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Combinatorial Characterization of
Interference Coupling in Wireless Systems

Holger Boche, Fellow, IEEE, Siddharth Naik, and Martin Schubert, Member, IEEE

Abstract�—We provide a combinatorial characterization of
interference coupling in wireless systems, with the intent of
obtaining a better insight into interference coordination and
management. We introduce two bipartite graphs, namely the
power graph and interference graph. We utilize these graphs and
global dependency matrix containing only binary (0 and 1) entries
to capture the effects of interference coupling in communication
systems. We show that the irreducibility of the global dependency
matrix ! is related to the connectivity of the power graph and the
irreducibility of the matrix !!! is related to the connectivity
of the interference graph. We prove that for strictly positive and
strictly log-convex interference functions, the irreducibility of the
matrices ! and !!! are necessary and sufcient conditions
for the considered utility sets to be strictly convex. In this case
there exists a unique optimizer for the problem of maximizing
the product of utilities. We show that an interference balancing
function is strictly log-convex, if and only if matrices ! and
!!! are irreducible. We provide a simple yet comprehensive
combinatorial characterization of interference coupled systems
which abstracts away certain complexities of the physical layer.

Index Terms�—Interference coupling, power graph, interfer-
ence graph, global dependency matrix.

I. INTRODUCTION

THE performance of the users in a multi-point to multi-
point communication system is often inuenced by in-

terference coupling of the involved users. Investigating
interference management and coordination could provide a
means for delivering better performance to the users and in
turn increasing the revenue of the operator. Furthermore,
interference management and coordination for indoor wireless
systems has not as yet been completely addressed.

We present a combinatorial characterization of interference
coupling in wireless systems. A combinatorial characteri-
zation could be comprehensive and still a fairly simplistic
framework to capture the effects of interference coupling
in wireless networks. A combinatorial characterization has
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a strong intuitive graph theoretic appeal and could provide
another insight into existent power control algorithms, e.g.
uniqueness of optimal solution outcome and convergence
speed of the power control algorithms.

Consider a wireless system with ! ≥ 2 users from an
index set " := {1, . . . ,!}. If the users are coupled by
interference, then there is a general trade-off between the
utilities ! = [$1, . . . , $! ]" . We utilize an interference
function framework [1] (dened in Section II-B) to capture
the effects of interference coupling in wireless networks.
The performance (utility) of each user is characterized by
its signal-to-interference ratio (SIR), which is an important
performance indicator in wireless systems [2]. The set of all
feasible SIR levels with all users being active concurrently is
called the feasible SIR region. We denote the feasible SIR
region or more generally the utility region by U.

It is known that in general the feasible SIR region is not
convex, e.g. SIR region in the case of linear receivers, certain
rate regions for cellular systems without full coordination, etc.
[3]�–[5]. Standard properties of the utility sets, like convexity
and compactness cannot be taken for granted. However, the
region can be �“convexied�” if the SIRs are expressed in the
logarithmic scale, thereby giving rise to the notion of a feasible
log-SIR region. The convexity property of the feasible log-
SIR region is a crucial element in the development of power
control strategies.

We investigate the structure of certain utility sets (SIR
regions) for the case without power constraints. This not
only simplies the problem but it has the advantage of
clearly elucidating the effects of interference coupling on
the feasible SIR region and the resulting proportional fair
operating point. Analyzing the problem for high signal-to-
noise-and-interference-ratio (SINR) often helps better under-
stand its analytical structure [6], providing a basis for future
extensions, where noise and power constraints are included.
The axiomatic framework is useful for characterizing coupling
effects.

As an example, consider the function

∑

#∈"
%# log

[" #]#
&#

, &# = exp('#),$ > 0,

∑

#∈"
%# = 1, (1)

where " is the coupling matrix and [" ]#$ is the coupling
coefcient between the )th transmitter and *th receiver. This
is the weighted sum of inverse SIRs. We can picture (1)
as a loss function. Hence, we would like to minimize this
function and we would be interested in exploring the convexity
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properties of such a function. The results in [7] states that
(1) is jointly convex with respect to %, if and only if " " "

is irreducible. " is the link gain matrix for a wireless
system. However, the convexity of the function dened in
(1) is not sufcient to ensure strict convexity of the log-SIR
region. Strict convexity is a very useful property from an
optimization perspective. Strict convexity along with certain
additional natural properties of interference functions (shall be
discussed in detail in Section II-D) allow the existence of a
minimal/maximal element. It can be observed, that the joint
convexity of (1) does not guarantee that a minimizer to the
optimization problem exists, i.e. the inmum need not be
equal to the minimum.

We impose an additional property of strict convexity of the
interference balancing functions (introduced in Section II-B)
to ensure that the log-SIR region is strictly convex. There
is no connection (as yet) between the strict convexity of (1)
and the strict convexity of the log-SIR region. In [8] only
a subset of the family of strict convex sets, specically a
subset of the family of strictly convex log-SIR regions was
considered. The considered sets possessed the property, that
max!∈U

∏
#∈" $# has a strictly positive solution, where U

is the utility region or the feasible SIR region. It is not
immediately obvious that these sets are connected with the
interference function framework.

In this paper we shall establish this connection between the
strict convexity of the log-SIR regions and certain properties of
the interference function framework for the case of no power
constraints. The contributions and outline of our paper are as
follows:

1) We show that under certain conditions for interference
functions with the following two properties:

a) strict log-convexity on their respective dependency
sets, and

b) and strict positivity on their respective dependency
sets (introduced in Section II-D)

we obtain strictly convex sets (strictly convex log-SIR
regions). In this case there exists a unique optimizer for
the product of utilities maximization problem for these
sets, i.e. the inmum is equal to the minimum. We are
able to construct the corresponding power vector.

2) In Section III we introduce two graph theoretical repre-
sentations of interference coupling:

a) the power graph, and
b) the interference graph.

We investigate the relationship between the connectivity
of the power graph and the irreducibility of the global
dependency matrix & (explained in Section II-C).

