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Abstract

Models for Fluid Structure Interaction (FSI) in room acoustical calculations are used in many

different fields of engineering like automotive industry or civil engineering. For simulations of

the spatial resolution of the sound field within acoustic cavities very often techniques based

on Finite Element formulations are used.

In order to reduce the number of degrees of freedom and therefore the numerical effort,

a model reduction method, based on a Component Mode Synthesis (CMS), is applied in

this thesis. Macrostructures are assembled out of single substructures applying shape func-

tions at the interfaces. These substructures contain acoustic components like absorbers or

resonators. They are calculated separately in the frame of the CMS approach. The acous-

tic fluid is modeled with the Spectral Finite Element Method (SFEM) and coupled with

plate-like compound absorbers at the interfaces via wavenumber- and frequency-dependent

impedances using Hamilton’s Principle and a Ritz approach, where phase correct coupling

conditions are ensured. The porous foam in the absorber is modeled with the Theory of

Porous Media (TPM) and the impedances are calculated with the help of the Integral Trans-

form Method (ITM).
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1 Introduction

1.1 Motivation

Due to increasing requirements of comfort, acoustic design has become more important

during the last years, especially in the field of civil engineering and automotive design. The

sound field within rooms or vehicles has to be predicted and then modified in an acoustic

optimization process in order to reach an optimal result for the specific use.

The calculation of the sound pressure level inside of acoustic cavities is usually done with

the help of energy methods like the Statistical Energy Analysis (SEA) for instance. The

SEA is typically applied to vibro-acoustic problems in the high-frequency range. It provides

robust results for subsystems with a high modal density and it is based on an averaging over

frequency bands, points of excitation and points of observation. However, its performance is

limited if a description of the spatial resolution of the response is required and if the influence

of boundary conditions has to be described in detail. Impulse Response Functions, which

are typically used for the classification of acoustic cavities (e.g. rooms designed for speech

or music) and contain information about reflections of the sound waves and also their decay

due to damping effects, cannot be predicted sufficiently by the SEA.

The acoustic design of rooms or vehicles is done by placing elements like reflectors or ab-

sorbers (e.g. passive absorbers or plate resonators) into the sound field. Therefore a robust

method for the phase correct modeling of interior sound fields with a sufficient spatial reso-

lution is needed, where the absorptive behavior of the delimiting surfaces can be considered.

Impulse responses could be computed at the basis of frequency response functions for exam-

ple.
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1.2 State of Research

Sound fields in acoustic cavities in buildings or inside vehicles, which are caused by vibrating

delimiting surfaces or sound-sources located inside rooms, typically are modeled with energy

methods. Among these the Statistical Energy Analysis [Lyon and DeJong 1995] is success-

fully applied to general vibro-acoustic investigations in the high-frequency range, providing

solutions in the frequency domain. Damping is considered by means of the average free path

of the sound waves and the energy loss at the surfaces [Cremer and Müller 1982]. Lang-

ley [2008] gives an overview over recent advances and remaining challenges in the SEA. The

method provides robust results in the high-frequency domain, however with a reduced resolu-

tion due to the averaging inherent in the method. It has deficiencies e.g. in case of repetitive

structures or point loads. By means of corrections, like response concentration factors for ex-

ample [see Lyon 1983, 1984; Mohammed and Fahy 1990; Manning 1999], the deficiencies can

be “roughly” corrected to a certain extent. In addition, the averaging reduces the possibility

to study the impact of measures to affect the sound field e.g. the influence of the position of

absorbers in closed spaces. Also if a higher resolution of the spatial distribution of the sound

field is of interest, the methods are limited (if the sound field at the position of the drivers

head [Langhe 2007] in a vehicle shall be calculated, or if near-field effects have to be con-

sidered for example). Furthermore in many applications of vibro-acoustic coupling between

structural vibrations and sound fields inside adjacent volumes different modal densities of

the substructures require hybrid approaches combining the SEA with the Finite Element

Method (FEM) approach. Those approaches have been developed and also implemented in

commercial software [see Shorter and Bremner 1999; Shorter and Langley 2005a,b,c].

For investigations in the time domain ray-tracing methods are used complementary to the

SEA [Vorländer 2007]. They provide the impulse-response, which is, as mentioned above,

of special interest in order to understand room acoustical characteristics as those strongly

depend on the initial reflection pattern.

Parallel to those developments the enormous increase of the possibilities related with the de-

velopment of numerical methods like the FEM and the Boundary Element Method [compare

Marburg and Nolte 2008] lead to a continuous expansion of the possibilities to investigate

vibro-acoustic problems also in the mid- and high-frequency domain. However, especially

for modeling the sound field inside volumes, there are the challenges of tackling the high

modal density, the number of singularities and the high number of degrees of freedom, which

increase for increasing frequencies. The errors related with the discretization have been in-

vestigated by Babuška et al. [1997a,b]. In order to handle the pollution effect [see Gerdes

and Ihlenburg 1999; Babuška and Sauter 1997], the h- and p- version of the FEM, applied
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to the Helmholtz-equation for simple systems, has been investigated by Mehdizadeh and

Paraschivoiu [2003]; Farhat et al. [2002]. For the solution of the system of equations Padé

expansion solvers [Franck and Hafner 2005; Franck 2006] are suitable and already imple-

mented in commercial codes. Infinite Finite Element approaches, which are applied in order

to avoid errors due to reflecting waves in infinite models, are discussed by von Estorff et al.

[2008] for instance.

Freymann [2000] presented a method to investigate the FSI-problem for acoustic volumes

with delimiting structures. Measurement results on the scatter in low- and mid-frequency

ranges were published by Freymann and Stryczek [2000]. Magalhaes and Ferguson [2005]

developed a model for a three-dimensional FSI, which is based on a Component Mode Syn-

thesis.

Naka et al. [2004] reduced the size of the room to investigate and thus the number of degrees

of freedom by a Dirichlet-to-Neumann mapping, introducing an imaginary surface. This is

possible, in case the impedances of the separated volume can be found analytically. In [Gaul

and Wagner 1998; Wagner et al. 2004] a Hybrid Boundary Element formulation (HBEM) at

the basis of hybrid variation principles is derived for the modeling of the FSI-problem for

harmonic oscillations. It is verified by the help of various applications.

Hüppe and Kaltenbacher [2009] discussed the limits of FEM in the mid-frequency range.

In order to cope with high modal densities Buchschmid et al. [2009a] suggest to apply an

averaging technique in the postprocessing of the FEM calculation. Computing energy in-

fluence coefficients a SEA-like evaluation can be carried out for the FEM model without

fulfilling the SEA-requirements for the modeling. Pospiech, Buchschmid et al. [2010] dis-

cussed the application of basic possibilistic and probabilistic concepts on acoustic models

to estimate the variation in the frequency response functions resulting from uncertain input

data.

For FEM analyses in the high-frequency range Li [2011] provided a scaling approach for the

vibration problem of line-coupled plates as an alternate method. Aoutou and Savin [2011]

developed a discontinuous FE-model for solutions of transport equations for high-frequency

power flows in the time domain.

The error obtained when approximating the Helmholtz equation by means of the FEM

can be significantly reduced by the use of energy methods (EFEM). In the scope of these

methods the primary variables are not pressure or velocity but energy density and energy

flow [compare Bitsie 1996; Moens et al. 1998; Mace and Shorter 2000, for example]. However,

as a description of the boundary conditions related with various types of absorbers requires
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a modeling in terms of velocity and pressure, these methods have to be classified in between

the SEA and the FEM/BEM approaches concerning the possibilities of computing spatial

characteristics of the sound field. The wavenumber dependent modeling of the boundary

conditions is feasible in the scope of this method as far as delimiting surfaces can be described

by simple models or partial differential equations like plates for instance. In case of more

complex boundary conditions e.g. porous absorbers, it is advantageous to use pressures and

velocities as primary variables.

The state of the art concerning the description of typical boundary conditions in the fre-

quency domain, as far as the absorptive and reflective behavior is concerned, can be found

in the standard references [Cremer and Müller 1982; Mechel 1989, 1995a; Müller and Möser

2003; Fuchs 2006]. Considering Helmholtz-resonators and vibrating plates, the appropriate

models, which are available, provide point- or wavenumber dependent boundary-impedances.

However, porous absorbers require a more detailed study. Simple methods build up the

porous foam with an equivalent fluid, defining characteristic wavenumbers and impedances.

The most popular approach is called the Rayleigh model in honor of Lord Rayleigh, who pub-

lished this method already in 1878 [Rayleigh 1878]. Whereas the parameters can be defined

strictly theoretically in the Rayleigh model, Delany and Bazley [1970] use a similar approach

for fibrous materials, which is derived empirically with the help of measurements. Mechel

[1976] published an extension of this method for low frequencies. Equivalent fluid models can

be used, if the dimension of the pores is small compared to the wavelength, which was dis-

cussed by Lafarge [2006]. For porous materials, having a rigid frame, semi-phenomenological

models are used, where the bulk modulus and a complex density have to be defined for the

equivalent fluid. Different approaches for this effective density and the bulk modulus were

suggested by Johnson et al. [1978], Champoux and Allard [1991], Pride et al. [1993], Wilson

[1993] as well as by Lafarge et al. [1997] for instance. Performance studies for these models

were carried out by Panneton and Olny [2006] and Olny and Panneton [2008]. Langer et al.

[2009] discussed the sensitivity of the absorption coefficient depending on changes in the defi-

nition of the material parameters for the methods, named above. In order to consider the

elasticity of the matrix of the porous material the theory of Biot [1956b,c] is used widely in

acoustics. The propagation of acoustic waves was discussed by Biot [1961, 1962]. Depollier

et al. [1988] compared the Biot theory with previous continuity equations for sound absorbing

materials. They stated a good agreement with the equations proposed by Beranek [1947]

and Lambert [1983] and suggested a correction of the formulation, published by Zwikker and

Kosten [1949]. A summary over the methods is given by Allard [2009]. Struckmeier [2007]

implemented the theory of Biot in a FEM/BEM model for seismically induced liquefaction

problems. Larbi et al. [2009] use FEM models for FSI-problems with absorptive boundaries
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also based on the Biot model.

Besides the Biot Theory (BT), which was found empirically, there exists another theory for

modeling porous foams. A report about the early development of the Theory of Porous

Media (TPM) was published by de Boer [1992]. It dates back to the work of Fillunger

[1913]. This theory is based on the theory of mixtures [Truesdell and Toupin 1960] and the

volume fraction concept [Bowen 1980, 1982]. Many important contributions to the TPM

were given in the following years by de Boer and Ehlers [1986], Ehlers [1989], Diebels [2000]

and Makert [2005]. The TPM model for acoustic foams, which is presented in the scope

of this work, was published in parts already in [Buchschmid and Müller 2008]. Schanz and

Diebels [2003] discussed both theories, the BT and the TPM, in a comparative study in case

of incompressible and compressible constituents.

The characteristics of many absorbers generally show a wavenumber dependent absorptive

behavior, which is typically taken into account in measurements just in an integrative or

selective way. Measurements mostly are carried out in a reverberant chamber under a diffuse

wave field according to DIN ISO 354 or in an impedance tube in accordance with DIN EN

ISO 10534-1 under perpendicularly incident waves. In situ measurements to determine the

reflective or absorptive behavior of absorbers under a wave field with a certain angle of

incidence are covered by DIN ISO 13472-1. Mommertz [1995] provided an improved method

of measuring the complex reflection coefficient in situ for perpendicular and oblique sound

incidence.

The radiation of structural elements typically is approximated by the radiation efficiency,

describing the coupling with an unbounded medium and thus neglecting the effect of re-

flected waves on the power balance. A method for computing the radiated sound power

and thus the radiation efficiency, which is based on Integral Transform Methods (ITM) and

can be applied as a postprocessing step of a FEM computation for instance, was presented

by Müller, Buchschmid et al. [2006]. In order to compare results out of numerical com-

putations with measurements, where standardized excitations are applied to the structure,

this kind of excitation has to be built up in the model. Rabold, Buchschmid et al. [2010]

published different methods for modeling the excitation force of a standard tapping machine

on lightweight floor structures.
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1.3 Modus Operandi and Layout of the Thesis

In the scope of this thesis a method for a phase correct computation of interior sound fields

in the frequency domain, caused by sound sources in the interior or by vibrating delimiting

structures, is derived. A special focus is laid on efficient models for absorptive layers at the

boundaries of the acoustic cavity.

In the first part a model for compound absorbers, consisting of porous layers, elastic layers

and air cushions for instance is deduced. Starting with the description of the different

materials, in chapter 2 the model for the porous foam, which is based on the Theory of

Porous Media [de Boer 2000; Ehlers and Bluhm 2002] is discussed in detail. The essentials,

like the volume fraction concept, the kinematic relations as well as the stress-definition and

the special assumptions, linked with the application for acoustic materials, are sketched

briefly. The laws of conservation are presented focusing especially on the implementation of

the dissipation of the absorber. By the use of Integral Transform Methods the pore pressure

can be eliminated in the transformed domain and the fundamental system is derived in terms

of the displacements of the individual constituents. In order to specify the coefficients of the

fundamental system in the layered model, the displacements and the stresses are defined in

the transformed domain.

In an analogous way the elastic material and the air are presented in the following chapters,

which are kept short, because the treatment of the Lamé equation, which is used for the

elastic layers, and the wave equation for the acoustic fluid is similar to the equations of

motion for the porous material.

In chapter 4 the fundamental systems for the different materials are combined to build

compound absorbers. Obeying the boundary conditions between the individual layers a

system of equations is set up, where the system is loaded by incident sound waves. The

problem is solved in the transformed domain and characteristic acoustic quantities like the

impedance and the absorption coefficient are deduced for infinite plate absorbers. These

results are provided depending on frequency and wavenumber and used for the FSI later

on. Numerical calculations are presented for several types of absorbers. The mechanical

characteristics of the results are discussed against the background of simpler methods, which

are often used in practice, and the results are compared to measurements.

In chapter 5 a method for the FSI is derived, which allows to consider absorptive boundary

structures not only using simulations for the absorber, but also with results out of practical

measurements. For modeling the acoustic fluid in the FSI, a Spectral Finite Element for-

mulation is used, which is very efficient for smooth solutions in acoustic problems. In order
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to reduce the calculation time, especially when investigating slight changes in the geometry

of the system, a modal approach is applied. Therefore an orthonormal basis is calculated

for the fluid, assuming ideal reflective boundary conditions. For the FSI the Component

Mode Synthesis is applied in combination with a Hamilton approach, assuming a continu-

ity of the displacements normal to the coupling interface. The application of the method

was presented in parts by Buchschmid et al. [2009b, 2010]. In the CMS additional coupling

modes are added to the normal modes to enable the coupling at the interface [compare

Magalhaes 2004]. The efficiency of the algorithm is enhanced considering near-field cha-

racteristics, which were discussed for applications in soil dynamics by Müller, Buchschmid

et al. [2008], for the definition of the coupling modes. Adequate form functions have to be

applied at the interface, which permit to describe the wavenumber dependent relationship

between the primary variables at the boundaries via wavenumber- and frequency dependent

impedances. The requirements for these trial functions are specified and also verified with

examples. Finally results for the coupled FSI-model with an absorptive boundary structure

are presented.
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2 Porous Material

In the modern era of research two important models for porous materials were developed,

which are able to describe these media in an universal way. Both theories were applied to

various problems in continuum mechanics. They are used in civil engineering, geophysics,

petroleum engineering, material science and biomechanics as well as in automotive design.

