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Abstract

The human auditory system outperforms existing automatic speech recognition system
by a large extent. This motivates the modeling of the human auditory system and the
application of auditory model for robust automatic speech recognition. During the last
years, we have aquired a good knowledge about the mechanisms of the auditory system.
However, we are less sure about which properties of the auditory coding contributes
to its outstanding performance. The debate about different coding strategies such as
"rate code” or "temporal code” still persists. This thesis presents a framework including
auditory modeling, speech recognition and information theory, in search of the essential
aspects of auditory coding.

I used a detailed model of human auditory processing that generates realistic auditory
nerve spike trains. The model includes strong compression and level dependent shape
of active inner ear filtering. I augmented the model with a realistic offset adaptation
mechanism to replicate the ”dead-time” period of the auditory nerve fibers after signal
onset. I also modeled cochlea nucleus onset neurons and connected them to the model.

I tested the model qualitatively using a realistic scenario: speech in noise. I implemented
different speech recognition engines based on the HTK testbed and the MLP testbed. I
evaluated the output auditory nerve spike trains using a rate-place based coding strategy
and then augmented it with spikes from octopus neurons which codes mainly the temporal
structure of the speech signal. Results showed that the realistic offset adaptation improves
temporal coding of auditory nerve fibers which also leads to considerable improvement
in recognition results. The model achieved robustness against noise which is similar to
human performance, even though there is still a big gap in absolute performance. The
MLP testbed outperformed HTK testbed, which suggests that innovative features such
as neural spike trains require proper matching to the back-end.

I also implemented an approach based on information theory for quantitative assessment
of the auditory model. T found out that information saturates for periodic signals such
as spoken vowels. I was able to analyze the impact of temporal resolution of the spike
trains from different onset neurons. I suggested that onset neurons utilized a very high
temporal resolution to code information. The quantitative measurement also enabled me
to analyze the effect of noise on information transmission.

In conclusion, the human auditory model, the qualitative measurement using speech recog-
nition and the quantitative measurement using information theory complement each other.
Together, they provide a framework for continuously improving the performance of human
auditory modeling for the purpose of speech recognition and information processing.
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1 Introduction

Nowadays, people are surrounded by more and more electronic devices, which require
interfaces to enable human machine interaction. Life would have been much easier, if we
were able to talk to the devices as the astronauts do to the supercomputer “Hal” in the
movie 2001: A Space Odyssey.

Voice commanded applications, according to market analysis, are expected to cover many
aspects in our future life. The most likely candidates range from general applications with
computers, telephones, call centers to many other specific areas such as car navigation
system, hand held devices, for which keyboards are less plausible, as well as many services
where acquisition of initial information can be done by computers in order to reduce the
cost. Speech recognition is currently regarded by the market as one of the most promising
technologies of the future. A 50 fold rise in sale of industrial speech technology products
was seen from the year of 1997 to the year of 2003 [ ]

If speech recognition by machine were a solved problem, then work in this field would
only consist of the application of proven technology to new tasks in the aforementioned
areas, and basic research would not be necessary. This is to some extent almost the
current situation. Three decades of intensive research in speech recognition has led to
efficient algorithms in feature extraction; Statistical approaches such as Hidden Markov
Models (HMM) and Multilayer Perceptrons (MLP) have been developed to the level where
excellent performance can be achieved in the laboratories on large vocabulary continuous
speech recognition tasks. Commercial products with innovative applications have been
around for many years, slowly gathering momentum in the market.

However, speech recognition is by any fundamental sense not a solved problem. Current
speech recognition works well in laboratory environment but breaks down drastically as
soon as noise or reverberation distorts the speech signal, not to mention that in reality
speech recognition systems have to deal with various accents, imperfect grammar, unfa-
miliar words, etc. On the other hand, when it comes to speech interaction with machines,
users become less tolerant to speech recognition system than they do to the keyboards.
Users expect speech recognition system to behave as humans do. However, current com-
mercial products are still striving to achieve a balance between recognition performance
and the complexity of the system. Omne of the solutions was to limit the size of the
vocabulary and the complexity of the dialog system to achieve acceptable recognition
performance for a specific application.

Problems stated, it is however very difficult to find the solutions based on existing tech-
niques. Both the feature extraction (also referred to as “the front end”) and the recog-
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nition engine (also referred to as “the back end”) are genuinely problematic: Feature ex-
traction schemes based on frequency transformation drop most of the essential temporal
information, which are believed to be instrumental for robust speech recognition |

, , , , , |; The statistical ap-
proach (HMM) used to perform recognition tasks make numerous assumptions about
speech, some of which obviously unrealistic | ) ]

In comparison to automatic speech recognition systems, humans possess stunning capa-
bility in speech perception. It is the most robust speech recognition system that we are
aware of so far. The performance of human auditory system dwarfs today’s most so-
phisticated computer system. It is therefore least surprising that researchers have been
trying to improve speech recognition systems based on principles motivated by the human
auditory system. A natural approach to reach robustness, or at least to understand the
mechanisms behind it, is to mimic the peripheral human auditory system.

The state-of-the-art speech processing technology already utilizes many principles moti-
vated by human auditory processing. von Helmholtz | , | put forward
the place-coding as the principle mechanism of hearing. His notion that human ear an-
alyzes individual frequency components of sound signals has motivated the widespread
use of magnitude spectra in sound processing technologies. Specific algorithms such as
Mel frequency filter banks, log energy could all easily find their counterparts in human
auditory system. Multilayer Perceptrons were also developed using some “organizational”
principles believed to be used in the human brain, with the hope that the network will
possess some of the brain’s desirable characteristics such as massive parallelism, learning
ability, generalization ability etc. However, human auditory system differs from current
automatic sound processing system in a fundamental way, i.e, human auditory system
codes sound signal into trains of action potentials of the neurons, which are transmitted
to higher processing stages of the brain.

In order to better mimic the human auditory processing, we have developed a phenomeno-
logically motivated inner ear model. Our model is based on the latest biological and neu-
rological findings, and very nicely replicates the physiological data. Such a realistic model
is meaningful in many ways. First, it casts light on the mechanisms used by auditory
processing. This is straightforward given that our model is built to resemble the human
auditory processing. Therefore, every improvement in the modeling helps us better un-
derstand sound processing by humans or other mammals. Second, a suitable model makes
it possible for researchers to generate data which is at least realistic to some extent, and
to study the property of auditory processing. Of course such a model can not substitute
physiological or neurological experiments. But it serves as a complementary approach of
auditory study and makes researchers less dependent on measured data, which is limited
in amount and also expensive to get access to. Last but not the least, it is possible to
develop practical applications with our inner ear model, such as sound localization or
speech recognition systems.

Besides the efforts of modeling human inner ear and constantly improving the performance
of the model based on physiological findings, this thesis also covers the topic of applying



1.1 Human Auditory System
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Figure 1.1: Overview of the hearing organ.

the model to perform speech recognition tasks. We successfully integrated our inner ear
model as the front end into existing speech recognition frameworks and achieved com-
parable results to standard feature extraction approaches applied in commercial speech
recognition systems. Another major part of the work comprises of analyzing the auditory
model based on information theory. Compared to automatic speech recognition, informa-
tion theory based approach makes not only less modification of the output from our inner
ear model but also less assumption about the underlying processing. Therefore it gives a
more intuitive and rigorous assessment of the auditory processing.

1.1 Human Auditory System

Human auditory system is one of the most complicated sensory system known to us.
Figure 1.1 gives an overview of the auditory system. The pinna (auricle) gathers the
sound energy, which is lead through the outer ear canal to the ear drum (tympanic
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membrane). The pinna plays an important role in our ability to distinguish the direction
of a sound source, especially in the elevation angle | , , |. The outer ear
canal acts like an open pipe with a length of 20 to 30 mm. Its resonance frequency lies
around 4 kHz. It is responsible for the exceptionally high sensitivity of hearing system in
this frequency range.

The middle ear transforms the sound signal from air particle movement in front of the
ear drum to fluid motion in the inner ear. The transformation is performed over a wide
frequency range. The middle ear is responsible for matching the impedance in order to
minimize energy loss due to reflection, which means that the maximal amount of energy
is transferred to the inner ear. The sound pressure in the outer ear canal sets the eardrum
into vibrations, which are then transmitted via the hammer (malleus) and the anvil (incus)
to the stirrup (stapes). The stapes’ foot plate contacts the oval window, a hole forming
the entrance to the inner ear. The Eustachian tube connects the air filled middle ear
cavities to the upper throat. It opens and closes periodically, keeping the static pressure
in the cavity at atmospheric pressure level. In summary, the pressure of the sound signal
is transduced into displacement of the oval window at the entrance of the inner ear.

In the inner ear, the transformation from mechanical entities into nerve action potentials
takes place. This is one of the most important stage of the hearing process. Cues of the
sound signals have to be coded for neural processing, and any information loss will not
be available for higher processing stages.

The inner ear is constituted of the cochlea, the semicircular canals and the organ of
balance, among which only the cochlea contributes to hearing. The cochlea is a spiral
formed, fluid-filled organ in the temporal bone. It is coupled to the middle ear through
the round window and the oval window, which locate on the opposite site of the cochlea
partition. The footplate of the stapes is inserted into the oval window, whereas the round
window is covered by a membrane. The modiolus forms the central axis of the cochlea
through which the auditory nerve fibers run. Figure 1.2 shows a schematic cross sectional
view of the human cochlea. The three ducts — scala vestibuli, scala media, and scala
tympani — spiral two and a half turns around the modiolus. The cochlear partition, which
separates the scala media and scala tympani, is of great interest to us. The cochlear
partition consists of a thin shelf of bone projected from the modiolus (the osseous spiral
lamina) and the basilar membrane, which is attached to the osseous spiral lamina and to
the outer wall of the cochlea through the spiral ligament. At the apical tip of the cochlea,
there is a narrow opening in the membrane, known as the helicotrema, which constitutes
a connection between scala vestibuli and scala tympani. The basilar membrane (BM)
mainly consists of extracellular material. Its stiffness decreases gradually towards the
apex. In the base of the cochlea the membrane is narrow and thick, whereas at the apex
it is wide and thin.

When the stapes moves into the cochlea, it causes fluid motion. The fluid pushed on the
cochlear partition, and because of the pressure equalizing properties of the round window,
the partition is set in motion. The motion travels from the basal end of the cochlea to
the apex, generating the so-called traveling wave, whose propagation is determined by the
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Figure 1.2: Cross section of the cochlea. Basilar Membrane (BM), inner hair cell (IHC)
and outer hair cell (OHC).

mechanical properties of the cochlear partition and the surrounding fluid moving with it.

The stiffness of the cochlear partition decreases from the oval window to the apex of
the basilar membrane. The cochlear partition also shows damping effects and inertia,
mainly from the surrounding fluids moving with the membrane. All together the cochlear
partition exhibits a resonance behavior, with a resonance frequency that grades from
base to apex. A resonance frequency corresponds to each location along the cochlea (the
characteristic location of the frequency). A wave with a frequency that is the same as the
resonance frequency (characteristic frequency, or CF) reaches its maximum amplitude,
looses its energy and quickly diminishes. Waves with lower frequency will propagate
further. This is the famous “traveling wave” model, as measured by [ |. The
traveling wave model is the foundation of the tonotopic decomposition of the incoming
sound signal.

The mechanical signal is then processed by auditory nerve fibers into discrete spike trains,
which are transmitted further to the brain for neuronal processing. A detailed explanation
to the mechanism of human hearing system can be found in Section 1.4.

1.2 Speech Recognition

The highly complex auditory system serves several critical missions, among which speech
perception is probably the most important one. Therefore it is only logical that we chose
speech recognition as a criterion to evaluate our auditory model qualitatively.

Automatic speech recognition system shares the basic procedures and mechanism of hu-
man beings. In essence, ASR systems, like human beings, rely on a parametric model
where knowledge can be gained by parameter tuning. Parameters are set to recognize
the model which represents a certain phenomena in the most accurate way |

, |. Human beings process information with very large biological neural net-
works where the parameters are stored in the connections, while ASR implements much
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simpler Hidden-Markov-Models or artificial neural networks.

There are several basic steps involving in an ASR system: initialization, training and
recognition. At the beginning, the ASR system must be initialized. For ASR using
based on HMM, initialization includes defining the HMMs’ structures and estimating
the starting values of HMM parameters. In a second step referred to as “training”, the
model gains knowledge by repeatedly “observing” examples of the objects to recognize,
i.e. acoustic sounds and their associated meaning (transcripts). The larger the number
of repetitions of training, the more accurately the model reflects real examples of speech.
The training process resembles the early ages of human beings.

In the recognition step of the ASR, strings of words/alphabets are associated to speech.
Recognition is performed seeking the string of words/alphabets that best match the acous-
tic observations based on the available model. For humans, recognition consists of associ-
ating speech to the related concepts and it is reasonable to assume that the brain performs
a similar procedure as the ASR system by searching for the best match.

The recognition accuracy basically depends on the quantity of the training material ob-
served by the model and by the capability of the model to continuously “absorb” knowl-
edge, i.e. progressive training or adaptation, etc. Human brains fundamentally outper-
form ASR systems in two aspects: the models of ASR systems are far simpler than the
part of the brain dedicated to speech recognition; human brains learn new knowledge
years by years and adapt to new scenarios continuously, an ability which the ASR system
can’t even get close to. For this reason, ASR system only provides a primitive analog to
the human brain. Some experts argue that ASR performance maybe comparable to that
of a two-year-old child | , |. Nevertheless, ASR system provides an ef-
ficient tool for qualitatively assessing the coding strategy of the modeled auditory system,
compared to methods that only look into certain well-defined properties of speech, such
as formants | , ]. Furthermore, the training procedures of ASR
systems are improving, training material is increasing, and more complex HMM models
are becoming feasible. Thus in future years, ASR will definitely grow “older and older”
in performance with respect to the capabilities of a two-year-old child.

1.3 Information Processing

We used information theory| : ] to quantitatively analyze the audi-
tory system, as a complement to the qualitative approach of automatic speech recognition.
Automatic speech recognition is a meaningful but indirect indicator in evaluating the audi-
tory system, mainly because not only the auditory system, but also the recognizer could
influence the performance. At the mean time, the largely complex recognition system
prevents any direct quantitative conclusion. Another limitation of the speech recognition
system is that it operates at low temporal resolution (usually 10ms). Therefore it fails
to provide insight to the temporal property of the auditory system, which utilizes high
dimensional and sparse spike trains which are accurate in time to transfer information.
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Information theory plays an important role in this part of my thesis. At the methodologi-
cal level, we used the important quantities of information theory — such as entropy, mutual
information, and redundancy — to quantify the properties of the stochastic neural activ-
ity. More importantly, information theory provides a conceptual framework for thinking
about principles of neural activities. The search for design principles that govern the pro-
cessing of sensory cells, was boosted by the appearance of Shannon’s information theory.

[ | suggested analogies between sensory systems and communication chan-
nels, which gave the ground for postulating optimization principles for neural circuits.
Several researchers discussed generic principles that could underlie sensory processing
[ , , , , , ], among which the information maximization
and redundancy are worth to be mentioned here.

The information maximization principle (InfoMax) was put forward by Linsker | ,

, |, suggesting that a neural network should tune its circuits to maximize the
mutual information between its outputs and inputs. Since the network usually has a
prefixed architecture, this leads to a constrained optimization problem for any given set
of inputs.

Redundancies in sensory stimuli were put forward as important for understanding per-
ception since the very early days of information theory. Barlow’s specific hypothesis
[ , , , ,b] was that one of the goals of a neural system is to ob-
tain an efficient representation of the sensory inputs, by compressing its inputs to achieve
a parsimonious code. During this compression process, statistical redundancies that are
abundant in natural data are filtered out such that the neural outputs become statistically
independent. This principle was hence named Redundancy Reduction.

Barlow further suggested [ , ] that the actual goal of the system is rather re-
dundancy exploitation, a process during which the statistical structures in the inputs are
removed in a way that reflects the fact of how the system uses it to identify meaningful
objects and structure in the input. These structures are later represented in higher pro-
cessing levels, a process that again yields a reduction in coding redundancies of higher
level elements. For example in speech signals, pitch frequency is one of the meaningful
structures as mentioned above.

1.3.1 Representation of Neural Signals

Estimating mutual information (MI) from empirical distributions is a difficult task, in
particular with the small sizes of data available. A naive approach to this problem would
be to estimate the joint distribution of stimuli versus all possible neural responses, and
then to estimate the mutual information of this high dimensional distribution. Unfortu-
nately this approach is always bound to fail due to the richness of neural responses. For
example, a typical pyramidal neuron in the cortex fires spikes that should be measured
with a temporal resolution of 1-4ms | , |, and can thus produce in
theory at least 220 different spike trains in a single second. Since a robust estimation of
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a probability density function requires obtaining many samples relative to the number of
possible responses, this approach is doomed to fail.

The crucial observation is that MI estimation does not require estimating the full joint
distribution of stimuli and responses. One reason is that the set of functionally dis-
tinct neural responses is much smaller. And the other reason is that mutual information
is a scalar function of the distribution, which actually averages the log-likelihood ratio

log p?i”)”[’)?@) over all 2’s and y's. Its estimation is therefore expected to be more robust

than the estimation of the distribution itself | : .

The estimation of MI from a finite sample involves an important tradeoff between the
reliability of estimation and model complexity with which we represent the output of the
neurons. If we could represent the neural output with a low dimensional signal, it is
obviously easier to get an accurate estimation of its probabilistic density function and
thus a better estimation of the MI. However, any representation of the neural output
which reduces the dimensionality leads to a loss of mutual information as indicated by
the data processing inequality | , ].

The challenge in MI estimation is therefore to find low complexity representations of spike
trains that are still highly informative. This makes it possible to obtain both a high level
description and a reliable estimation of the information they convey. Therefore we will
try to reduce the dimensionality of the experimental data for the calculation of mutual
information.

In practice, a lot of techniques have been developed to represent neural responses with low
dimensionality, each focusing on a different aspect of spike trains. These specific methods
for transforming spike trains into low dimensional representations are | , ):

1. Spike counts

Spike counts weighted by inter-spike-intervals
First spike latency

Spike patterns as binary words (direct method)

Legendre polynomial embedding

A AT o B

Second order correlation between spikes

Among these six different methods, the direct method and first spike latency achieve
the maximum information [ : |. In this thesis, we used the direct method to
calculate mutual information. We temporally downsampled the spike trains (digital form)
and used time to represent each spike, a process that we later referred to as “binning”.
We used this low dimensional representation of neural responses to keep the accurate
information about spike timing, as the timing of individual spikes may represent the
basic mechanism of information transmission along the neural pathway. Theoretically,
this representation will perfectly preserve the information carried by spike trains if the
time we used to represent spikes is continuous (in this case, the dimensionality does not
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decrease at all). In our calculation, we used various temporal resolutions to represent
spike trains. Therefore, the dimensionality of spike trains is reduced, and as a result, part
of the information gets lost.

This representation approach is essential in evaluating temporal properties of the neural
system. Input and output of the neural system can be represented with variable tempo-
ral resolutions. By comparing the mutual information that was transmitted using each
temporal resolutions, we gain insight about the temporal properties of the neural system.

1.4 Model of the peripheral auditory system

Previoisly, our group has developed an inner ear model which codes audio signals into audi-
tory nerve action potentials. The details of the modeling is described in detail in

[2007], [2009]. This section provides a brief introduction to the
model. Improvements which were introduced for this thesis are described in Chapter 2.

1.4.1 Quter ear, ear canal and middle ear model

The model includes a simple joint model of outer ear and ear canal. The model is im-
plemented as a transfer function from free field sound pressure to sound pressure at the
car drum. It is closely related to the head related transfer function (HRTF), which is
very important for sound localization | , |. The transfer function simulates
the pinna effects and ear canal resonance which mainly amplifies frequencies around the
second and third formants. Therefore, including the outer ear and ear canal has impor-
tant implications for how well the speech spectrum is encoded in the auditory nerves.
In Chapter4 and Chapter 5 where we performed ASR tests and information calculation,
we included the outer ear and ear canal model. However in this section where the model
output was compared with physiologic measurements, the outer ear and ear canal was not
included, since physiological measurements usually report responses to stimuli presented
directly at the ear drum.

A high-pass filter (first-order filter, corner frequency: f. = 1 kHz) mimics the transfor-
mation of sound pressure into the vibration velocity of the ossicular chain. Modeling the
middle ear transfer function as a high-pass function, rather than a band-pass function
which is usually the case, was motivated by the findings of [ ,

]. [ | argued that the high-frequency cut-off of the living
middle ear transfer function occurs at frequencies above what is relevant for the audio-
gram. Thus, it has only limited effect on the cochlear frequency analysis and was not
included in the present model.
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1.4.2 Inner ear hydrodynamics

The hydrodynamical inner ear model is based on a transmission-line model of the inner ear
[ ) |. The transmission-line provides a one-dimensional solution of the passive
inner ear hydrodynamics | , , , , :

, |. The electrical equivalent circuit of the mechanical model (using a mobility
type acoustical analogy) is shown in Figure 1.3b. Each resonator ¢ models the damped
mass-spring-system of a portion of the basilar membrane. The model is discretized in
equidistant spaced intervals Ax along the length of the cochlea. The distance from the
stapes is denoted by x. Any parameter Z described below takes a value Z; = Z(i- Ax) as
a result of the descretization. A detailed physical interpretation of the electrical entities
in Figure 1.3 can be found in [1985]. Here it sufficed to simply state that the
inductances L; are linked to acoustic mass, the capacitors C; to volume compliance, and
the resistances R; to acoustic resistances of a section of the fluid-loaded basilar membrane.
L.; describes the coupling of adjacent cochlea sections by fluid mass (for a long-wave
model) and consequently varies with the area of the cochlear duct. Following the notation
of [ |, the other variables in Figure 1.3 have the following interpretations:

Jo volume velocity driving the inner ear
I; transversal basilar membrane volume velocity
J; longitudinal volume velocity of inner ear liquid

The purpose was not to do a parameter study, but to achieve pre-defined resonant fre-
quencies and filter bandwidths. The acoustic mass, and thus the inductance L(z), was
modeled to vary according to an exponential map (see , and ,

for details)

L(z) = iop - elLa2) (1.1)

The other free parameters are determined by maps of the desired resonant frequency and
quality factors. If the second-order resonators were unconnected, the compliance C(x)
could be calculated by

1 1
(27 fres(w))” L(2)’

where f,.s(x) describes a mapping between resonant frequency and place. The inter-
connection of sections however changes this relation. The value of C(x) was therefore
determined by an iterative procedure described below. The resistances can be calculated
from the quality factor @) (again for unconnected resonators)

O(z) = (1.2)

L(z)

R(z) = C@)

/Q(x) (1.3)

To adjust the hydrodynamics model to given maps fresnya(®) and Qpya(x) (compare
Sec. 1.4.4), Egs. 1.2 and 1.3 were used to calculate starting values. In five iteration steps,

10
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the resonant frequency of each location x was determined from the Fourier-transformed
impulse response. The value of C(z) was updated, and R(z) calculated from Equa-
tion 1.3. The resulting frequency map differed less than 3% from the given specification
at all frequencies above 150 Hz.

In a lossless cylindrical tube, the impedance of each section is described by a purely
inductive element, or mass term. Assuming a slow-varying cross-section area Agscqe(),

then
2pAx

L.(x) = ——— 1.4
( ) Ascalae (I) ( )
where p is the density of the scala fluids. The duct area is a logarithmic fit to a measure-
ment of the human cochlea scala areas | , R

Ascalae (l‘) - Ascalaeo : eAscalaez.z (15)

The helicotrema, a hole at the most apical part of the BM (Figure 1.3a), prevents the
buildup of static pressure across the BM and was modeled as an acoustic tube (Ly, Ry,

, 1970)

&nl 40l
77h_|_.w Plh

4

Zp = Ry + jwlL, = 5

(1.6)

where r, is the radius of the helicotrema and [, the length of the acoustic tube. The
volume velocity in front of the stapes, modeled as an ideal current source, drives the
model:

JO (t) = Ustapes (t) ' Astapes (17)

The displacement of the basilar membrane, xpaspya(2), can be derive form the pressure
(Uc(z,t)) across each sections’ volume compliance C(x)

Uc(z,t) - C(x)
Ax - wpy (z)

LM hyd(®, t) = gpm () (1.8)

where
wpym(z) = wppro - EM=TE (1.9)

is the width of the BM and gpjs a correction term. The exponential fit to the basilar
membrane width was inherited from [1980] and [1985].

Compression Model

Inner ear hydrodynamics only explains basilar membrane vibrations in a passive (dead)
cochlea or in a healthy cochlea at high sound levels. At low levels vibration amplitudes
are amplified by as much as 60-80dB and filter shapes are much sharper [see

, for a recent review|. This section introduces the phenomenological model
of the mechanism often referred to as the “cochlear amplifier”, which also provides large

D Data is available online at http://oto.wustl.edu/cochlea/mrhmvol.htm
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Figure 1.3:

12
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(a) Schematic figure of inner ear hydrodynamics. (b) Electrical equivalent
circuit (mobility type acoustical analogy). All sections take the form of second-
order resonators (L;, C;, R;), which are coupled by fluid inertia L.;. Sound
signals are injected by a volume velocity source (.Jp) into the transmission line,
which is closed by the impedance of the helicotrema (modeled as an acoustic
tube, Ly, Ry). (c) The electrical circuit representation of the phenomenological
nonlinear “amplification” and compression stage consisting of four resonators
showed for one section only. The first stage is driven by BM displacement
xo; derived from Ug; in the transmission line model. Three additional stages
are driven by the output of the previous stage. The compressed output is
available at the last stage (z4;). All parameters Z take values Z; = Z(i - Ax)
as a result of the longitudinal discretization.
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dynamic compression. Although the model is purely phenomenological and implemented
with time-varying filters, it uses a feedback-loop that is inspired by the functionality of
the outer-hair cells.