3) We investigate the relationship between the connectivity
of the interference graph and the irreducibility of the
matrix &&" . We show that the irreducibility of both
& and &&" , along with the two properties of the
interference function described above are necessary and
sufcient conditions, to show the existence of a unique
optimizer for the family of strictly convex sets (see
Section IV).

We provide a complete characterization of the log-SIR region
and extend the results of strict convexity of the feasible log-

SIR region from linear interference functions to a broader class
of log-convex interference functions.

The main theorem in this paper has applications to social
choice theory and specically to the existence of a maximal
element1. Existence of the maximal element follows from the
strict convexity of the utility set. The maximal element could
be the Nash bargaining solution (NBS) (the NBS is discussed
briey in Section II-A). We provide a constructive proof of
the results. We show that we require the reducibility of the
global dependency matrix & (explained in detail in Section
II-C) to investigate the weak Pareto optimal points 2. We
state the consequences of irreducibility via the combinatorial
characterization in Section IV.

II. INTERFERENCE COUPLED WIRELESS SYSTEMS

Before we begin to describe our system model and present
the relevant denitions, we describe certain preliminaries in
Section II-A below.

A. Notation and Preliminaries

Matrices and vectors are denoted by bold capital letters and
bold lowercase letters, respectively. Let ' be a vector, then
+$ = [']$ is the )%ℎ component. Likewise let ,'( = [&]'(

be a component of the matrix &. Let ' ≥ 0 imply that +$ ≥ 0
for all components ). Let ( ≩ ' imply component-wise
inequality with strict inequality for at least one component.
Corresponding denitions hold for the reverse directions. Let
( ∕= ' imply that the vector differs in at least one component.
Let X represent a set. Let & represent a family of sets. Let
the set of non-negative real numbers be denoted as ℝ+. Let
the set of positive real numbers be denoted as ℝ++. Let
the set of all natural numbers be denoted as ℕ. Let )(-)
be a !-dimensional vector, which is the all-zero vector with

the -%ℎ component set to one, i.e. [)(-)]# =

{
1 * = -
0 * ∕= -.

A set U ⊂ ℝ!
++ is said to be (downward)-comprehensive

if for all ! ∈ U and !̂ ∈ ℝ!
++, 0 < !̂ ≤ ! implies

!̂ ∈ U. In this paper, compact and closed are dened
relatively3 in ℝ!

++. A bargaining solution is a unanimous
agreement on certain utilities ! = [$1, . . . , $! ] from a utility
set U. The Nash bargaining solution (NBS) corresponds to a
Pareto optimal point Φ(U) characterized by a set of axioms
(Nash axioms)[9], [10]. Let the region U ⊂ ℝ!

++ be compact,
convex and comprehensive. Then, the unique NBS fullling
Nash�’s axioms is obtained by maximizing the product of the
utilities, i.e. max!∈U

∏
#∈" $#. Since, logmax

∏
# $# =

max log
∏

# $# = max
∑

# log $#, an equivalent optimizer
can be found solving max!∈U

∑
#∈" log $#. This strategy

is related to proportional fairness (PF) [11]. If the set U is
not compact and convex then it is a-priori unclear whether the

1Let (V,≤) be a partially ordered set and U ⊂ V. Then, ! ∈ U is a
maximal element of U, if for all !̂ ∈ U, ! ≤ !̂ implies that ! = !̂.

2For every set compact, comprehensive set U ⊂ ℝ"
++, the set of weak

Pareto optimal points is dened as follows: " (U) := {!(1) ∈ U : such
that there is no !(2) ∈ U with !(2) > !(1)}.

3A set U ⊂ ℝ"
++ is said to be relatively closed in ℝ"

++ if there exists a
closed set A ⊂ ℝ" such that U = A ∩ ℝ"

++. This is the case when all
the users are active. It is possible to extend this framework to cases where
all users need not be active.
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maximum max!∈U
∑

#∈" log $# exists. If it exists then it is
unclear whether the optimum is really the NBS.

Denition 1. We say that a set U ⊂ ℝ!
++ is log-convex, if

the image set ℒ/0(U) = {* = log(!) ∣ ! ∈ U} is convex.

Denition 2. By ,- we denote the family of all closed
comprehensive utility sets U ∈ ℝ!

++ such that ℒ/0(U) is
a strictly convex set in ℝ! .

By ,- ) we denote the family of all U ∈ ,- that are
additionally upper bounded.

For bounded sets from ,- ), it was shown in [12] that
the unique optimizer fullling the Nash axioms is always the
optimizer of max!∈U

∏
#∈" $#. In this paper we consider a

possibly unbounded set U ∈ ,- , for which the results in [8]
cannot be applied directly. We now present the interference
function framework, which is used to capture interference
coupling in wireless systems.

B. Interference Functions

In a wireless system, the users�’ utilities can strongly depend
on the underlying physical layer. The utility under considera-
tion is SIR#(#) =

*!

ℐ!(")
, for a user * ∈ ". The function ℐ#(#)

yields the interference power experienced by the *%ℎ user. It
is function of the transmission powers # = [&1, . . . , &! ]" .
Many other performance measures have a direct relationship
with SIR. Utility can represent certain arbitrary performance
measure, which depends on the SIR by a strictly monotone and
continuous function 1 dened on ℝ+. The utility of user *
is $#(#) = 1#

(
SIR#(#)

)
, where user * ∈ ". An example

of the above case is capacity: 1(2) = log(1 + 2). Note
that the effective path gain of user * can be incorporated
in the function ℐ#(#) as an additional scaling factor. In
this case, SIR#(#) is the ratio of the received power to the
interference power. In order to model the interference, we use
the axiomatic framework proposed in [1].

Denition 3. We say that ℐ : ℝ!
+ /→ ℝ+ is an interference

function if the following axioms are fullled:

31 positivity: ∃# > 0with ℐ(#) > 0

32 scale invariance: ℐ(4#) = 4ℐ(#) for all 4 ≥ 0

33 monotonicity: ℐ(#) ≥ ℐ(#̂) if # ≥ #̂.

