denoting #b∗0 = (N0,0, N0,1, N1), there hold:

(i) N0,0 = O(MC2n) and N0,1, N1 are of order

O
(
M2C3·2N−3

(
Nbd + 2 + C2

)2N)
.

Moreover, b∗0 can be computed in

O
(
MC9·2N−1−5

(
Nbd + 2 + C2

)3·2N−1

+M3C3·2N−3
(
Nbd + 2 + C2

)2N)
arithmetic operations.

(ii) If X = V × R, then b∗0 ∈ PLc
(
TR(v0)

)
, N0,0 = 0, and N0,1, N1 are of order

O
(
M2C3·2N−322

N

)
.

Moreover, b̃∗0 can be computed in

O
(
MC9·2N−1−523·2

N−1
+M3C3·2N−322

N

)
arithmetic operations.

(iii) If G is a FIFO-network and the functions ∆T v,∆T v satisfy (3.4) for each v ∈ V ,
then N0,0 = O(M) and N0,1, N1 are of order

O
(
M2C2N−1

(
Nbd +

7

4
C
)2N)

.

Moreover, b∗0 can be computed in

O
(
MC3·2N−1−2

(
Nbd +

7

4
C
)3·2N−1

+M3C2N−1
(
Nbd +

7

4
C
)2N)
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arithmetic operations.

(iv) If G is a FIFO-network, the functions ∆T v,∆T v are constant for each v ∈ V and δv
is linear for each v ∈ V , then N0,0 = O(M) and N0,1, N1 are of order

O
(
M2(6C)N (Nbd + C)

)
.

Moreover, b∗0 can be computed in

O
(
MN(6C)N−1(Nbd + C) log(Nbd + C) +M3(6C)N (Nbd + C)

)
arithmetic operations.

(v) If G is a FIFO-network, ∆T (v, t) = {0} and δ(v, t, 0) = 0 for each (v, t) ∈ X, then
N0,0 = O(M) and N0,1, N1 are of order

O
(
M2(CN +Nbd)

)
.

Moreover, b∗0 can be computed in

O
(
M(CN2 +NNbd) log(C) +M3(CN +Nbd)

)
arithmetic operations.

Proof We separately consider all connected edge sequences (e1, ..., en) ∈ En, n ∈ N, with
α(e1) = v0, ω(en) = v′. The complexity of the optimal cost function along each such edge
sequence is given by Lemma 5.3.19. b∗0 is the pointwise minimum of all such restricted
optimal cost functions. The isolated points in the decomposition of TR(v0) with respect to
b∗0 are contained in the union of the isolated points of the restricted optimal cost functions
along the edge sequence. This yields the result for N0,0. On each maximal open interval on
which all restricted optimal value functions are linear, the maximal number of breakpoints
of b∗0 is M according to Lemma 5.3.7. From this observation, we obtain the asserted order
of N0,1, N1. Note that, if X = V × R, then Nbd = 0 since T (v′) = R contains no boundary
points. Moreover, since Lemma 3.5.2 implies that each node v is reachable at any time
along any edge sequence from v0 via v to v′, the continuity of the optimal value functions
along the edge sequences from v0 to v′ yields N0,0 = 0.
In order to compute b∗0 for each isolated point of

(
TR(v0), b

∗
0

)
, we must compute the minimum

of at most M numbers (i.e., we need O(M) arithmetic operations). Moreover, in order to
compute b∗0 on each maximal open interval on which all restricted optimal cost functions
are linear, we need O(M2) arithmetic operations according to Lemma 5.3.7. Summing this
to the number of arithmetic operations which are necessary in order to compute the M
restricted optimal cost functions, we obtain the desired result for the necessary number of
arithmetic operations. �

Remark 5.3.22 Theorem 5.3.21 shows that the complexity of the time-dependent optimal
path problem can be determined by the complexity of the network functions in the considered
time interval. Decreasing the number of breakpoints of τ, β, and using linear waiting cost
functions δ lead to a significant decrease in the complexity of the time-dependent optimal
path problem. Both efficient and optimal methods are known in the literature, which yield a
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5.4. Periodical Time-Dependent Networks

piecewise linear approximation of the original historical traffic data within a given accuracy
or by using a given number of linear segments, see, e.g., [171], [75] and the references
therein.

Remark 5.3.23 The complexity bound in Theorem 5.3.21 (iv) is only pseudo-polynomial.
Recall that we have established an upper bound on the maximal topological length N of
optimal paths in Lemma 5.1.9. However, as can be seen from Theorem 7.3.3, the number
M of edge sequences from v0 to v′ which have to be considered when computing the optimal
value function is not polynomial in the network size.

Remark 5.3.24 The estimates of the number of arithmetic operations in Theorem 5.3.21
require that the partial optimal value functions t → b∗(v, t) are only computed for nodes
v ∈ V which are contained in an optimal path. However, these nodes are possibly considered
more than once in the estimates in Theorem 5.3.21. In particular, if k edge sequences which
are traversed by optimal paths pass through some v ∈ V , then the complexity of computing
t→ b∗(v, t) is counted k times.

5.4. Periodical Time-Dependent Networks

Definition 5.4.1 We call a time-dependent network G = (V,E, τ ;β, δ) periodical with pe-
riod tp ∈ R+, if

τ(e, t) = τ(e, t+ tp), ∀e ∈ E, t ∈ R, (5.61)

β(e, t) = β(e, t+ tp), ∀e ∈ E, t ∈ R, (5.62)

δ(v, t,∆t) = δ(v, t+ tp,∆t), ∀v ∈ V, t ∈ R,∆t ∈ R+
0 . (5.63)

We call the arrival time constraints T and the waiting time constraints ∆T periodical with
period tp ∈ R+, if for all v ∈ V there hold

t ∈ T (v)⇐⇒ t+ tp ∈ T (v), (5.64)

∆t ∈ ∆T (v, t)⇐⇒ ∆t ∈ ∆T (v, t+ tp), ∀t ∈ T (v). (5.65)

Theorem 5.4.2 Let Assumptions 4.2.3 hold and let a source node v0 ∈ V and a goal node
v′ ∈ V be given. If G, T and ∆T are periodical with period tp ∈ R+, then the partial
function t0 7→ b∗(v0, t0) is periodical with period tp.

Proof We first prove that U(v0, t0) = U(v0, t0 + tp) for each t0 ∈ T (v0). Let t0 ∈ T (v0)
be arbitrary but fixed. According to (5.64) there holds (v0, t0 + tp) ∈ X. Let u =(
(∆tk, ek)

)
k=1,...,n

∈ U(v0, t0), n ∈ N, and denote ũi =
(
(∆tk, ek)

)
k=1,...,i

for i = 1, ..., n.

Clearly ũi ∈ U(v0, t0) for all i = 1, ..., n. We now show by induction that ũi ∈ U(v0, t0 + tp)
for all i = 1, ..., n and that(

(vk, tk)
)
k=0,...,i

= Φ
(
(v0, t0), ũi

)
=⇒

(
(vk, tk + tp)

)
k=0,...,i

= Φ
(
(v0, t0 + tp), ũi

)
. (5.66)

According to (5.65) there holds ∆t1 ∈ ∆T (v0, t0 + tp). Using (5.61), we obtain

(t0 +∆t1) + τ(e1, t0 +∆t1) + tp = (t0 + tp +∆t1) + τ(e1, t0 + tp +∆t1),
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which implies that (v1, t1+ tp) = φ
(
(v0, t0), ũ1

)
∈ X, cf. (5.64). The inductive step and the

converse inclusion follow analogously.
It remains to prove that B

(
(v0, t0), u

)
= B

(
(v0, t0+tp), u

)
. This follows directly from (5.66),

(5.62) and (5.63). �

Corollary 5.4.3 Let Assumption 4.2.3 hold, suppose that β, δ are bounded on compact
subsets of their respective domain and let a source node v0 ∈ V and a goal node v′ ∈ V be
given. Suppose further that there exists a N ∈ N such that, for each t0 ∈ T (v0), there exists
a control sequence u ∈ U(v0, t0) with ω(u) = v′ and |u| ≤ N . If G, T and ∆T are periodical
with period tp ∈ R+, then there exists a t ∈ R such that the partial function b∗(v0, t0) can
be computed for all t0 ∈ T (v0) by considering the compact subset X ∩

(
V × [0, t ]

)
of X.

Proof Since t0 7→ b∗(v0, t0) is periodical with period tp according to Theorem 5.4.2, it is
sufficient to compute b∗(v0, t0) for all t0 ∈ [0, tp] ∩ T (v0). As [0, tp] is compact, E is a
finite set and τ is continuous and periodical with period tp, there exists a τ ∈ R+

0 , such
that τ(e, t) ≤ τ for all e ∈ E, t ∈ R. Since ∆T is upper semicontinuous, ∆T is uniformly
compact. Moreover, as V is finite, [0, tp] is compact and ∆T is periodical with period tp,
there exist ∆T ,∆T ∈ R+

0 such that ∆T (x) ⊂ [∆T ,∆T ] for all x ∈ X. Furthermore,
as β, δ are periodical with period tp and bounded on compact subsets of their respective
domain, [0, tp] and [0, tp]× [∆T ,∆T ] are compact and V,E are finite, there exist β, δ ∈ R
such that β(e, t) ≤ β for all e ∈ E, t ∈ R and δ(v, t,∆t) ≤ δ for all (v, t) ∈ V × R,
∆t ∈ ∆T (v, t) ⊂ [∆T ,∆T ].
Since for each t0 ∈ T (v0) there exists a control sequence u ∈ U(v0, t0) with ω(u) = v′ and
|u| ≤ N , we obtain that b∗(v0, t0) ≤ N(β + δ) for all t0 ∈ T (v0). Now, (4.7) implies that,
for each t0 ∈ T (v0), each optimal control sequence u∗ ∈ U(v0, t0) satisfies

|u∗| ≤ |V | − 1 +
N(β + δ)− (|V | − 1)B

B◦
|V |.

Furthermore, if u ∈ U(v0, t0), then T
(
(v0, t0), u

)
≤ |u|(τ +∆T ). Consequently, the partial

function b∗(v0, t0) can be computed for all t0 ∈ T (v0) by considering the compact subset
X ∩

(
V × [0, t ]

)
of X, whereat

t = tp +

(
|V | − 1 +

N(β + δ)− (|V | − 1)B
B◦

|V |
)
(τ +∆T ).

�

Remark 5.4.4 Clearly, if T (v) is as in Theorem 5.1.3 (i) or (ii), then there exists a simple
admissible path from each v0 ∈ V to each v′ ∈ V , and we may set N = |V | − 1 in Corollary
5.4.3.
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6. A Problem Formulation for Robust
Optimal Paths

In this chapter we consider the time-dependent optimal path problem under the assump-
tion that neither the travel times nor the travel costs are precisely known. We provide a
framework for the formulation of the time-dependent robust optimal path problem and give
some basic results for the optimization with respect to the absolute robustness criterion.
At this, we only consider the (robust) forward optimal path problem.
After reviewing some of the literature in the field of optimal path problems with uncer-
tainty in Section 6.1, we introduce the model on which our further analysis is based in
Section 6.2. We also introduce a generalization of the concept of interval data in Section
6.2 (namely the DP-property, cf. Definition 6.2.1) and show that the (time-independent)
absolute robust optimal path problem is polynomially solvable if the set of possible scenar-
ios satisfies the DP-property. Again by using the DP-property we prove the existence of
optimal paths in Section 6.3. In Section 6.4, we impose some additional assumptions on
the time-dependent network and prove the continuity of the optimal value function. More-
over, assuming that the scenario set is independent (cf. Definition 6.2.4), we show that the
optimal value function is piecewise analytic in the sense of Definition 5.2.3 if the network
functions are piecewise analytic in the sense of Definition 5.2.1. Under similar assumptions
we provide a complexity analysis for the case in which all network functions are piecewise
linear.

6.1. Literature Overview

There are two principal methods which have been proposed over the years to deal with
data uncertainty in optimization and optimal control problems: Stochastic programming
[148] (resp. stochastic optimal control [175]) and robust optimization [117], [24] (resp. ro-
bust optimal control [178]). The most common manner in which model uncertainties are
incorporated into network models, especially in the field of (time-dependent) transporta-
tion networks, is the notion of stochastic (time-dependent) networks. In [134] and [123], a
time-independent network was assumed in which the cost values on the edges are random
variables with continuous distribution functions. While the computation of the path mini-
mizing the expected cost was the objective in [134], the more general framework of utility
functions was considered in [123]. In [151], [139] and [104] the cost values on the edges were
modeled as Markov chains. The application under consideration in [104] was, similar to our
motivation in Chapter 2, the road network. In [128], [73] and [127], a discrete-time time-
dependent stochastic network was considered in which the path with least expected travel
time should be determined. Motivated by the fact that after certain realizations of the travel
times on the first edges of the path it might by optimal to choose another path than the one
determined a priori, an optimal policy (which is referred to as a set of hyperpaths in [128])
rather than an optimal path was computed. In the language of mathematical control theory
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[159], [59], [88], an optimal path corresponds to an optimal open-loop control, whereat an
optimal policy (resp., set of hyperpaths) corresponds to an optimal feedback control. It is
well-known that the cost function associated with the feedback control outvalues the cost
function associated with the open-loop control [159], [59], [88], [25, Appendix G]. In these
papers [128], [73] and [127], it was assumed that all probability distributions are stationary
except for some finite time interval, and in [73], [127], it was additionally assumed that
all travel times are deterministic except for some finite time interval. Similar assumptions
were imposed in [71], [72], which also provide a brief overview of the problem variants in
discrete-time stochastic time-dependent networks.
In [167], the continuous-time time-dependent stochastic fastest path problem was consid-
ered. The objective of the optimization in this work was not the minimization of the least
expected travel time of a path, but the determination of the set of pareto-optimal paths. At
this, a path p∗ is called pareto-optimal if there exists no other path p whose cost function
stochastically dominates the cost function of p∗, cp. [25, Section 2.3.4, Appendix G]. A gen-
eralization of the FIFO-property to stochastic time-dependent networks, namely stochastic
consistency, was then formulated and used to construct an optimal pruning criterion for
the search algorithm presented in the paper [167]. At this, the stochastic time-dependent
network is said to be stochastically consistent if, for each e ∈ E and all t, t′ ∈ R, there holds

t′ ≥ t =⇒ P
{
t′ + τ(e, t′) ≤ c

}
≤ P

{
t+ τ(e, t) ≤ c

}
, ∀c ≥ 0. (6.1)

Note that Lemma 2.4.2 implies that a time-dependent stochastic road network in which the
travel times are derived from a physical model of the traffic flow is stochastically consistent.
A stochastic time-dependent network with a continuous time variable and the computation
of paths which minimize the expected travel time were considered in [70]. In this paper,
the expected arrival times along a path [70, Eq. (14)] were recursively approximated by
first- and second-order approximations in time of the first two moments of the probability
distributions of the arrival times. Clearly, this approach may lead to an accumulation of
errors and may therefore result in the computation of a suboptimal solution. However, in
many applications the distribution of the travel times and costs is not completely known,
cf. [70], [41], [119], [141], [173], [55], and the recursion of the probability distributions
is a nontrivial task. Both aspects impede and may even inhibit the consideration of the
(continuous-time) time-dependent optimal path problem in a stochastic framework. In order
to illustrate the complication that occurs in the recursion of the probability distributions,
let us consider the recursion of the travel times. In the time-independent case, the travel
time along a path is given by the sum of the travel times on the edges. Consequently,
if each edge travel time is, e.g., normally distributed, then the travel time of the path is
normally distributed and its expected value and variance can easily determined from the
expected values and variances of the edge travel times. However, in the time-dependent
case, the situation is more intricate: Suppose that the arrival time θ at some node v ∈ V
is a random variable with continuous probability density function fθ, and suppose that the
travel time at time t along an edge e ∈ E emanating from v, τ(e, t), is a random variable
with continuous probability density function fτ

(
·, (e, t)

)
for each t ∈ R, at which (e, t) is

considered as a parameter of fτ . Note that τ(e, ·) is a stochastic process and let us assume
that each realization of

{
τ(e, t)

}
t∈R is continuous in t. We denote by θ′ = θ + τ(e, θ) the

arrival time at ω(e) which is a random variable depending on θ and
{
τ(e, t)

}
t∈R. If θ and
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{
τ(e, t)

}
t∈R are stochastically independent, then

P{θ′ ≤ t} = P
{
θ + τ(e, θ) ≤ t

}
=

∫
R
fθ(s)P

{
s+ τ(e, s) ≤ t

}
ds

=

∫
R
fθ(s)

∫ t−s

−∞
fτ
(
σ, (e, s)

)
dσ ds,

which implies that the probability density function fθ′ of θ
′ is given by (cp. [116, p.274,

Differentiationssatz])

fθ′(t) =
d

dt
P{θ′ ≤ t} = d

dt

∫
R
fθ(s)

∫ t−s

−∞
fτ
(
σ, (e, s)

)
dσ ds

=

∫
R
fθ(s)fτ

(
t− s, (e, s)

)
ds.

The dependence of the parameter (e, s) of fτ on the integration variable s in the above
integral is the reason why the recursion of the probability distributions is a nontrivial task.
Closed solutions can only be obtained in very few special cases. Hence the approximation
of the first two moments of the probability distributions is not only founded in the lack of
a precise description of these distributions, but also in the difficulties that occur in their
recursion.
In order to develop a computationally efficient method for solving the time-dependent op-
timal path problem subject to uncertainty, which does not require a precise stochastic
description of all uncertainties in the network, we will assume that we are given a range
of values which the travel times and travel costs can assume. This leads to the notion of
minmax optimization.
The two most common approaches for formulating the uncertainty in robust optimization
are the concept of scenarios and the concept of interval data. A discrete set of possible
realizations of the problem data is commonly considered in the first case. In the second
case the uncertainty is captured by certain interval ranges in which the realizations of the
problem data are known to be contained. It has been shown in [15], that there are combina-
torial optimization problems which are NP-hard in the case of a finite set of scenarios, but
which are polynomially solvable in the case of the interval representation of the uncertainty,
thereby justifying a differentiation of both models. We will see below how the concept of
interval data can be formulated as a special case of the concept of scenarios and we will
propose a generalization of the former approach in Definition 6.2.1, which we believe to be
more meaningful, cp. Corollary 6.2.3.
There are also two (most common; for other definitions of the objective function see, e.g.,
[152] and the references therein) manners in which the objective function is formulated
in the literature [117]: In the absolute robustness criterion (minmax optimization), the
objective consists of the determination of a solution which, among all possible solutions,
leads to the best worst-case performance. In the robust deviation criterion (minmax regret
optimization), the objective consists of the determination of a solution which, among all
possible solutions and maximizing over all scenarios, leads to the minimum deviation of the
objective function value from the optimal objective function value of the particular scenario.
The first criterion is also commonly used in the field of optimal control [166], [25, Chapter
1.6], although it generally leads to more conservative solutions [99].
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Most results on the robust optimal path problem are formulated for the time-independent
case. The absolute robust optimal path problem with scenario data is NP-hard [117], [176],
whereat the absolute robust optimal path problem with interval data is solvable in polyno-
mial time [28], [99]. The relative robust optimal path problem (i.e., the determination of
the optimal path with respect to the robust deviation criterion) is NP-hard both for sce-
nario data [117], [176] and for interval data [179], [16]. It has also been shown that, given
a finite set of scenarios, the absolute and the relative robust optimal path problem are
fully polynomial-time approximable if the number of possible scenarios is constant, whereat
non-approximability results have been proved for both problems if the number of possible
scenarios is not constant [12]. A number of algorithms have been developed in order to
solve the different variants of the problem [176], [28], [99], [100], [130], [131], and in [58] the
robust optimal path problem has been considered in a time-dependent road network in the
context of vehicle routing.

6.2. Problem formulation

Let us assume for the remainder of this chapter that the travel time and travel cost functions
τ, β, δ depend on the state of the network w, which is known to assume values in a set W
of possible states of the network, i.e.,

τ : E × R×W → R+
0 , (6.2)

β : E × R×W → R, (6.3)

δ : V × R× R+
0 ×W → R. (6.4)

Let us further assume that the set of possible states of the network is subject to certain
restrictions which depend on the state of and the control action applied by a commodity
traveling in the network. This model accounts for both a time-dependent evolution of the
network and an impact the commodity exerts on the set of possible states of the network.
Note that the history of the commodity (i.e., the manner in which a particular state has
been reached) is not taken into account and only the current state and control action are
supposed to have an impact on the state of the network. Given a state x and a control
action u, we denote by Ω(x, u) the restricted set of states of the network, i.e.,

Ω :
∪

(v,t)∈V×R

{
{(v, t)} × {R+

0 × E
+(v)}

}
→ P(W ) \ ∅. (6.5)

Note that we may just as well interpret Ω(x, u) as the influences of the possible network
states on those cost and transition functions which are affected by the application of the
control u in the state x. Let

W =
{
W : dom(Ω)→W | W(x, u) ∈ Ω(x, u) ∀(x, u) ∈ dom(Ω)

}
. (6.6)

W is the set of possible scenarios for the time-dependent optimal path problem and each
W ∈ W is a possible scenario.
It would be possible to assume that not only the travel time and cost but also the goal
node resulting from a particular control action are uncertain. In this case, we would have
to replace the edges in the graph by hyperedges, which would result in a (time-dependent
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and uncertain) hypergraph. The approach of determining an optimal path in a hypergraph
has been chosen in [77] in order to solve the space-discretized version of a time-independent
perturbed optimal control problem. We conjecture that the results presented in the following
can be generalized to this setting. However, since we are especially interested in the time-
dependent road network in which the travel times and travel costs may be uncertain but
the topology of the road network is fixed, we leave this generalization as a topic for future
research.
In a similar manner as in Chapter 3 we introduce the functions φ,Φ,B, T , b∗. The state
transition resulting from the application of a control action (∆t, e) in the state (v, t) of the
commodity traveling in the network, given the state w ∈ W of the network, is specified by
the control-to-state mapping

φ :

 ∪
(v,t)∈V×R

{
{(v, t)} × {R+

0 × E
+(v)}

}×W → V × R,

φ
(
(v, t), (∆t, e), w

)
=
(
ω(e), t+∆t+ τ(e, t+∆t, w)

)
.

Given arrival time constraints T , waiting time constraints ∆T and a restriction of the set
of possible network states Ω, we define the state space X as in (3.2). A control action u is
called admissible for a given state x = (v, t) ∈ X, if φ(x, u, w) ∈ X for all network states
w ∈ Ω(x, u).
Let x0 = (v0, t0) ∈ X and u =

(
(∆tk, ek)

)
k=1,2,...

denote a sequence of controls which

satisfies α(ek+1) = ω(ek) for all k = 1, 2, ... . Given a scenario W ∈ W, the path p =
Φ(x0, u,W) = (xk)k=0,1,... produced by the application of u in x0 is determined by

xk = φ
(
xk−1, uk,W(xk−1, uk)

)
, k = 1, 2, ... . (6.7)

The control sequence u is called admissible for the given state x0 if, for each W ∈ W, xk ∈ X
for all k = 0, 1, ... . We denote the set of control sequences which are admissible for x0 ∈ X
by U(x0). In a similar manner as in Chapter 3, we denote

B(x0, u,W) =

|u|∑
k=1

[
δ
(
vk−1, tk−1,∆tk,W(xk−1, uk)

)
+ β

(
ek, tk−1 +∆tk,W(xk−1, uk)

)]
,

T (x0, u,W) =

|u|∑
k=1

[
∆tk + τ

(
ek, tk−1 +∆tk,W(xk−1, uk)

)]
,

where x0 ∈ X, u =
(
(∆tk, ek)

)
k=1,2,...

∈ U(x0) is an admissible control sequence, W ∈ W
is a network scenario and p = Φ(x0, u,W) =

(
(vk, tk)

)
k=0,1,...

. Finally, given a destination

node v′ ∈ V , we define the optimal value function b∗ of the forward time-dependent absolute
robust optimal path problem according to:

b∗(x) = inf
u∈U(x):
ω(u)=v′

sup
W∈W

B(x, u,W). (6.8)

We have so far modeled the uncertainty in the time-dependent network by a very general
formulation using scenario data. However, the analysis in the following sections of this
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chapter will be based on a more restricted model which is a generalization of the concept
of modeling the uncertainty by interval data. In the following, we suppose that the com-
modity which travels in the network does not know which scenario the network is in and
in which manner the scenarios depend on the state of and the control action applied by
the commodity. This is similar to assuming that the set of possible scenarios has a specific
structure which is defined as follows:

Definition 6.2.1 Let (V,E, τ ;β, δ) be a time-dependent network in which the functions
τ, β, δ depend on some internal network state according to (6.2)-(6.4). Let W denote the
set of possible scenarios of the time-dependent network according to (6.5) and (6.6).
The set of possible scenariosW has the DP-property, if for each finite collection of (xn, un) =(
(vn, tn), (∆tn, en)

)
∈ dom(Ω), n = 1, ..., N , N ∈ N, with (xm, um) ̸= (xn, un) for m,n ∈

{1, ..., N}, m ̸= n and each collection of Wn ∈ W, n = 1, ..., N , there exists a W ∈ W such
that

τ
(
en, tn +∆tn,W(xn, un)

)
= τ

(
en, tn +∆tn,Wn(xn, un)

)
, n = 1, ..., N,

β
(
en, tn +∆tn,W(xn, un)

)
= β

(
en, tn +∆tn,Wn(xn, un)

)
, n = 1, ..., N,

δ
(
vn, tn,∆tn,W(xn, un)

)
= δ
(
vn, tn,∆tn,Wn(xn, un)

)
, n = 1, ..., N.

If the set of possible scenarios has the DP-property, then it is not possible to infer from
certain realizations of the network functions τ, β, δ for a finite collection of distinct state-
control pairs {(xn, un)}n=1,...,N , N ∈ N, to the realization of the network functions τ, β, δ
for any other state-control pair (x, u). Whether this property originates from the set of
possible scenarios or from the lack of knowledge of the commodity which travels in the
network is arbitrary for the following considerations. However, assuming that the set of
possible scenarios has the DP-property has a strong impact on the applicability of the
principle of dynamic programming and on the computational complexity of solving the
(time-independent) absolute robust optimal path problem, cf. Corollary 6.2.3. The key
argument, on which the derivation of the dynamic programming equations for the time-
dependent absolute robust path problem is based, is the following:

Lemma 6.2.2 Suppose that the set of possible scenarios W has the DP-property and that
there exists a T ◦ ∈ R, T ◦ > 0, such that

T
(
(v, t), u,W

)
≥ T ◦, ∀u ∈ U(v, t) with ω(u) = α(u), ∀W ∈ W. (6.9)

If x0 = (v0, t0) ∈ X and u =
(
(∆tk, ek)

)
k=1,...,n

∈ U(x0), then

sup
W∈W

B(x0, u,W) = sup
w1∈Ω(x0,u1)

· · · sup
wn∈Ω(xn−1,un)

|u|∑
k=1

Bk(xk−1, uk, wk), (6.10)

where

xk = (vk, tk) = φ(xk−1, uk, wk), k = 1, ..., n,

Bk(xk−1, uk, wk) = δ
(
vk−1, tk−1,∆tk, wk

)
+ β

(
ek, tk−1 +∆tk, wk

)
, k = 1, ..., n.

Proof We prove the assertion by induction on the length n of the control sequence u.
Clearly, (6.10) holds for n = 1. Now, suppose that (6.10) holds for all states x ∈ X and all
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control sequences u ∈ U(x) of length at most n − 1. Let x0 ∈ X and u =
(
uk
)
k=1,...,n

∈
U(x0). Then

sup
W∈W

B(x0, u,W) = sup
w1∈Ω(x0,u1)

sup
W∈W:

W(x0,u1)=w1

[
B1(x0, u1, w1) + B

(
φ(x0, u1, w1), u2:n,W

)]
= sup

w1∈Ω(x0,u1)

[
B1(x0, u1, w1) + sup

W∈W:
W(x0,u1)=w1

B
(
φ(x0, u1, w1), u2:n,W

)]

Let w1 ∈ Ω(x0, u1) be arbitrary but fixed, let x1 = φ(x0, u1, w1). Obviously, there holds
{W ∈ W : W(x0, u1) = w1} ⊂ W and hence

sup
W∈W:

W(x0,u1)=w1

B
(
x1, u2:n,W

)
≤ sup

W∈W
B
(
x1, u2:n,W

)
. (6.11)

Let W ∈ W be arbitrary but fixed and (xk)k=1,...,n = Φ(x1, u2:n,W). (6.9) implies that
xk ̸= xl for all k, l ∈ {0, ..., n} with k ̸= l. Hence, as W has the DP-property, there exists a
W̃ ∈ W with W̃(x0, u1) = w1, such that

Φ(x1, u2:n,W) = Φ(x1, u2:n, W̃),

B(x1, u2:n,W) = B(x1, u2:n, W̃).

Together with (6.11), this implies that

sup
W∈W:

W(x0,u1)=w1

B
(
x1, u2:n,W

)
= sup

W∈W
B
(
x1, u2:n,W

)
.

Consequently,

sup
W∈W

B(x0, u,W) = sup
w1∈Ω(x0,u1)

[
B1(x0, u1, w1) + sup

W∈W
B
(
φ(x0, u1, w1), u2:n,W

)]
.

Now (6.10) follows from the induction hypothesis. �

We now briefly consider the time-independent absolute robust optimal path problem under
the assumption that the set of possible scenarios has the DP-property. The DP-property is
adapted to time-independent networks as follows:
Given a set W of possible network states and a network (V,E;β) with β : E ×W 7→ R and
a control-dependent restriction Ω : E 7→ P(W ) \ ∅ of the set of possible network states, the
set of possible scenarios

W =
{
W : E →W | W(e) ∈ Ω(e) ∀e ∈ E

}
has the DP-property, if for each function

β̂ : E 7→ R, with β̂(e) ∈ β(e,Ω(e)), ∀e ∈ E,
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there exists a W ∈ W such that

β̂(e) = β
(
e,W(e)

)
, ∀e ∈ E.

It is easily seen that this adaption is straightforward from Definition 6.2.1, since V,E are
finite sets and, in the time-independent case, the state v ∈ V is uniquely determined by the
choice of an admissible control action e ∈ E+(v), i.e., v = α(e).
We will now show that the complexity results for the time-independent absolute robust
optimal path problem with interval data can be generalized to scenario sets which have the
DP-property. Note that modeling the uncertainty by interval data corresponds to modeling
the uncertainty by a scenario set which has the DP-property and by considering a cost
function β, which has the property that β(e,Ω(e)) is an interval for each e ∈ E.

Corollary 6.2.3 The time-independent absolute robust optimal path problem with nonnega-
tive edge weights is polynomially solvable if the set of possible scenarios has the DP-property.

Proof Let (V,E;β) be an instance of a network in which β : E × W → R+
0 , where W

denotes the set of possible network states. Let Ω denote the restriction mapping of the
network states and let W denote the set of possible scenarios. Let a source node v0 ∈ V
and a goal node v′ ∈ V be given. Finally, let (e1, ..., en) be a connected edge sequence with
α(e1) = v0 and ω(en) = v′. Suppose that there exist k, l ∈ {1, ..., n} with k > l such that
(ek, ..., el) is a circle. The non-negativity of β implies that∑

i=1,...,n

β(ei,W(ei)) ≥
∑

i=1,...,k−1

β(ei,W(ei)) +
∑

i=l+1,...,n

β(ei,W(ei)) ∀W ∈ W,

and hence there always exists a simple optimal path. Consequently, the optimal value
function b∗ : V → R of the time-independent absolute robust optimal path problem satisfies

b∗(v) = min
(e1,...,en)∈E

sup
W∈W

n∑
i=1

β(ei,W(ei)),

where E is the set of all simple connected edge sequences which connect v0 and v′. Using
the DP-property of W and proceeding in a similar manner as in the proof of Lemma 6.2.2,
we obtain

b∗(v) = min
(e1,...,en)∈E

n∑
i=1

β(ei),

where β(e) = supw∈Ω(e) β(e, w) for all e ∈ E. Consequently, the time-independent absolute
robust optimal path problem in (V,E;β) can be solved by solving the time-independent
optimal path problem in (V,E;β) with source node v0 and goal node v′. The latter problem
is polynomially solvable. �

The above result is similar to the observation in [15], where it is pointed out that the
polynomial solvability of certain robust combinatorial optimization problems with interval
data is due to the structure of the set of scenarios which is a rectangular box. We have
seen that, at least in the case of the optimal path problem, the DP-property of the set of
scenarios (in the sense of the above adaption of Definition 6.2.4) is sufficient in order to
establish the polynomial solvability. We conjecture that a similar generalization holds for
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the combinatorial optimization problems in [15].
Furthermore, we conjecture that, in the time-dependent case, there exist similar relation-
ships between the computational complexities of the absolute robust optimal path problem
with fixed departure time. However, we leave a detailed analysis of this matter as a topic
for further research.
In order to conclude this section we introduce the following assumption on the set of possible
scenarios which simplifies the solution of the dynamic programming equations associated
with the time-dependent absolute robust optimal path problem.