The basic idea behind the implementation is that the quality factor (Q-factor) of a second-
order resonator (Figure 1.3c) provides “amplification”? at the resonant frequency. Vary-
ing the Q-factor changes both output amplitude (predominantly close to the resonant
frequency, where amplification is proportional to the Q-value) and filter bandwidth; the
higher the Q-value (and thus the amplification), the narrower the filter bandwidth. The
benefit of using passive resonators instead of an active mechanism, as is probably the case
in the living ear, is stability. Many auditory models with compressive nonlinearities use
the same general idea, either in models of inner ear hydrodynamics [e.g., , ,
, ] or in banks of auditory-like filters [e.g., , ,
, , , ) , |. The original model of
[ | only changed the Q-factor of the serial resonators R;, L; and C; in Figure 1.3 by
varying R;. To achieve amplification of 60dB, a Q-factor of 1000 is required, implying
an extremely narrow filter with excessive ringing. The model proposed by Strube could
therefore only achieve much smaller amplification/compression. To achieve both large am-
plification and filter shapes as observed in physiological measurements, four®) resonators
were connected in series to the hydrodynamics model.

The “compression resonators” are shown in Figure 1.3c. The input is displacement calcu-
lated for the linear hydrodynamics model (xo(x) = xpam nya(z)). For each location z, the
values of Leo(z) and Ce(x) are fixed and equal for all four resonators. Thus the resonant
frequency is approximately constant and determined by

1 1
fCFcompr(x) - % LC(;L') . CC(;L')’

The modulation of the resonator’s Q-value is realized by the time varying resistance
Rey(z,t), where n is the resonator number (from 1 to 4). The four resistances Ry (z,t)
to Rey(z,t) vary independently from each other and give the resonators Q-values

Qn(z,t) = | égg;/RCn(x,t) (1.11)

The long-wave approximation to the one-dimensional solution of the inner ear hydrody-
namics, which forms the base of the model, is known to have too shallow high-frequency
slopes | , |. The resonators in Figure 1.3c have frequency responses that are
flat at low frequencies and have -12dB/oct slopes well above their resonant frequency.

(1.10)

2) Note that “amplification” only means an increased voltage at the resonator’s output compared to its

input voltage and not power amplification. When referring to “amplification” in this section, we mean
this passive amplification of amplitudes.

3) Using four resonators is somewhat arbitrary, but provided a good compromise between maximum
compression and filter shapes.
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Figure 1.4: Schematics of one “compression resonator” (compare also Figure 1.3c).

Thus, by using such resonators the combined BM model has a below-resonance behavior
determined by the hydrodynamics model, an above-resonance slope sharpened by the four
resonators, and a level-dependent bandwidth at the resonant frequency.

The schematics of one compression resonator is shown in Figure 1.4. The output of
each resonator z,(x,t) (compare Figure 1.3¢c) is rectified and passed through a first-order
Boltzmann function (normalized to the range [0, 1]), mimicking the transduction process
of the outer hair cells:

1
zoa(et) =2+ (1= T o) (1.12)
sp(x) is a parameter of the model that determines where saturation sets in. The com-
pression model is constructed so that each resonator (n = 1...4) compresses a part of the
model’s total dynamic range. The absolute value of the displacement |z, (z,t)| is used
in the Boltzmann function, because the quality factor of the resonator should decrease for
both positive and negative deflections. zp,(z,t) is low-pass filtered to obtain zpp,(x,t)

aZLPn(xa t)

o = zgn(z,t) (1.13)

ZLPn(l'v t) + TZB
(first-order low-pass filter with corner frequency f. = 800Hz). The outer-hair cell mem-
brane properties motivates this step, and in the model it reduces harmonic distortions.
Finally, the value is transformed into the instantaneous Q-value of the resonator. The
Q-value of each resonator is calculated from

Qn(z,t) = (Qmaz(®) — Qmin()) - 2P n(T, 1) + Qumin() (1.14)

in each time step. The value of Q.. (x) determines the maximum amplification and
the filter bandwidth at low levels. The ratio of Qua.(z) and Qi (z) determines the
maximum compression (in dB) as

Grompr () = 20log (M) (1.15)

since we used four resonators. The value of R¢,(x,t) finally, is derived from Equation 1.11.
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Figure 1.5: Schematics of the inner hair cell model.

1.4.3 Inner Hair Cell Model and Synaptic Mechanisms

The inner-hair cell and the auditory nerve model is adapted from [2002].
In this section we gave a short description of the model. We also described the modeling
of inner hair cell and auditory nerve in Section 2.2 in more detail. A thorough description
of the model together with parameters can be found at [ ].

Figure 1.5 shows the schematics of the model. Basilar membrane vibrations cause fluid

motions which in turn drive the hair bundles (HB) of the inner-hair cells (IHCs). As a first

approximation, fluid friction and HB stiffness form a first-order high-pass filter, i.e. HB

displacement is proportional to BM velocity at low frequencies and to BM displacement at

high frequencies. HB motion is scaled due to the geometry of the organ of Corti | ,
], which is modeled by introducing a lever gain gy p(z).

Ozxpp(z,t) 0xy(z,t)
ot ot

Both lever gain and corner frequency of the filter vary with cochlear location.

$HB<I,t) + THB(LE) = gHB<ZE) . THB(x) (116)

The deflection of the hair bundle opens ion-channels at their tips. Channel open probabil-
ities were modeled as a second-order Boltzmann function. Cations (mostly KT) enter the
cell which in turn rises the cell’s receptor potential (RP) — the cell membrane depolarizes.
The electrical properties of the membrane were modeled by a first order low-pass filter
with a corner frequency of approximately 1kHz | , ].

Voltage-dependent calcium channels are located close to the cell’s synaptic terminals.
Ca?T-channel activation follows a first order Boltzmann function. Elevated Ca?*-
concentration causes transmitter release (TR). The probability of transmitter release
prr is proportional to the cube of Ca?*-concentration. By varying sensitivity and thresh-
old for transmitter release probability, we modeled different fiber types | ,
].

Transmitter release drives a model of presynaptic transmitter depletion. Transmitter in
the vicinity of the synaptic region (the so-called readily releasable pool, RRP) is released
into the synaptic cleft. The RRP is refilled by transmitter recycled from the cleft and
newly produced transmitter. A large stimulus causes a transmitter release rate that is
higher than the refill rate, thus depleting the RRP. Due to the depletion, the transmitter
release (TR) into the synaptic cleft is reduced for the following few tens of milliseconds,
an effect known as adaptation. A quantal and stochastic process models the release of
transmitter into the synaptic cleft.

15
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A single quanta of transmitter is enough to trigger a spike in the auditory nerve. The
spike generation depends on transmitter release and a refractory term. An ANF can not
fire twice within a shorter interval than 0.75 ms (the absolute refraction time), and after
this time the probability for a spike is lowered for several tens of milliseconds (see

, 2002).

1.4.4 Replication of Human Data
Frequency Map

The resonant frequencies of the compression resonators were adjusted to match the char-
acteristic frequency (CF, the frequency which excites a cochlear location maximally at
threshold levels) of a modified Greenwood map of the human cochlea | , ).
The original Greenwood map covers frequencies between 0 Hz and 20 kHz.

[ | compared high-frequency cutoffs of audiograms (defined as the frequency
for which the audiogram threshold was 20dB over minimum threshold) and the high-
est CF's predicted by cochlear place-frequency maps for several species. They concluded
that the high-frequency limit of hearing is to a large extent determined by the the highest
CFs. The high-frequency cutoff of the human audiogram | , ] is approximately
15kHz. Therefore the Greenwood map was adjusted to cover a range from approximately
50 Hz to 15 kHz.

Filter Bandwidth

A common measure of frequency selectivity in psychoacoustics is the equivalent rectan-
gular bandwidth (ERB), often expressed as a quality factor Qgrp (resonant frequency
divided by filter bandwidth). Recent measurements | , ,

, | as well as model studies | , | have shown that suppression
effects cause an underestimation of auditory filter Qgrp. Suppression can be minimized
by using a forward masking paradigm. (However, see , , for a
different view.) [ | measured Qgrp at low sound levels in forward
masking notched-noise experiments. For frequencies between 1 and 8 kHz the relationship

fC 0.27
=11 —2¢E 1.1
Qers (1000 Hz> (1.17)

(for in Hz) fitted their data well. Another conclusion was that the tuning of human
auditory filters appear to be much sharper than previously believed [e.g.,

, ]. We extended Equation 1.17 to the whole frequency range modeled and
adjusted Qnaz(z) of the resonators in the compression model (Equation 1.14) for the
model to obtain this bandwidth. The resulting Q-values varied from Q,q.(z = 0) = 11.2
t0 Qmaz(r = 3bmm) = 2.38. Q. was set to 1 independent of location, resulting in a
compression ranging from 84 dB for the highest CFs to 30 dB for the lowest.
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The hydrodynamics model was tuned to achieve Q34 values increasing from 1 at the
lowest CFs to 3 at high CFs according to

0.19
Qnya(r) = 1.94 (ﬁ“gﬁﬁ?) (1.18)

which results in a Q104 varying from approximately 0.5 to 0.9.

The correction term gpj; of Equation 1.8 was needed to achieve physically realistic BM
displacement and match the threshold of the IHC model. In the present model, ggu,
equals to 0.025 independent of location, which can be at least partly attributed to an
overestimation of the sensitivity of the passive hydrodynamical model. Potentially, a
location-dependent gpps(x) could be useful for adjusting thresholds of models of individual
listeners, or refining models of hearing impairment.

Compression

Measurements of BM vibration in the base of the cochlea have shown very large compres-
sion at moderate and high levels [reviewed in , |, with average
growth rates as low as 0.2dB/dB. Input-output functions appear to be linear at levels
below 20-30 dB. For apical locations, compressive growth has been found in the chinchilla
cochlea, with growth rates in the range of 0.5-0.8dB/dB | : .

BM compression can also be estimated from psychoacoustic masked threshold experi-
ments (for a review see : ). Several recent papers [e.g.,

, , , , , ] have estimated
cochlear compression from temporal masking curves (TMC) and avoided the assumption
that growth is linear for frequencies well below CF, which was generally assumed in pre-
vious work. [ | found compression in the range between cube
root and fifth root for frequencies between 500 Hz and 8 kHz. [ ] con-
cluded that there is compression of about 0.2-0.3dB/dB at low CFs (250 Hz), and that
the compression at low CF's is less frequency selective. [ ] found
a compression of 0.15-0.3dB/dB between 250 Hz and 4kHz with little difference across
frequencies. There is some controversy over whether the masked threshold experiments
reflect compression of BM responses or a combination of cochlear mechanisms and com-
pression at higher processing stages in the auditory system. Through comparisons with
distortion product otoacoustic emissions, [ | concluded that, at
least for CF's above 1kHz, their measurements reflect cochlear compression.

The compression model is constructed so that each resonator (n = 1...4) compresses a part
of the model’s total dynamic range. The values of the parameters s, (x) in the compression
stage (Equation 1.12) determine the range where the model acts compressively; the rela-
tive position of the four parameters (sg...s,), together with the maximum compression
Geompr(), determine the slope of the growth function. The value of s,(x) corresponds
approximately to the displacement that causes the Boltzmann function (Equation 1.12)
to be 50% activated. The saturation parameter s, was set to 2.0 - 10~®m independent of
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location. The other saturation parameters were calculated dependent on the maximum

amplification:
54

— 1.19
5 =56 Q1) 19
so and s3 were set at uniform distances on a logarithmic scale between s; and sy:
2/3
So(T) = 84 - (81> (1.20)
S4
1/3
s3(x) = s4 - (81> (1.21)
S4

The resulting model exhibits between approximately third-root (low CFs) and fourth-root
(high CFs) compression (compare Sec. 1.5.1 and Figure 1.7).

Hair-Cell Parameters

The fluid filter (the coupling between BM and HB motion, Equation 1.16) had a corner
frequency increasing from 200 Hz at apical sites to 2kHz at basal sites

1 1
" 272000 Hz - 10-*/Lsnm

The decreasing corner frequency is motivated by the stiffer IHC stereocilia found in the
basal part of the cochlea | , ]. The stereocilia lever gain was ap-
proximately 16 dB at the highest CFs modeled | , |, but reduced with
decreasing CF according to

forld ) (123)

gnp(w) = 2.63 <1000H

giving no amplification at the lowest CF. The lever gain affects the threshold of the
auditory nerve fibers. All other parameters were adopted from [ ).
High-, medium- and low spontaneous rate fibers used the parameters of fibers H2, M2,
and L2, respectively as suggested by [ ].

1.5 Model Results

1.5.1 Filter Shapes

Figure 1.6 shows BM sensitivity as a function of frequency for two locations along the
cochlea. Sensitivity is given as BM displacement over sound pressure level in front of
the ear drum (nm/Pa). Sensitivity is largest at the characteristic frequency (CF), and
varies greatly with level at CF. For a linear system all curves would be identical. The
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Figure 1.6: (Left) Modeled BM sensitivity as a function of frequency for BM loca-
tions 9.2mm from the base (CF 5kHz) and 3.2mm from the base (CF
10kHz). (Right) Sensitivity measurements from a chinchilla cochlea (CF

10kHz, 3.5mm from the base) from [1997] and guinea pig
(CF 17kHz, basal site) from [ ]. (The figure was taken
from , .) Sensitivity denotes the BM displacement,

relative to sound pressure in front of the eardrum. The model exhibits a
boost in sensitivity at low stimulus levels and a level dependent shift in CF.
Tuning the model parameters to human psychoacoustic data results in sharper
frequency tuning and larger amplification in the modeled results compared to
animal data.

left panel presents modeled responses for a cochlear location with CFs of 5kHz (9.2mm
from the base) and 10 kHz (3.2mm from the base). The right panel shows measurements
in chinchilla (CF 10kHz, , ) and guinea pig (CF 17kHz,

, ). We modeled responses approximately one octave below the measured CFs
to better match the frequency range of the human model.

At high levels (100 dB), the model response is almost solely determined by the hydrody-
namics model since the amplification has saturated. The travelling wave growing slowly
from the cochlea base to the CF location causes the characteristic shallow low-frequency
slope of the inner ear filters (approximately 6 dB/oct). After the wave reaches its max-
imum at its characteristic location (CL), it diminishes sharply, resulting in steep high-
frequency slopes of the filters (approximately 140 dB/oct). At low levels, the compression
stage is amplifying the response and sharpening the frequency selectivity. The amplifica-
tion causes the filters to be almost symmetric near CF. To match human psychoacoustic
data (as discussed in section 1.4.4) the model was more sharply tuned than animal data
suggests, which manifests itself in more narrow-band responses at low levels. The CF
shifts almost half-an-octave towards lower frequencies with increasing stimulus level, in
agreement with several measurements [e.g., , , ,

|. The sensitivity of the passive response (high level responses, compression stage
saturated) is comparable to the guinea pig data, but considerably lower than the chin-
chilla data suggests (approximately -20 dB). The sensitivity of the model is tuned by the
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Figure 1.7: Modeled basilar membrane displacement—intensity functions for frequencies
according to legend. BM displacement (rms-values) was measured at respec-
tive characteristic location. The model exhibits strong compression in the
range above approximately 20 dB SPL. Compression varies from cube-root at
relatively low characteristic frequencies (exemplified by 200 Hz) to fourth-root

at high CFs.

correction term ggjs in Equation 1.8. The term was used to reduce the overall sensitivity
by 32dB (gpm = 0.025). [1998] showed that the (rate) threshold of the
auditory nerve fibers in chinchilla correspond to a BM displacement in the order of 1nm
(0.26 nm for a HSR fiber and 2.7nm for a MSR fiber). The model of synaptic process
between inner-hair cell and auditory nerve has a threshold of approximately 0.5nm. The
gpum term was needed to adjust the modeled BM displacement at human hearing threshold
intensities to the AN threshold.

Figure 1.7 illustrates BM displacement—intensity functions for 6 different frequencies, all
measured at their respective CL. At low levels (below 20-30 dB SPL) the growth is approx-
imately linear. This is in agreement with physiological measurements in several species
e.g., , , , ] and psychoacoustic findings [e.g.,

, , , ]. At medium levels (30-80dB), the
compression varies between approximately cube-root (1/3dB/dB) at a CF of 200 Hz to
fourth-root at a CF of 10kHz. At high levels, the growth functions become linear again
as the compression stage saturates. The level at which the growth function becomes
linear increases with increasing characteristic frequency. In the model this is partly be-
cause compression increases with frequency (Equation 1.15), and partly because of larger
shifts in characteristic frequency with level at high CFs. (Displacement-intensity curves
are measured at a fixed location along the cochlea.) From physiological measurements
(reviewed in , ) it seems that compression extends to at least
100 dB, but that linearization occurs at high levels.

Figure 1.8 shows auditory-nerve threshold tuning curves (TTC) for six HSR AN fibers
with different CF's. To facilitate a comparison with human auditory thresholds, the simple
model of the outer ear and ear canal was included for the present figure (see Section 1.4.1
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1.5 Model Results
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Figure 1.8: Modeled auditory nerve threshold tuning curves for five high spontaneous rate
fibers with locations along the cochlea as indicated in the legend. A simple
model of the outer ear and ear canal was included in the model for these
calculation (see Section 1.4.1 ). Thin dashed line indicates the average best
threshold curves for the model without the outer ear and ear canal model.
The dotted line indicates human hearing threshold | : ]. For cal-
culating the threshold curves, we used a method where the threshold criteria
is defined as the spontaneous rate plus one standard deviation of the sponta-
neous rate | , |. Stimuli were pure tones with 250 ms duration
(responses measured over the last 235 ms) and level steps were 2dB. An “up-
down” process was used, where a threshold crossing had to be repeated twice.

for details). To calculate the TTCs, we used a statistically defined criteria for determining
the thresholds | , ]. The detection threshold was the level that caused
a firing rate higher than the spontaneous firing rate plus one standard deviation of the
spontaneous activity. The curves thus represent the auditory filters at lowest sound levels.
Q-values clearly increase with increasing CF (more basal positions in the cochlea). The
tail of the responses reflect the frequency response of the hydrodynamics model. The
model also exhibits harmonic distortions. These are most clearly visible for the 1kHz
and 2kHz TTCs, where the second subharmonics (333 Hz and 667 Hz respectively) elicit
stronger responses than adjacent frequencies.

The thin dotted line indicates hearing threshold of humans | , ]. The thin
dashed line indicates the averaged best-threshold curve (BTC, , ), the most
sensitive threshold tuning curves, of the model without outer ear and ear canal (i.e., the
way the model is used in the rest of this chapter).

The transfer function describing the ratio of sound pressure in front of the ear drum and
sound pressure of a plane wave in a free field has a maximum amplification of more than
15dB | , , , , see also Section 1.4.1]. The strongest
amplification occurs for frequencies between 2kHz and 5kHz. The simple model used
here does not quite reach that amplification. The increase in model thresholds at low
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1 Introduction

frequencies results partly from middle ear filtering and partly from the reduced coupling
gain between BM and the inner-hair cell stereocilia (compare Sec. 1.4.4). It should be
noted that the threshold curves in Figure 1.8 are rate threshold curves. At low frequen-
cies, where phase-locking is prominent, thresholds are likely to be 10-20dB lower than
a rate-threshold indicates [ , |. In summary, the model was designed to ap-
proximately match hearing thresholds when including a model of the external ear and
considering phase-locking effects.

1.6 Structure of the Thesis

The rest of the thesis is organized as following: In Chapter 3 we modeled the first neuronal
processing stage in the Ventral Cochlear Nucleus: the Onset Neurons. Onset Neurons re-
ceive input from Auditory Never Fibers (ANFs) and forward the information to higher
processing stages of the brain using discrete spike trains. Chapter 2 described a method
for improving the original model using a realistic offset adaptation, which is essential for
the proper functioning of the ONs. Improvements in the model were compared to experi-
mental data whenever possible. In Chapter 4, we harnessed the tool of automatic speech
recognition to qualitatively measure the information processing in the modeled inner ear
model. We used features extracted from different stages of the model and different speech
recognition engine for the speech recognition tasks. We showed how realistic auditory
modeling and the proper acoustical model could help to improve speech recognition per-
formance. Results were also compared with human performance to show the performance
gap. In Chapter 5, we used information theory to quantitatively evaluate the information
processing using our auditory model. Information theory estimates information carried
by the spike trains of ONs without making assumptions. It helped to explain at least
partially why there is still a big performance gap between automatic speech recognition
and human performance. Chapter 6 was an extension of the study in Chapter 5, where
we applied information theory on different types of neurons and analyzed their properties
from the perspective of information transmission.
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2 Offset Adaptation

Abstract?)

Recent pool models of the inner hair cell synapse fail to reproduce a silent period after
an intense stimulus. This has important consequences in the next processing step, the
cochlear nucleus which receives direct input from auditory nerve fibers (ANFs): Onset
Neurons in the ventral cochlear nucleus (VCN), modeled with a detailed Hodkin-Huxley
model [ ] do not reliably respond to amplitude modulated sig-
nals in the frequency region above 4kHz. An analytical method to achieve the desired
adaptation properties of the auditory nerve was implemented into the existing model of
the peripheral auditory system. The revised model produces more realistic offset adap-
tation in accordance with physiological measurements, while generating the same onset
adaptation. Analysis on the model output shows that the auditory nerve fibers of the
enhanced model fire more synchronously to the peak of the stimulus. The analysis of
the synchronization index showed that the model output was able to replicate the best
results from physiological measurements. Such output meets the criterion of preferable
input to onset neurons and leads to a considerable modulation gain (up to 40 dB) for these
cells. With this extension enabled onset neurons to extract amplitude modulations in the
high frequency range, providing important information about high formants in speech
signals. In conclusion, offset adaptation is an important feature of ANF responses which
is essential for neuronal processing of auditory signals by onset neurons in the VCN.

D' A modified version of this chapter has been published in Interspeech 2008 | , ]
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2 Offset Adaptation
2.1 Introduction

Onset Neurons (ONs) located in the first neural processing stage after the inner ear and are
known for their distinct temporal processing capabilities. They receive neural stimulations
from the auditory nerve fibers and relay the information to further processing stages in
the brain (see Figure2.1). The onset neurons in our system used a single compartmental
model including four major Hodgkin-Huxley type icon channels, with parameters taken
from Rothman and Mannis | : |. We corrected conductances and
time constants to a body temperature of 38° and solved the differential equations in the
time domain. Analysis of ONs using reverse correlation techniques show that ONs respond
preferably to stimulus onset while cease to fire at stimulus with a constant intensity. In
natural speech processing, ONs enhances the periodicity of voiced speech by very reliably
extracting the pitch frequency of the speaker. In Chapter3 we will describe the onset
neurons in great detail.
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Figure 2.1: Schematics of the auditory model. The model exhibits 100 frequency channels,
which are coded by multiple ANFs. A single VCN neuron is excited by ANF's
originating from a distinct frequency channel.

One of the most critical processing steps during auditory sound processing occurs at the
inner hair cell (IHC) synapses: here the mechanically pre-filtered analog sound signal is
converted into discrete nerve action potentials which propagate along the auditory nerve
fibers (ANF) to the brain. This conversion induces massive information loss — or to phrase
it positively — information reduction. As any information lost during this process is no
longer available for neuronal processing, it is important to understand and model the
underlying principles correctly.

Physiological studies have shown that the auditory nerve response to a constant intensity
stimulus is typified by very strong firing at the stimulus onset, and a very rapid decline
shortly after the onset, which then slows down over several tens of milliseconds. After
the stimulus offset, auditory nerve fibers remain silent for a short time and then recovers
slowly to its spontaneous activity (Figure 2.2).

However, the ITHC-AN model from Meddis previously used in our peripheral auditory sys-
tem failed to reproduce offset adaptation. Therefore, phase-locking to the input stimulus
and to amplitude modulations was not sufficient. As a result, ONs in the cochlear nucleus
hardly fired at frequencies above about 2 kHz.
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2.2 Modeling IHC-AN Synaptic Adaptation
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Figure 2.2: Schematic diagram of the response of AN fiber to a tone burst |

: J.
2.2 Modeling IHC-AN Synaptic Adaptation

The characteristics of IHC-AN synaptic adaptation depend on stimulus intensity, duration
and previous stimulation history. Adaptation observed at the onset of ANF responses to
a tone burst is explained by the depletion of synaptic vesicles in a pool close to the release
site (immediate store, Figure 2.3) in the afferent synapse. The observed time course in
the firing rate of ANF responses to tone bursts can be characterized by two exponential
components | : ] (see Figure 2.2):

Rop = Agus + Ave /0 4 Ay e t/sT (2.1)

where A, and A,; are the two exponential components of rapid and short term adaptation,
Tr and Tgr are the respective decay time constants, and A,,, is a steady-state component.

Offset adaptation can also be described with an exponential recovery component with
different time constant than the onset, after a “dead-time” period:

0; t<0

(1= e t=t)im). ¢ > ¢ (2.2)

Rops(t) = { A

sp

where A, is the spontaneous rate, ¢, is the dead-time period, and ¢, is the recovery time
constant of the offset adaptation.

Given the diversity of auditory nerve fibers with different adaptation properties and the
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2 Offset Adaptation

complexity of the synaptic adaptation, it has been a challenging task to model the synap-
tic dynamics successfully. In the peripheral auditory system that we showed in Section 1.4,
we implemented a pool model as proposed by Meddis [ , , |, which very
successfully describes the adaptation characteristics of auditory nerve fibers to some ex-
tent.

immediate | XW(t) ( reprocessing
store (q) store (w)

synaptic
lc(t) cleft (c)

Figure 2.3: Schematics of the IHC-AN model. The immediate store (¢) (maximum size:
M) is refilled both by the global pool at a rate of y[M — ¢(t)] and by the
reprocessing store (w) at a rate of zw(t). The transmitter in the synaptic
cleft (c) is either lost at a rate of lc(t) or recycled at a rate of rc(t) into the
reprocessing store.