The axiomatic framework 31 to 33 is related with the
framework of standard interference functions [13]. The details
about the relationship between the model 31-33 and Yates�’
standard interference functions were discussed in [1], [14].
For the purpose of this paper it is sufcient to be aware that
there exists a connection between these two models and the
results of this paper are applicable to standard interference
functions.

We now introduce the function 5(+,퓘), known as the
interference balancing function. The function 5(+,퓘) is an
indicator of the feasibility of SIR values + = [61, . . . , 6! ]"

for users * = 1, . . . ,! , respectively.

5(+,퓘) = inf
">0

max
#∈"

6#ℐ#(#)
&#

(2)

We have the following expression 5(+,퓘) ≤ 1, if and only
if for any 7 > 0 there exists a power vector #, > 0 such that
6#(#,) ≥ 6# − 7, for all * ∈ ". The feasible SIR region is
the sub-level set

S = {+ ∈ ℝ!
++ ∣ 5(+,퓘) ≤ 1}. (3)

Boundary points of S are characterized by 5(+,퓘) = 1.

C. Interference Coupling

The structure of the SIR region depends on the interference
coupling. For general interference functions it is not obvious
as to what would be an appropriate system to dene interfer-
ence coupling. We dene the system as �“coupled�”, if there
is some arbitrary power vector # such that [,ℐ(#)]#- = 1,
where for a given *, - we have

[,ℐ(#)]#- =

⎧
⎨

⎩

1 if there exists a 8-(#) > 0
such that the function
9-(8,#) = ℐ#(#− 8)(-))
is strictly monotone decreasing
for 0 ≤ 8 ≤ 8-(#)

0 otherwise.

The matrix , is called the dependency matrix. Thereby, we
obtain the global dependency matrix, which is independent of
the choice of the power vector # as follows.

Denition 4. Global dependency matrix: &ℐ is the global
dependency matrix, given by

[&ℐ ]#- =

⎧
⎨

⎩

1 if there exists a # ≥ 0 such that
[,ℐ(#)]#- > 0

0 otherwise.
(4)

The non-zero entries in & := &ℐ mark the transmit-
ter/receiver pairs, which are coupled by interference. A zero
entry implies that no interference is received, irrespective of
the magnitude of the transmission power.

Example 1. Consider that users are assigned to different or-
thogonal resources separated by adaptive interference rejection
techniques. This coupling model includes the widely used
concept of a �“link gain matrix�” as a special case.

We assume & to be an irreducible matrix [15], pp. 360-361.
This implies that each user is interfered by at least one other
user. Irreducibility of & is equivalent to strong connectivity
of the graph 3(&), where 3(&) is dened to be the directed
graph of " nodes, in which there is a directed edge leading
from node - ∈ " to * ∈ " if and only if [&]#- > 0. The
matrix & is called the adjacency matrix of the graph 3(&).
This graph is said to be strongly connected if for each pair
of nodes (*, -), there is an uninterrupted sequence of directed
edges leading from - to *.

Remark 1. Note that the direction matters in the denition of
strong connectivity for directed graphs.

We now introduce the dependency set.

Denition 5. Dependency set: :# is the dependency set for
user *, if :# = {- ∈ " ∣ [&ℐ ]#- = 1}, where & is given by
(4).
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This is the set of transmitters, which have an impact on
user *. We now present an example below, which display the
following remark.

Remark 2. Let ℐ1, . . . , ℐ! be linear interference functions,
e.g. ℐ#(#) =

∑
.∈" ;#.&. . Then, this assumption is not

always sufcient to ensure that the inmum in (1) is achieved.

Example 2. Consider the case of linear interference functions
ℐ#(#). Hence we have that the link gain matrix " = &,
where & is the global dependency matrix. Consider the case
of a system with 4 users. Let

" =

⎛

⎜⎜⎝

0 1 0 1
1 0 0 0
1 1 0 1
1 1 1 0

⎞

⎟⎟⎠ .

Let &1, &2, &3, &4 > 0 be arbitrary powers of user
1, 2, 3 and 4 respectively. Then we have that∑4

#=1 log
[# "]!
*!

= log *2

*1
+ log *1

*2
+ log *1+*2+*4

*3
+

log *1+*2+*3

*4
= log (*1+*2+*4)(*1+*2+*3)

*3*4
> log *3*4

*3*4
= 0.

Let us choose the powers of user 3 and user 4 as &3, &4 > 0
and the powers of user 1 and user 2 as &(()1 = &(()2 = 1/=
for = ∈ ℕ. With the choice of power vector from the
previous sentence, we have that inf">0

∑4
#=1 log

[# "]!
*!

≤
log

( 2
"+*4)( 2

"+*3)
*3*4

, for all choices of = ∈ ℕ. We now have that

0 ≤ inf">0
∑4

#=1 log
[# "]!
*!

≤ inf(∈ℕ log
( 2
"+*4)(

2
"+*3)

*3*4
= 0.

We can observe that inf">0
∑!

#=1 log
[# "]!
*!

= 0. Let
us now assume that there exists a power vector #̃ >
0 such that 0 =

∑4
#=1 log

[# "̂]!
*̂!

. Then we have that

0 = log (*̂1+*̂2+*̂4)(*̂1+*̂2+*̂3)
*̂3*̂4

= log
(
1 + (*̂1+*̂2)(*̂3+*̂4)

*̂3*̂4
+

*̂1+*̂2

*̂3*̂4

)
> log 1 = 0. Hence, we conclude that the inmum is

not achieved.

Hence, we impose certain additional properties of interfer-
ence functions, so that we can achieve the desired inmum.
These properties are introduce in Section II-D below.

D. Additional Properties of Interference Functions

We begin by introducing the property of strict monotonicity.

