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Abstract

Affective computing increasingly gains interest in human-robot interaction (HRI). Within

this research area, a large part of the studies concentrates on facial expressions and varia-

tions in speech as modalities. These modalities are especially suited during an interaction,

but they may not be sufficient in other situations such as recognizing the atmosphere at dis-

tance and adapting the robot to the interaction partner beforehand. For this purpose, this

thesis aims to investigate the capability of the daily human motion gait for automatically

recognizing and expressing emotions in HRI.

At first glance, it appears that walking follows a simple principle. Nevertheless, math-

ematical modeling indicates that a complex mechanism underlies human walking and,

hence, a detailed analysis of the human gait is challenging. The gait is highly individual

and affected by many factors such as physique, age, gender, and emotions. Furthermore,

recorded gait databases are characterized by highly dimensional, temporally dependent,

highly variable, and nonlinear data vectors. Due to these reasons, automatic recognition

of affect is a challenge for pattern recognition algorithms.

Reviewing psychological studies leads to the conclusion that humans express emotions

automatically in the way they walk. Considering the applicability to affective computing,

several further experiments are conducted on human perception of emotions. Results

of these experiments evaluate the suitability of the investigated gait databases, serve as

reference for the performance of pattern recognition algorithms, and give new insights on

the human perception mechanism.

Traditionally, inferential statistics is applied for gait analysis in medicine and biome-

chanics. Within this work, predictive and inferential statistics are theoretically and nu-

merically compared. Similarities as well as dissimilarities are elaborated. Mathematical

relations between these methods are derived, in particular, estimating classification rates

from reported test statistics.

Different feature extraction techniques and static as well as dynamic classification meth-

ods are compared for the recognition of emotions in gait patterns. For a small number

of training samples and highly dimensional feature vectors, it is derived that the decision

borders of a nearest neighbor classifier coincide with the decision borders of a support

vector machine (SVM) if linear discriminant analysis (LDA) is used for dimension reduc-

tion. Besides developing well performing algorithms, crucial issues in automatic emotion

recognition are the definition of the term emotion, person dependency of the recognition

performance, and the ground truth. For this purpose, two emotion models are compared

regarding their suitability to study gait as modality in affective computing. Furthermore,

algorithms trained for individuals are compared with algorithms not considering the iden-

tity of the walker. This work uses therefor databases which are based on acted or elicited

emotions. Finally, the achieved recognition rates are compared with gender and identity

recognition.

For robots and virtual characters, affective computing does not only consider automatic

emotion recognition but also expression of emotions; therefore, expressive gait patterns for

robots are developed and evaluated for a hexapod.

In summary, this work which deals about the suitability of gait for affective computing

comes to the conclusion that even though gait is a highly individual motion pattern,

emotions are recognized above chance level. This work contributes to the state of the art
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by exploring various facets of pattern recognition algorithms for gait analysis and studying

gait as modality for affective computing. It provides valuable insights concerning this topic

and opens various perspectives for future work.
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Zusammenfassung

Affective Computing gewinnt zunehmend an Bedeutung in der Mensch-Roboter Interakti-

on (HRI), weil diese menschliche Emotionen berücksichtigt. Ein Großteil der Studien auf

diesem Forschungsgebiet konzentriert sich auf die Mimik und Variationen in der Sprache

als Modalität für emotionale HRI. Diese Modalitäten sind insbesondere während der Inter-

aktion geeignet. Jedoch treten Situationen auf, in welchen diese Modalitäten unzureichend

sind, z.B. um die Stimmung des Interaktionspartners von Weitem zu erkennen, sodass der

Roboter die Interaktion dementsprechend eröffnet. Deswegen untersucht diese Arbeit die

Eignung des menschlichen Gangs zur Erkennung und Expression von Emotionen in HRI.

Auf den ersten Blick scheint der menschliche Gang einem einfachen Prinzip zu folgen.

Eine detailreichere, mathematische Modellierung zeigt jedoch auf, dass dem menschlichen

Gang ein komplexer Mechanismus zu Grunde liegt. Somit stellt eine detailierte Analy-

se des menschlichen Gangs eine Herausforderung für technische Applikationen dar. Der

persönliche Gang ist individuell und wird durch viele Faktoren wie Körperbau, Alter, Ge-

schlecht, und auch die emotionale Stimmung beeinflusst. Weiterhin sind aufgenommene

Gangdaten dadurch charakterisiert, dass die Datenvektoren eine hohe Dimension haben,

sowohl zeitabhängig als auch sehr variabel sind, und Nichtlinearitäten beinhalten.

Eine Anzahl an psychologischen Studien belegt, dass Menschen im Gang Emotionen

ausdrücken und diese erkennbar sind. Im Hinblick auf die mögliche Anwendung von Emo-

tionen in HRI, werden verschiedene weitere Experimente durchgeführt, welche Aufschluss

über die menschliche Perzeption von Emotionen geben. Für einen späteren Vergleich mit

Verfahren der automatischen Mustererkennung, wird dabei die menschliche Erkennungs-

rate bestimmt. Weiterhin wird die Eignung der verwendeten Datensätze überprüft und

verschiedene Mechanismen bei der Wahrnehmung von Emotionen basierend auf der Beob-

achtung des Gangs untersucht.

In der Medizin und Biomechanik wird die statistische Inferenz herangezogen um Gangda-

ten zu analysieren. Innerhalb des letzten Jahrzehntes fanden auch verschiedene Verfahren

der automatischen Mustererkennung in der Ganganalyse Anwendung. Im Rahmen dieser

Arbeit wird jeweils eine Auswahl an Methoden der statistischen Inferenz und der auto-

matischen Mustererkennung miteinander verglichen, um Ähnlichkeiten, Gemeinsamkeiten

und Differenzen herauszuarbeiten. Des Weiteren werden mathematische Zusammenhänge

hergeleitet um Klassifkationsraten von dokumentierten Testgrößen abzuschätzen.

Basierend auf der Beobachtung des Gangs, werden verschiedene Dimensionsreduktions-

verfahren und Klassifikationsmethoden auf deren Eignung untersucht Rückschlüsse auf

den emotionalen Zustand zu erlauben. In diesem Rahmen wird mathematisch hergelei-

tet, dass das Nearest Neighbor Verfahren die gleichen Entscheidungsgrenzen berechnet

wie eine Support Vector Machine (SVM), wenn das Dimensionsreduktionsverfahren Line-

ar Discriminant Analysis (LDA) im Falle geringer Trainingsdaten und hochdimensionaler

Merkmalsräume angewandt wird. Neben der Entwicklung von Mustererkennungsalgorith-

men, sind weitere kritische Punkte bei der Erkennung von Emotionen zu berücksichtigen:

die Personenabhängigkeit, die Definition des Begriffs Emotion und der Wahrheitsgehalt. Zu

diesem Zwecke werden zwei Emotionsmodelle auf deren Eignung, Emotionen am Gang zu

erkennen, untersucht. Desweitern werden für einzelne Personen trainierte Algorithmen mit

Algorithmen verglichen, welche personenunabhängig klassifizieren. Diese Arbeit verwendet
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hierbei Datensätze, die auf gespielten oder induzierten Emotionen basieren. Abschließend

werden die erreichten Erkennungsraten mit der Geschlechts- und Identitätserkennung ver-

glichen.

Nachdem die Betrachtung von Emotion in HRI nicht nur die Erkennung von mensch-

lichen Emotionen beinhaltet, sondern auch dass Roboter emotional interagieren, werden

abschließend emotionale Gangmuster für einen sechsbeinigen Roboter entwickelt und eva-

luiert.

Zusammenfassend kommt diese Arbeit, welche die Eignung des Gangs zur Erkennung

und Expression von Emotionen in HRI analysiert, zu dem Schluss dass die Erkennung

von Emotionen am Gang über zufällige Zuordnung hinausgeht. Jedoch wird der Ausdruck

stark durch den persönlichen Gangstil beeinflusst. Diese Arbeit trägt zu dem bisherigen

Stand der Technik mit der Erforschung von verschiedenen Facetten der automatischen

Mustererkennung für die Ganganalyse und der Untersuchung des Gangs als Modalität für

emotionale HRI bei. Sie bietet wertvolle Einsichten bezüglich dieses Themas und öffnet

weitere Perspektiven für zukünftige Forschung.
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1 Introduction

Imagine, you are in a 22th century household - robots are helper for daily tasks such as

cleaning, serving drinks and meals, and taking care for a person’s needs - the door opens

and a robot comes in. You would expect a friendly robot which serves your wishes, which

communicates easily and intuitively with you, and which possibly makes you laugh. In

social robotics, robots will cross the line from being task-oriented machines to machines

interacting with their environment. To understand quickly and clearly the wishes of hu-

mans, verbal and non-verbal communication is essential in human-robot interaction. A lot

of progress has been made in speech recognition since the early beginnings in the 80s. Yet,

non-verbal communication is a new research field in robotics starting with the 21th cen-

tury. Humans naturally express their intentions by verbal and non-verbal communication.

Although verbal communication is more detailed and explicit, nonverbal communication

gives an impression on the atmosphere and strongly relates to higher cognitive tasks such

as decision making [123]. In the situation described above humans tend to transfer their

knowledge about nonverbal communication to robots [130]. Hence, the robot should not

only be able to understand human non-verbal behavior, but also behave itself in an appro-

priate and friendly manner. One way to achieve this behavior is that the robot behaves

and signals its intentions similarly as humans do.

Non-verbal communication includes the recognition and the expression of task-relevant

information, intentions, and emotions. Considering human-human interaction, the rele-

vance of the latter term emotion is easily understandable. It is well known in psychol-

ogy that emotions influence ones attention, motivation, memory, reasoning, and decisions

[123, 133]. Yet, combining the terms emotion or affect with the terms computer or robot

seems to be challenging at first glance. A computer or robot should fulfill dutifully its

arithmetic problems and executing its tasks. Yet, when robots come into households or

more general into the social domain, it would benefit from an entertaining character. This

includes that the robot understands social behavior of the human and reacts appropriately.

The robot would be capable to understand the emotional editing to task instruction, which

could give information on the importance or difficulty. Furthermore, the robot would be

able to reflect whether its own behavior was appropriate. Picard [123] introduces the

term affective computing and gives several examples for what it is useful including social

assistance and entertainment.

Affective computing is subdivided into recognition of a human’s emotional state by

means of machine learning algorithms, developing computational models for cognitive pro-

cesses, and the design of emotive expressions for robots. Emotions can be expressed by

several modalities, which are facial expressions, speech, physiology, gestures, and motions.

Research in affective computing has focused predominantly on particular modalities which

are well studied in psychology. However, a single modality is often not sufficient to esti-

mate emotions reliably. For that purpose, multi-modal systems gain increasing importance.
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1 Introduction

Within this context, this work studies to what extend gait can be considered as a modality

for affective computing.

1.1 Challenges

This interdisciplinary approach faces several challenges. First, introducing pattern recog-

nition algorithms to gait analysis is an active research field in biomechanics and medicine.

Second, dealing with emotions in machine learning rises special issues which are related to

the broad and not unique definition of emotion. Third, modeling motion styles with para-

metric models is a sophisticated research area in social robotics. Each of these challenges

are discussed more detailed in the following.

Pattern Recognition in Gait Analysis

Traditionally, inferential statistics is applied in biomechanical and medical gait analysis.

Within the last decade, several approaches have been developed to apply techniques from

machine learning to gait analysis [21, 22]. Inferential statistics and predictive statistics

in machine learning differ in the way that the former analyzes how gait parameters are

affected by various factors, and the latter investigates predicting causes of gait variations

from observations. A detailed study whether these methods relate to each other and

what conclusions can be drawn from inferential for predictive statistics and the other way

round has not yet been accomplished. A study dedicated to this topic is beneficial for

interdisciplinary research e.g. in biomechanics, affective computing, and bioinformatics.

Furthermore, gait databases are characterized by high dimensionality, temporal depen-

dency, high variability, and nonlinearities. For these reasons, classification of gait patterns

is a challenge for algorithms in machine learning. The review [21, 22] on techniques for

marker-based gait analysis points out that several algorithms have been applied to gait

analysis, yet a comparison of different methods is still an open research field.

Emotion as Classification Target in Machine Learning

A universal definition of the term emotion does not exist in psychology. Instead a broad

interpretation and a number of emotion models exist. On account of this, several issues

go along with developing pattern recognition algorithms which are specific for affective

computing.

First, the ground truth of databases is questionable. Recorded data can be affected

by lying and mixed emotions. This also influences the validity of judging the emotional

states based on different modalities. It is not ensured that different modalities convey in

general the same subset of emotions and that all modalities express the same emotional

state at each point in time. Thus, mixed and blended emotions are an issue for multi-modal

emotion recognition and specifying which emotions are best expressible and recognizable

for a modality is essential. Given that psychology provides several models for categorization

of emotions, it is beneficial to investigate which emotion model fits best to a modality.
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1.1 Challenges

Some bodily expressions of emotions are universal. However, a large part depends on

the culture, on social norms, and on individual differences. It is expected that emotion ex-

pression varies among humans for these reasons. These variations additionally complicate

automatic recognition.

Finally, facial expression and speech are well investigated in affective computing. Several

review articles compare different algorithms and a number of gait databases have been

recorded, some of them published [18, 118, 154]. For other modalities, especially the

expression of emotions in body movements, a smaller number of studies exist and one

database is public available [98]. In order to efficiently include body movements as modality

in multi-modal emotion recognition systems, further studies are necessary which investigate

the suitability of different motions, e.g. gait, in more detail. This provides a basis for multi-

modal systems which go beyond speech and facial expressions e.g. in situations without

an interaction or at distance.

Parametric Models for Motions Styles

Modeling different motion styles is beneficial for computer graphics, animation, and

robotics. Instead of designing a limited number of motion styles, a parametric model has

the advantage that a large number of expressions can be generated with a small number of

setting values. Furthermore, developing models which are independent of the structure of

the animated character or of the robot provides more general application of motion styles.

Yet, a coding system how emotions are encoded e.g. similar to the facial action coding

system, does not exist for daily motions such as walking. Closest to such a description

come the Laban features in dance theory [55]. To avoid dependency on the designer of the

expressive motions, a challenging approach in this research field is to map human motion

styles to virtual characters and robots via a mathematical model. The application to dif-

ferent body compositions is of special interest. Further aspects are whether expressability

of virtual characters and robots differ and which emotions are better expressible in whole-

body motions. Studying the expressiveness of robots facilitates non-verbal HRI in which

the robot gives emotional feedback to its interaction partner.

The main challenge addressed in this thesis is to explore the suitability of the daily

motion gait for emotion recognition and emotion expression in affective computing. This

investigation faces the development of suitable algorithms in machine learning and inter-

disciplinary research combining computer science, psychology, and biomechanics. Possible

application scenarios are non-verbal communication in HRI, monitoring of high-security

areas, and entertainment.
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Application to Gait Patterns
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Chap.  7

Fig. 1.1: Outline of the thesis.

1.2 Main Contributions and Outline of the Thesis

This thesis investigates the whole-body motion gait as modality for affective computing. It

explores aspects on the human perception of emotions which are relevant for this applica-

tion, addresses issues which are related to automatic emotion recognition in nonverbal HRI,

and finally provides a mathematical concept for implementing expressive gait patterns on

robots. Fig. 1.1 illustrates the outline of this thesis. Considering affective computing,

three topics are of main interest when a modality is studied. These are analysis how hu-

mans express emotions via this modality, developing and evaluating pattern recognition

algorithms for automatic recognition, and studying whether robots can express emotions

utilizing this modality. These topics are investigated in the context of their application to

gait patterns in the following chapters.

The analysis of emotion expression and recognition in gait is divided in two major

topics. On one hand, it is studied how humans decode emotions from observing gait. In

this context, several experiments are conducted and analyzed. Focus of interest is the

recognition rate of humans, the comparison of two emotion models, visual gaze behavior

during observing emotive gait patterns, and the interrelation of facial expressions and

expressive walking styles. On the other hand, the expression of emotions in gait can be

analyzed with inferential statistics. This method is traditionally applied in psychology and

in biomechanics. Inferential statistics is compared with predictive statistics in order to draw

conclusions whether quantitative relations between the two approaches exist. In doing so,

similarities, differences, and mathematical relations between a selection of methods from

inferential statistics and techniques from machine learning are elaborated. Particular focus

lies on deducing classification rates from reported test statistics.
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1.2 Main Contributions and Outline of the Thesis

Based on the knowledge about human performance, pattern recognition algorithms are

developed for automatic recognition of emotions. Techniques for dimension reduction and

classification are investigated and compared. The latter is divided in static classification

and dynamic classification which models the development of the gait trajectories over

time. With regard to emotion recognition, two emotion models are compared as well as

person-dependent versus inter-individual emotion recognition. Recognition rates are finally

interpreted in the context of recognition rates for gender and identity.

The expression of emotions in gait patterns can be utilized for virtual character an-

imation and robots. Expressive walking styles are developed for a walking robot. The

walking styles are evaluated for a robot and its animation. In contrasted to related work,

the walking styles are not designed by an expert. Instead, a model is derived from gait

recordings.

The contributions to the state of the art are summarized separately for each topic

hereinafter.

Analysis of Emotion Expression and Recognition in Gait

Chapter 3 starts with reviewing psychological studies about emotion expression and recog-

nition in gait patterns. As a result, it can be concluded that emotions are expressible in gait

patterns. Yet, only a small numbers of studies exists in comparison to other modalities.

Therefore, several additional experimental studies on the human perception of emotions

from gait patterns are conducted in the context of affective computing. They extend the

state of the art with contributions about recognition rates for different emotion models

and recognition rates for emotion recognition in comparison to gender and identity recog-

nition. Furthermore, the visual gaze behavior during observing emotive walking styles is

investigated. Even if no facial expressions are presented, human observers tend to observe

especially the upper part of the body during an emotion recognition task. The results

indicate that this is controlled by a top-down attention mechanism. Finally, if both fa-

cial expressions and expressive walking styles are combined, authenticity of the expressed

emotion is higher, if both modalities express the same emotion. The studies provide 1) a

reference to compare human performance with performance of machine learning algorithms,

2) valuable insights in the human perception mechanism of emotions, and 3) a motivation

to develop expressive walking styles for virtual characters and robots to increase authentic

emotion expression even if facial expressions may be available.

Part of the reviewed, psychological studies analyzes human gait with statistical infer-

ence [32, 106]. Furthermore, t-test or analysis of variance (ANOVA) are often applied in

biomechanics to study the gait. Within the last decade, several approaches from machine

learning have been introduced to gait analysis. This motivated to study how inferential

and predictive statistics relate to each other in chapter 4. This work focuses on meth-

ods which are univariate and assume a Gaussian distribution underlying the data. For

this, similarities, differences, and mathematical relations are elaborated. Results are ex-

emplified for a psychological study on the embodiment of depression in gait. In doing so,

classification rates of a linear Bayes classifier are derived from reported test statistics. For

illustration, lower and upper bounds for the approximation are derived for the ANOVA.

Furthermore, t-test and ANOVA are methods to select features in machine learning. This
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approach provides a mathematical relation between the Bayes error rate and the criterion

after which the features are sorted. Hence, values of interest in machine learning can be

approximated from reported test statistics of psychological or biomechanical studies. This

approach is of interest for interdisciplinary work in which researchers in medicine, biology,

biomechanics, or psychology collaborate with computer scientists.

Recognition of Emotions in Gait with Machine Learning Algorithms

During the last decade, several approaches have been investigated to introduce methods

from machine learning to gait analysis. The main application is therapeutic support in

the research area of marker-based gait analysis. Yet, only one study has applied pattern

recognition algorithms to recognize affect in gait [69]. Results of chapter 5 are 1) that

recognition of emotion is enhanced if the identity of the walker is taken into consideration,

e.g. if first the identity is recognized and then the affect, 2) differences in the affective

dimensions arousal and dominance are better recognizable in gait than differences in plea-

sure with techniques from machine learning, and 3) the gender or the identity are easier

to perceive from observing a person’s walking style than affect.

In addition, this work contributes with a detailed analysis of different feature extraction

and classification methods for marker-based gait analysis. Modeling gait trajectories by

a combination of principal component analysis (PCA) and Fourier transformation does

not outperform the simple approach to take minimum, mean, and maximum of each tra-

jectory. Whether PCA or linear discriminant analysis achieves higher recognition rates

depends on the rank of the within-class scatter matrices. Even though kernel methods

have the advantage to take nonlinearities into consideration, recognition rates are lower

for this application. The static classifiers nearest neighbor, Naive Bayes, and support

vector machine are applied after feature extraction. If the feature extraction is efficient,

the recognition rates varies slightly for the different classifiers. If the number of training

samples is small, the feature vector is high-dimensional, and linear discriminant analysis is

applied for dimension reduction, it is derived that the decision borders of a nearest neigh-

bor classifier coincide with the decision borders of a hard-margin classifier and a support

vector machine with a Gaussian kernel. Results on different techniques of machine learning

for gait analysis have been published in [166, 167, 170, 171, 173, 175].

Chapter 6 approaches classifiers which incorporate the development over time of the

gait trajectories. These are a minimum distance classifier for each stance and a continuous

density hidden Markov model (CDHMM), which additionally models the transition from

one gait stances to the next. In the context of affect and identity recognition, the result is

that despite its good performance in vision-based gait analysis, it does not achieve higher

recognition rates for marker-based gait analysis than static classifiers with efficient feature

extraction.

Summing up, pattern recognition algorithms reach similar recognition rates as humans

for affect recognition in gait. As gait is a highly individual motion pattern, recognition

systems benefit if they take the identity of the walker into consideration. Even though dy-

namic classification models the transition between gait stances and is a promising concept,

it does not necessarily outperform static classification with efficient feature extraction.
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1.2 Main Contributions and Outline of the Thesis

Expressive Gait Patterns for Robots

Artists or experts design expressive movements in related work. Chapter 7 follows a

different approach. Characteristics of emotive gait patterns are derived from the recorded

gait database and a model is developed. This model is applied to a walking robot, here a

hexapod. Results of the evaluation are that observers recognize different emotions in the

way the robot walks, especially differences in arousal and dominance. The expressiveness

between animated and real robots differs only slightly. Results have been published in

[172].

Thus, the walking style of the robot influences its appearance and perception by humans.

This can be utilized in non-verbal HRI.

In conclusion, this work contributes with 1) insights on human perception of emotions

in gait, 2) comparing inferential with predictive statistics, 3) developing, evaluating, and

comparing pattern recognition algorithms for gait analysis, and 4) modeling expressive gait

styles for walking robots. This work is assigned to the context of affective computing, yet

especially the comparison of inferential and predictive statistics and the study on machine

learning techniques for gait analysis find use in a wider range of applications.
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2 Emotions in HCI/HRI

Humans interact socially with computers and robots [130]. To increase natural interac-

tion, the integration of emotions in HCI/HRI is studied within the research field of affective

computing. This includes automatic emotion recognition, synthesized emotion expression,

and modeling the temporal behavior of emotions. In contrast to mood, emotion is charac-

terized by short-term duration and is directed towards an external stimulus or reinforced

event. Lazarus in [90] defines emotion as the combination of physiological disturbance,

action tendencies, which are not necessarily acted out, and affect, which is the subjective

experience during an emotion.

In human-human interaction, ’emotional intelligence consists of the ability to recognize,

express, and have emotions, coupled with the ability to regulate these emotions, harness

them for constructive purposes, and skillfully handle the emotions of others’ [125]. Social

robotics is directed towards a similar ability of the robot to intelligently interact with

humans. At this point, it differs from task-oriented robotics which focuses on intelligent

manipulation within an environment.

The following sections provide background information on the concept of emotion in

psychology, on current achievements in emotion recognition, and on emotion expressions

for robots. It finally summarizes main applications and challenges in the research field of

affective computing.

2.1 The Nature of Emotions

Within the last century, it has been shown that emotions influence human behavior. Too

much emotion can hinder intelligent behavior whereas too little emotion leads to a lack

in the ability to make rational and intelligent decisions in daily life [36]. This affects all

cognitive processes such as attention, reasoning, decision making, motivation, memory and

perception [123, 133]. For example, emotion influences attention such that emotional, in

particular fear-relevant, events are detected more rapidly [41]. Furthermore, humans espe-

cially remember events that evoke emotions [41]. Predominantly, the effects of arousal on

cognitive processes have been studied. High arousal facilitates short term forgetting and

long term remembering [25, 80]. Also, high awareness of arousal enhances predictive judg-

ment [41]. Performance for task accomplishment requires an optimal level of arousal [158].

Too little arousal facilitates a lethargic condition, however, too high arousal facilitates a

hyperactive condition that can inhibit concentration.

Due to the diverse, versatile and elusive appearance of emotions in daily life, a universal

definition of the term emotion does not exist. Instead, the term emotion is interpreted

context-specific. Defining emotion for scientific analysis can be distinguished in three main

directions, namely the categorical, dimensional and appraisal-based approach.
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2.1 The Nature of Emotions

Fig. 2.1: P. Ekman’s and W.V. Friesen’s [46] intercultural studies resulted in the definition of
the six basic emotions, which are anger, fear, joy, sadness, disgust, and surprise.

Emotions are classified as discrete affective states in the categorical approach, see

Fig. 2.1. Analysis of facial expressions is often based on the six basic emotions anger,

disgust, fear, joy, sadness, and surprise [46, 161]. As this basic emotions are pan-cultural,

it is concluded that they are a product of evolution and not a result from culture-specific

learning [46]. Discrete categories are not limited to the basic emotions, but they or a

subgroup of them are studied most frequently in affective computing. This approach is

supported by neurobiological findings showing that e.g. fear and disgust have different

neural correlates [17].

The main disadvantage of discrete emotional states is that they cannot be merged and

averaged in a meaningful way. To overcome this limitation, a set of basic dimensions has

been proposed. The emotional state is described as a point in a space spanned by the basic

dimensions. The independent and bipolar dimensions for the PAD model are pleasure,

arousal and dominance [135], see Fig. 2.2. Pleasure is defined as how positive or negative

an emotion is. Arousal corresponds to the level of activation, mental alertness, and physical

activity - shortly the ”call to action”. Dominance is described as a feeling of control and

influence over ones surroundings and others versus feeling controlled and influenced by

situations and others. The dimensions pleasure and arousal are in accordance with the

circumflex model of affect [134]. Personality, such as the characteristics sex, extroversion,

neuroticism, and physical activity, influences emotional traits [104], e.g. men tend to be

less aroused and more dominant than women, extroverts are behaviorally, more dominant,

neuroticism influences emotional traits in various ways, and physical activity is associated

with more dominant and more pleasant temperament. Mapping between discrete emotional

states and the PAD model is investigated in [107, 111], e.g. the discrete categories such as

happiness, amusement and contentment are related to high pleasure, whereas anger, fear

and sadness are related to low pleasure. Both approaches are seen as alternatives. The

PAD-model allows graduation of the emotional state, while discrete states are more related

to general linguistic usage.

Due to its complexity, the appraisal-based approach is less used within the research field

of affective computing. It finds more application as a psychological concept to explain

how emotions develop, influence and are influenced in turn by the interaction with the

environment [133, 141].

From neurobiology, it is known that mainly the amygdala, which is a small almond-

shaped structure containing thirteen nuclei, plays a key role in processing social signals of

emotion. Further parts in the brain, which are associated with emotions, are the prefrontal

cortex, hypothalamus and anterior cingulate cortex [17, 35, 52, 133].
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Dominance

Pleasure

Arousal

Sad Calm Pleased

Angry Alarmed Happy

Halting Inert Relaxed

Afraid Mazed Euphoric

Fig. 2.2: The PAD model is a common alternative to the basic emotions in psychological
research.

As the Latin origin of the word ‘emotion’1 implies, emotion is not only limited to personal

feelings but it is also expressed in facial expressions, speech, gestures, and body motions.

Studying the expression of emotions in man and animals is traced back to C. Darwin

[37]. His contributions are a limited set of basic emotions and the finding that animal

emotions are homologous for human emotions, which is a logical extension of the evolution

theory. Traditionally, emotions have been seen in connection with bodily changes. In 1884,

the James Lange theory came up that emotions are no more than the experience of bodily

changes elicited by emotive stimuli [68]. Criticisms of this theory are that 1) bodily changes

are typically to slow to generate emotions, 2) autonomic or peripheral changes elicited by

injections or drugs do not determine which emotion is felt rather its magnitude, and 3)

peripheral changes are not sufficiently distinct to differentiate the vast variety of emotions

[19, 35, 133]. However recent experimental results draw attention on a modified version

of the James Lange theory in which emotions are embodied such that body movements

relate to the experience of emotional states e. g. the action smiling facilitates positive

recognition of events providing scientific evidence for the proverb ’if you smile, the world

seems to smile with you’ [35, 116] .

2.2 Emotion Recognition in Machine Learning

The emotional feeling itself still remains hidden and is in its full range of diversity hardly

locatable in e.g. brain structures, whereas it affects behavior and condition in a manifold

way [17, 35]. These changes in behavior are observable for interaction partners and, in

general, the environment. This refers to facial expressions, linguistic as well as acous-

tic characteristics of speech, body posture and motions. Physiological parameters such as

heart rate, skin impedance, aspiration rate, and blood pressure are affected but without ad-

ditional tools seldom visible to the environment. As facial expressions and speech dominate

1’emovere’ = to move out
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during face-to-face interaction, these modalities are predominantly studied [56]. However,

they cannot cover the full range of emotional states. Also, intended or non-intended an-

tagonisms can hardly be recognized by observing a single modality. This motivates the

development of multi-modal emotion recognition systems. In general, automatic emotion

recognition faces the following challenges.

First, a database needs to be recorded containing different emotional expressions for

the modality/ies under investigation. Emotional expressions can be either acted2, elicited

or spontaneous, where the latter one is preferable but often not accessible in experiments.

Eliciting emotions during an experiment is an alternative if gathering data containing spon-

taneous emotions is too time consuming and hardly accomplishable due to ethical issues

and technical difficulties. Common means are self-induction by recalling emotional expe-

riences, watching pictures or videos with emotional content, listening to emotive sound or

music clips, and eliciting emotions by execution of defined tasks in a controlled experimen-

tal setting. Posed emotional expressions represent an approximation of really felt emotions

[165]. Recognition rates for spontaneous emotions from real-life scenarios are usually lower

than for acted emotions, as actors tend to produce stereotypes or exaggerate expressive

behavior.

As various models for the categorization of the term ’emotion’ exist in psychology,

see 2.1, the researcher needs to refer to one model during planning the study. Most

approaches for automatic recognition investigate the categorical emotions, in particular

the basic emotions or a subset of them. Fewer studies refer to emotional dimensions

[56]. Nevertheless, recognition systems based on a dimensional model for emotions seem

to be more appropriate for multi-modal emotion recognition because modalities differ in

their intensity and distinctness to express various emotions. A single study investigates a

framework using the appraisal-based approach [38]. In this study, the elicited emotional

state is estimated with various techniques from machine learning under the assumption that

the appraisal is known. However, estimation of the appraisal remains an open question.

Furthermore, recorded data needs to be labeled to train and evaluate the classification.

Ground truth of the expressed emotional state is a critical aspect, as even self-assessment

can be manipulated by lying. Believability and authenticity of emotional expressions is

usually increased, if all modalities express the same state. Incongruence is correlated with

lying. In this case, expressions of body movements seem to be more reliable than facial

expressions because people do less bother to censor their body movement or physiology

in daily life than facial expressions [45, 56] . Findings in nonverbal behavior support this

view e.g. truthful expressions in speech differ from deceptive expressions in a lack of head

movements and gestures [15, 56]. It should be noted that humans are highly sensitive

to incongruence in emotive expressions and brain responses to these stimuli occur within

100ms [116]. As it is desired that an automatic recognition system performs at least as

well as humans, the data is often labeled by human annotators. For this case, accuracy

of 100% means that performance of the classification matches humans’ skills. However,

high inter-annotator agreement is often not obtained. How to distinguish for a certain case

whether ground truth relates more to self-assessment, an annotator’s rating, or neither of

them, still remains an open question [56].

2Also referred to as ’deliberated’ and ’posed’ in related literature.
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Pattern recognition is divided in data preprocessing, dimension reduction and classifica-

tion. Data preprocessing is specific for each modality and delivers usually a high number

of computable features. With a limited set of sample data, efficient dimension reduction

is required to avoid the ’curse of dimensionality’. Applied techniques among others are

Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Sequential

Forward Search (SFS) and Sequential Backward Search (SBS). Common classifiers are

Hidden Markov Models (HMM), Support Vector Machines (SVM), k-Nearest Neighbor

(KNN), Bayesian Networks, Gaussian Mixture Models (GMM), decision trees, Artificial

Neural Networks (ANN) and discriminant functions. Classification can be either applied

to the data set of a single individual, later referred to as person-dependent, or to the

samples containing trials of the person which is left out from the training samples, later

referred to as inter-individual. The latter case generalizes the results to recognition of

emotional states for unknown persons. As emotion expression varies among individuals,

person-dependent recognition is more accurate than inter-individual recognition . Still,

inter-individual recognition rates above 90% are reached for facial expressions and for

emotive speech considering a small number of emotions [161].

Further challenges in pattern recognition especially relevant for emotion recognition

are 1) the baseline problem, 2) variations in duration as well as intensity of emotions,

3) automatic segmentation, and 4) context specificity of expressions. The baseline, which

represents neutral or in other words no emotional expression, remains nearly constant

over time for facial expressions. However e.g. in physiology, the actual bodily condition

influences strongly the baseline, even for a single individual. As the baseline differs highly

between individuals for all modalities, this leads usually to lower inter-individual than

person-dependent recognition.

Levenson suggests that the duration of an emotion ranges approximately between 0.5

and 4 seconds [93]. Too long measurement periods lead to missing emotional states or

measuring multiple emotions. Currently, measurement windows vary between 2-6 seconds

depending on the modality [56]. For recognition based on physiology, no study has been

reported sufficient results for window sizes lower than 3 seconds yet [76]. Thus, short-term

emotions could be easily missed by measuring physiology.

Furthermore, the recorded data is mainly pre-segmented such that the corpus contains

separate emotive sequences [161]. However, emotions develop dynamically in daily life

leading to varying intensity, duration and onset of specific emotional states. An online

recognition system requires to be capable of handling ambiguity during the change of

emotional states, knowledge about the different temporal structures of each modality and

how to combine them, and as well a dynamical model of human emotions, which gives

context information on when, how often, and which emotions are most probably expected

to appear.

Besides, interpretation of an expression is often highly context specific, e.g. a twinkle

could mean encouragement, irony, or only be a reaction to a fly in the eye. Distinctly and

well expressed emotions occur more seldom a day than many subtle expressions. Currently,

only the former one would be recognizable with state of the art techniques. The latter one

requires a high number of classes, which represent the variety of emotions, and recogni-

tion algorithms which are capable of detecting subtle differences. This also supports the
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2 Emotions in HCI/HRI

combination of several modalities to increase the chance to detect subtle expressions and

to facilitate their interpretation. This can be either accomplished by decision level fusion

or feature level fusion, where the former one is preferable because it allows asynchronous

processing for each modality, greater flexibility in modeling such that each model can be

modeled separately, and adaptive channel weighting for each modality [56]. Feature level

fusion would also increase the already high-dimensional feature space further, which is not

desirable from the perspective of machine learning.

Currently, research on affect recognition concentrates predominantly on the modalities

facial expression and speech. Excellent and extensive reviews for both modalities and

combination of them can be found in [16, 18, 118, 119, 154, 161]. Recognition rates range

between 70% and 98% depending on database, person-dependence, number of classes, and

spontaneous or acted emotions. However, not all applications of affective computing can

be covered by these two modalities. To enhance the range of applications and to improve

accurateness of multi-modal emotion recognition systems, further modalities are studied

regarding the emotions they convey best and their suitability for affective computing. Ta-

ble 2.1 compares the advantages and disadvantage of modalities under investigation. In

summary, facial expressions and speech are best studied both in psychology and engi-

neering. Extensive research for the other modalities is still necessary, so that they are as

suitable as speech or facial expression for recognition tasks. Furthermore, it is worth not-

ing that not all modalities are capable to express with same intensity and distinctness the

same emotions. This concludes that not only feature-level fusion and decision level fusion

is required, but also a methodology which is capable to handle the diversity of emotions.

2.3 Emotion Expression

For a small number of applications in affective computing, e.g. automatic music selection,

monitoring of the affective state of humans is sufficient. The major part of applications

in affective computing refers to social interactions between a virtual agent or a robot

and a human. Here, the virtual agent or robot expresses its own emotions. This is not

only beneficial to establish a bidirectional nonverbal communication, but also to achieve a

illusion of life as J. Bates points out in [4].

Design rules go back to traditional character animation [89, 149]. For believable agents

and robots three rules are adopted [4]. First, only one, clearly defined emotional state

should be expressed at a time. Second, the expression matches the emotional state of

the character. And third, accentuation of the expressed emotion facilitates its recogni-

tion. Possible techniques therefor are foreshadowing, appropriate timing, exaggeration,

and simultaneous actions.

Depending on the scenario, numerous approaches have been undertaken to implement

emotional expressiveness for robots. Implementations reach from emotive sounds and

tones, gestures and actions, to implementing parts of facial expressions such as eyes or

mouth. The expressions are designed for each robot by artists, experts, or researchers. For

facial expression, the facial action coding system (FACS) exists and provides a mathemat-

ical model for implementation of facial expressions. A small number of robotic heads exist

which cover a wide range of facial expressions [13, 83]. This requires a sophisticated hard-
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2.4 Affective Computing

ware. To bypass this, Hashimoto et al. propose a curved surface display to build a robotic

head which is capable to express emotions [60]. In a psychological study, Curio et al. find

after-effects for the dynamic facial expressions disgust and happiness [33]. Viewing a facial

expression for a longer time results in the tendency to classify the following expression as

similar to the previous one.

Bethel and Murphy provide a review in [8] on non-verbal and non-facial affective ex-

pression for appearance-constrained robots. These robots lack expressive faces due to lim-

itations caused by the application, the environment, or power and platform size. Therefor

they recommend five main methods for affective expression in their correspondence which

are body movement, posture, orientation, color, and sound. Furthermore, they introduce

the concept of proximity zones to HRI which follows the theory of proxemics for human-

human interaction in psychology. The distance between human and robot is divided in

intimate (0− 0.46m), personal (0.46− 1.22m), and social (1.22− 3.66m) proximity zones.

Body movements and posture are suitable for the personal and social proximity zone. In

the intimate proximity zone, the full body of the robot may not be visible depending on

the size of the robot. Furthermore, the review points out that only a small number of

research studies has focused on appearance-constrained robots for affective expressions,

even though the proposed methods provide possibilities to equip task-oriented robots with

affective expressions by small modifications at the existing robot hardware.

This motivates to further pursue research in HRI which provides a wide range of modal-

ities by which a robot expresses affect in different proximity zones and for different require-

ments on the robot hardware.