Definition 6.2.4 Let (V,E, τ ;β, δ) be a time-dependent network in which the functions
τ, β, δ depend on some internal network state according to (6.2)-(6.4). Let W denote the
set of possible scenarios of the time-dependent network according to (6.5) and (6.6).
The set of possible scenarios W is independent, if

(i) for each finite collection of (xn, un) =
(
(vn, tn), (∆tn, en)

)
∈ dom(Ω), n = 1, ..., N ,

N ∈ N, with (xm, um) ̸= (xn, un) for m,n ∈ {1, ..., N}, m ̸= n, and any collection of

τ̂n ∈ τ
(
en, tn +∆tn,Ω(xn, un)

)
, n = 1, ..., N,

β̂n ∈ β
(
en, tn +∆tn,Ω(xn, un)

)
, n = 1, ..., N,

δ̂n ∈ δ
(
vn, tn,∆tn,Ω(xn, un)

)
, n = 1, ..., N,

there exists a W ∈ W such that

τ̂n = τ
(
en, tn +∆tn,W(xn, un)

)
, ∀n = 1, ..., N,

β̂n = β
(
en, tn +∆tn,W(xn, un)

)
, ∀n = 1, ..., N,

δ̂n = δ
(
vn, tn,∆tn,W(xn, un)

)
, ∀n = 1, ..., N,

for all n ∈ {1, ..., N}, and

(ii) for any
(
(v, t1), (∆t1, e)

)
,
(
(v, t2), (∆t2, e)

)
∈ dom(Ω) with t1 +∆t1 = t2 +∆t2, there

holds

τ
(
e, t1 +∆t1,Ω

(
(v, t1), (∆t1, e)

))
= τ

(
e, t2 +∆t2,Ω

(
(v, t2), (∆t2, e)

))
,

β
(
e, t1 +∆t1,Ω

(
(v, t1), (∆t1, e)

))
= β

(
e, t2 +∆t2,Ω

(
(v, t2), (∆t2, e)

))
.

Remark 6.2.5 It is readily seen that if W is independent, then it has the DP-property.
Moreover, if W is independent, then the realizations of the network functions τ, β, δ are
independent of one another, and the realizations of τ and β depend only on the departure
time on the respective edge.

In the following sections, we will establish the existence of optimal paths and derive some
properties of the optimal value function.

6.3. Existence of Optimal Paths and Dynamic Programming

Before proving the existence of time-dependent absolute robust optimal paths we prove two
preliminary lemmas.
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Lemma 6.3.1 Let T, Y,W,Z denote topological spaces, f : T × Y ×W → Z a continuous
function, Λ : T → P(Y ) an upper semicontinuous point-to-set mapping and Ω : T × Y →
P(W ) a lower semicontinuous point-to-set mapping. Suppose that Y is locally compact
and satisfies the second axiom of countability, and suppose that W satisfies the first axiom
of countability. If C ⊂ Z is a closed set, then the point-to-set mapping Γ : T → P(Y ),
Γ(t) = {y ∈ Λ(t) : f(t, y, w) ∈ C ∀w ∈ Ω(t, y)} is upper semicontinuous.

Proof Suppose that there is a t0 ∈ T , such that Γ is not upper semicontinuous in t0. Then
there exists an open set UY ⊂ Y containing Γ(t0), such that there is no open neighborhood
UT of t0 with Γ(t) ⊂ UY for all t ∈ UT . Hence, there is a sequence (tn)n∈N, limn→∞ tn = t0,
such that for each n ∈ N there exists at least one yn ∈ Γ(tn)\UY . In a similar manner as in
Lemma 4.2.2, using the upper semicontinuity of Λ, we obtain the existence of a subsequence
(denoted again by (yn)n∈N) which converges to some y0 ∈ Λ(t0). Next, since yn ∈ Γ(tn) for
all n ∈ N, we obtain that f(tn, yn, w) ∈ C for all w ∈ Ω(tn, yn) and all n ∈ N. Moreover,
since yn ∈ Y \ UY and Y \ UY is closed, we observe that y0 ∈ Y \ UY ⊂ Y \ Γ(t0). We
now claim that, as we have supposed that Γ is not upper semicontinuous in t0, there exists
at least one w0 ∈ Ω(t0, y0) with f(t0, y0, w0) ̸∈ C. Otherwise, as C is closed and f is
continuous, Γ(t0) would be a closed set which is compact (recall that Γ(t0) ⊂ Λ(t0) and
Λ(t0) is compact) and which contains y0 (recall that y0 ∈ Λ(t0)), contradicting the fact
that y0 ∈ Y \ Γ(t0) and thereby proving the upper semicontinuity of Γ in t0. In order
to complete the contradiction, we will now show that there exists no w0 ∈ Ω(t0, y0) with
f(t0, y0, w0) ̸∈ C.
Let (tn)n∈N, t0, (yn)n∈N, y0 as defined above and suppose that there exists a w0 ∈ Ω(t0, y0)
with f(t0, y0, w0) ̸∈ C. As W satisfies the first axiom of countability [93, Definition 10.20],
there exists a countable and nested filter base (UkW )k∈N of open sets UkW ⊂ W which
converge to w0 [93, p.8]. Since Ω is lower semicontinuous, there exists an open neighborhood
UkT×Y ⊂ T × Y of (t0, y0), such that UkW ∩ Ω(t, y) ̸= ∅ for all (t, y) ∈ UkT×Y and each
k ∈ N. As limn→∞(tn, yn) = (t0, y0), for each k ∈ N, there exists a N(k) ∈ N, such
that UkW ∩ Ω(tn, yn) ̸= ∅ for all n ≥ N(k). Consequently, there exist wn ∈ Ω(tn, yn) with
limn→∞wn = w0. As f is continuous, C is closed and f(tn, yn, wn) ∈ C for all n ∈ N, we
obtain that f(t0, y0, w0) = limn→∞ f(tn, yn, wn) ∈ C, thereby completing the contradiction.
�

Lemma 6.3.2 Let T, Y,W be topological spaces. If Ω : T × Y → P(W ) \ ∅ is a lower
semicontinuous point-to-set mapping, and f : T × Y ×W → R is a lower semicontinuous
function, then the function f∗ : T × Y → R,

f∗(t, y) = sup
w∈Ω(t,y)

f(t, y, w),

is lower semicontinuous.

Proof We denote

f∗(t, y) = sup
w∈Ω(t,y)

f(t, y, w) = −
[

inf
w∈Ω(t,y)

−f(t, y, w)
]
.

As the function (t, y, w) 7→ −f(t, y, w) is upper semicontinuous, [65, Theorem 2.2.1] implies
that the function t 7→ infw∈Ω(t,y,w)−f(t, y, w) is upper semicontinuous, which yields the
lower semicontinuity of f∗. �
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In the formulation of the following theorem we use a generalization of the set of reachable
points in time TR(v0) (cp. Definition 3.5.1) to time-dependent networks which are subject
to uncertainty:

TR(v0) =
{
t0 ∈ T (v0) : ∃u ∈ U(v0, t0) with ω(u) = v′

}
.

This set consists of all departure times for which we can guarantee to reach the goal node
v′ without violating any constraint in any scenario W ∈ W.

Assumption 6.3.3 Let G = (V,E, τ ;β, δ) denote a time-dependent network in which the
functions τ, β, δ depend on the network state w ∈W . Suppose that the travel time function
τ is continuous and the cost functions β, δ are lower semicontinuous. Suppose that T (v) is
a closed set for all v ∈ V , that the point-to-set mapping ∆T is upper semicontinuous, that
the point-to-set mapping Ω is lower semicontinuous and that W satisfies the first axiom of
countability. Further, suppose that the set of possible scenarios W has the DP-property and
that there exist B,B◦, T ◦ ∈ R, B◦, T ◦ > 0, such that there hold (6.9) and

B
(
(v, t), u,W

)
≥ B, ∀u ∈ U(v, t) with |u| = 1, ∀W ∈ W , (6.12)

B
(
(v, t), u,W

)
≥ B◦, ∀u ∈ U(v, t) with ω(u) = α(u), ∀W ∈ W . (6.13)

Theorem 6.3.4 Let G = (V,E, τ ;β, δ) denote a time-dependent network in which Assump-
tion 6.3.3 holds and let v0, v

′ ∈ V . Then, for any t0 ∈ TR(v0), there exists a (finite) optimal
path from (v0, t0) to v′ and the partial function t0 7→ b∗(v0, t0) is lower semicontinuous on
TR(v0).

Proof We proceed in a similar manner as in the proof of Theorem 4.2.4. First, for any
finite, connected edge sequence from v0 to v′, we define

T̃(e1,...,en) =
{
t ∈ T (v0) : ∃(∆tk)k=1,...,n such that

(
(∆tk, ek)

)
k=1,...,n

∈ U(v0, t)
}
.

We denote the set of all finite, connected edge sequence from v0 to v′ by E and observe that

TR(v0) =
∪

(e1,...,en)∈E

T̃(e1,...,en).

Next, we assume that a finite, connected edge sequence (e1, ..., en) from v0 to v′ has been
fixed. We denote vk−1 = α(ek) for k = 1, ..., n, and vn = ω(en) = v′. In order to ease the
notation, we further introduce θk : R×W → R, θk(t, w) = t+ τ(ek, t, w), k = 1, ..., n. Note
that θk is continuous for all k = 1, ..., n. We denote T̃n = T (vn), and for k = 0, ..., n− 1, we

define ∆̃T k : T (vk)→ P(R+
0 ),

∆̃T k(t) =
{
∆t ∈ ∆T (vk, t) : θk

(
t+∆t, w

)
∈ T̃k+1 ∀w ∈ Ω

(
(vk, t), (∆t, ek+1)

)}
, (6.14)

T̃k = supp(∆̃T k). (6.15)

The DP-property of W and (6.9) imply that T̃0 = T̃(e1,...,en), cp. Lemma 6.2.2. By back-

wards induction, as τ is continuous, ∆T is upper semicontinuous and T̃n is closed, Lemma
6.3.1 implies that ∆̃T k is an upper semicontinuous point-to-set mapping and T̃k is closed
for all k = 0, ..., n− 1. Note, that the set of admissible control actions at (vk, t) ∈ X along
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(e1, ..., en) is given by ∆̃T k(t)× {ek}.
We now analyze the optimal-cost function b̃∗ along this edge sequence by backwards induc-
tion. Since the cost of each circle is strictly positive, we have

b̃∗(vn, t) = b̃∗(v′, t) = b∗(v′, t) = 0

for all t ∈ T̃n = T (v′). Clearly, b̃∗(vn, ·) is lower semicontinuous. Moreover, Lemma 6.2.2
implies that, for each t0 ∈ T̃0, there holds

inf
∆t1∈∆̃T 1(t0)

· · · inf
∆tn∈∆̃Tn(tn−1)

sup
W∈W

B(x0, u,W)

= inf
∆t1∈∆̃T 1(t0)

· · · inf
∆tn∈∆̃Tn(tn−1)

sup
w1∈Ω(x0,u1)

· · · sup
wn∈Ω(xn−1,un)

|u|∑
k=1

Bk(xk−1, uk, wk),

where we have denoted, for k = 1, ..., n, uk = (∆tk, ek), xk = (vk, tk) = φ(xk−1, uk, wk), and

Bk(xk−1, uk, wk) = δ
(
vk−1, tk−1,∆tk, wk

)
+ β

(
ek, tk−1 +∆tk, wk

)
.

As (6.12) implies that b̃∗k(t) > −∞ for all t ∈ T̃k and all k = 0, ..., n − 1, [25, Proposition

1.6.1 et seq.] yields for all t ∈ T̃k and all k = 0, ..., n− 1:

b̃∗(vk, t) = inf
∆t∈∆̃Tk(t)

sup
w∈Ω((vk,t),(∆t,ek+1))

bk(t,∆t, w), (6.16)

where we used the function bk : graph(∆̃T k)×W → R,

bk(t,∆t, w) = δ(vk, t,∆t, w) + β(ek+1, t+∆t, w) + b̃∗
(
vk+1, θk(t+∆t, w)

)
.

Since bk is a real-valued lower semicontinuous function, t 7→ ∆̃T k(t) is an upper semicon-
tinuous point-to-set mapping and (t,∆t) 7→ Ω

(
(vk, t), (∆t, ek+1)

)
is a lower semicontinuous

point-to-set mapping, Lemma 6.3.2 and [65, Theorem 2.2.1] imply that t 7→ b̃∗(vk, t) is lower

semicontinuous on T̃k. Moreover, as ∆̃T k(t) is compact and nonempty for each t ∈ T̃k, the
minimum in (6.16) is attained by some ∆t∗k(t), k = 0, ..., n− 1.
Next, if N ∈ N, we observe that any control sequence u with |u| ≥ N |V |+ |V | − 1 contains
at least N circles, which implies

B
(
(v0, t0), u,W

)
≥ (|V | − 1)B +NB◦, ∀W ∈ W. (6.17)

The rest of the proof follows as in the proof of Theorem 4.2.4 by using (6.17) instead of
(4.6). �

For the remainder of this chapter, we assume that Ω(x, u) is compact for each x ∈ X
and each u ∈ U(x). This allows us to replace the supremum in (6.16) by a maximum.
In the following propositions we establish the principle of dynamic programming for the
time-dependent robust optimal path problem.

Proposition 6.3.5 Suppose that Assumptions 6.3.3 holds and that a goal node v′ ∈ V
is given. The optimal value function b∗ defined in (6.8) satisfies the following dynamic
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programming equations:

b∗(v′, t) = 0, ∀t ∈ T (v′),

b∗(v, t) = min
u∈U(v,t)
u=(∆t,e)

max
w∈Ω((v,t),u)

[
δ(v, t,∆t, w) + β(e, t+∆t, w) + b∗

(
φ((v, t), u, w)

)]
,

∀v ∈ V \ {v′}, t ∈ T (v).

Proof As a consequence of (6.13) and since B◦ > 0, we observe that b∗(v′, t) ≥ 0 for all
t ∈ T (v′), and that the termination of the path from v′ to v′ in the initial state leads to the
optimal cost b∗(v′, t) = 0 for all t ∈ T (v′). Since we have already proved the existence of
optimal paths in Theorem 6.3.4, the result follows from standard arguments (see, e.g., [26,
Proposition 3.1.1]) by replacing expectation by maximization and using Lemma 6.2.2. �

We next consider the dynamic programming equations under the assumption that the set
of possible scenarios is independent. We denote

Θ : E × R→ P(R), Θ(e, t) =
∪

w∈Ω((v,t),(0,e))

{t+ τ(e, t, w)},

β : E × R→ R, β(e, t) = max
w∈Ω((v,t),(0,e))

β(e, t, w),

δ : V × R× R+
0 → R, δ(v, t,∆t) = max

w∈Ω((v,t),(∆t,e))
δ(v, t,∆t, w).

Proposition 6.3.6 Suppose that Assumption 6.3.3 holds, that the set of possible scenarios
W is independent and that a goal node v′ ∈ V is given. The optimal value function b∗

defined in (6.8) satisfies the following dynamic programming equations:

b∗(v′, t) = 0, ∀t ∈ T (v′),

b∗(v, t) = min
u∈U(v,t)
u=(∆t,e)

[
δ(v, t,∆t) + β(e, t+∆t) + max

θ∈Θ(e,t+∆t)
b∗
(
ω(e), θ

)]
,

∀v ∈ V \ {v′}, t ∈ T (v).

Proof Recall that, if W is independent, then W has the DP-property, cp. Remark 6.2.5.
Using Proposition 6.3.5 and Definition 6.2.4 (i), we obtain

b∗(v, t) = min
u∈U(v,t)
u=(∆t,e)

[
max

w∈Ω((v,t),u)
δ(v, t,∆t, w) + max

w∈Ω((v,t),u)
β(e, t+∆t, w)

+ max
w∈Ω((v,t),u)

b∗
(
φ((v, t), u, w)

)]
. ∀v ∈ V \ {v′}, t ∈ T (v).

Now, Definition 6.2.4 (ii) implies

b∗(v, t) = min
u∈U(v,t)
u=(∆t,e)

[
δ(v, t,∆t) + β(e, t+∆t) + max

θ∈Θ(e,t+∆t)
b∗
(
ω(e), θ

)]
,

for all v ∈ V \ {v′} and all t ∈ T (v). �
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6.4. Properties of the Optimal Value Function

We will now apply some of the concepts developed in Chapter 5 to the problem setting of
Section 6.2. First, the continuity of the optimal value function is established under similar
assumptions to those in Section 5.1 by using the following result.

Assumption 6.4.1 Let v0 ∈ V be a fixed source node and suppose that T (v0) = [ t,∞)
for some t ∈ R. Suppose further that τ,∆T,Ω are continuous, that there exists a T ◦ > 0
such that (6.9) holds and that the set of possible scenarios W has the DP-property. Denote
T̃ (v0) = T (v0) and T̃ (v) = R for all v ∈ V \ {v0} and let Ũ(v, t) denote the set of control
sequences which are admissible for (v, t) in (G, T̃ ,∆T ). For each v ∈ V , let

t̃R(v) = inf
t0∈T (v0)

inf
u∈Ũ(v0,t0):
ω(u)=v

inf
W∈W

t0 + T
(
(v0, t0), u,W

)

denote the earliest arrival time at v in the time-dependent network (G, T̃ ,∆T ). Suppose
that T (v) ⊃ [ t̃R(v),∞) for all v ∈ V .

Lemma 6.4.2 Let v0 be a fixed source node and suppose that Assumption 6.4.1 holds.
Then, for all v ∈ V and all t ≥ t̃R(v), there holds U(v, t) = Ũ(v, t). In particular, if
(v′, t′) = φ

(
(v, t), u

)
for some u ∈ U(v, t), t ≥ t̃R(v), then t′ ≥ t̃R(v′).

Proof In a similar manner as in the proof of Lemma 6.2.2, we obtain that, for each t0 ∈
T (v0) and each u =

(
(∆tk, ek)

)
k=1,...,n

∈ Ũ(v0, t0), there holds

inf
W∈W

T (x0, u,W) = inf
w1∈Ω(x0,u1)

· · · inf
wn∈Ω(xn−1,un)

n∑
k=1

Tk(xk−1, uk, wk), (6.18)

where

xk = (vk, tk) = φ(xk−1, uk, wk), k = 1, ..., n,

Tk(xk−1, uk, wk) = ∆tk + τ
(
ek, tk−1 +∆tk, wk

)
, k = 1, ..., n.

Using (6.18) and the continuity of Ω, the result follows in a similar manner as in the proof
of Lemma 5.1.2. �

In the remainder of this section, we assume that a goal node v′ ∈ V is given.

Theorem 6.4.3 Suppose that ∆T and Ω are continuous point-to-set mappings, τ, β, δ are
continuous and there exist B,B◦, T ◦ ∈ R, B◦, T ◦ > 0, such that (6.9), (6.12) and (6.13)
hold. Suppose that the set of possible scenarios W has the DP-property.

(i) Let a source node v0 ∈ V be given and let Assumption 6.4.1 hold, then the partial
mapping t0 7→ b∗(v0, t0) is continuous on TR(v0).

(ii) If X = V × R and (V,E) is strongly connected, then b∗ is continuous.

Proof The result follows in a similar manner as in Theorem 5.1.3 by using Lemma 6.4.2
instead of Lemma 5.1.2 and by applying [65, Theorem 2.2.2] to both the maximization with
respect to w ∈ Ω

(
(v, t), (∆t, e)

)
and the minimization with respect to ∆t ∈ ∆T (v, t), cp.

(6.16). �
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In the preceding results of this chapter, the set of possible states of the network W was
assumed to be an arbitrary topological space. We will now consider the computation of the
optimal value function in the cases in which W ⊂ Rn for some n ∈ N and in which the
network and constraint functions are piecewise analytic and piecewise linear, respectively. In
general, we must then solve a problem of the form (6.16). In particular, we must maximize
with respect to a variable w ∈ Rn, at which the constraint function Ω depends on the pair
(t,∆t) ∈ R2. Hence, the resulting problem is necessarily of a higher dimension than the
problems which we have analyzed in Chapter 5. Although we believe that, at least in the
case of piecewise linear network functions, a similar analysis as in Chapter 5 can be carried
out for the time-dependent absolute robust optimal path problem, a number of notational
and technical difficulties must be solved first. For this reason, we will not further consider
this general problem setting in this thesis and assume that W ⊂ R and that the set of
possible scenarios W is independent. Using the simplifications resulting from Proposition
6.3.6, we will see that an analysis of the time-dependent absolute robust optimal path
problem can be carried out with the notation and the techniques of Chapter 5. The general
problem is left as a topic for future research.
In the remainder of this chapter, we assume that Θ(e, t) = [ θ(e, t), θ(e, t) ] for some θ, θ :
E ×R→ R with θ(e, t) ≤ θ(e, t) for all (e, t) ∈ E ×R. Moreover, we assume that ∆T (x) =
[∆T (x),∆T (x) ] for some ∆T ,∆T : X → R+

0 with ∆T (x) ≤ ∆T (x) for all x ∈ X. Note
that these assumptions are due to keeping the notation as simple as possible, and that the
following results would also hold if Θ and ∆T were a finite union of such interval-valued
point-to-set mappings. Using the techniques of the previous chapter, we obtain:

Theorem 6.4.4 Suppose that the set of possible scenarios W is independent, θ, θ, β ∈
PCω(E × R), δ ∈ PCω(V × R × R+

0 ), ∆T ,∆T ∈ PCω(X) and there exist B,B◦, T ◦ ∈ R,
B◦, T ◦ > 0, such that (6.9), (6.12) and (6.13) hold.

(i) Let a source node v0 ∈ V be given and let Assumption 6.4.1 hold, then the partial
mapping t0 7→ b∗(v0, t0) is in PC1,ω

(
TR(v0)

)
.

(ii) If X = V × R and (V,E) is strongly connected, then b∗ ∈ PC1,ω(X).

Proof We first assume that θ, θ, β ∈ Cω(E × R), δ ∈ Cω(V × R × R+
0 ), ∆T ,∆T ∈ Cω(X).

We proceed in a similar manner as in the proof of Theorem 4.2.4. Let (e1, ..., en) denote a

finite, connected edge sequence from v0 to v′. Denote vk = ω(ek), k = 1, ..., n, and T̃k, ∆̃T k
as in (6.14), (6.15), k = 0, ..., n − 1. Lemma 6.4.2 implies that ∆̃T k(t) = ∆T (vk, t) for all

t ∈ T̃k and hence T̃k = supp(∆̃T k) = T (vk), k = 0, ..., n − 1. Along the edge sequence
(e1, ..., en) we must solve the following parametric minmax problem for k = 0, ..., n− 1, cp.
(6.16) and Proposition 6.3.6:

b̃∗(vk, t) = inf
∆t∈∆̃Tk(t)

[
δ(v, t,∆t) + β(e, t+∆t) + max

θ∈Θ(t+∆t)
b̃∗(vk+1, θ)

]
, ∀t ∈ T̃k, (6.19)

where b̃∗(vn, t) ≡ 0 is in Cω(T̃n) ⊂ PC1,ω(T̃n).
We will now prove by backwards induction that t 7→ b̃∗(vk, t) is in PC1,ω(T̃k). Let k ∈
{0, ..., n−1} and assume that t 7→ b̃∗(vk+1, t) is in PC1,ω(T̃k+1). According to Remark 5.2.4,
it is sufficient to prove that, for an arbitrary compact interval K ⊂ T̃k, t 7→ b̃∗(vk, t) is in
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PC1,ω(K). Since ∆T is continuous, graph(∆T |{vk}×K) is compact and the set

T ′
k = {t+∆t ∈ R : (vk, t,∆t) ∈ graph(∆T |{vk}×K)}

is a compact interval. Similarly, since Θ is continuous, graph(Θ|{ek+1}×T ′
k
) is compact and

the set
T ′′
k+1 = {θ ∈ R : (ek+1, t

′, θ) ∈ graph(Θ|{ek+1}×T ′
k
)}

is a compact interval. (Recall that Lemma 6.4.2 implies that T ′′
k+1 ⊂ T (vk+1).) Using the

fact that t 7→ b̃∗(vk+1, t) is in PC1,ω(T̃k+1), there exists a decomposition of T ′′
k+1 into Ik ∈ N

compact intervals T ′′
k+1,i, i = 1, ..., Ik, such that t 7→ b̃∗(vk+1, t) is in C1,ω(T ′′

k+1,i) for each
i ∈ {1, ..., Ik}. For i ∈ {1, ..., Ik} we denote Θk,i : T

′
k 7→ P(R),

Θk,i(t
′) = [ θ(ek+1, t

′), θ(ek+1, t
′) ] ∩ T ′′

k+1,i.

For all i ∈ {1, ..., Ik}, as θ, θ ∈ Cω(E × R) and T ′
k is compact, the set supp(Θk,i) is the

finite union of Jk,i ∈ N compact intervals T ′
k,ij , j = 1, ..., Jk,i, for each of which there exist

θk,ij , θk,ij ∈ Cω(T ′
k,ij), such that Θk,i(t

′) = [ θk,ij(t
′), θk,ij(t

′)] for all t′ ∈ T ′
k,ij (cf. [118,

Corollary 1.2.6]). According to the construction, we obtain

T ′
k =

Ik∪
i=1

Jk,i∪
j=1

T ′
k,ij , Θ(ek, t

′) =

Ik∪
i=1

∪
j∈{1,...,Jk,i}:
t′∈T ′

k,ij

[ θk,ij(t
′), θk,ij(t

′)], ∀t′ ∈ T ′
k.

Lemma 5.2.12 implies that the function fk,ij : T
′
k,ij → R,

fk,ij(t
′) = max

θ∈[ θk,ij(t′),θk,ij(t′)]
b̃∗(vk+1, θ) = − min

θ∈[ θk,ij(t′),θk,ij(t′)]
−b̃∗(vk+1, θ)

satisfies fk,ij ∈ PC1,ω(T ′
k,ij). Next, we define fk : T

′
k → R,

fk(t
′) = min

i∈{1,...,Ik},j∈{1,...,Jk,i}:
t′∈T ′

k,ij

fk,ij(t
′).

Using Lemma 5.2.9 on every nonempty set of the form
∩
i∈I
∩
j∈Ji

T ′
k,ij with I ⊂ {1, ..., Ik}

and Ji ⊂ {1, ..., Jk,i}, we obtain that fk is in PC1,ω(T ′
k). Finally, we observe that (6.19) can

be written as

b̃∗(vk, t) = inf
∆t∈∆̃Tk(t)

[
δ(v, t,∆t) + β(e, t+∆t) + fk(t+∆t)

]
, t ∈ T̃k.

Now the remaining part of the proof follows in a similar manner as in the proof of Theorem
5.2.14. �

We next consider the piecewise linear case. As in Subsection 5.3.2, and without loss of
generality, we assume that the network functions are continuous. Before proving the main
results, we establish a few preliminary lemmas:
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Lemma 6.4.5 Let T, T ′ ⊂ R be closed intervals or points, let θ, θ ∈ PL1c(T ) be such that
θ(t) ≤ θ(t) for all t ∈ T and such that the decomposition of T with respect to θ and θ is
identical. Denote #θ = #θ = (N0,0, N0,1, N1) and define

T̃ = {t ∈ T : [ θ(t), θ(t)] ⊂ T ′}.

If either T is a point or θ, θ are monotonically increasing, then T̃ consists of at most one
connected component. Otherwise T̃ consists of at most 2N0,1 + 1 connected components.

Proof We first show that
T̃ = θ−1(T ′) ∩ θ−1

(T ′). (6.20)

Suppose that t̃ ∈ θ−1(T ′) ∩ θ−1
(T ′). Then θ(t̃), θ(t̃) ∈ T ′, and since T ′ is connected, there

holds [ θ(t̃), θ(t̃)] ⊂ T ′. Conversely, suppose that t̃ ̸∈ θ−1(T ′) ∩ θ−1
(T ′). Then {θ(t̃), θ(t̃)} ̸⊂

T ′, which implies that [ θ(t̃), θ(t̃)] ̸⊂ T ′. Consequently, (6.20) holds.
If either T is a point (which implies N0,0 = 1 and N1 = 0) or θ, θ are monotonically

increasing, then Lemma 5.3.6 (iii) implies that both θ−1(T ′) and θ
−1

(T ′) consist of at most
one connected component. The intersection of two connected sets is a connected set.
Let us assume that int(T ) ̸= ∅ and that θ, θ are not monotonically increasing. Now Lemma

5.3.6 (iii) implies that both θ−1(T ′) and θ
−1

(T ′) consist of at most N0,1 + 1 connected

components. Each left (resp., right) boundary point of a connected component of T̃ must

be a left (resp., right) boundary point of either θ−1(T ′) or θ
−1

(T ′), and hence T̃ consists

of at most 2N0,1 + 2 connected components. However min θ−1(T ′) and min θ
−1

(T ′) (resp.,

max θ−1(T ′) and max θ
−1

(T ′)) can only both be left (resp., right) boundary points of T̃ if
they coincide. Hence, T̃ consists of at most 2N0,1 + 1 connected components. �

Lemma 6.4.6 Let T ⊂ R be a closed interval with int(T ) ̸= ∅, let T ′ ⊂ R be the finite union
of closed intervals and points, let θ, θ, g ∈ PL1c(T ) be such that θ(t) ≤ θ(t) for all t ∈ T
and such that the decomposition of T with respect to θ, θ, g is identical. Let f ∈ PL1c(T ′).

Denote #θ = #θ = #g = (0, N θ
0,1, N

θ
1 ), #f = (Nf

0,0, N
f
0,1, N

f
1 ), N

f
0 = Nf

0,0+N
f
0,1 and define

T̃ = {t ∈ T : [ θ(t), θ(t)] ⊂ T ′}.

Then the function f∗ : T̃ → R,

f∗(t) = g(t) + max
θ∈[ θ(t),θ(t)]

f(θ),

satisfies f∗ ∈ PL1c(T̃ ) and there holds

#f∗ ≤ (N θ
0,1 + 2(Nθ

0,1 + 1)Nf
0 , 3N

θ
0,1 + 6(N θ

0,1 + 1)Nf
0 + 2, 3Nθ

0,1 + 6(Nθ
0,1 + 1)Nf

0 + 3 ),

and f∗ can be computed from f, g, θ, θ in O
(
Nθ

0,1(N
f
0 )

2
)
arithmetic operations.

If θ, θ are monotonically increasing, then

#f∗ ≤ (N θ
0,1 + 4Nf

0 , 3N
θ
0,1 + 12Nf

0 + 2, 3Nθ
0,1 + 12Nf

0 + 3 ),

and f∗ can be computed from f, g, θ, θ in O
(
Nθ

0,1N
f
0 + (Nf

0 )
2
)
arithmetic operations.
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Proof Let #f∗ = (Nf∗

0,0, N
f∗

0,1, N
f∗

1 ), let {t′n′
0
}
n′
0=1,...,Nf

0
, {T ′

n′
1
}
n′
1=1,...,Nf

1
be the decomposi-

tion of T ′ with respect to f and let the decomposition of T with respect to θ and θ be given
by {tn0}n0=1,...,Nθ

0,1
, {Tn1}n1=1,...,Nθ

1
. Assume that g is the zero function.

Let T ′
argmax ⊂ T ′ denote the set of local maxima of f and let

T ∗ = cl(T ′
argmax) ∩

Nf
0∪

n′
0=1

{t′n′
0
}.

We claim that, for each t ∈ T̃ , there holds

f∗(t) = max
{
f
(
θ(t)

)
, f
(
θ(t)

)
, max
t′∈T ∗∩[ θ(t),θ(t)]

f(t′)
}
. (6.21)

We obviously have

f∗(t) = max
{
f
(
θ(t)

)
, f
(
θ(t)

)
, max
t′∈T ′

argmax∩[ θ(t),θ(t)]
f(t′)

}
.

Suppose that t∗ ∈ (T ′
argmax \ T ∗) ∩ [ θ(t), θ(t)] for some t ∈ T̃ . Then t∗ ∈ T ′

n′
1
for some

n′1 ∈ {1, ..., N
f
1 }, f is constant on T ′

n′
1
, and consequently f(t∗) = f(t′n′

0
) = f(t′n′

0
) for

n′0, n
′
0 ∈ {1, ..., N

f
0,1} with t′n′

0
, t′n′

0
∈ bd(T ′

n′
1
) according to the continuity of f . Next, we

observe that we either have {θ(t), θ(t)} ∩ T ′
n′
1
̸= ∅, or t′n′

0
, t′n′

0
∈ [ θ(t), θ(t)]. In any case,

there holds
f(t∗) = max

t′∈T ∗∩[ θ(t),θ(t)]
f(t′),

which implies (6.21).
In a similar manner as in the proof of Lemma 5.3.6 (iv), it follows that the set of breakpoints
of f ◦ θ, f ◦ θ : T̃ → R is contained in

T =

Nθ
0,1∪

n0=1

{tn0} ∪
Nf

0∪
n′
0=1

bd
(
θ−1({t′n′

0
})
)
, T =

Nθ
0,1∪

n0=1

{tn0} ∪
Nf

0∪
n′
0=1

bd
(
θ
−1

({t′n′
0
})
)
,

respectively. According to the construction of T ∗, the set of breakpoints of the upper
semicontinuous and piecewise constant function fmax : T̃ → R,

fmax(t) = max
t′∈T ∗∩[ θ(t),θ(t)]

f(t′)

is also contained in T ∪ T . Finally, we observe that, if t̃ is a boundary point of T̃ , then

t̃ ∈ θ−1
(
bd(T ′)

)
∪ θ−1(

bd(T ′)
)
⊂ T ∪ T .