Denition 6. Strict monotonicity: An interference function is
ℐ#(#) is said to be strictly monotonic on its dependency set
:#, if #(1) ≥ #(2) with &(1)- > &(2)- for some - ∈ :#, then
ℐ#(#(1)) > ℐ#(#(2)).

Example 3. Consider the interference function ℐ#(#) =∑
-∈/!

;#-&-, where ;#- ∈ ℝ+ is the link gain between
transmitter - and receiver *. All users - ∈ :#, where :# is
the dependency set interfere with user *. Strict monotonicity
of ℐ# implies, that there exists at least one user - ∈ :# such
that ℐ#(#) is strictly increasing with respect to &-.

Denition 7. Strict positivity: An interference function ℐ#(#)
for * ∈ " is said to be strictly positive on its dependency set
:#, if for # ≥ 0, # ∕= [0, . . . , 0]" and &$ > 0 for some ) ∈ :#,
we have that ℐ#(#) > 0.

From a practical point of view strict positivity seems very
natural in wireless systems. None the less, it is an important

mathematical restriction whose impact shall be observed in
Section IV.

Remark 3. Strict positivity of the interference function is a
stronger condition than 31. Strict positivity of the interfer-
ence function ℐ#(#) is dened with respect to its respective
dependency set :#.

Example 4. Consider the following examples: ℐ(#) =∑!
#=1 ;#&#, - > 0, - ∕= [0, . . . , 0]" is a strict positive

interference function; ℐ(#) =
∏

# &
0!
# , $ ≥ 0,

∑!
#=1 %# = 1

is not a strict positive interference function.

Denition 8. Log-convex interference function: An interfer-
ence function ℐ : ℝ!

+ /→ ℝ+ is said to be a log-convex
interference function if 31-33 are fullled and ℐ(exp{%})
is log-convex on ℝ! .

Let 9(%) := ℐ(exp{%}). The function 9 : ℝ! /→ ℝ+ is
log-convex on ℝ! if and only if log 9 is convex or equiv-
alently 9(%(>)) ≤ 9(%(1))1−19(%(2))1−1, for all > ∈ (0, 1),
%(1), %(2) ∈ ℝ! , where %(>) = (1−>)%(1)+>%(2), > ∈ (0, 1).
Note that the change of variable # = exp{%} was already used
in [16], [17].

Denition 9. Strict log-convexity: A log-convex interference
function ℐ# is said to be strictly log-convex on its dependency
set if for all #(1),#(1) ∈ ℝ!

++, with &(1)$ ∕= &(2)$ for at least one
) ∈ :#, we have ℐ#

(
#(>)

)
<

(
ℐ#(#(1))

)1−1(ℐ#(#(2))
)1−1

,

where #(>) = #(1)1−1
#(2)1.

From Remark 2 we have that linear interference functions
always satisfy denitions 6, 7, 8. However, they need not
satisfy denition 9. The property of strict log-convexity of
interference functions on their respective dependency sets will
be used to show that the inmum can be achieved. We
introduce a table of notation, for quickly reviewing all the
properties of interference functions introduced in the paper.

31 (Positivity) There exists a # > 0
with ℐ(#) > 0

32 (Scale Invariance) ℐ(4#) = 4ℐ(#)
for all 4 ≥ 0

33 (Monotonicity) ℐ(#) ≥ ℐ(#̂) if # ≥ #̂

Strict Monotonicity #(1) ≥ #(2), &(1)- > &(2)-

for some - ∈ :#

then ℐ#(#(1)) > ℐ#(#(2))
Strict Positivity # ≥ 0, # ∕= [0, . . . , 0]"

and &$ > 0 for ) ∈ :#

then ℐ#(#) > 0
Log-convexity 9(%) := ℐ(exp{%})

and log 9 is convex
Strict Log-convexity for all #(1),#(1) ∈ ℝ!

++,
with &(1)$ ∕= &(2)$ for at least
one ) ∈ :#, we have

ℐ#
(
#(>)

)
<

(
ℐ#(#(1))

)1−1

(
ℐ#(#(2))

)1−1
where

#(>) =
(
#(1)

)1−1(
#(2)

)1
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p1

p3

p2

I1

I2

I3

Figure 1. Bipartite graph; shaded edges correspond to connections between
power node $# and interference node ℐ# of user %; Power graph for 3 users
displays full connectivity, corresponding to irreducible matrix ".

III. COMBINATORIAL CHARACTERIZATION OF

INTERFERENCE COUPLING

In this section we present a combinatorial characterization
of interference coupling and its relation to the irreducibility
of the matrices & and &&" respectively. For this purpose
we shall construct a new graphical representation. We know
that the global dependency matrix & is irreducible, if and
only if the �“classical graph�” is connected. Before introducing
the power and interference bipartite graphs, we give certain
intuition as to what certain concepts in these denitions could
look like.

Let P and I represent the set power nodes and the set of
interference nodes, respectively. In the denition below, a
power node &# ∈ P could be thought of as an abstraction of
the transmit power of user *. Similarly, an interference node
ℐ# ∈ I could be thought of as an abstraction of the interference
experienced by user *. Power nodes are not connected to each
other. Interference nodes are not connected to each other. If
node &# has an undirected edge to certain other interference
nodes, e.g. ℐ#1 , ℐ#2 , where *, *1, *2 ∈ ", then it implies that
user * has the ability to cause interference to users *1 and *2.
Having provided this basic intuition we are now in a position
to introduce the power and interference bipartite graphs.

Denition 10. For any given matrix & ∈ ℝ!×!
+ , let 3̃(&)

be the (undirected) bipartite graph of 2! nodes divided into
two disjoint sets P and I (each of cardinality !) such that,
there is no edge between nodes within each of these groups
and there is an undirected edge between &$ ∈ P and ℐ# ∈ I
if and only if [&]#$ > 0.

It is worth pointing out that if the power nodes are labeled
P = {&1, . . . , &!} and the interference nodes are labeled I =
(ℐ1, . . . , ℐ!) then the adjacency matrix of 3̃(&) is a 2!×2!

partitioned matrix of the form
(

0 &"

& 0

)
[18], page 15.