2.4 Affective Computing

The term affective computing was coined by R. Picard in 1995 defining ”computing that

relates to, arises from, and deliberately influences emotion” [123, 124]. It considers giving

emotional capabilities to computers. Motivation for this new research field came from

enhancing machine learning algorithms by mimicking human cognitive capabilities. Human

drives such as motivation, attention, and emotion play a central role for decision making,

memory, perception, learning, creativity, and social interaction. This understanding has

lead to a rethink of the role of emotions in computing. Within the last decade, an increasing

number of research projects investigate how emotions can automatically be recognized, how

emotional drives can be integrated in cognitive architectures, and how synthetic emotion

expressions can be designed. Fig. 2.3 illustrates the increase of publications regarding

affective computing within the last decade.

Applications for affective computing are

• Monitoring : Monitoring the emotional state in daily life provides objective measures

for medical treatment of e.g. depression and autism [125]. In road traffic, monitoring

emotions, e.g. anger, and attentiveness provides input for regulations to increase

driving safety [74]. In working environments, the emotion fatigue is of special interest

to avoid maloperations of machines [173]. Work cycles can be adapted to the current

condition of the worker. Furthermore, the way a robot executes its motion, influences
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Fig. 2.3: Number of publications in conference proceedings and in books, journals or standards
published by IEEE (provided by an IEEEexplorer search with the keywords ’Emotion’,
’Affective Computing’ or ’Affective State’ in Abstract, 29.07.2011).

a human’s affective state in HRI. Robotic motions can be optimized to increase safety

and decrease perceived anxiety of workers [84, 85].

• Social Assistance: Whether or not computers and robots have emotions, humans

interact socially with them. Assistance systems such as guidance or household robots

gain from learning personal preferences of their interaction partners, the sense when

to interrupt, and leading small talk [123]. Another application is the automatic music

selector which selects music depending on the emotional state of the listener [123].

A sophisticated, computer-aided learning software interacts emotionally to keep the

user interested and avoid boredom [123].

• Entertainment : In 2007, a special exhibition on ’History and Presence of Human

Machine Interaction’ in Berlin was devoted to the history and development of robots.

In fiction, a robot already forms its own identity including the sense for emotions.

This idea has been adopted by the film industry and in the broader sense by art,

e.g. the interactive robot theater [12]. The transfer of the design rules for believable

characters from story telling and character animation leads to more entertaining

robots and software agents. One of the primary means is to integrate emotions [4].

Summing up, studying automatic recognition of emotions, computational models for

cognitive processes including emotions, and synthesized generation of emotional expres-

sions has established as a serious research field. Potential concerns are that 1) people

may expect human-like intelligence, understanding, and actions from emotionally reacting

robots and software agents, 2) ethical issues regarding the assurance of a human’s privacy

and autonomy of decision making, and 3) the occurrence of unpredictable behavior.
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3 Perception of Emotions from Gait Patterns

To study how humans perceive and express emotions is essential in affective computing.

On one hand, results on human perception serve as a reference for automatic recognition

and can give valuable input for model-based machine learning algorithms. On the other

hand, these studies can be used to derive guidelines how virtual characters or robots can

convey emotions.

In affective computing, the expression of emotions is well studied for speech and facial

expressions. Yet, other modalities such as physiology, posture, and motions are less in-

vestigated. Decoding and encoding of emotions from walking is a relatively unexplored

field in psychology, and, similar to body movements, it is assumed that a one-to-one re-

lationship with specific emotions might not exist. This motivates to first analyze aspects

of human perception which are later relevant for developing machine learning algorithms.

Advantages of gait as a modality for emotion recognition are that it provides a means to

detect emotions at distance, it is less susceptible to deliberate social editing, it does not

require an interaction, and the observation is non-intrusive in comparison to physiological

parameters.

Reviewing publications on psychological studies indicates that emotions are expressed

in body movements, yet only a few studies considered explicitly gait. This motivates to

analyze two gait databases in more detail. Focus lies on 1) estimation of the performance

how well humans recognize emotions from gait patterns and which emotion model is most

suitable, 2) visual behavior during the observation of gait patterns and during decoding

emotional states, and 3) how the interrelation between different facial expressions and

different emotional gait patterns influences the perception of emotions.

This chapter starts with an overview on psychological studies which refer to encoding

and decoding of emotions from gait. Thereby, literature provides only recognition rates for

categories of emotions. One contribution of this chapter is the determination of recogni-

tion rates for the dimensional emotion model so that both models can be compared. The

obtained results show that specific emotions are encoded in the way a human walks for

both models, yet emotions are harder to retrieve from a person’s walking style than gen-

der or identity. Human performance is compared to recognition rates of machine learning

algorithms later in chapter 5 and 6. Furthermore, a descriptive study of the visual gaze

behavior gives useful insights where human observers look during watching emotive gait

patterns. The observation of the upper body is more relevant than observation of the lower

body during an emotion recognition tasks. This is utilized in chapter 5 in which a subset

of joint angles is analyzed for automatic recognition. The main goal of conducting a study

in which facial expressions are combined with emotive gait is to investigate how relevant

emotive gait patterns are if the face expresses emotions. The result is that congruency in-

creases believability and reduces recognition time. This motivates to model the expression

of emotions in gait for robotic applications in chapter 7.
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3 Perception of Emotions from Gait Patterns

The remainder of this chapter is organized as follows. Section 3.1 summarizes related

work in psychology about encoding and decoding of emotions from gait patterns. Section

3.2 gives a description of the gait databases on which this work relies. The following sec-

tion 3.3 investigates the human skill to recognize emotions in gait patterns. Recognition

performance, gaze behavior, and the interrelation between walking styles and facial ex-

pressions are of special interest. Section 3.4 summarizes the results in the context of the

current state of the art and section 3.5 ends with a discussion on the limitations.

3.1 Emotions in Gait

Various psychological studies indicate that humans are not only capable to recognize the

intended action [14], but also gender [82], identity [34] and even emotions [14, 31, 40, 126]

from body movements. The majority of psychological and behavioral studies on emotion

recognition is based on categorical emotions. The categories happy, sad, and angry are

more distinctive in motion than categories such as pride or disgust [31, 110]. Analysis of

the arm movements drinking and knocking shows that the emotional states used in Pollick

et al.’s [126] study are aligned with the arousal-pleasure space, if human judgments are

taken as a basis. Furthermore, arousal is highly correlated with velocity, acceleration, and

jerk of the movement.

Evidence exists in psychology that emotions can be expressed in walking and recog-

nized by human observers. In 1987, Montepare et al.’s [110] psychological study indicates

that observers can identify emotions from variations in walking styles. Furthermore, the

emotions sadness and anger are easier to recognize than pride for human observers. Also,

Michalak et al.’s [106] study supports that sadness and depression are embodied in the

way people walk. Similar to facial expressions, emotions are expressed more intensely on

the left side of the body during walking, which leads to a lateral asymmetry of bodily

emotion expression [132, 137]. Crane and Gross [32] show that bodily expression of felt

and recognized emotions are associated with emotion-specific changes in gait kinematics

and not solely depend on gesticulatory behavior. They identify velocity, cadence, head ori-

entation, shoulder, and elbow range of motion as significant parameters which are affected

by emotions. Especially, the perception of fear is facilitated if the walker displaying fear

is female due to similar kinematics for fearful gait and female specific gait [59]. Roether

et al. [131] indicate that kinematic parameters which are critical for perception of emo-

tion closely match features which correspond to changes in motor behavior. Although

movement speed influences the perception of emotions, their study provides evidence of

additional, emotion-specific features in gait that cannot be explained by variations in gait

speed alone. Furthermore, they find no significant differences between recorded motions

of lay-actors and novices, although the group with lay-acting experience reported less in-

hibition during the recording of emotional movements than did the novices. Tab. 3.1

summarizes the reported classification rates for emotion recognition.

Besides these findings, Heberlein et al. [62] suggest that the perception of affect and

personality traits is accomplished by partially dissociable neural systems processing gait

patterns in the brain. In current neurobiological models, emotional information is processed

by a network involving both cortical and subcortical structures. A phenomenon called
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3.2 Gait Databases

Study Year Emotions Visualization Classification

Roether et al. [132] 2008 Neutral, anger, happy,
sad

Unspecified 88%

Roether et al. [131] 2009 Anger, happy, sad,
fear

Animated pup-
pet

78%

Crane and Gross [32] 2007 Anger, content, joy,
neutral, sad

Video 67%

Tab. 3.1: Literature survey on recognition of emotions in walking.

affective blindsight is the ability to process emotional signals in the absence of normal

vision. This has been observed not only for facial expressions but also for emotional

body language. This supports the brain’s ability to process emotional body language

unconsciously without reliance on the primary visual cortex [53].

One can summarize that psychological studies provide evidence that emotions are ex-

pressed in gait and humans can decode different emotions from observing gait patterns.

Yet, only categories of emotions have been considered in the psychological studies. The

dimensional PAD model, which is also suitable for technical applications, has not yet been

investigated for different walking styles. Furthermore, the related studies have identified

parameters in gait which are relevant for emotion expression. Still, little is known which

body parts are preferably observed during an emotion recognition task and if the gaze

behavior differs whether the emotional state should be recognized or not. Additionally,

the gait has only been investigated as a single modality. How emotions are perceived if

also e.g. facial expressions are visible and what effect different walking styles have in this

case has not yet been analyzed. These aspects are studied within this chapter. Results are

based on two gait databases which are described in the following.

3.2 Gait Databases

In order to study human perception and later on pattern recognition algorithms, this work

investigates two motion databases which are the Emotive Motion Library [98] and the

Munich Database [167]. Both databases were recorded with a marker-based optical track-

ing system. The Emotive Motion Library has been recorded with the intention to study

the effect of emotions on different motions. The Munich Database focuses especially on

the motion gait and has been recorded for this project with the purpose to investigate

inter-individual versus person-dependent recognition. Tab. 3.2 lists the properties of each

database which are relevant for estimation of human recognition performance and auto-

matic recognition performance. These are recorded data, number of participants, recorded

motions, recorded emotions, and number of repetition of each emotional state. The follow-

ing description of each database goes into detail about the recording procedure, emotion

elicitation, and recorded data.
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3 Perception of Emotions from Gait Patterns

Property Emotive Motion Library Munich Database

Recorded data Marker positions Marker positions, joint angles,
joint centers

# Participants 15 female, 15 male 13 male

Motion Walking, knocking, lifting, throw-
ing

Walking

Emotion Angry, happy, neutral, sad Angry, happy, neutral, sad;
low, medium and high expression
of arousal, pleasure and domi-
nance

# Repetitions 1 10

Tab. 3.2: Comparison of emotive motion databases.

3.2.1 Emotive Motion Library

F. Pollick [98] together with his team at the University of Glasgow, Scotland, recorded a

motion capture library for computational and behavioral analysis of movement variability,

of human character animation, and of how identity, gender, and emotion are encoded and

decoded from human movement.

For the database, 30 non-professional actors performed walking, knocking, lifting, and

throwing actions while they were recorded with a Falcon Analog optical motion capture sys-

tem (60 Hz). All actions are performed during expressing one of the emotions angry, happy,

neutral, and sad. These emotions were chosen because they represent emotional states

which may last for an extended period of time. A story for each emotion was told to the

participants, in which they had to imagine themselves in a specific situation. The position

over time of 33 passive markers, which were attached to the skin of the subjects, is available

in .csm format. The data has been downloaded from paco.psy.gla.ac.uk/data.php .

Participants walked in a triangle for 25 seconds to record longer sequences of emotive

gait patterns. For estimation of human performance, 12 seconds of each gait recording

is used. For automatic recognition, the triangle walk complicates recognition of emotions

and may cause extraction of inappropriate features. Thus, sections of straight walking

are extracted from the data sets, each with a length of 1.65 seconds, which is equal to

99 frames. The algorithm for finding this section searches for straight movement of the

marker close to the bury center. The position of 33 markers of 29 participants within this

time window is used later on for feature extraction and classification. Marker positions are

illustrated in Fig. 3.1.
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3.2 Gait Databases

Front View Back View

Fig. 3.1: Position of the markers during optical motion tracking for the Emotive Motion Library
(⋆) and the Munich Database (◦).

3.2.2 Munich Database

A gait database has been recorded at TU München in collaboration with W. Seiberl and

A. Schwirtz, Institute of Biomechanics in Sports, TU München, with the purpose to gain

a larger understanding of the influence of emotions on gait patterns and its application to

recognition of emotions [167]. Design of the database focused on inter-individual versus

person-dependent analysis and the use of affective dimensions versus categorical emotional

states.

The gait of 13 male non-professional actors (mean age: 25.8) was recorded with a VICON

optical tracking system (240 Hz). As illustrated in Fig. 3.1, 35 passive markers were affixed

to the participant’s skin, where anatomic points define the marker positions. Participants

were asked to feel angry, happy, neutral or sad, and to imagine a situation in which they

feel a particular affect. A story for each emotion common for all participants was not told,

because interpretation of the emotional content of such stories is subjective. Each recording

contains at least two strides and each trial was repeated 10 times. Participants walked

straight in the laboratory hall. In addition, extremes of the dimensions of the pleasure-

arousal-dominance (PAD) model were recorded, so that the gait database contains also 10

walks of each participant expressing the affective states displeased, content, bored, excited,

obedient and dominant.

Due to a highly artificial environment and frequent repetition of each affective state,

successful elicitation of affect is challenging and it has been decided to pose affect. Although

actors tend to produce stereotypes or to exaggerate expressive behavior, some evidence

exists in literature that posed affective expressions represent an approximation to really

felt affective expressions [165].

Based on the Plug-in-Gait Model, the VICON software provides marker positions, joint

centers, and joint angles over time for further data analysis [152]. Depending on walking

speed and stride length, each recording contains between a single stride and up to seven

strides. A single stride is extracted from each recording for consistency. Overall, the
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3 Perception of Emotions from Gait Patterns

database contains 520 strides for analyzing categorical emotional states and 780 strides for

analyzing affective dimensions.

3.3 Human Perception

Motivated from psychological evidence that emotions are expressed in body movements,

quality of expressed emotions in both databases is judged by human observers. Further-

more, it is analyzed whether the PAD model is also suitable besides categories of emotions

for studying emotions in gait patterns. As still little is known on the perception of emo-

tions from movement, further experiments deal with the visual gaze behavior during an

emotion recognition task and the interaction of facial expressions and walking style.

3.3.1 Recognition Performance

The performance how well humans can recognize emotions from observing gait is inves-

tigated in the following. In the experiments, human participants rated different walking

styles concerning the emotional state of a walker. How well emotions are recognizable

in comparison with gender or identity is analyzed utilizing the Emotive Motion Library.

Analysis of the Munich Database concentrates on the comparison of two emotion models.

Experiment I: Emotion Recognition versus Gender Recognition and Identification

In 1973, G. Johansson showed that human movement can be displayed by illuminating only

the joints of the body as light points on a black background [70]. This technique is called

Johansson display or Point-Light-Walker (PLW). As the Emotive Motion Library provides

reliable measurements only for marker positions, PLWs visualize the marker positions over

time for the evaluation. Overall a number of 116 (4 emotions × 29 walkers) PLW videos

were generated each 12 seconds long (15 frames/second, resolution of 560 × 420 pixels).

Each video starts with the calibration position of the walker followed by approximately

10-11 seconds walking in a triangle.

A number of 18 participants (11 female, 7 male, age: 24.2 ± 3.2) took part in the

experiment. In the first part, the participants rated the emotional expression of the walker

and if the displayed walker appears to be either male or female. In the second part, the

participants assigned the identity to each presented PLW. To avoid false ratings caused

by boredom, the maximum duration for the experiment was set to 30 minutes. Therefore,

the set of PLW videos was divided in six subsets, each containing the videos of 5 walkers.

Thus, each participant rated five walkers, in doing so each walker was rated by three

participants1. For recognition of the identity, a participant first watched the four gaits of

each of the five walkers in the subset and was allowed to make notes on the walking style

of each walker. Then, the PLWs were shown again in a randomized order and participants

were asked to identify the walker of each video.

Tab. 3.3 summarizes the recognition rates for identity, gender and emotion. With an

average recognition rate R̄ of 74%, participants classified the identity best. In comparison

1Walker 25 was rated by 6 participants to allow an equal number of PLWs in all subset.
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3.3 Human Perception

Expressed Emotion R̄ Chance Extra
Angry Happy Neutral Sad Level

C
Success

ID 79% 77% 67% 76% 74% 20% 68%
Gender 61% 61% 53% 57% 58% 50% 16%
Emotion 54% 43% 54% 85% 59% 25% 45%

Tab. 3.3: Comparison of identification, gender, and emotion recognition.

Expressed Recognition # Trials R̄
Emotion Angry Happy Neutral Sad (participants×walkers)

Angry 47 20 19 1 3×29 54%
Happy 7 37 37 6 3×29 43%
Neutral 5 12 47 23 3×29 54%
Sad 3 0 10 74 3×29 85%
Overall 62 69 113 104 59%

Tab. 3.4: Confusion matrix for emotion recognition for the Emotive Motion Library.
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to neutral walking, a walker is easier to identify if he/she expresses an emotion. Extra

success R̄−C
100%−C

comparing to random predictor is 68% 2. Even though the skeleton of

men and women differ, recognition of gender is with 58% only slightly above chance level

C = 50%. Still, participants misclassified the attribute gender less if the walker expresses

an emotion comparing to neutral walking. A comparable study reports that gender is 63%

correctly classified in walking using PLWs [82]. Average recognition rate R̄ of 59% for

emotions is in the range of the recognition rate for gender, however chance level is 25%.

2The chance level C is 20% in this case, because only a selection of five walkers was shown to each
participant. This limitation was set with respect to the human capacity for processing information [108].
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3 Perception of Emotions from Gait Patterns

(a) (b) (c) (d)

Fig. 3.4: Captured joint angles are mapped to an abstract puppet. The rendered animations
have been evaluated by human observers. The snapshots show one walker expressing
the emotions a) angry, b) happy, c) neutral, and d) sad.

Hence, the extra success of 45% is more than twice the extra success for recognition of

gender. Tab. 3.4 shows the confusion matrix for emotion recognition. As each walker was

rated by three participants, a total of 87 ratings is available for each emotion. Mostly,

emotive gait styles are confused with neutral walking. This leads to the conclusion that

the expressiveness of the walking styles has not always been sufficient to be perceived

by an observer. Usually sad walking is the slowest gait pattern and is least confused.

Furthermore, sad walking is characterized by a forward bend of the upper body, the neck,

and the head.

Recognition performance differs between participants and also the expressiveness differs

between the walkers, see Fig. 3.2 and 3.3. Differences in the expressiveness of the walkers is

traced back to individual walking styles, individual expression of emotions and individual

interpretation of the emotional content of the stories which have been told for emotion

elicitation.

Experiment II: Categorical Emotions versus PAD-Model

Expression and recognition of categorical emotions versus different levels of expression on

the affective dimensions pleasure, arousal, and dominance is analyzed utilizing the Munich

Database. In contrast to the previous study, a graphical animation of an abstract puppet

is used for visualization, which has been designed as part of a supervised bachelor thesis

[182]. The abstract puppet provides a more realistic visualization of the gait patterns and

still facilitates that human observers rate the expressed emotion only based on kinematic

parameters without influences of physique or facial expression of the walkers on the eval-

uation. One gait trial of each emotion for each walker has been mapped to the animated

puppet. Fourier Transform is applied to retrieve a parametric description of the captured

joint angles ϕi(t) over time, i.e.,

ϕi(t) ≈
10
∑

j=1

Ajsin(2πfj + Φj) (3.1)
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Expressed Recognition # Trials R̄
Emotion Angry Happy Neutral Sad (participants×walkers)

Angry 112 34 34 15 15×13 57%
Happy 27 104 56 8 15×13 53%
Neutral 5 25 135 30 15×13 69%
Sad 7 6 40 142 15×13 73%

Overall 151 169 265 195 63%

Tab. 3.5: Confusion matrix for emotion recognition for the Munich Database.

where the ten frequencies fj with highest absolute amplitude Aj and associated phase

shifts Φj achieve a good approximation of the recorded angle ϕi(t). The duration of a

single stride is too short for human judgment; therefore, the individual gait patterns are

extrapolated using the parametric Eq. 3.1, with each rendered video lasting 7s. Fig. 3.4

shows snapshots of the rendered movies for the emotions angry, happy, neutral, and sad.

30 participants (12 female, 18 male, age: 25.5±3.5) took part in the experiment. To avoid

boredom during the experiment, the upper limit for duration of the experiment was set to

30 minutes. Hence, animations were presented to two different groups: A and B. Group A

watched all animations of walkers 1-6 and group B watched all animations of walkers 7-13.

Categorical Emotions: First participants rated the animated puppets that express four

emotion categories. The average recognition rate R̄ for four emotion categories is 63%, at

this human observers tend to recognize, in particular, the emotion sad best, see Tab. 3.5.

All recognition rates are approximately in the range of recognition rates of the previous

study, see Tab. 3.3 for comparison.

Furthermore, participants were asked to rate, on a five-item Likert scale, how difficult

it had been to estimate each of the emotions. A one-way repeated-measures analysis of

variance (ANOVA) was used to test for statistically significant differences in the degree

of difficulty across the four emotions. The degree of difficulty in estimating emotions

significantly differs: F3,87 = 2.91, p = .04, η2P = 0.09. Pairwise comparison indicates

that the affective state sad (mean = 2.47) is perceived to be easier recognizable than the

affective state neutral (mean = 3.23).

PAD Model: In the subsequent experiment, participants rated the animated walkers who

expressed either low, medium, or high levels of pleasure, arousal, or dominance. Partici-

pants rated the level of the expressed affective dimension on a five-item Likert scale, i.e.

corresponding row of the self-assessment manikin (SAM) questionnaire [88]. Accuracy for

all three levels on each dimension is above chance. Mean accuracy for recognition of three

values on the dimensions pleasure, arousal, or dominance is 55%, 61%, and 62%, respec-

tively. Tab. 3.6 shows the confusion matrix for each dimension. Participants rated on a

five-item Likert scale; therefore, the two lower and the two upper ratings were combined as

’low’ and ’high’, respectively. This explains the lower recognition rates for neutral gaits in

comparison to high or low expressions of pleasure, arousal or dominance. The results in-

dicate that different levels of arousal and dominance are better recognizable than different
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Expressed Pleasure Arousal Dominance
Level L N H R̄ L N H R̄ L N H R̄

Low (L) 129 38 28 66% 153 37 5 78% 138 38 19 71 %
Neutral (N) 36 89 70 46% 78 62 55 32% 23 78 94 40 %
High (H) 41 59 104 53% 15 37 143 73% 13 36 146 75%
Overall 55% 61% 62%

Tab. 3.6: Confusion matrix for each affective dimension of the Munich Database.

Dimension Effect Group df df(Error) F p η2p

Pleasure Expression A* 2 28 48.76 .00 .78

B* 2 28 166.73 .00 .92

Walker A 5 70 1.77 .13

B* 6 84 23.86 .00 .63

Interaction A* 10 140 21.16 .00 .60

B* 12 168 24.64 .00 .64

Arousal Expression A* 2 28 283.94 .00 .95

B* 2 28 428.56 .00 .97

Walker A* 5 70 26.76 .00 .66

B* 6 84 29.71 .00 .69

Interaction A* 10 140 23.40 .00 .63

B* 12 168 17.56 .00 .56

Dominance Expression A* 1.26 17.57 65.51 .00 .82

B* 2 28 513.85 .00 .97

Walker A* 5 70 21.12 .00 .60

B* 6 84 11.91 .00 .46

Interaction A* 10 140 4.06 .00 .23

B* 5.10 71.46 5.50 .00 .28

Tab. 3.7: Statistics for expression of affective dimensions in walking.

levels of pleasure in gait patterns.

A two-way repeated-measures ANOVA with the within-subject factors ‘level of expressed

affective dimension’ and ‘identity of walker’ has been conducted separately for each dimen-

sion pleasure, arousal, and dominance. Main interest is to investigate if the participants’

ratings differ significantly due to different affective expressions of the walkers. The fol-

lowing statistical analysis is conducted separately for group A and B. Mauchly’s test indi-

cates that the assumption of sphericity is violated for the independent variable dominance,

χ2
A(2) = 11.718, p < .05 in group A and the interaction between dominance and identity,
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χ2
B(77) = 128.964, p < .05 in group B. Degrees of freedom are corrected using Greenhouse-

Geisser estimates of sphericity in these cases (ǫ = .425 for the interaction effect between

walker and dominance and ǫ = .627 for the main effect dominance). No correction is

necessary for the other cases.

All effects are reported as statistically significant at p < .05. Except for the effect walker

on the dimension pleasure for group A, all tests are statistically significant and marked

with a * after the group in Tab. 3.7. Tab. 3.7 lists level of significance and the effect size

partial eta-squared η2p for the tests of within-subject effects. Level of expression is either

low, neutral or high. Perceived observations differ statistically significantly for level of

expression on the dimensions pleasure, arousal, and dominance. Although, identity of the

walker and interaction effects between walker and level of expression influence the ratings,

the effect size indicates that level of expression explains most variance in the subjects’

ratings. Hence, human observers are capable to distinguish levels of affective expression

in the gait patterns of the data base. This perception relays more on a walker’s current

expression than on a walker’s individual gait given by his physique. Subsequent pairwise

comparisons for each dimension pleasure, arousal and dominance support this conclusion.

Finally, participants were asked to rate the degree of difficulty in estimating different

levels of pleasure, arousal or dominance on a five-item Likert scale. In this case, one-

way repeated-measures ANOVA indicates that there are differences in estimating different

levels of either pleasure, arousal or dominance, F (2, 58) = 7.09, p = .00, η2 = 0.20. The

following pairwise comparison shows that pleasure is harder to estimate than different

levels of arousal. Underlying reasons are that different levels of pleasure are harder to

retrieve from gait patterns, are harder to express in walking, or a combination of both.

In conclusion, analysis of the recognition of affective dimension in gait patterns shows

that different levels of arousal and dominance are better recognizable for human observers

than different levels of pleasure. Furthermore, this explains the frequent confusion of angry

and happy gaits because they share a similar level of arousal and differ mainly in pleasure.

Based on human judgment of expressive gait patterns, the PAD model and categorical

emotions are comparable approaches for further analysis.

3.3.2 Visual Gaze Behavior during an Emotion Recognition Task

In comparison to facial expressions little is known about the perception of emotions from

body postures and movements; therefore, the question raises if specific parts of the body

are especially observed during decoding of emotions from whole-body motions and if yes,

which ones. It is assumed that the upper part of the body is more important than the

lower part.

In connection with the second experiment, participants were asked to rate if specific

body parts express in their opinion emotions during walking. Response options were ’yes’,

’no’, and ’do not know’. If the participants rated ’yes’, they were further asked to specify

the emotions expressed by that body part. Results are summarized in Tab. 3.8. The

majority of participants found that the motion of the arms and legs, and the posture of the

head express emotions during walking. From the ratings, it is further concluded that the

motion of the arms and the posture of the head is slightly preferred for emotional judgment

in comparison to the motion of the legs. Furthermore, the participants usually associated
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3 Perception of Emotions from Gait Patterns

Body Part Emotional Expressiveness
Yes No Do not know

Motion of Arms 28 1 1
Motion of Legs 22 4 4
Posture of Head 29 0 1

Tab. 3.8: Results of a survey on emotional expressiveness of different body parts during walking
(30 participants).

the affective dimensions arousal and dominance with leg and arm motion, whereas the

posture of the head was found to be more expressive for happiness, sadness and dominance.

The results of this preliminary survey have motivated to further analyze the visual gaze

behavior during an emotion recognition task. The gaze behavior is divided in saccades and

fixations. Saccades are rapid, ballistic changes in eye position that occur at a rate of 3-4

per seconds depending on the task. During a saccade, the eye is blind. Visual information

is acquired during the relatively long fixations between saccades. Location of the saccades

are either bottom-up or top-down controlled. Although a partial interdependence exists

between eye movement and spatial attention, attention is free to move independent of the

location of the saccades, but eye movements require visual attention to focus on a target

[63, 157].

Evidence exists in psychology that a strong interaction exists between the orienting of

spatial attention and stimulus emotionality [148]. Contradictory results on this relation

can be found in literature where the results depend on the demand on the attentional

resource pool during the experiment. Despite that it is well known that emotional content

of stimuli presented to the sensory system are principal indicators of the importance of

these stimuli; therefore emotional stimuli, especially fear-related stimuli, pop out of an

array of non-emotional stimuli. Furthermore, emotionality of a stimulus seems to be sensed

before perceptual or categorical encoding of the stimuli themselves, which supports an early

encoding of emotional stimuli. Hence, it appears that the mechanism for registration of

the emotionality of a stimulus is fast, does possibly not require conscious awareness, and

presumably poses minimal demand for attentional resources [148].

In the following experiment, the visual gaze behavior during an emotion recognition

task is recorded with an eye tracker. Aim of the experiment is to find out which body

parts are of special interest during judging the emotional state of a walker and if the gaze

behavior differs between barely watching a walker and emotion recognition.

Experiment III: Analysis of the Visual Gaze Behavior with Eyetracking

The explorative analysis of the visual gaze behavior during watching emotive gait patterns

is based on the data of the following experiment. A number of 12 participants watched

PLWs expressing the emotions happy, angry, sad, and neutral. The PLW videos were

created based on the recorded joint centers and the head markers of four walkers from

the Munich Database. Each video lasted six seconds (resolution of 1024x768 pixels, 30Hz).

The gaze was recorded with an eye tracker (1000 Hz) in collaboration with E. Wiese and J.
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(a) (b) (c) (d)

Fig. 3.5: The number of fixations vary depending on the body segment and attention selection.
a) Light points display the joint centers in PLW videos.
b) Fixations (green crosses) mainly concentrate on the head, thorax, and hip region.
The model for the body segments is derived from the marker positions over time
(blue lines).
c) For bottom-up attention selection, mostly the region around the hip is fixated.
d) Preferred area of fixation shifts to the head for top-down attention selection during
an emotion recognition task.

Zwickel of the Neuro-Cognitive Psychology Unit, Department Psychology, LMU Munich.

Preliminary results in the supervised bachelor thesis [186] indicate that the upper body is

more often observed than the lower body during an emotion recognition task.

In the first part of the experiment, participants watched a randomized sequence of the

videos (4 walkers, 4 emotions, 5 repetitions) without any further instructions. In this case,

attention selection is mainly guided by distinct stimuli based on primary visual features,

so-called bottom-up. All participants recognized a human in the PLW. A relation between

different walking styles and emotional states was not observed by the participants. In the

second part of the experiment, the participants were asked to rate the expressed emotion of

the PLWs. Response options were ’sad’, ’angry’, ’neutral’, ’happy’, and ’do not know’. In

this case, the attention selection is top-down guided to search for task-relevant information.

The overall recognition rate is 42% and separately for each emotion 50%, 34%, 51%, and

50% for angry, happy, neutral and sad, respectively. No assignment was chosen in 4% of

the cases. The decrease in the recognition rate in comparison to previous results, see Tab.

3.4 and 3.5, is explained by poor representation of the head posture in the PLW. Although

the tracked markers of the head were visualized, a forward bend of the head was hard

to retrieve from the front view of the PLWs. This influences especially the expression of

sadness, which is characterized by a forward bend of the head.

Calculation of the average fixation time during watching either a happy, neutral, angry,
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Fig. 3.6: Average fixation duration during top-down attention selection (td), here an emotion
recognition task, increases for the region of the head in comparison to bottom-up
attention selection (bu). The hip and the legs are less observed in the latter case.

or sad walker does not reveal any conspicuous differences for both cases bottom-up and top-

down attention selection [186]. To analyze the spatial location of the fixations, the number

of fixations for each body segment head, arms, thorax, hip and legs are calculated. Regions

for each body segment are retrieved from the marker positions over time, see Fig 3.5 (b).

Average number of fixations per video is 12.6± 5.6. The number of fixations is higher for

the head, thorax and hip than for the leg and arm regions. During bottom-up attention

selection, the hip is predominantly fixated. If the task switches to emotion recognition,

preferred region of fixation shifts to the head even though facial expressions are not visible.

Fig. 3.5 (c) and (d) illustrate the fixations of all participants for all walkers, emotions, and

repetitions. Pixels of the videos which were seldom or not fixated are marked blue and

pixels with a high number of fixations are marked red in the corresponding heat map.

Measured durations of fixations range between 0.168s and 2.975s with a mean of 0.529±
0.236s. Recording of one trial is included in the following analysis if it contains at least 5

fixations which leads to an upper limit of 1.2s for fixation duration. Durations of each region

are added up for the five repetitions of watching a single PLW video and the percentage

how long each region is fixated is jointly calculated. Fig. 3.6 shows the box-whisker plot

for the fixation durations in percentage separately for bottom-up and top-down attention

selection. Fixation duration is highest for the thorax, followed by the head and the hip

for bottom-up attention selection. During the task of emotion recognition, the head is

predominantly longer observed than the other body parts. In this case, the legs and the

hip are less observed than during bottom-up attention selection. Note, Fig. 3.5 illustrates

the absolute number of fixations per pixel and does not consider the size of each region.

In contrast, the calculation of the fixation durations summarizes over all fixations within

a region. Hence, although the region of the thorax is only marked in slight blue in Fig.
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3.3 Human Perception

(a) (b) (c) (d)

Fig. 3.7: Authenticity is higher, the emotion is faster recognized, and the recognized emotion
is more intense if facial expression and the gait express the same emotional state (a)
anger, (b) happiness, (c) neutral, and (d) sadness [185].

3.5, summarizing over all fixations within this region leads to a higher value of fixation

duration than for fixation duration of the hip. Following, results of Fig. 3.6 depend on the

definition of the body segments. Still, it shows that the shift of attention from the center

of the body to the head during emotion recognition is grounded in a lower observation of

the lower body including the legs.

In accordance with the conducted survey, this experiment confirms that the head is

predominantly observed during an emotion recognition task even if no facial expression is

visible. This is controlled by a top-down attention selection mechanism.

3.3.3 The Interrelation between Expressive Gait Patterns and Facial

Expressions on Emotion Perception

Usually, it is assumed that facial expressions are best to express emotions. For this reason,

most scientific works concentrate on analyzing facial expressions in terms of basic emotional

categories. However, if it comes to believability and authenticity, judgment relies not only

on facial expressions but also on the congruence with the expression of further modalities.

Within this context, the question raises how emotion recognition relies on expressive

gait patterns if the face expresses emotions simultaneously. Do different gait patterns

influence the recognition at all? Which affective dimensions are preferable influenced by the

walking style? Does authenticity decrease if facial expression and expressive gait patterns

mismatch? To study all these questions, the following experiment has been conducted and

the observers ratings are analyzed with regard to expressiveness, authenticity, and response

time in the following.

31



3 Perception of Emotions from Gait Patterns

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Pleasure

A
ro
u
sa
l

Sadness

Sad

Anger

Angry

Happiness

Happy

Neutral
Face

Gait

Both

Fig. 3.8: If the animated puppet expresses the same emotion in gait and face (©), average
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only 1) expressed on the face combined with neutral walking (�) or 2) in the walking
style combined with a neutral face (△).

Experiment IV: The Interaction of Expressive Walking and Facial Expressions

A number of 24 participants (5 female, 19 male, age: 27.2±3.4) took part in the experiment.

Facial expressions for the animated puppet were designed as part of a supervised internship

[185]. These expressions are anger, sadness, no emotion, and happiness, see Fig. 3.7. Four

gait patterns expressing the same emotions were mapped to the animated puppet. The

gait patterns were taken from the Munich database choosing the walker who expresses

emotions best. Each facial expression was combined with one of the walking styles resulting

in 16 videos lasting 30s (resolution of 640 × 480 pixels). The videos were shown in a

randomized order to each participant. Participants rated simultaneously pleasure, activity

and authenticity expressed by the animated puppet on a 9-item Likert scale. Furthermore,

the response time was measured.

First, the design of the facial expressions is evaluated analyzing the response data for

the videos showing the neutral gait pattern in combination with the four facial expressions.

Different levels of pleasure are well expressed in the comic-style face. However, ratings for

arousal differ only slightly for the expressions of the comic-style face. Fig. 3.8 shows the

expected area for each expression and the average ratings. For videos showing different

facial expressions in combination with a neutral gait pattern, average ratings for pleasure

lie in the expected regions for pleasure. Differences in arousal are not sufficient to reach

the expected regions for arousal. Thus, the static, comic-style facial expressions well

communicate different levels of pleasure, but only slightly express different levels of arousal.

Subsequently, different walking styles in combination with the neutral face are examined.
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Fig. 3.9: Discordance leads to lower expressiveness for each emotion. As different levels of
pleasure are similar recognizable for both modalities, the plot for pleasure follows a
diagonal structure. However, the walking style communicates dominantly arousal so
that changing the facial expression leads only to minor changes in arousal. This leads
to a striated plot where highest average ratings were given to the fast walking styles
which are anger and happiness (rating: 9 highest, 1 lowest).

Average ratings are plotted in Fig. 3.8. Expected regions are reached for both axes, pleasure

and arousal. Recognition of the intended expression is further enhanced if facial expression

and emotive gait pattern match, see Fig. 3.8.

If the expression of the face and the walking style mismatch, expression of pleasure

and arousal decreases, see Fig. 3.9. Average ratings of the participants are closer to

neutral expression for the case of incongruence. Furthermore, as the static comic-style

facial expressions communicate only slightly differences in arousal, recognition of arousal

is dominated by the walking style. Fast walking during happiness or in rage leads to higher

recognized arousal.

For each video, participants were asked to rate how authentic the expressed emotion of

the animated puppet is. Fig. 3.10 (a) and (b) summarize the results. An expressed emotion

is perceived to be more authentic if facial expression and walking style match, see Fig. 3.10

(a). Based on the data of the experiment, the embodiment of the emotion anger seems

to be less authentic in comparison to the other emotions. A possible reasons is that the

design of the facial expression for anger is misleading. Most participants associate rather

sadness than anger with the designed facial expression. Thus, believability is highest if the

angry face is combined with sad walking leaving a discrepancy for combinations with the

other emotions.

Plotting the overall response time over the degree of authenticity shows that the more

authentic an emotion is the faster is its recognition, see Fig. 3.10 (b). If an emotion is

expressed only either in the face or in the gait, response time increases. However, highest

response time is measured for the cases in which the walking style mismatches with the

facial expression. An exception is the expression of anger. Average response time for

the combination of angry gait and angry face is with 23s almost twice as for the other

congruent combinations. Fitting the data points with a Least Square algorithm to a linear
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Fig. 3.10: Authenticity of emotional expressions is related to congruence in the modalities and
to the time for assignment of an emotional state to the animated puppet.
(a) If the facial expression and the walking style of the animated puppet express
the same emotion, authenticity is highest.
(b) Furthermore, average response time for assigning pleasure, arousal, and authen-
ticity decreases if the same emotion is expressed in gait and face.

function, provides an upper and a lower bound for the ratings. The area inside the bounds

is gray shaded in Fig. 3.10 (b) and shows a negative relation between authenticity and

time for estimating the emotional state of an approaching walker.