The model proposed by Meddis has three neurotransmitter reservoirs which are specified
by the synaptic transmitters in the reservoir and arranged in a circle: the immediate
store (q), the synaptic cleft (c), and the reprocessing store (w)(see Figure 2.3). The
model output is proportional to the rate of transmitter release from the immediate store
(q) to the synaptic cleft (c¢), given by k(t)q(t), where k(t) is the only stimulus dependent
variable in the Meddis model. k() describes the fusion rate of synaptic vesicles (mediated
by C'a®-influx into the cell) which is usually specified as a function of intracellular inner
hair cell voltage | , ]

The immediate store q (maximum size: M) is refilled both by the global pool at a rate
of y[M — q(t)] and by the reprocessing store (w) at a rate of zw(t). The transmitter in
the synaptic cleft is either lost at a rate of lc(t) or recycled at a rate of re(t) into the
reprocessing store.

These replenishment and release of the neurotransmitter can be described with the fol-
lowing equations:

U (M — g(0)) + ut) — k(t)al) (2:3)
B~ k() ~ 1+ r)elt) 24)
Oﬁ;: = re(t) — zw(t) (2.5)
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2.2 Modeling IHC-AN Synaptic Adaptation

These equations can be transformed into the Laplace domain (Equation 2.6) and solved
analytically, with a high-frequency tone burst as the stimulus input, wherein the IHC
voltage is assumed to be constant after the onset (denoted as ky). For more details please
refer to the paper from [2005].

(sq(07) +yM)(s+z)(s+1+7r)+c(07)ras+ w0 )zs(s+1+7)

Q(s) s(s+x)(s+y+k)(s+l+71)—koras (2.6)
the resulting characteristic function of ¢(¢) can be represented by
Q(t) _ (I)O + (I)le—t/n + (I)Qe—t/'rz + (I)ge_t/T3 (27)

where —1/7; are poles of Q(s). The values 7; and ®; can be calculated from Q(s) directly.

Equations 2.6 and 2.7 can be further simplified and the following result was given by
Zhang et al.

q(t) = ) + e V™ 4 et (2.8)

The simplified equation generates indistinguishable results as long as (I+7r) > 5000, which
can be always guaranteed as [ + r used in the Meddis model were usually greater than
15000. The simplified equation provides an accurate description of the Meddis model.
Equation 2.8 has two exponential components with different time constants which are the
same as in Equation 2.1.

Therefore, the response of the model to a stimulus with constant intensity can be de-
termined analytically. Then, the relationship between model parameters and adaptation
characteristics can be established. For a stimulus with constant intensity, these two groups
of parameters can be derived from each other in a mutual fashion. Thus any desired adap-
tation responses can be achieved using appropriate parameters, and vice versa.

An underlying assumption of the model is that all model parameters are constant, except
the stimulus dependent permeability k(¢). The model parameters are derived from adap-
tation parameters at a given level (a medium or high level for high-spontaneous-rate fibers
and a very high level for low-spontaneous-rate fibers). The adaptation characteristics then
change with the stimulus-dependent parameter k(t) accordingly.

There has been less attention paid to the modeling of offset adaptation at the THC-
AN synapses. As there is no further data available which characterizes the dynamics of
offset adaptation, we choosed to apply identical parameters, e.g. the same characteristic
function for both onset and offset adaptation.

Physiological studies suggest that AN fibers with medium- or high-spontaneous rate usu-
ally stop firing immediately after the offset, and recover slowly after the dead-time period
with a time constant longer than the short time adaptation. However, the offset adap-
tation property of Meddis model is limited by the model structure. Since ¢(t) can not
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2 Offset Adaptation

be negative in Equation 2.8, the amplitudes of ®| and @) are limited by ®{. The rapid
component of the model recovery function causes the synapses to recover very quickly
after stimulus offset.

In order to achieve a more physiologically consistent offset adaptation, a shift value Agp; s
was added to allow for negative rate at signal offsets. In a next step negative outputs are
set to 0, which represents the dead-time period. Therefore, the characteristic function of
the output becomes:

R(t) = max[k(t)q(t) — Asnist, 0]; (2.9)

In order to keep the onset adaptation unchanged, the synaptic output becomes:

k(t)Q(t) = Ry + Ashift
= Ashift + Asus + Are_t/TR + Aste_t/TST (210)

We then re-calculated parameters of the model for the new adaptation parameters and
subtracted Agp; s from k(t)g(t) to get the output of the pool model, as in Equation 2.9.

Thus, by including this shift, the same equation can be used to represent the onset and
offset adaptation in the model. In summary, the new model achieved the desired offset
adaptation while keeping the onset adaptation untouched.

2.3 Results

The modified IHC-AN synaptic model produces the same onset adaptation but with a
physiologically more realistic offset adaptation (see Figure 2.4). The time constants of
rapid adaptation and short term adaptation are 1ms and 54.7ms, respectively. Fig-
ure 2.4 compares the traditional and enhanced model of adaptation with physiological
data. Traditional adaptation models only show a depression of spontaneous activity and
an exponential recovery after a tone burst. For the enhanced adaptation model, ANF
responses were silenced during the dead-time period after signal offset and then slowly
recovered to spontaneous activity, in accordance with physiological experiments |

]2

Y

An important property of the output spike train from the ANFs is the synchronizing
or phase-locking of the spikes to sinusoidal waves, defined by the synchronization in-
dex | , ]. We recorded the phase relation between the stimulus
and the output spike trains. Then each spike can then be considered as a vector of unit
length with a phase angle 6;, 0 < #; < m. In this case, the n vectors characterizing a

2) Note that the enhanced adaptation model adds only one parameter, Agp; #t. The model is tuned to
keep the spontaneous rate of the fibre constant; the driven rate changes slightly.
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2.3 Results
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Figure 2.4: Response of an auditory nerve fiber (black area, measurements from cat |

: ]) to a tone burst at CF (10.34 kHz, 39dB) and model output

with enhanced offset adaptation (red line). Note that after the tone burst the

spontaneous activity is silenced for about 15 ms and recovers slowly thereafter,

which is not predicted by the adaptation model of Sumner et al. | ,

] (blue line) and requires the introduction of an effect termed “offset

adaptation”. In our calculations we introduce offset adaptation by adding a

threshold to the pool model of adaptation, which generates a realistic “offset
adaptation”.

spike train can be treated as a distribution on a unit circle. We then calculated the mean
vector. The direction of the mean vector is a measure of mean phase relation between the
stimulus and the output spike trains. The length of the mean vector,

\/(Z cos 6;)? + (X sin6;)?

n

R:

(2.11)

provides a measure of synchronization or phase locking. The parameter R, called the
“synchronization index” or the “vector strength” takes value from 0 to 1. A value of 1
implies perfect phase synchronization of the output spikes; a value of 0, given certain
restrictions, implies spikes occur randomly throughout the stimulus.

An extensive analysis of the synchronization index revealed that the modified auditory
nerve fiber model more precisely phase lock to the input stimuli. Both models with and
without the enhanced offset adaptation achieve high synchronization indices in the low
frequency region (< 1kHz) with values in the range of measurements | : -
In the original model, the synchronization index degrades drastically in the frequency
range above 1kHz and lies far below experimental data (see Figure 2.5). The model
with enhanced offset adaptation greatly improved the synchronization and the model data
tightly followed the best results achieved from measurement also at high frequency region.
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2 Offset Adaptation

Over the whole hearing range, the modified model achived a higher synchronization index
than the original one.
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Figure 2.5: Synchronization index of auditory nerve action potentials. Input stimuli are
pure tones at different frequencies. Synchronization indexes were calculated
from output spike trains of neurons whose characteristic frequencies corre-
sponded to the input stimuli. Modeled results are shown with and without
adaptation, together with measurements from Johnson | , ].

The enhanced phase-locking property of auditory nerves is vital for further neural process-

ing stages. We connected the octopus neurons, modeled with a detailed Hodgkin-Huxley

model | : ] (for a detailed description see Chapter3), to the

ANFs, and found that they responded in the frequency region above 3 kHz only when off-

set adaptaion was included in the IHC-AN model (compare panels ¢ and d in Figure 2.6).

Octopus neurons require a quiet period of about 1-2 ms before they fire | ,
], an effect for which offset adaptation is essential.

The offset adaptation in the modified model accounts for enhanced phase locking to the
stimulus envelope in AN fibers. AN fibers become less responsive during the dip of the
envelope and therefore more synchronized to the peak of the amplitude modulation. As
speech stimuli can be essentially regarded as amplitude modulated signals, output of AN
fibers become more synchronized at the onset of the speech signal and silenced at the
offset, which then provides the preferable input for onset neurons, especially the so called
bushy cells and the octopus cells.

Figure 2.6 shows the outputs from auditory nerve fibers and octopus cells for both models.
Octopus cells exhibit band-pass characteristics and react preferably to signal onset, while
suppressing steady-state activities | , ]. In the original model (left
column), the auditory nerve spike trains are always active, also in stimulus dips, which
almost completely suppressed responses from octopus neurons. With offset adaptation,
octopus cells respond reliably even in high frequency regions, extracting the important
formant information and coding temporal information of the speech signal.

We calculated the modulation gain | , | of octopus cells to study the effect
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ANF + enhanced offset adaptation
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Figure 2.6: Responses from ANFs (upper row) and ONs (lower row) for our model of
auditory sound processing with (right column) and without (left column) offset
adaptation. For each frequency channel, we plotted responses of 60 ANFs and
one ON innervated by them. The stimulus was an “a” from a female speaker
(ISOLET). The number of spikes falling in 1 ms time bins was represented in
gray scale for the ANF response (see color bar top right).

of offset adaptation on onset neurons. Modulation gain was defined as the following,
Modulation gain = 20 log[(modulation of response)/(modulation of stimulus)] (2.12)

Usually the modulation of the response is measured by the synchronization index R,
while the modulation of the stimulus is given by the modulation depth m of amplitude
modulated sinusoidal signal. However, since R of a half-wave-rectified AM waveform with
m = 1is 0.5, modulation depth and R are not equivalent metrics. To obtain a gain of 0 dB
when the modulation of the response equals to that of the stimulus, a factor of 2 must be
included, i.e.,modulation gain = 20log(2R/m)) | : ]. A disadvantage
of this measurement is that the synchronization index may fail to reveal the real phase-
locking capability in some cases. For example, when neurons spike only once, the vector
strength in Equation 2.11 would equal to 1 and the output would be regarded as perfectly
synchronized, while in fact the neurons almost totally lose the phase locking ability to
the given stimulus. Therefore, when calculating the synchronization index (mean vector
strength), we divided the strength of the vector by the number of modulated periods,
instead of by the real number of spikes (n as in Equation 2.11), as we expect one spike
per onset if the neurons phase lock to the modulation perfectly. For ANFs we don’t have
such a problem since ANFs always generate large numbers of output spikes.
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Figure 2.7: Modulation gain for AN fibers and octopus neurons. Carrier frequency is
10kHz. So are the characteristic frequencies of the auditory nerve fiber and
octopus neuron. The sinusoidal carrier signal is modulated with different
modulation frequencies, with modulation depth equal to 1. The intensity of
the input signal is kept constant at 70 dB(A).

The modulation gain is shown in Figure 2.7. The enhanced offset adaptation leads to a
moderate 5-10dB modulation gain for auditory nerve fibers, whereas for octopus neurons
there is a very impressive improvement in terms of modulation gain. The extra gain
brought by offset adaptation amounts to as much as 30-40dB in the frequency range
between 100 Hz and 1kHz. Octopus neurons with the enhanced offset adaptation model
show the highest modulation gain in the medium frequency region. The filter described
by the modulation gain curve resembles the filter shape that we got from the frequency
response of octopus neuron’s reverse correlation function (compare Figure 3.6).

We also calculated sychronization indexes for the octopus neurons. However, octopus
neurons generally fired only on signal onsets at middle to high CF when using pure tone
stimuli, hence no sychronization indexes can be calculated at those CFs. On the other
hand, modulation gains provide a good measurement for octopus neurons as they still
respond regularly to AM signals. To characterize the properties of octopus neurons, we
used AM signals with different carrier frequencies but the same amplitude modulation
(modulation depth: 1, modulation frequency: 100 Hz). In this case the signals stimulate
the octpus neurons across a wide range of characteristic frequencies.

Octopus neurons exhibit very different response properties below and above about 1 kHz.
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2.3 Results

Below about 1kHz they are fast enough to phase lock to the carrier frequency of the
input stimulus. Above 1kHz, octopus neurons only fire at the onset of a sound stimulus.
In addition, for amplitude modulated stimuli octopus neurons phase lock to amplitude
modulations.

In a next step, we compared synchronizatin indexes for both octopus neurons and ANFs.
Since octopus neurons do not respond to pure tone signals at middle to high CFs, different
signals were used to measure the phase locking properties. At low frequencies, where
octopus neurons lock to the carrier signal, we used pure tone stimuli as input and measured
synchronization relative to the carrier signal; at middle to high frequencies, where octopus
neurons respond well to AM signals but not to pure tone stimuli, synchronization indexes
were measured relative to the modulated signal.

Figure 2.8 shows synchronization indexes for ANFs and octopus neurons. At character-
istic frequencies between 100 Hz and 1kHz, outputs of the octopus neurons are highly
synchronized to the carrier signal. Octopus neurons enhance phase locking to sinusoidal
signals in comparison to ANFs. At very low frequencies, from 100 Hz to 500 Hz, octopus
neurons are able to fire in every stimulus cycle with extremely high phase synchronization.
As the carrier frequency increases, synchronization indexes of both octopus neurons and
ANF's drop.

The dashed lines show synchronization indexes to AM signals. Again the octopus neurons
were able to achieve very high synchronization index values at high frequencies above
1.1kHz. They phase lock very precisely to the AM signal, and fire almost each cycle of
the modulation. The high synchronization values to AM signals show that the octopus
neurons enhance the amplitude modulation. They relay precise temporal information
extracted from auditory nerve fibers with much less spikes to high processing stage.
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Figure 2.8: Synchronization indexes for octopus neurons (circles) and ANF (crosses).
Solid lines show synchronization to the carrier frequency using pure tone as
stimuli; while dashed lines show synchronazation relative to the amplitude
modulation using AM signal (full modulation, 100 Hz modulation frequency)
as input.
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2.4 Discussion

Physiological studies suggest that AN fibers with medium- or high-spontaneous rate usu-
ally stop responding immediately after offset and recover slowly after the dead-time period
with a time constant longer than that of short term adaptation. The model originaly used
in our peripheral hearing system, however, failed to reproduce this behaviour. The rapid
component of the model recovery function cause the synapses to recover very quickly after
a tone burst is switched off. This behaviour, at the next neuronal processing stage, fails
to eleicit responses of ONs (bushy cells and octopus cells) to amplitude modulated signals
like speech.

In this chapter, we extended the model of the peripheral hearing system, with a better
offset adaptation proposed by Zhang et al | , ]. By introducing a
shift to the original IHC-AN model proposed by Meddis, we were able to use the same
equations to represent both onset and offset adaptation. The modified model enhances
the offset adaptation while generating the same onset adaptation.

The modification of the Meddis model replicates a dead-time period of several tens of
milliseconds after turning off a tone burst in the auditory nerve response, according to
physiological measurements.

We calculated the synchronization indexes of the auditory nerve spikes from the original
model and the enhanced model. The enhanced model shows an obvious improvement in
synchronization of the output spike trains to pure tone stimuli. The output spikes of the
enhanced model show better phase locking to pure tone stimuli. The improvement in
synchronization index is especially large in the high frequency range from 1kHz to 5kHz,
where the phase locking ability of the original model drops dramatically. This improve-
ment proves to be vital to the next neural processing stage to provide the appropriate
stimulus for onset neurons in the cochlear nucleus.

The relatively modest improvement on the auditory nerve synapse model leads to con-
siderably more realistic responses of the onset neurons, especially for bushy and octopus
neurons. This is because these neurons fire preferably to the well synchronized signal onset
in an all-or-none manner. They work as synchrony detectors rather than just integrating
the input from auditory nerve fibers. The enhanced model generates more synchronized
ANF spikes as indicated by the synchronization ANF's fire more synchronously during the
onset of the signal while they fire less in the dip, which is a very impotent property for
ONs to work at the middle to high frequency range. The benefit of incorporating offset
adaptation is obvious: bushy and octopus cells failed to fire in the frequency region above
about 1kHz in the original model, while with enhanced offset adaptation, they nicely
extract synchronies.

The modulation gain shows considerable improvement in the performance of the ANF and
the octopus neuron. The improvement for the octopus neurons is the most impressive:
the highest gain in modulation is as much as 40 dB. Besides, the enhanced model leads
to a more realistic modulation transfer function of octopus neurons, which resembles the
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2.4 Discussion

filter shape of octopus neurons calculated using reverse correlation techniques.

In summary, offset adaptation is an essential feature found in auditory nerve responses.
It improves phase locking and the coding of amplitude modulations in the auditory nerve
and, moreover, is essential to drive onset neurons in the next processing stage, the cochlear
nucleus.
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3 Modeling the Onset Neurons

Abstract

This chapter presents a model of the cochlear nucleus onset neurons with Hodgkin-Huxley
type ion-channels with the major ionic conductances characterized by Rothman and Ma-
nis. In particular we studied the octopus neurons which are famous for their distinctive
temporal processing property. Octopus neurons reject steady-state excitation and fire
on signal onsets with extremely high temporal precision. They phase lock to pure tone
stimuli with high reliability at frequencies below 1kHz. They were also able to react to
amplitude modulated signals with entrainment up to 1 kHz. When given vowels as an in-
put, octopus neurons fire very reliably at almost each glottis stroke, extracting faithfully
the pitch frequency of the speaker. We applied reverse-correlation technique to analyze
the octopus neurons, and found that the modeled octopus neurons perform a band-pass
filtering on the incoming signal, with a low frequency slope of approximately 6 dB/octave.
This indicates that in general the octopus neurons process the first derivative of the input
signals.
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3.1 Introduction

3.1 Introduction

Neurons are responsible for the signal processing in the mammalian nerve system. Action
potentials from multiple ANFs reach the synapses of ONs. At the end of the axon of
a neuron there are many synaptic terminals, connected to the dendrites of the other
neurons.

The synaptic terminals and the dendrites are separated by plasma membranes. The
voltage difference at the membrane is known as the membrane potential V,,,. The neuron’s
resting potential is between —40 mV and —90 mV. The majority of nerve cells generate
a series of brief voltage pulses also referred to as action potentials or spikes. They are
all common in their all-or-none depolarization of the membrane beyond the threshold; we
assume the threshold to be T}, = 0 V. If the voltage exceeds the threshold, the membrane
executes a voltage trajectory. The amplitude of the action potential is almost independent
of stimulus intensity. All the information from one neuron to the other is transferred by
the spikes. The firing of the action potential is binary and follows the all-or-none law.
The depolarization time of the membrane potential is rather short. Nevertheless it is
impossible to evoke another action potential immediately after firing one, due to the
refractory period.

The activation of the action potentials are mainly governed by the voltage-gated and
strongly nonlinear ion-channels. The initial stimulus opens calcium channels, Ca?* enters
the presynaptic part and activates enzymes, which cause the vesicles close to the synaptic
cleft to release their neurotransmitter. They diffuse to the postsynaptic membrane and
bind to postsynaptic membrane receptors. At excitation, the activated receptors cause an
activation or even an action potential in the postsynaptic neuron. The electrical behavior
of octopus neuron is dominated by two voltage-sensitive conductances | ,

]: A low-threshold potassium channel (K;r) with activation kinetics in the order of
2ms | , , see also , |, and a hyperpolarization-
activated, mixed-cation channel (I, , ). Both channels are already
activated at rest, but react to voltage changes in different directions. The activation
of both channels at rest gives the cell an unusual low input resistance. When the ON
membrane is depolarized, they elicit an initial action potential, but thereafter K, com-
pensates input currents and keeps the membrane potential below spiking threshold. For
octopus neurons, action potentials of the auditory nerve elicit only extremely brief ac-
tivation of postsynaptic currents [compare , ]. The octopus
neuron model presented here (and used in automatic speech recognition experiments in
Chap. 4) relies only on ionic conductances which were fully characterized in physiological
experiments and requires no further hypothetic mechanisms. It is a single-compartment
model, and relies on Hodgkin-Huxley-type ion channels. The conductances and channel
dynamics are based on measurements of VCN neuron conductances | ,
, , , ]. Figure 3.1 shows the equivalent circuit diagram
for modeling the ONs.

ONs extract the spectral-, temporal-, and spatial information coded by the AN spike trains
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3 Modeling the Onset Neurons

and transmit these information to higher processing stages. ONs locate in the cochlear
nucleus (CN), the first neuronal processing stage after the inner ear. The dendrites of ONs
tap the tonotopic array of auditory nerve fibers systematically, maintaining a tonotopic
map of all frequency range | , ]. There are a large number of specialized cell
types in CN, which are generally spatially segregated. Different cell types are associated
with various organization and specification of the synaptic terminals. Auditory nerve
terminals that innervate bushy and stellate cells are variable in size and shape. In the
octopus cell area, in contrast, terminals of auditory nerve fibers are uniformly small
boutons. In this and the following chapter we mainly deal with octopus cells. But the
modeling method also applies to other different ONs. It has been found that in mice
about 200 octopus cells sample the array of about 12,000 auditory nerve fibers |
, , , ]. As all auditory nerve fibers have been observed to terminate

in the octopus cell area, octopus cells receive on average at least 60 inputs |

, , , ]V, The convergent input from a relatively large
number of auditory nerve fibers via small terminals is reflected in the response of octopus
cells. Recordings from octopus cells indicate that they receive subthreshold synaptic
input, therefore inputs from multiple auditory nerve fibers had to sum to produce an
action potential in octopus cells. Octopus neurons have extraordinarily fast membrane
time constant (0.2-0.3ms) and react to the simultaneous firing of multiple auditory nerve
fibers very fast, acting as coincidence detectors and greatly enhancing the precision of
timing relative to a single ANF [ , ].

Octopus neurons have some distinctive characteristics. Unlike some other neurons (e.g.,
bushy neurons and chopper neurons) which exhibit sustained activity to continuous ex-
citation, octopus neurons show strong onset responses: they fire only once at the onset
of high frequency pure tones. For the remainder of the tone burst they fire with very
low rate (less than 10spikes/s) or do not fire at all [e.g., , :

, |. When given low frequency pure tones as stimuli, octopus neurons fire
with entrainment (see Chapter 2) 2. Entrainment can be sustained up to 800kHz (see
Chapter 2 and | , ]), resulting in a very high firing rate of about
800 spikes/s. In comparison, the auditory nerve saturates at about 300 spikes/s. Octopus
neurons also show remarkably exact and reliable responses to amplitude modulated signal
[ : ] and speech like stimuli | : .

The distinctive temporal processing properties of octopus neurons make it very interesting
to us; they suppress spontaneous and sustained activity while firing preferably at onset
of input stimuli, a feature which could be essential for sound processing in noise. Their
detection of signal onsets is important for sound localization as well as for the perception
of speech and music. Identical onset times have been proposed as one of the key cues
in auditory scene analysis | , , , ]. Another important
cue in auditory scene analysis is periodicity. The octopus neurons distinctive response to

1) The number of auditory nerve inputs onto octopus cells may as well be several times 60 because many
auditory nerve fibers probably innervate multiple octopus cells.

2) Entrainment means that they not only phase lock to the input stimuli, but also respond to each cycle
of the stimulus with exactly one spike.
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3.2 Modeling

periodic stimuli suggests that they play an important role in periodicity extraction. In
fact, octopus neurons phase lock to the pitch frequency of the speakers with high precision
and reliability.

3.2 Modeling

In this section we will provide the basic mechanism in an onset neuron. We will also show
how we modeled the neurons in a mathematic way. Detailed physiological description of
the neurons and how the ion channels work is not included here. Readers are referred
to [1994] for a fuller explanation.

We modeled the octopus neurons using a single compartment model with Hodgkin-Huxley
type ion channels. We used parameters of the conductances of the neuronal channels mea-
sured by [ ,b,c]. The steady-state and dynamic equations were
also based on their studies. The octopus neuron was named as Type II-o model in their
study. In principle it is a hybrid of the generic VCN model with a very large low thresh-
old potassium conductance, coupled with an implementation of the hyperpolarization-
activated mixed-cation conductance measured by [ .

3.2.1 Hodgkin-Huxley Model

+ Intracellular

f i
I I I3
IC Y K a
é (_?JN G
Col ¢ ° 3 C)l"ea" Membrane

V -
B T VENa V3 T

° - Extracellular

Figure 3.1: Equivalent circuit diagram

The most notable work to describe the ionic mechanisms underlying the initiation and
propagation of action potentials was done by Hodgkin and Huxley in Cambridge, England
in 1952. The Hodgkin-Huxley model is realized in a equivalent circuit in Figure 3.1
(I3 = G3 = V3 =0). In the Hodgkin-Huxley-Model the total membrane current I,,(t)
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3 Modeling the Onset Neurons

is the sum of the ionic current I;,,;.(t) and the capacitive current I,

1) = Tielt) + €, 10 3.)

According to their experiments with a squid giant axon, they posted a phenomenological

model [ |:

1. The ionic current flowing is the sum of a sodium current, a potassium current, and
the leak current:
Iiom‘c = ]Na + ]K + ]leak~ (32)

2. The action potential involves two major voltage-dependent ionic conductances, a
sodium conductance Gy, and a potassium conductance Gg. The smaller "leak”
conductance G, does not depend on the membrane potential. The individual ionic
currents I;(t) follow Ohm’s law,

Li(t) = Gi(V (1), 1) - (V(£) = Vi), (3.3)

where Vg, is the ionic reversal potential, given by Nernst’s equation for the ionic
species.