Since each connected component of θ−1({t′n′
0
}) and θ−1

({t′n′
0
}) contains at most two bound-

ary points, n′0 = 1, ..., Nf
0 , Lemma 5.3.6 (iii) yields that the number of breakpoints N0 in

the common decomposition of f ◦ θ, f ◦ θ, fmax satisfies

N0 ≤ |T ∪ T | ≤ Nθ
0,1 + 2(N θ

0,1 + 1)Nf
0 ,
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and if θ, θ are monotonically increasing, then

N0 ≤ |T ∪ T | ≤ Nθ
0,1 + 4Nf

0 .

Obviously, there holds Nf∗

0,0 ≤ N0. From Lemma 5.3.5 we obtain that the number of intervals

N1 in the common decomposition of f ◦ θ, f ◦ θ, fmax satisfies

N1 ≤ N θ
0,1 + 2(Nθ

0,1 + 1)Nf
0 + 1,

and if θ, θ are monotonically increasing, then

N1 ≤ N θ
0,1 + 4Nf

0 + 1.

Using the continuity of f∗ (cf. [65, Theorem 2.2.8]) and Lemma 5.3.7 on each of these
intervals (by adding only the additional number of breakpoints on each interval) we obtain
that

Nf∗

0,1 ≤ 3N θ
0,1 + 6(Nθ

0,1 + 1)Nf
0 + 2, Nf∗

1 ≤ 3N θ
0,1 + 6(Nθ

0,1 + 1)Nf
0 + 3,

and if θ, θ are monotonically increasing, then

Nf∗

0,1 ≤ 3Nθ
0,1 + 12Nf

0 + 2, Nf∗

1 ≤ 3N θ
0,1 + 12Nf

0 + 3.

If g is not the zero function, then the set of breakpoints of g is also contained in T ∪ T .
Hence, the result also holds if g ̸= 0.
Finally, in order to compute f∗, we first compute the functions f ◦ θ, f ◦ θ, fmax. According
to Lemma 5.3.6 (iv), (v), we can generally compute f ◦ θ, f ◦ θ in O(N θ

0,1N
f
0 ) arithmetic

operations, and we can compute f ◦ θ, f ◦ θ in O
(
log(Nθ

0,1)N
f
0

)
arithmetic operations if

θ, θ are monotone increasing. In order to compute fmax at some t ∈ T ∪ T , we must first
determine T ∗∩[ θ(t), θ(t)]. Using the array representation of f , we can determine the indices
(i.e., the minimal and the maximal index) of the the breakpoints of f in T ∗ ∩ [ θ(t), θ(t)] in
O
(
log(Nf

0 )
)
by bisection. The maximizing argument of f in T ∗ ∩ [ θ(t), θ(t)] can then be

determined in O(Nf
0 ) arithmetic operations. We must repeat this procedure for each of the

N0 points in T ∪ T , which generally yields a total of O
(
Nθ

0,1(N
f
0 )

2
)
arithmetic operations,

and which yields a total of O
(
Nθ

0,1N
f
0 + (Nf

0 )
2
)
arithmetic operations if θ, θ are monotone

increasing. The computation of f∗ on each interval in the common decomposition of T̃
with respect to f ◦ θ, f ◦ θ, fmax can be carried out in O(32) = O(1) arithmetic operations
according to Lemma 5.3.7. This yields the desired result. �

For the remainder of this section, we assume that, for each e ∈ E, the partial mappings
θe : R → R, θe(t) = θ(e, t), θe : R → R, θe(t) = θ(e, t) and βe : R → R, βe(t) = β(e, t) are
in PL1c(R) with an identical decomposition of R according to the discussion preliminary to
Definition 5.3.3. Furthermore, we assume that T (v) is a closed interval for all v ∈ V . We
also assume that the partial functions t 7→ ∆T v(t) = ∆T (v, t) and t 7→ ∆T v(t) = ∆T (v, t)
are in PL1c

(
T (v)

)
for all v ∈ V . For each v ∈ V , we denote the graph of the partial point-

to-set mapping t 7→ ∆T (v, t) by Θv. Moreover, we assume that, for each v ∈ V , the partial
functions δv : Θv → R, δv(t,∆t) = δ(v, t,∆t), are in PL2c(Θv). Finally, we assume that
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there exists a C ∈ N, C ≥ 2, such that

#θe ≤ (0, C − 1, C), #θe ≤ (0, C − 1, C), #βe ≤ (0, C − 1, C), ∀e ∈ E,
#∆T v ≤ (1, C, C), #∆T v ≤ (1, C, C), ∀v ∈ V,

#δv ≤ (1, C, C,C,C,C,C), ∀v ∈ V.

Note that, if C = 1, then the partial network functions {θe}e∈E , {θe}e∈E , {βe}e∈E would
be constant.

Lemma 6.4.7 Let v0, v
′ ∈ V be given and suppose that Assumption 6.3.3 holds. Let

(e1, ..., en) ∈ En be a connected edge sequence with α(e1) = v0 and ω(en) = v′, let

T̃0 = {t0 ∈ T (v0) : ∃u =
(
(∆tk, ek)

)
k=1,...,n

∈ U(v0, t0)},

Nbd =
∣∣bd(T (v′))∣∣ and let b̃∗0 : T̃0 7→ R,

b̃∗0(t0) = inf
{
B
(
(v0, t0), u

)
: u =

(
(∆tk, ek)

)
k=1,...,|u| ∈ U(v0, t0)

}
denote the optimal cost function along the edge sequence (e1, ..., en). Then b̃∗0 ∈ PL1c(T̃0)
and, denoting #b̃∗0 = (N0

0,0, N
0
0,1, N

0
1 ), we obtain:

(i) There holds N0
0,0 ≤ (2C2)n and N0

0,1, N
0
1 are of order

O
(
C3·2n−3

(
8Nbd + 6 + 16C2

)2n)
.

Moreover, b̃∗0 can be computed in

O
(
C9·2n−1−5

(
8Nbd + 6 + 16C2

)3·2n−1
)

arithmetic operations.

(ii) If X = V × R, then N0
0,0 = 0 and N0

0,1, N
0
1 are of order

O
(
C3·2n−352

n)
.

Moreover, b̃∗0 can be computed in

O
(
C9·2n−1−553·2

n−1)
arithmetic operations.

(iii) If t→ θ(e, t), t→ θ(e, t) are monotonically increasing for each e ∈ E and the functions
∆T v,∆T v satisfy (3.4) for each v ∈ V , then N0

0,0 ≤ 1 and N0
0,1, N

0
1 are of order

O
(
C2n−1

(
12Nbd + 5C

)2n)
.
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Moreover, b̃∗0 can be computed in

O
(
C3·2n−1−2

(
12Nbd + 5C

)3·2n−1
)

arithmetic operations.

(iv) If t → θ(e, t), t → θ(e, t) are monotonically increasing for each e ∈ E, the functions
∆T v,∆T v are constant for each v ∈ V and δv is linear for each v ∈ V , then N0

0,0 ≤ 1

and N0
0,1, N

0
1 are of order

O
(
72n(Nbd + C)

)
.

Moreover, b̃∗0 can be computed in

O
(
722n(Nbd + C)2

)
.

arithmetic operations.

(v) If t→ θ(e, t), t→ θ(e, t) are monotonically increasing for each e ∈ E, ∆T (v, t) = {0}
and δ(v, t, 0) = 0 for each (v, t) ∈ X, then N0

0,0 ≤ 1 and N0
0,1, N

0
1 are of order

O
(
12n(Nbd + C)

)
.

Moreover, b̃∗0 can be computed in

O
(
122n(Nbd + C)2

)
.

arithmetic operations.

Proof We denote vk = ω(ek), k = 1, ..., n, T̃n = T (vn), and for k = 0, ..., n− 1, we define

T̃k,k+1 = {t ∈ R : [ θ(t), θ(t)] ⊂ T̃k+1},

∆̃T k : T (vk)→ P(R+
0 ), ∆̃T k(t) =

{
∆t ∈ ∆T (vk, t) : t+∆t ∈ T̃k,k+1

}
,

T̃k = supp(∆̃T k).

Next, we denote θk, θk, βk : R→ R, θk(t) = θ(ek+1, t), θk(t) = θ(ek+1, t), βk(t) = β(ek+1, t),
δk : Θvk → R, δk(t,∆t) = δ(vk, t,∆t). Since the result of Lemma 5.3.19 is trivial if

T̃0 = ∅, we assume in the following that T̃k ̸= ∅ for all k = 0, ..., n. Let us suppose that
T̃k is the finite union of closed intervals and points for some k ∈ {0, ..., n − 1}. Then
Lemma 6.4.5 implies that T̃k−1,k is the finite union of closed intervals. Furthermore, as
t 7→ ∆T (vk−1, t), t 7→ ∆T (vk−1, t) are PL1c

(
T (vk−1)

)
-functions, Lemma 5.3.15 yields that

∆̃T k−1 is a continuous point-to-set mapping and that graph(∆̃T k−1) is the finite union of
closed polygons, closed line segments and points. This also implies that T̃k−1 is the finite
union of closed intervals and points. By induction, we obtain that T̃k+1,k, T̃k are the finite
union of closed intervals and points for each k = 0, ..., n− 1.
Next, we denote b̃∗n : T̃n → R, b̃∗n(t) = 0. Since T̃n = T (vn) is a closed interval, we either
have #b̃∗n = (1, 0, 0) or #b̃∗n = (0, Nbd, 1). Moreover, for k = 0, ..., n − 1, we introduce the
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functions b̃∗k,k+1 : T̃k,k+1 → R and b̃∗k : T̃k → R,

b̃∗k,k+1(t) = βk(t) + max
θ∈[ θk(t),θk(t)]

b̃∗k(θ), b̃∗k(t) = min
∆t∈∆̃Tk(t)

fk(t,∆t),

where fk : graph(∆̃T k) → R, fk(t,∆t) = b̃∗k,k+1(t + ∆t) + δk(t,∆t). By backwards in-
duction, we immediately obtain from [65, Theorem 2.2.8], Lemma 6.4.6, Lemma 5.3.13
and Lemma 5.3.12 that b̃∗k,k+1 ∈ PL

1
c(T̃k,k+1), fk is continuous and b̃∗k ∈ PL

1
c(T̃k) with

#b̃∗k = (Nk
0,0, N

k
0,1, N

k
1 ) for some Nk

0,0, N
k
0,1, N

k
1 ∈ N0. We denote Nk

0 = Nk
0,0 + Nk

0,1 for

k = 0, ..., n, and we denote the number of connected components of T̃k by Ñk.
Let us consider the assertion (i):
Using Lemma 6.4.5, we deduce that T̃k,k+1 consists of at most 2CÑk+1 connected compo-

nents. Moreover, Lemma 6.4.6 yields that b̃∗k,k+1 ∈ PL
1
c(T̃k,k+1) with #b̃∗k,k+1 = (Nk,k+1

0,0 ,

Nk,k+1
0,1 , Nk,k+1

1 ), satisfying

Nk,k+1
0,0 ≤ C + 2CNk+1

0 , Nk,k+1
0,1 ≤ 3C + 6CNk+1

0 + 2.

Using Lemma 5.3.13, we obtain that fk ∈ PL2c
(
graph(∆̃T k)

)
with #fk = (Nfk

0,0, N
fk
0,1, J

fk
0 ,

Ifk0 , Nfk
1 , Jfk1 , Ifk1 ), satisfying

Nfk
0,1 ≤ C + C(3C + 6CNk+1

0 + 2),

Nfk
1 ≤ C + C(4C + 8CNk+1

0 + 2),

Jfk1 ≤ 5C + 8CNk+1
0 + 2,

Now, using C ≥ 2 and Lemma 5.3.12, the above estimates yield

Nk
0,1 ≤ C + C(4C + 6CNk+1

0 ) +
[
C + C(5C + 8CNk+1

0 )
]
·
[
5C + 8CNk+1

0 + 1
]
. (6.22)

Since T̃k,k+1 consists of at most 2CÑk+1 connected components, Lemma 5.3.16 yields Ñk ≤
(2C2)Ñk+1. By induction, since Ñn = 1, we obtain that Ñk ≤ (2C2)n−k. Now, the
continuity of b̃∗k immediately yields Nk

0,0 ≤ Ñk ≤ (2C2)n−k. According to Lemma 5.3.5

it is sufficient to consider the recursion of the Nk
0,1, k = 0, ..., n, in order to establish the

assertion (i). From (6.22), using Nk+1
0 ≤ Nk+1

0,1 + Ñk+1 and C ≥ 2, we obtain

Nk
0,1 ≤ C3

(
8Nk+1

0,1 + 6 + 8(2C2)n−k−1
)2
,

and from Lemma 5.3.18 (ii) we obtain

Nk
0,1 = O

(
C3·2n−k−3

(
8Nbd + 6 + 16C2

)2n−k
)
. (6.23)

From the estimates for the necessary numbers of arithmetic operations in Lemma 6.4.6,
Lemma 5.3.12 and Lemma 5.3.13 it is easily seen that the dominating order is given by
O
(
Nfk

1 (Jfk1 )2
)
. Hence, b̃∗n−1 can be computed from b̃∗n, βn−1, θn−1, θn−1, δn−1 in O(C4)

arithmetic operations, since Nbd = O(1). Using (6.23), we further obtain that b̃∗k can be
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computed from b̃∗k+1, θk, θk, βk, δk in

O
(
C9·2n−k−1−5

(
8Nbd + 6 + 16C2

)3·2n−k−1
)

arithmetic operations for k = 0, ..., n− 2. Using Lemma 5.3.18 (i), we establish that

O(C4) +

n−2∑
k=0

O
(
C9·2n−k−1−5

(
8Nbd + 6 + 16C2

)3·2n−k−1
)

= O
(
C9·2n−1−5

(
8Nbd + 6 + 16C2

)3·2n−1
)
.

Let us now consider the assertion (ii):
From Lemma 6.4.2 it follows that T̃k = T̃k,k+1 = R for all k = 0, ..., n− 1. As b̃∗k,k+1, fk, b̃

∗
k

are continuous, there hold Nk,k+1
0,0 = Nfk

0,0 = Jfk0 = Nk
0,0 = 0. Moreover, Lemma 6.4.6 yields

that
Nk,k+1

0,1 ≤ 3C + 6CNk+1
0,1 + 2.

Using Lemma 5.3.13, we obtain that

Nfk
0,1 ≤ C + C(3C + 6CNk+1

0,1 + 2),

Nfk
1 ≤ C + C(3C + 6CNk+1

0,1 + 2),

Jfk1 ≤ 4C + 6CNk+1
0,1 + 2,

Now, Lemma 5.3.12 yields

Nk
0,1 ≤ C + C(3C + 6CNk+1

0,1 + 2) +
[
C + C(3C + 6CNk+1

0,1 + 2)
]

·
[
4C + 6CNk+1

0,1 + 1
]

(6.24)

According to Lemma 5.3.5 it is sufficient to consider the recursion of the Nk
0,1, k = 0, ..., n,

in order to establish the assertion (ii). Since C ≥ 2 we obtain from (5.53) that

Nk
0,1 ≤ C3

(
6Nk+1

0,1 + 5
)2
,

Using Lemma 5.3.18 (ii) we establish, since Nbd = 0,

Nk
0,1 = O

(
C3·2n−k−352

n−k)
. (6.25)

From the estimates for the necessary numbers of arithmetic operations in Lemma 6.4.6,
Lemma 5.3.6, Lemma 5.3.12 and Lemma 5.3.13 it is easily seen that the dominating order
is given by O

(
Nfk

1 (Jfk1 )2
)
. Hence, b̃∗n−1 can be computed from b̃∗n, βn−1, θn−1, θn−1, δn−1 in

O(C4) arithmetic operations, since Nbd = 0. Using (5.54), we further obtain that b̃∗k can

be computed from b̃∗k+1, θk, θk, βk, δk in

O
(
C9·2n−k−1−553·2

n−k−1)
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arithmetic operations for k = 0, ..., n− 2. Using Lemma 5.3.18 (i), we establish that

O(C4) +

n−2∑
k=0

O
(
C9·2n−k−1−553·2

n−k−1)
= O

(
C9·2n−1−553·2

n−1)
.

Let us now assume that, for each e ∈ E, the partial functions t 7→ θ(e, t), t 7→ θ(e, t) are
monotonically increasing and that, for each v ∈ V , the partial functions t 7→ ∆T (v, t), t 7→
∆T (v, t) satisfy (3.4). (Note, that this assumption holds in the cases (iii), (iv), (v) of Lemma
6.4.7.) Lemma 6.4.5 yields that T̃k,k+1 consists of at most as many connected components

as T̃k+1. Using Lemma 5.3.17 and an inductive argument, we obtain that Ñk = 1, for all
k = 0, ..., n. The continuity of b̃∗k implies that either max{Nk+1

1 , Nk+1
0,1 } > 0 or Nk+1

0,0 > 0.

Lemma 6.4.6 yields that b̃∗k,k+1 ∈ PL
1
c(T̃k,k+1) with #b̃∗k,k+1 = (Nk,k+1

0,0 , Nk,k+1
0,1 , Nk,k+1

1 ),

satisfying Nk,k+1
0,0 ≤ 1 and

Nk,k+1
0,1 ≤ 3C + 12Nk+1

0,1 + 2.

Since b̃∗k,k+1 is continuous and Ñk = 1, we either have #b̃∗k,k+1 = (1, 0, 0) or #b̃∗k,k+1 =

(0, Nk,k+1
0,1 , Nk,k+1

1 ) for each k = 0, ..., n − 1. Using Lemma 5.3.13, we obtain that fk ∈
PL2c

(
graph(∆̃T k)

)
with #fk = (Nfk

0,0, N
fk
0,1, J

fk
0 , Ifk0 , Nfk

1 , Jfk1 , Ifk1 ), satisfying

Nfk
0,1 ≤ C + C(3C + 12Nk+1

0,1 + 2),

Nfk
1 ≤ C + C(3C + 12Nk+1

0,1 + 2),

Jfk1 ≤ 4C + 12Nk+1
0,1 + 2.

Let us now consider the assertion (iii):
Using C ≥ 2, Lemma 5.3.12 yields

Nk
0,1 ≤ C + C(4C + 12Nk+1

0,1 ) +
[
C + C(4C + 12Nk+1

0,1 )
]
·
[
4C + 12Nk+1

0,1 + 1
]
. (6.26)

According to Lemma 5.3.5 it is sufficient to consider the recursion of the Nk
0,1, k = 0, ..., n,

in order to establish the assertion (iii). Since C ≥ 2 we obtain from (6.26) that

Nk
0,1 ≤ C

(
12Nk+1

0,1 + 5C
)2
.

Using Lemma 5.3.18 (ii) we establish

Nk
0,1 = O

(
C2n−k−1

(
12Nbd + 5C

)2n−k
)
. (6.27)

From the estimates for the necessary numbers of arithmetic operations in Lemma 6.4.6,
Lemma 5.3.6, Lemma 5.3.12 and Lemma 5.3.13 it is easily seen that the dominating order
is given by O

(
Nfk

1 (Jfk1 )2
)
. Hence, b̃∗n−1 can be computed from b̃∗n, βn−1, θn−1, θn−1, δn−1 in

O(C4) arithmetic operations, since Nbd = O(1). Using (6.27), we further obtain that b̃∗k
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can be computed from b̃∗k+1, θk, θk, βk, δk in

O
(
C3·2n−k−1−2

(
12Nbd + 5C

)3·2n−k−1
)

arithmetic operations. Using Lemma 5.3.18 (i), we establish that

O(C4) +

n−2∑
k=0

O
(
C3·2n−k−1−2

(
12Nbd + 5C

)3·2n−k−1
)

= O
(
C3·2n−1−2

(
12Nbd + 5C

)3·2n−1
)
.

Let us now consider the assertion (iv):
Lemma 5.3.14 yields

Nk
0,1 ≤ 6

(
3C + 12Nk+1

0,1 + 2
)
+ 4 = 72

(
Nk+1

0,1 +
1

4
C
)
+ 16.

Using Lemma 5.3.18 (iv) we establish

Nn−k
0,1 = O

(
72n−k(Nbd + C)

)
. (6.28)

From the estimates for the necessary numbers of arithmetic operations in Lemma 6.4.6,
Lemma 5.3.6, and Lemma 5.3.14 it is easily seen that the dominating order is given by
O
(
Nn−1,n

0,1 log(Nn−1,n
0,1 )

)
= O

(
C log(C)

)
and O

(
(Nk+1

0,1 )2
)
for k = 0, ..., n − 2. Using (6.28),

we obtain that b̃∗k can be computed from b̃∗k+1, θk, θk, βk, δk in

O
(
722n−2k(Nbd + C)2

)
arithmetic operations for k = 0, ..., n − 2. Using the formula for the geometric series [68,
p.8], we establish that

O
(
C log(C)

)
+ (Nbd + C)2

n−2∑
k=0

O
(
722n−2k

)
= O

(
722n(Nbd + C)2

)
.

Finally, we consider the assertion (v):
In this case we obtain b̃∗k ≡ b̃∗k,k+1 for each k = 0, ..., n− 1, i.e.,

Nk
0,1 ≤ 3C + 12Nk+1

0,1 + 2 = 12(Nk+1
0,1 + C/4) + 2.

Using Lemma 5.3.18 (iv) we establish

Nn−k
0,1 = O

(
12n−k(Nbd + C)

)
. (6.29)

From the estimates for the necessary numbers of arithmetic operations in Lemma 6.4.6,
Lemma 5.3.6, and Lemma 5.3.14 it is easily seen that the dominating order is given by
O
(
Nn−1,n

0,1 log(Nn−1,n
0,1 )

)
= O

(
C log(C)

)
and O

(
(Nk+1

0,1 )2
)
for k = 0, ..., n − 2. Using (6.29),

we obtain that b̃∗k can be computed from b̃∗k+1, θk, θk, βk, δk in

O
(
122n−2k(Nbd + C)2

)
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arithmetic operations for k = 0, ..., n − 2. Using the formula for the geometric series [68,
p.8], we establish that

O
(
C log(C)

)
+ (Nbd + C)2

n−2∑
k=0

O
(
122n−2k

)
= O

(
122n(Nbd + C)2

)
.

�

Theorem 6.4.8 Let v0, v
′ ∈ V be given, let Assumptions 6.3.3 hold, suppose that T (v) is a

closed interval for all v ∈ V and denote Nbd =
∣∣bd(T (v′))∣∣. Suppose further that, for each

t0 ∈ TR(v0), there exists an optimal control sequence u∗(t0) ∈ U(v0, t0) of topological length
n(t0) = |u∗(t0)|, such that

sup
t0∈TR(v0)

n(t0) ≤ N,∣∣∣∣ ∪
t0∈TR(v0)

{
(e1, ..., en(t0)) ∈ E

n(t0) : u∗(t0) =
(
(∆tk, ek)

)
k=1,...,n(t0)

}∣∣∣∣ ≤M,

for some N,M ∈ N. Then the function b∗0 : TR(v0) → R, b∗0(t0) = b∗(v0, t0), satisfies
b∗0 ∈ PLlsc

(
TR(v0)

)
, and denoting #b∗0 = (N0,0, N0,1, N1), there hold:

(i) N0,0 = O
(
M(2C2)N

)
and N0,1, N1 are of order

O
(
M2C3·2N−3

(
8Nbd + 6 + 16C2

)2N)
.

Moreover, b∗0 can be computed in

O
(
MC9·2N−1−5

(
8Nbd + 6 + 16C2

)3·2N−1

+M3C3·2N−3
(
8Nbd + 6 + 16C2

)2N)
arithmetic operations.

(i) If X = V × R, then N0,0 = 0 and N0,1, N1 are of order

O
(
M2C3·2N−352

N

)
.

Moreover, b∗0 can be computed in

O
(
MC9·2N−1−553·2

N−1
+M3C3·2N−352

N

)
arithmetic operations.

(iii) If t→ θ(e, t), t→ θ(e, t) are monotonically increasing for each e ∈ E and the functions
∆T v,∆T v satisfy (3.4) for each v ∈ V , then N0,0 = O(M) and N0,1, N1 are of order

O
(
M2C2N−1

(
12Nbd + 5C

)2N)
.
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Moreover, b∗0 can be computed in

O
(
MC3·2N−1−2

(
12Nbd + 5C

)3·2N−1

+M2C2N−1
(
12Nbd + 5C

)2N)
arithmetic operations.

(iv) If t → θ(e, t), t → θ(e, t) are monotonically increasing for each e ∈ E, the functions
∆T v,∆T v are constant for each v ∈ V and δv is linear for each v ∈ V , then N0,0 =
O(M) and N0,1, N1 are of order

O
(
M272N (Nbd + C)

)
.

Moreover, b∗0 can be computed in

O
(
M722N (Nbd + C)2

)
+M372N (Nbd + C)

)
arithmetic operations.

(v) If t→ θ(e, t), t→ θ(e, t) are monotonically increasing for each e ∈ E, ∆T (v, t) = {0}
and δ(v, t, 0) = 0 for each (v, t) ∈ X, then N0,0 = O(M) and N0,1, N1 are of order

O
(
M212N (Nbd + C)

)
.

Moreover, b∗0 can be computed in

O
(
M122N (Nbd + C)2

)
+M312N (Nbd + C)

)
arithmetic operations.

Proof The results follows in a similar manner as in the proof of Theorem 5.3.21. �
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7. Optimal Paths Without Waiting and
with Fixed Departure Time

In the preceding chapters we have considered the problem of computing the optimal value
function and optimal paths for varying departure times. In this case, the reachable part of
the state space XR had a hybrid structure. In particular, it consisted of pairs {v} × TR(v),
v ∈ V , at which TR(v) ⊂ R generally was a time interval. Hence, XR was innumerable in
general.
In this chapter, we consider the problem of computing (the cost of) an optimal path for
a fixed departure time in a FIFO-network in which waiting is prohibited. In particular,
we assume that ∆T (v, t) = {0} and δ(v, t, 0) = 0 for all (v, t) ∈ X. If we consider the
case of a fixed departure time and assume that only a finite number M ∈ N of paths of
maximal length N ∈ N are admissible, then the reachable part of the state space consists
of a finite number of states, i.e., the reachable part of the state space is discrete. For such
types of state spaces the concept of the time-expanded network has been introduced in a
number of discrete-time time-dependent network problems, see, e.g., [10], [39], [48], [158].
The time-expanded network is constructed from a time-dependent network as follows:
A node of the time-expanded network is a pair (v, t), where v ∈ V is a node of the time-
dependent network and t ∈ R is a (reachable) point in time. The edges of the time-expanded
network are given by all state transitions (v, t)→ (v′, t′) in the original network, i.e., by all
pairs of time-expanded nodes

(
(v, t), (v′, t′)

)
for which there exists an edge e of the time-

dependent network such that v = α(e), v′ = ω(e) and t′ = t + τ(e, t). (Recall that we are
assuming that ∆T (v, t) = {0} for all (v, t) ∈ X.) The cost of traversing this edge of the
time-expanded network is given by β(e, t). If the (reachable part of the) state space of the
time-dependent network is finite, the time-expanded network is a time-independent network
which has the structure of the time-dependent network. The advantage of this approach is
that all theoretical results and algorithms for the time-independent optimal path problem
directly carry over to the formulation of the time-dependent optimal path problem in the
time-expanded network. We will also use this notion in the following sections of this chapter.
If waiting is prohibited everywhere and there are no multiple edges in the network, then
there is a one-to-one correspondence of paths p emanating from some initial state x0 ∈ X
and control sequences u ∈ U(x0). This is not necessarily the case if waiting is allowed at
certain nodes of the network, since {∆t ∈ ∆T (v, t) : t+∆t+ τ(e, t+∆t) = t′} may contain
more than one possible waiting time for a given triple (t, e, t′) ∈ R×E×R. Hence, assuming
that there are no multiple edges in the network, we may use the notion of paths and control
sequences interchangeably in this chapter. Moreover, we may relax Assumption 4.2.3 in
order to guarantee the existence of optimal paths. The necessity of lower semicontinuous
cost functions and continuous transition functions was due to the hybrid structure of the
time-dependent optimal path problem with waiting times. If waiting is forbidden everywhere
in the network then we are considering an essentially discrete problem (even if the time
variable is continuous) which is specified by the topological structure (V,E) of the time-
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dependent network. In this case, given that (4.1) and (4.2) hold, optimal paths exist even
if the network functions are not (lower semi-) continuous.
In Section 7.1, we define two types of constraints which are of particular importance for the
time-dependent optimal path problem in automotive navigation systems. For both types of
constraints we derive pruning criteria in Section 7.2, which lead to a significant decrease of
the number of reachable node-time pairs which must be considered during the computation
of the optimal path. We then carry out a complexity analysis of the forward optimal path
problem with fixed departure time in Section 7.3.

7.1. Problem Setting

In time-independent networks with nonnegative edge costs, optimal paths are always simple.
They can be computed, e.g., by applying the principle of dynamic programming (e.g., by ap-
plying the Bellman-Ford algorithm [23]) or the algorithm of Dijkstra. Time-dependent opti-
mal paths can contain circles, cp. Section 3.3. This is because, in a time-dependent network,
the principle of dynamic programming is only generally valid in the time-expanded network
[10], [48], cp. Proposition 4.3.1. This explains the difficulty in deriving computationally
efficient algorithms for the time-dependent optimal path problem: The time-expanded net-
work is usually very large in the case of a discrete time variable, and the set of reachable
node-time pairs may even be innumerable in the case of a continuous time variable and
fixed departure time [138]. Several pseudo-polynomial algorithms have been developed for
discrete-time time-expanded networks, exploiting the fact that the time-expanded network
is acyclic if all travel times are positive [10], [38], [35].
For some applications, like automotive navigation systems, it might be desirable to exclude
circles in the topological structure of paths. This is on one hand motivated by the smaller
number of feasible paths, which must be considered during search, and which will in almost
all cases suffice for the computation of optimal paths. On the other hand, it is unlikely that
an optimal path which contains a circle will be accepted by the driver.
Recall that the time-dependent optimal path problem can be formulated as a linear pro-
gram in the space of positive Borel measures [142], [112], [133], [158], cp. Section 4.1. It
can be shown that, if all cost functions are measurable, each extremal solution is a sum of
Dirac-measures [112]. By inserting an additional constraint into [112, (LPM)], i.e., by re-
quiring the Borel-measures xe associated with the edges e ∈ E of the network to be bounded
from above by xe(R) ≤ 1, e ∈ E, we conjecture that each feasible extremal solution of the
resulting linear program can be shown to be a simple path. However, the travel times in the
linear programming formulation of the time-dependent optimal path problem are restricted
to be constant functions and few efficient algorithms have been developed to solve the re-
sulting linear program [14], [133, Chapter 6]. Hence, the applicability of this approach is
limited in applications in which the problem size is very large or the assumption of constant
travel times is too restrictive. For this reason, we consider the problem of computing simple
optimal paths in the framework of dynamic programming.
We have seen in Lemma 3.5.4 that certain fastest paths are easy to compute in FIFO-
networks in which Assumption 3.5.3 holds. This motivates the introduction of the second
constraint, which requires any feasible path to remain in some sense close to a fastest path.
Such time constraints may occur in applications such as automotive navigations systems,
in which it may be prohibitive to compute a route which requires more than 110% of the
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optimal travel time. In order to ease the notation, we assume that the fixed departure
time t0 ∈ R always equals t0 = 0. We now formulate the three problem settings which we
consider in this chapter.

Problem 7.1.1 Let G = (V,E, τ ;β, δ) be a time-dependent FIFO-network, let T1(v) = R
for all v ∈ V , let ∆T (v, t) = {0} and δ(v, t, 0) = 0 for all (v, t) ∈ X. Suppose that (V,E) is
strongly connected and there exist B,B◦ ∈ R, B◦ > 0, such that (4.1) and (4.2) hold. Let a
source node v0 ∈ V , the departure time t0 = 0 and a goal node v′ ∈ V be given.

(i) Compute an optimal path from (v0, 0) to v
′ in (G,T1,∆T ).

Let γ : R+
0 → R+

0 denote a monotonically increasing function with γ(0) = 0, and let
Γ : R+

0 → R+
0 , Γ(t) = t + γ(t). Denote by t0(v) the earliest arrival time of a path from

(v0, 0) to v and by tΓ(t0(v′))(v) the latest departure time of a path from v to
(
v′,Γ(t0(v

′))
)

in (G,T1,∆T ), cp. Section 3.5. Let

T2(v) =
[
t0(v),∞

)
∩
(
−∞,min

{
Γ(t0(v)), tΓ(t0(v′))(v)

}]
, ∀v ∈ V.