Denition 11. Connectivity of 3̃(&): For any &, two nodes
*1 and *2 in 3̃(&) are said to be connected, if and only if
there exists a sequence of edges (?, @) ∈ P×I or (?, @) ∈ P×I
such that {()0, )1), ()1, )2), . . . , ()2−2, )2−1), ()2−1, )2 )} with
)0 = *0 and )2 = *2.

Stated informally, the denition says that 3̃ is connected, if
and only if every two distinct nodes are linked by a sequence

pr

ps

I
k

Figure 2. Elementary power step in a Power graph; $$ and $% are in &
′
# .

!3

!1 ℐ1

ℐ3

Figure 3. Example of a power graph, which is not fully connected; &
′
# =

{%} ∪ &# .

of undirected edges, each of which now connects a power
nodes with an interference node. Consider the following
matrix

& =

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ .

The bipartite graph for matrix & is displayed in Fig. 1. The
dotted edges in Fig. 1 corresponds to an articial connection
in this graph. It does not immediately imply that we have
self interference. The presence of self interference shall be
discussed in detail in Example 3). We now introduce the
power graph and the interference graph. These graphs will
help abstract away certain physical layer complications, while
capturing interference coupling effects in wireless systems.

A. Power Graph

We begin by explaining, what we imply by elementary
power step. Here we introduce the dependency set :

′

#, where
:

′

# = {*} ∪ :#.

Denition 12. Elementary power step: An elementary power
step is a connection between any two power nodes in the
bipartite graph through an interference node.

We can construct an elementary power step between two
power nodes &% and &3 if and only if A, ' ∈ :

′

#, where :
′

# =
{*} ∪ :# (see Fig. 2).

Denition 13. Power graph: We call a bipartite graph of
2! nodes divided into two disjoint sets P and I (each of
cardinality !) a power graph if it consists only of elementary
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Figure 4. Power of user %0, $#0 can be decreased and in turn power of all
users in &#0 can be decreased.

pt

Ir

Is

Figure 5. Interference graph; ' ∈ &$ and ' ∈ &%; Elementary interference
step between interference nodes ℐ$ and ℐ%.

power steps. A power path is a path in the power graph made
up one or more elementary power steps.

If the power graph is fully connected then each power node
can be reached by every other power node. An example of
a fully connected power graph is displayed in Fig. 1. An
example of a power graph, which is not fully connected is
displayed in Fig. 3. We now mention a remark, which will
be utilized while proving one of the main results of the paper.

Remark 4. Let for any user *0 the following inequality &#0 >
6#0ℐ#0(#) hold. Then, we can reduce the power of user *0
and in turn reduce the power &$ of all users with *0 ∈ :$. Let
:(1)
#0

= {* ∣ *0 ∈ :#}. In the next step we can reduce all the

powers &$ when there exists a user * ∈ :(1)
#0

such that * ∈ :$.

Similarly we can construct the dependency set :(2)
#0

= {* ∣
∃*1 ∈ :(1)

#0
, *1 ∈ :#}. Using induction we can construct the

dependency set :(4+1)
#0

= {* ∣ ∃*1 ∈ :(4)
#0

, *1 ∈ :#}. The
power graph is connected, if and only if for each *0 ∈ " we
can nd a ;0 such that :(40)

#0
= *.

This is a formal outline of how a power control procedure is
regularly carried out in wireless systems. As can be observed,
the combinatorial characterization helps to get a better insight
into the fashion in which users are coupled by interference,
preparing us for interference management and coordination.
The irreducibility of & implies the Pareto optimality of the
boundary points.

B. Interference Graph

In this section we discuss the interference graph and the
corresponding irreducibility of the matrix &&" . We begin
by dening an elementary interference step.

Denition 14. Elementary interference step: An elementary
interference step is a connection between any two interference
nodes in the bipartite graph through a power node.

An elementary interference step between interference nodes
ℐ- and ℐ3 can be constructed if and only if there exists a A,
A ∈ " such that A ∈ :- ∩ :3 (see Fig. 5).

Denition 15. Interference graph: We call a bipartite graph
of 2! nodes divided into two disjoint sets B- and C) (each
of cardinality !) a interference graph if it consists of only
elementary interference steps. An interference path is a path
in the interference graph made up of one or more elementary
interference steps.

Based on the above denitions we shall prove certain
results, which display the relation between the connectivity of
the power graph and the irreducibility of the matrix &; and
the relation between the connectivity of the interference graph
and the irreducibility of the matrix &&" in Section IV below.
In particular the importance of the interference graph and its
interplay with interference functions and the matrix &&" will
be visible in the second part of the proof of Theorem 1.

IV. COMBINATORIAL CHARACTERIZATION BASED ON

INTERFERENCE FUNCTIONS

We begin by presenting a lemma, which displays the
positivity of function 5(+, ℐ) > 0, which is used frequently
in our analysis. Here + := +(!) = [61($1), . . . , 6!($!)]" is
the SIR vector associated with a utility vector ! ∈ U.

Lemma 1. Let ℐ1, . . . , ℐ! be strictly positive interference
functions on their dependency sets :1, . . . , :! , respectively.
Then, for all 61, . . . , 6! > 0 we have that

5(+,퓘) = inf
">0

max
#∈"

6#ℐ#(#)
&#

> 0.

Proof: We achieve this proof by contradiction. Let 6# >
0, for all * ∈ " be such that 5(+) = 0. Then for all 7 > 0
there exists a vector #(7), #(7) > 0, ∥#∥∞ = 1 (chosen for
compactness; it does not alter the problem, since, we are in the
case without power constraints) and

(
6#ℐ#(#(7))

)
/&#(7) < 7,

for * ∈ ", i.e. 6#ℐ#
(
#(7)

)
< 7&#(7). Let )0 be an index

with &$0 with &$0(7) = 1. Let *0 be an index such that ℐ#0

is an interference function with )0 ∈ :#0 . Then we have that
0 < D3 := 6#0ℐ#0

(
)()0)

)
≤ 6#0ℐ#0(#(7)) < 7&#0(7) = 7. We

have chosen 7 > 0. Therefore, we have that 0 < D3 ≤ 7 and
D3 = 0, which gives us our required contradiction.