3. Each of the ionic conductance G; is expressed by a maximum conductance, Gj,
multiplied by a numerical coefficient representing the fraction of the maximum con-
ductance actually open. Hodgkin and Huxley introduced gating particles to describe
the dynamics.

In the Hodgkin and Huxley model the potassium current is modeled as
[K = éKn4(V - VEK) (34)
where x has to be substituted by the activation n in the following equation.

dr  Te —w
dt 7

(3.5)

with voltage-dependent time constant 7,,(V') and steady-state value n (V). | : :
Chap 6.2] motivates this equations. The sodium current is modeled by a sodium activation
particle m and an inactivation particle h,

[Na = éNam?’h(V — VENG.) (36)

where m and h follow (3.5).

3.2.2 The Rothman and Manis Model for Onset Neurons

Rothman and Manis’ general model for VCN neurons is an extension of the Hodgkin-
Huxley model. The onset neurons are one type of those CN neurons. The onset neuron
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3.2 Modeling

model we discuss and characterize in this thesis is based on the work by
[2003a].

In their work KT currents include a fast transient current I, a slow-inactivating low-
threshold current I;r, and a non-inactivating high-threshold current Iyr. The model
also includes a sodium current I, plus fast-inactivating high-threshold Na™ current I.
Analog to Equations (3.1) and (3.2) they come up with

dVv
CmgIIA+ILT+IHT+INa+IH+Ilk+IE7 (3'7)

where [j;, is the leakage current and [z is the excitatory post-synaptic current. The
capacity of the cell membrane is C,,, = 12 pF.

The currents have voltage and time dependencies similar to those of the original Hodgkin
and Huxley model. They are governed by activation/inactivation variables a, b, ¢, w, z, n,
m, h and r which follow the first order differential equation as defined in (3.5). The exact
equations with peak 7 conductance g, are stated below; reversal potentials are: Vj, = —70

mV, Vy, = +55 mV, V, = =43 mV, and V},, = —65 mV.

Fast transient K™ current

In=3y-a*bc- (V—V,) (3.8)
(oo = [1 + exp(—(V +31)/6)] /4 (3.9)
boo = Coo = [1 4+ exp((V 4 66)/7)] /2 (3.10)
7o = 100 - [Texp((V + 60)/14) + 29 exp(—(V + 60)/24)] 7" + 0.1 (3.11)
7, = 1000 - [14exp((V + 60)/27) + 29 exp(—(V + 60)/24)] ' + 1 (3.12)
Te =90 - [1 4+ exp(—(V +66)/17)]7* + 10 (3.13)
Low-threshold K current

Iy =Gpp-whz - (V — Vi) (3.14)
Woo = [1 + exp (—(V + 48)/6)]/* (3.15)
Zoo = (1= C) [1 +exp ((V 4 71)/10)] " + ¢, with ¢ = 0.5. (3.16)

¢ = 0.5 indicates that the inactivation is only partial (50%).
T = 100 - [6exp ((V +60)/6) + 16 exp (—(V + 60)/45)] " + 1.5 (3.17)
7, = 1000 - [exp ((V 4 60)/20) + exp (—(V + 60)/8)] " + 50 (3.18)
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3 Modeling the Onset Neurons

High-threshold K* current

Inr = Gy - lpn® + (1 = ¢)p] - (V = Vi), withp = 0.85 (3.19)
Noo = [1 4+ exp(—(V + 15)/5)] /2 (3.20)
Poo = [1 + exp(—(V +23)/6)] " (3.21)

7, = 100 - [11exp ((V + 60)/24) + 21 exp (—(V + 60)/23)] " + 0.7 (3.22)

7, =100 - [4exp ((V + 60)/32) + 5exp (—(V +60)/22)] ' + 5 (3.23)

Fast Na™ current

INg = Gng - MR- (V = Via) (3.24)
Moo = [1 + exp(—(V +38)/7)] " (3.25)
hoo = [1 + exp(—(V +65)/6)] (3.26)
T = 10 - [5exp (V + 60)/18) + 36 exp (—(V + 60)/25)] " + 0.04 (3.27)
7, =100 - [Texp ((V 4 60)/11) + 10exp (—(V + 60)/25)] " + 0.6 (3.28)
High threshold Na™ current
Too = [L + exp(—(V +76)/7)] 7} (3.30)

7, = 10° - [237 exp ((V 4 60)/12) 4+ 17 exp (—(V + 60)/14)] " + 25 (3.31)

Leak current
[lk =g T (V — ‘/lk) (332)

The octopus cells includes the following ion channels: the potassium current included I
and Iyz7 , but not the I4 current. The sodium current included the Iy, current but not
the high-threshold current Ig. Further, the model includes a mixed cation current [, and
the leak current Ij,.
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3.2 Modeling

Hyperpolarization-activated, mixed-cation current

This current is based on a measurement by [2000] and was implemented
like in [ |, including the temperature correction.

=g r- (V=) (3.33)

reo =1/[1+exp(V +66)/7| (3.34)

a=expl3- (V +84)-96480/(8.315 - (273.16 + T))] (3.35)

B =exp[L8- (V +84) - 96480/(8.315 - (273.16 + T))] (3.36)

7. = 0.001 - 3/ [4.5<T—33>/10 -0.0029 - (1 + a)} , (3.37)

Excitatory post-synaptic current

The excitatory post synaptic currents (EPSCs) from the ANF is modeled as

i—1

Where V; is the input of nerve fiber 7 and the reversal point Vg, = 0. There are N ANF
inputs. Each spike triggers an exponentilly decaying input-conductance gg,

9 — JE, * W; €XP ( - ) for t >t;. (3.39)
0 for else.

where gp, determines the peak conductance, ¢; is the spiking time of the i’s ANF. For
onset cells the decay time is 75 = 0.1 ms (38 °C).

Model Parameters

In [ ] there are five different model configurations investigated:
the Type I-c, Type I-t, Type I-II, Type II-I, and Type II-o model. The octopus neurons
in this thesis are Type II-o neurons. Their parameters are given below. The unit for
conductance is nS.

Ine 9T I 94 9In G 9Ig, @38°C  Cy
1000 150 600 O 40 2 24.5 12 pF
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3 Modeling the Onset Neurons

3.2.3 Implementation

The model was implemented numerically in MATLAB/Simulink® and in C. We calculated
the parameters a, b, ¢, w, z, n, m, h and r using difference equations instead of the
differential equation (3.5) and iterated them in the time domain. We used conductance
values and time constants corrected for a body temperature of 38°.

We stimulated the octopus neurons with 60 sub-threshold auditory nerve fibers from the
auditory model as suggested by [ ]. Only excitatory synapses were
considered. The wide innervation of octopus neurons, covering 2—-3 octaves |

, |, was not included here (In our previous work, we found that it is possible to
incorporate this effect using Hebbian learning | , , , ).

3.3 Results

3.3.1 Response to Injected Step Currents

The easiest way to characterize the output of the octopus neurons is to inject step cur-
rents (Ig). Figure 3.2 shows the octopus membrane potential (panel b) in response to
an injected current (panel a). The octopus neuron responds with a single action poten-
tial to the first step of the current (3.5nA, starting at ¢ = Oms), and a steady-state
depolarization, but no further action potentials. The same pattern is repeated for the
second step increase in current, where the current is increased four times (14 nA, starting
at t = 10ms). Figure 3.2c shows the low-threshold potassium current mainly responsible
for the onset response. This potassium current is unusually large in the octopus neuron
[ , |, and contributes to the cell’s input conductance already at rest.
In response to the input current, the potassium channels opens and effectively shunt the
cell membrane, thus increasing the input current needed to drive the cell to its firing
threshold. At the current offset (at ¢ = 20ms) the octopus cell undershoots the resting
potential due to the deactivation of the potassium conductance.

3.3.2 Response to Pure Tone Stimuli

Figure 3.3 shows ANF and octopus neuron responses to an 1.5 kHz pure tone with stepwise
increasing amplitude; sound pressure levels were 50, 70 and 90 dB (rms). The top trace
shows the signal. Note that signal amplitude at 50dB (starting at ¢ = 0s) is a factor
100 smaller than at 90dB. The reaction of an ANF with a characteristic frequency of
1.4kHz, slightly lower than the test tone, is displayed in the middle trace. Before a signal
is applied (¢t < 0s), the ANF fires with its spontaneous rate of approximately 30 spikes/s.
When the signal is switched on, the ANF reacts with a sharp rise of its firing rate which
decays again to a sustained rate of approximately 180 spikes/s. For a tenfold increase in
stimulus amplitude (70 dB, t = 50 ms) another transient is generated and the spontaneous
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Figure 3.2: Octopus neuron response to an injected current. (a) A step current was in-
jected into the modeled octopus neuron (0-10ms: 3.5nA and 10-20ms:14nA).
(b) Octopus neuron membrane potential in response to the step current and
(c) Conductance of the low-threshold potassium current (I.7).
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Figure 3.3: Onset processing of octopus neurons. (a) Sound stimulus is a 1.5kHz pure
tone with stepwise increasing amplitude (rise time: 1ms). (b) Poststimulus
time histogram (PSTH) of a single ANF. (c) octopus neuron activity per
trial. In the left column (b-+c), averaged spike counts are collected in 1.33 ms
time bins, in the right column (d+e), raw spike counts are displayed for each
sampling time (21 us). Spike counts are from 60 ANFs innervating a single
octopus neuron summed over 100 trials.

45



3 Modeling the Onset Neurons

800y
640f
4801
3201

1601

Firing rate (spikes/sec)
Firing rate (spikes/sec)

0 —— e o ===y O s = - i N -
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
Frequency (Hz) Frequency (Hz)

Figure 3.4: Octopus neuron responses as a function of frequency and intensity of tones.
Left panel: Modeled neuron. Right panel: Measurement from a cat cochlear
nucleus octopus cell | , |. Both neurons had CF=950 Hz.
The tones had a duration of 25ms and levels between 10dB and 90 dB.

rate increases to 215 spikes/s. For yet another tenfold amplitude increment the sustained
firing rate hardly increases any more (220 spikes/s); HSR fibers saturate about 40 dB above
threshold. Still, the fiber is able to generate a transient onset response. In Figure 3.3d
the response for the step from 70 to 90dB is shown with high temporal resolution. The
stimulus changes to 90 dB at ¢ = 100 ms, the change in the response of the ANF is delayed
in the inner ear and occurs after approximately 102.5ms. The responses are phase-locked,
ANF activity is limited to the negative half of the stimulus cycle (rarefaction).

For high frequency sounds, octopus neurons fire only at signal onset. Figure 3.3c shows
the reaction of an octopus neuron to a tone with stepwise increasing amplitude. At the
onset of the 50 dB tone, the neuron firres with 31% probability. A classical integrate-and-
fire neuron would respond during the whole period of the tone burst — not so for octopus
neurons. During the tone burst, the excitatory input currents are shunted which prevents
almost all further action potentials. This mechanism still works when the signal amplitude
is increased 10-fold (even twice). When the signal level increased from 50 to 70dB, the
neuron fired with a probability of 83%, for the increase to 90 dB an action potential was
elicited with 71% probability. Thereby the temporal precision of the action potentials are
remarkable: whereas ANFs fire for the whole half stimulus cycle (Figure 3.3d), all of the
action potentials of the octopus neuron were in an interval of less than 200 us (Figure 3.3e).
This precision is reached by coincidence detection of at least six synchronously firing ANF's
and by the fast membrane time constant of octopus neurons.

Figure 3.4 compares the growth area of a modeled octopus neuron with a measurement
from cat | : ]. Both the measured and modeled units had a CF
of 950 Hz and thresholds of approximately 30dB. Typical octopus neurons respond to
tones with frequencies above approximately 800 Hz with a single well-timed spike at onset
(compare Figure 3.3). For tones with frequencies below 800 Hz they can fire at every
stimulus cycle, reaching average firing rates of almost 800 spikes/s! This gives the response
areas of Figure 3.4 a somewhat curious look, with the strongest responses at frequencies
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of 600-800 Hz, although the unit’s CF might be considerably higher | ,

]. The modeled octopus neurons do not quite reach rates of 800Hz, but have a
maximum rate of approximately 600 Hz. The shape of the response area however matches
the measurement well. It should be noted that the wide response area of the octopus
neuron appears although the modeled neuron was innervated by a single frequency channel
only. The relatively high threshold of the octopus cells makes it respond in a level range
where the auditory filters are wide. The shape of the modeled response area is more level-
dependent in the mid-level range (40-70dB) than the measured ones, more resembling
the growth area of the ANF | , , , |. This
might reflect the lack of a wide innervation pattern in the model. On the other hand, it
might also reflect that the compression is stronger and filter shapes sharper in the human
auditory system than in cat at low levels.

3.3.3 Response to Amplitude Modulated Signal

Among the cochlear nucleus neurons, octopus neurons are thought to best respond to
amplitude modulated stimuli | , ]. The ability of octopus neurons to detect the
envelope of the modulation signal is essential for speech processing since essentially speech
signals are amplitude modulated. Octopus neurons detect the envelope of amplitude
modulated signals by action potentials at a certain phase of every cycle of the modulation
signal. At high frequencies where octopus neurons failed to respond to the pure tone
carrier signal, they still managed to fire at each circle of the modulation signal. We
discussed the distinctive ability of octopus neurons in response to AM stimuli in Chapter
2. Reverse correlation analysis (Figure 3.6) showed that they code the first derivative of
the rate of ANF's, providing a good explanation of their ability to extract AM signals.

3.3.4 Response to Vowels

Vowels are characterized by periodic glottis strokes (which define their fundamental fre-
quency). Figure 3.5 shows responses of octopus neurons to a vowel. The periodicity is
clearly visible in the signal’s time trace (Figure 3.5a), the output of octopus neurons (panel
b),as well as in the PSTH of an auditory nerve fiber with CF 1.5kHz (panel e). Octopus
neurons extract the periodicity with great precision. Panel b can be read in a similar
manner as spectrogram. The pitch frequency was revealed not only in frequency domain
(by the CF of the corresponding octopus neuron) but also in time domain (the interval
between neighboring spikes). At frequency regions lower than 1kHz, the octopus neurons
also show activities coding the second and third harmonics of the fundamental frequency.
Several formant regions can be discerned: F1 around 500 Hz, F2-F3 around 1kHz, and
F4 around 5kHz. The time course of the output spike trains also show the formant shift,
which is typical for the dippthong “a”, with F1 moving downwards in frequency with
time.

The recording of the input stimulus has a ramp up at the beginning of the signal. Thus the
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Figure 3.5: Octopus neuron response to vowel /ei/ (from ISOLET database, a female
speaker with 260 Hz fundamental frequency, sound pressure level 70dB). (a)
Sound stimulus to the auditory system. (b) Outputs from 100 octopus neu-
rons. The figure can be viewed in a similar manner as a spectrogram. (c)
Average discharge rate of the octopus neurons connected to different CFs in
response to the artificial vowel (no smoothing). (d) First 100 ms of the input
stimulus. (e) PSTH of a single ANF (CF=1.5kHz, 0.5ms time bins) and (f)
activity of an octopus neuron (CF=1.5kHz, firing probabilities determined

48 with 100 repetitions, 0.5 ms time bins).
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ANF's respond at the beginning with a low rate (Figure 3.5¢), which leads to a medium
firing probability of the octopus neurons. After the onset, octopus neurons fire very
reliably at almost each glottis stroke with high temporal precision (Firing probability was
in average higher than 97%. At most of the glottis strokes, octopus neurons fire with 100%
reliability. Note that we used a 0.5ms time bin). Due to their very fast membrane time
constant, octopus neurons also show intermediate activity during two neighboring glottis
strokes, phase-locking to higher harmonics of the fundamental frequency (Figure 3.5f).

Panel c of Figure 3.5 shows the average discharge rate of all octopus neurons as a function
of their CF. Discharge rate show several peaks which approximately correspond to different
formant regions. At low frequency region around 500 Hz where entrainment takes place,
octopus neurons lock to multiples of the fundamental frequency, with firing rate as high
as about 600 spikes/s. At higher frequencies (1-2kHz), they fire preferably at each glottis
stroke. At very high frequency, they could not manage to fire every glottis stroke. However
across channels (panel b), the one-spike-per-cycle pattern can be clearly seen.

3.3.5 Analysis with Reverse Correlation Technique

To obtain a deeper insight into how the octopus neurons work, the reverse correlation
technique is applied. It reveals the temporal excitation pattern which most likely causes
the octopus neurons to fire [2004].
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Figure 3.6: Spike-triggered reverse-correlation and its frequency transforma-
tion.

For the reverse correlation technique, an arbitrary input z(¢) is fit to the system. Here the
model was stimulated by a zero signal; thus the output of the ANF's was a random process
driven by its spontaneous rate, which was used as the input x(t) for the onset model. The
octopus neuron model responded to spontaneous ANF activity only extremely sparsely.
To provide more synchronous activity, the traces of 20 ANFs were presented three times
(to yield a total of 60 inputs), and, to mimic higher firing rate, the input conductance
was increased by a factor of four (corresponding to a firing rate of a single ANF of 120

49



3 Modeling the Onset Neurons

spikes/s) [ |. This generated a spiking output y(¢), withi =1... N
spikes at time t;; one spike is defined to be a dirac impulse §(¢). Thus the output is

N

y(t) = 0t — ). (3.40)

i=1
The reverse correlation function R™"(t) is defined as
1 N
R™(t)=—=)> z(t; — ). 3.41
() = 3 S otti =) (3.41)
The mirrored reverse correlation function R™"(—t) is of special interest. It is the average
activation which generates a spike at ¢ = 0.

To calculate the spike-triggered reverse-correlation, ANF spikes were averaged (0.25ms
time bins) around time windows, where the octopus neurons fired (Figure 3.6a). About
10 ms before and almost immediately after the octopus neuron elicited a spike, the reverse
correlation relaxes to the spontaneous rate (1800 spikes/s for 60 input fibers). To trigger
a spike, highly synchronous input activity was required, which was more than a factor of
4 higher than spontaneous activity. Moreover, depressed activity about 1-3 ms in advance
facilitates the generation of an action potential. The reverse correlation can be interpreted
in a similar way as the impulse response of a linear filter [ ].
Its spectrum revealed that temporal processing of octopus neurons very much resembles
a band-pass filter. The low-frequency slope was close to 6 dB/oct, the pass-band (-3dB)
reached from 110 Hz to about 650 Hz. This indicates that octopus neurons play a role in
processing of amplitude modulated sounds [2005].

3.4 Discussion

In this chapter, we introduced a single compartment model of onset neurons with Hodgkin-
Huxley ion channels. We used parameters from measurements to model the so called
octopus neurons. However the model can be easily extended to model other types of
onset neurons found in the cochlear nucleus.

Octopus neurons are interesting in speech coding, due to their suppression of spontaneous
activity and steady-state stimuli and their excellent ability of coding periodic stimuli such
as AM signals and voiced speech. Not less interesting is their distinctive temporal pro-
cessing ability, which might play a very important role in many auditory tasks. Octopus
neurons receive inputs from large number of ANFs and forward spectral and temporal
information coded by ANFs to high neural processing stages with temporally sparse but
precise spike trains. The information loss — or to phrase it positively, the information com-
pression — during this transition is irreversible. It is therefore necessary to understand
the properties of octopus neurons in response to different stimuli.

Experiments showed that they fire preferably at the onset of input stimuli. Even when
the auditory nerve fibers stimulating them are at saturation, a step increase in stimulus
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level led to reliable firing at the onset and very low or no activity at sustained input level
thereafter (see Figure 3.3). In response to pure tone stimulus, octopus neurons show very
strong phase-locking ability. Due to their fast membrane time constant, they are able to
phase lock up to 800 Hz, which corresponds to a firing rate of 800 spikes/s. The model
in this chapter achieved about 600 spikes/s in the first formant region in response to a
speech stimulus. In Chapter 2, the modeled octopus neuron showed phase locking up to
about 800 Hz, thanks to the realistic offset adaptation that we previously introduced. The
response to pure tones with higher frequencies looked similar as those to constant signal,
i.e., they fire only at the onset of the signal and were not fast enough to phase-lock to
the stimuli after the onset. However, they still respond reliably at high frequency regions
to amplitude modulated signals. In Chapter 2, we provided AM signals with different
carrier frequencies as the input. The output spike trains of octopus neurons indicate that
they phase lock to the carrier signal at low carrier frequencies (the amplitude modulation
of signal is partly coded in the firing probabilities of the spikes), and mainly extract the
modulation signal when carrier frequencies are high.

Given the strong coding of amplitude modulated signals, it is no surprise that the octopus
neurons code the fundamental frequency of vowel stimuli very well. The direct coding
of the first formant in the rate of octopus neurons is particularly interesting for speech
recognition in noise and auditory scene analysis. [ | found that the
rate-place coding of vowel by ANFs at low frequencies is vulnerable to the increase of
sound level but is well coded in the phase-locking of the ANFs. The temporal pattern
coded by the ANF's at low frequency is transformed to a rate code in the octopus neurons,
which will be transferred further. Outputs from octopus neurons at different CFs can be
read as a spectrogram. It is in general possible to discern different formant regions and
the shift of formants over time, which suggests that these output can be deployed for
speech recognition.

We also analyzed the octopus neurons using spike triggered reverse correlation technique.
Results showed that the preferred input for octopus neurons has a short silence period
where the ANF rate is lower than spontaneous activity, followed by a strong and fast
onset. Since there are no negative number of spikes, the spontaneous activity allows the
model to have an offset by having silent period or rates that are lower than spontaneous
rate. Spectrum of the reverse correlation shows a band-pass behavior with a low frequency
slope of 6dB/oct. From a signal processing point of view, the 6 dB/oct low frequency
slope indicates that octopus neurons roughly work as a first order high pass filter and
perform a temporal differentiation of their input (see also | , D-
Experiments with AM signals in Chapter 2 (Figure 2.7) also showed similar results.

The octopus neuron model was implemented mathematically in MATLAB/Simulink®
and C, which are also available to other researchers.
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4 Quantify Speech Information in Spike
Trains using Automatic Speech
Recognition

Abstract?

In this chapter, we qualitatively evaluated the speech information coded by the auditory
nerve fibers as well as the octopus neurons. We tested speech coding using a complex but
realistic scenario: speech in noise. We compared speech recognition result using the model
that we have developed before to point out the effect of modeling effort on the recognition
performance: enhanced offset adaptation improves robustness of speech recognition in
noisy environments. We used different acoustic modeling approaches, and concluded
that multi-layer perceptrons should be considered by researchers who use auditory based
feature for speech recognition. We also compared the performance of our model with
human performance to show the robustness of the feature extraction by the developed
auditory system at different sound levels.

1) Some of the speech recognition results have been published in Interspeech 2008 [ ,
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4.1 Introduction

Our notion of how speech is processed is still very much dominated by von Helmholtz’s
theory of hearing | : |. His notion that human ear analyzes individual
frequency components of sound signals has motivated the widespread use of magnitude
spectra in sound processing technologies. Strongly influenced by work from [ 1,
von Helmholtz put forward place coding as the principle mechanism of hearing. In a
rate-place code, the spectrum is described by the profile of the discharge rates of single
fibers as a function of their characteristic frequency (CF). In this chapter, we applied the
rate-place code as a coding strategy to convert the output spikes of the modeled auditory
system and qualitatively evaluate the information coded by auditory nerve fibers as well
as octopus neurons.

Many paper have studied the encoding of speech in the auditory nerve from various as-
pects. Most of the early work focused on the encoding of steady-state vowels [e.g.,
, , , , , ]. Later stud-

ies have included synthetic consonant-vowel syllables [e.g., , ,
, |, spoken syllables [e.g., , , ,

|, and various levels of background noise [e.g., , ,

, , , |. Many other early works focused on the robust-
ness of auditory encoding over a large dynamic range. [ | collected
responses of hundreds of fibers to three different artificial steady-state vowels in their pio-
neering and widely influential experiments with speech in the cat’s auditory nerve. They
concluded that a rate-place representation is not robust over the range of levels encoded
by humans. Due to nonlinear effects such as discharge rate saturation and suppression,
there are no formant related peaks in the rate profiles at normal conversation levels (vowel
levels above 65 dB(SPL). A number of more recent studies have suggested that rate-place
coding of vowels might in fact be sufficient to explain the dynamic range of human vowel
perception. [ | studied discrimination of second formant frequen-
cies in the cat’s auditory nerve. When looking at the response of the whole auditory
nerve and in particular the rate difference between two vowels, the formant peaks were
clearly represented, even at sound levels of 70 dB(SPL). These previous studies lead to
very useful results and good knowledge about the property of auditory coding, such as
discrimination ability, robustness. The draw back of most of the in vivo studies is that
there is no qualitative measure of how well a hypothetical speech encoding really works.
Also, discrimination tasks are very limited as they studied only well-defined properties
(e.g. formants of the speech).

In this chapter, we exploited automatic speech recognition as a tool to qualitatively evalu-
ate the principle of rate-place code. We tested speech coding in the auditory system with a
complex but realistic approach: speech in noise. We used the previously developed model
of human auditory processing up to the level of the auditory nerve to further investigate
the ability of rate-place code and to explain human auditory perception. Compared to
previous discrimination tasks, automatic speech recognition outperforms clearly in terms
of generality. Speech recognition enables complex tasks with various stimuli and can eas-
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ily cope with many variations such as different speakers, different sound levels and various
noise scenarios. After all, speech coding aims to serve the perception of speech. Therefore
automatic speech recognition is genuinely a very good and straight-forward evaluation
approach to qualitatively assess the performance of any speech coding strategy.