Summarizing the results of this experiment up, different levels of arousal are hardly

expressed in a static, comic-style face. Expression of arousal can be improved by adding

the appropriate expressive walking style. However, expression of pleasure can be improved

only slightly by adding an appropriate walking style. Authenticity is increased and recog-

nition of the expressed emotion is faster if the expression of the face and the gait match.

Incongruence leads to less believability and taking longer time for making a decision on

the expressed emotion.

As these results depend on the design of the facial expressions and the walking styles,

generalization is limited to the combination of static facial expressions with different walk-

ing styles. Enhancing the animated puppet by dynamic facial expressions better communi-

cates different levels of arousal via the face so that for such a case it is assumed that results

for the dimension arousal will be more similar to the results of the dimension pleasure.
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3.4 Summary

This chapter analyzes the perception and expression of emotions in gait patterns. It studies

how well emotions can be decoded from variations in walking styles. These results serve

as reference for automatic recognition in chapter 5 and 6. Furthermore, the visual gaze is

investigated during observing emotive gait patterns. During the task of emotion recogni-

tion, attention shifts to the head even though no facial expressions are visible. Lastly, the

interaction of facial expressions and emotive gait patterns is studied. Discordance leads to

lower expressiveness. In the following, the contributions are discussed in more detail and

in view of the state of the art.

Related studies in literature show that humans recognize emotions in walking better

than chance, see Tab. 3.1. Average recognition rate ranges between 67% and 88%. Two

gait databases are analyzed within this chapter. Recorded gait trials are either displayed

as a PLW or as an animated puppet for human evaluation. Average recognition ranges

between 42% and 63% for four categorical emotions. Recognition performance highly

depends on the recognizability of the head posture. Lowest recognition is observed if the

forward bend of the head is hardly observable. If the walker is shown from the side on

the display, recognition ranges between 59% and 63%, which lies in the range of reported

performance in [32]. Higher recognition rates as reported in [131] are only achieved in the

experiments for walkers who express the emotions very well during recording. Comparing

the recognition performance for the gait recordings of the Munich database with gait trials

of the Emotive Motion Library and with in literature reported performance shows that

expressiveness of the walkers lie in a similar range even though the emotion elicitation

procedure has been eased to allow repetitive recording of each emotion. Hence, both

databases are suitable for applying pattern recognition algorithms in chapter 5 and 6.

Furthermore, the following conclusions on the perception of emotions are drawn. First,

humans retrieve emotional categories better than the gender of a walker from PLW dis-

plays. However, performance is lower than for identification of a known walker. Often,

the emotion happiness is misclassified as anger and vice versa. This leads to the assump-

tion that differences in arousal are easier to retrieve from gait than differences in pleasure.

Analyzing the recognition performance separately for each dimension pleasure, arousal,

and dominance shows that differences in arousal and dominance are better expressed and

recognized in walking than differences in pleasure. Hence, utilizing the PAD model for

analyzing affect is not only suitable for body postures, see [79], but also for whole-body

motions such as gait. Second, observing the visual gaze behavior during watching PLW

videos shows that the hip region is fixated predominantly. However during an emotion

recognition task, the region of the head is primarily fixated even if no facial expressions

are visible. This shift is controlled by a top-down attention selection mechanism. Third, if

static facial expressions are available, expressiveness is increased if the body and the face

express the same emotional state. Incongruence leads to less authenticity, less expressive-

ness, and longer time for judging the emotional state of the walker. Considering that static

body postures provide more the specificity of emotions and body movements provide more

the quantity or intensity of emotions [47], the influence of the walking style especially on

the perception of arousal is reasonable.
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3 Perception of Emotions from Gait Patterns

Within this chapter, the human performance to detect emotions in gait is analyzed

which is used later on as a baseline for comparison with automatic recognition. Besides

utilizing a set of categorical emotions, experiments of this chapter indicate that the PAD

model is also suitable for gait. A benefit of the PAD model for technical applications is its

dimensional concept. Furthermore, humans observe in particular the upper body during

an emotion recognition task. Hence, it is plausible to design also a classifier which is based

only upon the joint angles of the upper body. As expressive walking styles influence the

perception of emotions even if other modalities such as facial expressions are available, it

is concluded to design appropriate walking patterns for a robot to increase authenticity.

Furthermore, in multi-modal emotion recognition systems, the concurrence of the walking

style and other modalities can provide additional information on the authenticity and

intensity of an observed emotion.

3.5 Limitations

Limitations of the conducted studies are that the gait has not been divided in its posture

and its dynamics, that the recorded gait patterns do not contain spontaneous emotions,

and that interpretation is related to the applied emotion model and emotion definition.

Furthermore, the study on the visual gaze during an emotion recognition task has been

the first in this direction and is thus only descriptive. In a continuative study, it could also

be considered to investigate if the presentation of the walker as PLW, animated puppet, or

even animated puppet with facial expressions influences the perception. Limitation of the

study about the interaction of expressive walking styles and facial expressions is that the

facial expressions are static and that only these two modalities have been considered.Hence,

this study can be extended to further modalities and dynamic facial expressions. Finally,

this work concentrates on the body movement walking. Yet, knowledge can be transferred

to other body motions and similarities as well as dissimilarities can be worked out for

emotion expression in different body motions. In comparison to other modalities such as

facial expressions and speech, expression of emotions in body motions is less investigated

in psychology.

In summary, even though expression of emotions in gait is individual, humans can

recognize emotional states from differences in walking styles. Several aspects concerning

affective computing have been studied about human performance in more detail. Possible

future directions may be directed towards a detailed analysis 1) how postural features

interact with the expressiveness of motions, focus may in particular lie on the posture of

the head, 2) to which degree gait expresses short-term emotions in comparison to long-term

moods, and 3) of further whole-body motions to develop a generalizable coding system for

emotions in motions.
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4 Comparison of Inferential and Predictive

Statistics in the Context of Gait Analysis

The previous chapter 3 analyzes aspects on human perception of emotions from observing

gait patterns. The following chapters 5 and 6 study techniques from machine learning

to automatically detect emotion in gait patterns. This chapter leads over from statistical

analysis of human motion to automatic classification by investigating how mathematical

techniques from both research fields relate to each other.

Traditionally, inferential statistics is applied in gait analysis. Within the last decade,

several approaches have been undertaken to introduce methods from machine learning to

gait analysis [21, 22]. Thereby, the main application is in therapeutic support. During the

collaboration between computer scientists and researchers in both medicine and biome-

chanics, questions have come up how methods from machine learning relate to inferential

techniques which are commonly applied in gait analysis.

Statistical inference supports the researcher to draw conclusions whether an effect is

caused by a factor. It can be divided in four schools which are frequentist, Bayesian,

fiducial, and likelihood inference. Frequentist approaches such as t-test and analysis of

variance (ANOVA) are often applied in gait analysis. Yet, they have several disadvantages

which are overcome by Bayesian inference. The latter is preferred in mathematical statis-

tics and has been introduced to applied statistics. In machine learning, the algorithms

estimate the cause from observations. Hence, inferential and predictive statistics analyze

data in opposed direction and application of inferential or predictive statistics depends on

the research problem. Both methods can only be applied to a data set if researchers are

interested in inference as well as prediction. This can be the case in interdisciplinary re-

search fields such as gait analysis, affective computing, or bioinformatics. Considering the

recognition of emotions in gait patterns, researchers in psychology apply statistical infer-

ence to analyze how the gait is affected by emotional states. They provide a psychological

foundation to retrieve the emotional state from the observation of gait patterns, which is

studied in machine learning. This concept can be extended to any pattern recognition task

for which the relation between cause and observation is not obvious and is an issue for sci-

entific investigation. Thus, predictive analysis builds on a valid relation between cause and

observation which can be verified by statistical inference. This describes the qualitative

relation between inferential and predictive statistics, see Fig. 4.1 for illustration.

This chapter analyzes whether quantitative information in the context of predictive

statistics can be gained from the results of inferential statistics. In machine learning, one

major goal is to increase the recognition rate by improving the algorithms. From this

point of view, it is of interest whether classification rates can be estimated from reported

values of inferential statistics and, in doing so, serve as a baseline reference for advanced

machine learning techniques. This chapter does not intend to rediscuss the advantages

and disadvantages of Bayesian versus frequentist analysis, instead it concentrates on the
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Inferential Analysis

“Does the cause under study 

in�uence the observation?”

Examples Predictive Analysis

“How accurate can the cause 

be derived from the observations?”

Techniques:
- Frequentist Inference

- Bayesian Inference

- Fiducial Inference

- Likelihood Inference

Techniques:
- Bayesian Decision Theory

- Nonparametric Techniques 

- Linear Discriminant Functions

- Multilayer Neural Networks

- Stochastic Methods

- Nonmetric Methods

Gait Analysis

Cause:  Exhaustion

Observation: Gait

A!ective Computing

Cause: Emotion

Observation: e.g. Physiology

Bioinformatics

Cause:  Genotype

Observation: Phenotype

Fig. 4.1: Inferential statistics and predictive statistics analyze the relation between cause and
observation in the opposed direction. The techniques compared within this chapter
are marked bold.

interpretation of calculated, inferential statistics in the view of predictive statistics.

The investigation focuses on techniques which are univariate, assume normally dis-

tributed data, and divide the data in a limited number of groups. Thus, the t-test and

ANOVA from inferential statistics are compared with a simple linear Bayes classifier from

predictive statistics. The elaborated contributions within this chapter are 1) a mathemat-

ical relation between the statistics of an ANOVA and the classification rate of a linear

Bayes classifier, which simplifies to a relation between the statistics of the t-test and the

classification rate in the case of two classes, 2) upper and lower bounds for this relation,

3) a discussion of the consequence of this relation in using the considered statistics for fea-

ture selection, and 4) the application of the relation in the case of the dependent samples

design.

The remainder of this chapter is organized as follows: First, section 4.1 defines the area

of intersection which inferential as well as predictive analysis is applicable for. Then, the

theoretical foundations of a selection of techniques from inferential and predictive statis-

tics are reviewed. Statistics relevant for later comparison are introduced. A theoretical

comparison is given in section 4.2 which shows that the statistics of the ANOVA relate

to the accuracy of a linear Bayes classifier. Simplification of this relation for two classes

leads to the relation between statistics of the t-test and the classification rate of a linear

Bayes classifier. The following section 4.3 illustrates the relation for two and more classes.

Thereby, upper and lower bounds for the relation between effect sizes of the ANOVA and

the classification rate are derived. It also discusses its application for feature selection in

machine learning and briefly goes into Bayesian inference. The application of the results

for dependent samples test is derived in section 4.4 and the approximation of classification

rates from reported test statistics is exemplified on a selected case study taken from gait

analysis. Section 4.5 summarizes the investigated relation between selected techniques from

inferential and predictive statistics. Finally, limitations of the comparison are discussed in

section 4.6.
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4.1 Selected Methods from Inferential and Predictive

Statistics

Fig. 4.1 illustrates the relation between inferential and predictive statistics. A number of

techniques exist for each analysis. The subdivision for predictive analysis is taken from the

outline of [43]. The most common techniques, which are Bayesian and frequentist statistics,

are selected from the techniques for inferential statistics for the following comparison.

Regarding predictive analysis, Bayesian decision theory has the obvious advantage to be

also based on the Bayesian theorem. Furthermore, it provides the optimal Bayes error

rate P ⋆
E for known distributions. A graphical comparison of Bayesian decision theory and

methods from frequentist analysis suggests a mathematical relation between these methods,

see also Fig. 4.2 and 4.3 which consider Gaussian distributed data.

In the following, first, the area of intersection is defined in which predictive as well

as inferential analysis may be applied within the research scope. It concludes with a list

of terms which are used interchangeably. Then, frequentist and Bayesian inference are

summarized. Focus lies on techniques which are univariate and which assume the data to

be normally distributed. Afterwards, Bayesian decision theory is briefly introduced and

the decision functions relevant for the comparison are given. Finally, a mathematical basis

is described which motivates later comparison.

4.1.1 Area of Intersection and Terms

If researchers from social science, psychology, biology or medicine work together with

engineers or computer scientists, the former is familiar with inferential analysis and the

latter usually applies predictive analysis to the data. Examples for these collaborations

are biomedical engineering, biomechanics, bioengineering, and affective computing. For

illustration, three examples are described in more detail:

• Emotions are not only expressed in facial expressions and speech, but also in physi-

ological parameters and body motions [32, 121, 125, 177, 178]. Affective computing

aims to predict the emotional state of humans. As this research area requires intense

collaboration between psychologists and computer scientists, the question comes up

whether the results of a statistical analysis conducted by a psychologist can provide

quantitative input to machine learning.

• Biomechanics in sports studies human motions during athletic activities. Bodily

parameters under investigation are usually analyzed with statistical tools. Within

this context, it is of interest whether methods from machine learning can provide

additional information. Thus, several methods from machine learning have been

applied [21, 22, 175]. A mathematical comparison of the two approaches which goes

beyond application to a specific database has not yet been elaborated.

• Classification for computer aided diagnostics in e.g. mass spectrometry based pro-

teomics or analysis of genomic data faces the challenge of a numerous number of

features comparing to a limit number of samples [66, 94, 138, 164]. Thus, efficient
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feature extraction is required. This approach is subdivided into filter and wrapper

techniques. The former evaluates the quality of a feature based on its intrinsic char-

acteristic, e.g. t-score, whereas the latter one estimates the accuracy of a specific

classifier, e.g. Naive Bayes, applied to a feature subset. Still, no approximation exists

how and which filter techniques relate to classification accuracy.

The area of intersection between predictive and inferential analysis is defined by

1. Predictive and inferential research interests on the data.

2. A limited number of outcome and independent variables.

3. Observations measured by an interval or ratio scale.

4. Groups subdivided by a nominal scale.

Within the above defined area of intersection, the focus of this investigation lies on

clarification, in particular, on how the above mentioned methods relate to each other. This

chapter analyzes univariate techniques which assume the data to be normally distributed.

Thus, the conditions 3) and 4) relate to this chapter. They can be released by utilizing other

techniques in inferential statistics, such as regression analysis or multivariate techniques.

Huberty and Olejnik state that application of predictive and inferential analysis cannot

be used simultaneously [65]. This holds for the cases in which the criteria for the area

of intersection are not fulfilled, e.g. evaluation of different drug treatments in medicine.

However, due to increasing collaborations between researchers, new research fields emerge

that require not only clarification regarding applied methods and algorithms but also

regarding terms. Over time, different naming conventions have been evolved in each area

of expertise. The following list briefly summarizes terms which are used interchangeably

in literature:

• Class, group, level of an independent variable, condition.

• Independent variable, explanatory variable, exogenous variable, factor 1.

• Feature, observation, attribute, trait, characteristic, outcome variable2, dependent

variable, endogenous variable.

• Accuracy, recognition rate, success rate, classification rate.

• Data set, sample 3, sample set.

• Instance, sample 3, score.

Items in this chapter preferably used are marked italic.

1The term factor is used for an independent variable in a design which simultaneously evaluates the
effect of two or more independent variables [143, p.738].

2Response variable associates outcome variable with grouping variable [65].
3Depending on the context, ’sample’ refers either to a single entity of a population or to a subset of a

population.
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Test Decision State of the Nature
H0 True HA True

H0 rejected (HA accepted) Type-I error α Correct decision
p = P (X|H0) with power (1− β)

Fail to reject H0 Correct decision Type-II error β
(1-α) P (X|HA)

Tab. 4.1: Type of error which accompanies the test decision to accept or reject H0.

4.1.2 Inferential Statistics

In contrast to descriptive statistics, statistical inference assumes randomized observations,

utilizes the calculus of probabilities for modeling and description of stochastic processes,

and aims to draw generally accepted conclusions about relations and processes underlying

the data. Careful design of experiments is required so that inferential statistics can give

valid conclusions. Frequentist inference and Bayesian inference are most commonly used

in applied science. The former one was predominantly applied until the late 20th century.

Since then, Bayesian inference is often preferred because it overcomes disadvantages of

frequentist inference. The major difference between both schools is that frequentist infer-

ence consults the probability P (X|H) for decision making or in words how probable it is

that the data X is observed if the hypothesis H is true. In contrast, Bayesian inference is

based on the probability P (H|X ) which describes more the intention of the researcher to

draw conclusions of the validity of a hypothesis H based on observations X . Furthermore,

Bayesian inference includes prior knowledge which can be either interpreted as a level of

ignorance or information gained from prior studies.

The following summary considers univariate techniques, which assume the data to be

normally distributed. The summary is based upon the textbooks [11, 27, 81, 136, 143].

Frequentist Inference

Frequentist inference analyzes statistically whether a hypothesis is true or not. In practice,

a hypothesis cannot directly be validated. Thus, a Null hypothesis H0 considered to

be disproven is formulated. If H0 is rejected with the Type-I error probability α, the

alternative hypothesis HA is accepted with the power 1 − β. Tab. 4.1 illustrates which

type of error is made depending on the test decision. The Type-I error probability α

describes the largest risk a researcher is willing to take of rejecting a true H0. The Type-II

error β refers to the conditional probability that the test decision is to retain H0 although

HA is true.

Following Fisher’s view of null hypothesis significance testing (NHST), an upper limit

for the Type-I error probability α is defined before the experiment [49, 50]. Common

values are 5%, 1% and 0.1%. During the statistical test, a test statistic is computed based

on the data set. The estimated Type I error probability p = P (X|H0)
4 is derived. Then,

4P (X|Hi) refers to the conditional probability that the data set X is taken from a population Ξ for
which the hypothesis Hi is valid.
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4 Comparison of Inferential and Predictive Statistics in the Context of Gait Analysis

the p-value is compared with its upper limit α. If it does not exceed its upper limit, H0

is rejected and the alternate hypothesis HA is accepted. Despite its easy application, the

three major drawbacks of this approach are the following: 1) H0 can only be disproven

but not proven, 2) an estimate of the size of the effect itself is missing, and 3) the relation

between number of samples and p-value is ignored.

Power analysis was introduced by Neyman and Pearson and overcomes these limitations

by introducing the parameters power and effect size δ [115, 120]. In this approach, both

H0 and HA are two competing hypotheses. Power refers to the probability to detect HA

under the condition that HA is true. Thus, the power equals 1− β. For power analysis, a

specific number of samples n is required to guarantee a certain test power. The number of

samples n is determined a priory by n = f(α, β, δ), in which the effect size δ is estimated

based on previous studies. Power analysis extends Fisher’s view of NHST in the way that

a fix number of samples is determined to detect an effect of a certain effect size and defines

power and α values a priori.

A combined version of both approaches is to follow Fisher’s view of NHST and to report

additionally the observed effect sizes to support meta-analysis. Reporting effect sizes has

been advocated in several articles in social and biological science [29, 48, 78, 114]. However,

it is not recommended to report post hoc obtained power values [92].

NHST is still an often applied statistical approach in biology, psychology, biomechanics,

and biomedical statistics. Reasons are that NHST is an over decades established technique

in applied statistics, that it considers random aberration by the use of stochastic calculus,

and that it supports the process of decision making with probabilistic theory. Characteris-

tic for the frequentist approach is to assume known variables of the random process which

generates the data, and to calculate the probability to observe the data X if this process is

true. Criticisms of this approach are that 1) not the probability P (Hi|X ) instead P (X|Hi)

is consulted for decision making, 2) statistical significance does not automatically imply

practical significance, and that 3) a dichotomous decision making process is intended [29].

Due to these criticisms, correct and adequate use of NHST has been advocated in several

articles [28, 78, 112], which has led to a decrease in misuses during the last decade [145].

T-Test The t-test for two independent data sets X1 and X2 evaluates the hypothesis if the

two data sets originate from two populations with different mean values µ1 and µ2. Hence,

the null hypothesis is H0 : µ1 = µ2 = µ and the alternative hypothesis is HA : µ1 6= µ2 for

an independent, two-sided test.

In frequentist inference, the probability P (X|H0) is calculated that the data X or data

with a larger t̂ statistic is observed under the assumption that H0 is true. The statistic t̂

is Student’s t-distributed. For this concept, the following assumptions are made about the

two population distributions Ξ1 and Ξ2:

• Random and independent selection of each sample from the population it represents,

• Homogeneity of variance (HOV): σ2
1 = σ2

2 = σ2,

• Gaussian distributions: Ξi ∼ N (µi, σ
2) .
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To calculate the probability P (X|H0), the t̂ statistic5 is computed

t̂ =
|x̄1 − x̄2|

√

s2e

(

1
n1

+ 1
n2

)

with s2e =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, (4.1)

where s2e is the pooled variance estimate, s21 and s22 the estimated variances for each data

set Xi, x̄i the sample mean, and ni the sample size of group i. To obtain P (X|H0),

the probability 1 − P (t ≤ t̂) needs to be calculated. Since the t-test goes back to the

times in which access to computers was rare, traditionally t̂ is looked up in tables and

explicit calculation of P (X|H0) is avoided. Thus, the hypothesis H0 is rejected with error

probability α, if

t̂ > tν,1−α/2 ,

with the degree of freedom ν. If the variances are homogeneous, ν equals n1 + n2 − 2

otherwise ν = n2 − 1 for n2 > n1. The t-test is robust against the Type-I error α, but

not against the power [136]. As the Type-II error reaches a minimum for equal sample

sizes ni, it is usually recommended that 1) n1 ≈ n2, 2) ni ' 25, and 3) a two-sided test is

conducted. If n1 = n2 = n, Eq. 4.1 simplifies to

t̂ =
|x̄1 − x̄2|
√

s2
1
+s2

2

n

with s2e =
s21 + s22

2
.

Explanations which lead to rejecting H0 are:

• Improper collection of sample sets resulting in observing an effect even though no

effect exists.

• Application of the t-test even though its assumptions are not fulfilled.

• Observation of the effect occurred by chance.

• The effect really exists.

If the research question requires to compare the means µi of more than two classes,

repetitive application of the t-test increases the probability to make a Type-I error. Thus,

it is recommended to apply an analysis of variance (ANOVA) in this case.

ANOVA The single-factor ANOVA6 for c independent sample sets X1,...,Xc with c ≥ 2

evaluates the hypothesis, if at least two of the sample sets originate from populations with

different means. Hence, the null hypothesis is H0 : µ1 = µ2 = ... = µc = µ and the

5If the variance σ2 would be known, the Gauss test could be used instead.
6The single-factor ANOVA for independent sample sets is also referred to as the single-factor between-

subjects ANOVA, the completely randomized single-factor ANOVA, the simple ANOVA, and the one-way
ANOVA. The independent sample sets design is also known as independent-groups, between-subjects,
between-groups and randomized design [143].
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alternative hypothesis HA states that at least one of the sample sets originates from a

population with a different mean.

Similar to the t-test, the ANOVA assumes that H0 is true and calculates the probability

P (X|H0) that the sample sets X1, ...,Xc are drawn from one common population. The

ANOVA is based on the same assumptions as the t-test:

• Random and independent selection of each sample from the population Ξi,

• Homogeneity of variances (HOV): σ2
1 = σ2

2 = · · · = σ2
c = σ2,

• Gaussian distributions: Ξi ∼ N (µi, σ
2).

The variability in the data is subdivided in between-groups variability and within-groups

variability. The F-measure is the ratio of between-groups variance s2BG to within-groups

variance s2WG. If all sample sets X1,...,Xc originate from one common distribution, the

variability within the sample sets should be approximately the same as the variability

between the sample means x̄i and, thus, F ≈ 1.

The F̂ statistic is estimated by

F̂ =
MSBG

MSWG

, (4.2)

with the mean MSWG of the within-groups sum of squares SSWG:

s2WG = MSWG =
1

N − c
SSWG =

1

N − c

∑

i,j

(xij − x̄i)
2 =

1

N − c

∑

i

s2i (ni − 1) , (4.3)

and with the mean MSBG of the between-groups sum of squares SSBG:

s2BG = MSBG =
1

c− 1
SSBG =

1

c− 1

∑

i

ni(x̄i − x̄)2 , (4.4)

where N =
∑c

i=1 ni is the total number of samples, x̄i =
1
ni

∑ni

j=1 xij is the mean of group

i, and x̄ = 1
N

∑c
i=1 nix̄i is the mean of the total data set. Furthermore, the total sum of

squares is defined as SST = SSBG + SSWG.

The F̂ statistic follows the Fisher-distribution with νBG = c − 1 and νWG = N − c

degrees of freedom. Similar to the t-test, the probability P (X|H0) is traditionally not

calculated, instead tabled F values are compared. If

F̂ > FνBG,νWG,1−α

the null hypothesis H0 is rejected and it is concluded that at least one sample set originates

from a distribution with a different mean. The ANOVA itself does neither indicate which

sample set nor how many means differ. For this purpose, multiple comparisons are usually

conducted afterwards.

If sample sizes n1 = n2 = · · · = n are equal, violations of HOV have little influence on

the test outcome and the power reaches a maximum. Furthermore, if the samples of all

groups originate from a single common distribution N(µ, σT ), the total variance σT is the

sum of the within-groups and between-groups variance σ2
T = σ2

WG + σ2
BG.
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Effect Size Effect sizes provide an estimate of the magnitude of an effect and are essential

for meta-analysis, because they are standardized measures independent of N [29, 78, 114].

The two dimensionless classes of effect sizes are differentiated in standardized mean differ-

ences and correlation coefficients. The former is used for categorical levels of an indepen-

dent variable, and the latter for a continuous independent variable.

Depending on the context, numerous effect sizes have been proposed [77, 114]. Most

commonly the standardized mean differences Hedges’ g and Cohen’s d index are reported

for t-test [27, 114]. The δ index of the population expresses the difference between the

means of the two populations in units of their variability

δ =

∣

∣

∣

∣

µ1 − µ2

σ

∣

∣

∣

∣

. (4.5)

The estimated d index is

d =

∣

∣

∣

∣

∣

x̄1 − x̄2
√

s2e

∣

∣

∣

∣

∣

. (4.6)

The d index, also required for power analysis, is only practically reasonable, if the

assumptions of homogeneity of variance and Gaussian distribution hold. Furthermore,

Cohen in [27] suggests ranges for small, medium, and large effects, see Tab. 4.2. The

relation between the d index and the test statistic t̂ is:

d = t̂

√

1

n1

+
1

n2

. (4.7)

As noted in [114], the effect size correlation r

r =
t̂

√

t̂+ df
,

which is usually calculated for each continuous independent variable, can by converted to

Cohen’s d index by

d =
2r√
1− r2

.

For the one-way ANOVA, the most commonly used measures of the magnitude of an

effect are ω2, η2 and Cohen’s f index [27, 30, 143]. For c populations with different means

µi and common variance within the populations σ2 = σ2
WG, the f index of the population

refers to as

f =
σBG

σWG

with σ2
BG =

1

c

c
∑

i=1

(µi − µ)2 . (4.8)

It serves as a generalization of the δ index for more than two classes. The estimated f̂
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Range
Measure Small Medium Large

d .2− .5 .5− .8 > .8
η̂2, ω̂2 .01− .06 .06− .14 > .14

f̂ .1− .25 .25− .4 > .4

Tab. 4.2: Range for small, medium, and large effects as suggested in [27].

index is calculated by

f̂ =

√

c−1
nc

(MSBG −MSWG)

MSWG

=

√

c− 1

nc
(F̂ − 1) . (4.9)

If f̂ = 0, the group means x̄i are equal. Value f̂ increases as the ratio of the between-groups

variability and within-groups variability gets larger. It should be further noted that the

size of f̂ is independent of the number of classes c and the number of samples n, which

facilitates meta-analysis. This independence is achieved – in contrast to the F̂ statistic

– by multiplying with the normalization term c−1
nc

. Furthermore, f̂ is only valid if H0 is

rejected. Otherwise f̂ 2 can become negative if F̂ < 1. Summarizing, f̂ 2 considers the ratio

of between-groups to within-groups variance.

The measure7 ω2 considers the ratio of between-groups variance to total variance:

ω2 =
σBG

σBG + σWG

. (4.10)

Its estimation based on a limited sample set is

ω̂2 =
SSBG − (c− 1)MSWG

SST +MSWG

.

Commonly, the values of ω̂2 range between 0 and 1. However, ω̂2 will be a negative number

if f < 1. The relation between f̂ 2 and ω̂2 is :

ω̂2 =
f̂ 2

1 + f̂ 2
. (4.11)

Another commonly used measure for the effect size is

η̂2 =
SSBG

SST

, (4.12)

although it is a more biased estimate than ω̂2. For sufficient large N , η̂2 ≈ ω̂2. Tab. 4.2

lists ranges that are associated with the meaning of low, medium and large effect sizes in

social science.

7In [27], Cohen employs the notation η2 in Eq. 4.10 instead of ω2.
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Bayesian Inference

Frequentist inference has been widely used in applied statistics. It provides a concept for

hypothesis testing that calculates probabilities P (X|Hi) how probable values of statistics

could occur assuming the hypothesis Hi to be true. Disadvantages are that the according

tests rely on assumptions about the data, prior knowledge can not be included, and that

constraints of parameters are hard to integrate. These disadvantages are overcome by

Bayesian inference that calculates the probability P (Hi|X ). This technique allows easier

handling of distributions which are not Gaussian, includes prior knowledge in the frame-

work, and can handle parameter constraints. These reasons lead to a preference of Bayesian

inference compared to frequentist inference in applied statistics. Still, frequentist inference

is the dominant approach in a number of research fields e.g. psychology, social science and

biomechanics. The two techniques fiducial inference and likelihood inference are more re-

lated to Bayesian inference with non-informative priors than to frequentist inference. Yet,

these methods are not as general as Bayesian inference [11, p.73].

In the following, Bayesian inference is briefly introduced. Then, analogies for the t-test

and the ANOVA in the Bayesian framework are described.

Bayes Theorem for Inference Bayesian inference draws conclusions about the parame-

ters Θ = [Θ1, ...,Θk] of the probability distribution which underlies a stochastic process.

Frequentist inference assumes that these parameters Θ of the stochastic process are known

and fix. Under this assumption, it calculates the probability for observing [x1, ..., xn] = x.

In contrast, Bayesian inference assumes that the form of the distribution underlying the

stochastic process is known but that the estimation of its parameters Θ from observation x

follows itself a stochastic process. The stochastic processes are often modeled as Gaussian

distributions but the principle of Bayesian inference is not restricted to this distribution.

Given that Θ has the prior distribution p(Θ) and that x has the distribution p(x), the

Bayes theorem calculates the conditional distribution

p(Θ|x) = p(x|Θ)p(Θ)

p(x)
, (4.13)

where p(Θ|x) is also called the posterior. If p(x|Θ) is regarded as a function of x, it

is called the likelihood l(Θ|x). Furthermore, p(x) can be regarded as a normalization

constant. Thus, the posterior is proportional to the product of the prior distribution and

the likelihood

p(Θ|x) ∝ l(Θ|x)p(Θ) .

In comparison to the Bayesian classifier, described in section 4.1.3, both p(Θ|x) and l(Θ|x)
are distributions and not probabilities.

As the likelihood modifies prior information, each sample set x updates the current

knowledge by utilizing the Bayes theorem. This technique is suited for sequential updat-

ing the current knowledge on Θ. For an initial set of observations x1 and a new set of
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observations x2, the posterior is proportional to

p(Θ|x2,x1) ∝ p(Θ)l(Θ|x1)l(Θ|x2) (4.14)

∝ p(Θ|x1)l(Θ|x2) .

In the following, this concept is exemplified on drawing inferences about a single mean µ.

The set of observations x = [x1, ..., xn] are sampled from a Gaussian distribution N (µ, σ2)

with unknown mean µ and known variance σ2. Bayesian inference aims to draw conclusions

on µ based on x. Therefore, the likelihood l(µ|x) is calculated which is N (µ, σ2/
√
n)

distributed for a Gaussian process with known variance

l(µ|x) ∝ exp
[

− n

2σ2
(µ− x)

]

, (4.15)

with x being the sample mean. If little is known a priory about µ, a non-informative prior

is chosen for p(µ). Here, the non-informative prior is a locally uniform distribution and

the relation 4.15 is not altered by the prior. Thus, the posterior distribution is

p(µ|x) = 1
√

2π σ2

n

exp
[

− n

2σ2
(µ− x)

]

.

To draw inferential conclusions, probabilities are calculated whether µ is smaller or big-

ger as a reference value or whether µ is within a defined interval. In comparison to a

Bayesian classifier, the posterior models the distribution of the µ of the process and not

the occurrence of samples.

In the following, analogies to the t-test and the ANOVA in Bayesian inference are

summarized. As the concept of Bayesian inference is more flexible than the concept of

frequentist inference, these analogies are not as frequently used in Bayesian inference than

the t-test or ANOVA in frequentist inference. The intention to include these methods

within this chapter is to elaborate similarities and dissimilarities between using Bayes

theorem for inference or prediction and to work out whether the relations between results

of the t-test and ANOVA with Bayesian classification rates are in relation to the analogies

of t-test and ANOVA in Bayesian inference.

Bayesian Inference for the Difference of Two Means Assuming a Known Com-

mon Variance The analogy to the t-test in Bayesian inferences compares two means

µ1 and µ2. The observations x(1) = [x
(1)
1 , ..., x

(1)
n1 ] are drawn from a population which is

N (µ1, σ
2) distributed and the observations x(2) = [x

(2)
1 , ..., x

(2)
n2 ] from a population which is

N (µ2, σ
2) distributed. The corresponding sample mean values are x1 = n−1

1

∑n1

i=1 x
(1)
i and

x2 = n−1
2

∑n2

i=1 x
(2)
i . The sample variance s2 equals the pooled variance estimate in Eq.

4.1. The joint posterior distribution is given by

p(µ1, µ2, σ
2|x(1),x(2)) = p(σ2|s2)p(µ1|σ2, x1)p(µ2|σ2, x2) ,
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if µ1, µ2, and log σ are independent and the priors a locally uniformly distributed. Con-

sidering the difference µ2 − µ1, the joint distribution is

p(µ2 − µ1, σ
2|x(1),x(2)) = p(σ2|s2)p(µ2 − µ1|σ2, x2 − x1)

The final posterior density function for this case is

p(µ2 − µ1|x(1),x(2)) =
[s2(n−1

1 + n−1
2 )]−1/2

B(1
2
, 1
2
ν)
√
ν

{

1 +
[(µ2 − µ1)− (x2 − y1)]

2

νs2(n−1
1 + n−1

2 )

}− 1

2
(ν+1)

(4.16)

with the degree of freedom ν = n1 + n2 − 2 and the complete beta function B(a, b) =

Γ(a)Γ(b)/(Γ(a+ b) . The gamma function is given by Γ(a) =
∫ inf

0
ta−1e−tdt for a > 0 and

Γ(0.5) = π. Comparing Eq. 4.16 with the density function of a random variable y which

is t-distributed with mean µ, scaling κ and ν degrees of freedom

p(y|µ, κ, ν) = 1

B(ν
2
, 1
2
)
√
κ

[

1 +
(y − µ)2

κ

]− ν+1

2

for y ∼ t(µ, κ, ν)

shows that µ2 − µ1 is t(x2 − x1, s
2(n−1

1 + n−1
2 ), n1 + n2 − 2)-distributed. To apply the

standard t-distribution t(0, 1, n1 + n2 − 2) with the density function

p(t̂|ν) = 1

B(ν
2
, 1
2
)
√
ν

(

1 +
t2

ν

)− ν+1

2

,

the according transformation is

t̂ =
(µ2 − µ1)− (x2 − x1)

[s2(n−1
1 + n−1

2 )]−1/2
. (4.17)

Assuming that the Null hypothesis µ2 = µ1 is true, the calculated t̂ statistic coincide with

the t̂-statistic for the t-test in frequentist inference, see Eq. 4.1, but the interpretation

differs. Here, inference is based on the probability that the true difference between µ2 and

µ1 is zero observing x1 and x2. Frequentist inference would assume µ2 = µ1 to be true and

draws conclusions based on the probability to observe data with sample means x1 and x2.

Bayesian Inference for the Difference of Multiple Means Assuming a Known Common

Variance Concerning a number of c ≥ 2 means to be compared, a number of ni samples

x(i) are drawn from each distribution N (µi, σ
2) with a total number of samples N . The

sample mean for each set of observations is xi and the common variance estimated from the

samples s2 = 1
N−c

∑

i,j (x
(i)
j − x̄i)

2 is the within-groups variance given in Eq. 4.3. The vector

µ = [µ1, ..., µc] is a set of mean values. Based on the posterior distribution p(µ|x(1), ...,x(c))

for non-informative priors

p(µ|x(1), ...,x(c)) ∝
[

1 +

∑c
i=1 ni(µi − xi)

2

νs2

]− ν+1

2

with ν = N − c ,
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probabilities for particular sets of mean values µ can be calculated. In practice, the

comparison of two means is often more in the focus of interest than inference on a specific

set of mean values µ.

4.1.3 Bayes Theorem in Predictive Statistics

Pattern recognition plays a major part in artificial intelligence. Algorithms draw conclu-

sions from observations and attain knowledge. A number of techniques exist to assign

class labels, such as nonparametric techniques, discriminant functions, and Bayesian de-

cision theory. The central limit theorem says that the sum of arbitrarily but identically

distributed random variables approximately follows a normal distribution. Hence, this

gives a justification for the often used approach in applied science to model the data with

a Gaussian distribution. Considering further that the t-test and ANOVA in frequentist

inference rely on normally distributed data, this suggests to select the Bayesian decision

theory for the intended comparison of techniques from inferential and predictive statistics.

In the following, Bayesian decision theory is briefly introduced. The presentation is based

upon its description in the textbooks [43, 72].

Bayesian Decision Theory

Given an observation or feature x and a set of memberships or classes C = {C1, ..., Cc},
the posterior probability P (Ci|x) describes the probability that the sample x belongs to

the class Ci. Applying the Bayes theorem results in

P (Ci|x) =
p(x|Ci)P (Ci)

p(x)
, (4.18)

where P (Ci) is the prior probability, p(x|Ci) the class-conditional probability density func-

tion, and p(x) the probability density function of x, given by p(x) =
∑c

i=1 p(x|Ci)P (Ci).
The Bayes classifier minimizes the average error rate by selecting the class Ci that maxi-

mizes P (Ci|x). This concept is extended in applications by using more than one feature,

including actions, and considering more general loss functions than the error probability.

Furthermore, it often performs well even if its assumption of independent features is vio-

lated [42, 163]. The intended comparison with inferential statistics focuses on univariate

techniques. Therefore, a simple form of the Bayes classifier is considered in the following.