(ii) Compute an optimal path from (v0, 0) to v
′ in (G,T2,∆T ).

(iii) Compute an optimal simple path from (v0, 0) to v
′ in (G,T2,∆T ).

Observe that (G,T1,∆T ) satisfies Assumption 3.5.3. Hence, Lemma 3.5.4 implies that we
can compute T2 from T1 in O

(
|E|+ |V | log |V |

)
time.

Lemma 7.1.2 Consider Problem 7.1.1 (ii) and let v ∈ V with T2(v) ̸= ∅. Then there exists
a simple fastest path without waiting from (v0, 0) to

(
v, t0(v)

)
.

Proof The assertion follows in a similar manner as in the proof of Lemma 3.5.4, since
Γ(t0(v)) ≥ t0(v) for all v ∈ V . �

In the following, we consider two classes of time constraints, i.e., we choose γ as a linear
function or as a logarithmic function. For the sake of simplicity, we denote

γlin : R+
0 → R+

0 , γlin(t) = t, (7.1)

γlog : R+
0 → R+

0 , γlog(t) = log(1 + t), (7.2)

where log denotes the natural logarithm. Note that the introduction of constants or the
choice of a logarithmic function to a different basis would not result in different orders of
complexity in Section 7.3. Hence, the functions γlin, γlog can be viewed as representants for
a whole class of functions. These classes have been chosen in analogy to the literature [140],
[147], which investigates the effect of the accuracy of a given heuristic on the complexity of
heuristic search (cf. Section 7.3). Yet, this choice is somewhat arbitrary, and results similar
to those of Lemma 7.2.6, Theorem 7.3.1 and Corollary 7.3.9 can also be achieved for other
function classes.
In an unconstrained optimal path problem (without waiting and with fixed departure time),
none of the two constraints (i.e., the simple path constraint and the feasible arrival time
constraint) is imposed. As each constraint has a different impact on the complexity of
computing optimal paths, we will separately discuss the effects of the constraints both in
continuous and in discrete time.
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7.2. Pruning Techniques

In this section we consider the Problems 7.1.1 (i)-(iii). Our first goal is to prune the search
tree of an arbitrary optimal-path algorithm, based on the principle of branch and bound. We
then consider Problem 7.1.1 (iii) and derive a bound on the number of predecessors of the
head (resp., tail) of a path, which are relevant in order to maintain the simple path property.
A key argument in the first part of this section is the bounded length of optimal paths,
which is used to construct a Lipschitz constant for the optimal value function. Under weak
assumptions we have already derived such bounds in Lemma 5.1.9. In practical applications,
there are usually a plurality of more sophisticated techniques for the derivation of an upper
bound of the length of each optimal path from v to v′, such as, e.g., using landmarks [54]:
Suppose that upper bounds b

∗
(v), b∗(v

′) of the forward and reverse optimal value functions
with respect to a landmark v∗ are given for two nodes v, v′ ∈ V . In other words, suppose
that we know that we can reach v∗ from (v, t) with a cost less or equal b

∗
(v) and we can

reach v′ from (v∗, t) with a cost less or equal b∗(v
′) for each t ∈ R. Then, as a consequence

of the triangle inequality, we also obtain that b∗(v, t) ≤ b∗(v
′) + b

∗
(v) =: B, cp. Theorem

5.1.10. Note, that a smaller Lipschitz constant results in a stronger pruning criterion.
As we have pointed out at the beginning of this chapter, the computation of a solution to
the time-dependent optimal path problem with fixed departure time and without waiting
can be carried out in the time-expanded network. Generally, if the edge travel times are
functions of a continuous time variable, most paths from v0 to a node v ∈ V with departure
time t0 result in different arrival times. As the time-expanded network may contain a large
number of node-time-pairs in a small time interval, it is of high practical interest to prune
any node-time-pair (and hence the search tree rooted in this node-time-pair), which cannot
be contained in an optimal path. Although this is particularly important in the case of
a continuous time variable, the following results hold also in the case of a discrete time
variable.
In the next lemma we derive a pruning criterion for Problem 7.1.1 (i) which we then extend
to Problem 7.1.1 (ii) in Lemma 7.2.5. Both results are formulated for forward search
algorithms. Similar results can be proved for backward search algorithms.

Lemma 7.2.1 Consider Problem 7.1.1 (i). Suppose that τ, β are Lipschitz-continuous with
constants Lτ , Lβ > 0 and there exists B ∈ R, B > 0, such that (5.15) holds. Denote

L =
Lβ(1 + Lτ )

N − 1

Lτ
, (7.3)

with

N = |V | − 1 +
|V |B − (|V | − 1)B

B◦
|V |.

If u, u′ ∈ U(v0, 0) with ω(u) = ω(u′), then u′ cannot be extended to an optimal control
sequence if

B
(
(v0, 0), u

′) > B((v0, 0), u)+ L
∣∣∣T ((v0, 0), u)− T ((v0, 0), u′)∣∣∣. (7.4)

Proof Theorem 5.1.10 implies that b∗ is Lipschitz-continuous with the Lipschitz-constant L
given by (7.3). The minimum-cost extension of a control sequence u ∈ U(v0, 0) which leads
to the goal node v′ is the extension by an optimal control sequence u∗ ∈ U

(
v, T

(
(v0, 0), u

))
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v0 v′e0

Figure 7.1.: Topological structure of the example network. The dashed center part of the
graph may be arbitrary, but such that there exists at least one topological path
from v0 to v′. It might be, e.g., a symmetric grid graph of arbitrary size.

with ω(u∗) = v′. Consequently, using the Lipschitz-continuity of b∗, (7.4) implies that

B
(
(v0, 0), u

)
+ b∗

(
v, T

(
(v0, 0), u

))
≤ B

(
(v0, 0), u

)
+ b∗

(
v, T

(
(v0, 0), u

′))
+ L

∣∣∣T ((v0, 0), u)− T ((v0, 0), u′)∣∣∣
< B

(
(v0, 0), u

′)+ b∗
(
v, T

(
(v0, 0), u

′)).
Therefore, u′ cannot be extended to an optimal control sequence. �

Remark 7.2.2 Assuming that B > 0, the upper bound N of the length of an optimal path
from v to v′, can be significantly strengthened. If n is the minimum-hop distance from v
to v′, then we obtain b∗(v, t) ≤ nB which implies that N ≤ nB/B (cp. [107, Lemma 3]).
Here, for v, v′ ∈ V , the minimum hop distance from v to v′ is defined as the minimum
(topological) length of any (topological) path from v to v′ in (V,E).

The following simple example illustrates the use of the path pruning criterion: Consider the
time-dependent network given by the graph in Figure 7.1, with

τ(e0, t) = 0.1 , β(e0, t) = 0.5 , ∀t ∈ R.

Suppose that τ, β are Lipschitz-continuous in the second argument with constants Lτ =
Lβ = 0.15, and β(e, t) ≥ β = 0.5. Consider Problem 7.1.1 (i). We assume that (e.g.,
from a time-independent preprocessing step) we know that b∗(v0, t) ≤ 5 for all t ∈ R.
This implies that the topological length of an optimal path is bounded from above by
N = supt∈R b

∗(v0, t)/β ≤ 10. Consequently, the partial mapping t 7→ b∗(v0, t) is Lipschitz-
continuous with Lipschitz-constant

L = Lβ
(1 + Lτ )

N − 1

Lτ
≤ 3.1 . (7.5)

As the optimal path may contain circles, we must generally consider all copies of the source
node v0 in the time-expanded network. Since b∗(v0, t) ≤ 5 we must eventually consider 11
copies of v0 if the node-time pairs are expanded by some forward search algorithm in an
increasing order of cost. Let u1:n =

(
(0, ek)

)
k=1,...,n

with ek = e0 for all k = 1, ..., n and

151



7. Optimal Paths Without Waiting

let p0:n = Φ
(
(v0, 0), un

)
=
(
(v0, 0), ..., (v0, 0.1 · n)

)
denote the path n times cycling e0. In

addition to (v0, 0) (which may be considered as reached by the path p0 of length 0 emanating
from v0), the node-time pairs (v0, 0.1 · n) are reached by pn, n = 1, ..., 10, respectively. The
travel times and costs associated with pn, n = 0, ..., 10, are

T
(
(v0, 0), un

)
= 0.1 · n , B

(
(v0, 0), un

)
= 0.5 · n .

Now, since

B
(
(v0, 0), un

)
= 0.5 · n > L · 0.1 · n = L

∣∣∣T ((v0, 0), un)− 0
∣∣∣,

Lemma 7.2.1 implies that pn cannot be extended to an optimal path, if n = 1, ..., 10.
Hence, only by considering the source node, the application of the path pruning criterion
has significantly reduced the size of the search space. Instead of 11 possible copies of v0
in the time-expanded network, only (v0, 0) needs to be considered for the computation of
the optimal time-dependent path. Of course, the same procedure can be repeated in any
subsequent node, resulting in a further reduction of the search space. Although this is
only an illustrative example, and the performance of the pruning criterion depends on the
underlying network and the particular application, it shows the potential of the simple test
given by equation (7.4).
In order to extend the result of Lemma 7.2.1 to the time-constrained case we first prove the
following property of the sets of admissible control sequences.

Lemma 7.2.3 Consider Problem 7.1.1 (ii). Then, for all t, t′ ∈ T (v), there holds

t′ ≥ t =⇒ U(v, t′) ⊂ U(v, t),

and if there exists a T ∈ R+ such that

T ≤ T
(
(v, t), u

)
, ∀(v, t) ∈ X,u ∈ U(v, t), (7.6)

then U
(
v, t0(v)

)
is a finite set for each v ∈ V .

Proof According to Lemma 7.1.2, there exists a simple fastest path from v0 to each v ∈ V
with T2(v) ̸= ∅. Let u∗ ∈ U(v0, 0) be such that t0(v) = T

(
(v0, 0), u

∗). Let t, t′ ∈ T (v) with
t′ ≥ t and let u ∈ U(v, t′), n = |u|, vk = ω(uk), k = 1, ..., n. The FIFO-property implies
that

t+ T
(
(v, t), u1:i

)
≤ t′ + T

(
(v, t′), u1:i

)
≤ min

{
Γ
(
t0(vi)

)
, tΓ(t0(v′))

}
, i = 1, ..., n.

If we had t+ T
(
(v, t), u1:i

)
< t0(vi), then the concatenation (u∗, u1:i) of u

∗ and u1:i would
satisfy

T
(
(v0, 0), (u

∗, u1:i)
)
≤ t+ T

(
(v, t), u1:i

)
< t0(vi)

according to the FIFO-property, thereby contradicting the definition of t0(vi), i = 1, ..., n.
Consequently, u ∈ U(v, t).
Now assume that there exists a T ∈ R+ such that (7.6) holds. In a similar manner as in
the proof of Lemma 5.1.9 (i) we obtain that, for any v ∈ V , the length of any admissible
control sequence u ∈ U(v, t) is bounded from above by N =

[
Γ
(
t0(v

′)
)
− t0(v)

]
/T . Hence,

|U(v, t)| ≤ |E|N for all t ∈ T (v). �
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The optimal value function is not necessarily continuous in the case of time-constrained
optimal paths. This is due to the fact that a control sequence u may produce very low
values of the cost function B but become infeasible at a certain time t, due to the constraints
on the arrival times, cp. Remark 5.1.4. In such a case the optimal value function would
jump to the value defined by the next-best feasible path (see Figure 7.2). In particular, we
obtain the following corollary of Lemma 7.2.3:

Corollary 7.2.4 Consider Problem 7.1.1 (ii) and assume that τ, β are continuous. Then
the partial function t 7→ b∗(v, t) is continuous from the left for each v ∈ V . If there exists
a T ∈ R+ such that (7.6) holds, then the set of discontinuities of the partial function
t 7→ b∗(v, t) on TR(v) is finite.

Proof Let t ∈ TR(v). Lemma 7.2.3 implies that

lim
s↑t

b∗(v, s) = lim
s↑t

min
u∈U(v,s):
ω(u)=v′

B
(
(v, s), u

)
≤ min

u∈U(v,t):
ω(u)=v′

B
(
(v, t), u

)
= b∗(v, t),

since U(v, t) ⊂ U(v, s) for t ≥ s and the partial mapping t 7→ B
(
(v, t), u

)
is continuous for

each u ∈ U
(
v, t0(v)

)
.

According to the FIFO-property and the continuity of τ the set T̃ (u) =
{
t ∈ T (v) : u ∈

U(v, t)
}
is a closed connected set for each u ∈ U

(
v, t0(v)

)
. The set of discontinuities of the

partial function t 7→ b∗(v, t) on TR(v) is contained in {max T̃ (u)}u∈U(v,t0(v))
. If there exists

a T ∈ R+ such that (7.6) holds, Lemma 7.2.3 implies that U
(
v, t0(v)

)
is finite, and hence

the set of discontinuities of the partial function t 7→ b∗(v, t) on TR(v) is finite. �

This leads to the following extension of Lemma 7.2.1 to the time-constrained case.

Corollary 7.2.5 Consider Problem 7.1.1 (ii). Assume that τ, β are Lipschitz-continuous
in the second argument with constants Lτ , Lβ > 0, and that there exists a T ∈ R+ such that
(7.6) holds. Let v ∈ V with T2(v) ̸= ∅, let N =

[
Γ
(
t0(v

′)
)
− t0(v)

]
/T , and let L be defined

by (7.3). If u, u′ ∈ U(v0, 0) with ω(u) = ω(u′), then u′ cannot be extended to an optimal
control sequence if T

(
(v0, 0), u

′) ≥ T ((v0, 0), u) and
B
(
(v0, 0), u

′) > B((v0, 0), u)+ L
(
T
(
(v0, 0), u

′)− T ((v0, 0), u)). (7.7)

Proof From Lemma 5.1.9 (i) we obtain that the length of any optimal path is bounded
from above by N =

[
Γ
(
t0(v

′)
)
− t0(v)

]
/T . Proceeding as in the proof of Lemma 5.1.8,

the partial function t 7→ b∗(v, t) is Lipschitz-continuous with the Lipschitz-constant L given
by (7.3) on every time interval T ′ ⊂ T (v) which contains no discontinuity. Let t1, ..., tj ,
j ∈ N, denote the time instants at which the partial function t 7→ b∗(v, t) is discontinuous,
and let bi = limt↓ti b

∗(v, t) − limt↑ti b
∗(v, t), i = 1, ..., j, denote the height of the i-th jump.

According to Corollary 7.2.4, bi > 0 for all i = 1, ..., j. Consequently, if t′ ≥ t, there holds

b∗(v, t′) ≥ b∗(v, t)− L(t′ − t) +
∑

i∈{1,...,j}:
t≤ti<t′

bi ≥ b∗(v, t)− L(t′ − t). (7.8)

The minimum-cost extension of a control sequence u ∈ U(v0, 0) which leads to the goal
node v′ is the extension by an optimal control sequence from v to v′. For u, u′ ∈ U(v0, 0)
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maxT2(v2)

minT2(v2)

t

t+ T
(
(v1, t), u

) t

B
(
(v1, t), u

)

bc

bc

b

b

minT2(v1) maxT2(v1)

minT2(v1) maxT2(v1)

Figure 7.2.: Cost functions and arrival time functions of time-dependent paths, correspond-
ing to three control sequences u with α(u) = v1, ω(u) = v2 and varying de-
parture times t (dashed, chain-dotted, dotted black curves). The gray line in
the lower drawing constitutes the time constraint in v2, the solid black curve in
the upper drawing illustrates the resulting optimal cost function in the time-
constrained network.
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with v = ω(u) = ω(u′) let t = T
(
(v0, 0), u

)
, t′ = T

(
(v0, 0), u

′) and assume that t′ ≥ t. Now,
(7.7) and (7.8) imply that

B
(
(v0, 0), u

)
+ b∗(v, t) ≤ B

(
(v0, 0), u

)
+ b∗(v, t′) + L(t′ − t)

< B
(
(v0, 0), u

′)+ b∗(v, t′).

Therefore, u′ cannot be extended to an optimal control sequence. �

Let us now consider Problem 7.1.1 (iii). In this case, any solution algorithm has to remember
the history of each path during the expansion process. Hence, a solution algorithm must
expand paths rather than nodes. In contrast to the algorithms of Dijkstra or Bellman-Ford,
which only need to remember the direct predecessor of each node, this must be considered
as a severe drawback. The following result shows that the number of predecessors which are
relevant for a further expansion of a path by some forward search algorithm is bounded.

Lemma 7.2.6 Consider Problem 7.1.1 (iii). Suppose that γ is either linear or logarithmic,
and suppose that there exist a constants T , T ∈ R+ such that there hold (7.6) and

T
(
(v, t), u

)
≤ T , ∀(v, t) ∈ X,u ∈ U(v, t). (7.9)

Let n denote the minimum-hop distance from v0 to v′. Then the number N of predecessors
which are relevant for the expansion of any path rooted in v0, is bounded from above by
N ≤ γ

(
nT
)
/T − 1.

Proof As in the proof of Lemma 7.2.3 we see that the length of any feasible path is bounded
from above by Γ

(
t0(v

′)
)
/T . Clearly t0(v′) ≤ nT . Let u ∈ U(v0, 0) be an admissible control

sequence of maximum length K ∈ N, and p =
(
(vk, tk)

)
k=0,...,K

= Φ
(
(v0, 0), u

)
. For each

vj , j = 1, ...,K, the set of admissible arrival times satisfies T (vj) ⊂
[
0,Γ
(
T
(
(v0, 0), u1:j

))]
,

as Γ is monotone increasing and T
(
(v0, 0), u1:j

)
≥ t0(vj) ≥ 0. A necessary condition for the

relevance of vk for the further extension of p0:j , k ≤ j < K, is therefore

T
(
(v0, 0), u1:j

)
+ T ≤ Γ

(
T
(
(v0, 0), u1:k

))
, (7.10)

because vk must still be reachable and T
(
(v0, 0), u1:j+1

)
≥ T

(
(v0, 0), u1:j

)
+ T .

Since T
(
(v0, 0), u1:j

)
= T

(
(v0, 0), u1:k

)
+ T

(
(vk, tk), uk+1:j

)
as well as Γ

(
T
(
(v0, 0), u1:k

))
=

T
(
(v0, 0), u1:k

)
+ γ
(
T
(
(v0, 0), u1:k

))
, (7.10) implies that

T
(
(vk, tk), uk+1:j

)
+ T ≤ γ

(
T
(
(v0, 0), u1:k

))
(7.11)

is necessary for the relevance of vk for the expansion of p0:j . As v′ must always be reachable,
another necessary condition for the further extension of p0:j is given by

T
(
(v0, 0), u1:j

)
+ T ≤ Γ(nT ). (7.12)

Let r = j − i denote the number of relevant predecessors of a path of length j < K, τi =
T
(
(v0, 0), u1:i

)
/i the average edge travel time on p0:i, 1 ≤ i < j and τr = T

(
(vi, ti), ui+1:j

)
/r

the average edge travel time on pi:j . (7.6) and (7.9) imply that T ≤ τi ≤ T and T ≤ τr ≤ T .
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We now consider the following nonlinear optimization problem:

min
(i,r,τi,τr)

− r, subject to (7.13)

−i ≤ 0, (7.14)

−r ≤ 0, (7.15)

T − τi ≤ 0, (7.16)

τi − T ≤ 0, (7.17)

T − τr ≤ 0, (7.18)

τr − T ≤ 0, (7.19)

−γ(τii) + τrr + T ≤ 0, (7.20)

−Γ(T n) + τrr + τii+ T ≤ 0. (7.21)

The constraints (7.14), (7.15) ensure that only paths of nonnegative length are considered.
(7.16)-(7.19) denote the edge travel time constraints and (7.20), (7.21) coincide with (7.11),
(7.12). If x∗ = (i∗, r∗, τ∗i , τ

∗
r ) is an optimal solution of (7.13)-(7.21), then the number of

relevant predecessors is bounded from above by r∗. Let f : R4 → R denote the objective
function of (7.13), and let q : R4 → R8, with the components ql, l = 1, ..., 8, be defined by
(7.14)-(7.21). According to [37, Theorem 3.3.5], a necessary condition for the optimality of
x∗ is the existence of µl ∈ R, µl ≤ 0, l = 1, ..., 8, such that

−∇f(x∗) +
8∑
l=1

µl∇ql(x∗) = 0, (7.22)

µlql(x
∗) = 0, l = 1, ..., 8, (7.23)

if the set Ω = {x ∈ R4 : q(x) ≤ 0} satisfies the constraint qualification [37, Definition 3.3.1]
in x∗. This is guaranteed by the existence of δx ∈ R4 with

⟨∇ql(x∗), δx⟩ < 0, ∀l ∈ {1, ..., 8} with ql(x∗) = 0. (7.24)

according to [37, Theorem 3.3.21].
If γ ≡ γlin, an analysis of (7.22) and (7.23) yields the admissible solutions µ1 = µ2 = µ3 =
µ4 = µ6 = 0, µ5 = −(nT − T )/T 2, µ7 = µ8 = −1/2T , i∗ = nT /τ∗i , r∗ = (nT − T )/T ,
τ∗r = T and τ∗i ∈ [T , T ] arbitrary. Obviously, the choice of τ∗i does not affect the value
of the objective function. We therefore choose τ∗i = T and i∗ = n as candidates for
an optimal solution. The constraint qualification is satisfied in the thereby defined point
x∗ = (i∗, r∗, τ∗i , τ

∗
r ), as δx = (0,−3n/T ,−1, nT /(nT − T )) satisfies (7.24). Hence the

number of relevant predecessors is bounded from above by r∗ = γlin(nT )/T − 1, if γ ≡ γlin.
If γ ≡ γlog, an analysis of (7.22) and (7.23) yields the (unique) admissible solution µ1 = µ2 =
µ3 = µ4 = µ6 = 0, µ5 = [log(1+nT )/T −1]/T , µ7 = −(1+nT )/[T (2+nT )], µ8 = −1/[T (2+
nT )], i∗ = n, r∗ = log(1 + nT )/T − 1, τ∗i = T , τ∗r = T . The constraint qualification is
satisfied in the thereby defined point x∗ = (i∗, r∗, τ∗i , τ

∗
r ), as δx = (0,−2n2T /T ,−1, 1)

satisfies (7.24). Hence the number of relevant predecessors is bounded from above by r∗ =
γlog(nT )/T − 1, if γ ≡ γlog. �

Remark 7.2.7 Note that the upper bound on the number of predecessors given by Lemma
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7.2.6 is valid for any feasible path in the time-dependent network, given a source node and a
goal node of minimum-hop distance n. In the same manner in which this bound was derived
in the proof of Lemma 7.2.6, replacing n by k, a bound for any feasible path of length k ∈ N
can be derived.

7.3. Complexity Analysis

We have derived two pruning techniques in the last section, which allow a significant reduc-
tion of the cost of computing time-dependent optimal paths. Nevertheless, the computation
of such paths is still in general NP-hard. In this section, we prove some complexity results
for the Problems 7.1.1 (ii) and (iii).
There has been considerable effort in bounding the number of nodes expanded by heuristic
search algorithms, such as the A* algorithm [80], in terms of the accuracy of the heuristic.
Assuming that the graph is a tree, it has been shown that the number of nodes expanded by
the A* algorithm is polynomial in the length of the optimal solution (in the worst case), if
the accuracy of the heuristic is constant [146] or logarithmic [140]. By contrast, the number
of nodes expanded by the A* algorithm is exponential (in the worst case) if the accuracy of
the heuristic is linear [147]. Although the setting considered in these works does not carry
over to the time-dependent case, a similar result holds if the time variable is discrete and
time constraints of varying order are considered.
As we have argued in Section 7.2, the constraint of allowing only simple paths for expansion
leads to a different notion of expansion. In contrast to the usual optimal path algorithms
(such as Dijkstra or Bellman-Ford), it is necessary to expand paths rather than nodes. As
the number of simple paths grows exponentially with the number of feasible nodes, we can-
not expect a polynomial bound on the number of paths. Hence, as long as we consider a
discrete time variable, we only consider Problem 7.1.1 (ii) and we do not require paths to
be simple.
The following results are formulated for a continuous time variable and a discrete-valued
travel time function. The set of reachable nodes in the time-expanded network is then a
discrete set.

Theorem 7.3.1 Consider Problem 7.1.1 (ii) and assume that τ(E × R) ⊂ {τ , ..., τ} with
τ , τ ∈ N. Let n denote the minimum-hop distance from v0 to v′. If (V,E) is a symmetric
directed r-ary tree, then the number N of reachable nodes in the time-expanded network is

N = O
(
n3rnτ/(2τ)

)
, if γ ≡ γlin, (7.25)

N = O
(
n1+1/(2τ) log(n)r1/(2τ)

)
, if γ ≡ γlog. (7.26)

Proof The fastest path subtree S of (V,E) is a directed tree rooted in v0. As any admissible
path must visit v0 at an admissible time t ∈ T2(v0) = {0}, the only edge emanating from
v0 must be an edge on a fastest path from v0 to v′. Due to the FIFO-property, the fastest
path from v0 to v′ is simple and therefore uniquely determined. We denote the nodes which
are passed by this path by v0, v1, ..., vn−1, vn, with vn = v′. Let Sk, k = 1, ..., n, denote
the subtree of S rooted in vk and containing (except for vk) only nodes not passed by the
fastest path from v0 to v′ (see Figure 7.3). The number of reachable nodes in the time-
expanded network is given by the set of all node-time pairs in the time-expansions of the
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7. Optimal Paths Without Waiting

subtrees Sk, k = 1, ..., n. As γ is monotonically increasing, the maximum number of feasible
copies of vk is given by ⌊γ(kτ)⌋. The maximum depth of Sk is therefore bounded from
above by ⌊γ(kτ)/(2τ)⌋, because vk must be reachable at an admissible arrival time from
any node v ∈ Sk. Moreover, if we consider a node vkj at depth j ∈ N in Sk (see Figure
7.3), then T2(vkj) contains no more than γ(kτ)−2jτ reachable and admissible arrival times.
The number Nk of reachable and admissible node-time pairs in the time-expansion of Sk is
therefore bounded from above by

Nk ≤ γ(kτ) + (r − 1)

⌊γ(kτ)/(2τ)⌋∑
j=1

rj−1(γ(kτ)− 2jτ). (7.27)

From our reasoning above we have N ≤
∑n

k=1Nk.
If γ ≡ γlin, then (7.27) becomes

Nk ≤ kτ + (r − 1)

⌊(kτ)/(2τ)⌋∑
j=1

rj−1(kτ − 2jτ) = O
(
k2rkτ/(2τ)

)
,

which results in (7.25).
If γ ≡ γlog, using the formula for the geometric series, (7.27) becomes

Nk ≤ log(1 + kτ) + (r − 1)

⌊log(1+kτ)/(2τ)⌋∑
j=1

rj−1(log(1 + kτ)− 2jτ)

≤ log(1 + kτ)

1 + (r − 1)

⌊log(1+kτ)/(2τ)⌋−1∑
j=0

rj


= log(1 + kτ)

(
1 + (r − 1)

r⌊log(1+kτ)/(2τ)⌋ − 1

r − 1

)
= O

(
log(k)(kr)1/(2τ)

)
,

which results in (7.26). �

Remark 7.3.2 In the situation of Theorem 7.3.1, since the set of reachable states is finite,
an optimal path exists even if (4.1) and (4.2) do not hold.

A major difficulty when adapting this methodology to general graphs is the fact that there
exists more than one simple solution path. In a grid graph, which may be considered
as an appropriate model for the road network of an urban area, neither the complexity
results concerning the accuracy of a heuristic, nor the results derived in Theorem 7.3.1
apply. Considering a continuous variable, independent of the simple path constraint, even
the following negative result holds.

Theorem 7.3.3 Consider Problem 7.1.1 (ii) or Problem 7.1.1 (iii), suppose that there
exists a T > 0 such that (7.6) holds and that (V,E) is a grid graph. Let n denote the
minimum-hop distance from v0 to v′. If γ ̸≡ 0, then in the worst case there exist Ω(2n/2)
optimal paths from v0 to v′ and Ω(n2n/2) reachable node-time pairs.
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v0

v1

v2

vn

v11

v12

e1

e2

(e3, ..., en)

· · ·

· · ·

· · · · · ·

· · · · · ·

S1

Figure 7.3.: Labeling of the symmetric directed r-ary tree used in the proof of Theorem
7.3.1. The edge sequence (e1, ..., en) constitutes the topological structure of the
optimal path.

Proof In order to localize a node in the grid graph, we use a coordinate system and choose
v0 as the origin. The coordinates (x, y) ∈ Z2 of any node v ∈ V in the grid graph are
then given by the (directed) number of hops x in the horizontal direction and the (directed)
number of hops y in the vertical direction, which are required to reach v from v0. Without
loss of generality, we assume that v′ is located at (x′, y′) ∈ Z2, with 0 ≤ x′ ≤ y′, n = x′+y′.
We will now consider the set V� of nodes v with coordinates (x, y) ∈ Z2, 0 ≤ x ≤ x′,
0 ≤ y ≤ y′, i.e., those nodes which are contained in minimum-hop paths from v0 to v′.
As t0(v) ≥ T > 0 and γ ̸≡ 0, T2(v) contains an infinite number of points in time for all
v ∈ V�, v ̸= v0. We may therefore choose the edge travel times τ in such a way that each
minimum-hop path from v0 to v ∈ V� is admissible, and such that the node-time pairs
passed by all minimum-hop path are distinct. Furthermore, we may choose the edge cost
function β in such a way that β(e, t) = β for some β ∈ R+, all t ∈ T2(α(e)) and all e ∈ E
with e = (v1, v2) for some v1, v2 ∈ V�, and β(e, t) > β otherwise. With this choice, each
minimum-hop path from v0 to v′ is admissible and optimal. Each of these paths can be
represented by a sequence of x′ horizontal and y′ vertical hops. Hence the number of all
minimum-hop paths from v0 to v

′ is given by the number of permutations of a set containing
x′ indistinguishable elements of one type (horizontal hops) and y′ indistinguishable elements
of another type (vertical hops). Therefore, there are

(x′ + y′)!

x′!y′!
(7.28)

minimum-hop paths. Choosing, without loss of generality, x′ = y′ = n/2, we obtain Ω(2n/2)
optimal paths from v to v′. Since each such path is of topological length n, we obtain
Ω(n2n/2) reachable node-time pairs. �
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Remark 7.3.4 Note, that the exponential number of reachable node-time pairs results from
the fact that the terminal node-time pair of each time-dependent path possibly defines a new
reachable node-time pair. In this case, it might be beneficial to introduce the simple path
constraint, as the number of simple paths of length l in a grid graph is of the order µl,
2.62002 ≤ µ ≤ 2.67919 [122], whereas the number of paths of length l is of the order 4l.
Although this may lead to a considerable decrease in the number of reachable node-time
pairs, exponential worst-case complexity can only be avoided by choosing γ ≡ 0.

Despite the negative result given by Theorem 7.3.3, the number of reachable node-time
pairs in a time-dependent grid graph remains polynomial in the minimum-hop distance of
the source and goal node if the time variable is discrete. In order to establish this result we
need the following Lemma:

Lemma 7.3.5 Let (V,E) be a grid graph. The number of nodes v ∈ V of minimum-hop
distance k from a given node v0 is bounded from above by 4k.

Proof Associating the same coordinate system with the grid graph as in the proof of
Theorem 7.3.3, the number of nodes of distance k is given by the number of solutions
(i, j) ∈ Z2 of |i|+ |j| = k. These solutions form a π/4-rotated square in Z2, with each edge
of the square containing k+1 grid points. As each corner of the square is contained in two
edges, there are 4(k + 1)− 4 = 4k nodes of minimum-hop distance k from v0. �

We now derive an upper bound of the number of reachable node-time pairs which implies
the desired complexity result for discrete-time time-expanded grid graphs.