The methods are adapted for the specific use by defining the individual constituents to be

compressible or incompressible, applying elastic or plastic material laws or by specifying

permeability parameters for instance.

Biot started to develop his theory in 1941, publishing his work about consolidation problems.

He implemented an anisotropic material law and extended the theory to anisotropic viscoelas-

tic solids in the following years. In 1956 Biot presented the application of his method to

dynamic problems for low and high frequencies. The respective references are [Biot 1941a,b,

1955, 1956a,b,c]. Coussy [2004] summarizes the fundamentals of this method and depicts the

current state of research. The method is widely used in acoustics to model porous materials

[compare Mechel 2008; Allard 2009] in absorptive structures.

De Boer [1992] reviewed the development of the Theory of Porous Media, which started with

the work of Fillunger [1913] about the uplift problem in saturated rigid porous solids and

was accompanied by a heavy and tragically ending dispute between Fillunger and Terza-

ghi in this early phase [compare de Boer 2005a]. The TPM is predicated on the theory of

mixtures [Truesdell and Toupin 1960], a macroscopic approach, where the continuum is as-

sumed to consist of miscible, interacting constituents in combination with the volume fraction

concept, which was introduced by Bowen [1980, 1982] and provides information about the

microscopic properties of the constituents in an averaged sense, leading to “excellent tools

for the macroscopic description of general immiscible multiphasic aggregates” [see Ehlers

and Bluhm 2002]. Important contributions to the development of the TPM were done by

de Boer and Ehlers [1986], Ehlers [1989], Bluhm [1997] Diebels [2000], Ricken [2002] and

Makert [2005] for instance.

The derivation of Biot’s poroelastic theory is, in contradiction to the TPM, not strictly

based on the principles of mechanics and thermodynamics. In a comparison of both theories
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for the linear case Ehlers and Kubik [1994] stated, that an equivalence can be achieved,

if the so-called apparent mass density, which expresses the dynamic interaction between

the constituents in the Theory of Biot, is assumed to be zero. Schanz and Diebels [2003]

confirmed this equivalence in their comparative study for the incompressible model neglecting

the apparent mass density and depicted, that the interaction between the solid and the gas

phase is covered in a different way in both theories. Comparing the models with compressible

constituents, they state, that the “constitutive relations derived on micro mechanical models

for both theories are not in agreement to each other”.

In the scope of this thesis the TPM is used for modeling the porous material of the ab-

sorber, but it is stated clearly, that the modus operandi, which is in detail the solution of

the equations of motion with the help of Integral Transform Methods in section 2.3.2, the

formulation of the layered absorber model in chapter 4 and finally the implementation into

the FSI-model, which is presented in chapter 5, could be carried out, without significant

changes in the procedure, on the basis of Biot’s theory as well.

The nomenclature for the treatise of the porous material in this chapter is chosen with respect

to the standard references, published by de Boer [2000, 2005b].

2.1 Fundamentals of the Theory of Porous Media

2.1.1 Volume Fraction Concept

Due to the application of the volume fraction concept information about the individual

components (e.g. the displacements or the stresses of a phase) is gained in an averaged

sense. This is an advantage compared to the classical theory of mixtures .

Averaging the microscopic quantities the mixture can be modeled on the macroscale, where

the control volume BS is spanned by the solid component and the gas, which is the air in the

absorber model, can leave the control volume through the non-material surface ∂BS. The

pores are distributed statistically over the control volume and both constituents, solid and

gas, occur in any arbitrary volume element dv.

The volume fraction nα of the component φα, where α = S for the solid and α = G for the

gas phase, is defined as

nα(x, t) =
dvα
dv

, (2.1)
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where dvα is the partial volume element of the constituent φα and x is the position vector

at the center of the total volume element dv. Due to the assumption, that the pores are

completely filled with gas, the constituents have to meet the saturation condition:

κ∑
α=1

nα = 1 (2.2)

In equation (2.2) κ is the number of constituents within the mixture. In room-acoustical

applications, where the porous foam consists of a solid S and a gas G in the pores, the

saturation condition reads

nS + nG = 1. (2.3)

Using the volume fractions nα a relation between the macroscopic real and partial densities

(ραR and ρα) is derived in de Boer [2000, 2005b] assuming a spatial constant microscopic

mass density.

ρα(x, t) = nα(x, t) ραR(x, t) (2.4)

2.1.2 Kinematics and Strains

As mentioned already in section 2.1.1 the control volume is spanned by the solid phase,

where the gas phase can leave this volume. Each constituent can move independently and

every point x in the macroscopic description is assumed to be covered by both constituents

(solid and gas) at any time.

In the following the kinematic relations are sketched briefly as far as they are resumed in

the description of stresses (see 2.1.3) and the Balance Equations (see 2.2). Applying the

Lagrangian description of motion, the position vector x of the material points Xα is defined

in equation (2.5) as a function of placements χ, depending on the position vector Xα in the

reference state at t = 0.

x = χα (Xα, t) (2.5) Xα = χ−1
α (x, t) (2.6)

The Eulerian description is given in equation (2.6). Further information about the require-

ments for the vector fields (e.g. the invertibility of χ) is given by de Boer [2000, 2005b].

Velocities vα and accelerations aα are gained out of (2.5), carrying out the material time

derivatives of the function of placements χα.
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vα = x′α =
∂χα (Xα, t)

∂t
(2.7) aα = v′α =

∂2χα (Xα, t)

∂t2
(2.8)

The material deformation gradient is defined, similar to the Theory of Elasticity as (2.9a).

Introducing the displacement gradient Hα = gradα uα the deformation gradient results in

(2.9b)

Fα = gradαχα (2.9a) Fα = 1 + Hα = 1 + gradα uα, (2.9b)

where gradα is the partial derivative with respect to Xα.

As rigid body motions should not cause stresses in the material [see Stein and Barthold

1996, chap. 3.4] the formulation of the strains is based on the right Cauchy-Green defor-

mation tensor Cα = FT
α Fα and on the left Cauchy-Green deformation tensor Bα = Fα FT

α

respectively, which results in the Green strain tensor Eα for the Lagrangian description and

in the Almansi strain tensor Aα for the Eulerian description.

Eα =
1

2
(Cα − I) (2.10) Aα =

1

2

(
I−B−1

α

)
(2.11)

Inserting (2.9b) in (2.10) the Green strain tensor is written in terms of the displacement field:

Eα =
1

2

(
Hα + HT

α + HT
α Hα

)
(2.12a) Elin

α =
1

2

(
Hα + HT

α

)
(2.12b)

For room acoustical applications, because of small deformations, the geometrically linearized

Green strain tensor (2.12b) is used.

In the model of the porous absorber the solid material, building the porous skeleton, is as-

sumed to be incompressible, because it is much stiffer than the air in the pores, which is

considered as a compressible gas. Compressibility and incompressibility of the real materials

is handled on the microscale in the Theory of Porous Media. Therefore the multiplicative

decomposition of the deformation gradient Fα, which was presented by Bluhm and de Boer

[1997], is mentioned briefly.

Fα = FαN F̂αR (2.13)

In (2.13) F̂αR is the deformation of the real material and FαN denotes the change of the size

and the shape of the pores. Both lead to the deformation of the control volume dv.

The Green strain tensor of the solid component ES is split up in a volumetric part (ES · I) I
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and a deviatoric part ED
S

ES = (ES · I) I + ED
S . (2.14)

As a consequence of (2.13) the volumetric strains of the solid eS = ES · I are split up into

the strains of the real material eSR and the strains of due to the change of the pores eSN .

eS = eSR + eSN (2.15)

Further information about the corresponding Helmholtz energy function is given by de Boer

[2000].

2.1.3 Stresses

Due to the assumption of small deformations and consequently the linearization of the strains

(see section 2.1.2) the actual configuration can be approximated by the reference configu-

ration. Therefore the Cauchy stresses and the 2nd Piola-Kirchhoff stresses coincide. In the

following the definition of the stresses for the binary porous medium model with incompres-

sible solid and compressible fluid constituents (hybrid model of second type), which is based

on de Boer [2000, 2005b], is presented.

Stresses in the Solid Phase

The stress tensor of the solid component TS is split up in a volumetric part pS I and a

deviatoric part TD
S (see equation (2.16)). Baer and Nunziato [1986] stated about the volu-

metric part in a binary model (solid skeleton filled with gas), that “... the pressure in the

solid grains equals the pressure in the gas plus the pressure due to contact forces between the

grains” [found in de Boer 2000, chap. 5]. Assuming the solid and the gas phase to have the

same temperature θS = θG the partial pressure pS of the solid phase results in a weighted

pore pressure −nS p and the effective hydrostatic stresses pES , which is stated in equation

(2.17).

TS = pS I + TD
S (2.16) pS = −nS p+ pES (2.17)

According to Biot and Willis [1957] equation (2.17) can be specified with the help of com-

pressibility tests . With the help of the unjacketed test , where “a sample of the material is

immersed in a fluid to which is applied a pressure”, the weighted pore pressure −nS p can be
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specified. The jacketed test , where “a specimen of the material is enclosed in a thin imper-

meable jacket and then subjected to an external fluid pressure” leads to equation (2.18) for

the solid extra stresses pES .

pES = nSKSN eSN (2.18)

Using (2.15), equation (2.18) can be written for an incompressible solid phase (eSR = 0) as

pES = nSKSN eS with: eS = ES · I, (2.19)

where KSN is the compression modulus of the empty solid skeleton. The deviatoric part of

the stress tensor TD
S is built up with

TD
S = 2µS ED

S , (2.20)

where ED
S denotes the deviatoric part of the strain tensor, defined in equation (2.12b), and

µS is the Lamé constant of the solid component. Equations (2.16), (2.17), (2.19) and (2.20)

result in the final description of the stress tensor of the solid component

TS = −nS p I + nSKSN (ES · I) I + 2µS ED
S . (2.21)

Substituting
(
nSKSN = λ̃S + 2

3
µS

)
in (2.21) leads to the well known representation

TS = −nS p I + λ̃S (ES · I) I + 2µS ES, (2.22)

where λ̃S and µS are the macroscopic Lamé constants.

Stresses in the Gas Phase

The air in the pores of the absorber is handled as a gas phase in the TPM-model. It is

restricted to volumetric stresses, because no shear stresses are linked with the changes in the

shape of the gas phase. The deviatoric part of the 2nd Piola-Kirchhoff stress tensor vanishes

and TG is defined as

TG = −nG p I + TE
G, (2.23)
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consisting of a weighted pore pressure and effective stresses for the gas phase TE
G = pEG I [see

de Boer 2005b]. As suggested by Diebels [2000] and Makert [2005] the fluid extra stresses are

neglected in the scope of a macroscopic theory (TE
G = 0) “assuming, that dissipation only

occurs in the wall boundary layers of the pore channels, whereas the fluid behaves more or

less inviscid” [see Makert 2005, chap. 3.2.2].

The viscosity is considered by an additional interaction force p̂EG, which is described in detail

in section 2.1.4.

2.1.4 Dissipation of Energy and Interaction Forces

For room acoustical applications the dissipation of energy in porous materials is caused by

two mechanisms. At first, frictional effects occur between the solid and the gas phase at the

walls of the pores and transform sound energy into heat. At second, periodic temperature

fluctuations in the gas, which result out of pressure rarefaction and compression, cause

dissipation of sound energy, because a part of the recoverable thermal energy is transformed

into non-recoverable thermal energy [see Cremer and Müller 1982].

The viscosity of the gas phase is responsible for the attenuation of the sound field in the

pores. Due to friction at the walls the tangential component of the velocity has to vanish.

The decrease of this component is determined by the dynamic fluid viscosity ηGR, which is

ηGR = 1.8 10−5 kg
ms

at a temperature of 20◦ C.

For the description of porous material in acoustical applications the flow resistance, which is

the relation of the pressure gradient (∆p = p1 − p2) caused by the porous medium, and the

exterior velocity ve calculated out of the flow rate and the macroscopic cross section of the

specimen is used. To characterize the porous material independently from the system, the

flow resistance is defined in relation to the thickness dTPM of the layer. The so-called specific

flow resistance Ξ is results in:

Ξ = − ∆p

dTPM ve
(2.24)

To enable the sound waves to enter the absorptive structure easily the flow resistance

should not be too high, which marks an upper limit for Ξ. The lower limit is defined

by the fact, that the sound wave should loose as much energy as possible while propagating

through the absorber. The range of Ξ, which is interesting for applications in acoustics, is

5Rayl/cm = 5 · 103Ns
m4 < Ξ < 100Rayl/cm [see Möser 2007; Fuchs 2006]. The specific flow

resistance is independent from the porosity and therefore cannot be described as a function
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of nα nor modeled easily. With the help of the Rayleigh model Ξ can be estimated in case of

very simple geometries [see Cremer and Müller 1982] but for more complex structures this is

not possible. Therefore in practice these parameters are very often gained out of measure-

ments. A schematic outline of the measurement procedure, which is regulated in DIN EN

29053, as well as a picture of a real measurement set up are given in figure 2.1.

∆p = p1 − p2

dTPM

ve = Q
At

A

(a) Schematic diagram (b) Set up

Figure 2.1: Measurement of the flow resistance [see Cremer and Müller 1982]

The specific flow resistance is measured by means of a steady flow with higher velocities

than they occur in room acoustics. In order to overcome disadvantages due to the relation

between ∆p and ve, which is nonlinear, either interpolations according to DIN EN 29053 are

necessary or measurement devices with oscillating pistons, which work in the velocity range

of interest, have to be used.

Several porous absorbers, for example plates of pressed fibers, show anisotropic behavior

concerning their specific flow resistance. In this case the flow resistance Ξ‖ in and Ξ⊥ normal

to the direction of the fibers has to be considered. According to Mechel [1995b] the influence

on practical important parameters, the impedance for example, which is introduced in section

4.3, is small. In this work just isotropic materials are considered. Furthermore, due to small

displacements in room acoustical applications, it is assumed, that the flow resistance is

independent from the deformation of the porous material.

In the Theory of Porous Media the physical exchange processes between the constituents

φα, which builds up these viscous effects, are considered by interaction forces p̂α. Summing

up over the mixture they have to vanish, because the sum of the balance equations for the

constituents φα has to result in the balance equations for the mixture.∑
α

p̂ α = 0 (2.25)
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The interaction forces result out of the formulation of the entropy inequality and they are

sketched by de Boer and Didwania [2004] and de Boer [2005b]. For the hybrid model of

second type they are

p̂ S = p gradnS − SG (vG − vS) (2.26)

p̂G = p gradnG + SG (vG − vS) (2.27)

Due to the concept of frozen volume fractions [compare Bowen 1982], which considers con-

stant volume fractions in the scope of a linearized theory, gradnα = 0 and one obtains:

p̂ S =−SG (vG − vS) =−SG w (2.28)

p̂G = SG (vG − vS) = SG w (2.29)

The interaction forces between solid and gas, caused by frictional effects at the walls of the

pores, depend on the seepage velocity w = (vG−vS), which is the relative velocity between

both phases, and on the permeability tensor SG. It is defined as

SG = n2
G

γGR
kG

I with: γGR = ρGR g (2.30)

where γGR denotes the effective fluid weight and kG is the Darcy flow coefficient. The per-

meability depends on both the solid and the fluid phase of the mixture [see Hall and Hoff

2002]. For Newtonian fluids and a laminar flow in non swelling media a simple relation is

given depending on the dynamic fluid viscosity ηGR. Introducing the specific permeability

KG and the intrinsic permeability KS [compare Makert 2005, for instance]

KG =
kG

γGR
=
KS

ηGR
(2.31) KS = ηGRK

G =
ηGR
γGR

kG (2.32)

the permeability tensor (2.30) can be expressed with

SG = n2
G

(
KG
)−1

I (2.33a) or SG = n2
G

(
KS

ηGR

)−1

I. (2.33b)

The specific flow resistance is introduced into the TPM-formulation, comparing equation (2.24)

and the general formulation of Darcy ’s Law

ve = − 1

Ξ

∆p

dTPM

ve = − KG ∆p

dTPM
.