Next, we present a lemma, which insures that strictly log-
convex interference functions on their respective dependency
sets are also strictly monotonic on their respective dependency
sets. This result will be required while investigating the
relation between the interference function framework and the
family of feasible utility sets.

Lemma 2. Let ℐ1, . . . , ℐ! be strictly log-convex interference
functions on their dependency sets :1, . . . , :! , respectively.
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Then, ℐ1, . . . , ℐ! are strictly monotonic on their dependency
sets :1, . . . , :! , respectively.

Proof: Refer to [12, Proof of Lemma 5].
Our main resulted presented below, depicts the connection

between the family of feasible utilities sets and the interference
function framework. We begin with interference functions
with the natural properties of strict log-convexity and strict
positivity on their respective dependency sets. Then the
corresponding global dependency matrix & and &&" are
irreducible (i.e. the users in the systems are fully coupled
by interference), if and only if the SIR region S is in the
family of strict convex sets ,- . In this case there exists an
unique optimum for the problem

∏
#∈" $#.

Theorem 1. Let S = {+ ∈ ℝ!
++ ∣ 5(+) ≤ 1}, where

5(+) = inf">0 max#∈"
(
6#ℐ#(#)/&#

)
. Let ℐ# for * ∈ " be

strictly log-convex and strictly positive interference functions
on their respective dependency sets. Then, S is in the family
of sets ,- , if and only if & and &&" are irreducible.
For this case there exists a unique optimizer #̂ > 0 for
BE (퓘) = inf"∈'

∑!
#=1 log

ℐ!(")
*!

, with an associated SIR
vector +̂, where 8 is the set of power vectors.

Proof: �“⇐=�”: This direction has been proved in [8,
Theorem 8].

�“=⇒�”: We have to show that the irreducibility of & and
&&" together are necessary and sufcient conditions. We
carry out the proof in two steps. Let us assume that & is not
irreducible. Then, we show that there are boundary points of
S dened by S = {+ ∈ ℝ!

++ ∣ 5(+) ≤ 1}, which are weak
Pareto optimal, but not Pareto optimal, i.e. there exists +(1) ≥
+(2), +(1) ∕= +(2) with 1 = 5(+(1)) = 5(+(2)). Since & is
reducible, through a permutation of the rows and columns of

& we have & =

(
&(1) 0
&(1,2) &(2)

)
, where the matrix &(1)

is irreducible. Matrix &(1) is a *1 × *1-dimensional matrix.
We assume that interference functions ℐ# for all * ∈ " are in
the required form. So interference function ℐ# for all 1 ≤ * ≤
*1 is dependent only on &$ for 1 ≤ ) ≤ *1. We now analyze
the following equations: 5(+) = inf">0 max#∈" 6#ℐ#(#)/&#
and 5(+(1)) = inf

"(1)∈ℝ!1
++

max1≤#≤#1 6#ℐ#(#)/&#, with

#(1) = [&1, . . . , &#1 ]
" . We also have that 5(+(2)) =

inf">0,"∈ℝ#
+
max#1<#≤!+1 6#ℐ#(#)/&#. Then, from Lemma

1 we know that 5(+(1)) > 0, 5(+(2)) > 0 and 5(+) =
max

(
5(+(1)), 5(+(2))

)
> 0. We choose + such that

5(+) = 5(+(1)). Therefore, we have that 0 < 5(+(2)) ≤ 1.
For 0 < > < 1 we choose +(>) with 6#(>) = 6#, for
1 ≤ * ≤ *1 and 6#(>) = >6#, for *1 ≤ * ≤ ! + 1.
Then we have that 5(+(>)) ≥ 5(+(1)(>)) = 5(+(1)) =
1 and 5(+(>)) = inf">0max#∈"

(
6#(>)ℐ#(#)

)
/&# ≤

inf">0max#∈"
(
6#ℐ#(#)

)
/&# = 1 and 5(+(>)) = 1. There-

fore, +(>) is a boundary point. We know that +(>) ≤ +
and +(>) ∕= + for > ∕= 1. Hence, +(>) is only weak Pareto
optimal. We also have for +(>) = (1 − >)+(1) + >+(2) that
5(+) = 1, hence S /∈ ,- . Therefore, if S ∈ ,- , then & is
irreducible.

Let us assume that matrix &&" is not irreducible, i.e.
&&" is reducible. Now we have to show that S /∈ ,- .
Let ℐ#, * ∈ " be an interference function and #(1),#(2)

Tx1

Tx2

Tx4

Tx5Rx1

Rx5

Rx4

Rx3

Tx3

Rx2

Figure 6. Example of an ad-hoc wireless network with 5 point to point
links, where " and ""! are irreducible matrices.

be any two power vectors with &(1)# ∕= &(2)# . Then we have
that ℐ#(#(>)) <

(
ℐ#(#(1))

)1−1(ℐ#(#(2))
)1

. Therefore when

ℐ#(#(>)) =
(
ℐ#(#(1))

)1−1(ℐ#(#(2))
)1

, then we must have
that &(1)# = F#&

(2)
# . Let *1 and *2 be any two indices

with :#1 ∩ :#2 ∕= ∅. Then F#1 = F#2 and F# is a
constant for all * ∈ ". When &&" is irreducible, then
for all #(1),#(2), #(1) ∕= #(2) we can nd an index *0 such
that ℐ#0(#(>0)) <

(
ℐ#(#(1))

)1−10
(
ℐ#(#(2))

)10 for some >0

(hence for all > ∈ (0, 1)). This implies that &#0(>0)/ℐ#(>0) >(
&
#
(1)
0
/ℐ#0(#

(1))
)1−10

(
&
#
(2)
0
/ℐ#0(#

(2))
)10 . This implies that

#(1),#(2) such that #(1) ∕= #(2) such that 6#(#(>)) =(
6#(#(1))

)1−1(
6#(#(2))

)1
.