Theorem 7.3.6 Consider Problem 7.1.1 (iii) and assume that τ(E × R) = {τ , ..., τ} with
τ , τ ∈ N. Let n denote the minimum-hop distance from v0 to v′. Suppose that the number
of nodes of minimum-hop distance k from v0 is bounded by ν(k). Then the number N of
reachable nodes in the time-expanded network is bounded from above by

N ≤
⌊Γ(nτ)/τ⌋∑

k=1

ν(k)γ(kτ). (7.29)

Proof Let vk be a node of minimum-hop distance k from the source node v0, and let
tk = t0(vk). Clearly, there hold kτ ≤ tk ≤ kτ , and t0(v

′) ≤ nτ . Relaxing the time
constraint which ensures that v′ can be reached at an admissible time from each t ∈ T2(vk),
{vk} × T2(vk) contains at most ⌊γ(tk)⌋ reachable node-time pairs and tk is bounded from
above by t = Γ(nτ). An upper bound for the number of reachable node-time pairs of
minimum-hop distance at most K from v0 is therefore given by the following optimization
problem:

max
(t1,...,tK)

K∑
k=1

ν(k)γ(tk), subject to (7.30)

τ ≤ t1 ≤ τ , (7.31)

τ ≤ tk+1 − tk ≤ τ , k = 1, ...,K − 1, (7.32)

tk ≤ t, k = 1, ...,K. (7.33)
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The constraints (7.31) and (7.32) take the range of τ into account. Obviously, all tk,
k = 1, ...,K, are bounded from above by Kτ , hence

∑K
k=1 ν(k)γ(tk) is bounded from above,

and if there exists a solution, there also exists an optimal solution with a finite value NK

of the objective function (7.30). As we have required tk ≤ t for all k = 1, ...,K, a solution
can only exist if K ≤ t/τ . Hence, the number of reachable node-time pairs is bounded by

N ≤ max
K∈{1,...,⌊t/τ⌋}

NK . (7.34)

Since γ is monotone increasing, for any K ∈ {1, ..., ⌊t/τ⌋},
∑K

k=1 ν(k)γ(tk) is maximized if
the variables tk are maximized simultaneously, i.e., if for some k∗ ∈ {1, ...,K}

tk = t− (K − k)τ , k∗ + 1 ≤ k ≤ K, (7.35)

tk∗ = t− (K − k∗ + 1)τ − (k∗ − 1)τ , (7.36)

tk = kτ, 1 ≤ k ≤ k∗ − 1. (7.37)

From (7.35)-(7.37) we see that tk ≤ kτ for all k = 1, ...,K. Consequently, because γ is
monotone increasing, we obtain γ(tk) ≤ γ(kτ) and

K∑
k=1

ν(k)γ(tk) ≤
K∑
k=1

ν(k)γ(kτ).

Finally, as K ≤ t/τ = Γ(nτ)/τ , we obtain (7.29). �

Remark 7.3.7 In the proof of Theorem 7.3.6, the optimization problem (7.30)-(7.32) de-
fines an upper bound for the number of reachable node-time pairs which only accounts for
the distance to the source node v0. Considering, in addition to (7.31)-(7.33), the constraint
that v′ must be reachable at an admissible arrival time from any admissible node-time pair,
a more sophisticated and more accurate upper bound for the number of reachable node-time
pairs can be defined as follows: Associate with any v ∈ V the minimum-hop distance i from
v0 to v and the minimum-hop distance j from v to v′. (Note, that we must assume that the
number of predecessors of minimum-hop distance j from v′ is bounded by ν(j).) Then, for
any K ∈ {1, ..., ⌊Γ(nτ)/τ⌋}, solve the following maximization problem:

max
νij ,tij

∑
i+j≤K, i,j≥0

νijγ(tij), subject to (7.38)

iτ ≤ tij ≤ iτ , i+ j ≤ K, i, j ≥ 0, (7.39)

Γ(nτ)− jτ ≤ tij ≤ Γ(nτ)− jτ , i+ j ≤ K, i, j ≥ 0, (7.40)

νij ≤ ν(i), i+ j ≤ K, i, j ≥ 0, (7.41)

νij ≤ ν(j), i+ j ≤ K, i, j ≥ 0. (7.42)

In this formulation, (7.39) and (7.40) take into account the time constraints at v, whereas
(7.41) and (7.42) take into account the topological structure of the time-dependent network.
The maximum value of the objective function in (7.38) defines an upper bound for the
maximum number of reachable node-time pairs. As long as neither γ nor ν are exponential
functions, this procedure only yields a more accurate upper bound, but does not improve the
result of Theorem 7.3.6 in the order of complexity. For this reason, we have not further
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followed this approach.

Remark 7.3.8 Note, that the application of Theorem 7.3.6 to a symmetrical r-ary tree
results in different orders of complexity than Theorem 7.3.1, i.e., N = O

(
n2r2nτ/τ

)
if γ ≡

γlin and N = O
(
n1+1/τ log(n)rnτ/τ+1/τ

)
if γ ≡ γlog. The fact, that N grows exponentially

with n even if γ ≡ γlog is due to the weaker structural assumptions in Theorem 7.3.6.

Corollary 7.3.9 Consider Problem 7.1.1 (iii) and assume that τ(E × R) = {τ , ..., τ} with
τ , τ ∈ N. Let n denote the minimum-hop distance from v0 to v′. If (V,E) is a grid graph,
then the number N of reachable node-time pairs in the time-expanded network is

N = O(n3), if γ ≡ γlin, (7.43)

N = O(n2 log(n)), if γ ≡ γlog. (7.44)

Proof The assertion follows directly from Lemma 7.3.5 and Theorem 7.3.6, since for γ ≡
γlin and γ ≡ γlog we have γ(kτ) = O(γ(k)) and Γ(nτ/τ) = O(n). �
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8. An Exact Method for the Computation
of Optimal Paths

In this chapter, we introduce a solution technique which, similar to the previously published
decreasing order of time (DOT) algorithms [38], [47, Chapter 6], computes the forward
optimal value function and the corresponding optimal paths by scanning backwards in
time. By using a different interpretation of chronological scan algorithms, i.e., by extending
Dijkstra’s idea of sorting cost values to sorting cost functions, we generalize the concept of
DOTmethods to an heuristic search algorithm. As in large graphs, such as the road network,
heuristic search is often the only possibility to obtain acceptable query times in real-time
applications [132], [107], this generalization must be considered as a great improvement
with respect to the algorithms published in the past [138], [143], [144], [38], [47], [49].
In Section 8.1 we introduce the algorithm and prove its correctness. The progression of the
algorithm is illustrated with a simple numerical example in Section 8.2. A more detailed
study of the algorithm, including a comparison with an approximative method (cf. Chapter
9) is then carried out in Appendix A.

8.1. The DOT* Algorithm

In the remainder of this chapter we suppose that a source node v0 ∈ V , an earliest departure
time t at v0, a goal node v′ ∈ V and a latest arrival time t at v′ are given. For simplicity, we
also assume that T (v) = [ t, t ] for all v ∈ V . Note, that results similar to the ones derived
in the following hold for any compact state space.
In view of reachability, the time constraints at v0 and v′ may result in even stronger time
constraints at intermediate nodes if τ ̸= 0 (cf. the definition of TR(v) for v ∈ V in Definition
3.5.1). If Assumption 3.5.3 holds, then TR(v) can be computed in polynomial time for all
v ∈ V (cp. Corollary 3.5.7), and hence the question whether there exists a feasible finite
path from v0 to v′ can be answered in polynomial time. Note that, by restricting all com-
putations to the reachable points of the state space, any knowledge about {TR(v)}v∈V can
be used to reduce the computational overhead. In the DOT*-algorithm (Algorithm 8.1.1),
we take this into account by considering lower bounds of the travel times. We will get back
to the idea more rigorously in Chapter 9.
In the following, we present a new decision rule which determines a node v̂ and a time
interval Î for which the optimal value function b∗ can be determined in one iteration of
a chronological scan algorithm. This decision rule can be understood as a generalization
of the decision rule in Dijkstra’s shortest path algorithm [56] or in the A* algorithm [80]
to time-dependent networks. Indeed, the DOT* algorithm simplifies to Dijkstra’s shortest
path algorithm if t = t, τ = 0, δ = 0, β is constant and nonnegative and no heuristic is
used. Recall that in each iteration of (a backwards search implementation of) Dijkstra’s
algorithm, the open node with the minimum cost value is identified and declared as closed.
Then, each of its non-closed predecessors is declared as open and its cost value is updated
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according to the dynamic programming equation. The proceeding of the A* algorithm is
similar, with the exception of choosing the node v̂ with the minimum sum of its actual cost
value and a lower bound of the cost to reach v̂ from the source node (in backwards search).
The lower bound is also referred to as the heuristic utilized by the A* algorithm. The sum
of the actual cost value and the heuristic underestimates the true cost of the optimal path
from v0 to v′ constrained to pass through v̂, and thus, roughly speaking, prefers nodes close
to the optimal path. It has been shown in [80], that the more accurate the utilized heuristic
is, the less nodes are expanded by the A* algorithm.
Hence, in each iteration of both algorithms, the optimal cost value of one node is identified.
In a time-dependent network, we cannot expect to be able to compute the optimal value
function of one node in one iteration. However, the computation of one cost value in each
iteration is only sufficient in discrete-time time-dependent networks [38], and decision rules
for continuous-time time-dependent networks have only been developed for the piecewise
linear case so far [47, Chapter 6].
Similar to [38], [47, Chapter 6], we use the fact that it is only possible to travel forward in
time in order to determine an appropriate node and an appropriate time interval for which
the optimal value function can be computed. The main idea behind this solution strategy
is to avoid computational overhead: Label-correcting methods, such as the algorithms pro-
posed in [138],[47, Chapter 7], repeatedly evaluate the dynamic programming equation at
all nodes and all times. In comparison to [47, Chapter 6], besides the fact that our method
is also applicable if the network functions are not piecewise linear, the main advantage of
our algorithm is the incorporation of heuristic search.
Considering fastest paths with a fixed departure time in a discrete-time context, the A*
algorithm has been adapted to time-dependent networks in [39]. In the following, we gener-
alize this idea to the computation of the optimal value function in a continuous-time time-
dependent network. In the next definition we recall some properties of (time-independent)
heuristics [50] which we will use in the following. Note that, in contrast to [50], we formulate
the properties of a heuristic for backwards search.

Definition 8.1.1 Let G = (V,E; γ) be a (time-independent) network in which γ : E → R+,
and let c∗ : V × V → R+

0 be such that, for all v1, v2 ∈ V , c∗(v1, v2) denotes the cost of an
optimal path from v1 to v2 in G. Suppose that a source node v0 ∈ V has been fixed.
A heuristic π : V → R is called admissible, if π(v) ≤ c∗(v0, v) for all v ∈ V . A heuristic
π : V → R is called consistent, if π(v2) ≤ π(v1) + c∗(v1, v2) for all v1, v2 ∈ V .

We use the split network to iteratively compute the optimal value function at nodes of
increasing distance from the goal node v′. As in Section 3.2, we denote the nodes which
result from the splitting of v ∈ V by vw and vnw. Furthermore, we use lower bounds
πt, πb : V → R of the cost and travel time to reach the goal node, as well as lower bounds
π̃t, π̃b : V × V → R of the cost and travel time of any path between a pair of nodes.
In particular, we suppose that for all v ∈ V , we have already computed a lower bound πt(v)
of the optimal travel time function t0 7→ t∗(v0,nw, t0) with respect to the goal node vnw ∈ V
and a lower bound πb(v) of the optimal value function t0 7→ b∗(v0,nw, t0) with respect to the
goal node vnw ∈ V .
Moreover, we suppose that for all v1, v2 ∈ V , v1 ̸= v2, we have computed a lower bound
π̃t(v1, v2) of the optimal travel time function t 7→ t∗(v1,nw, t) with respect to the goal node
v2,nw and a lower bound π̃b(v1, v2) of the optimal value function t 7→ b∗(v1,nw, t) with respect
to the goal node v2,nw. For v1 = v2 = v, we suppose that we have computed π̃t(v, v) and
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π̃b(v, v) as lower bounds of the travel time and cost, respectively, of any circle containing
vnw.
Such lower bounds π·, π̃· (the subscript · stands for t or b in the following) can be computed,
e.g., by solving optimal path problems in the static networks Gτ = (V,E; τ) and Gβ =
(V,E;β), weighted by

τ(e) = min
t∈[ t,t ]

[
τ(e, t) + min

∆t∈∆T (ω(e),t+τ(e,t))
∆t
]
, ∀e ∈ E,

β(e) = min
t∈[ t,t ]

[
β(e, t) + min

∆t∈∆T (ω(e),t+τ(e,t))
δ
(
ω(e), t+ τ(e, t),∆t

)]
, ∀e ∈ E,

respectively. Note, that it is not necessary to solve an all-to-all optimal path problem in
order to compute the lower bounds π̃·: They can be determined using an admissible and
consistent heuristic π· : V → R+

0 , which underestimates the time and cost, respectively, to
reach any v ∈ V from one (previously determined) source node v0 ∈ V . If such a heuristic
π· is known, the lower bound can be set to π̃·(v1, v2) = π·(v2)−π·(v1). Since π· is admissible,
π̃·(v0, v1) = π·(v1)−π·(v0) = π·(v1) underestimates the cost to reach v1 from v0 and since π·
is consistent, π̃·(v1, v2) = π·(v2)−π·(v1) underestimates the cost to reach v2 from v1. Using
landmarks and the triangle inequality (see, e.g., [54] for details), the lower bounds can be
improved by defining them as the maximum over a set of heuristics.
In [160], the idea of the A* algorithm has been generalized to multiobjective search. This is
by some means similar to the solution strategy in the DOT* algorithm, in which we compute
the optimal value function at each v ∈ V in decreasing order of time and by minimizing the
cost of the respective control sequences. In particular, the decisions in the DOT* algorithm
are based on maximal time and minimal cost.
We proceed by describing the notation used in the DOT* algorithm: Cost values are denoted
by the function b̂ : (V ∪ E) × [ t, t ] → R+

0 ∪ {∞}, where b̂(v, t) denotes the best cost

value computed so far for reaching v′ from (v, t). Furthermore, b̂(e, t) denotes the best
cost value computed so far for reaching v′ from (α(e)nw, t), constrained to depart on e at
time t. (Here, α(e)nw denotes the virtual node associated with α(e), at which waiting is
prohibited, cf. Section 3.2.) The corresponding control policies are denoted by the functions
µnw : V × [ t, t ]→ E ∪{0,∞} and µw : V × [ t, t ]→ R+

0 ∪{∞}. Here, µw(v, t) ∈ R+
0 denotes

the waiting time at (v, t), and µnw(v, t) ∈ E denotes the edge to be traversed first on
the path to v′, when leaving v at time t. The cost functions and the control policies are
initialized with the value ∞ at v ∈ V , v ̸= v′, and with the value 0 at v′ (termination).
As we have mentioned before, in each iteration of the DOT* algorithm, the optimal value
function at a certain node and for a certain time interval is computed. (See Figure 8.1 for
the illustration of one iteration of the algorithm.) In order to distinguish which points in
time are relevant for the current iteration, we use the following notation: By t+(v), v ∈ V ,
we denote the latest point in time for which b̂(v, ·) has not yet been computed. t+(v) is
initialized with the value ∞, and is assigned the value −∞ as soon as the computation of
b̂(v, ·) has been completed. Similarly, for e ∈ E, t+(e) denotes the latest departure time on
e ∈ E which has not yet been considered in the computation of the cost function b̂(α(e), ·).
t+(e) is initialized with the value −∞, increased the first time a path from α(e) to v′ has
been determined, then decreased whenever the cost function b̂(α(e), ·) is computed for some
time interval, and finally assigned the value −∞ as soon as the computation of b̂(α(e), ·)
has been completed.
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In each iteration of the DOT* algorithm, one node v̂ ∈ V is chosen in such a way that there
exists an edge e∗ ∈ E+(v̂) with

e∗ ∈ E∗ = argmax
e∈E

(
t+(e)− πt(α(e))

)
,

b̂(e∗, t̂ ) = min
e∈E∗

(
b̂
(
e, t+(e)

)
+ πb(α(e))

)
.

At this node v̂, and for times t ≤ t̂ = t+(e∗), cost values are to be computed in the current
iteration. By t−, we denote the supremum of all points in time, for which we cannot
guarantee the optimality of the cost values which are being determined at v̂. The time
interval for which (the candidate for) the optimal value function is being computed at v̂ is
denoted by Î := (t−, t̂ ] ∩ [ t, t ]. (Note, that we may possibly have t− = −∞.) Hence, there
are two values to be chosen in each iteration of the algorithm: the choice of v̂ (cf. lines
14-16) and the choice of Î (cf. lines 17-18).
In order to determine an appropriate value of t−, we use the following observation: Since
π̃t, π̃b are lower bounds of the travel time and cost, respectively, at least one path departing
on some e+ ∈ E+(v̂) at time t is optimal, if

min
e+∈E+(v̂)

b̂(e+, t) ≤ min
e∈E,θ≥t

(
b∗
(
α(e)nw, θ + π̃t(v̂, α(e))

)
+ π̃b(v̂, α(e))

)
. (8.1)

In the DOT* algorithm, a similar criterion is used, which is only based on the cost functions
determined by the algorithm (cf. line 17). Its validity is proved in Theorem 8.1.8 and
illustrated in Figure 8.2.
Different approaches can be applied to solve an equation of the form (8.1), cp. line 17.
One possibility is to sort the edge cost functions, i.e., to sort the values {b̂(e, t)}e∈E and{
b̂
(
e, t + π̃t(v̂, α(e)

)
+ π̃b(v̂, α(e))

}
e∈E for all t ∈ [ t, t ]. However, a sorting of the latter

cost functions is generally costly, since the functions depend on the iteration node. Yet, if
π̃t, π̃b are constant or have been defined using a small number of landmarks, a small number
of sorted lists (each list sorted with respect to one particular landmark) can be used to
determine the right-hand side in (8.1). Another possibility is the organization of the edge
cost functions in a priority queue. This approach has led to a very efficient implementation
of Dijkstra’s algorithm using Fibonacci heap [69]. We do not want to go into the details of
potential sorting procedures here, and leave this as a topic for future work. Nevertheless,
we explicitly note that it is never necessary to resort all edge cost functions for all times:
It is always sufficient to use the sorting of a small number of sorted edges to compute the
left-hand side of (8.1). In order to compute the right-hand side of (8.1), it is sufficient to
remove a small number of edges for a given time interval (cf. line 25), and to add a small
number of edges for a given time interval (cf. line 23). In any case, only those points in
time t have to be considered, for which t ≤ t+(e), cf. lines 16, 17, 19.
Alternatively, depending on the space-time trade-off chosen in the particular application, it
is also possible to compute both the left-hand side and the right-hand side in (8.1) whenever
line 17 is executed.
Once the expansion node, the expansion time interval and the optimal edge policy at v̂nw
have been determined, the optimal waiting policy must be computed (cf. line 20) by solving
a parametric optimization problem of the form (4.19). Recall that this task is equivalent
to the determination of the optimal edge policy in the piecewise linear case, cf. Remark
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Figure 8.1.: Information flow in one iteration of the DOT* algorithm: The cost functions
associated with the edges e1, e2 are used for the determination of the cost func-
tion at v̂nw, which is again decreased by the application of the optimal waiting
policy at v̂w. Finally, this cost function is used for the computation of the cost
functions associated with e3, e4.

4.3.2. At the end of each iteration, the edges in E−(v̂) are updated using the information
just computed at v̂ (cf. lines 22-23). Finally, t+(v̂) and {t+(e)}e∈E+(v̂) are decreased to t−

(cf. lines 24-25), since the computation of b̂(v̂, ·) has been completed on (t−, t ] ∩ [ t, t ] (cf.
Lemma 8.1.3 and Lemma 8.1.5).

Remark 8.1.2 If the condition t+(v0) > −∞ is omitted in the while-loop (cf. line 13),
then the DOT* algorithm becomes an all-to-one solution method, i.e., the optimal value
function with respect to the goal node v′ and the given time constraints is computed at all
nodes.

In the following, we derive some properties of the algorithm and prove its correctness. For
this purpose, we assume that there exists a πt ≥ 0, such that the lower bounds πt, π̃t satisfy

πt(v2)− πt(v1) ≤ π̃t(v1, v2)− πt, ∀v1, v2 ∈ V. (8.2)

Note, that (8.2) may be understood as a sharpened consistency assumption, which ensures
that the nodes v on the fastest path from v0 to v′ are expanded in increasing distance from
the goal node v′. This is reasonable, since we need to know (at least the relevant part of)
the optimal value function of the successors of v̂ when v̂ is expanded. The first two lemmas
follow easily from the lines of the algorithm.

Lemma 8.1.3 (Decreasing order of time) Suppose that πt > 0, let v̂ ∈ V and denote
by Îi(v̂) the time interval for which b̂(v̂, ·) is computed the i-th time v̂ is chosen for expansion
in line 16 of the DOT* algorithm. Then max Î1(v̂) = tR(v̂), and for all i ≥ 2 there holds
max Îi(v̂) = inf Îi−1(v̂).

Proof Clearly, the assertion holds for v′ in the initialization (cf. lines 1-4). It then follows
by induction that max Î1(v̂) = tR(v̂), cp. lines 9, 22, and max Îi(v̂) = inf Îi−1(v̂) for each
v̂ ∈ V , since t+(v̂) is only decreased throughout the course of the algorithm, cp. the proof
of Theorem 8.1.6. �
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Algorithm 8.1.1 DOT* algorithm

Require: time-dependent network G = (V,E, τ ;β, δ), source node v0, goal node v
′,

time interval [ t, t ], waiting time constraints ∆T
Ensure: optimal value function b̂, optimal waiting policy µw, optimal edge policy µnw

% Initialize v′

1: b̂(v′, t)← 0, for all t ∈ [ t, t ]
2: µnw(v

′, t)← 0, for all t ∈ [ t, t ]
3: µw(v

′, t)← 0, for all t ∈ [ t, t ]
4: t+(v′)← −∞

% Initialize v ∈ V \ {v′}
5: b̂(v, t)←∞, for all v ∈ V \ {v′}, t ∈ [ t, t ]
6: µnw(v, t)←∞, for all v ∈ V \ {v′}, t ∈ [ t, t ]
7: µw(v, t)←∞, for all v ∈ V \ {v′}, t ∈ [ t, t ]
8: t+(v)←∞, for all v ∈ V \ {v′}

% Initialize e ∈ E−(v′)
9: t+(e)← min

{
t+(α(e)),max{t ∈ [ t, t ] : t+ τ(e, t) ≤ t}

}
, for all e ∈ E−(v′)

10: b̂(e, t)← β(e, t), for all e ∈ E−(v′), t ∈ [ t+ πt(α(e)), t
+(e)]

% Initialize e ∈ E \ E−(v′)
11: t+(e)← −∞, for all e ∈ E \ E−(v′)
12: b̂(e, t)←∞, for all e ∈ E \ E−(v′), t ∈ [ t, t ]
13: while t+(v0) > −∞ and maxe∈E t

+(e) ̸= −∞ do
% Choose node for expansion

14: E∗ ← argmaxe∈E
[
t+(e)− πt(α(e))

]
15: Choose e∗ ∈ argmine∈E∗

(
b̂
(
e, t+(e)

)
+ πb(α(e))

)
16: (v̂, t̂ )← (α(e∗), t+(e∗))

% Determine time interval for expansion

17: t− ← sup
{
t ∈ [ t+ πt(v̂), t̂ ] : mine+∈E+(v̂) b̂(e

+, t)

> minθ∈[t,t̂ ]mine∈E:t+(e)≥θ+π̃t(v̂,α(e))

(
b̂
(
e, θ + π̃t(v̂, α(e))

)
+ π̃b(v̂, α(e))

)}
18: Î ← (t−, t̂ ] ∩ [ t+ πt(v̂), t ]

% Expansion
19: Choose µnw(v̂, t) ∈ argmine+∈E+(v̂) b̂(e

+, t), for all t ∈ Î
20: µw(v̂, t)← argmin∆t∈∆T (v̂,t)

{
δ(v̂, t,∆t) + b̂(µnw(v̂, t+∆t), t+∆t )

}
, for all t ∈ Î

21: b̂(v̂, t)← δ(v̂, t, µw(v̂, t)) + b̂
(
µnw(v̂, t+ µw(v̂, t)), t+ µw(v̂, t)

)
, for all t ∈ Î

% Prepare edges terminating in v̂ for future expansion
22: t+(e)← min

{
t+(α(e)),max{t ∈ [ t, t ] : t+ τ(e, t) ≤ t̂ }

}
,

for all e ∈ E−(v̂) for which t+(e) = −∞
23: b̂(e, t)← b̂(v̂, t+ τ(e, t)) + β(e, t),

for all e ∈ E−(v̂), t ∈ [ t+ πt(α(e)), t
+(e)] with t+ τ(e, t) ∈ Î

% Update expanded time intervals
24: t+(v̂)← t−

25: t+(e)← min{t+(e), t+(v̂)}, for all e ∈ E+(v̂)
26: end while

170



8.1. The DOT* Algorithm

Remark 8.1.4 Let (v̂j , t̂j) denote the values of v̂ and t̂ which are determined in line 16
of the j-th iteration of the DOT* algorithm. If πt is admissible and consistent, then the
sequence

(
t̂j − πt(v̂j)

)
j=1,2,...

is monotone decreasing and satisfies t̂j − πt(v̂j) ≥ t+(v0).

Lemma 8.1.5 (Label setting) Suppose that πt > 0. Then the DOT* algorithm is a label-
setting algorithm, in the sense that once a value b̂(v, t), µw(v, t), µnw(v, t) has been computed
for (v, t) ∈ V × [ t, t ], or a value b̂(e, t) has been computed for (e, t) ∈ E × [ t, t ], it is never
changed again.

Proof The result is a direct consequence of Lemma 8.1.3. �

Theorem 8.1.6 (Termination) Suppose that πt > 0. Then the DOT* algorithm termi-
nates after at most ∑

v∈V \{v′}

max

{
0, 1 +

⌊
( t− π̃t(v, v′))− ( t+ πt(v))

πt

⌋}
(8.3)

iterations.

Proof From the choice of (v̂, t̂) in lines 14-16 and (8.2) we see that there exists a e+ ∈
E+(v̂), such that

t̂ = t+(e+) ≥ t+(e)− πt(α(e)) + πt(v̂)

≥ t+(e)− π̃t(v̂, α(e)) + πt, ∀e ∈ E.

This implies that there is no e ∈ E, such that t+(e)− π̃t(v̂, α(e)) ≥ θ for θ > t̂− πt. Hence,

inf
θ∈[t,t̂ ]

min
e∈E,

t+(e)≥θ+π̃t(v̂,α(e))

b̂
(
e, θ + π̃t(v̂, α(e))

)
+ π̃b(v̂, α(e)) =∞

for all t > t̂ − πt. Consequently, t− ≤ t̂ − πt (cf. line 17). Moreover, since t+(e) ≤ t (cf.
lines 9, 11, 22, 25), there holds t− ≤ min{ t, t̂ } − πt. As t+(v̂) ≥ maxe∈E+(v̂) t

+(e) = t̂ ≤ t
(cf. lines 8, 24 and recall that t− ≤ maxe∈E t

+(e)), we have t− ≤ min{ t, t+(v̂)} − πt (cf.
line 17), and min{ t, t+(v̂)} is decreased at least by πt (cf. line 24).
Since, for each v ∈ V , π̃t(v, v

′) is a lower bound for the travel time from v to v′, the latest
departure time tR(v) at v satisfies tR(v) ≤ t− π̃t(v, v′). Moreover, the choice of t− and Î in
lines 17, 18, implies that the optimal value function at v is only computed for t ≥ t+πt(v).
Since, in each iteration, an interval of the form (t−, t̂ ]∩ [ t, t ] is processed, there is possibly
one extra iteration for the left endpoint of [ t+ πt(v), t− π̃t(v, v′) ]. Therefore, according to
Lemma 8.1.5, a node v ∈ V can be iterated at most 1 +

⌊(
(t− π̃t(v, v′))− (t+ πt(v))

)
/πt
⌋

times. Summing over all nodes in the network and taking into account that the computation
at v′ is completed in the initialization, we obtain (8.3). �

Remark 8.1.7 The result of Theorem 8.1.6 suggests that optimal paths can be computed in
polynomial time. This is certainly not true in general, since the complexity of the algorithm
highly depends on the complexity of summing, sorting and concatenating the cost functions
[111], cp. Section 5.3 for the piecewise linear case.

171



8. An Exact Method

v̂

v

v′

v0

b̂(e+1 , t)
b̂(e+2 , t)

b̂(e, θ)π̃t(v̂, v), π̃b(v̂, v)

πt(v̂), πb(v̂)

πt(v), πb(v)

Figure 8.2.: Determination of v̂ (cf. lines 14-16) and t− (cf. line 17) in the DOT* algorithm,
using the lower bounds πt, π̃t, πb, π̃b. All optimal value functions along the solid
lines have been computed, the paths along the dashed lines have not yet been
expanded.

Theorem 8.1.8 (Correctness) Once the DOT* algorithm has terminated, b∗(v0, t0) =
b̂(v0, t0) for all t0 ∈ [ t, t ]. Moreover, for all t0 ∈ [ t, t ] for which b̂(v0, t0) ̸=∞, the optimal
path p∗ =

(
(vk, tk)

)
k=0,1,...

from (v0, t0) to v
′ and the corresponding optimal control sequence

u∗ =
(
(∆tk, ek)

)
k=1,2,...

can be constructed recursively by

(∆tk, ek) =
(
µw(vk−1, tk−1), µnw

(
vk−1, tk−1 + µw(vk−1, tk−1)

) )
, k = 1, 2, ... , (8.4)

(vk, tk) = φ
(
(vk−1, tk−1), (∆tk, ek)

)
, k = 1, 2, ... , (8.5)

terminating as soon as vk = v′ for some k ∈ N.

Proof Since µw(v, t) ∈ ∆T (v, t) for all (v, t) ∈ V × [ t, t ] (cf. line 20), and b̂(e, t) ̸=∞ only
if t ∈ [ t, t ] and t+ τ(e, t) ∈ [ t, t ] (cf. lines 9, 10, 22, 23), we have(

µnw(v, t+ µw(v, t)), µw(v, t)
)
∈ U(v, t), ∀(v, t) ∈ X with b̂(v, t) ̸=∞.

Moreover, if b̂(v, t) is computed, then the cost value in the successor state has been computed
in a previous iteration of the DOT* algorithm, because b̂(e, t) is only computed if b̂

(
ω(e), t+

τ(e, t)
)
is computed (cf. lines 1, 10 and 21, 23). Consequently, the recursion given by (8.5)

can only terminate in the goal node v′. From line 21, it follows that b̂(v, t) is the cost
value produced by the application of

(
µnw(v, t+µw(v, t)), µw(v, t)

)
in (v, t). Since Theorem

4.2.4 implies that infinite paths generate infinite cost, (8.5) must define a finite path, and
hence the recursion terminates in v′. Consequently, the proof is complete, if we show that
b∗(v, t) = b̂(v, t) for all (v, t) ∈ X for which t > t+(v). We now prove this assertion by
induction over the number of iterations.
Obviously, the assertion is true for (v, t) ∈ {v′} × [ t, t ] in the initialization phase of the
DOT* algorithm. Now, suppose that in some iteration v̂ ∈ V has been chosen, and that
b̂(v̂, t) is being computed for t ∈ Î. We show that b̂(v̂, t) satisfies the Bellman equation
(4.14). We split v̂ into the nodes v̂w, v̂nw (see Section 4.2) and set b̂(v̂nw, t) = b̂

(
µnw(v̂, t), t

)
and b̂(v̂w, t) = b̂

(
v̂nw, t + µw(v̂, t)

)
+ δ
(
v̂, t, µw(v̂, t)

)
. As a consequence of Lemma 8.1.3

and the induction hypothesis, and in view of line 21 and equations (4.19) and (4.20), it is
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sufficient to show that

b̂(v̂nw, t) = min
(0,e)∈U(v̂nw,t)

[
b∗
(
ω(e), t+ τ(e, t)

)
+ β(e, t)

]
, (8.6)

b̂(v̂w, t) = min
∆t∈∆T (v,t)

[
b̂(v̂nw, t+∆t) + δ(v̂, t,∆t)

]
, (8.7)

for all t ∈ Î. From line 20 it is obvious that (8.7) holds if (8.6) holds. As a consequence
of the induction hypothesis and the definition of b̂(e, t) (cf. lines 10, 23), (8.6) would be
equivalent to

b̂(v̂nw, t) = min
(0,e)∈U(v̂nw,t)

b̂(e, t), (8.8)

if b̂(e, t) had already been computed for all (e, t) ∈ E+(v̂)× Î, for which (0, e) ∈ U(v̂nw, t).
We now show that (8.6) and (8.8) are equivalent although we might have b̂(e, t) = ∞ for
some (e, t) ∈ E+(v̂)× Î.
Let us assume the contrary: Denote ṽ0 = v̂nw and suppose that there is a t̃0 ∈ Î and an
optimal control sequence in the split network u =

(
(∆tk, ek)

)
k=1,...,n

∈ U(ṽ0, t̃0) such that

B
(
(ṽ0, t̃0), u

)
< min

e+∈E+(ṽ0):t+(e+)≥t̃0
b̂(e+, t̃0).

Let p =
(
(ṽk, t̃k)

)
k=0,...,n

denote the path (in the split network) generated by u at (ṽ0, t̃0)

and let uj:n =
(
(∆tk, ek)

)
k=j,...,n

for j = 1, ..., n. Let further J ∈ {1, ..., n} such that (ṽJ , t̃J)

is the first state on p at which waiting is allowed and for which b̂(ṽJ , t̃J) has already been
computed. As a consequence of the induction hypothesis and the principle of optimality,
we have

B
(
(ṽJ , t̃J), uJ+1:n

)
= b̂(ṽJ , t̃J) = b∗(ṽJ , t̃J).