(2.34)
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Equations (2.34) visualize the relation between the specific permeability and the specific flow

resistance. The permeability tensor finally reads

SG = n2
G Ξ I (2.35)

in the case of isotropic permeability. The scalar value SG = n2
G Ξ is used in the following

sections to simplify the equations.

The heat exchange, which is mentioned as the second reason for dissipation, is caused by

temperature fluctuations in the gas phase. The compression proceeds isothermal for low

frequencies, whereas the adiabatic law is fulfilled just for high frequencies. In spite of small

volume fractions of the solid in ”acoustical foams”, the heat capacity of the skeleton is

sufficiently large to generate a heat exchange. Using again the Rayleigh model for a simplified

pore geometry, a complex bulk modulus can be derived for the gas. The heat conduction

losses are subordinate for low frequencies. For high frequencies they are comparable with

the dissipation due to viscosity [see Cremer and Müller 1982].

In order to avoid the application of an even more complex thermoelastic theory [see Bluhm

2002], temperature fluctuations are not modeled within the TPM in the scope of this work.

To consider the effect of additional dissipation in a simplified way, complex macroscopic

Lamé constants can be defined for the mixture in equation (2.22).

λ̃cS = λ̃S
(
1 + iηD

)
µcS = µS

(
1 + iηD

) (2.36)

Equation 2.36 considers frequency-independent hysteretic material damping in the TPM-

approach, where ηD marks the loss factor. Compared to the damping ratio DLehr, ηD is

defined as:

ηD = 2DLehr (2.37)

As discussed by Müller [1989], the Lamé constants have to be defined in dependence of the

sign of the circular frequency of excitation Ω for computations in the Fourier domain:

λ̃cS = λ̃S
(
1 + sgn(Ω) iηD

)
µcS = µS

(
1 + sgn(Ω) iηD

) (2.38)
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2.2 Balance Equations

With regard to Ehlers [1989] and de Boer [2000, 2005b] the balance of mass, momentum and

moment of momentum as well as the balance of energy are, based on Truesdell’s metaphysical

principles [Truesdell 1984, p. 210-236], established in the Theory of Porous Media for each

individual constituent φα considering the interaction forces. The sum of the individual partial

balances establishes the balance equation of the mixture as a one-component-body.

2.2.1 Balance of Mass

Without any mass exchange between the constituents and because of the fact, that there is

no mass supply in the system the change of mass is equal to zero

(Mα)′α =

 ∫
Bα

ρα dv

′
α

= 0 (2.39)

which leads to

(ρα dv)′α = (nα ραR dv)′α = 0. (2.40)

The material time derivative (. . .)′α describes the time dependent change of a property of an

arbitrary material point, which is assumed to be fixed during the observation. It is defined

for a scalar function f and a vector valued vector function f as [see Stein and Barthold 1996,

chap. 4]

f ′ = v · grad f +
∂f

∂t
(2.41a) f ′ = v · grad f +

∂f

∂t
, (2.41b)

where the velocity v was defined in equation (2.7). Applying (2.41a) to ρα one obtains:

(ρα)′α = (nα ραR)′α =
∂

∂t
(nα ραR) + vα grad (nαραR)

= ραR
∂ nα
∂t

+ nα
∂ ραR
∂t

+ vα grad (nα ραR)

(2.42)

The material time derivative of a volume element is given by the transport theorem

(dv)′α = div vα dv. (2.43)
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Using equations (2.43) and (2.42) and carrying out the product rule, equation (2.40) can be

written as:

(nα ραR dv)′α =

[
ραR

∂nα
∂t

+ nα
∂ραR
∂t

+ vα grad (nα ραR) + nα ραR div vα

]
dv = 0 (2.44)

The expression ∂nα
∂t

is extracted out of equation (2.44) using (A.22), which is depicted in the

appendix.

∂nα
∂t

= − 1

ραR

(
nα

∂ραR
∂t

+ div (nα ραR vα)

)
(2.45)

The saturation condition (2.2) is derived with respect to time
(
∂nS
∂t

+ ∂nG
∂t

= 0
)
. Inserting

expression (2.45) for both constituents (φS, φG) and simplifying via (A.12) leads to

nG
ρGR

∂ρGR
∂t

+ nG div (vG) +
nS
ρSR

(
∂ρSR
∂t

)
︸ ︷︷ ︸

= 0

+nS div (vS) = 0. (2.46)

Taking the incompressibility of the solid phase into account (compare section 2.1.3) equation

(2.46) is simplified to

nG
∂ρGR
∂t

+ ρGR nG div (vG) + ρGR nS div (vS) = 0. (2.47)

The ideal gas equation is used in the scope of the linear theory to relate the real density of

the air ρGR to the pore pressure p

ρGR =
ρ0
GR

p0
p =

1

Rθ
p, (2.48)

where R is the specific gas constant and θ denotes the temperature of the gas. ρ0
GR is the

constant factor of a Taylor Series expansion. The index 0 is omitted in the following. Diebels

[2000] discussed more complex state equations like the law of Muskat or the van der Waals

fluid. Their effects would be eliminated by a consequent linearization [Schanz and Diebels

2003], whereby equation (2.47) results in

nG
Rθ

∂p

∂t
+ ρGR nG div (vG) + ρGR nS div (vS) = 0. (2.49)
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Substituting the real density ρ0
GR with the partial value ρG using (2.4) one finally obtains

for the balance of mass

n2
G

Rθ ρG

∂p

∂t
+ nG div (vG) + nS div (vS) = 0. (2.50)

2.2.2 Balance of Momentum and Moment of Momentum

The conservation of momentum is expressed in a local form for each constituent φα consid-

ering the interaction forces between the constituents. The momentum of the constituent φα

is defined in equation (2.51).

Iα =

∫
Bα

ρα vα dv (2.51) (Iα)′α =

∫
Bα

ρα aα dv (2.52)

The material time derivative of the momentum describing the inertia force of the volume

element, where aα is the acceleration of the constituent φα
(
with: aα = (uα)′′α

)
has to be at

equilibrium with the sum of all external forces (consisting of volume forces bα and surface

forces tα) and the interaction forces p̂ α, specified in section 2.1.4 and defining the interaction

between solid and gas:∫
Bα

ρα aα dv =

∫
Bα

ρα bα dv +

∫
∂ Bα

tα da+

∫
Bα

p̂ α dv (2.53)

Applying the divergence theorem the surface integral in equation (2.53) is rewritten with a

volume integral∫
∂ Bα

tα da =

∫
∂ Bα

Tα n da =

∫
Bα

div Tα dv. (2.54)

Thus equation (2.53) finally results in

div Tα + ρα bα + p̂α = ρα aα. (2.55)

External accelerations bα are equal to zero in our case. In the following equation (2.55) is

established for both, the solid and the fluid component.

The stress- and strain relations (2.22, 2.12b), defined in section 2.1 are used to describe
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div TS in equation (2.55):

div TS = −div (nS p I) + div

(
λ̃S

(
1

2

(
grad uS + (grad uS)T

)
· I
)

I

)
+

+div
(
µS

(
grad uS + (grad uS)T

)) (2.56)

Simplifying equation (2.56) with the help of (A.13, A.15, A.22 and A.27) and inserting the

result in (2.55) using (2.26) leads to equation (2.57) for the conservation of momentum for

the solid. Using (2.23) instead of (2.22) one yields equation (2.58) for the gas component in

an analogous way:

−nS grad p+
(
λ̃S + µS

)
grad div uS + µS div grad uS + SG (vG − vS) = ρS aS (2.57)

−nG grad p− SG (vG − vS) = ρG aG (2.58)

The balance of the moment of momentum is fulfilled, if

Tα = (Tα)T (2.59)

holds [see de Boer 2000], which leads to a symmetric stress tensor.

2.3 System of Partial Differential Equations and

Fundamental System

Out of the balance equations, discussed in section 2.2, a system of coupled partial differential

equations PDEs (2.50, 2.57, 2.58) describing the porous material in the absorber is gained. A

potential approach and a transformation in the Fourier domain lead to a system of coupled

ordinary differential equations ODEs, which can be solved analytically.

2.3.1 Helmholtz Decomposition

According the theorem of Helmholtz [compare Arfken 1985] a continuously differentiable

three dimensional vector field can be expressed as a sum of a curl-free (irrotational) part,

consisting of a scalar potential Φ and a divergence-free (solenoidal) part, built up with a

vector potential Ψ. In the following this approach is applied to the displacement field of the

solid and the gas component.

uS = grad ΦS + curl ΨS (2.60) uG = grad ΦG + curl ΨG (2.61)
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There are three unknowns for each displacement field uα, describing the spatial directions,

whereas four unknowns Φα, Ψαx, Ψαy and Ψαz are needed for the potential approach.

One component can be chosen arbitrarily without loosing accuracy [Long 1967] for the boun-

dary conditions underlying the problem, discussed in this thesis. The z-component of the

vector potential is chosen to Ψαz = 0, leading to a complete system also in case of plane

waves in the x− y plane.

A more general approach, where the vector potential is decomposed with the help of two

scalar functions and the solenoidal condition is used by Frühe [2011], where the limits of the

approach by Long are discussed in detail.

Applying the Helmholtz decomposition to equations (2.50, 2.57, 2.58) and carrying out a

simplification with the help of (A.16, A.24) and (A.26) leads to:

grad

[
−nS p+

(
λ̃S + 2µS

)
∆ΦS + SG

(
∂ΦG

∂t
− ∂ΦS

∂t

)
− ρS

∂2ΦS

∂t2

]
+

+ curl

[
µS∆ΨS + SG

(
∂ΨG

∂t
− ∂ΨS

∂t

)
− ρS

∂2ΨS

∂t2

]
= 0

(2.62)

grad

[
−nGp− SG

(
∂ΦG

∂t
− ∂ΦS

∂t

)
− ρG

∂2ΦG

∂t2

]
+

+ curl

[
−SG

(
∂ΨG

∂t
− ∂ΨS

∂t

)
− ρG

∂2ΨG

∂t2

]
= 0

(2.63)

n2
G

Rθ ρG

∂p

∂t
+ nG ∆

∂ΦG

∂t
+ nS ∆

∂ΦS

∂t
= 0 (2.64)

The equations for the scalar potentials are extracted out of (2.62) to (2.64)

−nSp+
(
λ̃S + 2µS

)
∆ΦS + SG

(
∂ΦG

∂t
− ∂ΦS

∂t

)
− ρS

∂2ΦS

∂t2
= 0 (2.65)

−nGp− SG
(
∂ΦG

∂t
− ∂ΦS

∂t

)
− ρG

∂2ΦG

∂t2
= 0 (2.66)

nG
Rθ

∂p

∂t
+ ρGR nG ∆

∂ΦG

∂t
+ ρGR nS ∆

∂ΦS

∂t
= 0 (2.67)

and the pore pressure p is unhinged out of equation (2.66)

p = −SG
nG

(
∂ΦG

∂t
− ∂ΦS

∂t

)
− ρG
nG

∂2ΦG

∂t2
. (2.68)
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Inserting (2.68) in (2.65) and (2.67) and extracting the equations for the vector potentials

out of (2.62) to (2.64) leads to the final potential description for the porous material, where

the pore pressure p is eliminated.

(
λ̃S + 2µS

)
∆ΦS +

nS
nG

ρG
∂2ΦG

∂t2
− ρS

∂2ΦS

∂t2
+

(
1 +

nS
nG

)
SG

(
∂ΦG

∂t
− ∂ΦS

∂t

)
= 0

nS∆
∂ΦS

∂t
− nG
Rθ

∂3ΦG

∂t3
+ nG∆

∂ΦG

∂t
− nG SG
Rθ ρG

(
∂2ΦG

∂t2
− ∂2ΦS

∂t2

)
= 0

(2.69)

µS ∆ΨS − ρS
∂2ΨS

∂t2
+ SG

(
∂ΨG

∂t
− ∂ΨS

∂t

)
= 0

−ρG
∂2ΨG

∂t2
− SG

(
∂ΨG

∂t
− ∂ΨS

∂t

)
= 0

(2.70)

2.3.2 Fourier Transform and Solution

The system of partial differential equations (2.69 and 2.70) can be transformed into a system

of ODEs. The problem is considered in the wavenumber-frequency domain using Fourier

Transform methods [Föllinger 2003]. The variable t is transformed into the frequency domain

(t ω). The spatial coordinates x and y are transformed into the wavenumber domain

(x kx), (y ky), initially assuming infinite dimensions in these two directions.

The disadvantage, linked with the transformation is the loss of the possibility to vary the

parameters of the system in x- and y- direction. For the applications in acoustics, discussed

in the scope of this thesis however, especially for an application in room acoustics, a definition

of different layers in z-direction is mostly sufficient.

Carrying out the transformation according to section A.2 leads to:

(
λ̃S + 2µS

)(
−k2

x − k2
y +

∂2

∂z2

)
Φ̂S − ω2

(
nS
nG

ρG Φ̂G − ρS Φ̂S

)
+

+

(
1 +

nS
nG

)
SG iω

(
Φ̂G − Φ̂S

)
= 0

iω nS

(
−k2

x − k2
y +

∂2

∂z2

)
Φ̂S + iω3 nG

Rθ
Φ̂G +

+ iω nG

(
−k2

x − k2
y +

∂2

∂z2

)
Φ̂G +

nG SG
Rθ ρG

ω2
(

Φ̂G − Φ̂S

)
= 0

(2.71)
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µS

(
−k2

x − k2
y +

∂2

∂z2

)
Ψ̂S + ω2ρSΨ̂S + iω SG

(
Ψ̂G − Ψ̂S

)
= 0

ω2ρGΨ̂G − iω SG
(
Ψ̂G − Ψ̂S

)
= 0

(2.72)

Equations (2.71) and (2.72) are systems of ordinary linear differential equations of second

order with constant coefficients. Solving these equations and simplifying the mathematical

expressions, the solution for the fundamental systems can be written in the following form:

Φ̂S = A1 e
λ11 z + A2 e

−λ11 z + A3 e
λ12 z + A4 e

−λ12 z (2.73)

Φ̂G = χ1A1 e
λ11 z + χ1A2 e

−λ11 z + χ2A3 e
λ12 z + χ2A4 e

−λ12 z (2.74)

Ψ̂S = B1 e
λ2 z + B2 e

−λ2 z with ΨS3 = 01 (2.75)

Ψ̂G = χ3 B1 e
λ2 z + χ3 B2 e

−λ2 z with ΨG3 = 01 (2.76)

One observes, that the wavelengths and the directions of propagation coincide for the waves

in the solid- and in the gas phase. The ratio in the amplitudes of the potentials of the

individual phases is represented by χ1 to χ3

χ1 = − 2 A

B + D
(2.77)

χ2 = − 2 A

B −D
(2.78)

χ3 =
SG

SG + iω ρG
, (2.79)

where the abbreviations A , B and D , defined in equations (2.86) to (2.89), are introduced.