Several researchers have tried auditory models as front end in ASR. The focus has however
rather been to try to improve robustness of ASR by using principles found in the audi-
tory system, than testing the coding strategies per se. Following the findings of
[ |, most have used various types of temporal coding of speech. Auditory
models previously used in ASR include those of [ , 1, [1994], and
[ ]. Most models have not deployed actual spike trains. The
ensemble interval histogram (EIH) model | , | did generate spikes, although it
used a very simple deterministic zero-crossing algorithm. Ghitza’s underlying BM model
was adopted from [ |, and modeled compression as well as suppression ef-
fects. The model of [1997] also generated spikes. They used a
silicon cochlea model in an ASR task. Their model consisted of a linear BM model, and
an inner hair cell (IHC) and auditory nerve (AN) model. The latter part of the model
performed an amplitude compression, half-wave rectification and a conversion into proba-
bilistic trains of spikes. However, the auditory filters did not change with level. Compared
to earlier auditory models used in ASR, the model used in this thesis is unique in some
important respects: it reproduces the latest estimates of auditory filters in human audi-
tory processing — which are considerably more sharply tuned than animal data suggests
[ , |. It shows frequency tuning that closely resembles human psychoa-
coustic estimations over a wide range of levels. It generates spikes in a fashion closely
resembling the real auditory system. It also includes both low- and high spontaneous rate
fibers.

In our work, we used the framework of automatic speech recognition with Hidden Markov
Models (HMMs) as the back end. We extracted features for speech recognition by post
processing the output spikes from the model of human auditory processing. Later we
augmented this framework using the hybrid connectionist approach, where multi-layer
perceptrons (MLPs) are used for acoustic modeling.

In the following part of this chapter, we will first give a brief introduction to HMM based
speech recognition, the hybrid connectionist approach and the speech recognition task.
Then we will show how we use the model of human auditory processing to generate features
and how we input these features into the speech recognition engine. The test consists of
the English alphabets, with and without background noise. Features from auditory nerve
fibers and octopus neurons separately as well as the combination of both were tested. It
is shown that offset adaptation not only makes the output spikes of auditory fibers and
octopus neuron more realistic, but also led to improved speech recognition performance
per se. We analyzed the dependance of speech recognition on input sound levels and
compared modeled results with human performances. Recognition performance using
different auditory modeling methods were also compared.
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p(x|q1)[ p(X|Q2)[ p(x|q3)[
X X

X

Figure 4.1: A schematic representation of a Hidden Markov Model (HMM). An HMM is
defined by the states ¢;, the allowed transition probabilities P(g;|g;), and the
emission probability densities p(x|g;), where x refers to the multidimensional
feature space.

4.2 Speech Recognition with HMMs

Figure 4.1 shows a schematic representation of a Hidden Markov Model. HMMs have a
number of advantages when investigating the amount of speech information contained in
the rate-place code. HMMSs are data-driven, and thus few assumptions have to be made
on the nature of classification. In particular, HMMs handle time-warping in a data-driven
manner. This enables more complex tests. Stimuli can have varying durations and include
varying numbers of phonemes. Variability such as different speakers and background noise
can easily be incorporated into the classification tasks. An HMM approach to measure
the information in the rate-place code also inherits the limitations of HMMs, such as
the assumption of independently and identically distributed acoustic vectors within the
speech segment corresponding to a state and the assumed correctness of the acoustic
models | : ]. While HMMs are the standard approach to ASR
today, many in the ASR field believe that the current gap between human and ASR
performance is in large part due to the limitations of the HMMs. It has been argued that
the statistical assumptions typically incorporated into HMMs used in speech recognition
may constrain their ability to exploit available information | : |.
Also, the degree of success with which an HMM can model speech depends on the amount
of training data available and how well training conditions match later observations.
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4.3 Speech Recognition with Multi-Layer Perceptrons

Statistical representations using Hidden Markov Models have been developed to the point
where impressive recognition performance can be achieved in the laboratory on very large
vocabulary speaker-independent continuous speech recognition tasks. The HMM Tool
Kit from Cambridge has been widely spread so that researchers can build up speech
recognition systems based on some of the best known statistical approaches. In general,
HMM-based structures and algorithms provide a rich and flexible mathematical frame-
work for building recognition systems. They also feature powerful learning and decoding
methods for temporal sequences without requiring any explicit segmentation in terms of
the speech units (typically phones or phonemes) used, which serves as a basis for con-
tinuous speech training and recognition. Also, they easily accommodate different levels
of constraints, such as phonological and syntactical constraints, as long as they are ex-
pressed in terms of the same statistical formalism. HMM based structures and algorithms
have very strong representation power. However, to take advantage of this representation
power, algorithms must explicitly or implicitly make numerous assumptions about speech,
some of which obviously unrealistic. For instance, it is assumed that there is no correla-
tion between input features and the input features can be parameterized as mixtures of
Gaussian densities. It may be the case that some of the characteristics of HMM based
approaches to speech recognition are limiting factors for further improvement in the long
run.

Therefore in this section, we evaluate speech recognition performance with a hybrid con-
nectionist approach. In the connectionist approach, multi-layer perceptrons (MLPs) are
used for acoustic modeling. MLP acoustic modeling provides one way to reduce system
dependency on unrealistic assumptions about speech, and sometimes gives better per-
formance than Gaussian mixture model (GMM) acoustic modeling when working with
novel feature vectors. Another advantage of MLP acoustic modeling is that it allows for a
straightforward and effective multi-stream speech recognition approach. Therefore we can
combine different features with great ease. In the multi-stream approach, a separate MLP
is used for each stream; streams are then combined by combining posterior probabilities
at the frame level.

Typically, MLPs have a layered feed forward architecture with an input layer (consisting
of the input variables), zero or more hidden (intermediate) layers, and an output layer.
Each layer computes a set of linear discrimination functions via a weight matrix followed
by a nonlinear function, which is often a sigmoid function. In principle, MLPs with enough
hidden units can provide arbitrary mappings between the inputs and the outputs. MLP
parameters — the element of the weight matrices — are trained to associate a “desired”
output vector with an input vector. However, it is not the best practice to use MLP
only for speech recognition tasks, especially continuous speech recognition. MLPs, or
more generally, Artificial Neural Networks (ANNs), can be used to classify speech units
such as phonemes or words, typically by mapping temporal representations into spacial
ones. However, ANNs classifying complete temporal sequences haven’t been successful for
continuous speech recognition. In fact, they are doomed not to work well for continuous
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speech since the number of possible word sequences in an utterance is generally infinite.
There hasn’t been any known principled way to translate an input sequence of acoustic
vectors into an output sequence of speech units with an ANN only. On the other hand,
HMMs provide a reasonable structure for representing sequences of speech sounds or
words, as we previously mentioned. Given such a structure, one good use for ANNs is to
provide the local distance measure. In particular, given the HMM system, we would like
to estimate the emission probability p(z,|qx) as in Figure 4.1, that is, the probability of
the observed data vector given the hypothesized HMM state, which corresponds to some
speech sound. However, HMMSs are based on a very strict formalism that is difficult to
modify without losing the theoretical foundations or the efficiency of the training and
recognition algorithms. Fortunately, ANNs can estimate probabilities that are related to
the emission probabilities, thus can be easily integrated into an HMM-based approach.

It has been exprimentally observed that, for systems trained on a large amount of speech,
the outputs of properly trained MLP approximate posterior probabilities (p(q|x,). Thus
emission probabilities (x,|gx) can be estimated by applying Bayer’s rule to the MLP
outputs | ) ].

P(xnlgr) _ p(gk|Tn)
() p(ar)

(4.1)

Figure 4.2 shows the basic hybrid scheme, in which the MLP generates posterior estimates
that can be transformed into emission probabilities as described above, and then used in
dynamic programming either for forced alignment (when the word sequence is assumed)
or for recognition (when word sequences are hypothesized).

Ultimately, the connectionist recognition schema uses the same structure as HMM-based
schema, except that we derive the same probability with MLP rather than with a con-
ventional estimator, such as Gaussian mixture as used in HMM-based speech recognizer.

Our testbed handles MLPs using ICSI’s qustrn (training) and qnsfwd (forward pass) tools,
which can be found in the Quicknet3 package. Decoding and coding (hypothesis search)
are handled using the Noway decoder, available as part of the SPRACHcore package. 2.

4.4 Automatic Speech Recognition with the Auditory
Model

In the following sections, we give a brief description of the auditory model, the ASR
testbed setup and the speech recognition task. We used a test set that consists of the
isolate English alphabet, with and without background noise. Using the ASR setup,
we tested the robustness of the auditory coding against noise. We also tested how well

2) For more information about these software packages, see http://www.icsi.berkeley.edu/Speech /icsi-
speech-tools.html
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Figure 4.2: At every step n, the acoustic vector x,, with right and left conext is presented
to the network of multilayer perceptrons. This generates local probabilities
that are used, after division by priors, as local scaled likelihoods in a Viterbi
dynamic programming algorithm. The arrows coming up from each MLP
output symbolize the use of these scaled likelihoods (after taking the negative
logarithm) as distances from the acoustic input to their corresponding state.
The dark solid line shows the best path through the models up to time n
(that can be determined by backtracking through pointers), and the dashed
path shows its continuation that can be determined once the distances are
computed for the last frame in the data.
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a rate-place representation of the speech works at different sound levels, both in clean
and noisy conditions. By using different auditory modeling (with or without enhanced
offset adaptation) and different acoustic modeling, we showed the importance of realistic
auditory and acoustic modeling to the recognition of speech.

4.4.1 Model and Interface for Feature Extraction

The auditory model and its interface to the HMM speech recognizer are shown in Fig-
ure 4.3. We use the model introduced in Section 1.4 with a few modifications to reduce
the computational complexity. In the following sections we briefly describe the main com-
ponents of the auditory model, and the interface between the model and the HMM speech
recognizer.

The model of the peripheral hearing system consists of a simplified ear canal and middle
ear (described in Sec. 1.4.1), a model of inner ear hydrodynamics followed by a compression
stage, and an inner hair cell model. BM vibrations were calculated with a computationally
efficient wave-digital filter model comprised of 100 sections at a sampling rate of 48 kHz.
This inner ear model covers the complete human hearing range up to 20 kHz; as the sound
samples used in this chapter are band limited to 8 kHz, we discarded 9 high-frequency
channels and processed only the remaining 91 channels. The model of the sensory cells and
synaptic mechanisms is based on a model by [ ]. The modified model
works with continuous vesicle pools instead of quantized ones to speed up calculation.
Each sensory cell was connected to multiple auditory nerve fibers (ANFs), which elicited
all-or-none nerve action potentials. We employed a simplified spike generation module,
based on a binomial distribution of spike probabilities over the ensemble of nerve fibers.
The module still included both absolute and relative refraction effects. High-spontaneous
rate (HSR) and low-spontaneous rate (LSR) ANFs with different thresholds and growth
function slopes were modeled (Figure 4.6). No variations in spontaneous rate or thresh-
olds within each fiber type were modeled. The inner ear model provides large dynamic
compression of more than 80 dB and generates realistic ANF responses. It replicates the
bandwidths of human threshold tuning curves | , | and latest measurements
of dynamic range compression | , | with great precision |

, 2004].

The right hand side of Figure 4.3 shows how the spike trains of the ANF's are interfaced to
the HMM speech recognizer. The auditory nerve features are based on a rate-place coding
strategy. There are a number of conceptual differences between standard ASR features
and the auditory features: Whereas the spike trains of the auditory nerve give a sparse but
highly precise temporal code of speech, ASR systems rely on time-averaged smooth fea-
tures; the auditory system has a high frequency resolution with highly correlated channels
whereas ASR features tend to be less correlated and have fewer components. Temporal
averaging of the highly precise temporal code of the ANFs is necessary to generate the
rate-place code and adapt the features to the ASR system. Therefore, we use a tem-
poral resolution typical for ASR, averaging the response of each channel using a 25ms
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Hanning window advanced in steps of 10ms. The resulting features still have a relatively
high spectral resolution of 91 channels where as typical Mel-frequency cepstral coefficient
[MFCC] features have a dimensionality of 12-14. Further, the different frequency channels
are highly correlated, which is undesirable since we use diagonal-covariance Gaussians in
the HMM (see Section4.4.2). Therefore, we used a discrete cosine transform (DCT) to
reduce the spectral resolution and decorrelate the feature vectors®. We kept the first
twelve cepstral coefficients, including C0. To better match the Gaussian assumptions of
the HMM we gaussianized the amplitude distribution of the features, using a nonlinear
transformation based on the data in the training set ¥. In the last step, we augmented
the auditory nerve fiber features by first- and second order delta coefficients using HCopy
tool from HTK, calculated over four frames of past and four frames of future data. Delta
coefficients are a standard component of ASR systems. They greatly improve recogni-
tion scores by introducing context information to the short-term features. In addition to
deltas and double deltas, the MLP testbed also use a five-frame context window, due to
its capability of processing large amount of input data. The various stages of the feature
calculation are shown on the right hand side in Figure 4.3.

4.4.2 Recognition Task and Recognizer Back End

The automatic speech recognition tests presented in this chapter were carried out on the
ISOLET database, and on a modified version of ISOLET with artificially added noise
(noisy ISOLET). ISOLET | : | contains 150 speakers (75 female and 75
male speakers), each speaking the whole alphabet twice. The recordings were made of
isolated words in a quiet environment. For the noisy ISOLET database, one of eight
different noise types was artificially added to each utterance at one of six different A-
weighted signal-to-noise ratios: clean, 20dB, 15dB, 10dB, 5dB, and 0dB. The recogni-
tion scripts and tools to reproduce the noisy ISOLET corpus that we used are available
at www.icsi.berkeley.edu/Speech/papers/eurospeech05-onset/isolet. The noise
types were chosen from the RSG-10 collection | , |. The orig-
inal division of the ISOLET database into five subsets was kept, and the setup uses five-
way cross-validation to increase the statistical significance of the results | ,

]. The experiments were carried out for two different training conditions: clean train-
ing where training data was taken from the original ISOLET only, and multi-condition
training with four different noise types at various SNR levels. The noise types were added
in such a manner that, in case of multi-condition training and noisy test, each of the five
test sets had three matched noises and one mismatched noise, i.e., a noise type not seen
during training. Henceforth, we will refer to tests performed on the noisy ISOLET as
noisy tests, and those performed on the original ISOLET data as clean tests. We used
the first of the five splits of ISOLET database to tune SPRACHcore decoder options in

3) Statistics-driven approaches like Karhunen-Logve transformation (KLT) and linear discriminant anal-
ysis (LDA) were also tried. None of these alternative approaches performed consistently better than
DCT on the present ASR task.

4) We used Jeff Bilmes’ pfile_gaussian tool | , al.
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MLP based speech recognition. Tuning HTK decoder options had no significant effect for
this task. We reported results on the remaining four splits, 6240 words in total.

The ISOLET and noisy ISOLET recordings were scaled to have physically meaningful
amplitudes. When scaling, each utterance in the corpus was scaled by the same value.
Thus, the procedure scales the dynamic range of the whole set of recordings, but does not
normalize the differences between single utterances. The absolute sound levels reported
throughout the paper are A-weighted rms levels, averaged over all clean utterances in-
cluding pauses.

We used two speech recognizers: one built with Cambridge’s HTK using Gaussian mix-
ture models (GMMs), and one built with SPRACHcore | , 2] using multi-layer percep-
trons (MLPs) [ ) ] . The recognition scripts and noisy ISO-
LET corpus that we used are available at www.icsi.berkeley.edu/Speech/papers/
eurospeechO5-onset/isolet.

With HTK we used six states per word (one state for the pause model) and eight diagonal-
covariance Gaussians per state, and with SPRACHcore we used 1600 MLP hidden units.
In earlier work (not using all the same features), we found that increasing acoustic model
sizes beyond this had only a minor effect. When using HTK for the auditory features (not
for MFCC features ®)), to make the features easier for a GMM to model, we gaussianized
the feature vectors prior to delta calculation, using SPRACHcore pfile_gaussian tool.
Further regarding acoustic modeling, the HTK based recognizer used whole word models,
one model for each letter; the MLP based recognizer instead used phoneme based models.
We tried MLP acoustic modeling because we hoped avoiding the statistical assumptions
of the GMM approach would provide useful flexibility when working with the model-based
features | , b]. While we did try to de-correlate and gaussianize the features for the
GMDMs, we knew this might not be enough — for example, those transformations worked
with global distributions while GMMs model state conditioned distributions.

4.4.3 Speech Recognition Baseline

We adopted the commonly used Mel Frequency Cepstrum Coefficient (MFCC) ASR fea-
tures as the baseline result for comparing recognition scores. We calculated MFCC fea-
tures using HCopy tool from HTK. We took twelve MFCC coefficients (C0-C11) aug-
mented with first- and second-order derivatives calculated using four frames of past infor-
mation and four frames of future information, resulting in a 36-dimensional ASR feature
vector.

5 With gaussianization ASR results slightly improved for auditory features, but worsened a little for
MFCC features. See also results for MSG features [Ellis, b].
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Figure 4.3: Schematic figure of the auditory model and the interface to the ASR sys-
tem. Sound signals are separated into 91 frequency channels in the model
of the inner ear hydrodynamics. The compression stage introduces the am-
plification and nonlinear characteristics of the inner ear. N auditory nerve
fibers innervate one sensory cell (inner hair cell). The ANFs can be high or
low spontaneous rate fibers. To interface to the ASR system, the spike-trains
were averaged using a 25 ms Hanning window, advanced in steps of 10 ms. The
first twelve components of the discrete cosine transform were kept, and the
resulting features’ amplitude distributions were gaussianized. Finally, first-
and second-order delta coefficients were added.

4.5 Augmenting the Rate Code by Cochlea Nucleus
Octopus Neurons

The major difference between the human auditory system and automatic speech recogni-
tion lies in their representation of sound signals. ASR uses a smoothed low-dimensional
temporal and spectral representation of sound signals whereas the hearing system relies on
extremely high-dimensional but temporally sparse spike trains. The strength of the latter
representation lies in the inherent coding of temporal information, which is exploited by
neuronal networks along the auditory pathway. So far, features derived from the audi-
tory nerve fibers represent mainly the spectral characteristics of speech signal, very much
resembling the ASR systems. The precise temporal information was largely discarded by
the temporal averaging. Therefore in this section, we complemented the features derived
from ANF's with features derived from spike trains of octopus neurons, which are known
for their distinctive temporal processing properties. Since octopus neurons primarily re-
spond to voiced speech, we used vowels from the English alphabets (a, e, i, o, u and y)
to perform speech recognition tests.

The octopus neurons are found in the posterior ventral cochlear nucleus (PVCN), and
belong to the functional group of onset units | , |. They suppress
steady-state activity and fire on signal onsets. They are sensitive to amplitude modulated
signals especially in the frequency range of human speech signal, and further enhance the
amplitude modulation of voiced speech.
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In this section, we used the average firing rates of octopus neurons to augment the rate
place code of the auditory nerve fibers. The rate-place contour of octopus neurons in
response to vowels is fundamentally different from that of ANFs. Octopus neurons only
respond to stimuli with a clear temporal structure. Its firing rate depends only partially
on the intensity of the stimuli, but is more related to the fundamental frequency and
the amplitude modulation frequency (see Chapter 2.3). In contrast, ANFs respond to
any input within their response area and its firing rate mainly depends on the intensity
of the stimuli. Therefore the octopus neurons are capable of translating the temporal
information into a rate code. Figure 4.4 shows the schematics of combing the features
from ANFs and octopus neurons for speech recognition tests. We used 172,000 ANFs and
182 octopus neurons each driven by 60 ANFs. We used MLP testbed for combining the
features of ANFs and octopus neurons. Feature extraction was the same as we described
in previous chapter. In this multi-stream architecture, each stream of features was passed
to a different neural network for phone posterior probability estimation, and the posterior
probabilities are then combined across the different neural networks at the frame level.
After combination, there is only a single stream of probabilities, which are passed to the
decoder for recognition. For more information on this posterior combination approach to
multi-stream speech recognition, please refer to [ ].
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4.6 Results

Figure 4.5 shows speech recognition results as a function of SNR using features extracted
from auditory nerve (panel a) and octopus neuron (panel b) spike trains. As octopus

neurons respond primarily to voiced speech, we tested them only on the vowel subset (a,
e, 1, o, u and y) of ISOLET.

Using MLP testbed instead of HTK testbed resulted in major performance improvements
for all the auditory model based features (see also Table 4.1). The relative improvement
in word error rate (WER) averaged over all SNR levels is very significant: 27.2% for
ANF without OA, 33.1% for ANF with OA, 36.3% for octopus neuron without OA and
37.6% for octopus neuron with OA. All these improvements were statistically significant
using a difference of portions significance test (P < 0.0001). With MFCC features, for
the full set there was no statistically significant difference between MLP and HTK, while
for the vowel subset using HTK reduced word error rate considerably by 20% (this was
statistically significant, P < 0.002).

Including the enhanced offset adaptation model resulted in very large performance im-
provements for features derived from ANFs. The relative improvement in WER averaged
over all SNR levels is: 12.5% with HTK testbed and 19.6% with MLP testbed.

The enhanced offset adaptation improves phase locking of ANFs, which is vital for fur-
ther neuronal processing stages. Octopus neurons only responded in the frequency region
above 3kHz when offset adaptation was included in the IHC-AN model (refer to Chap-
ter 2). The improved firing pattern of octopus neurons leads to considerable performance
improvements in speech recognition on the vowel subset. The relative improvement in
WER averaged over all SNR level is as high as 37.1% with HTK testbed and 38.4% with
MLP testbed.

The improved speech recognition performance for both ANFs and octopus neurons showed
that the enhanced offset adaptation not only provided more useful input for octopus
neurons but also improved speech coding per se. All the improvements resulted from
enhanced offset adaptation were statistically significant (P < 0.0001).

4.6.1 Level Dependency of the Speech Recognition Results

The main problem of the rate-place code is the limited dynamic range of auditory nerve
fibers. [ ], for example, concluded that a rate-place code representa-
tion of speech is not robust over the range of levels encoded by humans. Due to nonlinear
effects such as discharge rate saturation and suppression, there are no formant related
peaks in the rate profiles at normal conversational levels (vowel levels above 65dB SPL).
Figure 4.6 shows the modeled rate-level functions of two auditory nerve fibers with char-
acteristic frequency of 1.5kHz in response to pure tone simuli. These curves match very
well with physiological measurements (data not shown). HSR fibers have low threshold
and a limited dynamic range of about less than 40 dB. We calculated speech recognition
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HTK MLP
MFCC 82.8 83.3
Full noisy ISOLET no OA 71.3  79.1

(17200 HSR ANF5) enhanced OA 749  83.2

MFCC 95.2  94.0
Vowel subset no OA 76.3  84.9
(182 octopus neurons) enhanced OA  85.1  90.7

Table 4.1: Recognition results averaged over all SNR levels for multi-conditional training
(OA: offset adaptation). MLP testbed outperforms HTK testbed in most of
the experiments except in the case of vowel recognition using MFCC features.
For the full alphabet recognition task, auditory feature with enhanced offset
adaptation achieved comparable performance (WER 83.2%) as to the result of
MFCC features (83.3%).
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Figure 4.5: Speech recognition results as a function of SNR. Panel a shows results on the
full noisy ISOLET task for features derived from 17,200 ANFs. Panel b shows
results on the vowel subset (a, e, i, 0, u and y) for features derived from 182
octopus neurons.
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results using features derived from HSR fibers at different speech intensity to show how
well the rate-place code works at different levels, in particular at high sound levels.
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Figure 4.6: Modeled auditory nerve rate-level functions for a high spontaneous rate fiber
(HSR, dashed line) and a low spontaneous rate fiber (LSR, dotted line). Both
fibers had a CF of 1.5kHz, and stimuli were pure tones at CF with 100 ms
duration (100 repetitions).

Figure 4.7 shows recognition results at different sound levels for the multi-conditional
training. Baseline is speech recognition results using the model without enhanced offset
adaptation and HTK testbed, where reasonably good result was achieved at low sound
level. At 25dB, recognition rate was 72.7%. As sound level increased, recognition perfor-
mance increased also slightly until it reached the plateau at 45 dB. Increasing sound level
beyond 45 dB degraded recognition performance dramatically: recognition rate dropped at
a rate of about 9.4% per 10dB and scored only 32.3% at 105dB SPL. After we improved
the model with enhanced offset adaptation, speech recognition performance degraded
slightly at low SPLs from 25dB to about 60 dB, but improved considerably at high SPLs
compared to the original model. At 105dB SPL, the enhanced model improved recogni-
tion score by 95.7% relatively. In general, the enhanced model is much more robust to the
change of SPL. The recognition score only dropped by 10.7% when SPL increased from
45dB to 105dB.

Using MLP based speech recognizer significantly improved performance for both models
with and without enhanced offset adaptation. For the model with enhanced offset adap-
tation, MLP acoustic modeling increased recognition score homogeneously at each SPL of
the input signals, lifting the curve for recognition score in Figure 4.7 almost parallel com-
pared to HTK. The recognition rate averaged over all SPLs increased from 69.0% using
HTK to 75.8% using MLP. The performance improvement for the model without enhanced
offset adaptation was even more impressive. By using MLP, we achieved a recognition
performance of 74.2% averaged over all SPLs, comparing to 61.9% using HTK. MLP alone
significantly increased the robustness of the recognition performance against increasing
SPL. From 25dB to 85dB we were able to achieve stable recognition rates. However,
SPLs stronger than 85 dB deteriorated the recognition performance, with a rate of about
9.6% per 10dB, similar to what we calculated previously when using HTK.
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Figure 4.7: Recognition results at different speech level from 15dB SPL(A) to 105dB

SPL(A) in 10dB step. Results for models with and without enhanced OA
were calculated using both MLP and HTK based recognizer. Multi-conditional
training was used for the experiments. SII refers to speech intelligence index
which represents the human performance (see Section 4.6.3).
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Figure 4.8: Recognition results at different speech level from 15dB SPL(A) to 105dB
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were calculated using both MLP and HTK based recognizer. Clean condition
was used for the experiments.