Assume that & is irreducible. We can nd power vectors
#(1),#(2), #(1) ∕= #(2) such that

6($)
# = 6#(#

($)) =
&$#

ℐ#(#($))
, (5)

for ) = {1, 2}. Let +(1) and +(2) be boundary points. Then
6#(#(>)) =

(
6#(#(1))

)1−1(
6#(#(2))

)1
, for * ∈ ". Then

+(>) is a boundary point. Hence S /∈ ,- . So if S ∈ ,-
then &&" is irreducible.

We now present two corollaries, which display the rela-
tionship between the irreducibility of the global dependency
matrix & and the matrix &&" with the connectivity of the
power graph and the interference graph respectively.

Example 5. Consider an ad-hoc wireless network with 5 point
to point links surrounding a building (any object blocking the
ability of certain links to interfere with certain other links) as
shown in Fig. 6, where Tx# and Rx# represent the transmitter
and receivers for the *th link, respectively. The dependency
sets of users are as follows: :1 = {2, 5}, :2 = {1, 3},
:3 = {2, 4}, :4 = {3, 5} and :5 = {4, 1}. We can construct
the matrices & and &&" and check, that they are irreducible
matrices. If the above case fullls the conditions of Theorem
1, then we observe, that even though all the links do not
interfere with all the other links, the following statements hold:

∙ all the boundary points of the resulting SIR set are strictly
convex, and

∙ the proportional fairness resource allocation strategy
BE (퓘) (dened in the statement of Theorem 1) has a
unique solution.
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Corollary 1. The global dependency matrix & is irreducible,
if and only if we can connect all the power nodes through
power paths in the power graph.

Proof: The global dependency matrix & is irreducible
if and only if we can nd for each pair (), *) a sequence of
natural numbers *0, *1, . . . , *' such that *0 = ), *' = * and
[&]#$+1#$ > 0 for all - = 0, . . . ,G−1. Then we can connect
all power nodes &$ and &# in the power graph. We illustrate
such a connection in the chain below (refer to Remark 4 and
rst part of proof of Theorem 1 for detailed explanation of
the chain).

&$
[$]!1%−−−−→ ℐ#1 −→ &#1

[$]!2%−−−−→ ℐ#2 . . .
[$]!%−−−→ ℐ# −→ &# (6)

To prove the opposite direction let us assume that we can
connect all the power nodes through the power graph. Then
we have that for a pair (), *) of power nodes we can nd
a path according to (6). Then we have that [&]#0$ > 0,
[&]#1#0 > 0, . . ., [&]#$+1#$ > 0 for all - = 0, . . . ,G− 1 and
[&]##&−1 > 0. Hence, we have that the global dependency
matrix is irreducible.

Corollary 2. Matrix &&" is irreducible, if and only if we
can connect all interference nodes through interference paths
in the interference graph.

The next corollary is a direct application of Corollary 1 and
Corollary 2 to the case of full self interference. In this special
case we display the equivalence between the irreducibility of
the global dependency matrix & and the matrix &&" .

Corollary 3. Consider a system with full self interference,
i.e. * ∈ :#, for all * ∈ ". For such a system the global
dependency matrix & is irreducible, if and only if the matrix
&&" is irreducible.

In fact in the case of full self interference, the power
graph and the interference graph are equivalent. The dotted
edges in the power graph are now solid edges, corresponding
to self interference. Under the restriction of full self inter-
ference Corollary 3 has shown the equivalence between the
irreducibility of the matrices & and &&" . This equivalence
does not hold in the general case. These insights could better
prepare us to design algorithms for interference coordination
and management and serve as a building block to study the
general case.

We would now like to analyze the case, when the global
dependency matrix & is reducible. For a certain SIR vector
+ > 0 with the corresponding interference balancing function
5(+,퓘) = 0 we consider the following set of power vectors

P(+) := {# ∈ ℝ!
++ ∣ &#

ℐ#(#)
≥ 6#, ∀* ∈ "}. (7)

There is a possibility that the set of powers P(+) = ∅. We
analyze this case, when the power set P(+) ∕= ∅. The next
result shows that for strictly positive and strictly log-convex
interference functions on their respective dependency sets, the
irreducibility of the matrices & and &&" are necessary and
sufcient conditions for the considered utility sets to be strictly
convex. In this case we have shown that there exists a unique
optimum for the product of utilities maximization problem.

Theorem 2. Let there exist a SIR vector + such that the power
set (dened in (7)) P(+) ∕= ∅. Then, there exists a set "1 ⊆
" = {1, . . . ,!} and a power vector #̃ ∈ P(+) such that
*!

ℐ!(")
= 6#, for all users * ∈ "1 and for all power vectors

# ∈ P(+), *̃!

ℐ!("̃)
> 6#, for all users * ∈ "2 = "∖"1. Then,

we have that ∪#∈"1:# = "1.

Proof: The proof of the prerequisite conditions is dis-
cussed in [19], Appendix J, pages 5488-5489. To prove that
∪#∈"1:# = "1 we begin by showing that ∪#∈"1:# ⊆
"1. For the sake of obtaining a contradiction assume that
∪#∈"1:# ⊆ "1 is not true. Then there exists an index *0
such that *0 ∈ ∪#∈"1 and *0 /∈ "1. Let us choose a set "2

such that *0 ∈ "2. We can construct a new power vector such
that

&̂#0 < &̃#0 ,
&̂#0

ℐ#(#̂)
> 6#0 . (8)

For an index * ∕= *0 we dene a power vector #̂, such that

&̂# = &̃#, #̂ ≤ #̃. (9)

Then from (8), (9) and 32 we have that *̃!0
ℐ!0 ("̂)

>
*̂!0

ℐ!0 ("̂)
>

6#0 and *̂!