For SG = 0 no vector potential exists in the gas phase (χ3 = 0).

The coefficients λ of the exponential functions result in

λ11 =
√
k2
x + k2

y − k2
11 (2.80)

λ12 =
√
k2
x + k2

y − k2
12 (2.81)

λ2 =
√
k2
x + k2

y − k2
2, (2.82)

1Compare section 2.3.1
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with:

k2
11 = ω2 C + D

2
(
λ̃S + 2µS

) (2.83)

k2
12 = ω2 C −D

2
(
λ̃S + 2µS

) (2.84)

k2
2 = ω2 iSG (ρS + ρG)− ω ρSρG

(iSG − ρG ω)µS
(2.85)

The wavenumbers k11 and k12 specify the compressional waves in the porous material. In

contrast to the homogeneous material there occur two different kinds of compressional waves,

differing in the phase shift between solid and fluid displacements. The shear wave in the

porous foam is represented by k2. In case of the hybrid model of second type, considering

the friction between both phases (SG 6= 0), the expressions for the wavenumbers and for the

coefficients χ1 to χ3 are more complex as for the binary model with incompressible solid and

fluid constituents.

The abbreviations A to D , which were introduced to define the fundamental system are:

A = ρS
nS
nG
− i SG

ω

(
λ̃S + 2µS
RΘ ρG

+
nS
nG

+

(
nS
nG

)2
)

(2.86)

B = ρS − ρG
(
nS
nG

)2

− λ̃S + 2µS
RΘ

− i SG
ω

(
1− λ̃S + 2µS

RΘ ρG
−
(
nS
nG

)2
)

(2.87)

C = ρS + ρG

(
nS
nG

)2

+
λ̃S + 2µS
RΘ

− i SG
ω

( (
1 +

nS
nG

)2

+
λ̃S + 2µS
RΘ ρG

)
(2.88)

D =
1

|ω|

{[
ω

(
λ̃S + 2µS
RΘ

+ ρS + ρG

(
nS
nG

)2
)
− i SG

((
1 +

nS
nG

)2

+
λ̃S + 2µS
RΘ ρG

)]2

+

+ 4
λ̃S + 2µS
RΘ

(
iω SG

(
1 +

ρS
ρG

)
− ω2 ρS

)}1

2

(2.89)

The simple Binary Model with incompressible constituents can be derived out of this solution,
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carrying out the limits (RΘ → ∞). The fundamental systems coincide with the results for

the incompressible model, which are sketched in Boskovic, Buchschmid et al. [2003] and

Boskovic [2005] for SG = 0.

The speed of propagation is derived out of the wavenumbers (c = ω
k
). In case of the in-

compressible model the factor C is equal to D . Then the propagation speed of the second

compressional wave is getting infinite (c12 →∞).

2.3.3 Displacements and Stresses in the Transformed Domain

The displacements uα of the individual constituents φα are obtained from (2.60), (2.61)

uxα = Φα,x −Ψαy,z (2.90)

uyα = Φα,y + Ψαx,z (2.91)

uzα = Φα,z −Ψαx,y + Ψαy,x (2.92)

and transformed into the Fourier domain.

ûxα = i kx Φ̂α − Ψ̂αy,z (2.93)

ûyα = i ky Φ̂α − Ψ̂αx,z (2.94)

ûzα = Φ̂α,z − i ky Φ̂αx + i kx Ψ̂αy (2.95)

Inserting the fundamental system (2.73) to (2.76) the displacements are formulated in terms

of the unknown coefficients.

ûxS

ûyS

ûzS

ûxG

ûyG

ûzG


=



ikx ikx ikx ikz 0 0 −λ2 −λ2

iky iky iky iky λ2 −λ2 0 0

λ11 −λ11 λ12 −λ12 −iky −iky ikx ikx

ikxχ1 ikxχ1 ikxχ2 ikxχ2 0 0 −λ2χ3 λ2χ3

ikyχ1 ikyχ1 ikyχ2 ikyχ2 λ2χ3 −λ2χ3 0 0

λ11χ1 −λ11χ1 λ12χ2 −λ12χ2 −ikyχ3 −ikyχ3 ikxχ3 ikxχ3


CT
TPM (2.96)

where

CTPM =
[
A1e

λ11z A2e
−λ11z A3e

λ12z A4e
−λ12z B1xe

λ2z B2xe
−λ2z B1ye

λ2z B2ye
−λ2z

]
(2.97)

The stresses according to cuttings along the z–axis, which are necessary for the absorber

model are extracted out of the stress tensors Tα for the individual constituents respectively,
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carrying out the dot product with the normal vector n = [0 0 1]T , describing the cutting

plane.

Starting from equation (2.22) the stresses of the solid phase are described in the Fourier-

transformed domains as:τ̂
xz
S

τ̂ yzS

σ̂zS

 = T̂S

0

0

1

 =

 0

0

−nS p̂

+ µS Mcoeff CT
TPM (2.98)

where

Mcoeff =

 2ikxλ11 −2ikxλ11 2ikxλ12 −2ikxλ12 kxky kxky −λ2
2−k2

x −λ2
2−k2

x

2ikyλ11 −2ikyλ11 2ikyλ12 −2ikyλ12 λ2
2+k2

y λ2
2+k2

y −kxky −kxky

2λ2
11−

λS

µS
k2

11 2λ2
11−

λS

µS
k2

11 2λ2
12 2λ2

12 −2ikyλ2 2ikyλ2 2ikxλ2 −2ikxλ2


With (2.23) one obtains for the gas phase φG: τ̂xzG

τ̂ yzG

σ̂zG

 = T̂G

 0

0

1

 =

 0

0

−nG p̂

 (2.99)

After applying the Fourier transform and inserting the Helmholtz potentials, for the pore

pressure p̂, which is defined in (2.68), holds:

p̂ = ω
nG

[
ρGωχ1−iSG(χ1+1) ρGωχ1−iSG(χ1+1) ρGωχ2−iSG(χ2+1) ρGωχ2−iSG(χ2+1) 0 0 0 0

]T
CT
TPM

(2.100)

The stress tensor for the mixture T̂TPM is decomposed into the stress tensors of the individual

phases T̂S and T̂G, which were defined in equations (2.22) and (2.23):

T̂TPM = T̂S + T̂G (2.101)

The Fourier transformed physical stresses at horizontal layers are composed to τ̂
xz
TPM

τ̂ yzTPM

σ̂zTPM

 =

τ̂
xz
S + τ̂xzG

τ̂ yzS + τ̂ yzG

σ̂zS + σ̂zG

 . (2.102)
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3 Elastic Layers and Air

3.1 Homogeneous Material

3.1.1 System of Partial Differential Equations

The layers, consisting of homogeneous, linear-elastic and isotropic material are described by

the Lamé equation. Its derivation [compare Stein and Barthold 1996] and also the discussion

of kinematics, stresses and strains is very similar to chapter 2 but not as complex. Therefore

the relations are just listed in the following.

Assuming the external acceleration to be zero the Lamé equation is given in a Cartesian

reference frame by

(λH + µH) grad div uH + µH div grad uH = ρHaH . (3.1)

In (3.1) aα is the acceleration of the volume element dv. Stresses are evaluated in arbitrary

cutting planes evaluating the 2nd Piola-Kirchhoff stress tensor TH (compare section 2.1.3).

TH = λH (EH · I) I + 2µH EH (3.2)

Here λH and µH are the Lamé constants of the elastic material and EH is the Green strain

tensor (compare section 2.1.2).

EH =
1

2

(
grad uH + (grad uH)T

)
(3.3)

3.1.2 Solution in the Transformed Domain

The Helmholtz decomposition is carried out analogously to section 2.3.1, where

uH = grad ΦH + curl ΨH . (3.4)
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represents the displacement field. Thus the expression

grad
[
(λH + 2µH) ∆ΦH − ρH ∂2ΦH

∂t2

]
+

+ curl
[
µH∆ΨH − ρH ∂2ΨH

∂t2

]
= 0

(3.5)

follows for the Lamé equation (3.1), which finally results in decoupled PDEs for the scalar

potential and the vector potentials:

(λH + 2µH) ∆ΦH − ρH
∂2ΦH

∂t2
= 0

µH∆ΨH − ρH
∂2ΨH

∂t2
= 0

(3.6)

In analogy to section 2.3.2 the Fourier transform from the time- into the frequency do-

main (t ω) and from the spatial domain into the wavenumber domain (x kx),

(y ky) is carried out in order to simplify the problem to the solution of ODEs.

(λH + 2µH)

(
−k2

x − k2
y +

∂2

∂z2

)
Φ̂H + ω2ρHΦ̂H = 0

µH

(
−k2

x − k2
y +

∂2

∂z2

)
Ψ̂H + ω2ρHΨ̂H = 0

(3.7)

For equations (3.7), describing the homogeneous material, the solution for the scalar and

vector potentials is given by

Φ̂H = C1 e
κ1 z + C2 e

−κ1 z (3.8)

Ψ̂H = D1 e
κ2 z + D2 e

−κ2 z with ΨH3 = 01 (3.9)

with:

κ1 =
√
k2
x + k2

y − k2
3 (3.10)

κ2 =
√
k2
x + k2

y − k2
4. (3.11)

Here k3 and k4 are the wavenumbers of the compressional and the shear wave respectively.

k2
3 =

ω2ρH
(λH + 2µH)

(3.12a) k2
4 =

ω2ρH
µH

(3.12b)

1Compare section 2.3.1.
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The derivation of displacements and stresses is done in analogy to the porous material (com-

pare section 2.3.3) and therefore not discussed in detail.

The displacements, which were decomposed in (3.4) according to the Helmholtz approach,

are transformed into the Fourier domain

ûxH = i kx Φ̂H − Ψ̂Hy,z (3.13)

ûyH = i ky Φ̂H + Ψ̂Hx,z (3.14)

ûzH = Φ̂Hz − i ky Ψ̂Hx + i kx Ψ̂Hy (3.15)

and written in a matrix notation

û
x
H

ûyH

ûzH

 =

ikx ikx 0 0 −κ2 κ2

iky iky κ2 −κ2 0 0

κ1 −κ1 −iky −iky ikx ikx





C1 eκ1z

C2 e−κ1z

D1x e
κ2z

D2x e
−κ2z

D1y e
κ2z

D2y e
−κ2z


︸ ︷︷ ︸

CH

(3.16)

The stresses are derived out of the stress vector, which is computed with the help of the

stress tensor TH (3.2) and the normal vector n = [0 0 1]T defining the cutting plane along

the z–axisσ̂
xz
H

σ̂yzH

σ̂zH

 = T̂H

0

0

1

 =

= µH

 2ikxκ1 −2ikxκ1 kxky kxky −κ2
2 − k2

x −κ2
2 − k2

x

2ikyκ1 −2ikyκ1 κ2
2 + k2

y κ2
2 + k2

y −kxky −kxky
2k2

r − k2
4 2k2

r − k2
4 −2ikyκ2 2ikyκ2 2ikxκ2 −2ikxκ2

 CH

(3.17)

where

kr =
√
k2

3 + k2
4 (3.18)

is the circular wavenumber.
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3.2 Air as Intermediate Layer and Adjacent Structure

The homogeneous and porous layers, discussed in the previous sections, interact within the

model of the porous absorber with the acoustic fluid. The differential equation for the air is

the wave equation. A detailed derivation is found in Cremer and Müller [1982].

∆pA −
1

c2
A

∂2pA
∂t2

= 0 (3.19)

The subscript (. . .)A specifies the air. The relation between the primary variables pressure

pA and velocity vA is gained, applying Newton’s law to a volume element dV of the acoustic

fluid

ρA
∂vA

∂t
= − grad pA. (3.20)

Transforming the problem into the frequency domain, the Helmholtz equation results out of

(3.19) and, after a transformation of the x- and y-coordinates in the wavenumber domain,

one obtains(
−k2

x − k2
y +

∂2

∂z2

)
p̂A +

Ω2

c2
A

p̂A = 0, (3.21)

where Ω
cA

is the wavenumber kA of the compressional wave in the fluid. Solving the ODE

leads to equation (3.22) for the fundamental system of the acoustic fluid:

p̂A = E1 e
√
k2
x+k2

y−k2
Az + E2 e

−
√
k2
x+k2

y−k2
Az (3.22)

The displacements ûA are obtained out of the Fourier transformation of equation (3.20):û
x
A

ûyA

ûzA

 =
1

Ω2 ρA

 ikx ikx

iky iky√
k2
x + k2

y − k2
A −

√
k2
x + k2

y − k2
A

[ E1 e
√
k2
x+k2

y−k2
Az

E2 e−
√
k2
x+k2

y−k2
Az

]
(3.23)

The fundamental systems, derived in the previous sections for the different materials, are

composed to define the model for the compound absorber in the following chapter.
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In rooms, where the walls have a reflective character, which means, that nearly no sound is

absorbed or transmitted into adjacent rooms, the sound field has got a strong spatial charac-

teristic. This results in high level differences for the sound pressure in the standing waves

and also echoes could appear. The speech intelligibility in offices or conference rooms and

the clarity of music in concert halls (measures, which are defined by the early-to-late energy

ratio considering specific intervals of integration) suffer from that. The work of employees,

delegates and musicians or simply the comfort of the audience is affected negatively if they

are not averted by constructive solutions.

To overcome this problem, room acoustical strategies like changing the geometry of the

room for instance by inclining the walls to reduce echoes or installing reflectors to modify

the early-to-late energy ratio are applied. The sound energy in the room can be controlled in

the acoustic cavity installing specific absorptive elements. Absorbers, used in room acoustics,

can be classified in passive absorbers and resonators (compare figure 4.1).

One can describe the mode of operation considering a sound wave with the sound pressure pi,

the velocity vi and the sound power Pi. If its wavelength λ is small compared to the ge-

ometry of the ”obstacle”, the wave is partially reflected Pr, other parts are transmitted Pt

or dissipated due to absorption Pa (effects resulting out of sound conduction to adjacent

structures are not considered in this work).

Pi = Pr + Pt + Pa (4.1)

The sound absorption is characterized by the absorption coefficient α, which is defined ac-

cording to Sabine [1922] as the ratio of ”not fully reflected” power and incident power

α =
Pa + Pt
Pi

=
Pi − Pr
Pi

= 1− r2 = 1− %, (4.2)

where r is the reflection factor and % is the reflection coefficient:
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r =
pr
pi

(4.3) % =
Pr
Pi

=
p2
r

p2
i

(4.4)

The ratio of absorbed and incident power is called the dissipation coefficient δ:

δ =
Pa
Pi

(4.5)

It is, following the mechanical description of dissipation, a measure for the energy, which is

really dissipated due to transformation of sound energy into thermal energy. In the scope of

this work, where the absorptive structures are considered to be mounted on reflective walls

α is equal to δ.