For the univariate case, the discriminant function gi(x) of the class Ci is

gi(x) = logP (Ci)−
1

2

[

(x− µi)
2

σ2
i

+ log σ2
i

]

,

where N (µi, σ
2
i ) models the Ci-conditional probability density function. If the priors P (Ci)

are equal ∀i, the discriminant function can be further simplified to

gi(x) = −1

2

[

(x− µi)
2

σ2
i

+ 2 log σi

]

resulting in a quadratic decision border between each set of two classes. In addition, if it
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is assumed that σ1 = σ2 = ... = σc = σ, the discriminant function is

gi(x) = −1

2

[

(x− µi)

σ

]2

, (4.19)

and the decision borders between the classes are linear. The quadratic Bayes classifier

always performs equal or better than the linear Bayes classifier if the population parameters

µi and σi are known exactly. However, in general more samples are required to properly

design a quadratic classifier than a linear classifier for practical applications [51]. Thus,

the following analysis conducted for the linear Bayes classifier also provides a lower bound

for the classification rate achievable with a quadratic Bayes classifier.

The classification rate of all samples for a single class is further denoted as R(Ci) and
the average classification rate as

R̄ =

∑c
i=1 R(Ci)

c
. (4.20)

4.1.4 Basis for Comparison

Selected techniques from inferential and predictive statistics have briefly been summarized.

The focus lies on methods in inferential statistics which are often applied for gait analysis

in biomechanics, and for various applications in affective computing. In doing so, the

comparison is limited to univariate approaches which assume a normally distributed data.

Null hypothesis significance testing, such as t-test and ANOVA, draw inferences by

consulting P (X|Hi) and is termed as a frequentist approach. Reason therefore is that the

probability P (X|Hi) describes how probable the data X is observed if Hi is true. The

principle is illustrated in Fig. 4.2 for a two-sided t-test. The difference of the sample

means x2−x1 is t(µ2−µ1, s
2
e(n

−1
1 +n−1

2 ), ν)-distributed. Under the assumption that H0 is

true, µ2 − µ1 = 0 and the transformed t̂ statistic is t(0, 1, ν)-distributed. Thus, t-test and

ANOVA draw inferences about mean values and not about single samples. In contrast,

the Bayes classifier computes the probabilities p(x|Ci) of single samples x to belong either

to class C1 or C2. This is shown in Fig. 4.3.

Both approaches have in common the estimation of probabilities either for a single

sample or for the complete sample set assuming a given hypothesis or class membership.

Under specific assumptions, the t-test and linear Bayes classifier relate to each other, which

is derived in the following section.

In contrast, Bayesian inference consults P (Hi|X) to draw inferences about parameters

Θ. An analogy to the traditional t-test exists which calculates the same t-statistic but

the interpretation differs. Fig. 4.4 illustrates the calculation of the probability that the

true difference between two means |µ2 − µ1| lies within a certain range given the observed

data X = {x(1),x(2)}.
In conclusion, predictive statistics aims to predict class membership of single samples

whereas inferential statistics draws conclusions about parameters of the stochastic process

which generates the data. When inferential statistics confirm information about the distri-

butions underlying the stochastic process, is it then possible to estimate the performance

of a simple Bayes classifier which predicts class membership of randomly drawn samples
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Fig. 4.2: The hypothesis H0 is rejected with the test power 1− β and the Type-I error prob-
ability α if t̂ > tν,1−α/2 for a two-sided t-test, e.g. for t̂1 with p(t|ν) ∼ t(0, 1, ν) for
H0. The test would fail to reject H0 for e.g. t̂2 .
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Fig. 4.3: The less the distributions N(µ1, σ
2) for C1 and N(µ2, σ

2) for C2 overlap, the higher
the classification rate R = 1

2
[R(C1)+R(C2)] of a linear Bayes classifier is. The single

sample x′ belongs with probability P1 to class C1 and with P2 to class C2.

p(
µ
2
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µ
1
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) ,
x
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µ2 − µ1
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2(n−1

1 + n−1
2 ), n1 + n2 − 2)

x2 − x1
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Fig. 4.4: Bayesian inference consults the probability that the true difference between two means
µ2 −µ1 lies e.g. within a 95% interval. If the prior is non-informative, the interval is
centered around the difference of the sample means x2 − x1.

from this stochastic process? This is investigated in the following sections.

Lastly, it should be further noted that drawing conclusions from classification rates

to inferential statistics may be theoretically possible for a two-class problem. However,

scientific inference requires a valid experimental setup to eliminate disturbing factors.
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4.2 Mathematical Comparison

Cohen introduces the effect size measure d for the t-test in [27]. To visualize the magnitude

of effects, he describes three measures U1 = Φ(d), U2 = Φ
(

d
2

)

and U3 =
2Φ(d/2)−1
Φ(d/2)

[27, p.23].

The measure U2 explains the percentage of each distribution exceeding the other, see the

blue and yellow shaded areas in Fig. 4.3. These areas match R(C1) and R(C2) for the

Bayes classifier with a linear decision border. Thus, Cohen uses the classification rate R̄

to illustrate the magnitude of effects. In the following, the assumptions for this relation

and the mathematical deduction are summarized.

The combined assumptions for the t-test and a simplified Bayes classifier are

• Homogeneity of variance σ1 = σ2 = σ ,

• Equal sample size n1 = n2 = n ,

• Equal priors P (C1) = P (C2) = P (C) .

From these assumptions, R̄ = R(C1) = R(C2) is deduced. For known population parameters

µ1, µ2 with µ2 > µ1, and σ2, the classification rate R̄(Ξ) is

R̄(Ξ) =
1

2
[R(C1) +R(C2)] =

1

2

[∫ x⋆

−∞
p(x|C1) +

∫ ∞

x⋆

p(x|C2)
]

=

∫ x⋆

−∞
p(x|C1) ,

with x⋆ = µ1+µ2

2
being the solution for g1 = g2. Furthermore, p(x|C1) is N (µ1|σ2)-

distributed and p(x|C2) is N (µ2|σ2)-distributed. With Φ being the standard normal dis-

tribution N (0, 1), the following relation is derived

R̄(Ξ) = Φ

(

x⋆ − µ1

σ

)

= Φ

(

µ2 − µ1

2σ

)

.

Considering the definition of the effect size δ for populations, see Eq. 4.5, and that the

absolute difference of the means is relevant |µ2 − µ1|, results in the following relation

R̄(Ξ) = Φ

( |µ2 − µ1|
2σ

)

= Φ

(

δ

2

)

. (4.21)

The according relation for sampled data is

R̄(X ) = Φ

(

d

2

)

= Φ

(

t̂√
2n

)

. (4.22)

Thus, Cohen’s measure U2 exactly matches the classification rate R̄(X ) of a Bayes classifier

with a linear decision border. The relation between R̄(X ) and d is also described in [180].

The relation between measured t̂ values and R̄(X ) depends additionally on n. This relation

assumes that the parameters µ1, µ2, and σ are sufficiently well estimated from the data X .

In practice, the recognition rate of a Bayes classifier is often not calculated by estimating

the distribution parameters followed by integrating, but by calculating the number of

correctly classified samples. This summation and the reason that only a set of samples
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from the population is observed leads to deviations from the theoretical value R̄(Ξ). For

a sufficient large number of samples n, R̄(X ) achieves R(Ξ). Plots in the supervised

diploma thesis [180] illustrate that calculating classification rates by either summation or

integration differs only little.

In the following, this approach is extended for comparing more than two groups, c > 2.

In this case, the average classification rate R̄ of a multi-class problem is compared with

the generalization of d, the f index. Without loss of generality, it is assumed that µ1 ≤
µ2 ≤ .... ≤ µc. Further assumptions for the derivation are:

• Homogeneity of variance σ1 = σ2 = ...σc = σ ,

• Equal sample size n1 = n2 = ... = nc = n ,

• Equal priors P (C1) = P (C2) = ...P (Cc) = P (C) .

The classification rate for each class R̄(Ci) depends upon the dispersion of the means µi

over their range between µ1 and µc. Due to homogeneity of variances, the decision borders

x̂i are defined by

x̂i =
µi+1 + µi

2
for i = 1...c− 1 .

The classification rate R̄(Ci) of a single class is given by

R̄(Ci) = Φ

(

µi+1 − µi

2σ

)

− Φ

(

µi−1 − µi

2σ

)

for i = 2...c− 1 ,

where the classification rates R̄(C1) for the class with lowest mean and R̄(Cc) for the class

with largest mean are

R̄(C1) = Φ

(

µ2 − µ1

2σ

)

and R̄(Cc) = 1− Φ

(

µc−1 − µc

2σ

)

.

Thus, for the average classification rate R̄(Ξ) follows

R̄(Ξ) =
1

c

{

Φ

(

µ2 − µ1

2σ

)

+
c−1
∑

i=2

[

Φ

(

µi+1 − µi

2σ

)

− Φ

(

µi−1 − µi

2σ

)]

+ 1− Φ

(

µc−1 − µc

2σ

)}

and written in terms of f by applying Eq. 4.8

R̄(Ξ) =
1

c

{

Φ

(

µ2 − µ1

2σBG

f

)

+
c−1
∑

i=2

[

Φ

(

µi+1 − µi

2σBG

f

)

− Φ

(

µi−1 − µi

2σBG

f

)]

+

+ 1− Φ

(

µc−1 − µc

2σBG

f

)}

. (4.23)

For the case of c = 2, Eq. 4.21 can deduced from Eq. 4.23 considering that f is a

generalization of δ.
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Characteristic for most real-world applications is that the standard deviations σ and σBG

of the population are unknown and are estimated from samples. In pattern recognition,

σ2 is usually estimated by the pooled variance estimate s2p for a linear Bayes classifier

s2p =

∑c
i=1((ni − 1)s2i )
∑c

i=1(ni − 1)
=

(n1 − 1)s21 + (n2 − 1)s22...(nc − 1)s2c
n1 + n2 + ...nc − c

,

which equals MSWG, see Eq. 4.3. Thus, if MSWG is reported, the classification rate of a

linear Bayes classifier can easily be estimated by

R̄(X ) =
1

c

{

Φ

(

x̄2 − x̄1

2
√
MSWG

)

+

+
c−1
∑

i=2

[

Φ

(

x̄i+1 − x̄i

2
√
MSWG

)

− Φ

(

x̄i−1 − x̄i

2
√
MSWG

)]

+

+ 1− Φ

(

x̄c−1 − x̄c

2
√
MSWG

)}

. (4.24)

Furthermore, the relation between the F̂ statistic and the classification rate of a linear

Bayes classifier is given by

R̄(X ) =
1

c

{

Φ

(

x̄2 − x̄1

2
√
MSBG

√

F̂

)

+

+
c−1
∑

i=2

[

Φ

(

x̄i+1 − x̄i

2
√
MSBG

√

F̂

)

− Φ

(

x̄i−1 − x̄i

2
√
MSBG

√

F̂

)]

+

+ 1− Φ

(

x̄c−1 − x̄c

2
√
MSBG

√

F̂

)}

, (4.25)

and the relation between the effect size f̂ and the classification rate by

R̄(X ) =
1

c

{

Φ





x̄2 − x̄1

2
√

c−1
N

(MSBG −MSWG)
f̂



+

+
c−1
∑

i=2



Φ





x̄i+1 − x̄i

2
√

c−1
N

(MSBG −MSWG)
f̂



− Φ





x̄i−1 − x̄i

2
√

c−1
N

(MSBG −MSWG)
f̂







+

+ 1− Φ





x̄c−1 − x̄c

2
√

c−1
N

(MSBG −MSWG)
f̂





}

. (4.26)

Transforming f̂ to ω̂ would further establish the mathematical relation between ω̂ and the

classification rate.

In summary, the classification rate of a linear Bayes classifier can be derived from

reported test statistics of frequentist inference. For applying the derived Eqns. 4.21 –

4.26, it is assumed that the data sets fulfill the property of homogeneity of variance, that
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Abbreviation Term Description

R̄(Ξ) = 1− P ⋆
E Classification rate Average accuracy of the population Ξ calcu-

lated by integration using σ and µi

R̄(X ) Classification rate Average accuracy of a sample set X calculated
by integration using si and mi

(·)q Accuracy of a quadratic Bayes classifier

Tab. 4.3: Symbols and naming convention for the average accuracy R̄ of a Bayes classifier
within this chapter.

the sample sizes of all groups are equal, that the data is Gaussian distributed, and that

the parameters of the distributions are well estimated from the sample sets. On one hand,

this provides an illustration how well several distributions are separable. On the other

hand, this method facilitates the transfer of knowledge gained from inferential studies

to machine learning. In doing so, the classification rate of a linear Bayes classifier can be

estimated based on reported test statistics such as t̂, d, and f̂ using Eqns. 4.21 – 4.26. This

procedure is especially advantageous if access to recorded databases from related studies is

not public and an estimate how well methods from machine learning would perform for a

certain problem is desirable. These estimations may serve as reference for more advanced

techniques in machine learning.

Yet, the outcome of a hypothesis test is not qualitatively predictable from classification

rates, because neither a power analysis is conducted nor the assumption of the t-test or

ANOVA are tested in machine learning. Still, effect sizes can be estimated from classifica-

tion rates, which can serve as parameter to estimate the appropriate number of samples n

for a power analysis. Yet, common sense suggests that data sets which are well classifiable,

should also differ qualitatively for the dependent variable in statistical inference.

4.3 Numerical Illustrations and Further Aspects

Mathematical relations between test statistics of frequentist inference and the classification

rate of a linear Bayes classifier are derived above. These relations are illustrated in the

following. The intention is to visualize the range for feasible classification rates given

reported test statistics. The effect sizes δ and f are chosen as test statistics for t-test

and ANOVA, respectively, because they are independent of the number of samples n and,

therefore, facilitate plotting the relations. Furthermore, the relations are first illustrated for

population parameters and then deviations are investigated for sample data. The approach

to generate a database artificially, as in [180], is avoided to achieve independence from the

quality how well sample distributions represent their populations. Thus, the following

plots for the classification rate R̄(Ξ) over the effect sizes δ, f , and ω2 refer to population

parameters if not mentioned otherwise.

In the following, R̄ denotes the accuracy of a linear Bayes classifier, see Tab. 4.3. For

known population parameters, R̄(Ξ) equals 1 − P ⋆
E with P ⋆

E being the Bayes error rate.

Furthermore, the linear and quadratic Bayes classifier are generative classifiers and estimate
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Fig. 4.5: (a) The classification rate R̄(Ξ) of a linear Bayes classifier increases with increasing
effect size δ. (b) If the variances of the two populations differ, R̄(Ξ) = Φ(δ/2) still
provides a lower bound for the recognition rate achievable with a quadratic Bayes
classifier. (c) Additionally plotting µ2 on a separate axis shows the plane spanned by
different σ1 and σ2 for a quadratic Bayes classifier in more detail.

the population parameters σi and µi. As both estimates x̄i and si are consistent, R̄(X )

converges to R̄(Ξ) for increasing N . It should further be noted that recognition rates

calculated in machine learning deviate from both R̄(X ) and R̄(Ξ) in the way that leave-

one-out or cross-fold validation is applied to the data set and, in doing so, the recognition

rate is not calculated by integration but by summation over correctly classified samples.

This leads to well-known differences between classification rates and recognition rates. The

following illustrations refer only to classification rates assuming that the sample sets are

representative for their populations.

First, the relation between statistics from frequentist inference and a linear Bayes clas-

sifier is illustrated for two classes. The larger the number of samples is the more reliable

the estimated effect size is and the better R̄(X ) is approximated. Second, illustrations

are provided for more than two classes. In this case, the relation is more complex and

both upper and lower bound are derived. For all illustrations, the means are ordered after

µ1 < µ2 < ...µc.

4.3.1 Illustrations for Case I: Two Classes

The t-test is applied to compare the means of two classes in frequentist inference. The

Eqns. 4.21 and 4.22 assume that both populations have the variance σ = σ1 = σ2 in

common. Fig. 4.5 (a) illustrates the relation between the effect size δ and the classification

rate R̄(Ξ). The effect size δ describes the difference of the means ∆µ = |µ2 − µ1| as
multiples of the common standard deviation σ. Thus, an effect size of e.g. δ = 1 would

mean that the difference of the means ∆µ equals their common standard deviation σ. In

this case, the classification rate of a linear Bayes classifier is 69%. Considering the ranges

for small, medium, and large effect sizes, as described in [27], the feasible classification

rates R̄(Ξ) range as follows:

• The classification rate R̄(Ξ) is between 54% and 60% for small effect sizes δ.
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Fig. 4.6: A number of n samples is drawn from each of the two populations N (µ1, σ
2) and

N (µ2, σ
2). Plotting the classification rate R̄(X ) over the true effect size δ shows

that the smaller the number of samples n is the larger deviates the measured effect
size d and, hence, R̄(X ) = Φ

(

d
2

)

from the true classification rate R̄(Ξ) = Φ
(

δ
2

)

of
the two populations.

• The classification rate R̄(Ξ) is between 60% and 66% for medium effect sizes δ.

• The classification rate R̄(Ξ) is above 66% for large effect sizes δ.

This provides an estimate of R̄(Ξ) when the linear Bayes classifier is applied to single

variable. In machine learning desirable classification rates above 90% may often not be

feasible by considering only a single variable. Interactions between variables are not covered

by a t-test and thus can not be estimated from statistics of the t-test.

If the standard deviation of the two populations σ1 and σ2 differ, the degree of free-

dom ν is decreased to n − 1 for the t-test. Fig. 4.5 (b) shows that Eq. 4.21 still pro-

vides an estimate of the recognition rate R̄(Ξ) for a linear Bayes classifier which uses

the pooled variance estimate σpooled. Higher classification rates R̄q(Ξ) are feasible for

Bayes classifiers with quadratic decision borders. The more σ1 and σ2 differ the higher

is the increase in the classification rate. This is illustrated in Fig. 4.5 (b) and (c). The
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blue lines depict the cases for which σ1 < σ2. Illustrated examples are σ2 = hσ1 with

h ∈ {0.05, 0.25, 0.45, 0.65, 0.85}. The green lines depict the cases for which σ1 > σ2. Il-

lustrated cases are σ2 = hσ1 with h ∈ {1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. As for equal variances,

the classification rate R̄(Ξ) increases with increasing difference ∆µ. The gray dotted lines

depict the cases for ∆µ ∈ {µ1, 2µ1, 3µ1, 4µ1} with ∆µ = µ1 starting on the left. It is

concluded that in the case of different variances, Φ(δ/2) still provides an estimate for R̄(Ξ)

and a lower estimate for R̄q(Ξ) [180].

If the parameters σ and µi are unknown, s and x̄i are estimated from the samples.

The estimates deviate from the true populations values leading to differences between the

estimated effect size d and δ. Plotting the classification rate R̄(X ) over the true value

δ shows that the larger the number of samples n is the less differs the approximation of

R(X ) = Φ(d/2) from Φ(δ/2). This is shown in Fig. 4.6(a) - (d) with a varying number of

samples n. For this plot, n samples are drawn for each population N (µi, σ) 1500 times.

The calculated classification rate R̄(X ) is divided in 30 percentiles. Percentiles with high

numbers of calculated R̄(X ) from the samples are marked red. The higher the number of

samples n is the less deviates the measured effect size d and, hence, R̄(X ) = Φ
(

d
2

)

from

the true classification rate R̄(Ξ) = Φ
(

δ
2

)

of the two populations.

4.3.2 Illustrations for Case II: More Than Two Classes

The ANOVA tests the null hypotheses whether the means of c classes are equal. If the

null hypothesis is rejected, at least one mean differs from the others. The classification

rate R̄ of a linear Bayes classifier can be computed from reported statistics by applying

Eqns. 4.23 - 4.26 for the distributions. Fig. 4.7 (a) illustrates the relation between the

effect size f and R̄(Ξ). This plot is based on known population parameters. The larger the

difference ∆ = µ3 − µ1, the higher is the effect size f and the classification rate R̄(Ξ) of a

linear Bayes classifier. Furthermore, both values depend on the distributions of the means

µ1, µ2, and µ3 over their range ∆µ. Grey shaded lines illustrate this dependence for equal

ranges ∆µ = hσ with h ∈ {1, 2, 3, 4, 5}. Only value µ2 varies on each of the gray shaded

lines. Thus, the following summary can be given for small, medium, and large effect sizes

f in the case of c = 3:

• The classification rate R̄(Ξ) is between 36% and 41% for small effect sizes f .

• The classification rate R̄(Ξ) is between 40% and 46% for medium effect sizes f .

• The classification rate R̄(Ξ) is above 44% for large effect sizes f .

The effect size ω2 is scaled in comparison with f . The relation between ω2 and R̄(Ξ) is

plotted in Fig. 4.7 (b). Even if a maximum effect size of ω2 = 1 is reached, the classification

rate R̄(Ξ) varies between 66% and 100% depending on the value of µ2. Plotting R̄(Ξ) over

the effect size η̂2 would result in a similar plot. The reason therefor is that η̂2 is only a

slightly more biased estimate than ω̂2, and η̂2 ≈ ω̂2 for large n.

Concerning the spread of the c means of the distributions, Cohen describes three pat-

terns of variability in [27], which are minimum, intermediate and maximum. For this

purpose, the normalized maximum range of the means is given by Dmax = µc−µ1

σ
. The
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Fig. 4.7: (a) The classification rate R̄(Ξ) and the effect size f depend not only on the max-
imum range ∆ = µ3 − µ1 but also on the value of µ1. (b) The effect size ω2 is
scaled in comparison to f and leads therefore to a different graphical form of the
relation between effect size and classification rate. The graph for the effect size η̂2

is similar to this plot because η̂2 is only more biased than ω̂2 and, for sufficient large
n, ω̂2 ≈ η̂2.

remaining c − 2 means are distributed over the maximum range Dmax. The variability is

categorized as follows, see Fig. 4.8:

• Minimum variability: The value of one mean is at each end point of Dmax, the re-

maining c−2 means are at the midpoint. Then one has for the population parameters

f = Dmax

√

1
2c
. The effect size f is minimal. The classification rate is maximal only

for c = 3.

• Intermediate variability: The c means are equally spread over Dmax and f =
Dmax

2

√

c+1
3(c−1)

. For this case, the maximum of the classification rate is achieved.

• Maximum variability: The means are all at the end points of Dmax. If the number

of classes c is odd f = Dmax

√
c2−1
2c

and if c is even f = 1
2
Dmax. In this case, f is

maximal and the classification rate is minimal.

For the case of 3 classes, intermediate and minimum variability is the same. If c > 3, the

intermediate variability defines an upper bound for the classification rate R̄(Ξ). Upper

and lower bounds depending on the maximum range µc − µ1 are derived in the following.
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µ1 µ2, ..., µc−1 µc

(a)

µ1 µ2 µc−1 µc

(b)

µ1...µγ µγ+1...µc

(c)

Fig. 4.8: In [27], three patterns of variability for cmeans are described: (a) minimum variability,
(b) intermediate variability, and (c) maximum variability.

Given a maximum range of the means µc − µ1, the intermediate variability provides an

upper bound R̄UpperBound(Ξ) for the classification rates. The effect size for this case is

fUpperBound =
Dmax

2

√

c+ 1

3(c− 1)
=

µc − µ1

2σ

√

c+ 1

3(c− 1)
, (4.27)

and the the corresponding maximum of R̄(Ξ) is

R̄UpperBound(Ξ) =
1

c

[

2(c− 1)Φ

(

µc − µ1

2σ(c− 1)

)

− c+ 2

]

. (4.28)

The upper bound is illustrated as a red line for three, four, five, and six classes in Fig. 4.9.

The red circle in the plots depicts the case µc − µ1 = 5σ for the upper bound. The yellow

dots depict cases for which µ2, ..., µc−1 vary between the maximum range Dmax = 5. This

plane exemplifies that the larger the number of classes becomes the more complex the

relation between the spread of the means and the values of f and R̄(Ξ) gets. Still, the

planes have a lower bound which is given by the maximum variability.

Considering the case of maximum variability, a number of γ means lie at µ1 and c− γ

means lie at µc with γ ∈ {1, ..., c − 1}. For this case, the effect size fLowerBound of the

population is given by

fLowerBound =
1

σ
√
c

√

γ (µ1 − µLowerBound)
2 + (c− γ)(µc − µLowerBound)2 (4.29)

with

µLowerBound =
1

c
[γµ1 + (c− γ)µc] , (4.30)

The value fLowerBound is largest if the means are distributed between µ1 and µc equally.

Then, fLowerBound =
Dmax

2
if c is even, and fLowerBound = Dmax

c2−1
2c

if c is odd. Independent

of γ, the corresponding classification rate R̄LowerBound(Ξ) is

R̄LowerBound(Ξ) =
2

c
Φ

(

µc − µ1

2σ

)

. (4.31)

This rate R̄LowerBound(Ξ) is the smallest value if Dmax is hold fixed and the values of c− 2

means are varied within the range between µ1 and µc. The values of R̄LowerBound(Ξ) are

encircled in blue and black for Dmax = 5 in Fig. 4.9. The black circle illustrates the case

when the means are equally distributed on µ1 and µc. In doing so, the effect size f is

maximal [27]. The minimum classification rate R̄LowerBound(Ξ) is independent of γ. Conse-

quently, a number of c/2 lowest points with the coordinates (fLowerBound, R̄LowerBound(Ξ))
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Fig. 4.9: The classification rate R̄(Ξ) depends not only on the effect size f but also on the
distribution of the means between µ1 and µc. The yellow points illustrate the plane
on which the maximum range Dmax = µc−µ1

σ
is hold constant and the remaining

c− 2 means vary between µ1 and µc. The number of classes are in (a) c = 3, in (b)
c = 4, in (c) c = 5, and in (d) c = 6. The larger the number of classes becomes,
the more complex is the plane. Furthermore, intermediate variability is related to
maximum ability to classify and maximum variability to minimum ability to classify.
Hence, possible classification rates for a given maximum range Dmax are bounded by
upper and lower bounds.
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exist for each plane on which Dmax is constant. Connecting these points leads to the

lower bounds in Fig. 4.9. The black line denotes the case for which c−2 means are equally

distributed on µ1 and µc.

It should be noted that the lower and upper bounds define the minimum and maximum

values for each plane upon which Dmax is hold constant and the position of c − 2 means

is varied between µ1 and µc. With increasing effect size f , the recognition rate R̄(Ξ)

increases. Hence, the plane upon which Dmax is constant shifts to higher F and R̄(Ξ)

values. Planes with a larger value Dmax overlap with the previous planes and points lie

above the upper limit due to the form of the planes. Thus, the upper and lower bounds

require Dmax to be known. Only in the case of 3 classes, Dmax can be unknown and still

no points lie outside the upper bound. Reason therefor is that the plane upon which Dmax

is constant simplifies to a line for 3 classes.

Lastly, Fig. 4.9 provides an estimate on which classification rate R̄(Ξ) can be expected

from small, medium, and large effect sizes f . Expectable classification rates R̄(Ξ) decrease

with increasing number of classes for the small and medium effect sizes, e.g. R̄(Ξ) lies in

the range of 40% and 46% for a medium effect size f for c = 3 but it lies within the range

of 18% and 26% for c = 6.

However, the effect size of the population is usually unknown in applications. The

estimated effect size f̂ slightly underestimates the true value f . In the following, the upper

and lower bounds are derived for estimated parameters, both x̄i and s2i , and the difference

between estimated bounds and the bounds for population parameters is illustrated in

Fig. 4.10. Furthermore, the homogeneity of variances s21 = s22 = ....s2c is assumed in the

following.

The upper bound is given by

f̂UpperBound =

√

(x̄c − x̄1)2

MSWG

· (c+ 1)

12(c− 1)
− c− 1

c · n (4.32)

and

R̄UpperBound(X ) =
1

c

[

2(c− 1)Φ

(

x̄c − x̄1

2(c− 1)
√
MSWG

)

− c+ 2

]

, (4.33)

for estimated means x̄i and common variance s2 = MSWG.

The estimated effect sizes f̂LowerBound for the lower bound are

f̂LowerBound =

√

γ(x̄1 − x̄LowerBound)2 + (c− γ)(x̄c − x̄LowerBound)2

c ·MSWG

− c− 1

c · n (4.34)

with

x̄LowerBound =
1

c
[γx̄1 + (c− γ)x̄c] . (4.35)

The corresponding classification rate R̄LowerBound(X ) is

R̄LowerBound(X ) =
2

c
Φ

(

x̄c − x̄1

2
√
MSWG

)

. (4.36)
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Fig. 4.10 illustrates the relation between R̄(X ) and f̂ for c = 3. The yellow dots

exemplify the relation of R̄(X ) and f̂ based on n samples drawn from the distributions

N (µi, σ
2). For a small number of samples n, data points may lie slightly outside the bounds

depending on how well the sample data is representative for the population, e.g. deviation

from Gaussian distribution or homogeneity of variance. With increasing number of samples

n, the bounds for the population match better the bounds for the estimates. Furthermore,

the bounds for population or estimated parameters differ particularly in the range of small

and medium effect sizes if n is small. The reason therefor is that the calculation of the

classification rate R̄(X ) does not distinguish between population parameters µi and σ and

their estimates x̄i and s, whereas the formulas for the effect size f differ. The value f̂ is

slightly lower than f for the same classification rate R̄(X ) and for small values f̂ . The

larger the effect and the larger the number of samples n is, the less differ the bounds for

the estimates and the population parameters.

The interpretation in the context of estimating classification rates R̄(X ) from reported f̂

values is as follows. Exact calculation of R̄(X ) can be achieved by means of the Eqns. 4.23 -

4.26. The plots 4.7 - 4.10 can be used to give an approximation of the classification rate

R̄(X ) without explicit calculation, e.g. in the cases if one is more interested in an estimate

about the range of possible classification rates instead of exact values or if not all required

values for Eq. 4.23 - 4.26 are reported. The plots are based upon the population parameters

µi and σ. Hence, approximation of R̄(X ) using these plots slightly underestimates the

calculation of R̄(X ) using the Eqns. 4.23 - 4.26 for small n and small f̂ .

Lastly, the derived equations for the upper and lower bounds can be converted to the

effect size measures ω̂2 using Eq. 4.11.

Summarizing this subsection, the relations between the effect size measure f and the

classification rate R̄ of a linear Bayes classifier have been investigated for more than two

classes. For three classes, the classification rate R̄ lies between 36% and 46% for small and

medium effect sizes. The classification rate decreases if the number of classes increases

for same f values. Figs. 4.7 - 4.10 illustrate this relation and can be used to estimate

classification rates from reported f values graphically. Furthermore, upper and lower

bounds are derived for the relation between R̄ and f .
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Fig. 4.10: The larger the number of samples n is the better the bounds of the population
match the bounds of the estimates. Thus, for small and medium effect sizes and a
small number of samples, R̄(X ) would be larger than estimated from the bounds
for the population. The relation between f and R̄(X ) is illustrated for the cases
(a) n = 20, (b) n = 30, (c) n = 50, and (d) n = 100.
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4.3.3 Statistics for Feature Selection

Pattern recognition within machine learning aims to predict group memberships from

observations. The process is generally subdivided in data extraction, dimension reduc-

tion, and classification [9, 43]. Dimension reduction is further subdivided in projection

(e.g. PCA), compression (e.g. using information theory), and feature selection techniques.

Saeys et al. in [138] give a comprehensive review on feature selection techniques. Feature

selection is categorized in filter, wrapper, and embedded techniques. The former one is sub-

divided in univariate and multivariate approaches and also consults methods from NHST

to select application relevant features. Univariate filter approaches, which ignore feature

dependencies, are of special interest within the context of this chapter. In comparison to

wrapper or embedded techniques, their advantages are easy use for high-dimensional data

sets, fast computation, and independence from the classification algorithm.

T-test and ANOVA are widely used for feature selection although their statistical as-

sumptions are not always verified or reported [66, 67, 94, 97, 138]. Either the p value for

2-class problems or the F statistic for multiple-class problems is calculated for each fea-

ture separately. Features with lowest p value or highest F statistic are selected for further

classification. Several modifications of t-test exists which differ primarily in estimation of

the pooled variance and non-parametric test have been introduced, which better deal with

uncertainty about the true underlying distribution of the data [138]. Furthermore, the

ANOVA is similar to linear discriminant analysis, because both approach are based on the

ratio of between-variance to within-variance in the data.

According to Eq. 4.22, the t-value of the t-test relates nonlinearly to the Bayes error

rate. This relation requires homogeneous variances, normally distributed data, and equal

sample sizes. Under these conditions, the classification rate R̄ of a linear Bayes classifier is

directly proportional to t-values of the t-test. Thus, the lower the p-value of the t-test is for

one feature, the higher is R̄ for this feature. From this follows that if pFeature1 < pFeature2

then R̄Feature1 > R̄Feature2 is valid. In conclusion, results of the t-test used for feature

selection are in relation to the Bayes error rate if the assumptions are valid.

The Bayes error rate and the F̂ statistic of the ANOVA depend further on the distri-

bution of the means, see Eq. 4.25. Therefore, the classification rate R̄Feature1 for a feature

with a high F̂Feature1 value is not necessarily higher than the classification rate R̄Feature2 for

a second feature with a lower F̂Feature2 value. This means graphically that the plot for the

relation between a fix F or F̂ value and the classification rate is not a point but at least a

line or a plane. The form of the line or plane is defined by the additional dependence on the

distribution of the means, see Figs. 4.7 - 4.10 for illustration of these planes. Still, upper

and lower bounds exist given by the Eqns. 4.27 - 4.36. These bounds require additionally

knowledge of the maximum range Dmax of the means. Thus, possible classification rates for

given F or F̂ values are bounded. B. Guo and M. Nixon mention in their article [58] about

gait feature subset selection by mutual information that a disadvantage of feature selection

by a one-way ANOVA or correlation metrics is a lack of explicit or definite relation with

classification accuracy or the Bayes error rate. The derived Eqns. 4.23 - 4.36 overcome this

limitation which has accompanied using ANOVA as tool for feature selection.

The conclusions drawn for using F or t values to select features in machine learning can

be transferred to further statistics for feature selection which can be converted to F or t
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values or which are based upon these values.

4.3.4 Bayesian Inference

Bayesian inference intends to draw inferences about population parameters Θ from the

data X . If means of two distributions with common variance σ2 are compared, the same

t-statistic is calculated as for traditional NHST. If this t-value is reported, the classification

rate of a linear Bayes classifier can be calculated by applying Eq. 4.22. Usually the posterior

probability p(µ1, µ2, σ
2|X ) would be calculated that the true difference of the means lies

within a certain interval. In this way, the application of the Bayes theorem in inferential

statistics differs from a Bayesian classifier which calculates the probability that a single

sample is correctly classified.

It should be noted that further interesting relations exist between using the Bayes

theorem in inferential statistic and machine learning, e.g. in the case of estimating a

parameter, the bootstrap distribution equals a nonparametric, non-informative posterior

distribution [61, p.272].

4.4 Relevance for Gait Analysis

Studies on gait in medicine and biomechanics often rely on classical inferential statistics in

which either a t-test or an ANOVA is conducted. Recently, several approaches have been

undertaken to apply algorithms from machine learning to recorded gait data. Considering

publications on both techniques, the question comes up if these methods are related to

each other quantitatively. The previous sections 4.2 and 4.3 derived and illustrated these

relations. In the following, its application is exemplified on a published study in gait

analysis. First, the previously described comparison is extended to dependent samples,

and then classification rates R̄(X ) are estimated from reported values in the article.

4.4.1 Application to Dependent Samples

In social, psychological and medical science, the dependent samples design is preferred over

the independent samples design if applicable. In this case, either subjects of each condition

are matched on factors or else each subject serves in all of the c (c ≥ 2) experimental

conditions. The latter one is also referred to the within-subjects or repeated-measurements

design. Statistical analysis considers paired, i. e. dependent, samples. In this way,

variations of the dependent variable caused by individual properties of each subject have

less influence on the test statistics. For validity of the statistical test, the experimenter

should take control over order effects into account, e.g. by counterbalancing, for the within-

subjects design and random assignment of the subjects to the conditions.

The following description is based upon the textbooks [136, 143]. Generally, the t-test

for two dependent samples is applied to interval or ratio data. It is based on the following

assumptions:

• Random and independent selection of each sample from the population it represents,

67



4 Comparison of Inferential and Predictive Statistics in the Context of Gait Analysis

• Homogeneity of variances: σ2
1 = σ2

2 = σ2 where σ2
1 refers to the variance of the

population under condition 1 and σ2
2 under condition 2,

• Samples originate from Gaussian distributions, i.e. Ξi ∼ N(µi, σ
2
i ),

• Equal sample size n1 = n2 = n.

Defining the difference Di = xi,1 − xi,2 for each paired sample i, the computed test

statistic becomes

t̂depend =
D

sD
=

∑

i Di

sD
(4.37)

with the standard error of the mean difference sD

sD =
sD√
n

. (4.38)

The estimated standard deviation of the differences sD is

sD =

√

∑

i D
2
i − (

∑
i Di)2

n

n− 1
. (4.39)

Thus, analyzing the paired differences results in an one-sample t-test. The hypothesis H0

is rejected if

t̂depend > tdf,1−α/2 with df = n− 1 . (4.40)

The degree of freedom df is reduced by half comparing to a t-test for independent samples.

It is noted in [136, p.447], that pairwise data analysis compensates for low df . Pairwise

samples are to be preferred if

[

n(2n+ 1)

(n+ 2)(2n− 1)

] [

(n− 1)s2s + ns2D
(2n− 1)s2D

]

> 1 (4.41)

with

s2s =

√

∑

i(xi,1 + xi,2)2 − (
∑

i(xi,1 + xi,2))2/n

n− 1
. (4.42)

Generally, the t-test for paired samples has higher power to detect an effect and is more

informative because extraneous effects are more easily to screen out. On the counterpart,

it is more sensitive to violence against the homogeneity of variance assumptions than the

t-test for two independent samples.

The effect size can be either computed with the pooled standard deviation se or with

the standard deviation of the differences sD. The latter one is calculated by

ddepend =
D̄

sD
= t̂depend

√

2

n
. (4.43)

Dunlap et al. in [44] argue that the effect size ddepend overestimates the actual effect size
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and recommend a corrected formula for estimation of d

d = t̂depend

√

2(1− r)

n
, (4.44)

where r is the correlation coefficient between the two groups. Eq. 4.44 is equivalent to Eq.

4.6. Thus, the relations between d and the classification rate are the same for a dependent

t-test if d is reported. Otherwise, ddepend needs to be converted to d = ddepend
√

(1− r).

The latter case requires reported r values.

The analogue for comparing more than two means for a repeated measures design is

the ANOVA for dependent samples. In this case, the total variability SST/dfT in the data

is divided into between-conditions variability SSBG/dfBG, the between-subjects variability

SSBS/dfBS and the residual variability SSres/dfres with

SST = SSres + SSBG + SSBS (4.45)

=
∑

i,j

(xi,j − x̄i − x̄j + x̄)2 + n ·
c
∑

i=1

(x̄i − x̄)2 + c ·
n
∑

j=1

(x̄j − x̄)2 .