Hence, b̂(eJ , t̃J−1+∆tJ) has already been computed (cf. line 23), which implies that J ≥ 2.
(If J = 1, then ∆t1 = 0 since ṽ0 = v̂nw, and we would have

b̂(e1, t̃0) = B
(
(ṽ0, t̃0), u

)
< min

e+∈E+(v̂),t+(e+)≥t̃0
b̂(e+, t̃0)

for e1 ∈ E+(v̂) and t+(e1) ≥ t̃0. This is a contradiction.) Consequently, t+(eJ) ≥ t̃J−1+∆tJ .
Note also that t̃0 ≥ t + πt(v̂). Now, since π̃t(v̂, α(eJ)) is a lower bound for the travel time
from v̂nw = ṽ0 to ṽJ−1, (8.2) implies (cp. Figure 8.2)

t+ πt(α(eJ)) ≤ t̃0 + πt(α(eJ))− πt(v̂) ≤ t̃0 + π̃t(v̂, α(eJ))

≤ t̃J−1 +∆tJ . (8.9)

Moreover, as π̃b(v̂, α(eJ)) is a lower bound for the travel cost from v̂ to ṽJ−1, we establish
(cp. Figure 8.2)

min
e+∈E+(v̂),t+(e+)≥t̃0

b̂(e+, t̃0) > B
(
(ṽ0, t̃0), u

)
≥ B

(
(ṽJ−1, t̃J−1), uJ :n

)
+ π̃b(v̂, α(eJ))

= b̂(eJ , t̃J−1 +∆tJ) + π̃b(v̂, α(eJ)). (8.10)
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v′

e2
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e3

(a) Topology of the time-dependent
network.

t

b̂

1 2 3 4

1

2

3

4

5

6

b̂(e3, ·)
b̂(e1, ·)

b̂(e2, ·)

b

bc

(b) Plot of the edge cost functions deter-
mined by the DOT* algorithm.

Figure 8.3.: Topology and edge cost functions of the example network.

Now, (8.9) and (8.10) contradict the choice of t− (cf. line 17). �

8.2. A numerical example

In this section, we briefly illustrate the progression of the DOT* algorithm. For this purpose
we consider the time-dependent network G = (V,E, τ ;β, δ) with V,E as shown in Figure
8.3(a), with travel times

τ(e1, t) =

{
3− 2t, 0 ≤ t ≤ 1
1, 1 < t ≤ 4

, τ(e2, t) = 1, τ(e3, t) = 1,

travel cost

β(e1, t) = 1 + (t− 2)2, β(e2, t) =

{
7/2, 0 ≤ t ≤ 1
9/2, 1 < t ≤ 4

, β(e3, t) = 3/2,

and waiting cost

δ(v0, t,∆t) = ∆t, δ(v, t,∆t) = ∆t2, δ(v′, t) = 0.

We consider [ t, t ] = [0, 4] and the waiting time constraints ∆T (v0, t) = [0, 4−t], ∆T (v, t) =
[0, 1], ∆T (v′, t) = {0}. Note that the time-dependent network G is neither continuous, nor
FIFO, nor piecewise linear.
We first set πt(v) = πb(v) = 0 for all v ∈ V , and π̃t(v1, v2) = π̃b(v1, v2) = 1 for all v1, v2 ∈ V .
With this choice we obtain a Dijkstra-like behavior of the DOT* algorithm:
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In the initialization phase, we set b̂(v′, t) = 0 for all t ∈ [0, 4] and t+(v′) = −∞. Further,
we set b̂(e1, t) = 1 + (t − 2)2 for 0 ≤ t ≤ 3, t+(e1) = 3, and b̂(e3, t) = 3/2 for 0 ≤ t ≤ 3,
t+(e3) = 3.
Iteration 1:
Since b̂(e1, 3) > b̂(e3, 3), we clearly have t̂ = 3, v̂ = v. Now

π̃b(v, v0) + inf
θ∈[t+π̃t(v,v0),t̂ ]

b̂(e1, θ) =

{
2, 0 ≤ t ≤ 1
2 + (t− 1)2, 1 < t ≤ 2

,

π̃b(v, v) + inf
θ∈[t+π̃t(v,v),t̂ ]

b̂(e3, θ) = 5/2, 0 ≤ t ≤ 2,

and b̂(e3, t) = 3/2, which results in t− = −∞. Hence, µnw(v, t) = e3 for 0 ≤ t ≤ 3 and

µw(v, t) = argmin
∆t∈[0,min{3−t,1}]

∆t2 + 3/2 = 0.

(Note, that we have to fulfill 0 ≤ ∆t ≤ min{3 − t, 1}, since b̂(e3, t) = ∞ for t > 3.) This
results in b̂(v, t) = 3/2 for 0 ≤ t ≤ 3, t+(v) = −∞, t+(e3) = −∞, and finally, we set
t+(e2) = 2 and

b̂(e2, t) =

{
5, 0 ≤ t ≤ 1
6, 1 < t ≤ 2

.

Iteration 2:
Again, we have t̂ = 3, which results in v̂ = v0. Since

π̃b(v0, v0) + inf
θ∈[t+π̃t(v0,v0),t̂ ]

b̂(e1, θ) =

{
2, 0 ≤ t ≤ 1
2 + (t− 1)2, 1 < t ≤ 2

,

π̃b(v0, v0) + inf
θ∈[t+π̃t(v0,v0),t̂ ]

b̂(e2, θ) =

{
6, t = 0
7, 0 < t ≤ 1

,

and b̂(e1, t) = 1 + (t − 2)2, we obtain t− = 1. Hence, we set µnw(v0, t) = e1 for 1 < t ≤ 3.
We now compute

µw(v0, t) = argmin
∆t∈[0,3−t]

∆t+ 1 + (t+∆t− 2)2 =

{
3/2− t, 1 < t < 3/2
0, 3/2 ≤ t ≤ 3

,

b̂(v0, t) =

{
11/4− t, 1 < t < 3/2
1 + (t− 2)2, 3/2 < t ≤ 3

,

and t+(v0) = 1, t+(e1) = 1, t+(e2) = 1.

Iteration 3:
It is obvious that v̂ = v0, and for t ∈ [0, 1] we compute µnw(v0, t) = e1, µw(v0, t) = 3/2− t
and b̂(v0, t) = 11/4− t. Since we now set t+(v0) = t− = −∞, the algorithm terminates.
Note, that b̂(v0, ·) cannot be computed for all t ∈ [0, 3] in iteration 2. Suppose that there
was an additional edge e4 ∼ (v0, v0) with τ(e4, t) = 1 and β(e4, t) = 1. In this case, it would
be necessary to compute b̂(e4, ·) before computing b̂(v0, ·) for t ∈ [0, 1] in order to guarantee
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the correctness of the algorithm.
Let us now use more informed heuristics, which leads to a A*-like behavior of the DOT*
algorithm. For this purpose, we assume that π̃t(v1, v2) = 1 for all v1, v2 ∈ V and π̃b(v1, v2) =
1 for all v1, v2 ∈ V except for π̃b(v0, v) = π̃b(v, v0) = 7/2, π̃b(v0, v0) = 4. Moreover, we
assume that πt(v) = πb(v) = 1/2 for v ∈ V , v ̸= v0, and πt(v0) = πb(v0) = 0. The
initialization phase remains unchanged.
Iteration 1:
As t+(e1)− 0 > t+(e3)− 1/2, we have t̂ = 3, v̂ = v0. Since

π̃b(v0, v0) + inf
θ∈[t+π̃t(v0,v0),t̂ ]

b̂(e1, θ) =

{
5, 0 ≤ t ≤ 1
5 + (t− 1)2, 1 < t ≤ 2

,

π̃b(v0, v) + inf
θ∈[t+π̃t(v0,v),t̂ ]

b̂(e3, θ) = 5, 0 ≤ t ≤ 2

and b̂(e1, t) ≤ 5 for all 0 ≤ t ≤ 3 we obtain t− = −∞ and the algorithm terminates after one
iteration. The optimal value function at v0 and the corresponding optimal paths coincide
in both runs of the algorithm.
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9. An Approximative Method for the
Computation of Optimal Paths

In the preceding chapter, we have introduced an exact solution technique for the time-
dependent forward optimal path problem which allows the incorporation of heuristic search
and which reduces the computational overhead with respect to the methods published in
the past. Since the computational complexity of determining an exact solution may still be
infeasible in many practical applications, we now present an algorithm which approximates
the forward optimal value function and the corresponding optimal paths. Assuming that the
network satisfies the FIFO-property, we generate two initial solutions in polynomial time,
which we use to iteratively approximate the optimal solution. We show that all iterates
fulfill a certain monotonicity property, which provides an explicit estimate of the accuracy
of the found solutions. Furthermore, we prove that the algorithm converges under mild
assumptions after a finite number of iterations.
In Section 9.1, we introduce the algorithm and prove its properties. We illustrate its pro-
gression with a simple numerical example in Section 9.2. A more detailed study of the
algorithm, including a comparison with an exact method (cf. Chapter 8) is then carried
out in Appendix A.

9.1. The TD-APX Algorithm

In this section, we assume that an earliest departure time t at v0 and a latest arrival time
t at v′ are given, that (in addition to Assumption 4.2.3) Assumption 3.5.3 holds and that
τ > 0. Moreover, we assume that a norm ∥ ·∥ for piecewise continuous real-valued functions
f : D → R with compact domain D ⊂ R is given, such as, e.g.,

∥f∥ = sup
t∈D
|f(t)|+

∫
D
|f(t)| dt,

We now present a time-dependent approximative algorithm (TD-APX, Algorithm 9.1.1)
which solves the problem of computing the optimal value function and the optimal paths in
a time-dependent network with compact state space. The method is based on the principles
of branch and bound and policy iteration. After computing a lower bound and an upper
bound for the optimal value function, we use branch and bound to reduce the set of states
which are possibly contained in an optimal path. Since the set of states in the time-
dependent network is innumerable in general, we only branch by splitting the state space
into

{
{v}× [ t, t ]

}
for v ∈ V . In order to tighten the bounds associated with each node, we

iterate the control policy at a given node by solving the associated dynamic programming
equations (4.13), (4.14). This corresponds to the principle of policy iteration, a well known
solution technique in the field of Markov decision processes.
The TD-APX algorithm proceeds in three steps. In the first step, fastest paths from (v0, t )
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to each v ∈ V and from each v ∈ V to (v′, t) are computed. The respective travel times
are used to determine the set of times TR(v) ⊂ [ t, t ] for which a node v ∈ V is reachable,
cp. Lemma 3.5.6. The set of all reachable nodes is denoted by VR, the reachable part of
the state space is denoted by XR =

∪
v∈VR

{
{v} × TR(v)

}
⊂ X, cp. Definition 3.5.1, and

the set of all control sequences which are admissible in (v, t) ∈ XR is denoted by UR(v, t).
Moreover, the control sequences corresponding to (simple) fastest paths (without waiting)
from (v0, t ) to v and from v to (v′, t ) are stored as initial iterates and used to define upper

bounds b0(v), b
′
(v) of the optimal value function, respectively. The admissibility of this

approach is proved in Lemma 9.1.5.
In the second step, we compute optimal paths from v0 to each v ∈ V and from each v ∈ V
to v′ in the time-independent network G = (VR, ER;β, δ) which is defined by

ER = {e ∈ E : α(e) ∈ VR \ {v′}, ω(e) ∈ VR},
β(e) = min

t∈TR(α(e))
β(e, t), e ∈ ER,

δ(v) = min
t∈TR(v)

[
min

∆t∈∆T (v,t)
δ(v, t,∆t)

]
, v ∈ VR.

The corresponding control sequences are used to define lower bounds b0(v), b
′(v) of the

optimal value function. Since there may exist circles with negative costs in G, we do not
use these control sequences as initial iterates. However, we use the upper bounds b0(v), b

′
(v)

and the lower bounds b0(v), b
′(v) in order to eliminate all nodes from the considered node

set VR which cannot be contained in an optimal path (cf. lines 12, 26, cp. Remark 9.1.2).
In the third step, we denote by i(v) the number of times a node v ∈ VR has been iterated.
Moreover, we denote by t 7→ bi(v)|i(v)(v, t) and t 7→ bi(v)|i(v)(v, t) the upper bounds and lower
bounds of the partial function t 7→ b∗(v, t) which have been computed in the i(v)-th iteration
of a node v ∈ VR. Finally, we denote by t 7→ bi(v)+1|i(v)(v, t) and t 7→ bi(v)+1|i(v)(v, t) the
current upper bounds and lower bounds of the partial function t 7→ b∗(vnw, t). (Here, vnw
denotes the copy of v in the split network, at which waiting is prohibited, cp. Section 4.2.)
The upper and lower bounds of the cost functions are then iterated in order to approximate
the optimal value function. One iteration consists of the update of the functions at vnw (and
the corresponding optimal edge policies), the computation of the potential improvement
π(v) (which is the ∥ · ∥-change of the cost functions at vnw since the last computation of
the optimal waiting policy), the choice of an appropriate candidate node v̂ ∈ VR for the
computation of a new waiting policy (cf. line 21 and Remark 9.1.3) and the computation
of the new cost and waiting policy at v̂. The iteration loop is terminated as soon as the
optimal value function at v0 is approximated within a given accuracy ϵ ≥ 0 in ∥ · ∥.
We further partition the nodes under consideration VR into three sets. VF ⊂ VR denotes
the set of all nodes vF for which we have already finished the computation of the partial
function t 7→ b∗(vF , t). VO ⊂ VR consists of all nodes vO for which an improvement of the
upper and lower bounds is possible by means of computing a new waiting policy. We may
understands these nodes as labeled “open”, the set of remaining nodes VC = VR \ (VF ∪VO)
may be understood as labeled “closed”.
In order to simplify the notation of the algorithm we cite the following update equations,
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cp. (4.20) and (4.19):

bi(v)+1|i(v)(v, t)← min
(0,e)∈UR(vnw,t)

[
bi(ω(e))|i(ω(e))

(
ω(e), t+ τ(e, t)

)
+ β(e, t)

]
, (9.1)

µ
nw,i(v)+1

(v, t)← argmin
(0,e)∈UR(vnw,t)

[
bi(ω(e))|i(ω(e))

(
ω(e), t+ τ(e, t)

)
+ β(e, t)

]
, (9.2)

bi(v)+1|i(v)(v, t)← min
(0,e)∈UR(vnw,t)

[
bi(ω(e))|i(ω(e))

(
ω(e), t+ τ(e, t)

)
+ β(e, t)

]
, (9.3)

µnw,i(v)+1(v, t)← argmin
(0,e)∈UR(vnw,t)

[
bi(ω(e))|i(ω(e))

(
ω(e), t+ τ(e, t)

)
+ β(e, t)

]
, (9.4)

bi(v)|i(v)(v, t)← min
∆t∈∆T (v,t):
t+∆t∈TR(v)

[
bi(v)|i(v)−1(v, t+∆t) + δ(v, t,∆t)

]
, (9.5)

µ
w,i(v)

(v, t)← argmin
∆t∈∆T (v,t):
t+∆t∈TR(v)

[
bi(v)|i(v)−1(v, t+∆t) + δ(v, t,∆t)

]
, (9.6)

bi(v)|i(v)(v, t)← min
∆t∈∆T (v,t):
t+∆t∈TR(v)

[
bi(v)|i(v)−1(v, t+∆t) + δ(v, t,∆t)

]
, (9.7)

µw,i(v)(v, t)← argmin
∆t∈∆T (v,t):
t+∆t∈TR(v)

[
bi(v)|i(v)−1(v, t+∆t) + δ(v, t,∆t)

]
. (9.8)

(Note that Assumption 4.2.3 implies that the minima in the above equations are attained.)
The resulting procedure is summarized in Algorithm 6.1.

Remark 9.1.1 The TD-APX algorithm can be aborted if it is determined in line 4 that
TR(v0) = ∅. In this case we have TR(v) = ∅ for all v ∈ V and the goal node is not reachable
from the source node, cf. Lemma 3.5.6. Note that this also implies that VO = ∅.

Remark 9.1.2 If a node vR is removed from VR in line 12 or 26, then there exists no
optimal path from v0 to v′ which passes through vR. By construction of the upper and lower
bounds b0(v), b

′
(v), b0(v), b

′(v), Theorem 4.4.2 yields that

b0(v) + b′(v) ≤ b∗(v, t) + b∗(v, t) ≤ b0(v) + b
′
(v), ∀t ∈ TR(v).

As a consequence of the principle of optimality, there also holds

b∗(v0, t0) ≤ sup
t∈TR(v)

[
b∗(v, t) + b∗(v, t)

]
, ∀t0 ∈ TR(v0).

Consequently, vR cannot be contained in an optimal path from v0 to v′ if

b0(vR) + b′(vR) > min
v∈VR

[
b0(v) + b

′
(v)
]
.

Remark 9.1.3 The manner in which the iteration node is chosen in line 21 is not the only
way to achieve the properties of the algorithm which we prove below. It constitutes a trade-off
between the (heuristic) probability a node v is contained in an optimal path (i.e., b0(v)+b

′(v)
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Algorithm 9.1.1 TD-APX algorithm

Require: time-dependent network G = (V,E, τ ;β, δ), source node v0, goal node v
′,

time interval [ t, t ], waiting time constraints ∆T , desired accuracy ϵ
Ensure: approximation of the optimal value function b,

corresponding waiting policy µw, corresponding edge policy µnw

% STEP 1:
1: Compute tR(v) and the corresponding optimal control sequences u(v0, v) for all v ∈ V ,

such that the path generated by u(v0, v) is simple and without waiting.
2: Compute tR(v) and the corresponding optimal control sequences u(v, v′) for all v ∈ V ,

such that the path generated by u(v, v′) is simple and without waiting.
3: VR ← {v ∈ V : tR(v) ≤ tR(v)}
4: TR(v) = [ tR(v), tR(v)] for all v ∈ VR
5: b0|−1(v, t)← B

(
(v, t), u(v, v′)

)
− δ(v, t, 0) for all (v, t) ∈ XR

6: b0|0(v, t)← B
(
(v, t), u(v, v′)

)
for all (v, t) ∈ XR

7: (µnw,0, µw,0)(v, t) = u1(v, v
′) for all (v, t) ∈ XR

8: b0(v)← supt0∈TR(v0):u(v0,v)∈UR(v0,t0) B
(
(v0, t0), u(v0, v)

)
for all v ∈ VR

9: b
′
(v)← supt∈TR(v) B

(
(v, t), u(v, v′)

)
for all v ∈ VR

% STEP 2:
10: Compute in G the optimal cost b0(v) from v0 to v for all v ∈ VR
11: Compute in G the optimal cost b′(v) from v to v′ for all v ∈ VR
12: VR ←

{
vR ∈ VR : b0(vR) + b′(vR) ≤ minv∈VR

[
b0(v) + b

′
(v)
]}

13: b0|−1(v, t)← b′(v)− δ(v) for all (v, t) ∈ XR

14: b0|0(v, t)← b′(v) for all (v, t) ∈ XR

% STEP 3:
15: i(v)← 0 for all v ∈ VR
16: VF ←

{
v ∈ VR :

∥∥bi(v)|i(v)(v, ·)− bi(v)|i(v)(v, ·)∥∥ = 0
}

17: Compute (9.1)-(9.4) for all v ∈ VR \ VF and all t ∈ TR(v)
18: π(v)←

∑
b∈{b,b}

∥∥bi(v)+1|i(v)(v, ·)− bi(v)|i(v)−1(v, ·)
∥∥ for all v ∈ VR \ VF

19: VO ← {v ∈ VR \ VF : π(v) > 0}
20: while VO ̸= ∅ and

∥∥bi(v0)|i(v0)(v0, ·)− bi(v0)|i(v0)(v0, ·)∥∥ > ϵ do

21: Choose v̂ ∈ argminv∈VO
[
b0(v) + b′(v)− π(v)

]
22: i(v̂)← i(v̂) + 1
23: Compute (9.5)-(9.8) for all v̂ and all t ∈ TR(v̂)
24: b′(v̂)← mint∈TR(v̂) bi(v̂)|i(v̂)(v̂, t)

25: b
′
(v̂)← supt∈TR(v̂) bi(v̂)|i(v̂)(v̂, t)

26: VR ←
{
vR ∈ VR : b0(vR) + b′(vR) ≤ minv∈VR

[
b0(v) + b

′
(v)
]}

27: Compute (9.1)-(9.4) for all v ∈ V −
R (v̂) = V −(v̂) ∩ (VR \ VF ) and all t ∈ TR(v)

28: π(v)←
∑

b∈{b,b}
∥∥bi(v)+1|i(v)(v, ·)− bi(v)|i(v)−1(v, ·)

∥∥ for all v ∈ V −
R (v̂)

29: VF ←
{
v ∈ VR :

∥∥bi(v)|i(v)(v, ·)− bi(v)|i(v)(v, ·)∥∥ = 0
}

30: VO ← {v ∈ VR \ VF : π(v) > 0}
31: end while
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should be small) and the room for improvement at v (i.e., the potential improvement π(v)
should be big).

Remark 9.1.4 The iteration number i(v) associated with each node v ∈ VR has been in-
troduced in order to formulate the monotonicity of the iteration process (cf. Lemma 9.1.7).
For algorithmic purposes, it would be sufficient to formulate a two-step recursion, where
the first step (update potential improvement) is defined by (9.1)-(9.4) and the second step
(update computation) by (9.5)-(9.8).

In general, the complexity of the TD-APX algorithm depends highly on the complexity
of the functional operations in (9.1)-(9.8) and lines 18, 28, [111]. In the piecewise linear
case, the time complexity of STEP 1 and STEP 2 is polynomial in the size of the network
topology. Hence, an admissible initial solution is computed in polynomial time, cf. Lemma
3.5.4 and Lemma 9.1.5. Since the number of linear pieces of the optimal value function
grows exponentially with the size of the network topology in the worst case, the iterations
in STEP 3 become more costly as the algorithm proceeds. If the optimal value function is
approximated exactly by the lower and upper bounds, the worst-case time complexity of
STEP 3 is exponential in the size of the network topology, cp. Section 5.3.
Let us now prove some properties of the TD-APX algorithm.

Lemma 9.1.5 (Admissibility) At each iteration j of the algorithm, and for each t0 ∈
TR(v0), the control sequence u =

(
(∆tk, ek)

)
k=1,2,...

, defined recursively by

∆tk = µw,i(vk−1)
(vk−1, tk−1), k = 1, 2, ... , (9.9)

ek = µnw,i(vk−1)
(vk−1, tk−1 +∆tk), k = 1, 2, ... , (9.10)

(vk, tk) = φ
(
(vk−1, tk−1), (∆tk, ek)

)
, k = 1, 2, ... (9.11)

is admissible and terminates in v′ × TR(v′) after a finite number n ∈ N of steps, thereby
defining an admissible path

(
(vk, tk)

)
k=0,...,n

from v0 to v′.

Proof We prove the assertion by induction over the number of iterations j of the algorithm.
The admissibility of the initial iterates is a consequence of the FIFO-property and follows
from the same arguments as in Lemma 3.5.4. Since τ > 0 and X is compact, there exists a
τ > 0, such that τ(e, t) ≥ τ for all e ∈ E, t ∈ TR(α(e)). Clearly, the iterative steps (9.1)-
(9.4) and (9.5)-(9.8) preserve these properties, since all constraints are explicitly taken into
account. Consequently, the recursion (9.9)-(9.11) terminates in v′ after a finite number of
steps. (Otherwise the corresponding path would need infinitely long to reach v′.) �

Remark 9.1.6 Recall that the control policy µ
nw
, µ

w
is not initialized in STEP 2. Hence,

a recursive construction of the control sequences and paths as in (9.9)-(9.11) is not possible
in general. However, if all nodes have been iterated at least once, the control policy µ

nw
, µ

w
can be used to construct admissible control sequences terminating in v′ in a similar manner
as in Lemma 9.1.5. However, as a consequence of the computation of the initial cost values
in G, the cost associated with these control sequences is generally unknown.

Lemma 9.1.7 (Monotonicity) At each iteration j of the algorithm, for all (v, t) ∈ XR

with i := i(v) ≥ 1, there holds

bi−1|i−1(v, t) ≤ bi|i(v, t) ≤ b∗(v, t) ≤ bi|i(v, t) ≤ bi−1|i−1(v, t). (9.12)
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Proof The assertion follows by induction from Theorem 4.4.2 and [26, Lemma 1.1.1]. �

Theorem 9.1.8 (Optimality) If the TD-APX algorithm terminates, then∥∥b∗(v0, ·)− bi(v0)|i(v0)(v0, ·)∥∥ ≤ ϵ, ∥∥b∗(v0, ·)− bi(v0)|i(v0)(v0, ·)∥∥ ≤ ϵ, (9.13)

and the corresponding ϵ-optimal paths and control sequences are characterized in Lemma
9.1.5.

Proof In view of Lemma 9.1.7, Remark 9.1.1 and Remark 9.1.2 we only need to prove that
VO ̸= ∅ throughout the algorithm unless TR(v0) = ∅. If TR(v0) ̸= ∅ and VO = ∅, then for all
v ∈ VR we must have (cf. lines 19, 30, 18, 28)∥∥bi(v)+1|i(v)(v, ·)− bi(v)|i(v)−1(v, ·)

∥∥ = 0, b ∈ {b, b},

which implies that reapplying the iteration procedure (9.5)-(9.8) at any v ∈ VR would result
in the same cost functions. Hence

bi(v)|i(v)(v, t) = min
(∆t,e)∈UR(v,t)

[
δ(v, t,∆t) + β(e, t+∆t)

+ bi(ω(e))|i(ω(e))
(
ω(e), t+∆t+ τ(e, t+∆t)

)]
, b ∈ {b, b}.

Since we have bi(v′)|i(v′)(v
′, t′) = bi(v′)|i(v′)(v

′, t′) = 0 for all t ∈ T (v′) (cf. lines 6, 14), and v′ is
reachable from each (v, t) ∈ XR, the current iterates bi(·)|i(·)(·, ·), bi(·)|i(·)(·, ·), are fixed points
of the dynamic programming equations and must therefore be optimal [47][Proposition 4.1].
�

Theorem 9.1.9 (Termination) The TD-APX algorithm terminates after a finite number
of iterations.

Proof As in the proof of Theorem 9.1.8, we see that, if the algorithm terminates due to
VO = ∅, then we also have

∥∥bi(v0)|i(v0)(v0, ·)− bi(v0)|i(v0)(v0, ·)∥∥ ≤ ϵ. Hence, it is sufficient to
prove the assertion for the termination criterion VO = ∅. We suppose that the algorithm
does not terminate after a finite number of steps. Then, there must be a subset V∞ of
nodes, V∞ ⊂ VR, which are iterated infinitely often. If a node v is chosen to be iterated, we
must have v ∈ VO, i.e., cf. lines 19, 30, 18, 28,∑

b∈{b,b}

∥∥bi(v)+1|i(v)(v, ·)− bi(v)|i(v)−1(v, ·)
∥∥ > 0.

Hence, there must be a point in time at which one of the predecessors of v has been changed
in one of the preceding iterations. For v ∈ V∞, let Tj(v) ⊂ TR(v) denote the set of those
points in time t ∈ TR(v), for which at least one of the cost values bi(v)|i(v)(v, t), bi(v)|i(v)(v, t)

is changed in an iteration j′ ≥ j. We obviously have Tj(v) ⊂ [ tR(v), tR(v)]. Now, let
Jk ∈ N, k ∈ N denote the number of iterations, such that each v ∈ V∞ has been iterated
at least k times after Jk iterations of the algorithm. Since τ > 0 and XR is compact, there
exists a τ > 0, such that τ ≥ τ . As each change in a cost function is transported backwards
in time to the predecessors of the respective node, we have TJk(v) ⊂ [ tR(v), tR(v) − kτ ].
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Consequently, there is a k∗ ∈ N, and a finite number of iterations Jk∗ , such that none of
the cost functions in V∞ can be changed in any subsequent iteration of the algorithm. This
is a contradiction. �

Remark 9.1.10 Observe that, if p =
(
(vk, tk)

)
k=0,...,n

is an optimal path from v0 to vn = v′,
then the TD-APX algorithm yields

bi(vk)|i(vk)(vk, tk) = b∗(vk, tk) = bi(vk)|i(vk)(vk, tk) (9.14)

if vk is iterated and we already have bi(vk+1)|i(vk+1)
(vk+1, tk+1) = bi(vk+1),i(vk+1)(vk+1|tk+1) =

b∗(vk+1, tk+1). Hence, if v̂j denotes the node chosen in the j-th iteration of the TD-APX
algorithm, and (vk)k=n−1,...,0 is a subsequence of (v̂j)j=1,...,J for some J ∈ N, then (9.14)
holds. Consequently, if we modify the TD-APX algorithm in such a way that

max
v∈VO

i(v)/ min
v∈VO

i(v) < C

throughout the course of the algorithm for some C > 1, then the TD-APX algorithm termi-
nates also in the case of negative travel times. (This is due to the fact that both the length
of each optimal path and the number of nodes in the network is bounded.)

9.2. The numerical example revisited

Let us again consider the network depicted in Figure 8.3(a), with the same travel times,
travel cost, waiting cost, arrival time restrictions, waiting time restrictions, source node v0
and goal node v′ as in Section 8.2, except for

τ(e1, t) =

{
3− t, 0 ≤ t ≤ 2
1, 2 < t ≤ 4

.

Note that now the network is a FIFO-network. Let us perform the operations of the TD-
APX algorithm.
In STEP 1, we compute

tR(v0) = t = 0, tR(v0) = 3, TR(v0) = [0, 3],

tR(v) = 1, tR(v) = 3, TR(v) = [1, 3],

tR(v
′) = 2, tR(v

′) = t = 4, TR(v
′) = [2, 4],

and set

(µnw,0, µw,0)(v0, t) = (e1, 0), b−1|0(v0, t) = b0|0(v0, t) = 1 + (t− 2)2,

(µnw,0, µw,0)(v, t) = (e3, 0), b−1|0(v, t) = b0|0(v, t) = 3/2,
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as well as b−1|0(v
′, t) = b0|0(v

′, t) = 0. Moreover, we compute

b0(v0) = 0, b
′
(v0) = 5,

b0(v) = 9/2, b
′
(v) = 3/2,

b0(v
′) = 6, b

′
(v′) = 0.

Hence we obtain VR = V , ER = E and the cost functions β, δ of the network G =
(VR, ER;β, δ):

β(e1) = 1, β(e2) = 7/2, β(e3) = 3/2,

δ(v0) = 0, δ(v) = 0, δ(v′) = 0.

In STEP 2, we compute

b0(v0) = 0, b′(v0) = 1, b−1|0(v0, t) = b0|0(v0, t) = 1,

b0(v) = 7/2, b′(v) = 3/2, b−1|0(v, t) = b0|0(v, t) = 3/2,

b0(v
′) = 1, b′(v′) = 0. b−1|0(v

′, t) = b0|0(v
′, t) = 0.

Since minv∈VR b0(v) + b
′
(v) = 5 ≥ b0(vR) + b′(vR) for all vR ∈ VR, none of the nodes in VR

can be excluded from further consideration in STEP 2.
In STEP 3, we first determine that VF = {v, v′} since the lower and upper bounds for the
cost functions at both nodes coincide. (9.3) and (9.4) at v0 lead to b1|0(v0, ·) = b−1|0(v0, ·)
since b−1|0(v0, ·) is already optimal (cp. Section 8.2). (9.1) and (9.2) lead to

b1|0(v0, t) =


min{1 + (t− 2)2, 5}, 0 ≤ t ≤ 1
min{1 + (t− 2)2, 6}, 1 < t ≤ 2
1 + (t− 2)2, 2 < t ≤ 3

 = 1 + (t− 2)2

and µ
nw,1

(v0, t) = e1. Hence, VO = {v0}, v0 is iterated and, since b1|0(v0, ·) = b1|0(v0, ·),
we obtain b∗(v0, ·) = b1|1(v0, ·) = b1|1(v0, ·), which leads to the termination of the TD-APX
algorithm.
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10. Conclusion

We conclude this thesis by summarizing our results and indicating directions for further
research.