Passive absorbers consist of porous materials like foams, mineral wool or cellular glass.

The sound waves enter the pores of the absorber and initiate a vibration of the air in the

interconnected pores (see figure 4.1a). The kinetic energy of the sound field is reduced due to

viscous friction in the pores. Thus it is reasonable to arrange these absorbers in regions with

high velocities. Heat exchange effects cause additional dissipative effects within the porous

absorber for higher frequencies. The dissipative effects and the way, they are implemented

in this model, are depicted in detail in section 2.1.4. Porous absorbers can be covered

air

pi

pr pt

ϑ

porous layer

y

z

layer
reflective

(a) Passive Absorber

layer
airair

pi

pr pt

ϑ

plate porous layer

y

z

reflective

(b) Plate Resonator

Figure 4.1: Classification of absorbers

with acoustically transparent facings like membranes with a small mass surface density or

perforated plates.

If the absorptive material is covered with a layer or a membrane having a mass surface

density, which is not small compared to the fluid-mass vibrating with the incident wave, the

system acts as a plate resonator. Vibrations are excited in the layer by sound waves. Energy

is dissipated due to internal damping effects (for instance material damping), which can be
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increased by absorption in porous layers, installed in the air cushion behind the vibrating

plate, while the plate should not be hindered in vibrating. These resonators work only in a

small frequency range (the mass-spring resonance of the system, where the spring is built up

by the air cushion). Layers with an appreciable bending stiffness for the plate are used to

gain compound absorbers, working in a broader frequency band by activating the bending

modeshapes of the plate [see Mechel 1995b; Fuchs 2006]. A schematic sketch of the working

principle of a plate resonator is given in figure 4.1b.

If the absorber is covered with a perforated plate, one observes, that the acoustical trans-

parency is becoming worse with increasing frequencies. Already before the distances between

the holes of the perforated plate reach dimensions, which are comparable with the wavelength

in the acoustic fluid, the air in the holes is starting to act as inert masses (like the mem-

branes, mentioned above) mounted on the air cushion as an elastic support. These Helmholtz

resonators can be built up with perforated plates or as individual resonators with circular

necks. Absorptive material can be applied inside the resonator or in form of a fleece in front

of or behind the holes. Helmholtz resonators as well as perforated plates are not discussed

in this thesis.

Compound absorbers are composed of several layers. These are air volumes, homogeneous

layers like membranes or plates and porous layers (figure 4.2). The air in front of the absorber

is modeled as a half-space in contrast to the air cushions in the absorber. The simple passive

absorber, consisting of a porous layer, mounted either directly on a reflective wall or with

an intermediate layer of air, is built up as a special case of compound absorber.

pipr

ϑ

1st homogeneous layer
y

z

2nd layer of air

1st porous layer

3rd layer of air

1st layer of air (half-space)

reflective layer

2nd porous layer

d1
H

d2
A

d1
TPM

d2
TPM

d3
A

z1,2
z3

z4

z5

z6

Figure 4.2: Layered model of the compound absorber (schematic sketch)

In the following a layered model, where elastic layers, porous material and air cushions

are combined, is derived. The theory, used to model these structures is sketched and the
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solution of the systems of differential equations is presented. The boundary conditions and

the transition conditions in order to specify the coefficients of the fundamental system for

compound structures are discussed. Furthermore the numerical calculation of acoustical

parameters, based on this model is presented.

Additional information is found in the standard references, published by Cremer and Müller

[1982]; Fahy [2000]; Fuchs [2006]; Heckl and Müller [1995]; Kuttruff [2009]; Mechel [2008];

Möser [2007] as well as Müller and Möser [2003], which are underlying this classification.

4.1 Boundary Conditions and Transition Conditions

Due to the Fourier transform in two spatial directions, there exist only horizontal layers in

the model, which are defined by a normal vector n =
[
0 0 1

]T
in a Cartesian reference

frame.

4.1.1 Lamé-TPM

ûzH
yH

zH

ûzTPM
yTPM

zTPM

σ̂zH τ̂ zyH

σ̂zTPM
τ̂ zyTPM

dH

Figure 4.3: Interface between a homogeneous and a porous layer

For a change from a porous to a homogeneous layer as shown in Fig. 4.3, there are seven

equations defined for the boundary conditions. Normal and shear stresses have to correspond

in both media at the interface zTPM = 0

T̂z=0
TPM n− T̂z=dH

H n = 0, (4.6)

where, according to equation (2.101), the stresses in the mixture are defined as the sum of

the stresses of the constituents.
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In contrast to the solid, where all displacements are equated with the displacements of the

homogeneous material, for the gas phase only the z-component is coupled:

ûS (z = 0)− ûH (z = dH) = 0 (4.7)

ûzG (z = 0)− ûzH (z = dH) = 0, (4.8)

where dH marks the height of the homogeneous layer. In total seven equations are gained

for this type of transition.

4.1.2 Helmholtz-TPM

ûzA
yA

zA

ûzTPM
yTPM

zTPM

p̂A

σ̂zTPM
τ̂ zyTPM

dA

Figure 4.4: Interface between a layer of air and a porous layer

If air is adjacent to a TPM-layer (Fig. 4.4), the normal stresses in the porous medium must

be equal to the pressure in the air at the interface zTPM = 0:

T̂z=0
TPM n + p̂z=dAA n = 0 (4.9)

The shear stresses vanish at the interface. Therefore only the z-components of the displace-

ments of the solid and the gas are coupled with the air

ûzS (z = 0)− ûzA (z = dA) = 0 (4.10)

ûzG (z = 0)− ûzA (z = dA) = 0, (4.11)

which results in five equations.
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4.1.3 Helmholtz-Lamé

ûzA
yA

zA

ûzH
yH

zH

p̂A

σ̂zH
τ̂ zyH

dA

Figure 4.5: Interface between a layer of air and a homogeneous layer

Coupling air to a homogeneous medium (Fig. 4.5) is very similar to the transition Helmholtz-

TPM in section 4.1.2. The shear stresses of the homogeneous medium vanish at the bound-

ary. This leads to four equations.

T̂z=0
H n + p̂z=dAA n = 0 (4.12)

ûzH (z = 0)− ûzA (z = dA) = 0 (4.13)

A survey of the boundary-equations related to the different transitions depicted in ta-

ble 4.1.

Stresses Displacements Number of eqns.

Lamé-TPM T̂z=0
TPMn− T̂z=dH

H n = 0
ûS (z = 0)− ûH (z = dH) = 0
ûzG (z = 0)− ûzH (z = dH) = 0

7

Helmholtz-TPM T̂z=0
TPMn + p̂z=dAA n = 0

ûzS (z = 0)− ûzA (z = dA) = 0
ûzG (z = 0)− ûzA (z = dA) = 0

5

Helmholtz-Lamé T̂z=0
H n + p̂z=dAA n = 0 ûzH (z = 0)− ûzA (z = dA) = 0 4

Table 4.1: Summary of the equations resulting out of the boundary conditions

4.1.4 Sommerfeld Radiation Condition

The scalar and vector potentials, defined in sections 2.3, 3.1 and 3.2 are solutions for the

Helmholtz equation and systems of differential equations, containing Helmholtz equations,

respectively. Sommerfeld [1949] stated, that “energy which is radiated from the sources must
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pipr

ϑ

homogeneous layer
y

z

layer of air

porous layer

dH

dA

z1,2
z3

z4

∞

incident waves dTPM

Figure 4.6: Sommerfeld radiation condition – exemplary sketched for an ∞ porous layer

scatter to infinity; no energy may be radiated from infinity into the prescribed singularities

of the field”.

Therefore in a layer, which is defined as a half-space (see figure 4.6), no incident waves can

occur as far-field solutions and the near-field solutions have to decrease exponentially. Müller

[1989] pointed out, that for circular frequencies of excitation Ω < 0 the increasing part of

the surface waves and the incident spherical waves propagating from infinity to the interface

of the layer are described with the same coefficients of the scalar and vector potentials

respectively. Therefore the computations are carried out for negative circular frequencies in

the following. The corresponding solutions for Ω > 0 are the complex conjugates.

The Sommerfeld radiation condition is fulfilled by skipping the corresponding coefficients in

the fundamental systems (compare table 4.2).

Compressional waves Shear wave

TPM
A2 = 0
A4 = 0

in (2.73), (2.74) B2 = 0 in (2.75), (2.76)

Lamé C2 = 0 in (3.8) D2 = 0 in (3.9)

Helmholtz E2 = 0 in (3.22)

Table 4.2: Coefficients to be skipped obeying the Sommerfeld radiation condition
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4.1.5 Layers on Reflective Walls

The bottom layer in the compound absorber is a reflective wall for most applications. For

practical systems porous layers or air cushions will be connected to the reflective walls. For

the sake of completeness the boundary conditions for connections with all three types of

material are listed in table 4.3.

Displacements Number of eqns.

TPM
ûS (z = dTPM) = 0
ûzG (z = dTPM) = 0

in (2.96) 4

Lamé ûH (z = dH) = 0 in (3.16) 3

Helmholtz ûzA (z = dA) = 0 in (3.23) 1

Table 4.3: Boundary conditions for connections to reflective walls

4.2 System of Equations

The boundary conditions and the transition conditions for the compound absorber, which

are addressed with BCi in the following, are established using the equations listed in tables

4.1 to 4.3. One obtains a system of linear equations to compute the coefficients of the

fundamental systems:

K x = f , (4.14)

where K is the matrix of coefficients

K =


∂BC1

∂x1

· · · ∂BC1

∂xntot
...

. . .
...

∂BCntot
∂x1

· · · ∂BCntot
∂xntot

 (4.15)

and x denotes the vector of unknowns

x =
[
x1
TPM · · · xnTPMTPM x1

H · · · xnHH x1
A · · · xnAA

]T
(4.16)
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with:

xkTPM =
[
Ak1 Ak2 Ak3 Ak4 Bk

11 Bk
12 Bk

21 Bk
22

]T
xkH =

[
Ck

1 Ck
2 Dk

11 Dk
12 Dk

21 Dk
22

]T
xkA =

[
Ek

1 Ek
2

]T
.

(4.17)

The entries of the vector of unknowns depend on the absorber-type as well as on the number

of layers of each material, where nTPM , nH and nA mark their maximum number respectively.

The total number of unknowns ntot for each combination of kx, ky and Ω is

ntot = nTPM · 8 + nH · 6 + nA · 2− 1, (4.18)

assuming, that for the 1st layer of air (upper layer of the absorber) just the pressure amplitude

of the reflected wave pr is unknown, because the incident wave pi represents the load f .

f =
[
f 1 · · · fn

]T
(4.19)

Due to different magnitudes in (4.14) the system of equations is ill conditioned for higher

frequencies, especially if thick layers are defined. Using a preconditioner, as outlined in

appendix A.4 provides, for realistic layer thicknesses, a stable system up to a frequency

limit, which is sufficient for numerical calculations (about 5 kHz). In case of thick layers,

which results in large arguments in the exponential functions, it is reasonable to rearrange

the definitions of the potentials (see appendix A.4).
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4.3 Computation of Acoustic Properties

4.3.1 Impedance

In models of acoustic cavities with compound absorbers as boundary conditions the vibra-

tional characteristics of both, the acoustic fluid in terms of compressional waves and the

structure with its body and surface waves, have to be considered. In addition to the in-

dividual mechanical properties of the substructures one has to take the interaction at the

interfaces into account in the coupled system. Depending on these properties the waves in

the fluid are reflected or transmitted and kinetic energy is dissipated.

An efficient possibility to specify substructures for coupling with other structures, which will

be discussed at a later stage in this work, is provided by the concept of impedances [see e.g.

Fahy 2000, 2007].

If a harmonic time dependent performance of the system can be assumed, which is the case

for harmonic analyses for steady state responses, the analysis can be done with a complex

exponential description for each circular frequency of excitation Ω. Transient analyses can

use this time harmonic assumption too if a spectral decomposition is carried out with Fourier

transform methods. Applying this complex exponential approach and discussing the conju-

gate complex quantities individually, the ratio of forces and velocities (in structural systems)

or pressure and velocities (in acoustical systems) can be expressed by a complex value, the

impedance of the substructure. Depending on the structure and the type of coupling different

impedance representations, point impedances for instance, established at the point of exci-

tation for lumped or continuous systems under a single force, or modal impedances, where

the ratio of the generalized modal force and the modal velocity is computed, are used.

In this work the differential equations are solved in the wavenumber-frequency domain and

a Fourier series approach is applied later on for the fluid structure interaction. Thus the

acoustic wave impedance is used. It is defined as

Z(kx, ky,Ω) =
p̂A(kx, ky,Ω)

v̂zA(kx, ky,Ω)
, (4.20)

where p̂A and v̂zA are the complex values of pressure and normal velocity of the fluid at the

interface (surface of the compound absorber). It is evaluated for each set of kx, ky and Ω.

Müller [1989] showed, that, as the results for the physical quantities have to be real values

after applying the inverse transformation, the number of sets can be reduced by a factor

two computing just for positive or negative frequencies/wavenumbers and supplementing
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the result with the help of the complex conjugate values. As mentioned in section 4.1.4

already, it is convenient to calculate with negative circular frequencies of excitation. In case

of computing impedances perpendicular to the compound absorber the results are symmetric

with respect to kx and ky, which is an additional gain in efficiency.

The application of normal impedances for FSI-problems in combination with absorbers,

where the porous material is modeled based on the theory of Biot [1956b,c] and Allard

[2009] was done by Deü et al. [2006] and Larbi et al. [2009]. Normal impedances assume

plane waves at the surface of the absorber. In this FSI-model the absorber acts as a field of

uncoupled single degree of freedom systems.

In order to treat a more complex spatial functionality of the absorptive structure, in equation

(4.20) the impedance is computed depending on the wavenumbers kx and ky. They are linked

to different angles of incidence for the sound waves. Figure 4.7 shows the geometrical relations

between wavenumbers, wavelengths and the angle of incidence for the two-dimensional case

(ϑyz = 0, ky = 0), where (ϑxz = ϑ).

pi

x

z

ϑ

λ

λ

sin(ϑ)

Figure 4.7: Incident sound wave for ϑyz = 0, ky = 0

The incident sound wave has got a wavelength λ and a wavenumber kA.