The F̂ statistic for dependent samples is calculated as follows:

F̂ =
MSBG

MSres

=
1

c−1
· n ·∑c

i=1(x̄i − x̄)2

1
(n−c)(c−1)

·∑i,j(xi,j − x̄i − x̄j + x̄)2
. (4.46)

The effect sizes η2 = SSBG

SST
and partial η2p = SSBG

SSBG+SSres
are most frequently reported where

η2p is usually larger than η2. Fig. 4.7 (b) can also be used to approximate a classification rate

from reported η2 of a within-subjects analysis because calculation of η2 equals Eq. 4.12 and

η̂2 ≈ ω̂2. For exact approximation, knowledge on MSWG and on the means x̄i is required

to apply e.g. Eq. 4.24.

4.4.2 Selected Application: The Embodiment of Depression and

Sadness in Gait

Michalak et al. analyze in [106] how gait patterns are associated with sadness and depres-

sion. For a number of n1 = 14 participants suffering from a diagnosis of major depression

and a number of n2 = 14 never-depressed control participants, differences of five gait fea-

tures are investigated. Means and standard deviations for each dependent variable are

reported. Furthermore, a dependent t-test was applied to the recorded data of each gait

parameter. The authors illustrate in a bar plot that all effect sizes are larger than 0.8. For

better approximation of corresponding classification rates, the exact value of d is calculated

from reported x̄i and si. Tab. 4.4 summarizes the reported measures and the results for

the approximated classification rates. A rough approximation of the corresponding classi-

fication rates by reading out d from the bar plot and using Fig. 4.5 (a) for approximation

would also be possible. Classification rates range between 65% and 74%. The authors note

that the results of the inferential analysis do not allow conclusions about the specificity of

the gait patterns. This means that, for a classification task, no conclusions can be drawn
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Gait Parameter x̄1 s1 x̄2 s2 t̂depend t̂ d R̄(X )

Speed 1.07 0.22 1.30 0.17 3.16 3.10 1.17 72%
Arm Swing 274.07 97.62 370.51 82.26 2.69 2.82 1.07 70%
Lateral Body Sway 49.03 16.11 35.63 7.91 -3.59 2.79 1.06 70%
Slumped Posture 1.97 2.99 -3.17 4.93 -3.57 3.34 1.26 74%
Vertical Movement 33.13 13.00 41.10 6.65 2.26 2.04 0.77 65%

Tab. 4.4: Approximation of R̄(X ) for the discrimination between walking styles of depressed
and non-depressed participants.

Gait Parameter x̄sad ssad x̄happy shappy t̂depend t̂ d R̄(X )

Speed 0.84 0.13 1.06 0.17 8.79 4.93 1.45 77%
Arm Swing 218.77 92.43 352.86 139.36 7.97 3.85 1.13 71%
Lateral Body Sway 31.87 12.04 28.51 10.55 -2.69 1.01 0.30 56%
Slumped Posture -3.25 6.08 -5.89 5.24 -3.37 1.63 0.48 60%
Vertical Movement 27.51 5.16 38.45 8.93 8.62 5.08 1.50 77%

Tab. 4.5: Approximation of R̄(X ) for the discrimination between sadness and happiness.

on the confusion of depressed gait styles with other gait styles, e.g. caused by weight or

complaints. This is a major issue, because high specificity is required for generalization of

approaches in machine learning.

The authors further discuss that depressed and never-depressed participants differ in

weight and taking of antidepressant medication that might influence the participant’s walk-

ing styles. Thus, they carried out a further study where the gait of 23 participants was

recorded after mood induction. Considered states are happiness and sadness. Results are

listed in Tab. 4.5. Again, the exact effect size d is calculated and the classification rate

R̄(X ) is approximated. Based on the reports in [106], a classification task based only

on observing speed or vertical movement of the body would already discriminate the two

emotional states happiness and sadness with 77% accuracy.

4.5 Summary

Computer scientists work together with researchers in biomechanics and medicine within

the interdisciplinary research field of gait analysis. This interdisciplinary orientation leads

to the application of different methods from statistics to analyze gait data. Researchers in

biomechanics and medicine apply inferential statistics, traditionally NHST, to investigate

whether the independent variable under investigation causes variations in gait. On the

other hand, researchers in computer science and engineering study the prediction of char-

acteristics from observing the gait. This chapter aims to compare these two approaches

to analyze gait data. It elaborates dissimilarities, similarities, and quantitative relations

between selected methods from inferential and predictive statistics.

Inferential statistics is subdivided in frequentist inference and Bayesian inference. Even
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though the latter one is a more flexible approach, frequentist inference is commonly applied

in gait analysis. The t-test is the technique for comparing two means and the ANOVA is

the technique for more than two means. Both methods assume normally distributed data

and homogeneous variances. In machine learning, a Bayes classifier provides the minimum

error rate P ⋆
E if the distributions of the populations are known. A Bayes classifier with a

linear decision border is chosen for the intended comparison because it models the data by

Gaussian distributions and assumes a common variance. In the following, the results are

summarized for the comparison of the calculated statistics for a t-test or ANOVA and the

classification rate of a linear Bayes classifier.

First, the investigated methods from inferential statistics draw conclusions about pop-

ulation parameters whereas predictive statistics aims to assign class membership to single

samples. Still, calculated statistics and effect sizes can be converted to the classification

rate R̄ of a Bayes classifier. Cohen describes in [27] that the effect size d of the t-test can

be visualized by the classification rate Φ(d
2
). From this follows that R̄(X ) = Φ( t̂

2n
) for the

t̂ statistic. This work additionally derives the relation between statistics of the ANOVA

and the classification rate R̄, see Eqns. 4.23 - 4.26. A special case of these equations is

for two means. In this case, the equations simplify to the relations obtained for the t-test.

In the context of interdisciplinary research, these equations facilitate that classification

rates R̄ of a linear Bayes classifier can be estimated from reported statistics of frequentist

inference. In doing so, a range of possible classification rates can be given for a research

problem without the need to have access to the recorded data which may not be public

available.

Second, these relations are illustrated for population parameters. Possible classification

rates R̄ can be approximated graphically from these plots. Furthermore, they show that R̄

is lower than 66% for reported small and medium effect sizes of the t-test and the ANOVA.

The relation between statistics of the ANOVA and the classification rate R̄ depends further

on the distribution of the means. Upper and lower bounds are derived for this dependence

in the Eqns. 4.27 - 4.36. The bounds differ slightly if they are calculated for the parameters

µi and σ2 of the population or for their estimates x̄i and s2.

Third, statistics such as t̂ and F̂ are used for feature selection in machine learning.

If the assumptions of the t-test are valid, sorting features after t̂ equals sorting features

after R̄. This is not the case for sorting features after F̂ , because the relation between

R̄ and statistics of the ANOVA additionally depends on the distribution of the means,

as illustrated in Fig. 4.9. Guo and Nixon mention in [58] that one limitation of using F̂

for feature selection is a missing explicit and definite relation with classification accuracy.

This limitation is overcome by the Eqns. 4.23 - 4.26 and the upper and lower bounds given

by the Eqns. 4.27 - 4.36.

Finally, the application of the relation between inferential and predictive statistics is

exemplified for an article about the embodiment of sadness and depression in gait. After an

extension to dependent samples, classification rates from reported statistics are estimated.

In conclusion, classification rates can be estimated from reported statistics of frequentist

inference which compare the difference between means. This concept is generalizable to

applications in which both inferential and predictive data analysis is of interest.
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4.6 Limitations

The comparison within this chapter focuses on univariate techniques. In machine learning,

classification rates improve if not only a single feature is used. Thus, a future direction

is towards comparing multivariate methods. Furthermore, the relation between statistics

of the investigated techniques from frequentist inference and the classification rate of a

linear Bayes classifier assume that the data are normally distributed, that the distributions

have homogeneous variances, that the sample size is equal for all groups, and that the

independent variable is divided in few, discrete levels. Therefore, analyzing relations for

nonparametric or regression techniques are a further future direction.

It should be additionally noted that recognition rates calculated by applying leave-

one-out or cross-fold validation is preferred over classification of all samples in machine

learning. Yet, this requires access to the complete data set and, hence, these recognition

rates cannot be estimated from reported statistics alone.

Bayesian inference is a more flexible approach than frequentist inference in inferential

statistics. For the special case of comparing two means and assuming a common vari-

ance, the same t̂ statistic is computed and the relation between t̂ and R̄ can be applied.

This chapter concentrates on techniques from frequentist inference and considers only the

techniques from Bayesian inference which are analogous to the t-test and the ANOVA.

Finally, the application of both inferential and predictive statistics depends on the

application. The area of intersection has been defined in section 4.1.1. If the relation

between the dependent variable and the observations is obvious in an application, applying

inferential statistics is not required. On the other hand, predictive analysis is needless if

the task is only to verify whether there is a difference in the means. Application of both

methods is only useful if predictive analysis is in the focus but the relation between cause

and observation is not obvious.
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Nonverbal communication plays a major role in future robotics to enhance natural human-

robot interaction. Within this research goal, affective computing faces the challenge to

automatically recognize a human’s affective state. Detection of affect is based on ob-

serving facial expressions, linguistic as well as acoustic features in speech, physiological

parameters, gesture, and body motions [122, 123, 161]. Considering especially body mo-

tions, psychological studies indicate that affective states are also expressed in the way

people walk, see the review in chapter 3.1 and also the studies about human perception in

chapter 3. As each modality has its limitations, recognition based on combining different

modalities seems to be more reliable for real-world applications [57, 161]. To provide an

additional modality and to enhance recognition of affect at distance, the human gait is

studied in terms of its ability to reveal a person’s affective state. Further possible applica-

tions for predicting affective states from gait are the cognitive household and high-security

locations, e.g. airports.

Only one study has yet investigated the recognition of emotions from gait patterns with

techniques from machine learning [69]. In this case, recognition rates are above chance.

Furthermore, the previous chapter 4 provides a method to estimate classification rates

from reported test statistics and, for distinguishing sadness and happiness in gait, rates of

up to 79% are approximated from reported test statistics [106] in section 4.4.

Within this chapter, machine learning algorithms are developed therefor. The inves-

tigations especially focus on 1) the influence of an individual’s walking style on emotion

recognition, 2) the emotion model on which the classification task relies, and 3) on the

recognition of emotions in gait versus other attributes such as identity or gender. The mo-

tion gait is characterized by many degrees of freedom so that it is often assumed that the

gait is as individual as one’s fingerprint. Recording gait patterns provides high-dimensional

data sets; therefore efficient dimension reduction techniques are required for successful

classification. Within this chapter, the unsupervised techniques principal component anal-

ysis (PCA) and kernel PCA (KPCA) are compared with the supervised techniques linear

discriminant analysis (LDA) and general discriminant analysis (GDA) for dimension re-

duction. Furthermore, catching the temporal information of gait trajectories with PCA

is compared with extracting statistical parameters. Although expression of affect during

walking is covered by the primary task of locomotion, recognition of affective states has

been accomplished based on observation of a single stride. A further result is that especially

affective states which differ in arousal are suitable to be detected in gait patterns.

The walking style is also influenced by other factors. Therefore, a comparative study on

different, marker-based gait databases is conducted. Either identity, gender, exhaustion, or

affective states are recognized depending on the available recordings in the gait databases.

The identity of the walker is best recognizable within these factors. As the dimension of

features is high and only a small number of training samples are available, the within-
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5 Recognition of Affect in Gait Patterns

scatter matrix SW becomes singular when applying LDA. A mathematical proof is derived

that in this case a support vector machine (SVM) with a Gaussian kernel calculates the

same recognition rate as a hard-margin classifier or nearest neighbor classifier.

The remainder of this chapter is organized as follows: Section 5.1 summarizes the state

of the art on marker-based gait analysis and emotion recognition from motions. Methods

for dimension reduction and classification are described in section 5.2. Section 5.3 presents

the results on the comparison of different pattern recognition algorithms applied to various

aspects in emotion recognition. This analysis is conducted for the Munich database. This

section 5.3 has been previously published to a large extend in [170]. Afterwards, different,

marker-based gait databases are analyzed in section 5.4. The recognition of affective states

based on analyzing gait recordings is compared with the recognition of the identity of the

walker, gender, and exhaustion. Finally, a conclusion is given in section 5.5 and limitations

are discussed in section 5.6.

5.1 Pattern Recognition

Pattern recognition, also referred to as machine learning in computer science, deals with

the extraction of knowledge from sensor data. This task is divided in data preprocessing,

feature extraction, and classification. A learning algorithm can be either supervised, where

the training data is labeled, or unsupervised. The textbooks of Abe [2], Bishop [9], Duda

[43], and Tan et al. [147] provide an excellent description about pattern recognition tech-

niques. The summary of the methods used within this chapter is based on these textbooks.

In general, pattern recognition tasks have the following challenges in common [43]:

• The No Free Lunch Theorem says ‘that for both static and time-dependent optimiza-

tion problems, the average performance of any pair of algorithms across all possible

problems is identical’ [155]. Thus, superior performance of an algorithm is related to

the problem under investigation and its characteristics, e.g. prior information, data

distribution, and amount of training data.

• Similarily, the Ugly Ducking Theorem says that there is no problem-independent best

set of features.

• In a high-dimensional feature space, classification functions have the potential to be

much more complicated to determine than in a low-dimensional feature space, e.g.

the estimation of a one-dimensional density function requires less samples than a

high-dimensional density function. This is commonly known as the Curse of Dimen-

sionality. Thus, the aim is to incorporate knowledge about the data and to reduce

the dimensionality.

• The trade-off between Bias and Variance considers the quality of a model which

is estimated on various data sets of the same population. If a model has many

parameters, it will fit the data well but variance for the quality of fit will be high.

A model with few parameters will result in a lower variance but high bias. A low

generalization error is desirable in machine learning; therefore, low variance is more
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important than low bias for a classification task. A large training size and prior

knowledge on the model lowers both criteria.

Facing these challenges, several techniques from pattern recognition are compared in

the following for recognition of affect in gait patterns. As marker-based gait recordings

are high-dimensional, focus lies in particular on dimension reduction. This simultaneously

avoids the curse of dimensionality and reduces the number of parameters trained for the

model.

5.1.1 Marker-based Gait Analysis

Although recognition using vision-based features extracted from the shape of a walker is

more applicable for real-world scenarios, model-based features give more insights in the

underlying kinematics. For this reason, the latter one is preferred in clinical, biomechanical,

and methodological studies. Advantages of high resolution and more reliable calculation

of kinematic parameters faces an artificial setup required for marker-based optical motion

tracking.

Recordings of gait patterns are characterized by high dimensionality, temporal depen-

dency, high variability, and nonlinearities [21, 22]. Furthermore, gait analysis lacks the

definition of a universal normal gait pattern, because an individual’s gait is influenced by

many factors like age, weight and complaints. This makes the gait suitable for biometric

identification in computer vision [10, 71, 117, 139], but complicates recognition of other

factors.

Marker-based gait analysis is commonly used in medical and biomechanical studies for

more than a decade. Still, data analysis is based traditionally on statistics. To improve

the extraction of useful information from highly correlated time-dependent gait parame-

ters, several approaches have been undertaken, including methods from machine learning

[21, 22, 69, 131, 150, 156]. An overview is given in Chau’s reviews [21, 22]. Clustering, mul-

tivariate techniques, artificial neural networks (ANN), and time-frequency analysis have

been applied to short-term recordings. Fractal analysis is only applicable to long-term

recordings, as it estimates long-range correlations. However, Chau points a lack of objec-

tive comparisons between multiple methods out. Wu and Liu investigate the capability of

KPCA to capture nonlinear relationships in gait patterns [156]. KPCA slightly increases

recognition of age in comparison to PCA. Troje presents a two-stage PCA for gender recog-

nition [150]. Roether et al. introduce a phase-adapted blind source separation algorithm to

minimize redundancy in the parametrization of gait patterns [131]. Still, the comparison

regarding the number of kinematic parameters considered for analysis, different methods

to capture the temporal characteristics of gait, and different classifiers is an open issue.

Applications that are most frequently studied in gait analysis are therapeutic support

for patients with gait complaints, gait-based human identification, and discrimination be-

tween human motion types [10, 21, 22, 71, 86, 91, 117, 139]. Besides further improvement in

human motion reconstruction from recorded data, fundamental advances in behavior rep-

resentation of motions is required for a wider range of applications for human movement

analysis [109].
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5.1.2 Recognition of Emotions in Movement

Evidence from psychology supports that emotions are not only expressed in facial expres-

sions and speech, but also in posture and body movements. Still a debate is ongoing on the

specificity of the expressiveness. Ekman and Friesen stated in [47] that bodily cues express

more the quantity than the specificity of emotions, whereas other studies support that also

emotion-specific movements and posture characteristics seem to exist [31, 153]. From the

engineering point of view, several studies have investigated the detection of emotions from

body movements. An overview is given in Tab. 5.1. Studies differ with regard to emotional

states, methodology, and whether gestures, postures, or general motions are investigated.

Bernhardt and Robinson especially focus on non-stylized body motions [7]. Stylized

and non-stylized motions differentiate in their primary task. The primary task of stylized

motions is expressiveness, where non-stylized motions can be actions such as knocking

or walking. Furthermore, they distinguish between person-dependent and inter-individual

recognition. This is motivated by a principle of character animation. It says that one

character would do an action differently in two different emotional states, and that two

characters would not do an action in the same way [89]. Taking into account that indi-

viduals may knock differently, they report an improvement of 31% in recognition rate. In

particular, the affective states angry and sad are better recognizable than neutral or happy.

Kleinsmith et al. examine the role of affective dimensions in static postures for auto-

matic recognition [79]. Error rate is lower than 21% for each affective dimension arousal,

valence, potency, and avoidance based on an ANN. They conclude that the dimensional ap-

proach can be seen as a comparable alternative to discrete affective categories for analyzing

affect in postures.

Kapur et al. compare in [73] the performance of different classifiers, namely decision

tree, logistic regression, naive Bayes, support vector machine (SVM), and ANN for styl-

ized motions. Recognition rate ranges between 86% and 93% for person-dependent and

between 62% and 84% for inter-individual recognition. In addition, Meservy et al. analyze

nonverbal behavior for deception detection in the context of national security [105]. In

their study, they compare the performance of discriminant analysis (55%), decision tree

(58%), ANN (71%), and SVM (71%). Even though recognition rates are above chance,

the authors note that still many technical and utilization challenges need to be overcome.

Among others are detection across individuals and varying level of truthness.

Gunes and Piccardi combine recognition based on upper body gestures with facial ex-

pressions [57]. Their results, gained on the FABO database, show that recognition from

fused face and body modalities performs better than from the face or body modality alone.

For a random forest classifier, recognition rates are 34% for facial expressions, 77% for ges-

tures, and 84% for feature-level fusion of both modalities. They reason that it is easier for

a vision-based system to model and recognize affect from global body and head motions

than from atomic movements in the face.
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5 Recognition of Affect in Gait Patterns

Only one work studies recognition of affect in walking with techniques from machine

learning [69]. Janssen et al. investigated the recognition of four affective states by means

of ANNs. Person-dependent recognition rate reaches 84% in average based on kinetic data

measured with a force plate in the ground. However, inter-individual recognition rate

remains around chance level. Walking during listening to calming, excitatory or no music

is to 79% classifiable using kinematic parameters.

Even though first studies on the recognition of emotions from bodily movements have

been conducted, recognition of emotions from bodily movements is still a relatively un-

explored field comparing to a numerous number of publications on facial expressions and

speech. Reviews on affect detection suggest that further research is required both in terms

of categorical and dimensional emotion definition [18, 56]. This is a challenging task be-

cause a psychological framework – similar to the facial action coding system – does not

yet exist for expressive body movements. Furthermore several approaches from machine

learning have been undertaken, where best results are gained with SVMs or ANN. Features

are predominantly selected by the researchers to limit the feature space with respect to

a limited amount of training data. The two approaches which have been applied from

machine learning are PCA and an independent samples t-test.

5.2 Methods

Classification of gait patterns is challenging for techniques from machine learning, because

data of gait recordings are high-dimensional, time-dependent, highly variable, and gait

variables interact in a nonlinear relationship [21]. Furthermore, retrieving the affective

state of the walker from gait patterns faces the challenge to extract patterns which are

not directly observable but rather covered by the primary task of locomotion. Fig. 5.1

illustrates the influence of affect on the right shoulder angle. The trajectories, which

describe for- and backward movement of the right arm, are from the same walker as in

Fig. 3.4. Influence of affect on walking differs between individuals as well as between joint

angles and is usually less distinguishable by graphical investigation as in Fig. 5.1. Since

walking is a symmetric movement, following analysis focuses on the right side of the body.

Furthermore, joint angles are used as a basis for feature extraction and classification, so

that comparing performance of automatic classification with human observers is based on

the same information obtained from the recordings.

Improvement in accuracy can be achieved by either optimizing the classifier or feature

extraction. This section focuses on comparing three standard classifiers and improving

feature extraction so that accuracy of automatic classification matches or even outper-

forms human evaluation. Two approaches are compared to extract features from the joint

trajectories. The former one is based on statistical parameters in combination with dif-

ferent dimension reduction techniques. Dimension reduction is subdivided in projection

(e.g. PCA), compression (e.g. using information theory), and selection methods. For this

application, feature space projection and feature selection are applied. The latter approach

applies PCA directly to the trajectories over time to extract temporal information.
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Fig. 5.1: Trajectories of the right shoulder angle differ with respect to expressed affect. 10
recordings of one walker are plotted for each affective state.

5.2.1 Statistical Parameters of Joint Angle Trajectories

In literature, the expression of affective states in movement is often associated with its

velocity [32, 126, 131]; therefore the parameters stride length, cadence, and velocity are

analyzed separately. Minimum, mean and maximum are calculated for each joint angle.

Considered joint angles are head, neck, shoulder, elbow, thorax, spine, pelvis, and foot

progress angle for each rotation axis. Furthermore, humans observe more the upper part

than the lower part of the body during an emotion recognition task, see chapter 3.3.2. This

suggests to select a subset of joint angles from the upper body part. Thereby, the joint

angles, see Tab. 5.2, are noted in literature to be influenced significantly by affect [32] and

form a subgroup which is analyzed separately. Summing up, the kinematic parameters

are split in three groups. Classification and optional dimension reduction are based on

xkin ∈ R
d with dimension M , containing one of the following sets of kinematic parameters

• Solely velocity, stride length and cadence (VSC), d = 3,

• Minimum, mean and maximum of significant joint angles including VSC, d = 15,

• Minimum, mean and maximum of all joint angles including VSC, d = 69.

Transforming and reducing the feature space can improve classification. With this purpose,

PCA, KPCA, LDA and GDA are applied to the significant subsection and to all joint angles

[9, 43, 151]. Mean and standard deviation of the feature vector xkin,norm are normalized

for PCA and KPCA.
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Factor Parameter

Stride Length Length of One Stride

Cadence Time for One Stride

Velocity Cadence/(Stride Length)

Neck Angle (Forward Tilt) Min, Mean, Max

Shoulder Angle (Flexion) Min, Mean, Max

Shoulder Angle (Abduction) Min, Mean, Max

Thorax Angle (Forward Tilt) Min, Mean, Max

Tab. 5.2: Kinematic features of significant subsection.

Principal Component Analysis (PCA)

PCA is also known as Karhunen-Lòeve transformation. It calculates the eigenvectors,

further on called principal components (PCs), of the covariance matrix and then transforms

the original data space to an orthogonal set of principal components. Principal components

ui with highest eigenvalues λi represent the vectors with maximum variance in the data

set. The eigenvalue problem to solve is defined as

(

1

N

N
∑

j=1

xkin,norm,jx
T
kin,norm,j

)

ui = λiui with i = 1, ..., d , (5.1)

with N observations of xkin,norm. Original data is mapped on up to a maximum of d

principal components. Dimension reduction is achieved if the coefficients of the first m

principal components are used for classification with m < d. Since PCA is an unsupervised

technique, it is not guaranteed that the projection which maximizes the variance in the data

also maximizes the representation of affect in the transformed feature space. Furthermore,

PCA is a linear technique and does not take underlying nonlinearities into account.

Kernel Principal Component Analysis (KPCA)

A non-linear extension of PCA is KPCA [142]. Its principle is that it first maps the data

to a more suitable feature space R
m and then applies PCA in R

m. This involves two

advantages. On one hand, an appropriate mapping can enhance the separability of the

clusters. And on the other hand, the dimension m can be larger than d so that the number

of possible eigenvectors increases to N . Given such a map φ which can be nonlinear

φ : Rd → R
m, xkin,norm 7→ Xkin,norm ,
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each sample xkin,norm is mapped to Xkin,norm in R
m. Up to this point explicit knowledge

about φ is required. Applying PCA in R
m, means to solve λiui = Cui with

C =
1

N

N
∑

j=1

φ(xkin,norm,j)φ
T (xkin,norm,j) . (5.2)

Schölkopf et al. show in [142] that this eigenvalue problem can be reformulated as

Nλa = Ka with kij := φT (xkin,norm,i)φ(xkin,norm,j) , (5.3)

where the dot product φTφ is substituted by a symmetric kernel function k(·, ·). It can

be shown that if the conditions of a Mercer’s kernel are true for k(·, ·), always a mapping

φ exists. Applying the kernel trick does not only reduce computational complexity but

also has the advantage that explicit knowledge about the mapping φ is not required.

Within this study, a polynomial kernel k(x,x′) = (xTx′)D and a Gaussian kernel k(x,x′) =

exp((−‖x− x′‖2)(2σ2)−1) are used.

Linear Discriminant Analysis (LDA)

In contrast to algorithms based on PCA, LDA considers the class membership for pro-

jection. The concept of LDA is to maximize the separability of the class means and to

minimize the variance around these means. The eigenvectors wk which span the lower-

dimensional space after projection are a linear combination of the original dimensions. For

a c-class problem, the maximum number of eigenvectors is (c − 1). Based on the total

mean m = 1
N

∑N
i=1 xkin,i, the mean mj for samples xkin,i,j of each class j, and the number

of samples nj for each class, the between-class scatter matrix SB

SB :=
c
∑

j=1

nj(mj −m)(mj −m)T , (5.4)

and the within-class scatter matrix SW

SW :=
c
∑

j=1

nj
∑

i=1

(xkin,i,j −mj)(xkin,i,j −mj)
T , (5.5)

are defined. A measure for maximizing the between-class separability while minimizing the

within-class separability is det |SB |
det |SW | . The advantage of this measure is that it is maximized

for a projection matrix which contains the eigenvectors of S−1
W SB. Thus, the generalized

eigenvalue problem is

SBwk = λkSWwk with k = 1, ..., c− 1 . (5.6)

At least d + c samples are required so that SW is not singular and that the eigenvectors

are the optimum solution for maximizing det |SB |
det |SW | . If SW is singular, either a combination

of PCA and LDA or advanced algorithms for solving the eigenvalue problem can be used.
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Regarding the latter, both [39] and [96] show that applying the generalized Schur (QZ)

decomposition for solving the eigenvalue problem leads to similar or better results than

related approaches even in the case of the small sample size problem. The QZ algorithm is a

standard implementation in MATLAB and used within this study. Furthermore, Martinez

and Kak note that PCA can perform better than LDA even though it does not take class

affiliations into account [99].

Similarly to KPCA, General Discriminant Analysis (GDA) performs LDA in a high-

dimensional feature space [5]. Again, using a kernel avoids explicit mapping into the high-

dimensional space. Polynomial as well as Gaussian kernels have been applied to calculate

inter-individual and person-dependent recognition rates. Accuracy does not exceed chance

level, so that results are not further reported.

5.2.2 Modeling Joint Angle Trajectories by Eigenpostures

In contrast to computing the minimum, mean and maximum of a time series that corre-

sponds to a joint angle, the approach based on eigenpostures directly applies PCA to the

complete data set of one gait. The procedure, see Fig. 5.2, is lent on eigenpostures and

eigenwalkers, as proposed by Troje [150].

First, spatial information in the data set of one gait is reduced. The vector x(t) ∈ R
23

contains x, y and z-rotation of each joint angle at time step t. The complete data set of

one walk is described by the matrix

X = [x(1) x(2) ... x(T )] ,

containing T frames. It is required for PCA that the matrixX is normalized. Therefore, the

mean posture pmean = 1
T

∑T
t=1 x(t) is subtracted, and the data set is divided by its standard

deviation pstd for unit variance. PCA is applied to Xnorm. Dimension reduction is achieved

by using only the four eigenvectors, called eigenpostures pj, with highest eigenvalues for

further data analysis. Hence, the gait of one walker p(t) at time step t is described by

p(t) = pmean + diag(pstd)
4
∑

j=1

cj(t)pj ,

where cj(t), 1 ≤ j ≤ 4, are the coefficients of xnorm(t) after transformation.

Temporal information is covered by the coefficients cj(t). As human walking is periodic

and each recording covers at least one stride, Fourier transformation (FT) is applied to

model the temporal behavior of the coefficients cj(t). The leakage effect is reduced using a

Hamming window. Main frequency fj and phase Φj are extracted. The phase of the first

eigenposture Φ0 is set to zero and Φj for j = 2, 3, 4 are shifted by their difference to Φ0.

The individual gait of one person p(t) is modeled as follows:

p(t) = pmean + diag(pstd)p1 sin (2πf1t) + diag(pstd)
4
∑

j=2

pj sin (2πfjt+ Φj) . (5.7)

Third, a second PCA extracts most relevant information among different walks of one
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Xk

pmean

Xnorm PCA
j = 1, ..., 4

pj

cj(t) FT
fj

Φj
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Fig. 5.2: The mathematical description wk of one walk k contains the mean posture pmean,
4 eigenpostures pj, 4 frequencies fj and 3 phase shifts φj.

walker and within different walkers. The description of a single walk wk contains the mean

posture pmean, four eigenpostures pj,k, four frequencies fj,k and three phase shifts Φj,k

wk = [pT
mean pT

1,k ... pT
4,k f1,k ... f4,k Φ2,k ... Φ4,k]

T . (5.8)

The matrix W contains e.g. all walks wk of one walker expressing different affective states

for person-dependent recognition. Eigenvectors of the second PCA, which is applied to

W, are called eigenwalkers. Their coefficients are used for final classification. Results of

this approach, later referred to as PCA-FT-PCA, are given for classification based on the

coefficients of all eigenwalkers.

It is noted, that replacing either the first PCA, the second PCA or both PCAs by

KPCA does not improve accuracy significantly [166]. Furthermore, the second PCA can

be replaced by LDA or GDA [179]. In this case, number of instances in the training

set is approximately four times smaller than dimension of a single instance wk, so that

performance of LDA and GDA is low.

5.2.3 Classification

For recognition several standard classifiers are compared. Two parametric classifiers and

one non-parametric classifier are applied to the data. Description of the classifiers is

primarily based on [2, 9, 43, 87, 147]. The data set contains ni samples for each class i

with a total number of samples N =
∑c

i=1 ni. As the number of samples in the data sets

is small, the recognition rate is calculated using leave-one-out cross validation. Each data

point x ∈ R
d contains d features. The true state of nature is denoted as ωi further on.

Bayes Formula and Bayes Error Rate P⋆
E

Given the class-conditional probability density p(x|ωi) and the prior probability P (ωi), the

posterior probability P (ωi|x) is calculated by Bayes’ formula

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
, (5.9)

where p(x) =
∑c

i=1 p(x|ωi)P (ωi) is a scaling factor. The probability of error PE,i is

PE,i = 1− P (ωi|x) .
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By selecting the ωi which maximizes P (ωi|x), the overall error PE is minimized. Assuming

that the distribution which generates the data is known, the Bayes’ error rate P ⋆
E is the

best performance a classifier can achieve. However, the distribution is normally estimated

from the training data for real-world applications and the performance depends on how

well the model approximates the real distribution.

Naive Bayes

The central limit theorem says that the sum of arbitrarily, identically distributed random

variables can be approximated by a Gaussian distribution. Real-world measurements are

often influenced by a large number of random processes. Considering the central limit

theorem, it is not so far off that approximation of an unknown distribution with a Gaussian

may provide good results in practice.

The general multivariate normal density function is given by

p(x) =
1

(2π)d/2|Σ|1/2 exp
[

−1

2
(x− µ)TΣ−1(x− µ)

]

, (5.10)

where µ is the mean andΣ the covariance matrix, which is symmetric and positive semidef-

inite. Thus, d + d(d + 1)/2 parameters need to be estimated for a d-dimensional feature

vector. If the features are statistical independent, i.e., σjk = 0 ∀j 6= k, Σ reduces to a

diagonal matrix. A Naive Bayes classifier assumes statistical independence of the features

and p(x|ω) simpilfies to p(x|ω) =∏d
j=1 p(xj|ω) . If the variances are estimated separately

for each class, it is called quadratic otherwise linear. Even though the assumption of

conditional independence rarely holds for real data, Naive Bayes often reaches good per-

formance. Explanations are that dependencies among the features may cancel each other

out and that for minimum-error classification the absolute value of the posterior probabil-

ity can be wrongly estimated as long as the maximum probability is assigned to the correct

class [163]. Characteristic for a Naive Bayes Classifier is that it is robust to isolated noisy

samples and irrelevant features. Furthermore, it can handle missing features. However,

correlated attributes can decrease the performance if the dependencies among all features

do not work together in a way that they cancel each other out. For further gait analysis,

a quadratic Naive Bayes classifier is applied because it can obtain a good estimate of the

likelihoods even if the number of training samples is small.

Nearest Neighbor

The principle of the Nearest Neighbor (NN) classifier is that it assigns the class label of

the nearest training sample to the test sample. Despite its simplicity, it can be shown that

the error probability of a NN classifier PE is always lower than twice the Bayesian error

rate P ⋆
E for infinite samples. The error rate PE is bounded by

P ⋆
E ≤ PE ≤ P ⋆

E(2−
c

c− 1
P ⋆
E) .

NN belongs to the non-parametric techniques because it does not explicitly model the

underlying distribution which generates the data. It can produce arbitrarily shaped de-
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cision boundaries but is susceptible to noise. Furthermore, any metric can be chosen as

distance measure between two samples. The Euclidean distance is used in this work. As

a lazy learner, the distances of a test sample to all training samples is calculated when a

new training sample comes in; therefore computational effort can become larger than for a

parametric technique during the test phase in particular if the feature space is high dimen-

sional and many distances need to be calculated. Furthermore, non-parametric techniques

are more susceptible to the curse of dimensionality. The reason therefor is that knowledge

about the underlying distribution can not be included in a model and a high density of

training samples in the feature space is required for good performance.

Calculation of the distance can be extended to a number of k nearest neighbors and the

decision about class assignment is made by a majority vote. This approach can also be

viewed as an estimation of P (ωi|x). The posterior probability P (ωi|x) ≈ ki/k is estimated

based on the ki nearest neighbors of each class ωi. Choosing the appropriate number of k

nearest neighbors is a trade-off between choosing only the nearest neighbors and as many

neighbors as possible for a reliable decision. In the case of infinite samples, the upper

bound of the error rate PE approaches P ⋆
E if the number of nearest neighbors k approaches

infinity. To study how well class assignment works if only the nearest neighbor is chosen

to approximate P (ωi|x), k is set equal to 1 for the following analysis of gait patterns.

Support Vector Machine

Besides ANN, Support Vector Machines (SVM) afford good results in emotion recognition,

see Tab 5.1. SVMs extend a simple linear decision border in two ways: 1) the optimum

hyperplane with respect to generalization for a given data set is found, and 2) the feature

space can be mapped to a higher dimensional space. The linear decision hyperplane for a

d-dimensional feature space is

f(x) = w1x1 + w2x2 + ...+ wdxd + w0 = wTx+ w0 (5.11)

with w ∈ R
d. For a two-class problem, the function yk = signf(xk) : R

d → {−1, 1}
gives the class association ω1 or ω2 for one sample k. If the samples are linearly separable

in the feature space, the number of possible decision hyperplanes is infinite. A maximum

margin classifier maximizes the distance wTx
‖w‖ between the training samples and the decision

border. In doing so, it is expected to provide best generalization for a given training set.

The decision hyperplane is found by the following optimization problem

min
w∈Rd

‖w‖2

subject to: yk (wTxk + w0) ≥ 1 for k = 1...N . (5.12)

This is also called a hard margin classifier. This optimization problem has no feasible

solution, if the training samples are not linearly separable. To allow margin violations, a
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Fig. 5.3: (a) If the data set is linearly separable, the margin is maximized without violations.
(b) If the data is not linearly separable, a soft-margin SVM allows violations. Support
vectors are illustrated by � and •.

slack variable ξk is introduced. The optimization problem becomes

min
w∈Rd,ξk∈R+

‖w‖2 + C
N
∑

k=1

ξpk

subject to: yk (wTxk + w0) ≥ 1− ξk for k = 1...N , (5.13)

with the regularization parameter C, and p = 1 for a L1 soft-margin SVM or p = 2 for a

L2 soft-margin SVM. A L2 soft-margin classifier solves a strictly convex problem, whereas

a L1 soft-margin classifier solves a convex problem. Convexity of the objective functions

is one advantage of a SVM in comparison to other methods, e.g. ANNs which can have

several local minimal. There is a trade-off between a large margin and the number of

misclassifications. If the regularization parameter C is chosen small, the constraints can

be more easily ignored and a large margin is obtained. On the other hand, if C is chosen

large, the margin is small and less training samples are misclassified which can result in

lower generalization. If C → ∞, all constraints must be fulfilled which then equals a hard

margin problem. Furthermore, samples on the border of the margin are called unbounded

support vectors. The equality sign in Eq. 5.13 is valid for these. Misclassified samples or

samples within the margin are bounded support vectors, thereby the support vector xk is

correctly classified if ξk < 1 and misclassified if ξk ≥ 1. When all data points except the

support vectors are deleted from the data set, the optimization still results in the same

hyperplane.