10.1. Summary

In this thesis, we have considered the time-dependent optimal path problem with arrival
time and waiting time constraints. This problem arises in many applications, among
which we were particularly interested in the computation of fuel-optimal paths in the time-
dependent road network. Since in real-world applications the problem data is usually subject
to uncertainty, we have also considered a robust formulation of the time-dependent optimal
path problem in which the travel time and cost functions are only known to assume values
in a certain (time-varying) range.
We have derived necessary and sufficient conditions for the existence of optimal paths and
the (lower semi-) continuity of the optimal value function. Considering piecewise analytic
problem data, we were able to prove the directional differentiability of the optimal value
function. Piecewise analytic functions also constitute the largest class of functions for which
this result can be shown to hold since the (pointwise) minimum of two functions must gen-
erally be formed in the optimization process. For practical considerations, a piecewise linear
description of the travel time, cost and constraint functions is the most appropriate. In any
other case, the exact solution of the optimal path problem would involve the computation
of the roots of general nonlinear functions. Motivated by the particular importance of the
piecewise linear optimal path problem we have carried out a detailed complexity analysis
for this kind of problem data. The results indicate that both the FIFO-property of the
network and the form of the waiting time restrictions have a crucial impact on the space
and time complexity of computing the optimal solution.
Traditionally, the computation of optimal paths for a fixed departure time is most common
in applications such as navigation systems. For this problem setting, we have derived a
pruning criterion which allows a significant reduction of the search space of any optimal
path algorithm. A study of the impact of the arrival time constraints on the problem com-
plexity has shown that the discrete-time time-dependent optimal path problem with fixed
departure time is polynomially solvable in FIFO-networks if the arrival time constraints are
tight enough, whereas no such result holds in continuous time.
We have proposed two algorithmic solutions of the time-dependent optimal path problem
with varying departure time, which are likely to outperform the methods published in the
past. The DOT* algorithm generalizes the decreasing order of time algorithms to heuristic
search. Thereby, the manner in which a node and a time interval are chosen for expansion
by the algorithm does not rely on the piecewise linear structure of the network. Further-
more, the heuristic is used to reduce the part of the state space which must be explored by
the algorithm. The TD-APX algorithm, which is designed for FIFO-networks, generates an
admissible solution in polynomial time. Maintaining an upper bound on the accuracy of
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the found solutions, the optimal value is then iteratively and monotonically approximated.
This approach seems to be promising, especially when the computation time rather then
the accuracy of the solution is critical, since the approximation process can be terminated
with adjustable accuracy. Both methods have been experimentally evaluated with real-
world data from the road network of Ingolstadt. Especially the results achieved with the
TD-APX algorithm demonstrated the practical applicability of the proposed approaches.

10.2. Directions for future research

During the study of the time-dependent optimal path problem, a couple of interesting di-
rections for future research have emerged. We now list the most promising among them.
From a modeling point of view, in order to obtain suitable input data for physical con-
sumption models, there is a need for extending the known theories of urban traffic in such a
way that, depending on a given traffic density, a common distribution of vehicle speeds and
accelerations can be derived. These distributions can then be used as input data for the
physical consumption models in order to compute the fuel consumption more accurately.
It would also be interesting to simultaneously consider the optimization of the route and
the optimization of the velocity plot on the route. Although such an optimization problem
must respect the constraints which are imposed by the traffic, we believe the resulting so-
lution to have high fuel-saving potential. However, we argue that an exact solution of this
optimization problem will be computationally infeasible because of the large problem size.
Our results on the robust time-dependent optimal path problem should rather be seen as
a basis for further work than a complete body of research. Both the assumption which
allows the application of dynamic programming without extending the state space and the
assumption which allows the separate consideration of the travel time and cost are quite
restrictive and may not be fulfilled in practical applications. A complexity analysis of the
absolute robust time-dependent optimal path problem with fixed departure time also re-
mains as an open question.
In view of the applicability of our results for electric vehicles it would be interesting to
incorporate further resource constraints into the optimal path problem, such as the fi-
nite capacity of the battery. If the remaining capacity of the battery is introduced as an
additional state, the dimensionality of the resulting dynamic programming problem would
increase and thereby necessitate the extension of the results of this thesis to two-dimensional
parametric optimization problems.
From an algorithmic point of view, the verification of the optimality of the DOT* algo-
rithm (in the sense in which the A* algorithm is optimal) remains as an open question.
Further research on good choices of the iteration node in the TD-APX algorithm seems
also promising. Moreover, it would be interesting to generalize the proposed methods in
such a way that also the absolute robust optimal path problem can be solved. In order to
use the algorithms for real-time applications, the parallelization of both methods will be a
challenge for the future.
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A. A Case Study in the Road Network of
Ingolstadt

In order to illustrate and road-test the theoretical and algorithmic results of this thesis
we have carried out a case study in the road network of the German city of Ingolstadt.
This case study comprises the computation of the energy consumption using traffic data
and a physical consumption model as well as the experimental evaluation of the proposed
algorithms in the resulting time-dependent road network of Ingolstadt.
As it has already been mentioned in Section 1.1 and Chapter 2, the computation of the
energy consumption associated with a route in the road network is not only relevant for
vehicles with combustion engines but also for electric vehicles. Indeed, one of the core
problems of the development of electric vehicles is the conflict of objectives between the
cruising range and the size and cost of the battery [125]. That is because on the one
hand the energy capacity is proportional to the cruising range, and on the other hand the
battery is the most expensive component of hybrid and electric vehicles, since it must meet
the high demands on energy capacity and power demand in road traffic [126]. Moreover,
since up to now the infrastructure which allows the charging of the battery of an electric
vehicle is sparse, the prediction of the energy consumption associated with a route (or the
prediction of the cruising range) is crucial, even if it is not the objective of optimization.
These framework conditions were also taken into account in the MUTE project [4] (in which
researchers of the Technische Universität München develop a prototype of a technically and
economically convincing electric vehicle) and it was decided to incorporate the computation
of energy-optimal routes into the advanced driver assistance systems of the MUTE-vehicle.
The vehicle parameters used in the planning phase of the MUTE-vehicle were provided by
the project team for an evaluation of the theoretical results derived in this thesis and are
denoted in Table A.1.
In the following sections we describe the collection of the time-dependent traffic data (cf.
Section A.1) and in which manner the vehicle parameters provided in Table A.1 and the
average speed data were used in order to define the time-dependent network of Ingolstadt (cf.
Sections A.2 and A.3). In Section A.4, we provide a detailed discussion of the computational
experiments which were carried out in this road network.

A.1. Data Collection

The speed values which form the basis for the evaluation of the algorithms are derived from
taxi floating car data, which was kindly provided by Taxi-Funk Ingolstadt GmbH & Co.
KG. The time and position information which are repeatedly sent from each taxi are first
received via a telnet stream. A map matching and a routing procedure are then used to
determine which road segments the taxi has been traveling through between two consecutive
information transmissions (for details, see [57]). In order to assign a speed value to each road
segment which was partially or completely traveled through, it is assumed that the vehicle
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Vehicle parameter Planning value in the MUTE project

Vehicle mass (including battery) 500 kg
Friction coefficient 0.007
Frontal area 1.696m2

Air-drag coefficient 0.28
Transmission ratio 1 9.11
Motor moment of inertia 0.03 kgm2

Wheel perimeter 1.7813m
Wheel moment of inertia 0.80 kgm2

Basic power consumption 770W
Engine power 15 kW
Energy content of the battery 9 kWh

Table A.1.: Vehicle parameters used in the planning phase of the MUTE project [4].

No Vacation Vacation Holiday

Monday Monday Monday-Sunday
Tuesday-Thursday Tuesday-Thursday
Friday Friday
Saturday Saturday
Sunday Sunday

Table A.2.: Class definition of calendar days with similar traffic conditions.

speed in the time interval between two transmissions is independent both of the time and
the position. Based on all data which has been received for one particular road segment e
during a time interval [tk−15min, tk], tk = k ·5min, k = 0, ..., 287, the current average speed
v̄k(e) on this road segment is determined. In particular, if nk(e) taxis have been traveling
through some road segment e of length L(e) during the time interval [tk − 15min, tk] and
τk,n(e) denotes the travel time of the n-th taxi, then v̄k(e) is set to

v̄k(e) =
1

nk(e)

nk(e)∑
n=1

L(e)

τk,n(e)
. (A.1)

These average speeds have been stored for each road segment in a data base for the duration
of about one year.
As many research works show [169], [94], [121], the traffic state strongly depends on the
calendar day, since traffic demand on working days is very different to that on weekend or
on holidays. In order to identify calendar days with similar traffic conditions a correlation
analysis has been applied, which led to the class definition in Table A.2.
Since traffic may also change from season to season due to different weather conditions,

the average speed values are aggregated for a time duration of three months and based on
the classification in Table A.2. As the validity of speed information decreases with the age
of the measurement, the aggregated average speeds (except for the class “Holiday”) are
weighted with half-life (for details, see [108]).

1The MUTE-vehicle has only one gear.
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A.2. Data Postprocessing

As the topological structure of the time-dependent network of Ingolstadt we used the graph
(V,E) contained in the digital map which was kindly provided by the PTV AG for re-
search purposes. In the first step of the data postprocessing, the time-dependent speed
data resulting from the data collection described in Section A.1 were matched to the road
segments E. This results, for each road segment e ∈ E in the road network, in a collection(
tk, v̄k(e), nk(e)

)
k=0,...,287

of times of day tk, average speeds v̄k(e) and number of observations

nk(e). Since the measurements on a road segment may be sparse or unevenly distributed
throughout the day (i.e., nk(e) = 0 for many k), single discordant values may lead to an
unlikely variation in time of the average speed. In order to cope with this situation we have
implemented a weighted kernel regression using a Gaussian kernel [157]. If, at some point
in time tk an average speed v̄k(e) had been determined from nk(e) measurements, then we
associated the weight wk(e) = nk(e) with v̄k(e). Otherwise, we used the weight wk(e) = 0.1
together with the average speed v̄k(e) = v̄map(e) which was contained in the digital map as
an input to the kernel regression. The standard deviation for the kernel function was set

to 0.5h·
√

288/
∑287

k=0wk(e) which led to a satisfactory tradeoff between the preservation of
the local variations in and the smoothing of the average speed data. We denote the k-th
smoothed average speed on a road segment e by g

(
v̄k(e)

)
.

The output data of the postprocessing step are, for each road segment e in the road net-
work, a collection

(
t′k, v̄

′
k(e), τ

′
k(e)

)
k=0,...,71

of times of day t′k, average speeds v̄
′
k(e) and travel

times τ ′k(e). Time-dependent average speed (average travel time) data were only assigned
to those road segments on which measured average speeds had been associated with at
least 12.5% of the points in time of the input data. For the remaining road segments, the
time-independent speed data v̄map(e) (resp., travel time τ(e) = L/v̄map(e)) of the digital
map was used. This led to a proportion of 30% of time-dependent road segments in the
network of Ingolstadt.
Since the average speed v̄k(e) on a road segment e of length L(e) at time tk has been de-
termined according to (A.1) from measurements during the time interval [tk − 15min, tk],
we set

τ(e, tk − 5min) =
L(e)

g
(
v̄k(e)

) . (A.2)

In this manner, the point in time t′k−5min with which the travel time is associated is chosen
in such a way that it is both an inner point of the measurement interval and not contained
in the (k − 1)-th measurement interval. Note that (A.2) corresponds to the (smoothed)
harmonic mean of the measured travel times.
In order to obtain an explicit network description, which is suitable (in view of a tradeoff
between the accuracy of the time-dependent description and the computational complexity)
for the computation of energy-optimal paths in the road network of Ingolstadt we only used
72 data points, corresponding to t′k = k·20min, v̄′k(e) = g

(
v̄4(k−1)+1(e)

)
and τ ′k(e) = τ(e, t′k),

k = 0, ..., 71, for each road segment e. The average travel times between two such points
in time were then determined by linear interpolation, leading to a piecewise linear and
continuous description of the travel time function τ . An examination of the derivatives of
the linear pieces of the partial functions t 7→ τ(e, t), e ∈ E, revealed the FIFO-property of τ
and an examination of the breakpoints of the partial functions t 7→ τ(e, t), e ∈ E, revealed
that τ > 0. An illustration of the postprocessing step is provided in Figure A.1.
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(a) Road segment of category “main”, v̄map =
25 km/h.
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(b) Road segment of category “freeway”, v̄map =
45 km/h.

Figure A.1.: Postprocessing of the average speed data associated with two road segment.
The crosses in the plots correspond to the input data, the solid line corresponds
to the smoothed output function. The data of the class “Tuesday-Thursday”
was used in both plots.

A.3. Definition of the Time-Dependent Cost Functions

In order to estimate the speed distributions which serve as an input for the physical con-
sumption model, we distinguish between the road categories “Local street”, “Main street”,
“Arterial” and “Freeway”. We do not distinguish between different driver types or between
certain functional zones of the city of Ingolstadt. This coarse resolution is due to the lack of
precise driving data (i.e., driving data including the speed and acceleration distributions)
and due to the independence of our vehicle model from the gear changing behavior. (The
MUTE-vehicle has only one gear, cp. Table A.1.)
In order to determine the speed distribution for a particular road segment and average
speed, we use the data published in [60] which was also used to evaluate the impact of driv-
ing patterns on fuel-use in [62]. This data results from the recording of the driving data of
29 families for two weeks in the Swedish city of Väster̊as. The size of Väster̊as is comparable
to the size of Ingolstadt, and hence we assume that (although none of the families drove
an electric vehicle and there is a certain variation between the driving patterns in different
cities [63]) the speed distributions are comparable to those of Ingolstadt.
Using this data for a calibration of the model, we adapt the methodology presented in Part
I as follows: For simplicity, we approximate (2.13) by

V = (1− ds)
[
dfVf + (1− df)Vt

]
, (A.3)

where ds ∈ {0, 1} is a decision variable which models that the vehicle is in a stop with prob-
ability ps = P(ds = 1) ∈ [0, 1], df ∈ {0, 1} is a decision variable which models that a moving
vehicle is in free flow with probability pf = P(df = 1) ∈ [0, 1], Vf is normally distributed,
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Vf ∼ N (µf, σf), and Vt is half-normally distributed, Vt ∼ HN (σt). Hence, in contrast to the
model in [87], we do not assume that either V = 0 or V = v̄, but we associate a normal
distribution with the free flow speeds and we introduce a half-normal distribution in order
to model the transition between V = 0 and the free flow speeds. Observe that, except for
the assumption that Vt is half normally distributed, (A.3) is equivalent to (2.13). Moreover,
the form of the probability density function during an acceleration (resp. deceleration)
phase which has been derived in Section 2.2 resembles the probability density function of a
half-normally distributed random variable, cp. Figure 2.4. Note that the data published in
[60] allows the derivation of a speed distribution of the form (A.3) even if the parameters
which were introduced in Section 2.2 are not completely known (as is usually the case in
practical applications).
We choose σt such that E[vt] =

√
2/πσt = µf − σf. Hence, we expect the transition to lead

to the “center” of the free flow speed distribution. Indeed, P(vf < µf−σf) < 16%. Further-
more, we expect the travel time incurred for a transition to be proportional to the target
speed (i.e., to µf) and the travel time incurred during free flow to be inversely proportional
to µf (since the length of the road segment is fixed). This implies that

pf =
1

λµ2f + 1
, 1− pf =

λµ2f
λµ2f + 1

for some λ ≥ 0. Finally, assuming that all random variables are mutually independent, we
determine ps from (A.3) according to

ps = 1− E[V ]

pfµf + (1− pf)(µf − σf)
.

Using this approach, we reconstruct the probability distribution in [60] with a cumulative
error of ≈ 5% per road category and speed limit.
Since the speed data for each road category in [60] has been recorded for approximately
constant traffic conditions and does not allow the consideration of time-dependent variations
of the average speed, we determine the distribution parameters for varying traffic conditions
from (2.15)-(2.20). Recall that we have assumed that the traffic is undersaturated in (2.15),
which is a simplification since there are time periods during which the traffic in Ingolstadt
is saturated.
In (2.15) we use the fit parameters Tlos = 6 s (corresponding to two time periods of length
3 s of amber light), the average length L of a road of the respective category in Väster̊as (we
have assumed that every second road segment in the digital map leads to an intersection
in order to obtain an average intersection density of > 200m between two intersections
as indicated in [60]), the free speed v0 contained in the digital map, the outflow capacity
Q̂ = max

{
1800, 1800 · v0/(50 km/h)

}
veh./hour/lane and δ = 0.1 (cp. [87, Fig. 6]). The

parameter s is estimated for each road category and speed limit from the average traffic
density ρ̄ and average speed v̄ contained in [60]. The range of the fitted parameter s ∈ [1.3, 2]
reflects the low density of signalized junctions in Väster̊as and the average priorities in traffic
associated with the different road categories and speed limits. The average vehicle length
in (2.16) has been set to vveh = 5m.
In (2.18) we have fixed the parameters ρmax = 160 veh/km, Tr = 0.8 s [84], [85] as well
as vmax = v0 and determined ρ0, v2, v3 in such a way that ρf 7→ µf(ρf) is continuously
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Data published by E.Ericsson
average speed = 15
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(a) Road segment of category “main”, speed limit
v0 = 50 km/h and length L = 145m. The average
speed in [60] is ≈ 44 km/h.
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Data published by E.Ericsson
average speed = 45
average speed = 65
average speed = 85

(b) Road segment of category “freeway”, speed
limit v0 = 90 km/h and length L = 320m. The
average speed in [60] is ≈ 85 km/h.

Figure A.2.: Relative frequency of the vehicle speed for different traffic densities on two road
segments. The solid line corresponds to the data published in [60], the dotted,
dash-dotted and dashed lines correspond to the model (A.3) and (2.15)-(2.20).

differentiable and matches the data published in [60]. The parameter a0 in (2.20) has been
chosen in such a way that (2.19) holds for the data published in [60]. An example of resulting
speed distributions for varying traffic densities is depicted in Figure A.2, the corresponding
relations between the free flow density and the average speed v̄ as well as the average free
flow speed µf are depicted in Figure A.3.
Given a pair (t′k, v̄

′
k(e)) on some road segment e, we estimate the distribution parameters as

described above and determine the associated speed distribution which results from (A.3).
This speed distribution and the speed-dependent acceleration distributions published in [8]
are used to determine a common speed-acceleration distribution associated with the pair
(t′k, v̄

′
k(e)). The energy consumption function β for the road segment e at time t′k is then

defined according to

β(e, t′k) =

∫ τ(e,t′k)

0
Ev,a|e,k

[
P̃ (v, a, α)

]
dt, k = 0, ..., l′. (A.4)

Here, Ev,a|e,k denotes the expected value with respect to the common speed-acceleration

distribution associated with the pair (t′k, v̄
′
k(e)) and P̃ (v, a, α) denotes the power which must

be provided by the battery of the vehicle in order to countervail the driving resistances, cp.
Section 2.4.2. Since the longitudinal elevation α of the road segments is not contained in
the digital map we used the value α = 0 in our computations. The energy consumption
between two points in time is then determined by linear interpolation, leading to a piecewise
linear description of the travel cost function β.
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(a) Road segment of category “main”, speed limit
v0 = 50 km/h and length L = 145m.
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(b) Road segment of category “freeway”, speed
limit v0 = 90 km/h and length L = 320m.

Figure A.3.: Relations between the free flow density and the average speed v̄ as well as
the average free flow speed µf. The range of ρf corresponds to the range
ρ ∈ [0, ρmax].

A.4. Experimental Evaluation

In the following subsections we summarize the experimental evaluation of the DOT* al-
gorithm and the TD-APX algorithm in the time-dependent network of Ingolstadt. We
first describe the characteristics of the network (cf. Subsection A.4.1), the computer and
the implementations (cf. Subsection A.4.2). We then discuss the experimental results in
Subsection A.4.3.

A.4.1. Network Description

We consider the time-dependent optimal path problem with a fixed time frame [ t, t ], t < t,
as in Part III, i.e., T (v) = [ t, t ] for all v ∈ V . We use the graph (V,E) contained in the
digital map, the travel time function τ defined in (A.2) and the travel cost function defined
in (A.4). Moreover, we set ∆T (v, t) = {0} for all (v, t) ∈ X and δ(v, t, 0) = 0. As we have
mentioned in Section A.2, the travel time function is strictly positive and satisfies the FIFO-
property. Hence, denoting the time-dependent network of Ingolstadt by G = (V,E, τ ;β, δ),
Assumption 3.5.3 holds in (G,T,∆T ).
The time-dependent network of Ingolstadt contains 4447 nodes, 11808 (directed) edges, and
the partial network functions t 7→ τe(t) = τ(e, t), t 7→ βe(t) = β(e, t), t ∈ [ t, t ], satisfy

#τe ≤
(
0,

⌈
t− t
20min

⌉
+ 2,

⌈
t− t
20min

⌉
+ 1

)
,

#βe ≤
(
0,

⌈
t− t
20min

⌉
+ 2,

⌈
t− t
20min

⌉
+ 1

)
,

for all e ∈ E according to (A.2) and (A.4). For the time-dependent network functions
associated with the class “Tuesday-Thursday”, there hold τ(E × R) ⊂ [0.42 s, 375.8 s] and
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β(E × R) ⊂ [0.00065 kWh, 0.23 kWh], and non-constant functions are associated with 3959
edges. Let Ẽ ⊂ E denote the set of edges for which the partial functions τe, associated with
the data of the class “Tuesday-Thursday”, are non-constant. There holds

max
e∈Ẽ

maxt∈[0 h,24 h] τ(e, t)

mint∈[0 h,24 h] τ(e, t)
≈ 8.93, max

e∈Ẽ

maxt∈[0 h,24 h] β(e, t)

mint∈[0 h,24 h] β(e, t)
≈ 6.34,

1

|Ẽ|

∑
e∈Ẽ

maxt∈[0 h,24 h] τ(e, t)

mint∈[0 h,24 h] τ(e, t)
≈ 1.85,

1

|Ẽ|

∑
e∈Ẽ

maxt∈[0 h,24 h] β(e, t)

mint∈[0 h,24 h] β(e, t)
≈ 1.53,

which is in accordance with the empirical observations in [103].
Moreover, for the time-dependent network functions associated with the class “Sunday”,
there hold τ(E × R) ⊂ [0.42 s, 375.8 s] and β(E × R) ⊂ [0.00058 kWh, 0.23 kWh], and non-
constant functions are associated with 3341 edges. Let Ẽ ⊂ E denote the set of edges
for which the partial functions τe, associated with the data of the class “Sunday”, are
non-constant. There holds

max
e∈Ẽ

maxt∈[0 h,24 h] τ(e, t)

mint∈[0 h,24 h] τ(e, t)
≈ 8.78, max

e∈Ẽ

maxt∈[0 h,24 h] β(e, t)

mint∈[0 h,24 h] β(e, t)
≈ 7.08,

1

|Ẽ|

∑
e∈Ẽ

maxt∈[0 h,24 h] τ(e, t)

mint∈[0 h,24 h] τ(e, t)
≈ 1.75,

1

|Ẽ|

∑
e∈Ẽ

maxt∈[0 h,24 h] β(e, t)

mint∈[0 h,24 h] β(e, t)
≈ 1.48,

The maxima and minima of τ in the classes “Tuesday-Thursday” and “Sunday” are both
attained for e ∈ E \ Ẽ.

A.4.2. Description of the Computer and the Implementation

The computational experiments are carried out on an 2×quad-core Xeon E3750 with each
processor clocked at 2.33 GHz and provided with 8 MB of L2 cache. The machine has 16
GB of RAM, the operating system is Ubuntu Linux 2.6.32-25-generic, which was compiled
with GCC 4.4.3.
Our implementation is written in Java and compiled with Java version 1.6.0 18. The results
of Subsection 5.3.2 imply that we must expect the piecewise linear functions to contain a
large number of linear pieces. In order to cope with the space complexity of storing the
partial optimal value functions, we have set the initial and the maximal heap size of the
Java Virtual Machine to 3 GB. The graph (V,E) is represented by saving E−(v), E+(v) for
each v ∈ V and α(e), ω(e) for each e ∈ E. We have used two implementations of piecewise
linear functions: The partial network functions τe, βe, e ∈ E, are implemented as arrays
in order to rapidly access one particular linear piece. The partial optimal value functions
are implemented as linked lists since they are repeatedly modified by the algorithms. This
allows a space-efficient storage of the partial optimal value functions and the insertion and
removal of linear pieces in O(1) space and time complexity. Linked lists are also well-suited
to scroll through the linear pieces, since, in most cases, either no linear piece or all linear
pieces of a partial optimal value function must be accessed in one iteration of each of the
algorithms.
In a preprocessing step, the all-to-all optimal path problems in the networks (V,E; τ) and
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(V,E;β) are solved with the Floyd-Warshall algorithm [9, p.147], where τ : E → R+ and
β : E → R+,

τ(e) = min
t∈[ t,t ]

τ(e, t), β(e) = min
t∈[ t,t ]

β(e, t), ∀e ∈ E,

respectively. By ct(v1, v2), we denote the cost of an optimal path from v1 ∈ V to v2 ∈ V in
(V,E, τ), and by cb(v1, v2), we denote the cost of an optimal path from v1 ∈ V to v2 ∈ V
in (V,E, β). Finally, we denote

ct = min
e∈E

τ(e) = min
v1,v2∈V :v1 ̸=v2

ct(v1, v2),

cb = min
e∈E

β(e) = min
v1,v2∈V :v1 ̸=v2

cb(v1, v2).

There holds ct, cb > 0 for the two time-dependent networks of Ingolstadt, which are gener-
ated from the traffic data associated with the classes “Tuesday-Thursday” and “Sunday”.
In the DOT* algorithm, a hash table [43, Chapter 11] is used in order to choose the iteration
node. The hash table contains, for each edge e ∈ E, the value t+(e) − πt

(
α(e)

)
, and the

value maxe∈E
[
t+(e)−πt

(
α(e)

)]
and an array of the edges argmaxe∈E

[
t+(e)−πt

(
α(e)

)]
are

separately stored. In each iteration, the edges argmaxe∈E
[
t+(e) − πt

(
α(e)

)]
are accessed

via the hash table and the iteration nodes is chosen according to line 16 of Algorithm 8.1.1.
The lower bounds π· (the subscript · stands for t or b in the following) are defined as

π·(v) = s · c·(v0, v), ∀v ∈ V, (A.5)

where s ∈ [0, 1). The lower bounds π̃· are either defined as

π̃·(v1, v2) = c·, ∀v1, v2 ∈ V, (A.6)

or as

π̃·(v1, v2) =

{
max

{
c·, c·(v0, v2)− c·(v0, v1)

}
, if v1 ̸= v2

2c·, if v1 = v2
, ∀v1, v2 ∈ V, (A.7)

or as

π̃·(v1, v2) =

{
c·(v1, v2), if v1 ̸= v2
min

v∈V :v ̸=v1
c·(v1, v) + min

v∈V :v ̸=v2
c·(v, v2), if v1 = v2 , ∀v1, v2 ∈ V. (A.8)

As (V,E) contains no loops, the values π̃t(v, v), π̃b(v, v) in (A.7) and (A.8) are indeed lower
bounds of the cost and travel time of any circle containing v ∈ V , respectively. The pa-
rameter s scales the length of the time interval for which the partial optimal value function
can be computed in one iteration of the DOT* algorithm, cp. (8.2). Small values of s lead
to longer time intervals, bigger values of s lead to the expansion of less nodes, cp. Figures
A.4(a)-A.4(c). While the definition (A.7) only requires the solution of an one-to-all opti-
mal path problem with the source node v0, the definition (A.8) requires the solution of an
all-to-all optimal path problem. However, the lower bounds π̃· defined in (A.8) enable the
processing of longer time intervals in each iteration of the DOT* algorithm, since they are
greater than or equal to the lower bounds π̃· defined in (A.7). In order to compute t− in
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line 17 of the DOT* algorithm, the pointwise minimum of the (shifted) edge cost functions
is computed in each iteration. A sorting of the edge cost functions (resp. the sortings of
several edge cost functions with respect to several landmarks) has not been implemented
because of memory restrictions.
In the first step of the TD-APX algorithm, a bidirectional Dijkstra search is used to deter-
mine the sets TR(v) for all v ∈ V . A bidirectional A* search is then used to define the lower
bounds of the cost functions in the second step. The bidirectional A* algorithm is used in
order to compute both lower bounds b(vR), b(vR) as soon as possible for some vR ∈ VR ⊂ V .
Since nodes are expanded in an increasing order of cost, all nodes which have not yet been
expanded by the bidirectional A* algorithm when b0(vR)+ b

′(vR) > minv∈VR
[
b0(v)+ b

′
(v)
]

for the first time for some vR ∈ VR, can be removed from VR, cp. Algorithm 9.1.1, line
12. In the third step of the TD-APX algorithm, a Fibonacci heap [43, Chapter 20] is used
to choose the iteration node. The seminorm ∥f∥ =

∫
D |f(t)| dt on the space of real-valued

lower semicontinuous functions f with compact domain D is used in the implementation
of the TD-APX algorithm. Thereby the repeated computation of the minimum of the par-
tial optimal value functions is avoided. (Note that, as a consequence of Lemma 7.2.3 and
Corollary 7.2.4, the above seminorm would be a norm if we considered the time interval
] t, t ] instead of the time interval [ t, t ].)
A more detailed analysis of the algorithms, including a detailed description of the imple-
mentations will be presented in [46], [170].

A.4.3. Experimental Results

We have observed in some preliminary experiments that the TD-APX algorithm solves the
time-dependent optimal path problem in the road network of Ingolstadt much faster than the
DOT* algorithm. This is due to the fact that min(e,t)∈E×R τ(e, t) = 0.42 s. If a time frame
of 42 minutes is considered and 1000 nodes have to be expanded by the DOT* algorithm,
then we must expect O(6 · 106) iterations in the worst case, cp. Theorem 8.1.6. Taking into
account that (depending on the complexity of the partial optimal value functions computed
so far) one iteration requires a computation time of approximately 0.02 s-0.2 s, we must
expect a total computation time of approximately 33 h-333 h. Since this is computationally
infeasible both for a statistical evaluation of the algorithm and an utilization in practical
applications we are considering four kinds of test scenarios:
In the first scenario, we evaluate the benefits of using precise lower bounds in the DOT*
algorithm. Due to the above estimates on the worst-case runtime, only a small number
of very small test cases are evaluated. In the second scenario, we compare the average
runtimes of the TD-APX algorithm (with ϵ = 0kWh) and the DOT* algorithm (with
different definitions of the lower bounds) on a small number of test scenarios in the city
center. We then evaluate the computational complexity of the time-dependent optimal path
problem in more detail in the third scenario, in which we solve a large set of test cases in
the complete network with the TD-APX algorithm. In the fourth scenario, we focus on the
differences in the energy consumption and the number of edge sequences which are traversed
by optimal paths at different times of day and days of the week.

Scenario 1

In order to evaluate the benefits of using precise lower bounds in the DOT* algorithm,
we use a set of 10 test cases. Here, the source and goal node are chosen in a minimum-
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hop distance d ∈ {3, 4, 5, 6}, and the time frame [7:58 h, 8:02 h] is taken as a basis. Three
different settings of the DOT* algorithm are used to solve these optimal path problems, in
each of which πt, πb are defined according to (A.5). In the first setting, the scale parameter
s is set to 0, and π̃t, π̃b are defined according to (A.6). In the second and third setting, the
scale parameter s is varied between 0.1 and 0.9, and π̃t, π̃b are defined according to (A.7)
and (A.8). The runtimes and numbers of iterations associated with these test cases are
listed in Table A.3. As a reference, the results of the TD-APX algorithm are also provided.
It can be seen that the utilization of precise lower bounds has a drastic impact on the

Algorithm Setting Av. comp. Min. comp. Max. comp. Av. no. of
time time time iterations

DOT*

lower bound 3751 s 0.001 s 12850 s 65423
s = 0.1, (A.7) 2301 s 0.02 s 7331 s 47179
s = 0.1, (A.8) 86 s 0.03 s 187 s 5551
s = 0.3, (A.7) 993 s 0.02 s 3978 s 25564
s = 0.3, (A.8) 64 s 0.01 s 149 s 4435
s = 0.5, (A.7) 747 s 0.001 s 3293 s 21909
s = 0.5, (A.8) 41 s 0.2 s 95 s 4143
s = 0.7, (A.7) 756 s 0.001 s 3088 s 20848
s = 0.7, (A.8) 38 s 0.01 s 119 s 2550
s = 0.9, (A.7) 813 s 0.001 s 3867 s 20925
s = 0.9, (A.8) 33 s 0.01 s 156 s 1960

TD-APX ϵ = 0kWh 0.006 s 0.003 s 0.01 s 13

Table A.3.: Computation time and number of iterations for very short paths. The network
functions were generated from the traffic data of the class “Tuesday-Thursday”
(working week). 10 pairs of distinct source and goal nodes of minimum-hop
distance d ∈ {3, 4, 5, 6} were chosen in the city center.

average runtime and on the average number of iterations of the DOT* algorithm. With
an appropriate choice of the scale parameter s, (A.7) improves the average runtime of the
DOT* algorithm by one order of magnitude with respect to the setting in which s = 0
and π̃t, π̃b are defined according to (A.6). (A.8) even improves the average runtime of the
DOT* algorithm by two orders of magnitude with respect to the setting in which s = 0
and π̃t, π̃b are defined according to (A.6). While this small number of test cases suggests
that the optimal scale parameter s is between 0.5 and 0.7 for the lower bounds (A.7), an
optimal scale parameter of approximately 0.9 can be observed for the lower bounds (A.8).
Furthermore, we observe that the runtime of the DOT* algorithm is highly sensitive to the
input data. The minimal and maximal runtimes of each setting of the algorithm differ by
6 orders of magnitude. While the algorithm terminates fast if the edge cost functions differ
significantly from each other, a very long runtime is produced if the DOT* algorithm must
expand nodes with approximately identical shifted cost functions.
In Figure A.4, we have depicted the node sets which are expanded by the algorithms in
one of the above test cases. Despite of the small set of test cases which were evaluated in
the first test scenario, the usefulness of precise lower bounds is underlined by the results in
Table A.3 and Figure A.4.
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(a) DOT* algorithm with s = 0, (A.6). (b) DOT* algorithm with s = 0.3, (A.8).