λ =
2π

Ω
cA (4.21) kA =

2π

λ
=

Ω

cA
(4.22)

According to Cremer and Müller [1982] the wavenumber kA is understood as the absolute

value of a vector kA, which can be decomposed into its components. The periodicity along

the surface (z = 0) is characterized by the wavenumber kx. It is called trace wavenumber

and calculated out of the trace wavelength λ
sin(ϑ)

, as depicted in figure 4.7. The normal

wavenumber kz is calculated out of the normal wavelength λ
cos(ϑ)

analogously.
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kz =
2π

λ
cos(ϑ) =

Ω

cz
= kA cos(ϑ) (4.23) kx =

2π

λ
sin(ϑ) =

Ω

cx
= kA sin(ϑ) (4.24)

The three-dimensional case, where the incident sound wave hits the surface with an arbitrary

angle, is understood, decomposing the vector of the wavenumber kA into the components kx,

ky and kz.

kx

ky

kz

ϑ

ϑxz

x

z
y

kA

ϑyz

√
k2
x+k2

y

Figure 4.8: Vector decomposition of the wavenumber kA

Out of figure 4.8 expressions for the spatial angle of incidence ϑ and the angles of the projec-

tions of kA to the xz-plane (ϑxz) and to yz-plane (ϑxy), which build up the two-dimensional

case are obtained.

sin(ϑ) =

√
k2
x + k2

y

kA
(4.25)

sin(ϑxz) =
kx√
k2
x + k2

z

=
kx√
k2
A − k2

y

sin(ϑyz) =
ky√
k2
y + k2

z

=
ky√
k2
A − k2

x

(4.26)

Substituting cos(α) =
√

1− sin2(α) in (4.26) leads to:

cos(ϑxz) =

√
1− k2

x

k2
A − k2

y

(4.27a) cos(ϑyz) =

√
1−

k2
y

k2
A − k2

x

(4.27b)

Equations (4.26) as well as (4.27a) and (4.27b) are observed in the literature for the two-

dimensional case with
(
ky = 0→ k2

A − k2
y = k2

A

)
and (kx = 0→ k2

A − k2
x = k2

A). Applying this

substitution to equation (4.25) one obtains the relation between the wavenumbers kx, ky and

the spatial angle of incidence ϑ of the acoustic wave, which will be used in equation (4.33).
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cos(ϑ) =

√
1− k2

x

k2
A

−
k2
y

k2
A

(4.28)

Thus the impedances Z(kx, ky,Ω), which are the key values for the description of the com-

pound absorbers in chapter 5, can be evaluated at the basis of equation (4.20) for different

types of plate-like compound absorbers.

4.3.2 Absorption Coefficient

The absorption coefficient, specified in equation (4.2), is the ratio of ”not fully reflected”

power and incident power. It is usually applied in room acoustics for classifying absorbers

and can be deduced from the impedances Z(kx, ky,Ω), derived in the last section, in a wave-

based consideration.

pipr

x

z

ϑ

Figure 4.9: Incident and reflective waves

The transformed pressure p̂ of the sound wave, defined in equation (3.22), is written in a

modified form

p̂A = Ei e
i
√
k2
A−k2

x−k2
y z + Er e

−i
√
k2
A−k2

x−k2
y z (4.29)

= Ei

(
e i
√
k2
A−k2

x−k2
y z + r e−i

√
k2
A−k2

x−k2
y z
)

with: r =
Er
Ei
,

where Ei belongs to the incident and Er to the reflected sound wave1 whereas r is the

reflection coefficient. The absorption coefficient α can be computed out of the reflectivity

1The direction of the traveling wave depends on the sign of Ω [Müller 1989]. The definitions are done for
Ω < 0 (compare remark in section 4.1.4).
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(4.34) or, as described for plane waves in Möser [2007], it is deduced from the impedance Z

of the structure. The velocity perpendicular to the plate is gained out of (3.20):

v̂zA =
−
√
k2
A − k2

x − k2
y

Ω ρA
Ei

(
e i
√
k2
A−k2

x−k2
y z − r e−i

√
k2
A−k2

x−k2
y z
)

(4.30)

The impedance Z at the surface of the absorber is obtained to:

Z =
p̂A(0)

v̂zA(0)
= C

1 + r

1− r
with: C =

−Ω ρA√
k2
A − k2

x − k2
y

. (4.31)

The factor C is rearranged by the help of (4.28) to visualize the relation between the angle

of incidence ϑ of the sound wave and the wavenumbers:

C =
−Ω ρA√

k2
A − k2

x − k2
y

= − sgn(Ω)
ρA cA√

1− k2
x

k2
A

−
k2
y

k2
A

=
Z0

cos(ϑ)
(4.32)

Extracting the reflection coefficient r out of equation (4.31), the absorption coefficient can

be determined out of Z, using (4.33) and (4.34)

r =
Z
C
− 1

Z
C

+ 1
(4.33) α = 1− |r|2 (4.34)

and finally results in

α =
4 Re

(
Z
C

)[
Re
(
Z
C

)
+ 1
]2

+
[
Im
(
Z
C

)]2 . (4.35)

Equation (4.35) contains the counterpart for the plane wave (for instance in Möser [2007]),

if C is set equal to the impedance Z0 of the air for ϑ = 0.

As one can see, the maximum values for α are gained, if the imaginary part of the impedance

vanishes. In the optimum case (α = 1) the real part of the wavenumber- and frequency-

dependent impedance of the absorptive structure Z(kx, ky,Ω) is equal to the factor C.

In the following section numerical results are presented, where impedances and absorption

coefficients were calculated for different types of compound absorbers.
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4.4 Numerical Results for Compound Absorbers

In this section important acoustic properties, the impedance Z and the absorption coefficient

α, are simulated for various compound absorbers applying the method, derived in the previ-

ous sections. These plate-like absorbers consist of different layers of porous material, elastic

layers and air cushions. Due to the application of the Integral Transform Method infinite

structures are assumed concerning the in-plate dimensions at first. The transition to finite

dimensions is done while deriving the calculation scheme for the acoustical FSI–problem in

chapter 5.

The formulation of the porous material according to the Theory of Porous Media after

de Boer [2000] as well as the layered model based on the ITM is validated with various

examples in the following. It is shown, that the method meets fundamental mechanical

and acoustical principles but also comparisons with measurements and simple engineering

methods, which have already been used for decades in acoustic models, are presented.

4.4.1 Validation with Measurements

At first plane wave conditions are assumed, in order to compare the numerical results for

porous foams with measurement results.

loudspeaker

reflective walls

specimem

(a) Schematic sketch (b) Measurement setup

Figure 4.10: Impedance tube - schematic sketch and measurement setup (Müller-BBM GmbH)

The measurements were carried out in the impedance tube sketched in figure 4.10 in ac-

cordance with DIN EN ISO 10534-2:2001-10. This measurement device, which was named

Kundt’s tube after its inventor August Kundt2, consists of a longitudinal tube with reflective

2August Kundt (1839–1894)
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walls. It is loaded by a sound source at one end of the tube, whereas the specimen is placed

at the opposite end [see e.g. Möser 2007]. Plane waves can be generated in this tube for

wavelengths, which are long compared to the cross sectional dimensions of the tube, because

the transverse waves show exponentially decaying near-fields along the tube for frequencies

below the cut on frequency, which is fc = cA
2 d

for the first transverse mode. Thus the up-

per limit of the frequency range is defined for the setup in figure 4.10b to 275Hz. Using

a melamine foam, a polyurethane foam and a mineral wool three different kinds of porous

foams were measured.

In the numerical model plane waves are achieved due to the definition of the wavenumbers

kx = 0 and ky = 0 in x- and y- direction. The calculations were performed with the material

parameters listed in table 4.4.

Melamin Foam Polyurethane Foam Mineral Wool
nG [−] 0.8 0.8 0.9

ρs
[
kg
m3

]
15 30 8

Es
[
N
m2

]
5000 9000 7500

νs [−] 0.05 0.05 0.05

ρg
[
kg
m3

]
1.2 1.2 1.2

Ξ
[
N s
m4

]
4000 10000 5000

dTPM [mm] 72 102 103

Table 4.4: Parameters for the porous material

In addition to the specific flow resistance, which is defined in equation (2.35), a frequency-

independent hysteretic material damping loss factor ηD = 0.3 is defined according to equation

(2.38). For the model of the mineral wool just the flow resistance normal to the fibers Ξ⊥ is

considered, because plane waves are excited in the material (compare section 2.1.4).

In the following paragraphs the numerical results are depicted compared to the measurement

results for the plane wave impedance Z(Ω) and the absorption ratio α for the materials

specified above.
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Figure 4.11: Porous layer out of Melamine Foam
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Figure 4.12: Plane wave impedance Z(Ω) related to Z0 = ρA cA and absorption ratio α for a
7.2 cm layer of Melamine Foam - Comparison against measurements
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Figure 4.13: Porous layer out of Polyurethane Foam
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Figure 4.14: Plane wave impedance Z(Ω) related to Z0 = ρA cA and absorption ratio α for a
10.2 cm layer of Polyurethane Foam - Comparison against measurements
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Figure 4.15: Porous layer out of Mineral Wool
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Figure 4.16: Plane wave impedance Z(Ω) related to Z0 = ρA cA and absorption ratio α for a
10.3 cm layer of Mineral Wool - Comparison against measurements

One observes, that the imaginary part of the impedance Z(Ω), which characterizes the elastic

behavior of the foam, is predicted with a high level of accuracy. The differences, which are
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observed at about 40Hz in figures 4.12b, 4.14b and 4.16b, result out of resonant vibrations

of the impedance tube, which has been a tube with a rectangular cross section in this case.

In this frequency range the rigid wall assumption of the measurement setup is violated.

Concerning the real part of Z(Ω), which marks the damping of the porous foam, differences

between the simulation and the measurements are observed in the frequency range, where

the transverse modes, caused due to the elastic behavior of the measurement setup, disturb

the measurement results. The imaginary part is dominating the results for the impedance

(note the different scaling of the real and the imaginary part) resulting in very small errors

in the absolute values of the impedance.

4.4.2 Comparison with the Rayleigh Model

The simple Rayleigh model is used as a reference for plane-wave conditions in the next step.

In this model the fibers of the skeleton of the absorptive material are assumed to be parallel

to the direction of the propagating waves. The model is based on a formulation of the wave

equation for the porous medium, which is very similar to the description of the acoustic

fluid. It is discussed by Möser [2007] for instance. A definition of the mass of the skeleton

or a specification of macroscopic elastic constants is not possible in contrast to the Theory

of Porous Media.

porous

y

z

layer

dTPM

prpi

Figure 4.17: Infinite porous layer on a reflective wall considering plane waves

A friction force ΞAdz v, which is responsible for the energy dissipation, is introduced in

Newton’s law

ρA
∂vz

∂t
= − p

z
− Ξ vze . (4.36)
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In equation (4.36) ve is the external velocity referred to the reference volume. The internal

velocity vi, which is defined as the velocity within the pores, is differing (vi > ve) due to the

reduced cross-section and the conservation of the flow-rate. The relation

ve =
nG
κ
vi (4.37)

holds for the velocities, where κ is the structure factor (κ ≥ 1), considering, that some of

the fibers are ending within the material. In case of a rigid fiber-skeleton the compression of

the porous material is described with

∂vzi
∂z

=
1

ρAcA

∂p

∂t
. (4.38)

The Helmholtz equation for the porous material is obtained out of (4.37) and (4.38) after a

Fourier Transform into the frequency domain

∂2p

∂z2
+ k2

ap = 0 with: ka = kA
√
κ

√
1− i ΞnG

Ω ρA κ
, (4.39)

where ka is the wavenumber of the foam in the Rayleigh model. Composing the solution of

equation (4.39) out of two waves, traveling in opposite directions, the impedance Z reads for

an absorptive layer with a thickness d:

Z = ka
ρA c

2
A

nG Ω

1 + e−i 2 k d e
− Ξ d
ρA cA

1− e−i 2 k d e−
Ξ d

ρA cA

(4.40)

In figure 4.18 the plane wave impedances for a porous layer, calculated with the TPM/ITM

according to (4.20) and the simple Rayleigh model out of equation (4.40) are compared. The

real and the imaginary part of the impedance as well as the isolines of the absorption ratio α

are sketched for varying circular frequencies of excitation Ω. The results are presented with

dimensionless parameters for different ratios Ξ d
Z0

. The dimensionless representation in terms

of the flow resistance Ξ works for the TPM-model as well, as one expects for a physically

correct implementation of the dissipation in section 2.1.4. The figures show, that the general

quality of the results is comparable if the parameters occurring in both theories are chosen

identically. Of course the Rayleigh model is not able to cover as many material parameters

as the TPM-model does.

The dependency on the porosity, computed with the TPM-model, is presented in figure 4.19.

As one would expect, a lower absorption ratio is obtained for decreasing values of ng.
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Figure 4.18: Impedance ratio Z
Z0

of porous layers on reflective walls for Ω ∈ [0; 5000]
[
rad
s

]
(ϑ = 0

and ng = 0.95)
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Figure 4.20: Absorption ratio α of porous layers on reflective walls for ϑ = 0 and ng = 0.95
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The absorption ratio α is calculated out of the impedances Z with equation (4.35). The

results are depicted in figure 4.20 depending on the ratio of the thickness of the layer and

the wavelength in the acoustic fluid d
λ
. The absorption ratio is, at first, increasing for

increasing values of the flow resistance, because then more friction is activated between solid

and fluid phase. For very high values of the flow resistance however, the sound waves are

prevented from entering the porous material. The maximum values occur in both models

for a thickness of the layer
(
d > λ

4

)
, because then the first velocity maximum of the wave

is already covered by the absorber and the absorption is increasing for higher frequencies

or higher ratios d
λ
. It is also observed in both models, that the oscillations of α rise for

decreasing values of the resistance. The factor, which is responsible for the extent of the

oscillations in the Rayleigh model, is the structure factor κ. The effect is depicted in figures

4.20b and 4.20c. In the TPM-model a comparable adjusting screw does not exist. It would

be possible to smooth the oscillations by specifying a macroscopic material damping loss

factor ηD.

4.4.3 Elastic Plates

In this example a plate out of linear elastic material is analyzed. The basic characteristics

of this system are visible in the model for the compound absorber, too. First of all the plate

is modeled as a free supported system as sketched in figure 4.21. The Sommerfeld radiation

condition is applied as a boundary condition in the system of linear equations (4.14). The

structure is excited with waves in the acoustic fluid for varying angles of incidence, where the

relation between the wavenumber and the angle of incidence is given in equation (4.28).

pipr

ϑhomogeneous

y

z

air

dH

dA

∞

layer

Figure 4.21: Infinite elastic layer

Having a look at the impedances and at the displacements, depicted in figure 4.22 the so

called trace matching is observed, which is the spatial analogue of resonance [see Cremer
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and Müller 1982]. This means, that the trace velocity of the exciting wave matches with the

velocity of the bending waves of the plate.

(a) imaginary part of the impedance Z(kx, ky, Ω) related to Z0

(b) transformed displacements ûzH(kx, ky, Ω)

Figure 4.22: Trace matching for a frequency of 2000Hz

The bending wavelength for a Kirchhoff plate with a thickness of dH = 8mm, a bending
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stiffness of B‘ = 468.9Nm and a density of ρH = 400 kg
m3 is defined as:

λB = 2π 4

√
B‘

ρH dH Ω2
(4.41)

This leads to a bending-wavenumber of kB = 32.22 for a frequency of excitation of 2000Hz,

where the impedance Z(kx, ky, Ω) is equal to zero. There is a good agreement with the

numerical results in figure 4.22.

Consequently the transformed displacements ûzH(kx, ky, Ω) tend to infinity if no damping is

applied to the system. Then a total transmission of the incident wave occurs and no energy is

absorbed. The results for the wavenumbers, which are linked to angles of incidence ϑ > 90◦

are not visualized in figure 4.22.

If a material damping factor η is defined, energy is dissipated. The absorption coefficient

for this system is depicted in figure 4.24a for η = 0.1, which is quite a high value for elastic

structures, used in engineering practice. Nevertheless the absorbing effect is quite poor and

it is limited to a small range of wavenumber-frequency combinations. For the case of plane

waves, where no bending waves are excited in the structure, an absorbing effect cannot be

achieved at all.