4.6 Results

It is worth noticing that by using MLP instead of HTK only, the speech recognition per-
formance was improved almost as much as combining MLLP and offset adaptation, except
that at very high SPLs, adding offset adaptation enhances the robustness of performance
significantly. The results of speech recognition tests showed that MLP generally accounts
for the major performance improvement while offset adaptation was essential for the ro-
bustness against high sound level.

For experiments under clean condition, the performance gap between speech recognizer
and human perception is less than that of the multi-conditional training condition. There
is stronger level dependency when the sound intensity is low as compared to multi-
conditional training. In multi-conditional training, high SPL deteriorates the speech
recognition performance considerably more than low SPL. However, in clean test, low
SPL appears to be a more critical factor which deteriotes speech recognition performance
significantly.

As in Figure 4.7, the enhanced offset adaptation greatly improves speech recognition at
high sound level and slightly degrades the performance at low sound level. MLP, on
the other side, always improves the speech recognition performance compared to HTK
testbed. The enhanced offset adaptation suppresses the spiking of auditory nerve fibers
through the dead-time period. Hence the auditory nerve fibers are less likely to saturate,
whereas previously the ANF's saturate very quickly as the sound pressure level increases.
On the other side, the suppression of spiking at low sound presssure level leads to too few
spikes to generate a meaningful representation of the speech, therefore a deterioration in
speech recognition performance.

4.6.2 Speech Recognition using Combined Auditory Nerve Fibers
and Octopus Neurons Features

In previous sections, we showed the importance of the proper acoustic modeling and the
realistic auditory modeling. In this section, features derived from octopus neuron spike
trains were used to augment the rate-place coding strategy from auditory nerve fibers.
We chose the system that gave the best performance, i.e., model with enhanced offset
adaptation and MLP acoustic modeling. Besides improved speech recognition result,
there is another benefit using the MLP testbed: MLPs are very easy to use in a multi-
stream approach. It automatically evaluates different features and combine them in an
optimal way. In previous work we used KLT to combine features from ANFs and octopus
neurons for the HTK testbed. The performance was worse than the current results, thus
not discussed here.

Figure 4.9 showed average speech recognition results on vowels at different sound levels.
We used features from ANF's and octopus neurons separately, and also the combination of
the two. At very low sound levels (25 dB, 35 dB), features from octopus neurons performed
much worse than the ANFs, because at low stimuli intensity the spikes of octopus neurons
are too sparse to provide meaningful representation of the speech signal. As sound level
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Figure 4.9: Recognition results at different speech level from 15dB SPL(A) to 105dB
SPL(A) in 10dB step. The model with enhanced offset adaptation was used
and MLP was taken for the acoustic modeling.
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Figure 4.10: Recognition results at different signal to noise ratio. Speech was normalized
to 140 dB SPL. The combined features from ANF and octopus neuron achieve
better performance than each feature alone.
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increased, octopus neuron performance improved considerably and then leveled off. ANF
features on the other side, mainly degraded with increasing sound level. The two curves
(blue and green) intersected at around 70 dB SPL(A). At high sound levels, octopus neu-
rons gave better or equal performance compared to ANFs, even though octopus neurons
had much less spikes.

At low sound levels, combining features from ANF and octopus neuron slightly degrades
the performance compared to the result using ANF features only. This is clear because
at low sound levels, octopus neurons performed much worse than the ANFSs, therefore
combining octopus neurons with ANFs actually degraded the performance in comparison
to ANFs alone. From sound levels around the conversational strength to even stronger
levels, where octopus neurons alone achieved comparable performance to ANFs, combin-
ing features from both improved speech recognition results. The performance of combined
features was very robust against increasing sound levels.

We took recognition results at 140 dB SPL(A) as an example to show how octopus neurons
improve recognition performance at different SNRs. Figure 4.10 showed the corresponding
results calculated from different features. Features generated from octopus neuron spike
trains outperform ANF features even though that octopus neurons have much sparser
spikes. The combined features generated best results at most of the SNR levels. Combing
octopus neurons with ANF's improved speech recognition performance most considerably
at low SNRs, the relative reduction in WER is 20.0% at 5dB SNR and 19.5% at 0dB
SNR. This indicates that features derived from octopus neurons improve robustness of
speech recognition, thanks to their distinctive temporal processing characteristic — they
respond preferably to voiced speech due to their strong phase locking ability to amplitude
modulated signals (see Sections 2.3 and 3.3.3).

4.6.3 Comparison with Human Performance

In this section we compared our speech recognition results to human performance, which
was represented by the Speech Intelligibility Index (SII, , ). The SII is a measure
based on acoustical measurements of speech and noise that is highly correlated with
intelligibility of speech. The SII cannot be interpreted as a recognition rate, but is an
intermediate result in calculating human speech intelligibility. The actual intelligibility
depends on the size and nature of the recognition task, among other factors. To transform
the results from SII to recognition rates, we used a transfer function which is also used
by [ |. It is based on the transformation between articulation index
and an open-set nonsense syllable test, originally suggested by [ 1,
and is corrected for recognition by chance in the present case of a limited test set. The
recognition rate R is described by

1
R=1- (1 - M) - 107S11/p, (4.2)

where M is the size of the test set (M = 26 in our case) and p = 0.56 a fitting constant.
Since intelligibility tests with human listeners were out of the scope of this thesis, the
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parameter p was estimated from [ |, who reported 1.6% error rate for continuously
spoken letters in clean conditions. A parameter value p = 0.56 maps a SII of 1 to a
recognition rate of 98.4%. Although this relies on a single data point, it should give
an idea of human performance. The mapping between SII and intelligibility is kept
constant throughout this section. Any changes in intelligibility due to background noise
or speech level thus reflects changes in SII values. As the SII considers spectral masking
and the human hearing threshold, it replicates the observed decrease in human speech
intelligibility at low and high levels [e.g., : : :

: , 1999].

The SII-based recognition scores in this section were calculated using the 1/3-octave band
procedure | , ] with speech spectrum levels averaged over all (clean) ISOLET
recordings. The level-dependent SII was calculated by varying the level of the speech
spectrum. For the estimation of SII in background noise, the spectrum levels of the eight
various noise types present in the noisy ISOLET database were calculated. SlIs were
calculated for each of the noise types and at all signal-to-noise ratios separately. The SII-
based intelligibility predictions presented in Figure 4.7 are averaged over all conditions.

According to the SII prediction, the recognition rate averaged over all SPLs was 91.4%.
It is quite clear that there is still a big gap with regard to speech recognition performance
between human and the auditory model (average recognition rates were 91.4% and 75.8%,
respectively). Regardless of the performance gap, recognition results achieved from the
model with enhanced OA (Figure 4.7, and Figure 4.8, solid lines in blue and red) resembled
the curve predicted by SII (green line) very well. Recognition performance increased from
very low SPL, reached the plateau at around 35dB to 55dB and then slowly decreased
when SPL further increased. The result showed that the enhanced OA was essential for
the auditory model to achieve similar recognition robustness as humans.

4.7 Discussion

The outstanding performance of human speech recognition inspired the effort to model
the human auditory pathway. Therefore it is only logical to evaluate the modeling effort
with speech recognition tasks. Among others, the generality and its ability to perform
complex tasks with various stimuli and many variations in speech make speech recognition
a better candidate for evaluating speech coding compare to the discrimination tasks [e.g.,

I ) I I ) )

Y

|which tests only well defined properties

Y ) Y )

of speech.

In this chapter, we used speech recognition as a tool to test the performance of the
modeled auditory system. In terms of signal processing, speech recognition is used here
as a classification task to test the rate coding strategy and the information transmission
capability of the auditory system qualitatively. We tested speech recognition performance
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for two models — with and without the enhanced offset adaptation — with two different
testbeds — HTK testbed using Gaussian mixture model for the acoustic modeling and
MLP testbed using multi-layer perceptrons for the acoustic modeling.

The enhanced offset adaptation not only generates realistic auditory nerve outputs per se,
but also improves the speech recognition performance. When tested on noisy full alphabet
using features derived from auditory nerve fibers, the enhanced offset adaptation improves
average speech recognition rate by 12.5% for HTK testbed and 19.6% for MLP testbed.
The enhanced OA is vital for octopus neurons to spike properly. Without enhanced OA,
octopus neurons stop firing at frequencies above 3kHz. The improvement brought by
the enhanced offset adaptation on vowel recognition with features derived from octopus
neurons was more impressive: 37.1% and 38.4% for HTK and MLP, respectively. Given
the fact that information was transmitted to the higher processing stage of the auditory
pathway only by neurons such as octopus neurons, it is critical to incorporate the enhanced
offset adaptation into the auditory system.

Enhanced offset adaptation also shows considerable impact on the robustness of speech
recognition at different speech levels. For the original model without the enhanced OA,
when the sound level is higher than 45dB, recognitioin rate using HTK testbed with
ANF features dropped very dramatically, at a rate of 9.4% per 10 dB. With the enhanced
OA, the recognition degraded only moderately — recognition score dropped only 10.7%
in total when SPL increases from 45dB to 105dB compared to 56.4% previously. At
105 dB, the relative improvement in speech recognition performance is 95.7%. For speech
recognition at different levels under clean condition, the similar impact of the enhanced
offset adaptation has been shown.

Human performance in speech recognition represented by the speech intelligence index is
considerably better than the performance of the automatic speech recognizer using the
auditory features. However, implementing the enhanced OA narrows this performance
gap. Despite the difference in performance, the offset adaptation improves the robustness

of speech recognition against sound level, which resulted in a curve that is almost parallel
to the SII.

Alongside the improvement achieved by using the enhanced OA, adopting MLP testbed
also produces extra benifit in terms of speech recognition result. HMM testbed excels in
the representation power and the flexibility of training, decoding, and the ability to acc-
ommendate different levels of constraints but makes numerous assumptions about speech.
We used MLP testbed hoping to avoid the statistical assumptions of the GMM approach
and provide useful flexibiliy when working with the model based features. The MLP
testbed also allows us to take advantage of the HMM frame work.

The result is promising. Using MLP testbed instead of HTK resulted in major improve-
ments in speech recognition performance for all the auditory based features. This is
consistent with past results on MSG auditory features | , , , b]. How-
ever, when using MFCCs on the vowel subset, GMMs outperformed the MLPs. MLPs
are also very easy to use in a multi-stream approach. The combined features from ANFs
and octopus neurons outperform each single feature. In the future we also hope to ex-
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ploit combined features derived from different groups of neurons. Other researchers have
found a tandem MLP/GMM approach to be an effective way of incorporating auditory-
inspired TRAPs features into a GMM system, while still taking advantage of the GMM
system’s strengths such as speaker adaptation | , ]. We believe researchers
working with novel features should consider trying MLPs. The MLP and HTK ISOLET
recognition scripts are available online for use with other features.
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Abstract?

In this paper we use information theory to quantify the information in the output spike
trains of modeled cochlear nucleus onset neurons (ONs). Onset neurons are known for
their precise temporal processing, and they code the periodicity of voiced speech with
high fidelity. We conclude that the initial maximum information transmission rate for
a single neuron is close to 1050 bits/s, which corresponds to approximately 5.8 bits per
spike. For quasi-periodic signals like voiced speech, the transmitted information saturates
as word duration increases. In general, approximately 90% of the available information
from the spike trains was transmitted within 45 ms. Information of speech concentrates at
formant frequency regions. The efficiency of neural coding lies above 60% up to the highest
temporal resolution we investigated (20 us). The increase in transmitted information to
that precision indicates that these neurons are able to code information with extremely
high fidelity, which is required for sound localization. On the other hand, only 15% of the
information was captured with a temporal resolution of 10 ms. As the temporal resolution
of most speech recognition systems is limited to this value, this massive information loss
might explain the lack of noise robustness of these systems.

1 A modified version of this chapter has been submitted to the Journal of Computational Neuroscience.
Some of the similar results were also published in the proceedings of IEEE International Conference
on Acoustics, Speech and Signal Processing 2006 | ; ].
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5.1 Introduction

The outstanding performance of the human auditory system, especially in noisy environ-
ments, motivates the investigation of auditory principles for robust coding and recognition
of speech. Our auditory system performs a spectral decomposition of acoustic stimuli,
and at the same time preserves temporal information by the virtue of precisely timed
nerve-action potentials. In this paper we investigate the coding strategy of the initial
neural processing stages. The following problems are of particular interest for us: How is
speech encoded into neural spike trains? How is information distributed across frequency
bands? What is the temporal resolution of the neural code, and in which time scales
is most information represented? And furthermore, how efficient and how robust is the
coding in noise?

Neural coding has been classified into two major types: rate codes which consider only
the average rate of spike discharge, and temporal codes, in which the timing of indi-
vidual discharges matters | , |. Debates are still ongoing over
the effectiveness of one code over another | , | and most automatic
speech recognition algorithms use short-term spectra and neglect — or better discard —
fine-grained temporal information. Early theories of neural information processing, dat-
ing back to the very influential observations by von Helmholtz | , ],
generally assumed that all the information carried by neural spike trains is contained in

the firing rate | , ]. However, the accuracy of individual spike timing represents
a second, if not the most important, mechanism of information transmission along the
neural pathway [ , |. Along these lines, we have shown that the rate-place

code alone is not sufficient for the robust discrimination of noisy speech at high sound
levels and highlighted the importance of temporal coding at least under these adverse
conditions | , ].

In Chapter4 we have utilized speech recognition to evaluate the neural code and have
shown that the spike trains of auditory nerve fibers together with spikes from onset neu-
rons provide an effective representation of the speech signal. However, the recognition
performance was not particularly better than MFCC feature extraction, which still can’t
get even close to human performance (SII). It was not very straight forward to draw
conclusions about neuronal coding based on the speech recognition results. Besides, only
the rate-code principle was examined. As we used a 25 ms Hanning window forwarded in
10 ms steps, information encoded in a temporal scale finer than 10 ms was discarded. It’s
hard to fully exploit the coding capacity of the neuronal spike trains just using speech
recognition. Therefore in this chapter, we utilized information processing to evaluate the
neuronal encoding strategy.

In our calculations, we therefore represent spike trains with the precise timing of each in-
dividual spike. This representation makes no assumptions on the coding strategy, it thus
evaluates all the information that is carried by the neural outputs. We generated spike
trains with our previously developed auditory model of the human inner ear |

, , , | with an extension of enhanced offset adaptation
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[ , ] and applied information theory to find answers to the above
questions. We evaluated the robustness of speech coding for Type-II onset neurons (espe-
cially the spherical bushy cells) located in the cochlear nucleus (CN). The CN is the first
neural processing stage after the inner ear. ONs respond with great precision to signal
onsets and they extract the periodicity of voiced speech with high fidelity | ,

]

5.2 Modeling Spike Trains of Onset Neurons

We used the peripheral hearing model that was introduced previously. The model in-
cludes the frequency response functions of outer- and middle ear, a model of inner ear
hydrodynamics followed by a compression stage, and sensory cells (see Figure 2.1). In
summary, the hydrodynamic model effectively acts as a filter bank that spectrally decom-
poses acoustic stimuli. The compression stage models the effects of the so-called “cochlear
amplifier”. It achieves up to fourth-root compression of the dynamic range. The absolute
compression is more than 60 dB. It also achieves the high spectral resolution found in hu-
mans at low sound levels. Large compression is crucial for sound coding by the inner-hair
cells, since they have a dynamic range of only 40 dB. Auditory nerve fibers innervate the
sensory cells and encode the stimuli into nerve action potentials, i.e. spike trains. The
generation of a spike by an ANF is implemented using the pool model, which we further
extended to reproduce an effect termed offset adaptation. Our model generates realistic
ANF responses which reproduces recent psychoacoustic measures of frequency selectivity

and compression | ; ]. It replicates the bandwidths of human
threshold tuning curves | ; | and latest measurements of dynamic range
compression | , | with great precision.

We modeled Type-II onset neurons | , | located in the auditory

brainstem (ventral cochlear nucleus VCN) and connected them to 60 ANFs (all with the
same characteristic frequency) from our inner ear model (compare Figure 2.1).

Figure 5.1 presents the responses derived from the utterance /ei/ (female speaker, ISO-
LET | : | feme0-Al, scaled to a sound level of 75 dB(A)). ISOLET recordings
are band-limited to 8 kHz. The responses of the ANF and ON along the length of the
inner ear are plotted in Figure 5.1. Note that the inner ear performs a spectral decompo-
sition with approximately logarithmic frequency resolution. ANF spike trains code both
spectral- and temporal features of sounds. Frequency regions with high energy — like the
formants — are coded with higher spike rates. The temporal fine structure of the sound
signal is preserved in the precise spike timing. The increasing delay of the neural responses
towards lower frequencies is caused by the propagation of the traveling-wave from the base
to the apex of the inner ear. ON enhance the periodicity of voiced speech; especially in
the frequency region above 1kHz, they lock on the time structure of the acoustic signal
and reliably extract the pitch frequency | , ). At lower frequencies,
they are entrained directly with the characteristic frequency of the auditory nerves, to
which they are connected.
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Figure 5.1: Coding of speech (utterance /ei/, female speaker, 75dB(A)) into trains of
nerve-action potentials of the auditory nerve fibers (upper left pannel) and
onset neurons (lower left panel).

5.3 Information Calculation

Since sensory systems are analog to communication channels [Attneave, 1954]; a natural
approach to analyze neural coding is to use mutual information. Let S denote the input
stimulus and R the neuronal response. Based on Shannon’s information theory [Shannon,
19418], given the neuronal spike trains, the information I(R;S) conveyed about the input
stimulus can be calculated by

I(R;S) = H(R) — H(R|S) (5.1)

where the entropy H(X) of a discrete random variable X is defined by
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5.3 Information Calculation

ZP x) log, p(x (5.2)
and the conditional entropy H(X|Y') of X given Y by

HX]Y) == LpHXY =y) (5.3)

We followed Strong’s direct method | : | to compute the mutual informa-
tion and the total response entropy of individual neurons in the auditory pathway. This
approach makes no assumptions how the neurons code input stimuli and thus preserves
all the information which is contained in the spike trains.
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Table 5.1: Binary representation of onset spikes. This table is based on realistic
output of a neuron with time quantization of 1ms. The rows correspond to
different trials.
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5 Quantify Speech Information in Spike Trains Using Information Theory

We down-sampled the (quasi-) continuous response of the onset neurons into time-bins
with appropriate length. We will refer to this down-sampling operation later as a ”bin-
ning” process (please see [ ] for a description of different estimation
methods of mutual information, including a binless approach | , ). We then
represented these discrete bins with binary letters. Depending on whether there was
an output spike within the bin or not, the letter evaluated to “1” or “0”, respectively.
Hence we obtained a discrete version T'(R) of the neural response. The discrete spike
train T'(R) of a given neuron was further translated into a sequence of words along the
time axis. Each word W consisted of L letters, while each letter covered a time bin of
AT ms, which was the temporal resolution of the binning process. Table 5.1 shows how
the spike trains of an onset neuron was represented by binary digits and further grouped
to generate words. For a given spike train, we computed the histogram of occurrences for
each possible word (duration: LAT ms), which was then used to calculate the probability
of the word, i.e., p(W (L, AT)). Then, the entropy per unit time, or equivalently, entropy
rate, was computed:

H,(L,AT) LATZp W (L, AT))logy p(W (L, AT)) (5.4)

If each bin of the output spike train was independent, then the calculation with any word
length L would give us the same entropy. However, there are correlations both due to the
correlations in the input stimulus and due to the processing within the auditory pathway,
e.g. refraction. To evaluate these effects, we studied the how entropy is influenced by
word length.

The noise entropy (or equivalently, conditional entropy) represents variations between
different responses of a neuron when the stimulus is repeated. It was computed the
following way: for M repetitions of the stimulus we get M trials of spiking responses. The
occurrences of words W (L, AT') at a particular time ¢; leads to the conditional probability
of occurrence p(W (L, AT)|t;). Entropy for the distribution at time ¢; was computed and
then averaged over time to obtain the noise entropy rate,

H"*¢(L,AT) =
< — 2w p(W(L, AT|t;)) logy p(W (L, AT]t:)) >

TAT (5.5)

where (...), denotes the average over the whole sampling time from ¢, to ¢,.

We also used information theory to estimate the temporal precision of the action poten-
tials. Information was calculated using different temporal resolutions for the binning pro-
cess. According to the data processing inequality?, the input stimulus S, the response R
of an onset neuron and its discrete representation forms a Markov chain S — R — T'(R),
therefore the information calculated from T'(R) is always less than the real amount of

2) Data processing inequality: If X — Y — Z form a Markov chain which means X and Z are independent
given Y, then I(X;Y) > I(X;2) | , .
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5.4 Results

information. The loss of information decreases when we use a finer time resolution for
the binning process. It goes to zero when the binning resolution is higher than the actual
temporal resolution of the action potentials. In other words, if the binning resolution is
already higher than the precision of the generated spikes, then using an even finer resolu-
tion will lead to no further increase in information transmission. Therefore, we searched
for the point where information saturates when increasing the binning resolution [

Y ]

In our experiments, we presented speech signals to our auditory model and evaluated
the distribution of firing patterns of the ONs. We used responses from ON because
they integrate over many ANF inputs. Therefore, ON responses are much more reliable
compared to ANFs, which immensly reduces the number of occurring spike patterns. For
this reason, information calculations using ON spike trains converge faster than for ANFs.
We used the type-II bushy cells to generate the output spike trains. Bushy cells behave
very similarly to octopus cells, except that bushy cells do not have the hyperpolarization-
activated cation current [,. Bushy cells have a lower spiking rate than the octopus cells,
therefore they are easier to calculate using information theory®. In Chapter 6, we will
also show some results from octopus neurons.

5.4 Results

5.4.1 Feasibility of Robust Estimation

Estimating entropies from empirical distributions requires large amount of data. Accord-
ing to Rieke et al., we can relatively easily estimate the upper bound of entropy of a
certain spike train | , ].Imagine a spike train with an average spiking rate
7 and a total duration of ¢ observed with a temproal resolution of AT, where AT was
small enough so that in each bin there is either one spike or none. The upper bound of
entropy can be estimated assuming that spikes in different bins are uncorrelated,

H = TAT logy(TAT) + (1 —TAT) logy(1 — TAT)) (5.6)

_E(

In our case, the onset neuron had an average spiking rate of about 156 spikes/s at a
characteristic frequency of 1.5kHz%. We sampled the spike train with a resolution of
AT = 4ms, which is small enough to guarantee that there is at most one spike in each bin.

3) We did the most calculation for both bushy cells and octopus neurons, therefore the conclusions in
this chapter applies for both types of cells. However, for octopus cells, the information calculation
requires more trials to see a saturation at long word lengths. We didn’t calculate how the pink noise
affects the information distribution at different channels either due to computational cost.

4) In this frequency channel the firing rate was relatively low. We also show resuls from the 260 Hz
channel, which is located in the region of the first formant, where ONs in our model fired with the
higest rate.
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5 Quantify Speech Information in Spike Trains Using Information Theory

The longest word duration on which we calculated entropy was 72 ms. Correspondingly,
the maximum entropy can be estimated to about 17.2 bits (Equation 5.6). Theoretically,
it would require at least 3 hours stimulation to cover all the instances if non-overlapping
words were used. For a word duration of 100 ms, the required theoretical stimulation
period would increase drastically to 435hours. Therefore, for long word durations it
becomes increasingly hard to achieve robust estimations.

Number of occurances

=
o
=
T

i i i
-
100 1 2 3 4

10 10 10 10 10
Index of spike pattern

Figure 5.2: The distribution of output spike train patterns. The outputs correspond to
about 1 hour neural recordings. Spike trains are grouped into words of 72 ms
duration with 4 ms temporal resolution. Around 2617 different patterns in to-
tal were observed. The maximum number of occurrences for a single pattern
amounts to 17,276. The observed distribution is very peaky — 1% of the pat-
terns which occur most frequently contribute to 49% of the total occurrences,
whereas 27.7% of the patterns occur only once. For better visualization, the
figure was plotted on double-logarithmic axes.

Despite this pessimistic outlook, we found that a robust estimation is feasible. First, the
patterns of ON spikes which actually occur are much less than the theoretic estimation,
about 2617 in our calculation compared to 149,835 resulted from the theoretic estimation.
Second, the distribution of the possible instances is extremely peaky (see Figure 5.2),
which leads to a small estimated entropy of about 7.4 bits. This entropy is a maximum
likelihood estimation of entropy (Hyr), since the maximum likelihood estimate of the
probabilities is given by the frequencies of occurence. According to | ,

], the number of samples used in our estimation (~ 2'93) is much larger than 27z
(Hyp = 7.4), indicating that the direct estimation has already converged to its asymptotic
value. In fact, since we used overlapping words in our calculation, the total duration of
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5.4 Results

the signals corresponded to about 35hours, which was much longer than the 3hours
required to cover all the possible instances. It thus indicated that a robust estimation
is possible. Besides these two facts, we also applied various techniques to compensate
the possible under-estimation problem in the following parts of this paper. And finally,
our model enables us to achieve even larger amounts of experimental data as long as the
computational power is available.

5.4.2 Information Conveyed by Spike Trains
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Figure 5.3: Relationship of total- and noise entropy rates on the reciprocal of word du-
ration. Spike trains were taken from an ON with a characteristic frequency
of 1.5kHz. The binning resolution was 1ms. Results were calculated from
20,000 repeated experiments with the same input data.