(c) DOT* algorithm with s = 0.7, (A.8). (d) TD-APX algorithm after step 1.

(e) TD-APX algorithm after step 2. (f) TD-APX algorithm after step 3.

Figure A.4.: Nodes which are expanded by different settings of the DOT* algorithm and in
different steps of the TD-APX algorithm (ϵ = 0kWh). The same source and
goal nodes and the time frame [7:58 h, 8:02 h] are taken as a basis of all plots.

Scenario 2

Based on the results of the first scenario, we evaluate the performance of the TD-APX
algorithm with ϵ = 0kWh and the performance of the DOT* algorithm with πt, πb defined
as in (A.5) and π̃t, π̃b as in (A.8). For the parameter s in (A.5) we use the values 0.5, 0.7 and
0.9, which led to relatively short average and maximal runtimes in the first test scenario. The
source node v0 and the goal node v′ are chosen randomly in the city center (approximately
1 km2, cp. Figure A.5), and the time frame [7:50 h, 8:00 h] is taken as a basis. 20 pairs
(v0, v

′) ∈ V 2, v0 ̸= v′, are chosen and used as input of each optimal path algorithm. The
results of these tests are depicted in Table A.4. In order to compare these results with static
optimal path algorithms, the average computation times of Dijkstra’s algorithm and the A*
algorithm (in the networks (V,E; τ) and (V,E;β), respectively) are also provided.
As in the test cases of the first test scenario, the scale parameter s = 0.9 yields the best

average runtimes of the DOT* algorithm. Furthermore, we again observe a very high spread
in the computation times of the DOT* algorithm. For this reason we neither present test
cases for longer time frames than the one underlying Table A.4. In some preliminary tests
we have observed that the computation time of the DOT* algorithm repeatedly exceeds 12
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Algorithm Setting [7:50 h, 8:00 h]

Av. comp. Min. comp. Max. comp.
time time time

Dijkstra - 0.002 s 0.001 s 0.2 s

A* - 0.002 s 0.001 s 0.006 s

DOT*
s = 0.5, (A.8) 1523 s 0.04 s 6505 s
s = 0.7, (A.8) 1243 s 0.001 s 5012 s
s = 0.9, (A.8) 834 s 0.001 s 4264 s

TD-APX ϵ = 0kWh 0.3 s 0.001 s 1.4 s

Table A.4.: Average computation time of different optimal path algorithms in the time-
dependent road network of Ingolstadt. The network functions were generated
from the traffic data of the class “Tuesday-Thursday” (working week), the source
and goal node were both chosen randomly in the city center.

hours in the time frame [7:50 h, 8:10 h]. This is neither acceptable for practical applications
nor suitable for a statistic evaluation.
Although the utilization of precise lower bounds speeds up the DOT* algorithm by a factor
of approximately 100, it is obvious from the test results that, in its present implementation,
the DOT* algorithm is not suited for practical applications. The average runtime of the
TD-APX algorithm outvalues the average runtime of the DOT* algorithm by 3 orders
of magnitude. In order to evaluate the DOT* algorithm more extensively in the future we
suggest to take into account the following lessons learned from our first experimental results:
One focus of future implementations should be on keeping down the number of linear pieces
associated with the edge and node cost functions. In most iterations of the DOT* algorithm
very short time intervals are expanded. However, when the same node or edge is expanded in
a subsequent iteration, it is very likely that the rightmost linear piece computed in the latter
iteration extends the leftmost piece of the previous iteration. An efficient implementation
of checking such a compliance can be used to reduce the computational overhead. Note
that all operations on piecewise linear functions (with the exception of appending a new
linear piece to the head or tail of the linked list) require at least logarithmic time in the
number of linear pieces. As can be seen from Figure A.6, the number of linear pieces of the
partial optimal value function is not exceedingly large in the medium-sized time-dependent
optimal path problems, which were considered in this case study. It might therefore be
interesting to implement the choice of the iteration node of the DOT* algorithm using a
sorting of the edge cost functions. If such an implementation is too memory-consuming (as
must be anticipated for larger networks), the computation of the functions

t 7→ min
e+∈E+(v̂)

b̂(e+, t),

t 7→ min
θ∈[t,t̂ ]

min
e∈E:t+(e)≥θ+π̃t(v̂,α(e))

(
b̂
(
e, θ + π̃t(v̂, α(e))

)
+ π̃b(v̂, α(e))

)
in line 17 of Algorithm 8.1.1 should be executed simultaneously and in decreasing order
of time, and it should be aborted as soon as the value t− is determined. However, alto-
gether it appears that the optimization strategy of the TD-APX algorithm (local iteration)
is superior to the optimization strategy of the DOT* algorithm (global optimization) in the
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Figure A.5.: The road network of the German city of Ingolstadt.

time-dependent network of Ingolstadt.

Scenario 3

In the third scenario we evaluate the TD-APX algorithm in more detail. We choose the ac-
curacy ϵ as 0%, 1% and 5% of the energy content of the battery, i.e., we set ϵ equal to 0 kWh,
0.09 kWh and 0.45 kWh. Moreover, we vary the time frame [ t, t ] by setting t = 7:00 h and
using the values 7:30 h, 8:00 h, 8:30 h, 9:00 h, 10:00 h, 11:00 h and 12:00 h for t. For each time
frame, a certain number of pairs (v0, v

′) ∈ V 2, v0 ̸= v′, are chosen and used as input of the
TD-APX algorithm. The results of this test are depicted in Table A.5. As a reference, the
average computation times of Dijkstra’s algorithm and the A* algorithm (in the networks
(V,E; τ) and (V,E;β), respectively) are also provided.
In order to illustrate the results of one test run of the TD-APX algorithm, the partial

Algorithm Time frame Number of Average computation time
test cases

ϵ = 0kWh ϵ = 0.09 kWh ϵ = 0.45 kWh

Dijkstra - 1269 0.0019 s 0.0019 s 0.0019 s

A* - 1269 0.0015 s 0.0015 s 0.0015 s

TD-APX

[7:00 h, 7:30 h] 238 8.3 s 2.0 s 0.041 s
[7:00 h, 8:00 h] 243 14 s 2.9 s 0.059 s
[7:00 h, 8:30 h] 148 22 s 4.2 s 0.097 s
[7:00 h, 9:00 h] 121 31 s 7.7 s 0.13 s
[7:00 h, 10:00 h] 88 44 s 10 s 0.18 s
[7:00 h, 11:00 h] 87 60 s 15 s 0.22 s
[7:00 h, 12:00 h] 100 120 s 30 s 0.36 s

Table A.5.: Average computation time of the TD-APX algorithm in the time-dependent
road network of Ingolstadt. The network functions were generated from the
traffic data of the class “Tuesday-Thursday” (working week), the source and
goal node were both chosen randomly in the city.

optimal value function t0 7→ b∗(v0, t0), the cost function associated with the initial iterate
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(a) t = 7:00 h, t = 7:30 h, ϵ = 0kWh.
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(b) t = 7:00 h, t = 9:00 h, ϵ = 0.09 kWh.
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(c) t = 7:00 h, t = 9:00 h, ϵ = 0kWh.
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(d) t = 7:00 h, t = 9:00 h, ϵ = 0.45 kWh.
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(e) t = 7:00 h, t = 11:00 h, ϵ = 0kWh.
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(f) ϵ = 0kWh.

Figure A.6.: Dependence of the number of linear pieces of the partial optimal value function
t0 → b∗(v0, t0) on the maximal topological length N of all optimal paths and
on the number C of linear pieces of the partial network functions τe, βe, e ∈ E.
In the plots, M denotes the number of mutually distinct edge sequences which
are traversed by optimal paths.
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(a) t = 7:00 h, t = 7:30 h, ϵ = 0kWh.
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(b) t = 7:00 h, t = 9:00 h, ϵ = 0.09 kWh.
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(c) t = 7:00 h, t = 9:00 h, ϵ = 0kWh.
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(d) t = 7:00 h, t = 9:00 h, ϵ = 0.45 kWh.
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(e) t = 7:00 h, t = 11:00 h, ϵ = 0kWh.
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Figure A.7.: Dependence of the computation time of the TD-APX algorithm on the maximal
topological length N of all optimal paths and on the number C of linear pieces
of the partial network functions τe, βe, e ∈ E.
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of the control policy, and a subset of the optimal paths are depicted in Figure A.8.
In order to evaluate the predictions of the complexity of the time-dependent optimal path
problem with varying departure time, the number of linear pieces of the partial optimal
value function t0 7→ b∗(v0, t0) is plotted in Figure A.6 and the average computation time
of the TD-APX algorithm is depicted in Figure A.7. In these figures, regression analysis is
used to analyze the dependence of the number of linear pieces and the average computation
time on the maximal topological length N of all optimal paths and on the number C of
linear pieces of the partial network functions τe, βe, e ∈ E, cp. (5.59) and (5.48).
From Theorem 5.3.21 (v), we expect the number of linear pieces of the partial optimal value
function t0 7→ b∗(v0, t0) to be of the order O

(
M2(CN +Nbd)

)
, where M denotes the num-

ber of mutually distinct edge sequences from v0 to v′ and Nbd = 2 denotes the number of
boundary points of [ t, t ]. By contrast, in the evaluation of the experimental results we find
the values of N and M to be correlated and the influence of M to be negligible. However,
we have noticed that even if the number of mutually distinct edge sequences from v0 to
v′ is large, the number of distinct edges is usually very small. This is consistent with the
statement in Remark 5.3.24. By inspection of Figures A.6(a), A.6(c) and A.6(e), it appears
that, for a fixed value of C, the number of linear pieces of the partial optimal value function
grows approximately linearly with the topological length of the longest optimal path. This
is consistent with the theoretical findings in Theorem 5.3.21 (v). The large variation in the
number of linear pieces is due to the topological structure of the road network of Ingolstadt
(the road network is structured in neighborhoods and suburbs) and the distribution of the
road segments with which non-constant data is associated.
In Figure A.6(f), the average number of linear pieces of the partial optimal value function
is plotted in dependence on the number of linear pieces of the network functions. Assuming
that the number of linear pieces is approximately proportional to N for a fixed time frame
(see above), the computational experiments confirm the result of Theorem 5.3.21 (v), which
predicts the average number of linear pieces of the partial optimal value function to be
approximately proportional to C for a fixed maximal path length N . In Figure A.6(f), the
average maximal path lengths N resulting from the test cases in the respective time frames
are used for the regression function.
Based on the result of Theorem 5.3.21 (v), we expect the computation time to be of the
order O

(
M(CN2 +NNbd) log(C) +M3(CN +Nbd)

)
. As in the evaluation of the number

of linear pieces of the partial optimal value function, we find the influence of M on the
computation time to be negligible. Moreover, by inspection of Figures A.7(a), A.7(c) and
A.7(e), we find that, for a fixed value of C, O(N3+N2) describes the average computation
time better than O(N2 + N). This is due to the fact that, in an algorithmic solution of
the time-dependent optimal path problem, we need to compute the partial optimal value
functions at O(N2) nodes. Since the partial optimal value functions at the “inner nodes”
of the set of all expanded nodes VR ⊂ V are needed to compute the partial optimal value
functions at the O(N) “boundary nodes” of VR, we must expect N times the computation
time which is predicted by Theorem 5.3.21 (v). This is indeed what we can see in Figures
A.7(a), A.7(c) and A.7(e).
In Figure A.7(f), the average computation time of the TD-APX algorithm for ϵ = 0kWh is
plotted in dependence on the number of linear pieces of the network functions. Assuming
that the computation time is roughly proportional to O(N3 + N2) for a fixed time frame
(see above), the computational experiments confirm the result of Theorem 5.3.21 (v), which
predicts the average computation time to be roughly proportional to C log(C) for a fixed
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(a) Optimal value function. The time domains
during which all optimal paths traverse the same
edge sequence are delimited by triangles.
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(b) Cost function associated with the initial iterate
of the control policy.

(c) Subset of the optimal paths. The time domains associated with the edge sequences I, II and III
are depicted in Figure A.8(a).

Figure A.8.: Results of one test run of the TD-APX algorithm corresponding to a fixed pair
(v0, v

′) ∈ V 2 and the time frame [10:00 h, 24:00 h].
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maximal path path length N . In Figure A.7(f), the average maximal path lengths N result-
ing from the test cases in the respective time frames are used for the regression function.
When varying the value of ϵ from 0 kWh to 0.45 kWh, the number of linear pieces is de-
creased by a factor of approximately 1.5, whereas the average computation time is decreased
by two orders of magnitude. In fact, as can be seen in Figure A.7(d), the computation time
hardly depends on the maximal length of the optimal path if ϵ = 0.45 kWh. This is due to
the fact that, if ϵ is large enough, then the initial iterates of the upper and lower bounds
of the partial optimal value functions, t0 7→ b0|0(v0, t0), t0 7→ b0|0(v0, t0), already satisfy the

termination condition ∥b0|0(v0, t0) − b0|0(v0, t0)∥ ≤ ϵ. (In this case the number M of edge
sequences which are traversed by the ϵ-optimal paths equals 1, cp. Figure A.6(c).) Only
the few test cases in which the termination condition is not satisfied in the initial iteration
of step 3 of the TD-APX algorithm cause the variation of the average computation times
which are listed in Table A.5. The factor 1.5 between the numbers of linear pieces corre-
sponds to the additional breakpoints of the optimal value function which are caused by the
switching of the edge sequences traversed by optimal paths. Although the impact of this
switching behavior is not of the order of magnitude which we predicted in the worst-case
analysis in Theorem 5.3.21 (v), a significant difference of the number of linear pieces can be
observed in Figures A.6(c) and A.6(d).

Scenario 4

In the fourth scenario, we evaluate the influence of the time of day and the influence of
the day of the week on the solutions of the time-dependent optimal path problem. For
this purpose, we compare the time frames [1:00 h, 2:00 h] and [7:30 h, 8:30 h] for the classes
“Tuesday-Thursday” (working week) and “Sunday”. 400 pairs (v0, v

′) ∈ V 2, v0 ̸= v′, are
chosen randomly and used as the input of the TD-APX algorithm for both time frames and
both classes of the days of the week. The value ϵ = 0kWh is generally used for the TD-
APX algorithm in this scenario. The solutions of the optimal path problems are analyzed in
terms of the average energy consumption and in terms of the average number of routes. The
average energy consumptions are computed as the average of the optimal value functions
(i.e., the cost functions associated with the energy-optimal paths p∗(t), t ∈ TR(v0)) and as
the average of the cost functions associated with the paths pLDT(t), which are generated
by the initial iterate of the TD-APX algorithm, t ∈ TR(v0). The latter paths correspond
to the control sequence u(v0, v

′) which allows the latest departure time (LDT) at v0, cp.
Algorithm 9.1.1, line 1. In particular, pLDT(t) = Φ

(
(v0, t), u(v0, v

′)
)
for t ∈ TR(v0). The

average energy consumptions associated with these paths are summarized in Table A.6. In
Table A.7, we have listed the average number of (mutually distinct) edge sequences which
are traversed by optimal paths from a fixed source node to a fixed goal node and the per-
centage of test runs for which this number is greater than 1.

We observe that, in the considered test cases, the average energy assumption associ-
ated with energy-optimal paths is about 10% lower than the average energy consumption
associated with the control sequence which allows the latest departure time at the source
node. (Note that the path pLDT( tR(v0)) is a fastest path.) We also find that the differ-
ence between these average consumption values is smaller at night than in the morning.
Furthermore, with the exception of the value associated with energy-optimal paths in the
time frame [7:30 h,8:30 h], “Tuesday-Thursday”, the average energy consumption is lower

3Cost of the path which allows the latest departure time (LDT).
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Day Time Criterion Average energy consumption

Tue-Thu
[1:00 h,2:00 h]

Energy 0.7405 kWh
LDT 3 0.8196 kWh

[7:30 h,8:30 h]
Energy 0.7396 kWh
LDT 3 0.8303 kWh

Sun
[1:00 h,2:00 h]

Energy 0.7358 kWh
LDT 3 0.8133 kWh

[7:30 h,8:30 h]
Energy 0.7306 kWh
LDT 3 0.8159 kWh

Table A.6.: Average energy consumption associated with the paths p∗(t), pLDT(t) for t ∈
TR(v0).

Day Time Average number Percentage
of edge sequences of queries

Tue-Thu
1:00-2:00 h 36 94
7:30-8:30 h 34 91

Sun
1:00-2:00 h 30 92
7:30-8:30 h 34 91

Table A.7.: Alternation of the edge sequences traversed by optimal paths from a fixed source
node to a fixed goal node.

on Sundays than on Tuesdays-Thursdays. Although the differences are small, they can
be ascribed to the heavier traffic conditions during the working week and during the rush
hour. We also observe that the average energy consumption associated with the control
sequences which allows the latest departure time at the source node are particularly high
in commuter traffic, whereas the average energy consumption associated with the optimal
control sequences is particularly low in commuter traffic. This can be explained as follows:
Driving at high speeds in commuter traffic necessitates a large number of strong acceleration
and deceleration maneuvers, which increases the cost associated with the control sequences
which allow the latest departure time at the source node. Since driving at lower speeds
(≈ 40 km/h, cp. Figure A.10) is generally more economic for the MUTE vehicle than driv-
ing at higher speeds, the cost associated with the optimal control sequences is decreased if
slow synchronized traffic is found. Since only approximately one third of the edges of the
network are attributed with time-dependent data, a larger variation between the average
energy consumptions must be expected in general.
From the results in Table A.7 we deduce that the edge sequences traversed by energy-optimal
paths differ from the edge sequences traversed by fastest paths in more than 90% of the
considered test cases. As can be seen from Figure A.9, the partial optimal value function
increases steeply in the time interval [23:40 h, 23:50 h], where 23:50 h≈ tR(v0), while the edge
sequences associated with the respective cost values are rapidly alternating. This behavior
constitutes the transition from the unconstrained to the constrained optimal (fastest) path.
(At tR(v0) only fastest paths are admissible at v0.) The number of edge sequences which
are traversed by the respective optimal paths is surprisingly large and leads to an average
of over 30 different edge sequences which are traversed by optimal paths associated with
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Figure A.9.: Partial optimal value function t0 7→ b∗(v0, t0) in a neighborhood of the latest
departure time tR(v0) ≈ 23:50 h. The time domains during which all opti-
mal paths traverse the same edge sequence are delimited by triangles. The
underlying test case is described and illustrated in Figure A.8.

the considered pairs (v0, v
′) ∈ V 2, v0 ̸= v′.
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Figure A.10.: Distance-related energy consumption of the MUTE vehicle. The plotted con-
sumption values correspond to the energy consumption associated with a drive
at constant speed and no longitudinal elevation.
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[99] O. Karaşan, M. Pinar, and H. Yaman. The robust shortest path problem with interval
data. Technical report, Bilkent University, Department of Industrial Engineering,
2004.
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[148] A. Prékopka. Stochastic Programming. Kluwer Academic Publishers, 1995.

[149] A. Premoli. Piecewise-linear programming: the compact (CPLP) algorithm. Mathe-
matical Programming, 36:210–227, 1986.

[150] Preuße, C. and Keller, H. and Hunt, K. Fahrzeugführung durch ein Fahrermodell.
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Network description:
Symbol Description of the variable

V Set of nodes
v Node
E Set of directed edges, E ⊂ V × V
e Edge
α Tail mapping, α : E → V
ω Head mapping, ω : E → V
E−(v) Set of edges terminating in v
E+(v) Set of edges emanating from v
V −(v) Set of predecessors of v
V +(v) Set of successors of v
deg+(v) Outdegree of v
deg−(v) Indegree of v
t Time variable, t ∈ R
∆t Waiting time variable ∆t ∈ R+

0

τ Edge travel time mapping, τ : E × R→ R+
0

β Edge cost mapping, β : E × R→ R
δ Waiting cost mapping, δ : V × R× R+

0 → R
G Time-dependent network, G = (V,E, τ ;β, δ)

Problem Description:
Symbol Description of the variable

T (v) Set of admissible points in time at v ∈ V
X State space, X =

∪
v∈V

{
{v} × T (v)

}
∆T (v, t) Set of admissible waiting times at (v, t) ∈ X
P Set of admissible paths (state sequences)
p Path (state sequence), p =

(
(vk, tk)

)
k=0,1,...

U(v, t) Set of admissible control sequences at (v, t) ∈ X
u Control sequence, u =

(
(∆tk, ek)

)
k=1,2,...

|p|, |u| Length of the path and control sequence, respectively
pk, uk k-th component of the path and control sequence, respectively
pi:j , ui:j components i, ..., j of the path and control sequence, respectively
v0 Source node
v′ Goal node
tR(v) Earliest arrival time at v ∈ V
tR(v) Latest departure time at v ∈ V
TR(v) Set of reachable points in time at v ∈ V , TR ⊂ R
XR Reachable part of the state space, XR =

∪
v∈V

{
{v} × TR(v)

}
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Functions on the Network:
Symbol Description of the variable

φ Control-to-state mapping, φ :
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x∈X{(x, u) : u ∈ U(x), |u| = 1} → X

Φ Control-to-path mapping, Φ :
∪
x∈X{(x, u) : u ∈ U(x)} → P

T Path travel time function, T :
∪
x∈X{(x, u) : u ∈ U(x)} → R+

0

B Path cost function, B :
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x∈X{(x, u) : u ∈ U(x)} → R

t∗ Optimal travel time function, t∗ : X → R+
0 ∪ {∞}

t∗ Reverse optimal travel time function, t∗ : X → R+
0 ∪ {∞}

b∗ Optimal value function, b∗ : X → R ∪ {±∞}
b∗ Reverse optimal value function, b∗ : X → R ∪ {±∞}
µ∗ Optimal control policy µ∗ : X → R+

0 × E
Notational Convention:

• Lower bounds of a quantity are denoted by underlining, upper bounds by overlining
the quantity, respectively.

• Optimality is denoted by the subscript and superscript ∗, respectively.

• Duality is denoted by the superscript T .

• The interior of a set S is denoted by int(S), the closure of S is denoted by cl(S), the
boundary of S is denoted by bd(S).

• The support and the graph of a mapping f : S → Y are denoted by supp(f) and
graph(f), respectively.

• The set of k-times continuously differentiable real-valued functions on an open set
S ⊂ Rn is denoted by Ck(S), k ∈ N ∪ {∞}. The set of real analytic functions on an
open set S ⊂ Rn is denoted by Cω(S).

• If S ⊂ R is an open set and f ∈ Ck(S) then the first derivative of f is denoted by f ′,
the k-th derivative of f is denoted by f (k), k ≥ 2.
If S ⊂ Rn is an open set and f : S → Rm is Fréchet-differentiable, then we denote the
Fréchet-derivative of f at x ∈ S by Df(x).

• If S ⊂ Rn is an open set and f ∈ Ck(S) then the partial derivative of f with respect
to the i-th coordinate is denoted by ∂if , i = 1, ..., n. If the variables of f have distinct
names, e.g., (t, x) 7→ f(t, x) then the partial derivative of f with respect to t is denoted
by ∂tf and the partial derivative with respect to x is denoted by ∂xf .

• In the split network (cf. Section 3.2), the waiting node is denoted by the subscript w,
the node at which no waiting is allowed will be denoted by the subscript nw.

• The probability of an event E is denoted by P{E}, the expected value of a real-valued
random variable X is denoted by E[X].

• The abbreviations “p.d.f.”, “i.i.d.” and “a.s.” stand for “probability density function”,
“independent and identically distributed” and “almost surely”, respectively.
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Chapter-Specific Notation, Chapter 2:
Symbol SI unit Description of the variable

t [s] Time
d [m] Traveled distance
v [m/s] Velocity
a [m/s2] Acceleration
α [rad] Angle of elevation
ω [1/s] Rotational speed
τ [Nm] Torque
p [bar] Break pressure
n [1] Gear
Af [m2] Frontal area of the vehicle
mv [kg] Vehicle mass
mw [kg] Wheel mass
cd [1] Drag coefficient
rw [m] Wheel radius
gr [1] Gear ratio
crr [1] Rolling resistance coefficient
Hl [MJ/l] Lower heating value
g [N/kg] Gravitational acceleration
ρa [kg/m3] Air density
ηe [1] Engine efficiency
ηt [1] Transmission efficiency
λ [1] Molding body surcharge factor
Iw [kgm2] Wheel moment of inertia
Im [kgm2] Motor moment of inertia
Fr [N] Rolling resistance
Fc [N] Climbing resistance
Fa [N] Aerodynamic resistance
Fi [N] Inertial resistance
F [N] Driving resistance
P [W] Power
P0 [W] Basic power consumption
Q [l/s] Fuel flow rate
B [l] Fuel consumption
L [m] Length of the road segment
ρ [veh./km] Traffic density
ρf [veh./km] Traffic density under free flow conditions
Vf [m/s] Vehicle speed under free flow conditions (random variable)
µv [m/s] Expected value of vehicle speed under free flow conditions
σv [m/s] Standard deviation of vehicle speed under free flow conditions
V +
0 [m/s] Terminal vehicle speed in an acceleration process (random

variable)
V −
0 [m/s] Initial vehicle speed in a deceleration process (random variable)
A [m/s2] Vehicle acceleration and deceleration (random variable)
σa [m/s2] Distribution parameter of the vehicle acceleration and

deceleration
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A+ [m/s2] Vehicle acceleration (random variable)
A− [m/s2] Vehicle deceleration (random variable)
Th [s] Waiting time at the junction (random variable)

T [s] Maximal waiting time at the junction
pt [1] Probability of stopping at the junction
ps [1] Probability of finding the vehicle in a halt
V [m/s] Vehicle speed on the urban road segment (random variable)
T [s] Expected travel time on the urban road segment
N (µ, σ) Normal distribution with parameters µ ∈ R, σ ∈ R+

0

HN (0, σ) Half-normal distribution with parameter σ ∈ R+

U(I) Uniform distribution over the interval I ⊂ R
Chapter-Specific Notation, Chapter 3:

Symbol Description of the variable

ρ Turn restriction mapping, ρ :
∪
v∈V {E−(v)× E+(v)} → {0, 1}

σ Turn travel time mapping, σ :
∪
v∈V {E−(v)× E+(v)} × R→ R+

0

ι Turn travel cost mapping, ι :
∪
v∈V {E−(v)× E+(v)} × R→ R

Chapter-Specific Notation, Chapter 5:

Symbol Description of the variable

PCω(Θ) Set of all piecewise analytic functions f : Θ→ R, Θ ⊂ Rn, in the
sense of Definition 5.2.1

C1,ω(T ) Set of all analytic functions f : T → R, T ⊂ R, in the sense of
Definition 5.2.3

PC1,ω(T ) Set of all piecewise analytic functions f : Θ→ R, T ⊂ R, in the
sense of Definition 5.2.3

PLn(Θ) Set of all piecewise linear functions f : Θ→ R, Θ ⊂ Rn,
n ∈ {1, 2}

PLnc (Θ) Set of all continuous piecewise linear functions f : Θ→ R,
Θ ⊂ Rn, n ∈ {1, 2}

PLnlsc(Θ) Set of all lower semicontinuous piecewise linear functions
f : Θ→ R, Θ ⊂ Rn, n ∈ {1, 2}

PLnusc(Θ) Set of all upper semicontinuous piecewise linear functions
f : Θ→ R, Θ ⊂ Rn, n ∈ {1, 2}

#f Complexity of the piecewise linear function f : Θ→ R, Θ ⊂ Rn,
n ∈ {1, 2}, in the sense of Definition 5.3.3 and Definition 5.3.11.

Chapter-Specific Notation, Chapter 6:

Symbol Description of the variable

W Set of all possible states of the network
Ω(t) Restriction of the set of possible states of the network at time t ∈ R
w(t) State of the network at time t ∈ R
W Set of all functions w : R→W with w(t) ∈ Ω(t) for all t ∈ R
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Chapter-Specific Notation, Chapter 7:
Symbol Description of the variable

γ Travel time constraint function, γ : R+
0 → R+

0

Γ Travel time constraint function, Γ : R+
0 → R+

0 , Γ(t) = t+ γ(t)

Chapter-Specific Notation, Chapter 8:

Symbol Description of the variable

t Earliest departure time at v0, t ∈ R
t Latest arrival time at v′, t ∈ R
v̂ Node to be expanded by the DOT* algorithm, v̂ ∈ V
t̂ Point in time, at which v̂ is chosen by the DOT* algorithm, t̂ ∈ [ t, t ]

b̂ Cost function computed by the DOT* algorithm, b̂ : X → R+
0

∆̂t Waiting policy determined by the DOT* algorithm, ∆̂t : X → R+
0

ê Edge policy determined by the DOT* algorithm, ê : X → E

t+(v) Maximum point in time, for which b̂(v, ·) has not yet been computed
by the DOT* algorithm t+(v) ∈ [ t, t ] ∪ {−∞,+∞}

t+(e) Maximum point in time, for which b̂(e, ·) is relevant for the
DOT* algorithm, t+(e) ∈ [ t, t ] ∪ {−∞}

t− Maximum point in time, for which optimality cannot be guaranteed
in the current iteration of the DOT* algorithm

Î Time interval for which optimality can be guaranteed
in the current iteration of the DOT* algorithm

πt(v) Lower bound of the travel time from v0 to v ∈ V
πb(v) Lower bound of the travel cost from v0 to v ∈ V
π̃t(v̂, v) Lower bound of the travel time from v̂nw to vw

in the split network, v̂, v ∈ V .
π̃b(v̂, v) Lower bound of the travel cost from v̂nw to vw

in the split network, v̂, v ∈ V .

Chapter-Specific Notation, Chapter 9:

Symbol Description of the variable

∥ · ∥ Norm on the space of piecewise continuous functions
π Potential improvement, π : V → R+

0

i(v) Number of times the node v ∈ V has been iterated
bi(v)|i(v) Lower bound of the optimal value function at vw after i(v) iterations

of the node v ∈ V , bi(v)|i(v) : {v} × TR(v)→ R
bi(v)+1|i(v) Lower bound of the optimal value function at vnw after i(v) iterations

of the node v ∈ V , bi(v)+1|i(v) : {v} × TR(v)→ R
bi(v)|i(v) Upper bound of the optimal value function at vw after

i(v) iterations of the node v ∈ V , bi(v)|i(v) : {v} × TR(v)→ R
bi(v)+1|i(v) Upper bound of the optimal value function at vnw after i(v) iterations

of the node v ∈ V , bi(v)+1|i(v) : {v} × TR(v)→ R
ei(v) Edge policy associated with bi(v)|i(v), v ∈ V , ei(v) : {v} × TR(v)→ E

ei(v) Edge policy associated with bi(v)|i(v), v ∈ V , ei(v) : {v} × TR(v)→ E
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∆ti(v) Waiting policy associated with bi(v)|i(v), v ∈ V , ∆ti(v) : {v} × TR(v)→ R+
0

∆ti(v) Waiting policy associated with bi(v)|i(v), v ∈ V , ∆ti(v) : {v} × TR(v)→ R+
0

b0(v) Lower bound of the reverse optimal value function b∗(v, t) with respect
to the source node v0

b′(v) Lower bound of the optimal value function b∗(v, t) with respect to
the goal node v′

b0(v) Upper bound of the reverse optimal value function b∗(v, t) with respect
to the source node v0

b
′
(v) Upper bound of the optimal value function b∗(v, t) with respect to

the goal node v′

VR Set of all reachable nodes v ∈ V for which it has not been excluded
that there exists an optimal path from v0 to v′ which passes through v.

VF Set of all nodes v ∈ VR for which the computation of the optimal value
function has already been finished.

VO Set of all nodes v ∈ VR for which an iteration may result in an
improvement of the upper or lower bound.

VC Set of all nodes v ∈ VR \ VF for which an iteration cannot result in an
improvement of the upper or lower bound.

Chapter-Specific Notation, Chapter A:

Symbol SI unit Description of the variable

α [rad] Angle of elevation

P̃ (v, a, α) [W] Power which must be which must be provided by the battery
of the vehicle when driving at a speed v an acceleration a and
an angle of elevation α

L [m] Length of the road segment
Vf [m/s] Vehicle speed under free flow conditions (random variable)
µf [m/s] Expected value of vehicle speed under free flow conditions
σf [m/s] Standard deviation of vehicle speed under free flow conditions
Vt [m/s] Vehicle speed under transition conditions (random variable)
σt [m/s] Distribution parameter of the vehicle speed under

transition conditions
ps [1] Probability of finding the vehicle in a halt
pf [1] Probability of finding a moving vehicle in free flow conditions
N (µ, σ) Normal distribution with parameters µ ∈ R, σ ∈ R+

0

HN (0, σ) Half-normal distribution with parameter σ ∈ R+
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