If the data from a two-class problem is mapped to a sufficiently high-dimensional feature

space, a linear hyperplane can always be found which perfectly separates the two classes.
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Given any feature map φ : Rd → R
m, the following minimization is solved

min
w∈Rd,ξk∈R+

‖w‖2 + C

N
∑

k=1

ξpk

subject to: yk (wTφ(xk) + w0) ≥ 1− ξk for k = 1...N . (5.14)

In this case, the classifier f = wTφ(x) + w0 is linear for φ(x) ∈ R
m, but nonlinear for

x ∈ R
d. Mapping to a more suitable feature space Rm decreases violation of the constraints,

i.e. misclassifications of training samples, and increases generalization, when the training

set is hardly linearly separable in R
d. Note, m must not necessarily be larger than d,

as long as the separability is improved. Considering that the solution w can always be

expressed as w =
∑N

j=1 αjφ(xj), the constraints become

yk

(

N
∑

j=1

αjφ
T (xj)φ(xk) + w0

)

≥ 1− ξk for k = 1...N , (5.15)

where the scalar product can be substituted by the kernel k(xj,xk) = φT (xj)φ(xk). Ap-

plying the kernel trick, the optimization problem to solve is

min
αk∈R,ξk∈R+

N
∑

j,l=1

αjαlk(xj,xl) + C
N
∑

k=1

ξpk

subject to: yk

(

N
∑

j=1

αjk(xj,xk) + w0

)

≥ 1− ξk for k = 1...N . (5.16)

Instead of first calculating the mapping φ for all data points and then calculating the

scalar products, the kernel approach is faster. In addition, it allows using kernels for which

the corresponding mapping φ exists but is unknown. For any function k(x,x′) which

is positive semidefinite and symmetric exists according to the Hilbert-Schmidt theorem

a mapping function φ(x) such that k(x,x′) = φT (x)φ(x′). Common kernels are the

polynomial kernel k(x,x′) = (xx′)D with degree D and the radial basis function kernel

k(x,x′) = exp(−γ‖x − x′‖2).
Until now, only a 2-class problem has been discussed. Extension of the approach to

multiple classes are the one-against-all and the one-against-one method. In the former

case, decision hyperplanes for the samples of one class against the rest is trained for each

class. In the latter case, c(c− 1)/2 hyperplanes are constructed separating two classes at

a time and the final class decision is made on a majority vote. The unclassifiable region

for the one-against-one method is smaller than for the one-against-all method [2].

Advantages of SVMs especially over neural networks are that they maximize general-

ization, have no local minimal, and are robust to outliers. Still, the trade-off parameter

C, the kernel, and its parameters need to be selected. Also, computation time increases

with an increasing number of training samples, especially for finding the best parameter

selection. Within this work, an L1 soft-margin SVM with a radial basis function as kernel

(C = 1.0, γ = 0.01) is used for one-against-one multi-class classification [20] .
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5.3 Results for the Munich Database

In this section, each of the aforementioned feature extraction techniques for marker-based

gait analysis is presented and discussed in the context of affect recognition. Challenges

originating from the problem task and the characteristics of the gait database are:

• How are the trajectories over time best modeled? Therefore, two approaches are

compared. On one hand, statistical features of the trajectories are taken and on the

other hand a combination of PCA and FT is applied.

• The number of samples is small in comparison to the overall number of available

features. Which features are best to chose for avoiding the curse of dimensionality?

Several dimension reduction techniques are compared for this purpose. The linear

techniques PCA and LDA, the non-linear methods KPCA and GDA, and feature

selection based on statistics are investigated in particular.

• The task of locomotion primarily influences the gait recordings. Despite that, is it

possible to retrieve information about the emotional state of a walker? Results on

human performance suggest that accuracy should be at least above chance level.

• If information about the emotional state can be retrieved from a walker, which emo-

tion model fits best to the capability of gait for emotion expression? A categorical

and a dimensional model for emotions are compared for this reason.

• Gait patterns are suited for identification. Thus, how strong does the individual

walking style influence recognition performance?

5.3.1 Data Preprocessing

The length of the recordings in the Munich database varies between 3 and 7 steps. This

variation is caused by different stride lengths within a fixed recording area. To achieve

better comparability, a single stride is extracted from each recording. The trajectory of the

marker affixed to the heel is similar among all participants and shows a characteristic min-

imum; therefore this marker is chosen for extraction of a single stride. Fig. 5.4 illustrates

over time the z-coordinate of the marker affixed to the right heel. A minimum indicates

that the right heel touches the ground and is followed by a nearly constant position of

the heel during the stance phase of the right leg. During the swing phase of the right leg,

the foot leaves the ground and the height of the heel increases. An algorithm based on

detecting these minima calculates the starting point of all strides in each recording. The

algorithm first selects time intervals, in which height of the marker at the heel is less than

30% of maximum height, then disregards intervals which last less than 125ms and finally

calculates the minimum in each interval. The complete recording of one gait is cut down

to a single stride for all marker positions, joint centres and joint angles. Following feature

extraction uses the joint angles during one stride. In comparison to marker positions, joint

angles are relative to the walker and not to world coordinates. Still, speed, velocity, and

stride length need to be calculated from the trajectories of the marker on the right heel.
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Fig. 5.4: The periodic characteristic of the marker affixed to the heel is one of the 105 marker
trajectories. Here, a minimum, marked with a red bar, indicates the start of a stride.

Feature NN Naive Bayes SVM

PCA-FT-PCA 43 41 57

Velocity, Cadence, Stride Length 52 45 45

Significant Subsection 63 49 47

Sig. Subsection + PCA (15PC) 58 52 62

Sig. Subsection + KPCA (15PC) 36 60 60

Sig. Subsection + LDA 63 55 62

All Joint Angles 56 45 25

All Joint Angles + PCA (30PC) 50 50 69

All Joint Angles + KPCA (23PC) 28 58 25

All Joint Angles + LDA 52 53 53

Tab. 5.3: Accuracy for inter-individual affect recognition in [%].

5.3.2 Inter-Individual Recognition

Concept of inter-individual recognition is that the sample set contains all recordings of the

walker, who is left out in the training set. This is comparable to recognizing the affective

state of an unknown walker. Iteratively, the accuracy is calculated for each walker left

out. Table 5.3 compares accuracy for different feature extraction methods. If extra success

comparing to a random predictor is above 45%, results are marked bold. Highest accuracy

of 69% is achieved when PCA is applied to all joint angles and the first 30 principal

components are used. Although accuracy is with 69% above chance level and comparable

to human performance, which is 63% see chapter 3.3.1, this still means that one third of the

samples are misclassified. It is concluded that without further knowledge of the walker such

as identity, both individual differences in walking style and expression of affect complicate

reliable estimation of affect purely based on the kinematics of walking.
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Feature NN Naive Bayes SVM

PCA-FT-PCA 70 70 78

Velocity, Cadence, Stride Length 85 83 76

Significant Subsection 87 93 89

Sig. Subsection + PCA (15PC) 91 85 89

Sig. Subsection + KPCA (15PC) 87 75 88

Sig. Subsection + LDA 93 93 93

All Joint Angles 91 93 79

All Joint Angles + PCA (15PC) 92 92 95

All Joint Angles + KPCA (15PC) 88 47 25

All Joint Angles + LDA 47 45 47

Tab. 5.4: Average accuracy for person-dependent affect recognition in [%].

5.3.3 Person-Dependent Recognition

The previous subsection shows that person-dependent recognition of discrete affective

states is accomplishable above chance level, but can be improved if individuality is consid-

ered. For this reason, the classifiers are trained individually for person-dependent recog-

nition i.e., the training set of each walker contains nine exemplars of neutral, happy, sad

and angry walking. One exemplar of each affective state is left out iteratively, so that the

training sets are balanced. Accuracy is calculated for each walker separately and mean

accuracy over all walkers is reported in Tab. 5.4. Extra success above 85% is marked

bold. Interpretation of Tab. 5.4 allows conclusions about the performance of different

feature extraction methods and comparison of inter-individual versus person-dependent

recognition. In the latter case, it is obvious that accuracy increases strongly for person-

dependent recognition and reaches a maximum of 95% accuracy, which means 93% extra

success comparing to a random predictor.

Comparing the accuracy achieved with different feature extractions reveals a number of

interesting points:

a) Extracting eigenpostures and eigenwalkers from the data sets including all joint an-

gles leads to 78% accuracy. For observations which include only a single stride, the

performance of PCA to extract relevant temporal information from time series is

less efficient than applying basic statistical parameters such as minimum, mean and

maximum to the joint angles over time.

b) Recognition rate above 80% is already achieved if classification uses only the features

velocity, cadence and stride length. In accordance with [32, 126, 131], velocity of the

movement contains fundamental information about the affective state of a walker.

The discrete affective states neutral and angry are best distinguishable. Although
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Fig. 5.5: Although LDA takes class affiliation into consideration, it outperforms PCA only for
small numbers of kinematic parameters in relation to number of instances in the
training set.

velocity gives already a good estimate on the affective state, estimation based only

on this factor can be easily distorted in real-world scenarios.

c) Naive Bayes and NN perform well using the statistical parameters of all joint angles

with 93% and 91%, respectively, even though the number of instances in the training

sets is approximately half of the number of features. Reducing the number of features

to 15 with PCA, leads to same performance of 92%-95% and thus does not discard

relevant information regarding affect. Comparable accuracy of 87%-93% among all

three classifiers is achieved when statistical parameters are calculated for only these

joint angles which are referred in literature as significant [32, 131]. Therefore, one can

conclude that reducing the number of statistical parameters by unsupervised PCA

without any expert knowledge is as efficient for classification as involving expert

knowledge, which has been obtained by statistical hypothesis testing beforehand.

d) As stated in literature, dimension reduction using LDA does not necessarily outper-

form PCA, though it considers class affiliations [99]. Fig. 5.5 illustrates the accuracy

of PCA and LDA when the number of kinematic parameters is increased. The num-

ber of instances in the training set ntrain = 36 is hold constant. PCA reduces the

number of parameters to 15 PCs. For a small number of kinematic parameters, LDA

reduces the feature space more efficiently than PCA. As soon as the within-class

scattermatrix Sw becomes singular, which is the case if the number of kinematic

parameters exceeds 32, accuracy of LDA stays around 40-50%. PCA is more robust

against high dimensionality of the original space, if the original dimension exceeds

the number of instances ntrain. Accuracy of PCA even slightly increases by adding

more kinematic parameters.

91



5 Recognition of Affect in Gait Patterns

−10 0 10 20
−10

−5

0

5

10

 

 

Neutral

Sad
Happy

Angry

Sample Sad
Sample Happy

Sample Angry

Sample Neutral

(a)

−5 0 5 10
−3

−2

−1

0

1

2

3

 

 

Neutral

Sad
Happy

Angry

Sample Sad
Sample Happy

Sample Angry

Sample Neutral

(b)

Fig. 5.6: Mapping the feature space on two dimensions with LDA graphically illustrates the
difference in expressiveness among the walkers. (a) The cluster of angry gaits is
clearly separable from the others for walker 7. (b) Clusters for each affective walking
style of walker 4 are spatially less separable, so that misclassifications occur.

e) As noted in [151], nonlinear techniques do not necessarily outperform linear tech-

niques for dimensionality reduction on real-world tasks. Here, KPCA extracts rele-

vant features from the original parameter space, but overall performance is less than

feature extraction with PCA. This result is in contrast to [156], who report an in-

crease of 5% by using KPCA instead of PCA for a two-class separation task. So that

one can conclude that the advantage of KPCA over PCA depends on the application.

Results for GDA have not been added to Tab. 5.3 and 5.4, because recognition rates

have not exceeded chance level.

f) Although Naive Bayes, SVM, and NN have different assumptions on the data, ac-

curacy differs in general little among the classifiers, especially when feature space

transformation such as PCA or LDA has been applied before. Low performance of

SVM in some cases is traced back to the fact that the parameter γ of the kernel func-

tion and regularization parameter C have not been optimized for each particular case.

Good performance of NN reveals that expression of different affective states forms

separable clusters in the feature space. Naive Bayes assuming normally distributed

features performs well in the person-dependent case, whereas a mixture of Gaussians

for each feature caused by individuality of the walkers complicates inter-individual

recognition with Naive Bayes.

Person-dependent recognition reveals the optimal accuracy which is achievable by ex-

cluding inter-individual differences in expressing affect and walking styles. Accuracy is

only affected by a person’s fluctuations in walking and acting a specific affective state.

Fig. 5.6 graphically illustrates the differences among the walkers by mapping the feature

space of the significant subset onto two dimension with LDA. One walker with high recog-

nition accuracy and one with low accuracy are chosen for comparison. If LDA is applied

to the 40 recordings of a single walker, separability of the clusters for each affective state

depends only on the expressiveness of a walker and the size of the clusters depends on the

variations in walking and expressiveness.
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Fig. 5.7: In a two-stage classification, first the identity of a walker is estimated and then person-
dependent recognition of affect is performed based upon the estimated identity.

Comparing person-dependent with inter-individual recognition advises to integrate iden-

tity in estimation of affective states. The next subsection investigates what performance

is achievable if the identity is estimated beforehand and following recognition of affective

states is based on the estimated identity.

Person-Dependent Recognition based on Estimated Identity

Good performance of person-dependent recognition faces the problem that identity is not

necessarily given. This subsection combines identification based on kinematic parameters

with following recognition of affect. The concept is illustrated in Fig. 5.7. As in the

previous sections, mean accuracy over all walkers is calculated for evaluation of this con-

cept. Iteratively, four affective gait patterns of each walker are left out from the training

sets. As shown in the previous section, extracting temporal information with PCA is less

suitable than calculation of statistical parameters. For this reason, the approach based on

eigenpostures and eigenwalkers is excluded from further analysis. Same holds for KPCA

regarding dimension reduction.

Table 5.5 shows the results for identification based on kinematic parameters. In con-

trast to recognition of affect, identification performs poorly based only on the parameters

velocity, cadence, and stride length. Best result is achieved, if LDA is applied to the sta-

tistical parameters of all joint angles. Note, that the training set contains ntrain = 13 · 9 · 4
instances for identification, so that ntrain is much larger than the dimension of kinematic

parameters in this case and the within-class scattermatrix does not become singular. Thus,

good performance of LDA for identification does not contradict good performance of PCA

for recognition of affect considering that the statistical parameters of all joint angles form

the basis. LDA applied to the statistical parameters of all joint angles in combination with
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Feature NN Naive Bayes SVM

Velocity, Cadence, Stride Length 34 23 17

Significant Subsection 94 85 95

Significant Subsection + PCA 98 86 87

Significant Subsection + LDA 92 90 93

All Joint Angles 99 98 71

All Joint Angles + PCA 99 97 99

All Joint Angles + LDA 99.6 99 99

Tab. 5.5: Accuracy for identification in [%].

Feature NN Naive Bayes SVM

Significant Subsection 84 89 86

Significant Subsection + PCA 90 81 87

Significant Subsection + LDA 87 88 88

All Joint Angles 91 93 79

All Joint Angles + PCA 92 89 91

All Joint Angles + LDA 43 42 43

Tab. 5.6: Accuracy of affect recognition based on estimated identity in [%].

NN is used to estimate identity for following recognition of affect.

Resulting recognition of affect based on estimated identity performs almost as good as

based on real identity, i.e. 93% recognition rate is achieved. This is traced back to the fact

that identification is performed with 99.6% accuracy. Hence, the dynamics of kinematic

parameters contain information of identity as well as affect. Recognition of the affective

states of a walker benefits from taking the information in the kinematics about the identity

into account. Knowledge about the walker increases accuracy significantly compared to

recognizing the affective state of an unknown walker, see Tab. 5.3.

The Relevance of Affect for Identification

The strong influence of identity on recognition of affect, raises the question if also identifica-

tion can be affected by different affective states of a walker. For this purpose, identification

of walkers expressing one affective state, e.g. happy, is performed based on a training set

which contains only trials of another affective state, e.g. neutral. Results are shown in

Tab. 5.7. Identification has been performed by applying LDA to the statistical parame-

ters of all joint angles and using NN as classifier, see Sec. 5.3.3 on feature extraction for

identification. If the same affective state underlies both training and testing set, identity is
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Test Set

Training Set Neutral Happy Sad Angry

Neutral 100 95 87 87

Happy 99 100 85 93

Sad 92 77 100 54

Angry 91 86 86 100

Tab. 5.7: Identification under different affective states in [%].

estimated with 100% accuracy for the Munich database. However, if training and testing

set differ in the affective state, which the walker expresses during walking, accuracy signif-

icantly decreases. Therefore, one can draw the conclusion that also identification suffers

from interference caused by affect.

5.3.4 Recognition based on the PAD-Model

By analyzing the confusion matrix for recognition of discrete affective states in walking, the

states sad and angry are generally better recognizable than the state happy. The states sad

and angry differ highly in arousal, whereas arousal is similar for happy and angry, which

differ mainly in pleasure. This leads to the assumption that the dimension arousal is better

recognizable in walking than pleasure. As the dimensions pleasure, arousal, and dominance

of the PAD-model are highly uncorrelated, recognition for each dimension is investigated

separately. Person-dependent recognition distinguishes between low, medium, and high

pleasure, arousal, or dominance. Accuracy is calculated for each walker separately using

NN and mean accuracy for each dimension is listed in Tab. 5.8.

Regardless of feature extraction, mean accuracy for pleasure is lower than mean ac-

curacy for dominance and arousal. Besides the expected high accuracy for arousal, also

different levels of dominance are well distinguishable in gait patterns. Accuracy reaches

97% for arousal and 96% for dominance, when classification is applied to the statistical

parameters of all joint angles. Accuracy for individual walkers is shown in Fig. 5.8 for

this case. Different levels of pleasure are less recognizable than different levels of arousal

and dominance for most walkers. Depending on the walker, either dominance or arousal

is best distinguishable.

Looking only at the recognition performance using velocity, cadence, and stride length

shows that different levels of arousal are with 91% accuracy distinguishable. Adding addi-

tional features increases more the separability for different levels of dominance and pleasure

than for arousal. Thus by obseving only the three features velocity, cadence, and stride

length, a good approximation on the activation of the walker can be given. However, re-

lieble estimation of pleasure and dominance requires the observation of additional features.

The hypothesis, that different levels of pleasure are less recognizable in gait patterns

for automatic recognition is confirmed. It is concluded that gait is more capable to reveal

different levels of arousal and dominance than pleasure. This is also in accordance with

95



5 Recognition of Affect in Gait Patterns

Feature Pleasure Arousal Dominance

Velocity, Cadence, Stride Length 72 91 79

Significant Subsection 87 95 96

Sig. Subsection + PCA (7PC) 83 91 94

Sig. Subsection + LDA 80 91 92

All Joint Angles 88 97 96

All Joint Angles + PCA (7PC) 83 95 96

All Joint Angles + LDA 48 50 55

Tab. 5.8: Accuracy for affective dimensions in [%].
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Fig. 5.8: Recognition rate of each walker for the dimension pleasure is lower than for the di-
mensions arousal and dominance. Depending on the walker different levels of pleasure
are less recognizable than different levels of arousal or dominance.

human performance, see chapter 3.3.1.

5.3.5 Discussion

This section focuses on three central aspects regarding recognition of affective states in gait

patterns, namely inter-individual versus person-dependent recognition, recognition based

on discrete affective states versus extremes on the affective dimensions pleasure, arousal

and dominance, and comparison of different feature extraction methods for marker-based

gait analysis.

Although inter-individual recognition of affective states is accomplishable above chance
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and in the range of human performance, person-dependent recognition outperforms the for-

mer one. Extra success comparing to a random predictor is twice as much. It is concluded

that recognition is highly affected by individual walking styles and individual expression

of affect. Identity and affect interact vice versa, so that accuracy for identification de-

creases, when classification is performed on affective samples which are not included in the

training set.

Setting the results in comparison with published recognition rates for gesture and other

motions, see Tab. 5.1, shows that recognition based on gait is more influenced by ones

individual style than recognition based on gesture. Still, achieved inter-individual accuracy

is larger than recognition based on the motion knocking [7]. Achieved person-dependent

recognition rates are larger than reported accuracies of Bernhardt’s et al.s’ study [7] on

knocking, Kapur’s et al.s’ study [73] on stylized body movements and Janssen’s et al.s’

study [69] on walking.

In accordance with related literature, which studies how humans perceive affect from

gait patterns, automatic recognition also tends to recognize affective states which differ in

arousal better than states which differ in pleasure [7, 126]. From this result it is concluded

that gait is suited to deliver more easily cues about the activation of a walker.

Several approaches for feature extraction have been compared. Despite the fact that

a combination of PCA and FT seems to be suitable to recognize the gender of a walker

[150], it shows low performance for affect recognition. Calculation of statistical parameters

from the time series results in higher accuracy. Even though the number of samples is

approximately half the number of features for person-dependent recognition, classification

without dimension reduction gives already good results for NN and Naive Bayes. The

SVM mostly performs better after dimension reduction. Still reducing the dimension

of the feature space to a number lower than the sample size, gives a more reliable and

generalizable estimate on recognition accuracy. Depending on whether a significant subset

or all joint angles are studied, either PCA or LDA performs better for dimension reduction.

This is explained by a dependence on the number of training samples in comparison to

the dimension of the feature space. It can be further noted, that even though the overall

number of training samples is larger for inter-individual recognition, selection of relevant

features is more crucial in this case than for person-dependent recognition. In addition,

improvement in recognition performance by replacing linear with nonlinear techniques

seems to be application-dependent in gait analysis.

Furthermore, automatic recognition uses a single stride in difference to human perfor-

mance, which is based on videos lasting 7 seconds. As the captured gait kinematics have

been visualized by an animated puppet, this is a potential hint that human perception

from 2D motions is based on techniques which require observations containing at least

three strides.

Due to its limitations and that people do not always walk, main application for recog-

nition of affect based on gait is seen as an additional modality for multi-modal recognition

of affect. It fills gaps in automatic recognition, when neither speech nor facial expression

is available. Scenarios are high-security systems, human-robot-interaction, e.g. a human

approaching a robot, and affective households.

As this study is based on acted affect, further studies are required for spontaneous
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affect. This automatically requires video-based analysis, because a highly artificial setup for

marker-based recording complicates repetitive elicitation of affect during walking. Further

potential side aspects on recognition of affect from gait patterns are interference by gender,

age, weight, or complaints of the walker.

The following challenges have to be accomplished for transferring recognition of affect

in walking from laboratory to real-world. Still, marker-less video-based human motion re-

construction is not as accurate as marker-based systems [109]. Recognition of affect would

definitely benefit from further refinements in retrieving detailed motion and thus kine-

matic parameters from video. This study shows that good recognition is already achieved

using significant kinematic parameters of the upper body in combination with speed and

speed-related parameters such as stride length and cadence. Hence, high accuracy in re-

construction of motion is especially required for the upper body. Furthermore, recognition

is based on the kinematics of one side of the body. Due to the periodic and symmetric

nature of gait, kinematics of the other side of the body, if available, can be used for in-

creasing accuracy or verification of the measurements, outlier detection, or reconstruction

of partially occluded areas. For integration in multi-modal emotion recognition systems,

combination with previous action recognition, e.g. [86], is a prerequisite to deliver reliable

recognition rates. Within this aspect, results of this study indicate that gait is suited for

retrieving differences in arousal and dominance at distance.

5.4 Comparison on Emotion, Gender, Exhaustion, and

Identity Recognition

The previous section investigates the recognition of emotions in gait patterns with several

techniques from machine learning. Yet, not only the emotional state but also other factors

such as age and gender influence a person’s walking style. Two further marker-based gait

databases have been recorded in the collaboration with the Institute of Biomechanics in

Sports. One contains records of male and female walkers and the other has been recorded to

investigate how exhaustion influences walking. Furthermore, the Emotive Motion Library,

which is described in chapter 3.2.1, contains recordings of emotive walking styles. In the

following, the common procedure for data analysis is described. Afterwards, the results

are summarized for each of the three databases. It is noticeable that the NN classifier and

the SVM calculate the same recognition rate for the all three databases if LDA is used for

feature extraction. This aspect is analyzed in more detail, singularity of the matrix SW

is worked out as reason, and a mathematical proof is derived for the equivalence. Finally,

the suitability to recognize emotion, gender, exhaustion, and identity from observing gait

patterns is compared across the databases.

Two of the three databases provide reliable data only for marker positions and not for

joint angles; therefore analysis is based on marker positions in this subsection. A common

set of 23 markers is selected which contains the four markers at the headband, the markers

on the vertebra C7, on the upper thorax, on the sternum, and on the left as well as

right shoulder, on the elbow, on the interior and exterior wrist, on the ankle, toe, knee

and heel. Minimum, mean, and maximum of each of the x-, y-, and z-trajectories are
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calculated for each marker. This results in 9 features for each marker and, for 23 markers,

in the input vector x ∈ R
207. In comparison to joint angles, marker positions are given in

world coordinates. Thus, using marker positions as input for classification can bring – in

particular for small databases – the drawback that the algorithms use information on the

absolute position and walking direction for classification. To avoid this, each recorded data

is set in reference to the marker on the vertebra C7. Furthermore, the data is transformed

in the way that the walking direction is along the y-axis. In doing so, one feature which is

the minimum of the y-direction of the marker C7, is always zero. Discarding this feature,

leads to x ∈ R
206. It should be further noted that a single stride is extracted from each

recording in the Exhaustion and Gender Database. Sequences of straight walking are short

in the Emotive Motion Library. Highest common length of all trials is a single step. In

this case, results are calculated on observation of a single step.

In the following, classification is applied either to all features or after dimension pro-

jection with PCA, LDA or KPCA. If results for KPCA are above chance level, they are

included in the Tables 5.9, 5.10, and 5.11. Applying GDA to the features x does not lead

to noteworthy results above chance level.

5.4.1 Exhaustion Database

Primary purpose for this gait database was to study the influence of exhaustion after

a physical exercise. It was recorded by W. Seiberl at the Institute of Biomechanics in

Sports, TU München. It contains the gait of 14 male subjects (mean age 25.3± 2.7 years;

body mass index 23.5 ± 1.9kg/m2) three times before and three times during exhaustion

[173]. A program of warm-up and exercises at a rowing ergometer was performed before

the recording of the exhausted condition. This database can be investigated with regard

to identification and recognition of physical condition. As the recording quality for one

subject is low, one data set was discarded from the database leaving 13 times three normal

and 13 times three exhausted gait trials for classification. Results are summarized in Tab.

5.9.

Identification of the walkers performs with 100% accuracy (chance: 8%). Distinguishing

between normal and exhausted walking style is only above chance (50%) if the training

set contains gait trials of each walker. Recognition of the gait style of an unknown walker

hardly exceeds chance level. Reasons are that the number of walkers is too less for inter-

individual recognition, level of exhaustion differs among the walkers, and that expression

of exhaustion is individual. KPCA achieves similar recognition rates if a polynomial kernel

with d = 3 is used. After KPCA, performance of SVM is around chance level; therefore

the parameter γ has been adjusted if required.

5.4.2 Gender Database

This database was also recorded by W. Seiberl at the Institute of Biomechanics in Sports,

TU München. It contains the gait of 10 male subjects and 10 female subjects. A number

of 10 repetitions of each walker are used for the data analysis.

1γ = 1 · 10−10 in this case.
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Feature NN Naive
Bayes

SVM

Identity All Markers 100 91 100

All Markers + PCA(10PC) 96 99 69

All Markers + KPCA(42PC) 98 54 951

All Markers + LDA(12EV) 82 69 82

Physical All Markers 83 65 53

Condition All Markers + PCA(30PC) 83 87 87

All Markers + KPCA(47PC) 76 64 741

All Markers + LDA(1EV) 51 44 51

Physical All Markers 60 51 46

Condition All Markers + PCA(20PC) 49 60 53

(inter-ind.) All Markers + LDA(1EV) 46 44 46

Tab. 5.9: Accuracy for the database on exhaustion in [%].

Feature NN Naive
Bayes

SVM

Identity All Markers 97 98 952

All Markers + PCA(20PC) 99 96 98

All Markers + KPCA(142PC) 90 64 793

All Markers + LDA(19EV) 97 88 97

Gender All Markers 98 95 982

All Markers + PCA(30PC) 99 97 100

All Markers + KPCA(137PC) 93 86 941

All Markers + LDA(1EV) 65 64 65

Tab. 5.10: Accuracy for the gender database in [%].

Calculated recognition rates are reported in Tab. 5.10. Accuracy for identification

achieves 99% (chance: 5%). Also, recognition of gender is with 100% possible for this

database. Performance of the SVM depends on γ; therefore this parameter has been ad-

justed in several cases as noted by the footnotes. Furthermore, a polynomial kernel with

degree of five is best for KPCA in the case of gender recognition.

2γ = 1 · 10−5 in this case.
3γ = 1 · 10−17 in this case.
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Feature NN Naive
Bayes

SVM

Identity All Markers 47 50 424

All Markers + PCA(20PC) 57 46 57

All Markers + KPCA(82PC) 48 17 466

All Markers + LDA(28EV) 79 52 79

Gender All Markers 82 85 865

All Markers + PCA(25PC) 90 90 95

All Markers + KPCA(30PC) 81 58 52

All Markers + LDA(1EV) 66 66 66

Emotion All Markers 40 50 25

All Markers + PCA(20PC) 45 59 48

All Markers + KPCA(60PC) 50 28 471

All Markers + LDA(3EV) 31 28 31

Tab. 5.11: Accuracy for the Emotive Motion Library in [%].

5.4.3 Emotive Motion Library

The Emotive Motion Library can be analyzed with regard to identify, gender, and emotion

[98]. It provides one trial for each walker and for each of the four emotions. Thus, the

training set contains only three instances of each walker for identification. Results for this

database are summarized in Tab. 5.11. Recognition rate for identification is with 79%

noticeable lower than for the previous databases. This is explained by a larger number

of individuals and a lower number of training samples per class for the Emotive Motion

Library. Still, good results are achieved for gender classification with 95%. Recognition rate

for inter-individual emotion recognition is 59%. Performance of inter-individual recognition

is comparable to the results for the Munich database, see subsection 5.3.2, even though the

number of walkers is larger and the number of trials per walker is less. Person-dependent

recognition rates can not be calculated because the database provides only one sample for

each walker and each emotion.

5.4.4 LDA and the Small Sample Size Problem: The Impact of a

Singular Within-Class Scatter Matrix on Classification

For all three databases, it has been observed that NN calculates exactly the same recogni-

tion rate than the SVM after LDA has been applied to reduce the dimension of the feature

4γ = 1 · 10−3 in this case.
5γ = 1 · 10−6 in this case.
6γ = 1 · 10−20 in this case.
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space, see Tables 5.9, 5.10, and 5.11. This is regardless of the number of chosen eigenvec-

tors that define the dimension of the feature space for the classification algorithm. Taking

a closer look at the feature vector after LDA shows that the training samples of each class

are mapped on a single point. This provides perfect separation of the training samples.

However, test samples are not exactly mapped on this point which leads to an error rate

for the recognition task. For this case, a mathematical derivation can be deduced. It

shows that if the training samples of each class are mapped on a single point, the decision

borders found by a maximum-margin classifier are the same as the decision border for

nearest neighbor classification. This is observed for the small sample size problem where

Sw is singular. The derivation first considers comparing the decision border of a NN and

a hard-margin classifier for two classes. Then, the approach is generalized to SVMs and

multiple classes.

If SW is singular and the QZ algorithm is used to solve the general eigenvalue problem,

it is observed for the three investigated databases that all samples of class Ci are mapped

on a single point pi. Thus for a two-class problem, the vectors p1 ∈ R
m and p2 ∈ R

m are

the representatives of each class after applying LDA to the training data. Considering that

LDA aims to maximize the between-class separability while minimizing the within-class

separability, mapping the samples for each class on a single point optimizes exactly this

condition. This occurs in the case that the number of samples is small and SW becomes

singular.

The decision function fNN of the NN algorithm is defined by

fNN(x) ≥ 0 for yi = 1 (xi ∈ C1)
fNN(x) < 0 for yi = −1 (xi ∈ C2)

where yi is the class label for sample xi. The function fNN separates the feature space in

a way that a new sample is assigned to the class for which the Euclidean distance between

sample and pi is lowest. From a geometrical point of view, fNN is a separation line with

a normal vector pointing in the direction of p1 − p2. Thus, fNN(x) is:

fNN(x) =
(p1 − p2)

T

‖p1 − p2‖

[

x− 1

2
(p2 + p1)

]

. (5.17)

In the above described case, the optimization problem for a hard-margin classifier is

Q(w, w0,α) =
1

2
wTw −

n1+n2
∑

i=1

αi{yi(wTxi + w0)− 1} ,

where αi are the non-negative Lagrange multipliers. As p1 and p2 are the only support

vectors, the optimization problem can be reduced to

Q(w, w0,α) =
1

2
wTw −

2
∑

i=1

αi{yi(wTpi + w0)− 1} . (5.18)
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Hence, the Karush-Kuhn-Tucker conditions are

∂Q(w, w0,α)

∂w
= 0 , (5.19)

∂Q(w, w0,α)

∂w0

= 0 , (5.20)

αi{yi(wTpi + w0)− 1} = 0 and αi > 0 for i = 1, 2 . (5.21)

The following equations are derived from the the Karush-Kuhn-Tucker conditions:

from 5.19 : w = α1p1 − α2p2 , (5.22)

from 5.20 : α1 = α2 ,

from 5.21 : wTp1 + w0 = 1 ,

−wTp2 − w0 = 1 .

Solving the equation for αi gives αi =
2

‖p1−p2‖2 and inserting in Eq. 5.22 provides w =
2(p1−p2)
‖p1−p2‖2 . With w0 = − (p1−p2)T (p1+p2)

‖p1−p2‖2 , the decision function for a hard-margin classifier

fHM is

fHM(x) = 2
(p1 − p2)

T

‖p1 − p2‖2
[

x− 1

2
(p1 + p2)

]

. (5.23)

Comparing Eq. 5.17 with Eq. 5.23 leads to

fHM =
2

‖p1 − p2‖
fNN . (5.24)

As class assignment relies only on the sign of the decision function, a hard-margin classifier

achieves the same classification results as a nearest neighbor classifier. Considering that all

samples of a class i are mapped on a single point pi, performance of a soft-margin classifier

is the same as performance of a hard-margin classifier.

In the following the comparison is extended to SVM with a kernel k(x,x′). In this case,

the dual problem to be solved can be written as

QSVM,dual(α) =
2
∑

i=1

αi −
1

2

2
∑

i,j=1

αiαjyiyjk(pi,pj) (5.25)

and with
∑2

i=1 yiαi = 0 follows α1 = α2 = α and

QSVM,dual(α) = 2α− 1

2
α2

2
∑

i,j=1

yiyjk(pi,pj) subject to α > 0 . (5.26)

For a soft-margin classifier, α should be bounded by an upper level. However, this can

be discarded for the following calculations, because a soft-margin classifier calculates the

same decision border as a hard-margin classifier in the studied case as mentioned above.
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Setting the derivative dQSV M (α)
dα

equal to zero, leads to

α =
2

k(p1,p1)− 2k(p1,p2) + k(p2,p2)
.

Thus, the decision function is

fSVM(x) =
2

k(p1,p1)− 2k(p1,p2) + k(p2,p2)

2
∑

i=1

yik(pi,x) + b .

The value b is calculated by considering that for the unbounded support vectors j the

equality yj = α
∑2

i=1 yik(pi,x) + b is valid

b =
−α

2
[k(p1,p1)− k(p2,p2)] .

Hence, the decision function of a SVM for the studied case is:

fSVM(x) =

=
2

k(p1,p1)− 2k(p1,p2) + k(p2,p2)

{

2
∑

i=1

yik(pi,x)−
1

2
[k(p1,p1)− k(p2,p2)]

}

(5.27)

Depending on the chosen kernel, equal class assignment can be derived for SVM and NN.

If the kernel is a Gaussian k(x,x′) = exp(−γ)‖x− x′‖2, the decision function fSVM,g is:

fSVM,g(x) =
1

1− exp(−γ‖p1 − p2‖2)
{

exp(−γ‖p1 − x‖2)− exp(−γ‖p2 − x‖2)
}

. (5.28)

As exp(−γ‖p1 − p2‖2) is always lower than one, the term (1 − exp(−γ‖p1 − p2‖2))−1

can be seen as a scaling factor. Thus, class assignment depends only on the sign of

{exp(−γ‖p1 − x‖2)− exp(−γ‖p2 − x‖2)}. Considering that class assignment for the NN

classifier depends also only on the sign of (p1 − p2)
T [x − 1

2
(p2 + p1)], see Eq. 5.17, the

absolute value of fSVM,g(x) and fNN(x) is not relevant for comparison. Instead, it is

sufficient that the sign of fSVM,g(x) and fNN(x) is the same for equal classification results.

To assign the label y = 1, it is required for the SVM that fSVM,g(x) > 0 and consequently

exp(−γ‖p1 − x‖2) > exp(−γ‖p2 − x‖2) . (5.29)

To get the same class assignment with a NN classifier, the following inequality

pT
1 (x− 1

2
p1) > pT

2 (x− 1

2
p2) (5.30)

must be fulfilled. By showing, that if the inequality 5.29 is true also the inequality 5.30

is true, it is deduced that under the studied case the class assignment of a NN classifier

equals class assignment of a SVM with a Gaussian kernel for all x ∈ R
m. The required
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steps starting from inequality 5.29 are:

‖p1 − x‖2 < ‖p2 − x‖2
pT
1 p1 − 2pT

1 x+ xTx < pT
2 p2 − 2pT

2 x+ xTx

pT
1 (p1 − 2x) < pT

2 (p2 − 2x)

pT
1 (x− 1

2
p1) > pT

2 (x− 1

2
p2) .

Thus, for a two-class problem, a SVM with a Gaussian kernel, a hard margin classifier

and a simple NN classifier achieve exactly the same recognition rate if LDA is applied to

a data set and the problem of a singular SW is solved by using the QZ algorithm to solve

the eigenvalue problem for LDA.

The number of decision borders increases for a multi-class problem with c > 2. The

traditional SVM is defined for two classes and the one-against-one method is selected for

extension to multiple classes. Considering only a pair of two classes out of the c classes, the

decision border for this pair is the same when NN, a hard margin classifier or an SVM with

a Gaussian kernel is used for classification. Hence, all the decision borders between two out

of the c classes are equal for the three classification techniques and the three techniques

assign the same class label to an unknown sample.

It should be further noted for the studied case that all training samples of a class are

mapped by LDA on a single point pi. But unknown samples are not necessarily mapped

on these points pi. Hence, if neither leave-one-out or cross-validation is applied in the

studied case, classification rate for the three classifiers would be 100%. However, this rate

would give no useful information.

The following conclusions are drawn from this derivation. When LDA is applied to a

small sample size problem, the within-class scatter matrix SW becomes singular. Still,

the resulting eigenvalue problem can be solved with the QZ algorithm. Then, all training

samples of each class i are mapped on a single point pi. In doing so, the between-class

separability is maximized while the within-class separability is minimal. For this case, it

can be shown that a simple NN classifier calculates the same decision borders as a hard-

margin classifier or a SVM with a Gaussian kernel. Hence, the same recognition rates are

calculated by the techniques. Even though applying LDA to a small sample data set seems

to be not optimal, still comparable results to other techniques can be achieved, see Tab.

5.9, 5.10 and 5.11. Also, Deng et al. report good results for LDA using the QZ algorithm

even if SW is singular for the small sample size case [39].

The null space method has been proposed if SW becomes singular for LDA [24, 64].