Figure 5.3 shows total entropy rate and noise entropy rate calculated by the algorithm
described in Chapter 5.3. The relationship between noise entropy rate and the reciprocal
of word duration can be well described by the following linear function,

noise Hnoise(La AT) m
H (L AT) = =2 =T AT

which in turn gives us the following relationship between noise entropy and word duration,

(5.7)

Hypise(L, AT) =1+ L- AT +m (5.8)
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5 Quantify Speech Information in Spike Trains Using Information Theory

where r denotes the rate of noise entropy in bits per time unit at infinite word duration
and m a constant, which corresponds to the slope of the noise entropy rate in Figure 5.3.
Asymptotically, limy, .o Hppise(L, AT) = 0 leads to m = 0, which is in accordance with
our calculations, where noise entropy rate is almost constant with a standard deviation of
only about 5.1%. Still, in the following numerical estimations, we kept the m value from
the linear extrapolation, even though it was very close to 0.

The dependency between total entropy and word length is not as simple. In Figure 5.3,
the total entropy rate as a function of the reciprocal word duration is plotted. Our
results are similar to previous data (e.g. | , : : ). The
entropy rate decreases monotonically with increasing word duration. The decrease is
moderate and almost linear for short word durations. When the total entropy rate as a
function of the reciprocal word duration is plotted, usually the linear part of this data is

extrapolated to infinite word durations | : |). However, our data shows a
hyperbolic decrease of the entropy rate. This decrease is usually declared as a result of an
insufficient number of samples (] , 1)), due to the limited recording times

available from experimental recordings. However, in our case, we were able to overcome
this problem with a large number of computational samples and we will show that this
hyperbolic decrease has other systematic reasons.

First we show the reliability and convergence of our data. Numerical convergence becomes
an increasingly severe issue for long word lengths, because the number of possible words
increases exponentially. We have therefore investigated the data points with the three
longest words, corresponding to a word duration of 25 ms, 36 ms and 48 ms. To investigate
numerical convergence, we plotted the mean value and the standard deviation of the
total entropy rate as a function of the number of trials using a logarithmical abscissa
(Figure 5.4). For word durations of 25ms and 36 ms, the value of both mean entropy
rate and standard deviation clearly indicated a robust estimation for a large number
of samples; the mean of the estimated entropy rate changed by less than 1% when the
number of trials exceeded 100 trials.

For the word duration of 48 ms, the entropy rate increased systematically as the number
of trials increased. The entropy rate did not fully converge even when we used the largest
trial number. However, the increment leveled off and the plot clearly showed that the
entropy rate was almost converged. We may expect that the asymptotic value would
(almost) certainly not exceed 202 bits/s.

In summary, we achieved a reliable estimation of the entropy rates even at the longest word
lengths we used in this paper. Therefore we have to conclude that a linear extrapolation
of the total entropy rate to infinite word lengths is not appropriate in our case. Instead,
the total entropy rate decreases systematically and hyperbolically for increasing word
durations.

Since we have excluded the under-sampling problem as the reason of the drop of total
entropy rates with word duration, we have to describe the relationship between total
entropy rate and duration in a different way, rather than a simple linear one. Instead of
fitting entropy rate and the reciprocal of duration, we now look at entropy as a function
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Figure 5.4: Entropy rates calculated from different numbers of samples. Panel a,b and ¢
correspond to the three datapoints with the longest word lengh (word length
48, 36 and 25 bins, resolution 1 ms) from Figure 5.3, where the under-sampling
problem becomes most severe. Mean values from 8 identical calculations are
plotted. The error bars show one standard deviation above and below the
average.

of word duration, which is easier to understand in this respect. As shown in Figure 5.5,
noise entropy is roughly linear as a function of word duration (Equation 5.8). For the
total entropy, there is an initial steep increase which then levels off to the same steepness
as for noise entropy. This can be seen more clearly in transmitted information trace
(which is the difference between total entropy and noise entropy) shown in the right panel
of Figure 5.5. Transmitted information increases steeply for small word durations and
saturates at longer word durations. We applied different possible functions to fit the
data and found an exponential function best described the experimental data. We will
illustrate in the discussion that this function is also analytically meaningful. Total entropy
can be described by

H(L,AT)=r-L-AT —c-exp(—LAT/7) +d (5.9)

where r takes the same value as in Equation 5.8. ¢, 7 and d are coefficients to be estimated
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5 Quantify Speech Information in Spike Trains Using Information Theory

by fitting the experimental data. Asymptotically limy o H(L, AT) = 0 gives us d = c.
Therefore the information carried by the spike trains can be calculated:?,

I(L,AT) = H(L,AT) — Hpoise(L, AT)
c(1 — exp(—LAT/T)) (5.10)
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Figure 5.5: Dependency of total entropy, conditional entropy (left pannel), and informa-
tion (right panel) on word duration. Round circles and triangles refer to
calculation from the experiments. Smooth lines are fits to the data. Two sets
of experiments with binning resolutions of 4ms (solid line) and 1ms (dotted
line) are performed. With a coarser binning resolution (4ms), less informa-
tion is transmitted but we are able to cover longer duration with the same
word length L and thus see the saturation of information more clearly. At all
conditions, the experimental data is fitted well by the functions.

Our fit predicts that the information conveyed by the output spike trains of the onset neu-
ron has an initial steep increase and then levels off asymptotically to a constant amount.
Information conveyed by the onset neuron saturates as word duration increases. 90% of
the available information is transmitted within 45 ms. When we compare the two curves
calculated for 1 ms and 4 ms resolution, it is also clear that for a coarser resolution, we
miss information which is preserved when using finer temporal resolution. We will address
this point in the next chapter.

5) The numerically minor constant part is neglected in our formula, though we keep it in our computations.
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5.4.3 Temporal Resolution of Spike Trains

We calculate the information carried by onset neuron spike trains using different binning
resolutions. It is obvious that at different resolutions, words with the same length L
cover different durations (LAT) of the signal. In order to make a comparison between
results meaningful, we use words of 4ms duration® for all the calculations and compare
the information rate for different resolutions.

Figure 5.6 shows how information rate depends on the resolution that is used to represent
the spike trains. As the resolution increases, information rate increases monotonically, in
consistency with the Data Processing Theory. The highest temporal resolution we could
investigate in our study is limited by the sampling frequency (48 kHz), which is equivalent
to a temporal resolution of about 20 us. The increasing information rates up to this limit
illustrates that still some information is coded in the spike trains of onset neurons even at
the highest temporal precision accessible to our study. If we compare the highest infor-
mation rate to the information at a resolution of 10 ms, which is used for most automatic
speech recognition systems, we see that only about 15% of the available information is
processed. At 0.25ms resolution, the information being transmitted corresponds to about
80% of the overall information. Therefore in the range from 0.25ms to 10 ms, about 65%

is coded, or equivalently, 65% of the information lies in frequency regions between 100 Hz
to 4kHz | : ].

We further investigated the effect of different temporal binning of the neural spike trains
by looking into the efficiency of the neural coding. As the information that the spike train
provides about the stimulus is simply the difference between the total entropy and noise
entropy (see Equations 5.1,5.10), and noise entropy is positive (semi)definite, therefore
the total entropy H(L,AT) sets the capacity for transmitting information. The efficiency
with which this capacity is used is defined by | , ]

¢ = I(L,AT)/H(L, AT) (5.11)

The question of how important spike timing is can be reformulated to the question of
whether this efficiency is high at small AT | , ].

Figure 5.7 shows the efficiency of information transmission using different binning reso-
lutions on the spike trains. At most resolutions for both characteristic frequencies, the
efficiency of neural coding remains above 60%, in accordance to what other researchers
have shown | , ]. At resolutions between 0.25 ms and 1.5 ms, neu-
rons with both characteristic frequencies show very high efficiencies in coding. Increasing
the resolution above 0.25 ms or decreasing it below 1.5 ms degrades the efficiency.

As we have mentioned before, we can decide whether spike timing is important from
evaluating the efficiency, i.e., if efficiency remains high at fine temporal resolution, then
spiking timing at this scale is still important. Figure 5.7 shows that even at the highest

6) The duration is limited by the word length at highest resolution, which is constrained by the compu-
tational expense. At 1/48 ms resolution, 4 ms corresponds to word length of 192.
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Figure 5.6: Information rate calculated for different binning resolutions. For each calcula-
tion, the word duration is set to 4 ms. At 10 ms resolution, we used the fitted
curve to calculate the information rate for 4 ms word duration. Input Stimuli
and output spike trains are the same as in the previous tests. The abscissa
shows the resolution for our binning process. Results of the 1.5 kHz frequency
channel and the 260 Hz frequency channel are plotted.

resolution that we can simulate, neural spike trains achieve fairly high efficiency of around
65%. At 0.25ms resolution where approximately 80% of the information is transmitted,
the efficiency for both channels is as high as 88%. This indicates that Onset Neurons
do exploit a very high temporal resolution to code most of the information with high
efficiency. It is yet to be found out what kind of specific information the Onset Neurons
are trying to code and whether this information is also relevant for robust speech coding
or other cognitive tasks.

At all resolutions, the 260 Hz channel achieves higher efficiencies than the 1.5 kHz channel,
which is attributed to the reliable locking to the characteristic frequency.

5.4.4 Information Distribution over Frequency Channels

Frequency decomposition of speech signals is essential for speech perception. In this
chapter we investigate how information is decomposed and distributed over frequency
channels and how robust onset neuron spike trains are in noisy conditions.

Figure 5.8 shows that information coded by the onset neurons is distributed over a wide
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Figure 5.7: Efficiency of information transmission ¢ computed at various temporal reso-
lutions, from AT = 10ms to AT = 1/48ms. Note the original spike trains
coming out from our auditory model is sampled at 48 kHz, therefore 1/48 ms
is the highest resolution we can achieve.

frequency range. In clean conditions (30 dB SNR), the information rate reached high val-
ues in the regions where ONs spiked most frequently | , ]. The largest
portion of information concentrated at low frequencies from about 100 Hz to 600 Hz, where
the spikes precisely phase-locked to the pitch frequency or its higher harmonics. Also in
the 1-2kHz and 3-5 kHz regions, the information rate reached comparable high values. In
these regions, ONs locked reliably on the pitch frequency of the voiced speech signal.

The spiking rates of ONs reached their maxima at CFs around 440 kHz, where the ONs
phase locked to the second harmonic of the pitch frequency. The firing rate at the 440 kHz
CF was almost twice as high compared to the rate at pitch frequency but the information
rate was only slightly higher.

We investigated the robustness of neuronal coding by adding pink noise ar various SNR
ratios. For comparison, we kept the speech level constant. Therefore the total level of
speech with noise increased with falling SNR. If one would just add a pink noise to a speech
signal, the information algorithm would not be able to distinguish between speech and
noise information; it would just estimate the information of the input signal, e.g. speech
and noise. In order to investigate how noise degrades speech information, we recalculated
the pink noise for every trial, added it to the speech signal, presented it to the inner ear
model and analyzed the spike trains. Using this procedure, we only estimated speech
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5 Quantify Speech Information in Spike Trains Using Information Theory

information, as the information of the pink noise was different from trial to trial.

Adding pink noise to the signal gradually deteriorated the information transmitted by
the ONs. For a SNR of 0dB, pink noise corrupted about 73% of the information at the
260 Hz location and 85% at the 1.5kHz location.

5.5 Conclusions and Discussion

Onset neurons located in the cochlear nucleus are known for their distinct temporal pro-
cessing capabilities. In this paper, we analyzed their performance from the aspect of
information transmission. We used speech data, fed it into our computational inner ear
model which generated realistic auditory nerve responses. We used these to drive our
onset neuron model. We analyzed the neural spike trains using the direct method based
on Shannon’s information theory to calculate noise entropy and transmitted entropy of
individual neurons with different characteristic frequencies. The direct method does not
make any assumptions on the neural code and therefore preserves all the information
present in the spike trains.

We found that the information rate in our case is not constant for increasing word lengths.
Instead, transmitted information for voiced speech sounds saturated. 90% of the infor-
mation could be transmitted within about 45 ms in general. The time constant of the
exponential saturation curve depended on signal level; for louder signals the information
is transmitted faster (data not shown).

In the following paragraph we will analyze this behaviour in detail and provide an expla-
nation. Noise entropy rate was indeed almost constant with word duration. Therefore
noise entropy increased linearly with word duration (see Equation 5.8), as expected. The
speech sound we input to our model is a quasi-periodic signal, which repeats itself — at
least approximately — every pitch period. Onset neurons fire reliably at each pitch period
of the input signal. Therefore, for a given stimulus, the uncertainty of the output spikes
lies mostly in the jitter of each individual spike timing (firing rate is relatively constant
for different trials even within a small time window), which is only dominated by the same
stochastic property of our auditory processing. In this case, conditional entropy can be
viewed as a sequence of variables which are almost independent and identical. According
to information theory, the joint entropy of IID (identically and independently distributed)
variables can be calculated as the sum of all entropies, namely,

n

H(X1, X, .., X,) = 3" H(X;) = nH(X) (5.12)

In fact, this is equivalent to Equation 5.8, which fits our experimental data nicely, if we
neglect the small constant m.

In the next step, we demonstrated that the decrease of the total entropy rate with in-
creasing word length (Figure 5.3) cannot be interpreted as an under-sampling problem in

90



5.5 Conclusions and Discussion

our case. In our analysis of the numerical convergence we plotted the estimated entropy
as a function of trial number on a logarithme scale over two orders of magnitude. This is
computationally expensive but proves that our estimation is robust and the fast drop must
arise from another mechanism. Equation 5.9 and Equation 5.10 are derived numerically
based on the following two observations: First, total entropy rate decreases as duration
increases. As mentioned in Chapter 5.3, if there were no correlations within the output
spike trains, estimating the entropy for any word duration would give us the true entropy
rate. But there are correlations both due to the periodic character of voiced speech signal
we investigated and correlations introduced by neuronal processing. These correlations
will be taken into account by increasing word duration. Therefore, the total entropy rate
decreases with word duration. Second, if word duration is long enough, total entropy
and noise entropy increase with approximately the same rate. We believe that this is
also caused by the quasi-periodic property of our input signal and the specific behavior
of onset neurons, i.e., their firing depends only on the input stimulus of about several
milliseconds before the spike [ ; , , ]. The derived
equations based on these observations fit the experimental data precisely. The informa-
tion in a coded vowel therefore does not increase with word duration but saturates within
some tens of milliseconds. This is again very plausible: the quasi-periodic structure of a
vowel repeats itself and does not add additional information. In other words, we transmit
the same anount of information, no matter how long we pronounce a vowel.

If we now restrict our interest to the maximum initial information transmission rate, we
found values close to 1050 bits/s, which corresponds to the comparatively high information
rate of 5.8 bits/spike. We also studied the robustness of neuronal coding to noise. For
pink noise with 0 dB SNR, the information content of voiced speech decreased significantly
compared to signal at high SNR (30dB). The decrements for the 1.5kHz channel and
the 260 Hz channel are 85% and 73% respectively. Information concentrates at formant
regions of the input speech. The distribution pattern of information is well preserved
at high resolutions (10dB to 30dB). At an SNR of 0dB, the pattern was considerably
deteriorated.

Our results also show that the temporal resolution of onset neurons is very high from an
information transmission point of view. We found that ON code temporal information up
to the highest resolution we could investigate: 20 us. This high resolution is required for
sound localization in the horizontal plane, where ON are believed to play a major role.

With a temporal resolution of 0.25 ms, still about 80% of the information is transmitted.
Pichora-Fuller et al. showed in their study [ , | that destroying
temporal information at a precision higher than 0.25ms in the frequency region below
1.2kHz already degrades speech intellegibility of young healthy listeners in noise. Their
performance then becomes identical to the results obtained from older adult listeners with
good audiograms when there is no temporal jitter in the signal. This finding indicates
that precise temporal resolution plays an important role in speech intellegibillity and in
age-related performance decay.

At a resolution of 1ms, we loose roughly half of the information carried by the spike
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5 Quantify Speech Information in Spike Trains Using Information Theory

trains compared to the finest temporal resolution. This dramatic loss in information rate
suggests that spike timing serves as an important mechanism for information transmission.
The efficiency of neural coding is fairly high. Depending on the temporal resolution
used for the binning process, efficiency ranges from 60% to 90%. Such a high efficiency
seems to show that there is important information for speech, which is yet neglected
in ASR systems. It is not fully clear to us whether this information is relevant for the
discrimination of speakers, to sound localization, or to better speech recognition in noise.

Our calculation provides a reference for technical applications like automatic speech recog-
nition. Present technology relies almost exclusively on short time spectra with coarse
temporal resolution (usually 10 ms). As shown in Figure 5.6, we expect that this process
destroys at least 85% of the information coded in the human auditory system. It is un-
likely that no important phonemic information is destroyed by discarding more than 85%
of the temporal information coded by onset neurons. In summary, we suspect that fine-
grained temporal information might carry more useful information to recognize speech
than anticipated, especially in noisy conditions.

The experiments so far have been performed on a limited set of input stimuli. As a future
work, we would like to apply the algorithms to a variety of stimuli such as different vowels,
consonants and noises. We also expect to perform a similar analysis on the output of the
auditory fibres. This is more challenging, because the variability seen in auditory nerve
fiber responses is much larger compared to onset neurons, which work like coincidence
detectors on a larger population of ANFs. Comparing the information transmission before
and after the processing of Onset Neurons can lead to a better understanding how they
code information.
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Figure 5.8:

5.5 Conclusions and Discussion
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6 Analysis of Different Neurons with
the Information Theory Approach

Abstract!

The auditory pathway through the ventral cochlear nucleus (VCN) diverges through stel-
late, bushy and octopus cells to take part in intermediate integrative circuits and transfer
information to the inferior colliculus. In this chapter, we focused on analyzing these
neurons in VCN, which get direct input from primary auditory nerve fibers (ANF). We
generate spike trains of the ANFs and VCN neurons with the inner ear model and calcu-
late the transmitted information using vowels (both real and synthesized) as input stimuli.
For ANFs, transmitted information is the highest in the frequency range of 200 — 500 Hz,
and decreases towards higher frequencies, due to the degrading temporal precision of
the spikes. A single stellate neuron is able to transmit a large portion (up to 66%) of
information transmitted by five of its innervating ANFs. Due to their slow membrane
time constant the information rate decreases even faster with CF compared to ANFs.
The spectral information of the sound signals is well reflected in the rate-place code of
ANFs and VCN neurons. Octopus neurons and bushy cells have much faster membrane
time constants than stellate neurons. They fire preferably to stimulus onsets or ampli-
tude modulated signals and are very precise in time. Analysis with synthesized vowels
showed that, unlike stellate neurons, the firing rates and information rates of octopus
neurons and bushy neurons do not match the spectral distribution of the sound signal.
They have higher information rates than stellate neurons, even when spiking rates are
lower, indicating that they code temporal information rather than a pure spectral energy
distribution.

D' A modified version of this chapter has been published in Interspeech 2007.] , ]
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6.1 Introduction

6.1 Introduction

Most of the acoustic information arrives at the brain stem of mammals through auditory
nerve fibers that form a single, tonotopically organized pathway. In the synaptic con-
nection of ANFs with different groups of principle cells, the auditory pathway branches
into multiple, parallel descending pathways. Pathways through the VCN diverge through
bushy, stellate and octopus cells, which then transfer information to higher processing
stages of the brain by trains of spikes. How these pathways contribute to the fundamen-
tal biological tasks such as sound localization and the coding and processing of speech
sounds is only partially understood. Therefore describing and quantifying information
carried by these different neurons to higher stages of neural processing is essential for
understanding the underlying mechanisms of acoustic processing.

Previous studies have revealed some properties of different neurons. Octopus cells are
contacted by many auditory nerve fibers, each providing a very small depolarization (less
than 1 mV). Summation of synaptic input from multiple fibers is required for an octopus
cell to reach threshold. In firing only when synaptic depolarization exceeds a threshold
rate, octopus cells fire selectively when synaptic input is sufficiently large and synchro-
nized. Octopus cells convey features of sound that are critical for the recognition of natural
sounds including speech. They code the presence of acoustic transients, periodicity, and
direction of frequency sweeps in their temporal firing patterns | ,

]. The bushy cells that we modeled differ from octopus cells by a hyperpolarization-
activated cation current I,. They have similar properties as that of octopus cells. There
is strong evidence that pathways through bushy cells and their targets in the medial and
lateral superior olivary nuclei contribute to the localization of sound in the horizontal
plane | , , , |.Stellate cells, in contrast, depend much less on
the rate of depolarization. Unlike bushy and octopus cells, stellate cells fire continuously
when given a constant stimulus. Although stellate cells fire to the onset of tone stimuli
with temporal precision, the timing of subsequent spikes is independent of the phase of
the sound. With their supra-threshold inputs, stellate cells are poised to act as relay cells
from auditory nerve fibers to higher processing stages.

In this chapter, we utilized the information theory to evaluate the different types of
modeled onset neurons. The objective was to understand more about the mechanisms
underlying human sound processing from an information transmission perspective.

6.2 Methods

The VCN neurons were modeled as in Chapter 3 and connected to ANFs from the inner
ear model (compare Figure 2.1). The parameters of the ion channels of the neurons were
taken from Rothman and Manis | , ]. All conductances and
time-constants were corrected to a body temperature of 38°.

According to [ ], stellate cells in my study are driven by 5 supra-
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threshold | , | synaptic inputs from high spontaneous rate
auditory nerve fibers (spontaneous rate: 30spikes/s). We used 60 sub-threshold synaptic
inputs for octopus neurons such that synchronous firing of six synaptic inputs generated
an action potential | , |. Therefore, synaptic inputs to octopus neurons are
sub-threshold and they act as coincidence detectors. There is a plethora of publications
reporting on the properties and parameters of these neurons. We used up-to-date empirical
data for the modeling from Rothman and Manis | : ]. Table6.1
shows the parameters that we used for modeling the different onset neurons.

Model Type
Stellate Bushy Octopus

Tna, NS 1000 1000 1000
Gyr,snS 150 150 150
Jrr,nS 0 200 600
Gy, S 0.5 20 40
i, NS 2 2 2

Jp,nSQ38°C 33 8.5 24.5
# of synapses 5 60 60

type of synapses suprathreshold subthreshold subthreshold

Table 6.1: Parameters of different neurons.

The information calculation approach was implemented as described in Chapter5.3. We
took the direct method which makes no assumption about the underlying mechanism
of information processing. We mainly looked into the information distribution along
frequency channels. In order to speed up the calculation, we used a temporal resolution
of 1 ms, which was slightly worse than in the previous chapter. Doing so, we lost roughly
half of the information. Since the main objective was to compare different neurons instead
of quantifying the exact amount of information transmitted, using a coarser resolution
did not affect the conclusions, which we confirmed by calculating information at different
resolutions for some cases.

We used two different stimuli in the calculation: an /ei/ spoken by a female speaker
(ISOLET femc0-Al, scaled to 70 dB(A) SPL) and a synthesized vowel /i/ generated with
Slaney’s auditory toolbox | , ]. The synthesized vowel has a stable spectrum,
therefore it is easy to compare the neuronal responses of the auditory model with the
power spectrum of the signal.

6.3 Results

In Figure 6.1 we showed the responses of auditory nerve fibers and stellate neurons,
which receive input from auditory nerve fibers with different characteristic frequencies.

96



6.3 Results

Input stimulus was the synthesized vowel /i/ (pitch frequency: 220 Hz; F1: 270 Hz; F2:
2290 Hz; F3: 3010 Hz; sound intensity: 70dB(A)) generated by Slaney’s auditory tool-
box for Matlab | : ]. As the artificial vowel is (almost perfectly) periodic, its
spectrum is comprised of the harmonics of the pitch frequency (indicated by crosses in
Figure 6.1b),c),e) and f)). Panel d) plots the raw spike patterns of the stellate neurons.

The spectrum of the speech sound is reflected rather accurately by the spike rates of both
auditory nerve fibers (panel b) and stellate cells (panel e). In the region of the pitch
frequency and slightly above, ANFs fire with a probability of about 80% per cycle. This
precision is improved by stellate cells, which fire one action potential per stimulus cycle
with a probability of slightly more than 90%. The property that auditory neurons fire
preferentially one spike per stimulus cycle limits their maximum rate in this region.

Individual frequency components of the stimulus are separated in the spike-rate contour of
both stellate cells and ANFs, in this example up to the seventh harmonic (1540 Hz). Even
higher frequency components merge together and the rate contours follow the envelope of
the spectrum, coding the second and — in this example with less salience — third formant.
For the second and fourth harmonics the spike rate contour peaked due to the coding
of second and fourth harmonics by the auditory nerve fibers and the stellate cells. Note
that the peaks of the rate contours are slightly shifted relative to the spectral peaks of
the speech sound. This effect appears because the CF axis is defined at threshold levels
and excitation patterns are shifted towards higher frequencies at higher sound levels in
the mammalian inner ear | , , , ]. The spontaneous
activity of the high-spontaneous rate ANFs we used here was about 30spikes/s. The
stellate cells are innervated by five high-spontaneous rate auditory nerve fibers. The
synapses are supra-threshold, which means that a spike from one auditory nerve alone
could elicit an action potential. This caused a high spontaneous activity of the modeled
stellate cells of about 80 spikes/s.
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Figure 6.1: Spike trains along the length of the cochlea (first row), averaged spiking rates
(second row) and transmitted information rate (third row) from auditory nerve
fibers (left column) and stellate neurons (right column). Note that information
rates are plotted for a single stellate cell and five ANF's innervating the stellate
cell. Information rate and spiking rate of a single ANF (dashed lines) were
also plotted for comparison. For reference, rows two and three show the A-
filtered levels of the harmonics of the artificial vowel /i/ used for stimulation
(pitch frequency: 220 Hz).
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The information rate of ANFs and stellate cells is plotted in Figure 6.1c) and f). Note
that for comparison we calculated the transmitted information of five ANF spike trains,
which excited a single stellate cell. For ANF's, transmitted information was approximately
constant (about 650 bits/s) in the range from 200-400 Hz and then decreased rapidly as a
function of their characteristic frequency. As for the spike rate, information rate peaked
at harmonics of the pitch frequency and at the formant regions of the vowel. For the
stellate neurons, information rates were always below the values of five ANF's. Information
decreased even more rapidly as a function of their characteristic frequency compared to
the values of ANFs. This is due to their long membrane time constant (7ms |
, ]), which impairs precise phase-locking at higher frequencies.