ℐ!("̂)
> 6#. Now we choose an index *1 ∈ "1 and

*0 /∈ "1. Since we have that ℐ#0(#̃) > ℐ#1 #̂, we can reduce
the power &̃#1 in the following manner. We choose a power
vector #̂(1) such that &̂#1 > 6#1ℐ#1(#̃). We choose &̂(1)# = &̃#
for * ∕= *1 such that #̂(1) ≤ #̃ and power vector #̂(1) ∈ P(+).
Then we have that &̂#1 > 6#1ℐ#1(#̂

(1)), for all *1 ∈ "1,
which is in contradiction with ∪#∈"1:# ⊆ "1.

To prove the opposite direction we have to show that "1 ⊆
∪#∈"1:#. Assume for the sake of obtaining a contradiction
that "1 ⊆ ∪#∈"1:# is not true. Then there exists an index
*0 ∈ "1 with *0 /∈ ∪#∈"1:#. We have that &̃#0 = 6#0ℐ#0(#̃).
Since we know that *0 /∈ ∪#∈"1:# we have that the power of
user *0, &̃#0 has no inuence on the interference function ℐ#
of user * with * ∈ "1. However we are aware that &#0 has
an impact on certain interference functions ℐ# with * ∈ "2.
For * ∈ "2 we have that 6# < *̃!

ℐ!("̃)
. We can now increase

the power &̃#0 of user *0 such that #̃ ∈ P(+), &̂#0 > &̃#0 ,

&̂(2)# = &̃#, for * ∈ "∖{*0} and 6# <
*̂(2)
!

ℐ!("̂(2))
, for all * ∈ "2.

Now we have that *̃(2)
!

ℐ!("̂(2))
> 6#, * ∈ "2 ∪ {*0}, which is

in contradiction to *!

ℐ!(")
= 6#, for all users * ∈ "1 and for

all power vectors # ∈ P(+) and *0 ∈ "1. This implies that
∪#∈"1:# ⊆ "1. From ∪#∈"1:# ⊆ "1 and "1 ⊆ ∪#∈"1:#

we have the desired result.
We now return to the point (5) in the proof of Theorem 1.

Recollect that, we are in the case when the global dependency
matrix & is reducible. In the result below, we show that for
all power vectors in the set P(+), where P(+) is not empty,
the power vectors can be constructed as scaled versions of
each other for all users in "1, where *!

ℐ!(")
= 6#, for all users

* ∈ "1 (for more details on "1 refer to the statement of
Theorem 2).

Corollary 4. For all power vectors #(1),#(2) ∈ P(+), there
exists a scalar F > 0 with &(2)# = F&(1)# , for all * ∈ "1.

Proof: Choose two arbitrary power vectors #(1),#(1) ∈
P(+). For 0 < > < 1, we choose P(>) such that &#(>) =
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(&(1)# )1−1(&(1)# )1, for all * ∈ ". Then we have that #(>) ∈
P(>) for all 0 ≤ > ≤ 1. From Theorem 2 we have for
all * ∈ "1 that ℐ#(#(>)) = (ℐ#(#(1)))1−1(ℐ#(#(2)))1. Then
there exists a scalar F > 0 such that for all ) ∈ "1 = ∪#∈"1:#

we have that &(2)$ = F&(1)$ . This shows that for an arbitrary
choice of power vectors #(1),#(2) ∈ P(.) there exists a scalar
F > 0 such that &(2)$ = F&(1)$ for all ) ∈ "1.

We have provided a combinatorial characterization of inter-
ference coupling in terms of the interference functions. We
know that the interference balancing function 5(+,퓘) is itself
an interference function. If interference functions ℐ# for all
* ∈ " are log-convex then the corresponding interference
balancing function 5(+,퓘) is log-convex. We now briey
discuss the combinatorial characterization of interference cou-
pling in terms of interference balancing functions and its
relation to the property of strict log-convexity.

Corollary 5. The interference balancing function 5(+,퓘) is
strict log-convex if and only if & and &&" are irreducible
matrices, where & is the global dependency matrix.

The result shows that the interference balancing function
5(+,퓘) is strictly monotonic with respect to the SIR vector +,
if and only if the global dependency matrix & is irreducible.
We know that strict log-convexity of an interference function
implies strict monotonicity of the interference function. How-
ever, we cannot conclude the converse. If we have strict
monotone interference balancing function 5(+,퓘) and strict
convexity of log(ℐ#(exp(%))/ exp('#)), then both conditions
together are equivalent to the strict convexity of the log-SIR
region. This follows from the fact that the rst condition
is equivalent to the irreducibility of the global dependency
matrix & and that the second condition is equivalent to the
irreducibility of the matrix &&" .

Corollary 6. Interference balancing function 5(+,퓘) is
strictly log-convex if and only if the corresponding log-SIR
set is strictly convex.

Example 6. For a 2 user system, let 5(+,퓘) be a strictly
monotonic interference balancing function, which does not
possess the property of being strictly log-convex. Let ℐ1(#) =
&2 and ℐ2(#) = &1. Since we have linear interference
functions the corresponding link gain matrix " = & is

given by " =

(
0 1
1 0

)
. Interference balancing function

5(+,퓘) = 6162 and is strictly monotonic. Let SIR of user
1 be 61 = exp(H1). Then we have that log5(exp(*),퓘) =
H1 + H2.

V. CONCLUSIONS

We have provided a combinatorial characterization of inter-
ference coupling in wireless systems. We have introduced the
power graph and interference graph and displayed the relation
between their connectivity and the irreducibility of the global
dependency matrix & and the matrix &&" respectively.
We have proved that for strict positive and strict log-convex
interference functions on their respective dependency sets the
irreducibility of the matrices & and &&" are necessary and
sufcient conditions for the considered utility sets to be strict
convex. We have provided a characterization of the log-SIR

region, extending results of strict convexity of the feasible log-
SIR region from linear interference functions to a broader class
of log-convex interference functions and have elucidated the
importance of the property of log-convexity.
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