The derived equivalence of NN, hard margin classifier, and SVM with a Gaussian kernel

is also valid if this technique is applied to the small sample set problem. If in these

cases, one of the classifier needs to be chosen, the decision can be made with less focus on

recognition rate and more focus on other aspects such as computational complexity. Also

for comparing different feature extraction techniques, it is sufficient to apply only one of

the above mentioned classifiers to the data set. Applying the other classifiers would give

no additional information. This is especially relevant the larger the feature space gets.
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Database Category # Classes # Test
Samples

# Training
Samples

Feature
Dimension

Exhaustion Identity 13 1× 13 5× 13 206
Physical
Condition

2 13× 2 26× 2 206

· Inter- 2 3× 2 36× 2 206
individual

Gender Identity 20 1× 20 9× 20 206
Gender 2 10× 2 90× 2 206

Emotive Identity 29 1× 29 3× 29 203
Motion Gender 2 14, 15 42, 45 203
Library Emotion 4 1× 4 28× 4 203

Munich Identity 13 1× 13 39× 13 69
Database Emotion7 4 1× 4 9× 4 69

· Inter- 4 10× 4 120× 4 69
individual

Tab. 5.12: Characteristics of the databases.

5.4.5 Comparison and Discussion

Comparison of the different databases barely on the recognition rate is not sufficient. In-

stead interpretation of the recognition rate needs to consider different training sizes, sample

sizes, numbers of classes, and dimensions of the feature vector. Tab. 5.12 summarizes the

characteristics of the databases. The number of training and test samples are given for

each iteration cycle of the leave-one-out procedure. The total number of samples for each

database is 78 for the exhaustion database, 200 for the gender database, 116 for the Emotive

Motion Library, and 520 for the Munich database. The Munich database is investigated

in subsection 5.3 using joint angles as input. If marker positions are taken instead of joint

angles, recognition rates slighlty vary from the reported results. As the variations are only

small, the results from the previous section can be used for the following comparison for

better consistency with the previous section.

Fig. 5.9 plots the accuracy for each database over the number of classes. The chance

level is in inverse ratio to the number of classes. Identification performs with a high recogni-

tion rate for all databases despite a large number of classes. Person-dependent recognition

rate is similar to the recognition rate of gender. Both factors have a small number of classes

in common. Thus, comparing the recognition of gender or the emotional state of a kown

walker with recognition of a person leads to the conclusion that distinguishing a person

from a limited group of walkers is best achievable. Lower accuracy for identification of the

Emotive Motion Libary is explained by the fact that the training set contains only three

trials of each walker which differ in the expressed affect. Trying to recognize the physical

condition or the affective state of an unknwon walkler is about chance. The according

7Final recognition rate is averaged over the 13 walkers.
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rates for inter-individual recognition form a distinct separable cluster which lies clearly

below person-dependent recognition. It should be noted, that the inter-individual rates of

the Munich database and the Emotive Motion Library for emotion recognition lie in the

same range even though they differ in the number of training samples and in the recording

procedure. Recording of the Emotive Motion Library was based on telling all participants

a common story for each affective state. For the Munich Database, each walker memorized

a situation in which he had felt each affect.

Chapter 3.3 summarizes human performance to recognize a person, gender, or affective

states from observing the gait. Performance of automatic classification lies in the range

of human performance for emotion recognition. The investigated methods from machine

learning are considerably better than human performance for gender recognition and iden-

tification. A possible reason is that the measures provided by the optical motion tracking

system are more accurate than the accuracy of the human eye for measuring e.g. the shoul-

der or hip width at distance. Both gender recognition and identification rely on observing

such static features which describe also the physique.
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5 Recognition of Affect in Gait Patterns

5.5 Summary

To provide a means for emotion recognition at distance, this chapter studies the recognition

of emotions in gait patterns with techniques from machine learning. Focus lies on the com-

parison of several pattern recognition algorithms, of two emotion models for recognition,

of person-dependent versus inter-individual recognition, and of emotion recognition versus

gender and identity recognition. The results and contributions are shortly summarized in

the following.

Pattern recognition is divided in data preprocessing, feature extraction, and classifica-

tion. At first, a single stride is extracted from each data set so that reported recognition

rates refer to the observation of a single stride. As the recorded gait database contains

highly dimensional, temporal dependent, and highly variable data vectors, efficient feature

extraction is necessary. Therefore, a number of techniques is compared which are feature

selection, PCA, LDA, and the according kernel extensions. Depending on the number of

training samples and classes, either PCA or LDA performs better. The nonlinear tech-

niques GDA and KPCA do not reach higher recognition rates than the linear techniques.

Even though the classifiers NN, SVM, and Naive Bayes have different assumptions on the

data, the recognition rates are similar. For extracting the temporal information in the gait

trajectories, a combination of PCA and FT has been investigated. Yet, simple calculation

of minimum, mean, and maximum of each trajectory achieves higher recognition rates.

The categorical versus the dimensional emotion model are compared for their suitability

to recognize affect in gait. A set of categorical emotions is recognizable, yet the dimensional

model better reveals that in particular differences in arousal and dominance are more

accurately recognized than differences in pleasure.

The human gait is a highly individual motion pattern. Therefore, algorithms reach

higher accuracy if they are trained for an individual. Practical applications benefit if first

the identity is estimated and then the emotion is recognized. Likewise, it is shown that

emotions expressed during walking can decrease the quality of identification if the training

database contains only neutral walking trials.

Comparing the recognition of emotions with the recognition of gender and identity shows

that person-dependent emotion recognition is in the range of gender recognition. However,

accuracy for inter-individual emotion recognition is less than for gender recognition or

identification.

If LDA is applied to reduce the dimensionality of the feature space and only a small

number of training samples are available, the within-class scatter matrix SW becomes

singular. Using the null space method or the QZ algorithm to solve the eigenvalue problem

leads to equal recognition rates for NN and SVM. A general proof is derived that NN, hard

margin classifier, and SVM with a Gaussian kernel define the same decision borders for

this case.

In general, the rates to recognize emotions in gait are similar to human performance.

Even though the gait is a highly individual motion pattern, recognition rates are above

chance. Hence, observing the gait can be considered to recognize the affective state at

distance for a group consisting of a limited number of known persons.
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5.6 Limitations

5.6 Limitations

This approach shows that emotions are recognizable with techniques from machine learn-

ing, but the study is also accompanied by a number of limitations.

First, the investigated gait databases contain acted and elicited emotion. No gait

database currently exists which contains spontaneous emotions. Still, the presented results

provide an upper estimate on the recognition rates for spontaneous emotions. Recording

spontaneous emotions would require a natural setup. This directly demands for highly

accurate computer vision algorithms which extract the silhouette of the walker and model

his/her pose.

Second, the human gait is influenced by many factors such as body pose, age, weight,

physique, complaints, and gender. Within this study, the identity of the walker has been

considered. A future study may also investigate to what extend emotion recognition is

affected by variations in the other factors.

Third, recognition rates for emotions in gait are achieved above chance level. Yet,

these rates are lower than comparable recognition rates for facial expressions and speech,

in particular for differences in pleasure. The gait seems to be more suited to provide

information about arousal or dominance of a walker.

Lastly, the term emotion is extensive. It could be also considered if gait is more suited

to monitor long-term states such as mood. A possible application would be in therapeutic

support for depression, which significantly affects the walking style, e.g. in the framework

of embodied emotions.

Summing up, future work may contain to develop computer vision algorithms for recog-

nition of emotions, to record a database which contains spontaneous emotions, and to

investigate the impact of other factors on the gait.
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6 HMM for Recognition of Affect and Identity

in Marker-Based Gait Analysis

The previous chapter 5 focuses on static classifiers for recognition of affect in gait patterns.

As walking is a process evolving over time, this chapter considers a classifier which is

especially suited to handle sequential data. Within this context, a Hidden Markov Model

(HMM) is most popular for sequential data in pattern recognition. Characteristic for an

HMM is that the states of the system remain hidden, and the current state is deduced

from the observations. HMMs have been introduced for identification in vision-based gait

analysis [10, 71, 139]. The principle is that a stride is divided in several stances and the

transition from one stance to the next is modeled by a Markov Chain. Thus, the current

stance is a hidden state which can be inferred from the observations. An HMM is trained

for each class which is either the identity or the affective state within this chapter. The

probability which model emits most probably the observation sequence is calculated during

the recognition process.

HMMs have been applied to recognize the identity, age, or gender in vision-based gait

analysis. Motivated by reported results, this concept is applied to marker-based gait

analysis in the following. Three different approaches are implemented which are 1) a

simple minimum distance classifier which considers different stances but does not model the

transition between the stances, 2) an HMM which uses a set of joint angles as observation

vector, and 3) an HMM which uses a distance metric as observation vector and has been

applied in vision-based gait analysis. Achieved recognition rates of these approaches are

compared with each other. Afterwards, they are set in comparison with the recognition

rates for static classification which is investigated in chapter 5.

The purpose of this chapter is to study if the achieved recognition rates of chapter 5 can

be further improved by using an HMM instead of static classification. Application of HMMs

to vision-based gait analysis has been studied in several publications [10, 71, 139, 159, 162].

Yet, if its performance is superior to static classifiers with efficient feature extraction in

the case of marker-based gait analysis and in the context of affect recognition has not yet

been studied. To facilitate comparison of the recognition rates, this chapter uses the same

joint angles, the same length of the observation sequences, which is a single stride, and

the same evaluation procedure as in chapter 5. It should be noted that to shorten the

observation sequence to a single stride is not a prerequisite for the use of an HMM because

the underlying Markov Chain is especially suited to deal with observations differing in

length.

This chapter starts with an overview on the use of HMMs in vision-based gait analysis

and motivates its application for marker-based analysis in section 6.1. Then, the basic

concept of an HMM, different models and implementation issues are briefly summarized

in section 6.2. Results of the minimum distance classifier are given in section 6.3. The

design and training algorithms of the applied HMMs are described, followed by a summary
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6.1 HMM in Vision-based and Marker-based Gait Analysis

on the recognition rates of the HMM approaches. Finally, the conclusion compares the

presented approaches with static classification in terms of recognition rates in section 6.4

and limitations are discussed in 6.5.

6.1 HMM in Vision-based and Marker-based Gait Analysis

The predominant research in vision-based gait analysis focuses on the recognition of iden-

tity besides gender and age [10, 139, 159, 162]. Similar marker-based approaches can also be

found in literature on classification of human movements such as running, walking, stand-

ing, etc. [86]. The advantage of gait in comparison to other biometrics such as fingerprint

or signature is that it is non-obtrusive and gives an estimate from distance. Promising

recognition rates are reported in [10, 71, 139] for vision-based gait analysis. Yet, it is seen

rather as one component of a multimodal biometric system. The reason therefor is that

the walking style of a person varies depending on the walking surface, footwear, clothes,

and walking speed. This variation over time complicates applications outside laboratory

setups and is a challenge for mathematical algorithms. Regarding ethical issues, preserving

a person’s privacy is an issue just as for other biometrics.

In the following, the methodology in vision-based gait analysis is briefly summarized.

First, a human’s silhouette is extracted from the frames. As in [139], this can be achieved

by semiautomatical location of bounding boxes. Within each bounding box, the silhouette

is extracted using fore- and background detection. This task can be facilitated for indoor

recordings with a static and uniformly colored background. For more natural databases,

other issues such as shadow detection, variations in lightning, and moving background

play a role. These and related issues are addressed in [139, 140]. Second, single gait

cycles are extracted from the gait sequences. Finally, different feature extraction and

classification algorithms are applied to the data. Feature extraction is generally subdivided

in model-based and appearance-based approaches. Feature-based or holistic are synonyms

for the latter one in literature. Boulgouris et al. summarize advantages and disadvantages

of several model-based and appearance-based features in [10]. Extracting model-based

features requires a high quality of the sequences. However, it has the advantage that

the features are view and scale invariant. Appearance-based features are derived from the

silhouette of the walker and can handle a lower recording quality. Features fast to compute

are the width of silhouette and its vertical and horizontal projection [10, 71]. Often better

results are achieved if the silhouette is from the side view and not from the front view

of the walker. Classification is either achieved by template-matching or an HMM. Due

to different walking speeds, template matching is improved if time normalization is taken

into account. Proposed algorithms within this context are Dynamic Time Warping and

Linear Time Normalization [10]. The distance metric, upon which the test decision is

made, is based on a comparison of a complete walking cycle between test sequence and

reference sequence which is a results of the training. It does not take into account different

stances during one cycle. An HMM subdivides a complete gait cycle in several stances

and models the output during each stance. Classification results are often reported in

Cumulative Match Characteristic (CMC) curves, in which the recognition rate is plotted

over the rank. A rank of 5 denotes that the correct identity is among the first 5 reference
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6 HMM for Recognition of Affect and Identity in Marker-Based Gait Analysis

sequences which are closest to the test sequence.

In clinical and biomechanical studies, marker-based gait analysis is preferred over video-

based because of a higher accuracy in estimation of model-based parameters. The data is

either statistically analyzed or with several techniques from machine learning, see chap-

ter 5.1.1. In marker-based gait analysis, HMMs are used to discriminate between different

movements, e.g. walking, dancing, kicking [86]. The obtained models can further generate

artificial motion primitives for computer animations or robots. Motivated from results in

vision-based gait analysis and for motion discrimination, the HMM concept is adopted for

marker-based gait analysis in the following. That way, single stances of a gait cycle are

modeled, whereas in the previous chapter features are derived from a complete gait cycle.

In doing so, the feature space needs to be reduced to enable convergence of the training al-

gorithms for the HMM. To compare the efficiency of the algorithms between marker-based

and vision-based gait recordings, recognition rates for identification are calculated. In the

context of affective computing, the data is also classified regarding emotional states. Focus

lies especially on the research question whether recognition rates can be further improved

by the use of an HMM.

6.2 Hidden Markov Model

Classification can be divided in parametric and non-parametric techniques. Parametric

techniques rely on a model of the process. If the model is known or well-estimated from the

training data, parametric techniques can have the advantage to be optimal. Disadvantages

of parametric techniques are that the exact model of a stochastic process is seldom known.

Reasons therefore are high complexity of the system, limited training data, and limited

knowledge on the underlying mechanism. As an HMM belongs to the class of parametric

techniques, the latter issues are also crucial in training an HMM. In this section, an HMM

is applied to the recorded gait patterns, which models the development over time of the

gait trajectories.

The key element of a HMM is a finite set of discrete states ω1, ω2, ..., ωI . At time t,

the system is in state ω(t). A sequence of a maximum number of T states is denoted by

the state vector ω = [ω(1), ω(2), ..., ω(T )]. If these states, also named latent variables, are

observable, the system is called a Markov Chain. However, in most real-world applications,

the states are hidden and not directly measurable. Then the observation v(t) is made with

a certain probability, if the system is in state ω(t). Thus, the underlying state is inferred

from the observations, but ω itself remains hidden. Fig. 6.1 illustrates the concept both

for the Markov Chain and for the HMM. Characteristic of an HMM is a discrete number

of states while the observations can be either discrete or continuous. If also the state is

continuous and can be modeled by a Gaussian, a linear dynamical system can be used to

model the process. The following general description of HMMs is based upon the textbooks

of Rabiner and Juang [129], Bishop [9], and Duda [43].

The assumption of a 1st order Markov Chain is that the Markov property is met. This

is equivalent to causality where the future state ω(t+1) depends only on the current state
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Fig. 6.1: (a) Transition between the states ω1, ω2, and ω3 depends on the probabilities aij in
a Markov Chain. (b) Only the observations vj are visible in a Hidden Markov Model.
The states ωj remain hidden.

ω(t) and is independent of the past

P [ω(t+ 1) = ωj|ω(t) = ωi, ω(t− 1) = ωk, ...] = P [ω(t+ 1) = ωj|ω(t) = ωi] .

If P [ω(t + 1) = ωj|ω(t) = ωi] is time-independent, the matrix A contains the transition

probabilities aij with aij ≥ 0 and
∑

j aij = 1. If a diagonal entry of A is equal to one,

the according state is called final or absorbing state. If all entries of A are unequal zero

aij 6= 0 ∀i, j, the model is called ergodic, see Fig. 6.1. Yet, if all entries below the diagonal

are equal zero, the model is a typical left-to-right model.

In an HMM, the state ω(t) is not measurable. A second random process models the

probability of an observation v(t) if the system is in state ω(t). A number of d ob-

servations are possible for discrete observations. The observation probability matrix B

contains the probabilities bjk = P [vk(t)|ωj(t)] to observe an observation vk if the state

is ωj. The matrix A is a time-independent square matrix of dimension I, whereas

B ∈ R
I×d. A complete specification for a discrete density HMM (DDHMM) contains

the set of model parameters Θ = (A,B,π), where π is the initial state distribution

[P (ω(1) = ω1), P (ω(1) = ω2), ..., P (ω(1) = ωI)]
T .

Three basic problems can be derived from the definition of an HMM:

• Learning Given the number of states I, the number of observations d, a structure

of the model, and a set of training observations, how to estimate the probability

matrices A and B of the model? The solution is the Baum-Welch algorithm, which

is equivalent to the Expectation-Maximization (EM) method. It can result in local

maxima and the results depend on the initial estimates of A and B.

• Evaluation Given an HMM with Θ = (A,B,π), what is the conditional probability

P (V|Θ) that a sequence of observations V = [v(1), v(2), ..., v(T )] is generated by the

model Θ? Straight forward calculation of P (V|Θ) would be too computationally
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6 HMM for Recognition of Affect and Identity in Marker-Based Gait Analysis

intensive. Therefore the common solution is the forward or backward algorithm.

• Decoding Given a HMM with Θ = (A,B,π) and a set of observations V, what is

the most likely sequence of hidden states ω? The solution is the Viterbi algorithm.

A detailed mathematical description of the algorithms for a DDHMM is given in [9, 43,

128, 129].

Even though the discrete observations simplify the algorithms, this property limits the

applicability of a DDHMM. One possibility is to apply vector quantization to convert

continuous observations into a sequence of discrete observations. The other possibility is

to use a continuous density HMM (CDHMM), where the observations are modeled by a

probability density function which could be a linear combination of Gaussians. In the

case of a single state I = 1, it is equivalent to a Gaussian Mixture model. Even though

CDHMMs are more accurate than DDHMMs, they require more complex algorithms and

a larger data base for training [26]. Further advanced HMMs exist which improve the

limitations of a DDHMM. For example, the state transition probability does not only

depend on the last state but also on several states in the past in a semi Markov Model. A

factorial HMM contains multiple Markov chains. Then, the observation is a combination

of the output of each Markov chain. This can decrease the required number of states for

each chain, but requires additional complexity during training.

As HMMs include time-dependencies, they are a powerful technique. Still, the following

issues need to be considered when training an HMM:

• Insufficient Training Data: Too short training sequences can lead to an inade-

quate number of occurrences of low-probability events. In the worst case, entries in

the probabilities matrices are estimated to be zero, even though the true probabil-

ity is only small. This would lead to misclassification of low-probability events. If

the number of training samples can not be increased further, the number of model

parameters Θ = (A,B,π) to be trained can be decreased. Another possibility is to

define thresholds for the model parameters.

• Initial estimates of the parameters of the HMM: Choosing the initial estimates

of Θ = (A,B,π) is crucial because the EM algorithm converges towards a local

maximum of the likelihood function. Usually it is recommended to use a random

or uniform initial estimate for π and A [128]. An initial estimate of B is helpful

for a DDHMM and necessary for a CDHMM. A possible estimate of B is to manual

partition the observation sequences in states and then average over the observations

for each state.

• Choice of the Model: Performance of an HMM also relies on the choice of the

model. This considers the structure of the underlying Markov chain, number of states

and model for the output.

The most popular application of HMMs is in acoustics and speech recognition [128, 129].

Further applications are handwriting recognition, protein sequence analysis, and human

movement analysis [26, 86]. Lately, it has found application in gait identification.

114
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Fig. 6.2: The HMM transits the states ω1 to ω5 during a single step.

In vision-based gait analysis, a CDHMM is applied in [71] and good results are achieved

for identification. This approach is adopted for marker-based gait analysis and compared

with results of static classification, which is developed in chapter 5. It should be noted

that further HMM concepts exist in vision-based gait analysis, such as factorial or parallel

HMMs [23]. As the main purpose within this chapter is to investigate if modeling differ-

ent stances is beneficial in marker-based gait analysis for affect recognition, the general

concept of an HMM as described in [128] has been implemented and adopted. Further

enhancements of the HMM such as parallel or factorial Markov chains may increase the

recognition rate achieved with a CDHMM in marker-based gait analysis.

6.3 Results

This section summarizes the results for applying a CDHMM to recognize affect in gait

patterns. The underlying principle is that a gait cycle is divided in several stances E =

{e1, ...eK}. A cyclic left-to-right HMM is used to model the transition from one stance to

the next, see Fig. 6.2. Thus, the hidden state ωi(t) represents the current stance and the

continuous observations V = {v(1), ...v(T )} with v ∈ R
d are the measured joint angles

gained from marker-based recordings. To enable comparison with static classification, the

same set of joint angles is used as in the previous chapter 5. In this case, the dimension of

the observation vector v is d = 22. Training a CDHMM with an observation vector of this

size requires a large number of training sequences and long computation time. Furthermore,

computation of the loglikelihoods may result in values which exceed the precision range

of the computer. This motivates to reduce the dimension of the observation vector. One

possibility is to select a smaller number of joint angles. Furthermore, Kale et al. propose

an algorithm which calculates the distance between the observation and each stance [71].

This distance vector is then used as observation vector of the CDHMM. In this case, the

size of v is efficiently reduced to the number of stances K. For vision-based gait analysis,

their method achieves good results, see [71, 162], and is used for marker-based gait analysis

in the following.

In the following, results are reported for three different methods. In the first approach,

the gait cycle is divided into a number of stances and a simple minimum distance classifier

is applied. In a second approach, this method is extended by a transition matrix. This

results in an CDHMM. The parameters of this CDHMM are iteratively trained and only a

small number of joint angles are selected for the observation vector v. In a third approach,
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6 HMM for Recognition of Affect and Identity in Marker-Based Gait Analysis

the method of Kale et al. [71] is adopted for marker-based affect recognition. In doing so,

a distance metric is calculated which reduces the number of observations and a selection

of a subset of joint angles is not required. Finally, these three approaches are compared,

whereby the second and third approach differ in their representation of the observation

vector.

A single stride of the gait sequences is extracted from the recordings for all three ap-

proaches. Thus after preprocessing, the input data is the same as in chapter 5.

6.3.1 Minimum Distance Classifier

The gait can be subdivided in a set of several stances E = {e1, ..., eK} with ek ∈ R
d. In

[71], a number of 5 stances is chosen for a single step. The feature vector in [71] contains

the absolute width of the silhouette. Thus, it does not distinguish whether the right or

the left leg is the support leg. In this case, the joint angles are different for the support

and swing leg. This suggests to use a number of K = 10 stances for a complete stride. For

comparison, the minimum distance classifier is also tested with half the number of stances.

For the CDHMM later on, this will reduce the number of states and thus the complexity

of the model. However, the stances are less precise.

The single stances ek are estimated by dividing the training sequences into K equal

parts and averaging over the joint angles within each part. Depending on the classification

task, Ec is either a representative for a single walker c, for one affect c, or for one affect of

one walker c. Thus, for identification 13 representatives Ec are trained, for inter-individual

affect recognition 4, and for person-dependent emotion recognition 52.

In the simplest case, a minimum distance classifier can be chosen for decision making.

The sample sequence S = {s(1), s(2), ..., s(T )} ∈ R
T×d is compared with each of the

representatives Ec. The class for which the following criterion is minimized

argminc

T
∑

t=1

min
k∈1,...,K

D(s(t), eck)

is assigned to the sample. The distance metric D(·, ·) is the Euclidean metric. The results

for this approach are summarized for identification in Tab. 6.1 and for affect recognition in

Tab. 6.2. Even though it shows excellent performance on identification for the neutral gait

trials, recognition rates are lower if the walker expresses emotions during the identification

process. Considering that the database includes all emotions, only 69% accuracy is achieved

if the walking styles differ in expressed affect. The gait trials of four out of the 13 walkers

are always assigned to the same but wrong walker. The accuracy is noticeable lower

than the recognition rates in the previous chapter, see Tab. 5.5. Thus, the approach is

susceptible to variations in the data. This is in accordance with [71] who report that the

minimum distance classifier is susceptible to noise in gait analysis. Also, recognition rates

for inter-individual and person-dependent recognition do not reach best rates of Tab. 5.3

and Tab. 5.4. Furthermore, similar recognition rates for a minimum distance classifier are

achieved if only a single stance is used being equivalent to not dividing the gait in several

stances. Thus, only dividing the gait in single stances is not sufficient to achieve proper
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6.3 Results

Identification [%]
Stan- Data Set
ces Neut. Happy Sad Angry All

10 100 92 85 92 69
5 100 92 85 92 69
1 100 92 77 77 69

Tab. 6.1: Identification.

Recognition of Affect [%]

Stances Inter-ind. Person-dep.

10 55 85
5 54 85
1 51 80

Tab. 6.2: Emotion Recognition.

classification of affect or identity.

Taking a closer look at the data shows that the recordings of the joint angles differ. Some

trajectories of repeatedly recorded joint angles are more similar whereas others highly differ

in range, offset and shape. From this follows that the minimum distance classifier seldom

distinguishes between different stances and gives only a rough estimate which represen-

tative Ec the sample S is most similar to. The following two modifications are made to

improve the performance of the minimum distance classifier:

• normalization of the joint angles,

• weighting of the joint angles.

The parameters of the standard normalization µa and σa are estimated from the training

data for each joint angle a. The standard normalization is applied to the test data. Then,

the range of the different joint angles is similar in average, still some joint angles vary

more than others in shape and offset depending on the recording. This variation is not

necessarily in correlation with the identity or affective state of the walker.

Fig. 6.3 illustrates how this affects the estimation of the stances ek. This motivates to

introduce a weighting. The weights are separately calculated for the training set of each

class. With σc(t) being the standard deviation of the samples s(t) belonging to class c,

the mean of the standard deviations s̄c = 1
T

∑T
t=1 σc(t) describes the average deviation

between the trajectories. This measure is scaled by the absolute range of each angle a

leading to

w̃a,c =

(

s̄a,c
smax,a,c − smin,a,c

)−2

,

where the index a denotes the calculation for each angle. Large values of w̃a,c are desired

for similar trajectories. Finally, the weights are normalized so that wa,c =
w̃a,c∑
a wa,c

. Tab. 6.3

lists the angles with the five highest weights for each classification task. The listed weights

are average values over the leave-one-out iterations. In all three cases, the angles of the

spine, pelvis and foot progress are important whereas angles of the head, neck, elbow, and

shoulder play a minor role. Unlike the selection of a subset of joint angles in chapter 5,

here the joint angles of the lower body have higher weights. Thus, the following recognition

rates are calculated by information provided to a larger extend by observation of the lower

part of the body.
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Fig. 6.3: The trajectories of the foot progress angle around the x-axis are very similar among
the recordings, whereas the trajectories of the head angle around the x-axis differ
strongly. High weights are assigned to angles for which the stances ek are estimated
usefully. The 10 red bars depict the stance value of each angle during the 10 intervals.

Identification Affect: Inter-individual Affect: Person-dependent
Weight Angle Weight Angle Weight Angle

.097 Foot Progress (X) .25 Foot Progress (X) .1 Foot Progress (X)
.07 Head (X) .08 Spine (Y) .1 Spine (Z)
.07 Spine (Z) .08 Pelvis (Y) .08 Foot Progress (Y)
.07 Foot Progress (Y) .07 Shoulder (X) .06 Pelvis (Y)
.07 Pelvis (Y) .06 Spine (Z) .05 Pelvis (Z)

Tab. 6.3: Weights for identification, inter-individual and person-dependent affect recognition.

The distance calculation of the minimum distance classifier is modified in the way that

the difference D(·, ·) between the stance eck and a sample s(t) is scaled for each angle a by

wa,c. Recognition rates are summarized in the Tables 6.4 - 6.7. Furthermore, the weights

can be averaged over the classes c resulting in one common weight vector w.

As it can be seen in the Tables 6.4 - 6.7, recognition rates are in general better when

the weight vectors are averaged as when class dependent weights are used. Two points

are worth to mention for the class dependent weights. First, it performs slightly better

than the minimum distance classifier for identification but worse for affect recognition.

Second, when the gait is not divided in several stances, recognition rates are only slightly

above chance. The results for average weighting are interpreted in more detail further

on. For identification, it can be seen in Tab. 6.6 that the minimum distance classifier is

more robust against variations in the walking style caused by different affective states. A

possible reason is that joint angles of the lower body part have higher weights and, hence,
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Identification [%]
Stan- Data Set
ces Neut. Happy Sad Angry All

10 100 100 92 92 84
5 100 77 100 77 92
1 15 15 31 23 54

Tab. 6.4: Class-dependent weighting.

Recognition of Affect [%]

Stances Inter-ind. Person-dep.

10 42 88
5 41 79
1 33 32

Tab. 6.5: Class-dependent weighting.

Identification [%]
Stan- Data Set
ces Neut. Happy Sad Angry All

10 100 92 92 100 92
5 100 92 92 100 100
1 100 85 100 77 92

Tab. 6.6: Average weighting.

Recognition of Affect [%]

Stances Inter-ind. Person-dep.

10 56 93
5 55 91
1 48 72

Tab. 6.7: Average weighting.

changes in the body posture do less infer the classification. Even though, average weighting

also concentrates on extracting information from the lower part of the body for affect

recognition, it improves accuracy for inter-individual and person-dependent recognition.

Results of person-dependent recognition are in the range of static classification with best

feature extraction. Results for inter-individual affect recognition do not reach recognition

rates achieved with static classification. Furthermore, dividing the gait in several stances

is beneficial for the minimum distance classifier. Recognition rates vary only slightly when

the number of stances K is 5 or 10. If only a single stance K = 1 is used, recognition rates

decrease.

Summing up, the minimum distance classifier has been extended by a weighting which

assigns high weights to gait trajectories which differ less among recordings. In doing so,

the minimum distance classifier achieves similar recognition rates than static classification

for identification and person-dependent affect recognition. Recognition rates for inter-

individual affect recognition is lower than for static classification.

6.3.2 CDHMM based on a Set of Joint Angles

In the previous subsection, a minimum distance classifier estimates the most likely set of

stances Ec, which produces the observation sequence V . The stances ec
k of Ec are estimated

by dividing the training set in K equal parts and averaging over the observed joint angles

within each part. The transition matrix of a CDHMM determines a sequential order of the

stances. In contrast to the minimum distance classifier, skipping stances is not possible

and the duration of the stances can differ. An iterative training of the HMM estimates the

transition matrix Ac, the stances ec
k and the observation distribution bcj(v) = N (v, ec

j,Σ
c
j)

for each state j. A CDHMM model with the parameter set Θc is trained for each class

c. A number of 13 models is trained for identification, 4 models for inter-individual affect
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6 HMM for Recognition of Affect and Identity in Marker-Based Gait Analysis

recognition, and 52 models for person-dependent affect recognition. During the test phase,

the probability log[P (V |Θc)] is calculated for all classes c that the model Θc generates

the observed data V . The model with highest probability is chosen and its class label is

assigned to the test sample.

If the system is in state ωj, the stance ej is most probably observed. Thus the number

of states J equals the number of stances K. During walking, the HMM transits from one

state to the next in a sequential order. Thus, the transition matrix for K = J = 5 is

A =













a11 a12 0 0 0

0 a22 a23 0 0

0 0 a33 a34 0

0 0 0 a44 a45
a51 0 0 0 a55













.

It is more probable that the system stays in the state ωi than that the system transits to

the next state ωj; therefore, the property aii > aij is valid ∀i 6= j. The observation v(t) is

modeled by a multivariate normal density distribution

bcj(v(t)) =
1

(2π)d/2|Σc
j|1/2

exp

[

−1

2
(v(t)− ec

j)
T (Σc

j)
−1(v(t)− ec

j)

]

,

where Σc
j is the covariance matrix of the stance j. A number of five joint angles Γ2

is selected for v(t). The angles with highest weights in Tab. 6.3 are chosen for each

classification task. In doing so, the same joint angles contribute to the classification task,

which are most relevant for the minimum distance classifier with the weighted distance

metric. This facilitates comparison of both approaches. For comparison with results in

Chapter. 5.1.1, recognition rates are also calculated for the set of joint angles Γ1 containing

the neck forward angle, the shoulder flexion angle, the shoulder abduction angle, and the

thorax forward angle. Tab. 6.8 lists the joint angles for each subset Γ1 and Γ2.

As a single stride beginning with the left leg approaching forward is extracted from

the recorded sequences, the initial state distribution is π = [1, 0, ..., 0]T . The parameters

Ac, ec
k, and bcj are trained according the following re-estimation formulas which are imple-

mented after the description of CDHMMs in [128]. As noted earlier, the parameters are

trained for each class separately. For more comprehensible notation, the superscript c is

neglected in the description of the training procedure. The re-estimation formulas require:

• the forward variable αi(t) = P (v(1)v(2)...v(t), ω(t) = ωi|Θ), which is the probability

that the system is in state ωi at time t and the partial observation sequence until t

has been observed. The values αi(t) are iteratively calculated by

αj(t+ 1) =

[

K
∑

i=1

αi(t)aij

]

bj(v(t)) for 1 ≤ t ≤ T − 1, 1 ≤ i ≤ K ,

with the initialization αi(1) = πibi(v(1)) for 1 ≤ i ≤ K.

• the backward variable βi(t) = P (v(t + 1)v(t + 2)...v(T ), ω(t) = ωi|Θ), which is the

probability of the partial observation sequence from time t to T and that the system
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is in state ωi at time t. The values βi(t) are iteratively calculated by

βi(t) =
K
∑

j=1

aijbj(v(t+ 1))βj(t+ 1) for t = T − 1, T − 2, ..., 1, 1 ≤ i ≤ K ,

with the initialization βi(T ) = 1 for 1 ≤ i ≤ K.

• a scaling, which prevents the variables to reach the precision range of the computer

too fast. Rabiner [128] introduces the scaling factor ct

ct =
1

∑K
i=1 αi(t)

and α̂i(t) = cT (t)αi(t), β̂i(t) = ctβi(t) .

The re-estimation formulas are then applied to α̂ and β̂. The loglikelihood that a

observation V is generated by the model Θ is

log[P (V |Θ)] = −
T
∑

t=1

log(ct) .

• the variable γi(t) = P (ω(t) = ωi|V ,Θ) which is the probability that the system is in

state i at time t. It is calculated by

γi(t) =
α̂i(t)β̂i(t)

∑K
j=1 α̂j(t)β̂j(t)

.

• initialization of ei and Σi. Each of the N training sequences is divided into K equal

parts and the observations for each stance i are combined. Then, the mean stance

ei and the covariance matrix Σi are estimated for each stance i.

The initialization of ei and Σi is conducted for each class c separately. In doing so, the

iterative re-estimation starts near a local maxima of the loglikelihood log[P (V |Θc)]. The

re-estimation procedure allows that the log[P (V |Θ)] increases shortly to reach regions with

a higher local maxima.

The parameters Ac, ec
k, and bcj are iteratively re-estimated with a maximum number of

five iterations. For a number of N observations, the re-estimation formulas are:

āij =

∑N
n=1

∑T
t=1 α̂

n
i (t)aijbj(v

n(t+ 1))β̂n
j (t+ 1)

∑N
n=1

∑T
t=1

∑K
j=1 α̂

n
i (t)aijbj(v

n(t+ 1))β̂n
j (t+ 1)

,

ēi =

∑N
n=1

∑T
t=1 γ

n
i (t)v

n(t)
∑N

n=1

∑T
t=1 γ

n
i (t)

,

Σ̄i =

∑N
n=1

∑T
t=1 γ

n
i (t)(v

n(t)− ei)(v
n(t)− ei)

T

∑N
n=1

∑T
t=1 γ

n
i (t)

.

These equations assume that all observations V n are equally probable and independent of

each other. For dealing with dependent observations, the reader is referred to [95].
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6 HMM for Recognition of Affect and Identity in Marker-Based Gait Analysis

Angle Set Recognition Joint Angle X Y Z

Γ1 All Neck x
Shoulder x x
Thorax x

Γ2 Identification Head x
Spine x
Pelvis x
Foot Progress x x

Affect: inter-individual Shoulder x
Spine x x
Pelvis x
Foot Progress x

Affect: person-dependent Spine x
Pelvis x x
Foot Progress x x

Tab. 6.8: Selection of two subsets of joint angles for the CDHMM - Γ1 is selected for com-
parison with static classification and Γ2 for comparison with the minimum distance
classifier.

Identification [%]
Stan- Data Set
ces Neut. Happy Sad Angry All

10 54 54 62 54 69
5 85 54 54 62 69

Tab. 6.9: CDHMM with Γ1.

Recognition of Affect [%]

Stances Inter-ind. Person-dep.

10 59 80
5 63 82

Tab. 6.10: CDHMM with Γ1.

Identification [%]
Stan- Data Set
ces Neut. Happy Sad Angry All

10 77 77 77 69 92
5 85 85 100 85 85

Tab. 6.11: CDHMM with Γ2.

Recognition of Affect [%]

Stances Inter-ind. Person-dep.

10 40 72
5 38 72

Tab. 6.12: CDHMM with Γ2.

After the parameters Ac, ec
k, and Σc are estimated based on the training set, the

CDHMMs are applied to the test set and the log[P (V |Θc)] is calculated for each test

sequence. The results for the leave-one-out procedure are summarized in the Tables 6.9 -

6.12.

In all cases, recognition rates are above chance level but are less than best recognition

rates achieved with static classification. For the subset of joint angles Γ1, static classifi-

cation with different dimension reduction techniques and the CDHMM rely on the same

base data and therefore Γ1 is suited for a more detailed comparison. For the static clas-
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sification, minimum, mean, and maximum of each gait trajectory are calculated and for

the CDHMM, the trajectories are modeled by a Markov Chain. Comparing the recogni-

tion rates of both approaches, shows that inter-individual recognition achieves the same

rate of 63% for both approaches. Yet, recognition rates are lower for the CDHMM in the

case of identification and person-dependent affect recognition. Afterward, the subset of

joint angles Γ1 and Γ2 are compared with regard to recognition rates. The subset Γ1 is

better suited for recognition of affect and the subset Γ2 better for identification. This is

explained by the fact that Γ1 contains joint angles which are mentioned to be significantly

influenced by different affective states in related literature from psychology. On the other

hand, Γ2 contains mostly joint angles of the lower body part. Thus, it is easier to obtain

information about the identity than information about the affective state from observing

the lower body part. Thus for automatic recognition of emotions, it is useful to observe

especially the upper part of the body during walking. Considering that also humans ob-

serve the upper body part of a walker more intensely during an emotion recognition task,

see chapter 3.3.2, this procedure seems to be not only advantageous in machine learning

but also for human recognition processes.

Finally, the performance of the CDHMM is compared with the minimum distance clas-

sifier. Including a Markov chain which models the transition from one stance to the next

does not automatically improve recognition rates. As the number of joint angles need to

be reduced for training the CDHMM, performance depends on the subset Γ. For inter-

individual recognition of emotion, higher recognition rates are achieved with the CDHMM.