We also plotted the spike rate and information rate for one single ANF. With one single
ANF, hence one fifth the rate of 5 ANF's, the total amount of information transmitted was
43% compared to that of 5 ANFs altogether, which clearly indicates the redundancy of
information in different ANFs. Stellate cells integrate spikes from the 5 ANF and transfer
around 54% of the incoming information to higher stages.

Figure 6.2 and 6.3 show spiking rates and information rates of different neurons. Octopus
and bushy cells show little or none spontaneous activity as they rarely fire when given
spontaneous ANF activity as input. For octopus and bushy cells, it is not necessary
that they have high spiking rates in regions where energy is high (e.g. the third formant
region). In the first formant region, all neurons have similar spiking rates while bushy and
octopus cells have higher information rate than stellate cells since they are more accurate
in time. In the frequency range between 0.5 kHz and 1 kHz, octopus cells have the highest
rate, which is almost twice as much as the bushy cells. This can be attributed to their
very fast membrane time constant which gives them the ability to fire at multiples of the
pitch frequency. Stellate cells have higher rates than bushy cells in the frequency range
between 500 Hz and 1kHz. They also have the highest rate at frequencies above 1kHz.
This is mainly due to the fact that the stellate cells code energy rather than the temporal
structure, therefore do not suffer from the blurry temporal structure of the spikes from
auditory nerve fibers in high frequency regions (see Figure 6.1 a).

The information rate of octopus cells were the largest in all frequency ranges, even when
their spiking rates were considerably lower than that of stellate cells, which clearly showed
that octopus cells transmit much higher information per spike. Unlike stellate cells,
the contour of the information rate for octopus cells and bushy cells didn’t follow the
energy level of the harmonics. At frequencies below 1.5kHz, the information rate contour
remained fairly flat at a very high level in comparison to ANF's and stellate cells, indicating
that they were coding other information besides energy. At frequencies above 1.5kHz, the
information rates of octopus cells and bushy cells decreased dramatically as the temporal
structure of incoming ANF spikes are lost. The high information rate of octopus cells
makes them very interesting for speech coding.

In Figure 6.4 we compared the transmitted information of three types of different neurons
as a function of temporal resolution. We plotted the channel with a CF of 1045 Hz. At
this frequency, all the neurons had similar firing rates, but the information rates differed
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Figure 6.2: Distribution of firing rates of stellate cells, bushy cells and octopus cells.
Crosses are A-filtered levels or harmonics calculated using Fast Fourier Trans-
form. It is seen that the firing rates of bushy neurons and octopus neurons do
not follow the spectrum, which is nicely revealed in the firing rate of stellate
neurons.

considerably (compare Figure 6.2 and Figure 6.3).

The plot shows that the information content of octopus cells and bushy cells are much
higher compared to that of stellate cells for this relatively high CF channel, especially
for temporal resolutions higher than 1ms. Note that the octopus cells and bushy cells
are innervated by much more ANFs than the stellate cells (60 for octopus and bushy
cells compared to 5 for stellate cells). The information rate curves of octopus cells and
bushy cells largely overlapped from 10 ms resolution to about 0.4 ms resolution. After that
the curves diverged, with octopus cells exhibiing a slightly higher information rate. For
the frequency channel that we analyzed, octopus cells and bushy cells had very similar
firing pattern and they differed only in temporal scales that were finer than 0.4 ms. The
information rate at a temporal resolution of 10ms, a value which is usually used for
automatic speech recognition, was only about 6.9% for octopus neurons and 7.1% for
stellate cells compared to the information rate at the highest resolution! This indicates
that a huge amount of information present in neuronal spike trains of auditory neurons is
discarded when features based on short-term spectra with a temporal resolution of 10 ms
are calculated. We therefore conclude that fine-grained temporal information is by an
order of magnitude larger than classical spectral features used for ASR. We suspect that
this information might be essential for robust speech recognition especially in adverse
acoustic conditions.

Figure 6.5 shows the coding efficiencies of the three neuron types. It is not surprising that
octopus cells and bushy cells have higher coding efficiencies than stellate cells, as they have
higher information rates even when their spiking rates are low. The coding efficiencies
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Figure 6.3: Information distribution along frequency channels. Plotted are stellate neu-
rons, bushy neurons and octopus neurons. Stimulus is artificial vowel /i/ at
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of octopus cells and bushy cells were astonishingly high. When resolutions was between
0.4ms and 10 ms, the efficiencies of coding were fairly high and stable, varying around 95%.
The efficiency of bushy cells calculated here is higher than the value that we showed in
Chapter. 5.4 as we used synthesized speech signal instead of a real vowel. For a resolution
above 0.4ms, coding efficiency degraded, even though still more information was coded
(see Figure 6.4). The efficiency curves of octopus cells and bushy cells showed strong
similarities. Octopus cells have slightly higher efficiency than bush cells at most of the
temporal resolutions. The coding efficiency of stellate cells is much lower — around 55%
from 7ms to about 0.4 ms and decreases thereafter. The extraordinarily high efficiencies
of octopus cells and bushy cells indicate the strength of the temporal code. The ability
of reliably locking to signal onsets with very high temporal accuracy allows them to code
speech signals efficiently with sparse spikes.

Another interesting comparison of the three neuron types is the average information trans-
mitted by each spike. Figure 6.6 shows the average information per spike at different char-
acteristic frequencies. For stellate neurons, a single spike carries most information at low
frequencies. The information-per-spike contour resembles the one of the firing rate curve
(plot not shown here). Generally, in regions where energy concentrates, a spike carries in
average more information. Bushy cells and octopus cells again show different patterns.
In low and high frequency regions, the average information per spike is particularly high.
This is related to the firing properties of these two neurons. At low frequencies, bushy and
octopus cells phase lock to the carrier frequency while at high frequencies they phase lock
to the modulation frequency. In both cases, the spikes have very high temporal precision.
At frequencies between 400 Hz and 1kHz, each spike carries less information. However,
due to their extremely fast membrane constant, octopus neurons managed to firing with
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Figure 6.4: Dependence of transmitted information rate on temporal resolution for VCN
stellate, bushy and octopus neurons with a characteristic frequency of 1045 Hz.

very high rates, locking to harmonics of the pitch frequency. Therefore, octopus neurons
still carry a large amount of information in this region despite carrying only a low average
information per spike. Bushy cells on the other side, exhibit a low firing rate, therefore
few information.

6.4 Discussion

Although information processing for automatic speech recognition is inspired by auditory
sound processing, there are major differences in the way our brain processes sound sig-
nals. The most striking disparity is that all information — not only the auditory one —
is transmitted and processed using discrete nerve-action potentials. Despite their all-or-
none nature, spike trains even from single neurons can code amplitudes using a rate code
(compare Figure 6.1b), especially if one considers that usually large groups of neurons are
available to code signals. For example, all information about sound signals available to
our brain is transmitted by about 32.000 primary auditory nerve fibers. Spectral infor-
mation is coded by the firing rates of auditory nerve fibers. This well-known rate-place
code is based on the mechanical bandpass filtering along the inner ear. The rate-place
contour (compare Figure 6.1b) resembles closely the spectrum of the speech signal.

However, the rate-place code is not the only information source available to the brain.
A large amount of information is carried by the precise spike timing of the nerve-action
potentials. To quantify all the information carried by spike trains of auditory neurons, we
applied the framework of information theory (see Chapter 5). Using the so-called direct
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Figure 6.5: Dependence of coding efficiency on temporal resolution for VCN stellate bushy
and octopus neurons with a characteristic frequency of 1045 Hz.

method to calculate information in spike trains, we evaluated the transmitted information
without making any assumption about the underlying coding strategy. The information
rate transmitted by auditory nerve fibers as a function of their characteristic frequency
seems to be low-pass filtered compared to the rate-place contour (compare Figure 6.1
b and c). This can at least partly be explained by the phase-locking abilities of these
fibers, which decreases for frequencies above about 1Hz | , ].
The decreasing phase-locking ability also entails that the temporal precision of auditory
nerve action potentials decreases with increasing CF.

Stellate cells faithfully code spectral information in their rate-place contours, similar to
primary auditory nerve fibers (compare Figure 6.1 b and e). With their relatively long
membrane time constants (about 7ms, [ ]) they integrate au-
ditory nerve inputs over time. However, due to this slow membrane time constant their
phase locking ability (and as a result the information rate) decreases even faster with
CF compared to ANFs (compare Figure 6.1 ¢ and f). Note that the information rate
of stellate cells is always lower than the total information rate of the ANFs innervating
them, as required by theory. The ratio of information rate transmitted by five ANFs and
a stellate cell increases from 1.5 (50 Hz) to about 4 in the range of 2 — 4 kHz, reflecting
the effects of low-pass filtering due to the stellate cell membrane time constant.

We also investigated information transmission of bushy neurons and octopus neurons,
which are also located in the VCN [ ]. Compared to stellate cells, bushy-
and octopus neurons even manage to improve temporal precision compared to ANF's

[ | by using coincidence detection of at least six of their innervating ANFs.
Especially at higher CFs, these neurons are able to transmit much larger information
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Figure 6.6: Information transmission per spike at different frequency channels for the stel-
late, the bushy and the octopus neurons.

rates than stellate cells due to their reliable firing, high firing rates of up to 800 spikes/s
and the extreme temporal precision of their spikes.

For bushy and octopus neurons, the contour of information rate as a function of frequency
channels do not follow the level of harmonics of the input signal. At low frequencies,
the information rate remains at a very high level, due to their precise phase locking to
the input signal. Bushy and octopus cells almost always have higher information rates
than stellate cells, which corroborates that they also carry temporal information besides
information about the energy, which is the case for stellate cells. Bushy- and octopus cells
exhibit high firing rates at frequencies where phase locking is prevalent (almost irrelevant
of energy), thus transforming temporal information into a rate code. At high frequencies
(from 2kHz to 8kHz), a single spike of bushy- or octopus neurons also carry very high
information rates as the precicely phase lock to amplitude modulations present in this
frequency range.

We used different temporal resolutions to quantify the information rates of neurons. Usu-
ally, bushy and octopus neurons carry more information than stellate cells. They also
show a steeper increment when temporal resolution increases. For all types of neurons,
using a temporal resolution of 10 ms leads to information loss of more than 90% percent
compared to the highest resolution we were able to use in the calculations. Coding effi-
ciencies of bushy neurons and octopus neurons are fairly high and decrease when temporal
resolution increases. Stellate neurons’ efficiency of coding, in comparison, are considerably
lower.

Octopus neurons and bushy neurons are very similar types of neurons. They differ from
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each other by a hyper-polarization-activated cation current I,. Octopus neurons exhibit
higher information rates, efficiencies, and firing rates compared to bushy cells. The most
obvious difference between these two types of neurons lies in the frequency range between
500 Hz to 1kHz. In this region, octopus neurons have much higher firing rates than bushy
cells (almost twice as high). Octopus neurons also have higher information rates. The
efficiencies of coding with different resolutions are approximately the same (calculated for
CF of 1045 Hz, using synthesized vowel as input). However, bushy neurons carry more
information per spike in average. One possible reason is that bushy neurons have slower
membrane constants and do not fire at higher harmonics of the fundamental frequency,
therefore their spike might carry less redundant information.

In a nutshell, we applied information theory on different neuron types mainly to see
what aspects of information they code. The results clearly show that stellate cells mainly
code information about the energy of the spectrum. Bushy- and octopus cells on the
other hand, exhibit much higher information rates and coding efficiencies, due to their
ability to precisely code temporal information. Temporal information in the speech signal
was converted by octopus neurons into a rate code and can be utilized by automatic
speech recognizers. In Chapter 4, we also showed how octopus neurons can help improve
automatic speech recognition for vowels.
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7 Summary and Outlook

The primary goals of this thesis were to understand speech coding in the peripheral human
auditory system and to identify principle properties of the information processing by the
neural system. We therefore built a framework consisting of a realistic peripheral human
auditory model, a speech recognition system for qualitative analysis and an information
theory based approach for quantitative assessment. The elements of the framework focus
on different properties of the model — and speech coding in general. They complement
each other and taken together, they provide a useful tool for continuously improving
the auditory modeling for speech recognition system and understanding the underlying
principles of auditory coding.

7.1 Overall Discussion and Conclusion

7.1.1 Modeling

The outstanding performance of human auditory system motivates our effort of modeling
it and applying it for automatic speech recognition. While traditional ASR systems rely
almost exclusively on short term spectral features, the human auditory system exploits
spike trains of auditory nerve fibers to code the spectral, temporal and spatial information,
which is processed at higher levels in the auditory pathway.

This thesis presents a realistic model of the human auditory system. The system con-
sists of a simplified outer ear and middle ear model, a model of inner ear hydrodynamics
followed by a compression stage, the sensory cells and the auditory nerve fibers. Spe-
cial efforts were made to tune the parameters of the BM model to replicate the hu-
man hearing threshold, filter bandwith and compression. After tuning, the model out-
put faithfully replicated latest psychoacoustic measurements of human threshold tuning
curves | , , , ] and the dynamic range compression
up to 80dB | , ]. The inner ear model was then connected to a
model of inner hair cells and auditory nerve fibers | , , , ,

]. The realistic tuning threshold and the dynamic compression range were maintained
over the whole range of audible frequencies.

We further developed the synaptic model to achieve a more realistic offset adaptation
of the auditory nerve response. Offset adaptation completely suppresses spontaneous
activity in the primary auditory nerve for a few milliseconds after the stimulus offset, an
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effect which is not predicted by conventional pool models of synaptic transmission |

, , , . We followed the proposal of [ | and
added a shift value in the pool model to reproduce physiological measurements of offset
adaptation. The enhanced offset adaptation considerably improved phase locking and
amplitude modulation coding in the auditory nerve. It was also crucial for the onset
neurons in the next processing stage. The onset neurons were able to lock to the amplitude
modulation of speech signal at high frequency range, whereas they were blocked when
there was no enhanced offset adaptation | : .

Extensions of the model also covered neurons in the first processing stage after the cochlea,
the auditory brainstem or cochlear nucleus. Cochlear nucleus onset neurons (two types
of onset neurons were considered, so-called octopus neurons and bushy cells) and stellate
neurons were modeled using single compartment models with Hodgkin-Huxley-type ion
channels and conductance-based synapses. Onset neurons fire preferably to the signal
onset with very high firing probability, even when the auditory nerve fibers that innervate
them are at saturation. The octopus neurons were able to phase lock to the input stimuli
up to about 800 Hz. At characteristic frequencies above 1kHz, onset neurons phase lock
on amplitude modulations of the input stimuli. They followed to amplitude modulated
signals up to 1kHz with entrainment. Onset neurons extracted to the temporal struc-
ture of speech signals rather than their spectral intensity. Therefore they code temporal
information in auditory nerve spike trains and convert them to a rate code. We applied
the spike-triggered reverse-correlation technique to analyze the underlying processing ca-
pabilities of the modeled onset neurons, and found they perform band-pass filtering on
incoming signals and the most sensitive part covered the range of fundamental frequencies
of speech and music. The nonlinear properties of these neurons are responsible for the
fact that they react preferentially to speech signals rather than sinusoidially amplitude
modulated signals.

In summary, our model covers all important processing stages in the inner ear and selected
neurons in the auditory brain stem. It therefore can serve as the basis for further studies
of speech coding and information processing.

7.1.2 Automatic Speech Recognition

There have been many efforts in studying the encoding of speech in the human auditory
system from various aspects. Early works focused on the encoding of steady-state vowels,
synthetic consonant-vowel syllables, spoken syllables etc. These studies only investigated
well defined speech properties and did not provide a qualitative measure of how well a
hypothetical speech encoding scheme really works. This thesis exploits automatic speech
recognition as a tool to qualitatively evaluate the principle of the rate-place code. Speech
coding in the auditory system was tested with a complex but realistic scenario: speech in
noise. Speech recognition tasks were carried out in many different modes, e.g. with and
without enhanced offset adaptation and with two different testbeds: HTK using Gaussian
Mixture Models for acoustic modeling and an MLP testbed using multi-layer perceptrons
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for the acoustic modeling.

Speech recognition using the auditory model achieved comparable performance as the
speech recognition baseline, which used MFCC ASR features for the recognition. Best
recognition performance was achieved using the auditory model with the enhanced offset
adaptation and the MLP testbed. The enhanced offset adaptation not only generated
realistic auditory nerve outputs per se, but also improved speech recognition performance.
When tested on the noisy alphabet using features derived from auditory nerve fibers, the
enhanced offset adaptation improved average speech recognition rates for the HTK and
MLP testbeds by 12.5% and 19.6%, respectively. The enhanced offset adaptation was also
crucial for the octopus neurons to spike properly. It improved vowel recognition using
features derived from the octopus neurons by 37.1% for the HTK testbed and 38.4% for
the MLP testbed.

The acoustic modeling using multi-layer perceptrons makes less assumptions about speech
compared to acoustic modeling using GMMs. In most of the cases, MLP testbed sub-
stantially outperformed the HTK testbed, except when MFCCs were used for the vowel
subset. This is consistent with past results on MSG auditory features. MLPs also make
combining features from different auditory processing stages much easier. The multi-
stream approach using combined features from ANFs and octopus neurons outperformed
each single feature in vowel recognition tests.

We also studied the discrimination ability and robustness of the auditory system over a
large dynamic range. Previously, it was shown that a rate-place representation is not
robust over the range of levels encoded by humans, due to nonlinear effects such as dis-

charge rate saturation and suppression | , |. More recent studies
have suggested that the rate-place code of vowels might be sufficient to explain the dy-
namic range of the human vowel perception [ , |. Our study also

showed that the rate-place coding is robust against the increasing level of the speech.
The recognition performance for multi-conditional training and test setup degraded only
moderately. Recognition result dropped only by 10.7% in total when SPL increased from
45dB to 105dB. The offset adaptation plays an very important role for the robustness
against speech level. Without the enhanced offset adaptation, the corresponding recogni-
tion performance dropped at a dramatic rate of 9.4% per 10 dB. The average recognition
rate dropped by 56.4% when the speech level increased from 45 dB to 105 dB. The robust-
ness of the result using auditory features resembles human performance (see Figure 4.7
and Figure 4.8), even though there is still a big gap in terms of absolute recognition per-
formance. The reason for this gap might be that speech recognition features discard fine
temporal information that is coded by the neural spike trains.

7.1.3 Analysis of Auditory Spike Trains with Information Theory

Automatic speech recognition provides a tool to evaluate how well speech can be discrim-
inated using selected features. It shows that the rate-place code of auditory nerve fibers
and octopus neurons provide an effective representation of speech signals. However, it is
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very hard to draw any direct conclusions about the neural code based on ASR results.
With ASR, we could only investigate the rate-code, while the accuracy of individual spike
timing represent a second, if not the most important mechanism of information transmis-
sion along the neural pathway | , |. Therefore we developed an approach
based on information theory to analyze the neural code.

We used the direct method for estimating the information coded in neuronal spike trains.
The direct method does not make any assumptions on the neural code and therefore
preserves all the information present in the neural spike trains. We found out that infor-
mation rate is not constant for increasing word lengths, which was in contrast to earlier
studies. Instead, the transmitted information saturates exponentially, with 90% of the
information transmitted within the first 45ms (vowel /ei/ from a female speaker in the
ISOLET database). For louder signals the information was transmitted faster.

Results showed that onset neurons code information with a very high rate. We found
the information rate could be as high as 1050 bits/s, which corresponds to an information
content of about 5.8 bits/spike. Our results showed that temporal information is very
important for neural coding. The temporal resolution of onset neurons is very high from
an information transmission point of view. ONs code temporal information up to the
highest resolution we could investigate: 20 us. This high resolution is required for sound
localization in the horizontal plane, where ONs are believed to play a major role. The
efficiency of neural coding is fairly high. Depending on the temporal resolution used for
the binning process, the efficiency ranges from 60% to 90%. The high resolution and
efficiency seem to indicate that for speech a large portion of information is coded with
high temporal precision.

With a temporal resolution of 0.25 ms, about 80% of the information is transmitted com-
pared to the information at the highest resolution. However, even the (20%) information
coded with higher temporal precision seems to be important. It was found that the loss
of these information plays an important role in age-related performance decay in speech
intelligibility. At a resolution of 1 ms, roughly half of the information carried by the spike
trains was transmitted. This dramatic loss in information rate suggests that spike timing
serves as an important mechanism for the information transmission. However, it is not
very clear whether the information coded with fine resolution is relevant for the discrimi-
nation of speakers, for sound localization, for better speech recognition in noise or for all
of theses tasks.

The automatic speech recognition system that we implemented used a temporal resolution
of 10 ms, which is also common for many other speech recognition systems. Our analysis
using the information theory based approach showed that with this temporal resolution,
more than 85% percent of the information coded by the human auditory system was
destroyed at this temporal resolution. It is very unlikely that the lost information does not
contain important phonetic information. We suspect the loss of fine-grained information
from the spike trains might contribute to the performance gap in speech recognition
between the modeled auditory system and the real human auditory system.

We also showed how information was distributed over the frequency channels in the au-
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ditory system and how robust the coding was in noise. For a voiced speech signal with
added pink noise, the information content decreased significantly at 0 dB SNR: Compared
to clean speech signal, the decrements were 85% in the 1.5kHz channel and 73% in the
260 Hz channel. Information concentrates at formant regions of the input speech. The
distribution pattern of the information is well preserved at high SNRs (10dB to 30dB)
and degrades considerably at an SNR of 0 dB.

We exploited the approach based on information theory to analyze different types of
neurons. We compared the spiking rates and information rates of auditory nerve fibers and
stellate neurons with the spectrum of the input speech signal. Stellate neurons faithfully
code spectral information in the rate-place contour, similar to the primary auditory nerve
fibers. The spectrum of the speech signal is reflected rather accurately by the spike rates
of both auditory nerve fibers and stellate neurons. The individual frequency components
of the stimulus were separated on the spiking rate contour up to the seventh harmonic
(1540 Hz). Even higher frequency components merge together and the rate contours follow
the envelope of the sprectrum.

Information rates also peak at harmonics of the pitch frequency and at the formant region
of the vowel. The information transmitted by ANFs as a function of their characteristic
frequency seems to be low-pass filtered compared to their rate contour. This is at least
partly due to the decreasing phase-locking capability of these fibers at frequencies higher
than 1kHz. Stellate neurons have long membrane constants of about 7ms. They integrate
auditory nerve inputs over time. The information rate of stellate neurons is always lower
than the total information rate of the ANFs innervating them, which is required by
the data processing inequity. The ratio of information rate transmitted by five ANFs
compared to a stellate neuron increases from 1.5 at 50 Hz to about 4 in the range of
2-4kHz, which reflects the low-pass filtering of the stellate neurons.

The contours of both spiking rate and information rate from bushy and octopus neurons
do not follow the level of harmonics of the input signal. In the frequency range below
800 Hz, onset neurons lock on the stimulation frequency. For voiced speech signals, there-
fore their firing rate increases almost stepwise with every higher harmonic component of
the fundamental frequency. At frequencies above about 1kHz, they lock on the amplitude
modulation of the signal with high temporal precision the information rates remain at a
very high level. Bushy and octopus neurons almost always code higher information rates
than stellate neurons. They also exhibit higher a information per spike. Our results indi-
cate that bushy and octopus neurons code temporal information besides the information
about signal energy, which is mainly the case for the rate-place code of stellate neurons.
Bushy and octopus neurons on the other hand, were capable of coding precise temporal
information. They carry very high information rates and exhibit high coding efficiency.
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7.2 Future Work

In this thesis we presented a detailed auditory model which generates very realistic out-
puts. However it can certainly be improved. One possible improvement of the modeled
auditory system would be the inclusion of the efferent system. This feedback mechanism
seems to control both the mechanical vibration of the basilar membrane and the encoding
of these vibrations into action potentials in the auditory nerve. They might be critical in
correctly understanding speech encoding in the auditory nerve, in particular when there
is background noise.

Automatic speech recognition provides a quantitative tool to evaluate the modeled au-
ditory system. However, we mainly investigated the rate-place code and temporal infor-
mation provided by onset neurons only indirectly. Onset neurons are believed to extract
precise temporal information from the input stimuli and turn the temporal information
into a rate-code. In the future it will be interesting to test other coding strategies which
directly exploit temporal information in the spike trains. The modeling power of the
MLP testbed can also be exploited in future investigations. For example, with the MLP
testbed, features extracted from different types of neurons, as well as features using dif-
ferent coding strategy can be easily combined. Such experiments will provide us with
more insight in designing robust speech recognition systems which might eventually help
reducing the gap between the ASR and the human speech intelligibility.

There is also a lot of potential work to do regarding the information processing of the
neural system. The experiments so far have been performed on a limited set of input
stimuli. In the future, we would like to apply the algorithm to a variety of stimuli
such as different vowels, consonants and noises. Current information calculation is an
average value over the whole input stimulus. It would be interesting to calculate how
the information is distributed along time. The temporal distribution of information may
help us to optimize the feature extraction process for speech recognition. In previous
experiments the output spike trains were averaged using Hanning window with fixed
window width and fixed advancing step. The information distribution over time could
help to optimized the window width and/or the position of the Hanning window. In
our study we point out that onset neurons use very high temporal resolution to code
information. Using a rawer resolution leads to information loss. However, it is unclear
what kind of information is affected first by reducing the temporal resolution. We are very
interested in designing experiments for testing the characteristics of the lost information.
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