To overcome this problem the elastic layer is mounted on an air cushion and a layer of porous

material is arranged in the gap.
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Figure 4.23: Infinite elastic layer with porous foam in the gap

Again the structure is excited with a combination of wavenumbers kx, ky and a circular

frequency of excitation Ω, which fulfills the condition of trace matching between plate and

acoustic fluid. Now, in spite of defining η = 0, a considerable amount of energy is dissipated
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due to the absorber, as depicted in figure 4.24b, because the porous foam already observes

a high absorptance in this frequency range.

(a) without absorptive layer

(b) with a 10.0 cm layer of Melamine Foam

Figure 4.24: Absorption coefficient α at a frequency of excitation of 2000Hz
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4.4.4 Air Cushions in Front of Porous Sheets

The efficiency of porous absorbers is linked with the ratio of the velocity of the sound field

in the cavity and the velocity within the layer, because the dissipation of energy is based on

the difference velocity between solid and gas in the pores and the flow resistance (compare

section 2.1.4). A possibility to take influence on the frequency-dependent characteristics is

to mount the absorber on a layer of air to synchronize the location of the porous material

and the peaks in the velocity field.

In the following the system of a porous layer with a thickness of dTPM = 10 cm and a gap of

dA = 10 cm is compared with the porous layer without gap (figure 4.25). Plane waves are

considered as well as waves of oblique incidence (ϑ = π
4
).
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layer
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(a) without gap
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Figure 4.25: Infinite porous layer

The same comparison was published by Allard [2009] using a theory, where a foam with a

very high porosity is modeled with an equivalent fluid model based on the laws of Delany

and Bazley [1970]. They did measurements for fibrous materials with a porosity close to 1

for large frequency ranges and established empirical equations for the complex wavenumber

k and the characteristic impedance Zc:

Zc =ρAcA

(
1 + 0.057

ρA Ω

2π Ξ

−0.754

− i 0.087
ρA Ω

2π Ξ

−0.732
)

(4.42)

k =
Ω

cA

(
1 + 0.0978

ρA Ω

2π Ξ

−0.700

− i 0.189
ρA Ω

2π Ξ

−0.595
)

(4.43)
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The model is similar to the Rayleigh model, discussed in section 4.4.2, with the differ-

ence, that it is based on measurement results instead of a structural model. It is valid for

0.01 <
ρA Ω

2π Ξ
< 1.0 and it can be used for a rough estimation of the acoustic characteristics

of a porous material, but of course the quality of the results, predicted with such simple

models is limited.

In the following a highly porous foam (nG = 0.94) is modeled with the Theory of Porous

Media assuming identical geometrical conditions and frequency bands as published in [Allard

2009, chapters 2.6 and 3.6]. Figures 4.26 and 4.27 show the a comparison of the impedances

Z(Ω) for system with and without the gap applying waves of plane and oblique incidence

respectively.

0 500 1000 1500 2000 2500 3000
-10

-5

0

5

Frequency [Hz]

Z
/Z

0

 

 

imaginary part
real part

(a) without gap

0 500 1000 1500 2000 2500 3000
-10

-5

0

5

Frequency [Hz]

Z
/Z

0

 

 

imaginary part
real part

(b) with gap

Figure 4.26: Plane wave impedance 1
Z0
Z(kx = 0, ky = 0, Ω) with dTPM = 10 cm, dA = 10 cm
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Figure 4.27: Impedance ratio 1
Z0
Z(kx = 0, ky, Ω) at oblique incidence ϑ = π

4 with dTPM =
10 cm, dA = 10 cm
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The results for the foam without gap for plane waves are comparable with the simulated

impedances for a 10.3 cm layer of mineral wool in section 4.4.1 as well as with the corre-

sponding measurement results in the impedance tube.

The angle of incidence ϑ = π
4

for the model underlying figure 4.27 is specified tuning the

wavenumber ky (kx = 0) with respect to the circular frequency of excitation Ω according to

equation (4.28) and the absorption ratio α(kx = 0, ky, Ω) is computed out of the impedances

Z(kx = 0, ky, Ω) with (4.35). The results are depicted in figure 4.28.
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Figure 4.28: Absorption coefficient α(kx = 0, ky, Ω) – Comparison of plane waves and oblique
incidence ϑ = π

4 with dTPM = 10 cm, dA = 10 cm

The characteristics of the results are in a good accordance the results, published by Allard

[2009], where however a detailed specification of the absorber is not given. One observes,

that the gap is responsible for a faster increase of α for low frequencies. The maximum

values in case of plane waves are linked to frequencies, where multiples of one half of the

wavelength fit to the geometry of the absorptive layer, whereas in case of local minima of

the absorption ratio multiples of the wavelength fit into the absorber. The serial connection

with the layer of air yields a higher modal density in the discussed frequency band, which

leads to an increasing amount of local extrema of α.

For oblique incidence the oscillations of the absorption ratio are less significant and the

differences due to the gap are less intensive in the frequency band of the steep incline up to

500Hz.

The method based on the Theory of Porous Media is able to capture the characteristics

of porous materials in acoustics and agrees with common simplified models as well as with

measurement results. More intensive studies concerning changes in the material parameters

of the constituent parts of the absorber are done in the next sections.
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4.4.5 Characteristics of Compound Absorbers

In the previous sections the ITM-based model was compared against measurements and

simple numerical models, which are widely used in practice. The comparisons were presented

for plane waves or for defined angles of incidence. Now the simulations are carried out varying

both, the frequency of excitation and the angle of incidence in wide ranges.

The influence of changing acoustic parameters on the properties of the porous foam is dis-

cussed as well as the effects, which occur while combining individual acoustic components

for models of compound absorbers.
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Figure 4.29: Infinite porous layer

Figure 4.30: Porous layer - varying frequencies of excitation and angles of incidence
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Results for the simple porous layer, sketched in figure 4.29 are presented in a 3D plot (fig-

ure 4.30) as well as for specific angles of incidence.
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Figure 4.31: Varying frequencies of excitation for constant angles of incidence
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In figure 4.31 the ratio of the impedances Z
Z0

and the corresponding absorption ratio α

are depicted for the frequencies up to 1 kHz for ϑ = 0◦, 30◦, 60◦. One observes the same

characteristics as mentioned in section 4.4.1, where a comparison with measurement results

was presented. As one can see in equation (4.35) the maximum absorption ratio α = 1 is

gained, if the imaginary part of the impedance vanishes and the real part of Z
Z0

cos(ϑ) = 1.

The porous material depicted in figure 4.31 does not significantly absorb energy in the low

frequency range. For increasing angles of incidence however local maxima are observed in

the low frequency range for α, because of maxima in the real part of the impedance. Thus

the differences of the measured data and the simulated data, mentioned in section 4.4.1, can

be explained. Due to effects of resonance, occurring at the side walls of the impedance tube,

waves of oblique incidence are obtained in the sound field of the measurement setup, which

lead to peaks in the real parts of the impedance Z as one observes in figures 4.12, 4.14 and

4.16.

Porous materials are characterized by sets of parameters. In the simple Rayleigh model for

example [see Möser 2007] only a few parameters are necessary to set up the system. One

of the most important constants is the flow resistance Ξ (compare section 2.1.4). Amongst

others Möser [2007] defines the range of Ξ, which is interesting for applications in acoustics,

between 5Rayl/cm < Ξ < 100Rayl/cm. In figures 4.33 and 4.34 the absorption ratio of

a porous layer is sketched, where the flow resistance was varied. One observes, that the

optimum ratio is about 5− 10Rayl/cm for the chosen material. Defining very small values

for Ξ leads to oscillations in Z and thus also in α, as one can see in figures 4.32a and 4.33a.

Choosing very high values for Ξ, the sound wave is precluded from entering the porous foam

and considerable impedance-maxima are observed between two resonances, resulting in a

very inhomogeneous absorption efficiency (compare figures 4.32b and 4.34c).
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Figure 4.32: Impedance ratio Z
Z0

for plane waves ϑ = 0◦ for inappropriate values of Ξ
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(a) Ξ = 1 Rayl
cm

(b) Ξ = 5 Rayl
cm

(c) Ξ = 10 Rayl
cm

Figure 4.33: Varying the flow resistance α of a 10.0 cm porous layer
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(a) Ξ = 30 Rayl
cm

(b) Ξ = 50 Rayl
cm

(c) Ξ = 100 Rayl
cm

Figure 4.34: Varying the flow resistance α of a 10.0 cm porous layer
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The influence of air cushions behind thin porous layers, which increase the absorption ratio

α in the low frequency range, was discussed in section 4.4.4 for selected angles of incidence.

The simulation for oblique incidence is presented in figure 4.36 for the porous layer, which

was used in the last examples in combination with an air cushion of a thickness dA = 10 cm.

pipr
ϑporous

y

z

air dA

layer

dTPM

Figure 4.35: Infinite porous layer on air cushion

Figure 4.36: Porous layer on an air cushion - varying frequencies of excitation and angles of inci-
dence

In order to affect different ranges of frequencies while optimizing the acoustic properties of

rooms, various components are combined and act as compound absorbers. Porous layers

can be coupled with elastic plates, which act as resonators, for instance. These resonators

work mainly in their mass-spring resonance. Considering arbitrary angles of incidence, also

effects at other frequencies are observed due to the trace matching properties, which were

discussed in section 4.4.3. In the compound absorber the porous layer can be installed in the

air cushion in order to dissipate if the plate is acting in resonance. A more efficient setup
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can be achieved if the porous layer is coupled with the acoustic volume due to arrays of slits

and holes. Such perforated plates cannot be built up in the model, derived in this work.

pipr

ϑporous

y

z

air dA

layer

dTPM

homogeneous

dH

layer
Figure 4.37: Infinite porous layer on elastic layer and air cushion

In order to model this effect anyhow, the porous layer is installed on an elastic layer (see

figure 4.37), which is modeled as a wooden plate with a thickness of dH = 8mm in the

following example.

Figure 4.38: Porous layer on elastic layer and air cushion - varying frequencies of excitation and
angles of incidence
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Figure 4.39: Varying frequencies of excitation for constant angles of incidence

In figures 4.38 and 4.39 the absorption efficiency is sketched in the usual way. Besides the

already known typical properties of the porous layer, the mechanical characteristics of the
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elastic plate on a layer of air, which are the mass-spring resonance for ϑ = 0 and the bending

resonances for oblique incidence can be recognized in the results.

The mass-spring resonance of this system can be changed by varying the stiffness of the air

cushion for instance. If it is raised by decreasing the thickness of the layer from dA = 10 cm

to dA = 5 cm for example, an increase of the the mass-spring resonance is observed (figures

4.40 and 4.42).

Figure 4.40: Porous layer on elastic layer and air cushion – tuning the stiffness of the elastic layer

One could also vary the mass of the elastic layer by changing the density ρH for instance. A

shift towards lower frequencies is achieved by rising ρH. Figures 4.41 and 4.43 result out of

a change from ρH = 400 kg
m3 to ρH = 800 kg

m3 .

Figure 4.41: Porous layer on elastic layer and air cushion – tuning the density of the elastic layer
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Figure 4.42: Porous layer on elastic layer and air cushion – tuning the stiffness of the elastic layer
and varying frequencies of excitation for constant angles of incidence
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Figure 4.43: Porous layer on elastic layer and air cushion – tuning the density of the elastic layer
and varying frequencies of excitation for constant angles of incidence

Whereas due to changes of the thickness dA of the air cushion in weakly coupled systems



74 4 Compound Absorbers

just the mass-spring resonance of the system is affected, the latter modification has a major

effect. According to equation (4.41) changes in the density or the stiffness of the elastic layer

have an impact on the wavelength and therefore on the trace matching as well.

In order to illustrate this effect, two different models are used. A porous foam mounted on

an elastic layer with a thickness of dH = 8mm and a layer of air with dA = 5 cm (system

4.44a) is compared to a foam between two of these elastic layers (system 4.44b), where the

acoustic fluid is not coupled to the porous foam and absorption just happens in case of trace

matching.
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layer
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layer
(a) Porous foam on elastic layer
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air dA
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homogeneous
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dH

∞

(b) Porous foam between two
elastic layers

Figure 4.44: Study on trace matching properties – system

The absorption ratio is computed for both models up to a frequency of 3 kHz, where the

Young ’s modulus is varied between Eh = 1 · 1010 N
m2 and Eh = 1 · 1012 N

m2 .

In figure 4.45c the locus of the points, which fulfill the trace matching condition, because

the trace velocity of the exciting wave matches with the velocity of the bending waves of

the plate (compare section 4.4.3), is clearly visible starting from the coincidence frequency

of ca 1590Hz. This dispersion curve is also observed in figure 4.45b, whereas the porous

characteristics dominate the result for higher frequencies.

The effect becomes more visible if higher values for the Young ’s modulus Eh are defined,

where the trace matching occurs for smaller angles ϑ. In figures 4.46b and 4.47b one ob-

serves clearly the transition from the mass-spring resonance for plane waves (ϑ = 0) to the

dispersion curve.
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(a) Porous foam on elastic layer (compare figure 4.44a)

(b) Porous foam on elastic layer (compare figure 4.44a)

(c) Porous foam between two elastic layers (compare figure 4.44b)

Figure 4.45: Study on trace matching properties (dispersion diagram) – Young ’s modulus
Eh = 1010 N

m2
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(a) Porous foam on elastic layer (compare figure 4.44a)

(b) Porous foam on elastic layer (compare figure 4.44a)

(c) Porous foam between two elastic layers (compare figure 4.44b)

Figure 4.46: Study on trace matching properties (dispersion diagram) – Young ’s modulus
Eh = 1011 N

m2
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(a) Porous foam on elastic layer (compare figure 4.44a)

(b) Porous foam on elastic layer (compare figure 4.44a)

(c) Porous foam between two elastic layers (compare figure 4.44b)

Figure 4.47: Study on trace matching properties (dispersion diagram) – Young ’s modulus
Eh = 1012 N

m2
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In table 4.5 the material parameters and the geometry are specified for the examples, which

were presented in the last sections.

4.17 4.21 4.23 4.25a 4.25b 4.29 4.35 4.37 4.44a 4.44b

nG [−] var − 0.94

ρs
[
kg
m3

]
3.2 − 7.0

Es
[
N
m2

]
5 103 − 5 103

νs [−] 0.05 − 0.05

p
or

ou
s

la
ye

r

ρg
[
kg
m3

]
1.2 − 1.2

Ξ
[

Rayl
cm

]
var − 6 5

dTPM [cm] var − 10

ρH
[
kg
m3

]
− 8.0 − − − − 8.0

EH
[
N
m2

]
− 1 · 1010 − − − − 1 · 1010

νH [−] − 0.3 − − − − 0.3

el
as

ti
c

la
ye

r

dH [mm] − 8 − − − − 8

ai
r

dA [cm] − − 20 − 10 − 10 10 5 −

Table 4.5: Parameters for the compound absorber
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5 Fluid Structure Interaction

In the next step the method for the fluid structure interaction (FSI) is derived for coupling

the acoustic fluid and the boundary structures. As stated by Fahy [2007] for coupled systems

impedance concepts are advantageous in case of simple systems, because they are efficient

and refer to variables, which can directly be measured.