But for person-dependent affect recognition, recognition rates are lower for the CDHMM.

Identification with the CDHMM is for Γ1 and Γ2 better if the training set contains all trials

and not only a subset of only neutral, happy, sad, or angry walking styles. In contrast to

the minimum distance classifier, the CDHMM improves if more gait trials and different

walking styles are available during training. Notwithstanding, recognition rates are lower

for the CDHMM than for the minimum distance classifier with average weighting.

6.3.3 CDHMM based on the FED-Vector

Using the joint angles as the observation vector of the CDHMM has the disadvantage that

only a small number of joint angles can be modeled. To overcome this limitation, Kale

et al. propose a frame to exemplar distance (FED) [71]. Hereby, the observation vector

vFED(t) of the CDHMM is the distance D(·, ·) between the current observation v(t) and

the stances ei ∈ {e1, ...eK}. Both v(t) and ei contain a number of d joint angles. Kale et

al. mention three distance measures, namely

• the Euclidean distance D(v(t), ei) = ‖ei − v(t)‖,

• the inner product distance D(v(t), ei) = 1− vT (t) ei√
vT (t)v(t)eTi ei

,

• and the sum of absolute distances D(v(t), ei) =
∑d

a=1 |va(t) − ea,i|, for which the

index a denotes one of the d joint angles.

Fig. 6.4 illustrates calculations of the three distance metrics applied to one gait sequence.

The distance D(v(t), ei) is minimal for the first stance e1 for all three metrics shortly
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Fig. 6.4: During a stride, the CDHMM transits the states ω1 till ωK and in the same way the
according distance metric D(v(t), ei) should be the smallest. (K = 5)

after the beginning of each stride. Stance eK is similar to stance e1 so that it is possible

that D(v(t), eK) < D(v(t), e1) at the beginning, see e.g. the inner product distance in

Fig. 6.4. With proceeding time, the distance becomes minimal for the subsequent stance

ei. The FED vector vFED(t) = [D(v(t), e1), ..., D(v(t), eK)]
T contains the distance metrics

D for all K stances. The change of the maximum value of its entries over time reflects

the transition from one stance to the next. In applying vFED(t), the dimension of the

observation vector is efficiently reduced from the number of angles d to the number of

stances K.

If vFED(t) is the observation of the CDHMM, the stances ei are only used for the

calculation of vFED(t). The stances ei are not reestimated during the training of the

CDHMM for the indirect approach of applying the FED vector [71]. The observation

distribution (µC ,ΣC) of the CDHMM models vFED(t). The parameters AC , µC , and ΣC

of the CDHMM are trained in the same manner as described in the previous subsection

6.3.2. The achieved recognition rates using the Euclidean metric are reported in Tab. 6.8.

The identity of the walker cannot be recognized using this algorithm and marker-based

recordings. Person-dependent emotion recognition is better than chance level but performs

worse than the other algorithms of this chapter.

Even though good performance of the FED vector is reported in vision-based gait anal-

ysis, a selection of a subset of joint angles performs better for marker-based gait analysis.

A possible explanation therefor is that vision-based recordings contain information about

the size and the contour of the walkers. This study concentrates on analyzing only joint

angles, which are only implicitly affected by the size of the walker. Thus, the stance E of

a walker contains information about the size and the contour in vision-based gait analysis,

but in this approach the stance E contains only information about the kinematics. During

a stride, the changes in the distance of the kinematics and each single stance ei are larger

than the difference of the kinematics and each single stance ei between different walkers.

Furthermore, considering the distance between markers of the elbow, shoulder, or knee as

input vector, similar to the width vector in computer vision, leads to good performance

of the FED approach, see [187]. This is a further hint that the FED approach requires

information about the contour of the walker, which is missing if joint angles are used as

input.
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Identification [%]
Stan- Data Set
ces Neut. Happy Sad Angry All

10 0 0 0 8 8
5 8 15 31 15 15

Tab. 6.13: CDHMM with FED.

Recognition of Affect [%]

Stances Inter-ind. Person-dep.

10 33 64
5 38 75

Tab. 6.14: CDHMM with FED.

6.4 Summary

In the previous chapter, statistics such as minimum, mean, and maximum of each stride are

computed as features. In this chapter, the gait is subdivided in a number of K stances and

a minimum distance classifier or an HMM are applied for classification. In the following,

the results for these approaches are summarized and then compared to the recognition

rates achieved with static classifiers. Afterwards general conclusions are drawn.

Classification with a minimum distance classifier requires normalization of the joint

angles and a weighting. The weighting assigns higher weights to joint angles which vary less

between gait trials. In this case, a minimum distance classifier achieves similar recognition

rates for identification as a CDHMM with a set of selected joint angles as observations.

For inter-individual and person-dependent recognition of affect, this CDHMM performs

better than the minimum distance classifier with an increase of 10% in the recognition

rate. Performance depends on the selected joint angles. A subset of joint angles, which is

mentioned in related literature [32] to be significantly influenced by the affective state of

the walker, achieves better recognition of affect than the subset of joint angles, which differ

less amongst the recordings. Applying the distance vector circumvents a selection of joint

angles. Yet, recognition rates are lower. The number of stances does affect the recognition

rate, however it depends on the application whether five or ten stances are better to model

a stride.

In comparison to static classifiers with efficient feature extraction, dividing the gait in

several stances and applying a minimum distance classifier or an HMM does not result in

higher recognition rates. Either achieved recognition rates for affect are in a similar range

or lower. An explanation therefor would be that an HMM is robust against changes in a

walker’s speed. Yet, psychological studies have shown that even though speed is not the

only factor, it is a relevant feature for emotion expression [32, 131]. Thus, classification

with an HMM is comparable to scaling each gait sequence to a common reference speed.

This would suggest that an HMM would perform better than a static classifier if the

walking speed is changed during expressing the same affect.

Even though applying an HMM to gait analysis seems to be a promising approach,

Boulgouris et al. mention in their comparison of algorithms for vision-based gait analysis

that there might be a more efficient way to model gait dynamics [10]. This is in accor-

dance with afore described results. It is concluded for marker-based gait analysis that the

algorithms presented in chapter 5 are equal or better than the studied HMMs to recognize

affect and additionally require less computational power.
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6.5 Limitations

Dividing the gait in several stances seems to be advantageous for classification. Yet, the

investigated techniques are not sufficient to improve recognition rate in comparison to static

classification with efficient feature extraction. Developing more advanced algorithms which

consider the dynamics of gait are a future research direction. A possibility would be to

investigate parallel or factorial HMMs as in [23, 86].

Furthermore, this chapter focuses on the comparison of HMMs and static classifiers.

The results of this comparison refer to the investigated techniques and the conclusions are

limited to the these techniques. A general statement whether static or dynamic classifica-

tion is better for gait analysis is not possible, as a larger number of techniques exist for

both approaches. For example, static classification which models joint angle trajectories

by eigenpostures in chapter 5.2.2, performs worse than an HMM. Studying only these two

approaches would lead to the opposed conclusion. Thus, the result of the comparison relies

on the investigated techniques. More advanced HMMs may perform better than the in-

vestigated techniques from static classification in chapter 5. Still, this chapter shows that

the algorithms with efficient feature extraction proposed in chapter 5 perform well even if

they do not divide the gait in several stances.
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7 Expressions of Emotions in Gait Patterns for

Robots

Humans interact socially with computers and robots [130]. To establish a natural human-

robot interaction (HRI), it is not only required that the robot recognizes and understands

social behavior, but also that it reacts in an appropriate manner. Humans recognize

emotions from facial expressions, speech, gesture, and body motion during human-human

interaction. Hence, these modalities can be used to design appropriate emotive reactions

of the robot in HRI. Within this context, only a small number of robots are capable to

express facial expressions or possess emotive speech processing. However, all robots are

capable of link motions and some even of locomotion. This motivates to investigate whether

emotions can be expressed in motions, such as walking. Therefore, this chapter focuses

on the aspect whether a robot can express emotions in variations of the walking style.

Hence, this chapter finishes the investigation of gait as modality for affective computing

by exploring emotion expression whereas the previous chapter 3 analyzes human perception

and the chapters 5 and 6 automatic emotion recognition. Possible application scenarios

are personal assistance, service robotics, and entertainment.

Bethel and Murhy [8] introduce proximity zones to HRI. At this, body motions for

emotion expression are especially suited for the personal and social proximity zone. Recent

studies have shown that gesticulatory behavior of the robot and changes in its posture

influences its appearance and support recognition of emotional states [102, 160]. This

chapter focuses on locomotion as basic movement and investigates whether emotions are

expressible in the way the robot walks. Experiments are conducted with a hexapod and

an animated version of the hexapod. Human emotive gait patterns are recorded and are

mapped to the robot. The gait patterns of the robot are finally evaluated. In particular,

the following research questions are investigated:

1. How do human gait parameters, in particular step length, height, and time, differ

regarding different emotional states?

2. Based on mapping these differences in the walking style to a robot, does the robot

express emotions in gait such that they are sufficiently recognizable? Are different

levels of pleasure, arousal, and dominance equally recognizable?

3. Are emotive gait patterns of a real robot or an animated robot perceived differently?

Results are that humans recognize emotions in the way the robot walks, differences in

arousal and dominance are better expressed than differences in pleasure, and expressiveness

between the robot and its animation differ only slightly. It should be noted that affective

motions for robots in related studies are designed by humans. This approach focuses on a

methodology which does not involve human adjustments and thus can be further adapted
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for online, affective motion imitation and learning. The essential scientific contributions

of this chapter have been previously published in [172].

The following section 7.1 gives an overview about designing emotional expressions for

robots, particularly with regard to whole-body motions. First, section 7.2 analyzes statis-

tically affective human gait patterns focusing barely on leg movement and then derives a

mapping of the relevant features for implementation on a robotic platform. This mapping

is evaluated in an experimental setup and the results are presented in section 7.3. The

chapter ends with a summary in section 7.4 and limitations are discussed in section 7.5.

7.1 Emotion Expression in Body Motions

Emotions can be either studied in categories, e.g. Ekman’s basic emotions [46], or as a

point in a space, e.g. spanned by the axes pleasure, arousal, and dominance (PAD) [135].

The former is more related to basic linguistic usage, whereas the latter allows graduation

of the emotional state in the emotion space and is more suited for technical applications.

Both variants are applied for expression of emotions in literature.

Based on the facial action coding system (FACS), facial expressions have been imple-

mented on robotic heads [13, 83]. However, this requires a sophisticated hardware. To

bypass this, Hashimoto et al. propose a curved surface display to build a robotic head

which is capable to express emotions [60]. For reliable emotion expression, body motion

and facial expression should imply the same emotional state, otherwise the observer is left

to guess [3]. Zecca et al. also show that humans recognize expressed emotional states of

a humanoid better, if facial expressions are supported by the appropriate body postures

[160]. Recognition rate is lower if the robot uses barely facial expressions and even lower if

the robot uses barely emotive postures. The body postures have been designed by students,

a cartoonist, and a photographer in this study.

Psychological studies indicate that emotions are not only expressed in gesticulatory

behavior, but also in natural motions such as knocking, drinking and walking [32, 126, 131].

Several approaches have yet been undertaken to study emotional expressiveness in robotic

motions [6, 100, 102, 113, 146]. Matsumara proposes a method based on Laban features as

mathematical description for expression of emotions in postures [102]. The Laban features

are derived from dance studies and quantify the two items effort and shape [55]. This

approach is compared with discrimination using principal component analysis. Evaluation

shows that the categories anger and joy have often been confused with each other as well

as sad and fear. The motivation of Nakagawa et al.’s study is to find a general approach

which modifies an arbitrary motion so that affective nuances are expressed [113]. They

propose to divide an arbitrary motion in velocity and extensity of the motion and a basic

posture. Velocity and extensity correlate with arousal and the basic posture relates to the

expressed level of pleasure with a contracted posture for low pleasure and an open posture

for high pleasure. Evaluation for the movements pointing and waving shows that the type

of motion has an effect on the expressed emotion, and that the observers recognized the

intended affective nuances except for the combination of high pleasure and low arousal.

Also, Masuda et al. conclude from their study that the expressed emotion depends on the

primary motion [100, 101]. They also utilize the Laban features to model the motions of
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the robot. Takahashi et al. also designed the movements of the robot based on the Laban

movement theory [146]. Additionally, they investigated the impact of the appearance of

the robot on its expressiveness. Their results are that emotions can be already expressed

with only a low degree of freedom robot, that the emotions are correctly expressed except

for anger, and that the emotions anger and disgust depend on the appearance of the robot

whereas the emotions joy, sadness, surprise, and fear do not depend on the appearance.

The posture of the head is in detail studied in [6]. Beck et al. conclude that the head

position is an important body posture and that changing a robot’s head position is useful

for non-verbal communication during HRI.

As most robots intended for human assistance will be equipped with a locomotion

system, the following sections investigate whether a robot can also express emotions only

in the way it walks.

7.2 Model

Mapping emotive motions from human to robot faces two basic challenges. First, the

body structure of the robot differs from human physique both in kinematics and appear-

ance. How does a mapping take this into account? Second, gait is a dynamic motion

in comparison to posture. Consequently, the mapping has to consider modeling motion

trajectories.

For designing social robots, Bar-Cohen and Breazeal suggest in [3] to adopt the nine

principles of expressive animation which are described in [75, 149]. They describe how

people interpret the motion of animated objects. In this context, conveying one emotional

state at a time and exaggeration are of particular interest. Conveying one emotional state

at a time increases the probability of a correct interpretation of the robot’s behavior by a

human observer. Thereby, it is beneficial if the robot expresses the same emotional state in

all modalities to avoid misinterpretations and to increase authenticity, see chapter 3.3.3 for

a related study with an animated puppet. Exaggeration of emotional expressions improves

recognition [75, 149]. Currently, no design rules exist for exaggeration. Linear spatial

exaggeration is applied for animated facial expressions in [54]. For mapping emotional

gait patterns from human gait data to robot, this indicates that it is probably useful to

exaggerate the relevant characteristics.

7.2.1 Analysis of Gait Parameters

Related literature shows that a person’s emotional state affects her/his walking style , e.g.

velocity is higher for angry and joyous gait than for neutral gait [32]. Within this study,

the Munich gait database is analyzed for suitable gait characteristics which can be mapped

to a walking robot. The data contains ten neutral gait patterns of each walker and ten

gait trials during acting high or low pleasure, arousal or dominance. A set of relevant gait

characteristics suited for mapping emotional gait patterns to a hexapod is investigated.

These characteristics are step height h, step width w and cadence t.

Hypothesis 1: If a suitable mapping can be found, gait patterns of a robot differing

in step length, step height, and time express emotional states which are recognizable by a
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Fig. 7.1: Different walking styles form separable clusters in the normalized step width and
normalized step time space. The clusters are approximated by an ellipse with mean
values as centers and standard deviations as radii.

human observer. Within this study, the emotional states are separately analyzed for the

dimensions pleasure, arousal, and dominance.

Fig.7.1 shows the distribution of the parameters step width wnorm,emo and cadence

tnorm,emo for each emotion of the recorded walkers. The parameters vary between indi-

viduals; therefore they are normalized for each walker separately. The distribution of each

emotion is estimated based on the normalized data of all walkers. The mean value and

an ellipse defined by the standard deviations are plotted for each emotional state. The

distributions of high and low arousal are well separable from each other. On the contrary,

low and high pleasure are less separable and the clusters lie closer to each other. Further-

more, the distributions overlap, so that some emotional states are expressed similar and

misinterpretations can occur between them. The neutral gait and the expression of high

pleasure vary most among the walkers, as illustrated by high standard deviation for the

normalized step width and time. Low as well as high arousal and dominance form smaller

clusters. Thus, it is expected that these states are also better expressible in robotic gait

patterns.

Hypotheses 2: Differences in arousal and dominance are easier to retrieve from changes

in robotic gait patterns than differences in pleasure based on mapping solely the parameters

step width, height, and time.

The following Figs. 7.2-7.3 illustrate the changes of each gait parameter comparing

to the neutral gait pattern without normalization. Expression of high arousal, pleasure,

or dominance often increases the parameters simultaneously, however the amplitude of

increase differs. In a similar manner, low arousal, pleasure, or dominance decreases the

parameters often simultaneously. The two exceptions are, 1) the noticeable increase of

step length for high dominance, and 2) the increase of velocity for high arousal which is

accompanied by a decrease in time and almost constant step length.
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Fig. 7.2: Mean values and standard deviation of the parameters step length and height among
all walkers differ for high or low expression of arousal, pleasure or dominance com-
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to neutral gait.
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Fig. 7.4: Movement of one leg during a step is shown exemplarily for (a) the hexapod (black
and dark gray: active leg) and (b) the human model (black and dark gray: swing
leg).

7.2.2 Mapping of the Gait Parameters

Mapping of expressive motions from human to robot addresses 1) extraction of relevant

parameters, 2) handling of different body structures, and 3) optional exaggeration. Within

this study, a minimalistic approach is considered. Only the parameters which define the

motion of the swing leg are mapped. Its trajectory is approximated by a parabola. The

form of the parabola is defined by step width w and step height h. By mapping the time

t for a single step, the gait velocity is set implicitly. Fig. 7.4(a) and 7.4(b) illustrate the

motion of the swing leg modeled by the parameters step width w, height h and time t for

a single step.

As walking robot, a hexapod has been chosen to avoid instability during gait cycles. A

tripod gait variable in step length, height and time has been developed for the 18 DOF

hexapod [184]. Each leg contains three servo-motors. The joints α, β, and γ are connected

by the links l1, l2, and l3. A microcontroller ATMega168 serves as servocontroller gener-

ating PWM signals to drive the servo-motors [1]. A second microcontroller ATMega324

calculates the sampled trajectories based on the gait parameters and handles communica-

tion with the PC and the servocontroller, for details see [184].

Except a limited number of highly sophisticated humanoids, physique between humans

and robots differ. Therefore, gait parameters recorded from human emotive gait trials

can not directly be applied to robots and a mapping is required. Within this work, the

considered gait parameters affect only the lower body.

In biology and biomechanics, the Froude number describes dynamic similarity of walking

styles, e.g. walking and running, among animals whose skeletons differ [103]. Equal Froude

number indicates dynamic similarity. The Froude number F is defined as F = v2

glh
with

the gravitational acceleration g, the velocity v and the hip height lh. If the robot walks at

equal Froude number comparing to a human, it does so at a speed which is proportional

to the square root of its hip height to human hip height. This approach was implemented

on the hexapod. However, an experiment showed that the gait patterns of the robot are

too similar between each other and differences were hardly recognizable [184]. Thus, this
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Parameter α β γ Time

Minimum 5◦ 5◦ 5◦ 0.4 s
Maximum 30◦ 45◦ 45◦ 1.4 s

Tab. 7.1: Joint angle limitations of the hexapod.

method inspired from biology is not suitable for this task and it is concluded that emotive

robotic gait patterns need to be expressed more distinguishably and demand exaggeration.

In a second approach, normalized human gait parameters are mapped to the hexapod

by defining lower and upper limits of each parameter given by hardware limitations. The

minimum and maximum values of each joint are listed in Tab. 7.2.2. This method auto-

matically includes exaggeration, because human emotive gait parameters vary in a small

range comparing to maximum possible range. In the following, the procedure is generally

described for the parameter y ∈ {w, h, t} and n = 13 walkers:

1. Calculate minimum yi,min and maximum yi,max of all trials of walker i = 1...n .

2. Calculate the normalized parameter ynorm,emo for each emotion and each walker i

ynorm,i,emo =
yi,emo − yi,min

yi,max − yi,min

. (7.1)

3. Average ynorm,i,emo over all walkers ynorm,emo =
1
n

∑n
i=1 ynorm,i,emo .

4. Calculate the corresponding parameter of the hexapod yhexa,emo based on ynorm,emo

yhexa,emo = ynorm,emo(yhexa,max − yhexa,min) + yhexa,min . (7.2)

5. Derive joint angle from the parameter yhexa,emo .

This procedure leads to step height hhexa,emo, step length whexa,emo and the time for one

step thexa,emo of the hexapod. Applying inverse kinematics provides the desired joint angles:

βemo = arcsin
(

[hnorm,emo(sin βmax − sin βmin) + sin βmin

]

(7.3)

αemo = arcsin

[

(
wnorm,emo(whexa,max − whexa,min) + whexa,min)

2(l1 + l2 cos βemo)

]

(7.4)

with

whexa,max = 2 sinαmax(l1 + l2 cos βmin) (7.5)

whexa,min = 2 sinαmin(l1 + l2 cos βmax) . (7.6)

The lower leg is perpendicular to the ground for the swing legs and the support legs so

that

γemo = βemo . (7.7)
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Normalized Neutral Pleasure Arousal Dominance
Parameter low high low high low high

wnorm,emo 0.75 0.52 0.22 0.68 0.14 0.96 0.15

hnorm,emo 0.71 0.73 0.31 0.68 0.16 0.82 0.17
tnorm,emo 0.43 0.60 0.88 0.05 0.95 0.47 0.65

Tab. 7.2: Normalized gait parameters.

Fig. 7.5: Photo of the hexapod and snapshot of its animation.

The swing legs belonging to the active tripod move equidistantly from −αemo to αemo

covering the distance whexa,emo. The vertical motion describes a parabolic arc starting at

−βemo, reaching the maximum hhexa,emo with βemo and ending again in −βemo. The joints

of the passive tripod βpassive,emo = −βemo define the height of the platform.

The normalized parameters wnorm,emo, hnorm,emo, and tnorm,emo are listed in Tab. 7.2.2

for each emotion. The joint angles are derived from these parameters according to Eqns.

7.2-7.6.

It is known that real robots seem to be more encouraging and advising during interaction

than their animated 3D-visualizations [127, 144]. Still, to the authors knowledge, no study

has yet compared the impression of expressive motions for a real robot versus its animation.

To analyze, whether also the expression and perception of emotions is affected by the

representation of the robot - real versus animated -, an animation of the hexapod has been

constructed [183]. The walking styles were implemented on the real hexapod and on its

animation, see Fig. 7.5. In both cases, the robot walks in a 45◦angle towards the observer.

Hypotheses 3:Although the same kinematics are applied to the robot and its animation,

differences in the perceived emotions are expected due to higher authenticity of the real

robot.

7.3 Experiment

The algorithms have been evaluated in a psychological experiment with 24 participants (19

male, 5 female, mean age: 25.8± 3.2) [181]. The gait patterns have been transferred to an
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Fig. 7.6: Participants’ ratings of the gait patterns lie in the expected areas for each level on
each dimension except for high pleasure.

animation of a hexapod and a real robot, see Fig.7.5. Participants rated the expressed affect

of the animation and the robot separately for each affective dimension on a 9-item Likert

scale (−4 , ...,+4). Order of the level of expressed affective dimension and order of the

affective dimension was randomized among the subjects. Starting with either animation

or real robot was balanced among the subjects.

Fig. 7.6 summarizes the results for the evaluation of emotive gait patterns expressed

by the hexapod. Mean values of the ratings of all participants are plotted and the error

bars represent the 95% confidence interval. Expected regions for each level are marked

by a dashed rectangle. The intended levels for low, medium, and high pleasure, arousal,

or dominance were recognized on average by the participants except for high pleasure.

This result holds for both the animation and the robot. However, within each region,

the robot was generally rated to be more pleasant, more active, and more dominant than

its animation. Furthermore, the results show that the neutral gait pattern is slightly too

dominant and too active. This is traced back to the fact, that the neutral region of the

recorded gait patterns lies closer to the clusters of high arousal and high dominance, see

Fig. 7.1. A less expressible neutral gait is desirable for future work.

Tab. 7.3 lists the ratings of each participant. The ratings (−4,−3,−2) are assigned

to low expression, (−1, 0, 1) to neutral expression and (2, 3, 4) to high expression. Best

recognition is achieved for different levels of arousal with a rate of 86% for the anima-

tion of the hexapod and 85% for the robot. Recognition rates for distinguishing three

different levels of dominance are 69% for the animation and 68% for the robot, respec-

tively. Recognition rates for pleasure are lower with 54% for the animation and 47% for

the robot, respectively. Chance level of 33% is exceeded in all cases. Highest recognition

is achieved for arousal followed by dominance. Gait patterns expressing high pleasure are

often confused with neutral or even low pleasure; therefore, recognition for the dimension

pleasure is low. Furthermore, recognition rates for arousal and dominance are equal for
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Intended Recognized Level
Level Pleasure Arousal Dominance

Animation L N H L N H L N H
L(ow) 20 4 0 23 1 0 20 1 3

N(eutral) 4 16 4 1 19 4 3 15 6
H(igh) 12 9 3 1 3 20 0 9 15
Robot L N H L N H L N H
L(ow) 19 5 0 23 1 0 20 3 1

N(eutral) 1 11 12 0 17 7 4 10 10
H(igh) 6 14 4 0 3 21 0 5 19

Tab. 7.3: Participants’ ratings summarized in a confusion matrix.

the robot and its animation. Thus, expressiveness of the robot and the animation does

not differ if expression of each dimension is divided in only three labels ’low’, ’neutral’,

or ’high’. As three values on the rating scale were combined to a single label, which are

’low’, ’neutral’, or ’high’, tendencies within a region can not be detected by comparing the

calculated recognition rates.

Subsequently, a repeated measures analysis of variance (ANOVA) is applied for each

dimension separately [181]. The within-subject factors are level of expression and style,

which is either robot or animation. Ratings for different levels of pleasure differ, F (2, 46) =

41.87, p = .00, η2p = .65, and style has a minor effect, F (1, 23) = 10.52, p = .04, η2p = .31.

Following pairwise comparisons are significant at p < .05 for correct level of pleasure.

However, high pleasure is perceived falsely as between neutral and low pleasure. Expression

of pleasure for the animation is rated lower in comparison to the robot, p < .004.

A large effect is assessed for different levels of activity, F (2, 46) = 246.10, p = .00,

η2p = .92, and a minor effect for style, F (1, 23) =, p = .03, η2p = .20. Following pairwise

comparisons are significant at p < .05 for correct recognized levels of arousal in all cases.

The animation appears to be less active than the robot, p < .03.

Also, the gait patterns are perceived differently depending on the degree of dominance,

F (1.69, 38.92) = 54.29, p = .00, η2p = .70 (Huynh-Feldt correction). No significant effect is

observed for style, F (1, 23) = 1.80, p = .19, η2p = .07. Following pairwise comparisons are

significant at p < .05 for correct level of dominance in all cases.

In summary, interpretation of the mean values, investigation of the confusion matrix,

and analysis of variance leads to the following conclusions. Regarding hypothesis 1, hu-

man observers recognize different emotional states in the walking style of the robot if the

parameters step length, step height and time are varied. Regarding hypothesis 2, different

levels of arousal and dominance are better expressed and thus better recognized than dif-

ferent levels of pleasure in robotic gait patterns based on mapping step length, step height

and time. Regarding hypothesis 3, emotion expression of the robot and its animation do

not differ, considering only the levels ’low’, ’neutral’ and ’high’ expression for a dimension.

However, considering also slight tendencies, the results indicate that the robot appears to

be more active and pleasant than its animation.
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Lastly, participants were asked which dimension was easier to rate on a 9-item Likert

scale. Different levels of activity were easier to estimate than different levels of dominance,

which themselves were easier than different levels of pleasure, F (2, 46) = 23.30, p = .00,

η2p < .50. Half of the participants found it easier to recognize emotions from gait patterns

for the robot than for the animation. Five participants preferred the animation and seven

reported no difference. Given reasons for the preference of the real robot are sounds of the

servo-motors, noise during ground contact, and presence. On the other hand, noise has

been perceived as disrupting for most who preferred the animation.

7.4 Summary

Integration of emotions enhances naturalness of human-robot interaction (HRI). This re-

quires that the robot is equipped with hardware to express emotions. Believability and

recognition of expressions is increased if the same emotional state is expressed in all modal-

ities which the robot is capable of. Within this aspect, this chapter analyzes if a walking

robot can express emotions in the way it walks and if these expressions are recognizable.

The emotive gait patterns are derived from human characteristics for emotive gait. The

parameters step length, height, and time vary depending on the emotion. Mapping these

changes to the kinematics of the robot and exaggeration of the walking styles leads to

distinguishable expressions for the dimensions pleasure, arousal, and dominance. Espe-

cially differences in arousal and dominance are easier to express. This has been expected

because the original data of human emotive gait patterns recorded with motion capture

differ stronger for differences in arousal and dominance than for pleasure. It is also in ac-

cordance with Matsumaru’s study considering body postures of a teddy bear robot [102].

In this, the emotions anger and happiness differing highly in pleasure are often confused

with each other. This is observable in further studies, so that it is suggested that body

motions, except gestures, are more suited to express the level of activation or intensity of

an emotion [47, 126]. Although robots appear to be more engaging than their animation

[127], ratings of the gait patterns regarding emotions differ only in their tendency between

the robot and its animation. The robot tends to be more pleasant and active than its

animation.

This study shows that by changing its walking style the hexapod expresses emotions,

in particular differences in arousal, which can be used to increase expressiveness in HRI.

Biologically inspired mapping based on the Froude number did not result in recognizable

emotions. Therefore, the range of motion of the robot has been extended to maximal range

given by hardware limitations. This is comparable to linear exaggeration of the motion

patterns.

In conclusion, the walking style of a robot influences how humans perceive its appear-

ance, especially for the affective dimensions activity and dominance. Considering the study

about the interrelation of facial expressions and walking styles for an animated puppet in

chapter 3.3.3, adapting the walking style of the robot can increase authenticity and the

probability to recognize emotive expressions of a robot in HRI.
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7.5 Limitations

Within this study, the neutral gait pattern is expressed slightly too pleasant, active, and

dominant. This is traced back to a disadvantage of the applied mapping. The mapping

is based on normalization which requires a minimum and maximum for each parameter.

These values have been taken from hardware limitations of the robot. However, hardware

limitations differ between robots and even between robots of similar structure. An estima-

tion of a gait pattern which expresses the neutral emotional state is desired independent

of the robot’s structure. Within this aspect, this approach has been tested only on a single

robot. For generalization, a further step is required which extends the current approach

to different robot structures, e.g. a humanoid or wheeled robot.

Furthermore, the dimensions pleasure, arousal, and dominance have been evaluated

separately. Still, the gait parameters vary similar for different levels on the dimensions.

Increasing the separability for each dimension is a relevant aspect for future work.

As this work focuses on gait as modality for affective computing, only the motion gait

has been investigated. Yet, further motions of robots can be investigated regarding their

emotional expressiveness. Within this context, the interaction of motion and posture is

also of interest. Expressiveness can be increased by changing the posture such as bending

of the upper body for displeasure. In general, developing a general framework for emotion

expression in motions is advantageous to designing emotive movements individually for

each motion.
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Nonverbal communication will play a major role in future social HRI. This includes that

the robot understands a human’s emotional behavior and responds in an appropriate man-

ner during the interaction. Yet to date, affective behavior is predominantly studied in

psychology for human-human interaction. The research field affective computing studies

human-robot and human-computer interaction which contains emotional interaction. This

comprises research about how a robot recognizes human emotions, understands and rea-

sons about emotional behavior, and expresses itself emotions. It is expected that including

nonverbal communication to HRI increases natural interaction and is more convenient and

entertaining. The capability to socially interact is a valuable supplement for robots sold

as assistive, daily helpers.

Within the research field of affective computing, facial expressions and speech are stud-

ied as modality in the majority of cases. These modalities may not always be available or

observable. Considering that humans express emotions also via other modalities such as

body movements and gestures, studying a broad range of modalities is of interest in affec-

tive computing. Additionally, multi-modal emotion expression plays an important role to

communicate irony, jokes, and authenticity. Furthermore, the term emotion is subdivided

in several categories which are either recognized or expressed. Even though a dimensional

emotion model has advantages for technical applications, it has yet less been investigated

in affective computing [56].

This work studies the suitability of the daily, human motion gait as modality for af-

fective computing. Advantages of gait as modality are that it provides a means to detect

emotions at distance, it is less susceptible to deliberate social editing, it does not require an

interaction, and the observation is non-intrusive in comparison to physiological parameters.

This study highlights various aspects regarding recognition and expression of emotions in

gait patterns.

8.1 Concluding Remarks

The primary task of walking is locomotion. On account of this, emotion expression in

gait is covered by a cyclic walking movement which is affected by various factors such as

physique, weight, complaints, and age. To filter out the information about the affective

state of the walker from his/her walking behavior is a challenging task both for humans

and machine learning algorithms.

From reviewing psychological studies in chapter 3, it is concluded that humans recognize

different emotional categories in gait patterns above chance. Here, this work additionally

shows that differences in arousal and dominance are better recognized than differences in

pleasure. Thus, applying the dimensional PAD emotion model for automatic gait analysis

seems to be beneficial. If different walking styles are combined with facial expressions,
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authenticity increases if both modalities express the same emotion. Inappropriate walking

styles influence the perception and credibility of other modalities like facial expressions.

Thus, it is worthwhile to investigate expressive walking styles for robots.

In biomechanics and medicine, inferential statistics is applied traditionally for gait anal-

ysis. Recently, different machine learning approaches have been introduced. Chapter 4

compares inferential with predictive statistics. Mathematical relations are derived, in par-

ticular a way to estimate classification rates from published, statistical values of medical,

psychological, or biomechanical studies. This contribution is not only relevant for gait

analysis but also for other topics in which the data can be analyzed with inferential or

predictive statistics in e.g. bioinformatics or affective computing.

Chapter 5 develops feature extraction techniques for different static classifiers while

chapter 6 utilizes an HMM to model the transition between gait stances. Even though, the

latter approach divides the gait cycle in a number of stances, it does not outperform static

classification with efficient feature extraction. Feature selection based on psychological

studies, PCA, LDA, and their kernel extensions are compared for feature extraction. Naive

Bayes, NN, and SVM are applied for classification. If the number of training samples is

small and the feature vector is highly dimensional, it is derived that the decision borders of

NN coincide with the decision borders of a SVM with a Gaussian kernel. Results are that

1) emotions are recognized comparable to human performance, 2) including information

about the identity of the walker in training the classifier increases the recognition rate,

3) differences in arousal and dominance are better recognized than differences in pleasure,

and 4) the identity or the gender are easier to recognize in gait than the emotion. The

algorithms are developed for marker-based gait analysis and use the joint angles during a

single stride as input. Results serve as upper limit what can be achieved with vision-based

gait analysis for the modality gait if computer vision algorithms reconstruct joint angles

from 2D images with high accuracy. Recording the human gait in natural setups with

normal cameras would also facilitate the recording of spontaneous emotions. In conclusion,

retrieving the affective state from walking is possible but pattern recognition algorithms

demand high accuracy of the recorded joint angles.

Chapter 7 examines whether changes in the walking style of a robot are sufficient to

convey different emotions. At this, a mapping is derived which maps human changes in

gait parameters to a robot. The obtained walking styles are implemented on a real and

virtual hexapod and are evaluated by human observers in an experiment. The results

are that differences in arousal and dominance are easier to recognize than differences in

pleasure. Furthermore, the real robot tends to appear more active and pleasant than its

animation. Therefore, a robot can convey emotions via changing its walking style. Yet,

this requires a hardware which allows a sufficient operating range for each joint angle, and

emotion expression is not as differentiable as for facial expressions or speech.

In summary it can be concluded, that the modality gait conveys emotions which are

detectable with techniques from machine learning above chance level and expressible in

robotic gait patterns. Also, the PAD model is well suited to study emotions in gait patterns

besides categories of emotions. Limitations are that the human gait is highly individual,

that different emotions are less distinct than for other modalities, and that high accuracy

of the recorded joint angles is required for emotion recognition.
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8.2 Outlook

Emotions influence a human’s cognition, decision making, and behavior. During an inter-

action, nonverbal communication conveys valuable information about importance, validity,

and social meaning via emotions. Retrieving and using this information in HRI is a chal-

lenging research field and will play a major role in social HRI. With its interdisciplinary

orientation, it combines computer science and engineering with psychology and raises a

number of research questions.

Affective computing is divided in automatic recognition of emotions, expression of emo-

tions for robots and virtual characters, and modeling affective HRI interaction. Up to date,

the modalities facial expression and speech have been predominantly studied. A smaller

number of studies investigates physiological parameters, gesture, and body movements.

This work extends the state of the art by analyzing the usability of the daily motion gait

for affective computing. The modalities provide communication channels for nonverbal

interaction and, hence, studying them is essential for social HRI. A broad range of modal-

ities facilitates nonverbal communication during various situations and for different robot

configurations. Furthermore, a number of studies have integrated emotional behavior in

HRI and HCI for several applications.Within this context, it is expected that including

nonverbal communication in HRI increases both natural interaction and entertainment

while it decreases misunderstandings at the same time.

Future research may be directed towards the following issues which are especially rele-

vant for integration of affective computing in HRI.

• Regarding the modality gait, the next step is to analyze spontaneous emotion expres-

sion. Markerless recording and vision-based gait analysis is therefor advantageous.

Furthermore, extension to a broader range of body motions is relevant and increases

applicability of observing human motions for recognition of affect. This concerns

both automatic emotion recognition and emotional expressiveness of robots.

• Systems based upon a single modality are feasible for well-defined scenarios. In

more flexible and dynamic environments, multimodal systems enhance recognition

performance and research on the combination of different modalities is of special

relevance. Within this context, crucial issues are the choice of the communication

channels, fusing of the data carried by multiple channels, temporal aspects of the data

from different channels, representation of the term emotion, automatic segmentation,

and sensitivity to the context.

• A number of studies have been carried out which integrate affective behavior in

HRI. At this, future aspects are modeling the interaction with stochastic mathemat-

ical models, developing concepts for choosing appropriate reaction strategies for the

robot, and constructing common benchmarks for evaluation of the quality of the so-

cial interaction. A further aspect refers to ethical issues such as protecting a person’s

privacy.

In conclusion, affective computing is a fascinating research area within social robotics and

finds application in assistive robotics.
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[166] M. Karg, R. Jenke, K. Kühnlenz, and M. Buss. A two-fold PCA-approach for

inter-individual recognition of emotions in natural walking. In Proc. of Int. Conf.

Machine Learning and Data Mining, 2009.

[167] M. Karg, R. Jenke, W. Seiberl, K. Kühnlenz, A. Schwirtz, and M. Buss. A com-
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[169] M. Karg, K. Kühnlenz, and M. Buss. Towards a system-theoretic model for tran-

sition of affect. In Proc. of AISB, Symposium on Mental States, Emotions and their

Embodiment, 2009.

[170] M. Karg, K. Kühnlenz, and M. Buss. Recognition of affect based on gait patterns.

IEEE Trans. Systems, Man, and Cybernetics - Part B: Cybernetics, 40(4):1050–1061,

Aug 2010.
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