For applications in practice models for geometrical complex acoustical volumes coupled with

finite plate absorbers have to be provided. Figure 5.1 specifies the FSI-problem underlaying

this thesis. The acoustic volume is covered either by rigid walls or by flexible structures like

compound absorbers. The structure is loaded by point sources. Excitations due to vibrating

surfaces could be built up too.

absorber
acoustic

fluid

source

reflective
wall

reflective
wall

reflective
wall

(a) Network Scheme

LxLy

Lz

d

pLoad

(b) System

Figure 5.1: FSI-problem

For these systems analytic solutions, based on impedance models for example, are quite

labor-intensive or even impossible. Therefore often variational methods like the FEM or the

BEM are used, which lead to elegant expressions and allow an accurate prediction of the

systems response [see e.g. Fahy 2007]. Existing Finite element formulations for the coupled
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problem have to deal with huge numbers of unknowns, on the one hand side because of the

three dimensional model of the acoustic fluid [see e.g. Fahy 2000] and on the other hand side

because of the fact, that the porous foam has to be built up in the model of the absorber.

Thus the velocity of both, the solid and the fluid component, and also the pore pressure

have to be considered as state variables in the finite element description. In order to reduce

this number of unknowns, impedance approaches can be used. Considering only plane wave

impedances [see e.g. Larbi et al. 2009] the influence of different angles of incidence on the

absorber cannot be captured.

In the scope of this work an idea for the FSI-coupling is pursued, which combines the

advantages of impedance formulations and variational methods. Thus complex problems can

be tackled with a reduced number of unknowns and a strict link to physical and measurable

quantities. It is most variable concerning the aspects, which were mentioned above, applying

the Rayleigh-Ritz method for the coupled problem. Therefore the most suitable discrete

method for the description of the fluid, which could be the classic FEM or the Spectral

Finite Element Method (SFEM) for example can be applied. The SFEM is convenient to

deal with smooth solutions for acoustic problems in order to receive spectral convergence [see

Pospiech et al. 2009; Pospiech 2011; Trefethen 2000]. Due to a strong coupling between fluid

and absorber the approach could also be applied in case of liquids and flexible boundaries.

An efficient semi analytical wavenumber dependent impedance formulation, which takes the

angles of incidence of the sound waves into account, is implemented in the Ritz approach

for plate-like compound absorbers, but also measured impedances could be used in this

approach.

5.1 Hamilton’s Principle and Rayleigh-Ritz Approach

For problems of practical significance, which are very often complex concerning geometry

and material data, the equilibrium conditions for the FSI-problem cannot be fulfilled in a

strong form. In a weak formulation the differential equations and the boundary conditions

are considered implicitly in an integral expression [see Fahy 2007] and equilibrium is ful-

filled in an averaged way. The principle of virtual work is known as Lagrange-D’Alembert-

principle for vibrating continuum structures and considers the virtual work of the inertia

forces δWInertia in addition to the virtual strain energy δWStrain for dynamic systems. Also

external sound sources and internal damping effects are considered via their virtual work

δWLoad and δWDamp. For calculating the virtual work a virtual displacement δw is applied,

while the time t is assumed to be frozen until the system reached the virtual position. The
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Lagrange-D’Alembert-principle states, that

δWInertia + δWStrain + δWDamp + δWLoad = 0. (5.1)

According to Wauer [2008] the fundamental variational principle of dynamics (Hamilton’s

principle) can be obtained out of the Lagrange-D’Alembert-principle restricting the virtual

displacements δw to result out of the displacements w by applying a variation δ and express-

ing the virtual work of the inertia forces δWInertia as the variation δ T of the kinetic energy

T of the system. In elastodynamics a potential description is possible for the strain energy,

and the virtual strain energy δWStrain can be formulated as the variation δ U of the potential

energy U .

xy

z

Lx

Ly

Lz

d

Subsystem 1

Absorber

Fluid

Subsystem 2

Figure 5.2: Subsystem definition

For the vibro-acoustical problem in this thesis a description, which is based on velocities,

is preferred. The structure is divided into substructures (see figure 5.2), where the acoustic

fluid and the boundary conditions are defined as subsystems respectively. According to

Hamilton’s principle equilibrium is fulfilled by the velocity field, which meets the kinematic

boundary conditions, the conditions at t = t1 and t = t2 and, in addition to that, satisfies

t2∫
t1

δ
(
LA(t) + LBC(t, Z) + RTλ(t)

)
+ δW nc

BC(t, Z) + δW nc
Load(t) dt = 0. (5.2)

In equation (5.2) δ specifies the first variation [see Elsgolc 2007] and L denotes the Lagrangian

of a subsystem, which is defined for the air as the acoustic fluid as

LA(t) = TA(t) − UA(t). (5.3)
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The kinetic energy TA and the potential energy UA are computed out of the state variables

velocity and pressure

TA(t) =
ρA
2

∫
V

|vA(x, t)|2dV, (5.4) UA(t) =
1

2ρAc2
A

∫
V

|pA(x, t)|2dV, (5.5)

where ρA and cA denote the density and the speed of sound for the acoustic fluid.

As mentioned above, non-conservative forces W nc, for which a potential description is not

possible, are introduced in Hamilton’s principle with their virtual work δW nc. The virtual

work of the sound source in the acoustic fluid is obtained as:

δW nc
Load(t) =

∫
ALoad

pLoad(x, t) nLoad(x) δw(x, t) dA (5.6)

In equation (5.6) δw(x, t) is the function of the virtual displacement and nLoad is the normal

vector, defined with respect to the surface of the sound-source ALoad.

The calculation of the Lagrangian LBC(t, Z) and the virtual work of the dissipation forces

δW nc
BC(t, Z) for the absorptive boundary conditions are derived in section 5.3 using the

impedance Z, modeled in section 4.

The kinematic coupling of the subsystems is considered in equation (5.2) as a constraint,

where λ is the vector of Lagrange multipliers. It states, that these components of the velocity

of the air in the acoustic cavity and the velocity at the absorber, which are perpendicular to

the interface have to match.

In order to overcome the problem of solving the Euler-Lagrange equations resulting out of

(5.2), a Rayleigh-Ritz approach is applied, where the state variables are approximated by a

series of functions in space (see sections 5.2 and 5.3). Then the unknowns consist of a finite

number of time-dependent functions and the task of solving partial differential equations is

reduced to the solution of differential equations in time. In the scope of this thesis the focus

is laid on Harmonic Analyses for steady-state solutions. Thus the variational problem in

equation (5.2) can be reduced to a minimization problem and results in a system of linear

equations.
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5.2 Component Mode Synthesis

The Component Mode Synthesis is a substructuring technique for large coupled problems,

which was introduced by Hurty [1960, 1965] to reduce the number of unknowns while keeping

the physical characteristics of the structure. Further important improvements were done

for example by Craig and Bampton [1968] and Craig and Chang [1976]. The structure is

decomposed into individual components, where each component is described in the FEM with

a set of basis functions consisting of normal modes and coupling modes. The normal modes

result out of the eigenvalue problem for the component, defining either fixed or free interface

boundary conditions. The coupling modes are the static solutions for unit displacements

(constraint modes) or unit forces (attachment modes) at the interface nodes in the classical

CMS methods. An overview of common CMS schemes as well as an application to room

acoustical problems is presented by Hinke [2008] and Sremcevic [2011] for example.

The CMS, as well as the Guyan reduction [Guyan 1965] and modal reduction method, can

be assigned to the Rayleigh-Ritz methods with certain Ritz basis vectors [see Hinke 2008;

Sunar 2004]. This idea is picked up in this thesis for the definition of the test function used

in the Ritz approach.

In order to approximate the steady state response of an acoustic volume (see figure 5.2)

under a harmonic sound source the following approach is used in the Ritz method:

vA(x, t) ≈
mmax∑
m=1

vN

m(x)
(
AmeiΩt +Ame−iΩt

)
+

nmax∑
n=1

vC

n(x)
(
BneiΩt + Bne−iΩt

)
(5.7)

In equation (5.7) the velocity field is approximated by a linear combination of mmax normal

modes vN
m(x) and nmax coupling modes vC

n(x). By the help of the conjugate complex quanti-

ties A, A and B, B the vibrations are specified with amplitudes and phase shifts. The model

reduction is done by truncating the number of normal and coupling modes. The maximum

number of modes, which has to be considered, depends on the related frequency of excitation

and on the modal density of the system as well as on the geometry of the absorber in case of

the coupling modes. The approximated velocity field converges with increasing the number

of normal and coupling modes.

For the computation of the normal and the coupling modes, which is carried out in sections

5.2.1 and 5.2.2, the velocity potential ΦA(x, t) is introduced:

vA(x, t) = grad ΦA(x, t) (5.8)
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Whereas scalar and vector potentials were formulated for the displacement fields of the

constituents of the absorber in chapter 2 and chapter 3, ΦA refers to the scalar potential of

the velocity field vA for the acoustic volume. It has to fulfill the wave equation, introduced

in section 3.2, which reads in a potential formulation:

∆ΦA(x, t)− 1

c2
A

∂2ΦA(x, t)

∂t2
= 0 (5.9)

The time-variable t is transformed into the frequency domain (t ω). This leads to

the Helmholtz equation for the transformed velocity potential Φ̂A(x, ω):

∆Φ̂A(x, ω) +
ω2

c2
A

Φ̂A(x, ω) = 0 (5.10)

The subscript A is omitted for the potential in the following. Applying the transformation

to equation (5.8) the velocity is obtained in the Fourier domain:

v̂A(x, ω) = grad Φ̂(x, ω) (5.11)

Transforming the relation between spatial changes in the velocity field and the change of

the sound pressure in time, which is, in addition to Newton’s law, the fundamental equation

for deriving the wave equation [see Cremer and Müller 1982], the pressure p̂A(x, ω) can be

expressed in terms of the potential Φ̂(x, ω):

p̂A(x, ω) = −ρAc
2
A

i ω
div v̂A(x, ω)

= −ρAc
2
A

i ω
∆Φ̂(x, ω)

(5.12)

The calculation of the normal modes and the coupling modes, which are composed to build

the trial function for the Ritz method in equation (5.7), is discussed in the following.

5.2.1 Normal Modes

There exist different possibilities for the definition of the normal modes in the classical CMS

method. Most common are the fixed interface Craig-Bampton method [Craig and Bampton

1968] and the free interface Craig-Chang method [Craig and Chang 1976]. Fixed interface

normal modes are the eigenvectors of the component defining the degrees of freedom at the

interface as fixed in terms of displacements or velocities, whereas free interface normal modes

result out of the eigenvalue problem with free interfaces. A detailed description of the FEM



5.2 Component Mode Synthesis 85

formulation is given by Hinke [2008].

For the FSI-problem in this thesis the normal modes for the acoustic fluid are defined in

terms of the velocity potential Φ̂N assuming fixed interfaces, which means reflective wall

conditions for all boundaries of the fluid:

grad Φ̂N

m(x, ωm) · nBC = 0 (5.13)

This leads to the homogeneous Helmholtz equation for Φ̂N
m:

∆Φ̂N

m(x, ωm) +
ω2
m

c2
A

Φ̂N

m(x, ωm) = 0 with m = 1, 2, . . . (5.14)

For simple symmetric geometries the eigenvalue problem (5.14) can be solved analytically

[see Cremer and Müller 1982]. For a fluid with a rectangular shape [0, Lx]× [0, Ly]× [0, Lz]

it reads(
−k2

x − k2
y − k2

z +
ω2
m

c2
A

)
Φ̂N

m(x, ωm) = 0 (5.15)

with kx =
m1 π

Lx
, ky =

m2 π

Ly
, kz =

m3 π

Lz
,

where m is defined as a multi-index m = (m1,m2,m3). The analytical solution for the

eigenvalues ωm is gained out of equation (5.15) and reads

ωm = cA

√(
m1 π

Lx

)2

+

(
m2 π

Ly

)2

+

(
m3 π

Lz

)2

. (5.16)

The related modeshapes are

Φ̂N

m(x, ωm) = cos

(
m1 π

Lx
x

)
cos

(
m2 π

Ly
y

)
cos

(
m3 π

Lz
z

)
. (5.17)

In case of arbitrary geometries the eigenvalue problem (5.14) has to be solved with numerical

methods. In the scope of this work an algorithm based on the Spectral Finite Element

Method (SFEM), developed by Pospiech [2011], is used. The method is discussed briefly in

the appendix A.3. Figure 5.3 shows exemplarily fixed interface normal modes in terms of the

velocity potential ΦN
m(x) for the rectangular room, which is used to explain the FSI-coupling

method in the following sections. In figure 5.4 the velocities in x-, y- and z-direction,

computed out of ΦN

(4,3,2) using equation (5.11), are depicted. In figures 5.4b to 5.4d one

observes, that the reflective wall conditions are fulfilled.
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(a) ΦN

(1,0,0) (b) ΦN

(2,0,0)

(c) ΦN

(1,1,0) (d) ΦN

(2,1,0)

(e) ΦN

(1,1,1) (f) ΦN

(2,1,1)

Figure 5.3: Normal modes ΦN
m(x) for the velocity potential of the rectangular room

[0, Lx]× [0, Ly]× [0, Lz] with reflective walls for different multi-indices
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(a) ΦN

(4,3,2) (b) vN

(4,3,2)x

(c) vN

(4,3,2)y
(d) vN

(4,3,2)z

Figure 5.4: ΦN

(4,3,2)(x) for the velocity potential and the related fluid velocities vN

(4,3,2)x
(x),

vN

(4,3,2)y
(x) and vN

(4,3,2)z
(x) for the rectangular room [0, Lx] × [0, Ly] × [0, Lz] with

reflective walls

5.2.2 Coupling Modes

The normal modes, which obey the reflective boundary conditions at the interface, are sup-

plemented by coupling modes in order to define a valid set of trial functions for (5.7). These

coupling modes enable velocities perpendicular to the coupling interface. They fulfill the

reflective boundary conditions at all surfaces of the room, except for the interface, which is

defined as xBC in the following.

In general one has to distinguish between different possibilities for the prescription of the

interface displacements. In FEM-based methods very often a nodal definition is used. Then
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the coupling modes are called constraint modes or attachment modes. In the first case

displacements and in the second case forces are prescribed at the interfaces. This means,

that for each node at the interface one coupling mode has to be considered. This results,

especially in case of 3d FSI-problems with 2d interfaces, in a huge number of unknowns.

Here priority is given to a modal based definition of the coupling modes, which is used by

Magalhaes [2004] for instance and reduces the number of unknowns significantly compared

to nodal formulations. The normal velocity at this interface is prescribed with the function

g(xBC)

grad Φ̂C

n(x,Ω) · nBC = g(xBC). (5.18)

This leads to an inhomogeneous Helmholtz equation for each coupling mode (compare ap-

pendix A.3). In equation (5.18) the index n marks the number of the coupling mode in

the numerical solution. For the specification of the function g(xBC) again a multi-index

n = (n1, n2) is defined with respect to the prescribed vibration pattern. In contrast to

Magalhaes [2004], where static modes are defined assuming a linear decay normal to the

interface, in this work the coupling modes are calculated as solutions of the dynamic prob-

lem in a harmonic analysis. Thus the number of coupling modes, which is considered in the

calculation, can be chosen with respect to the physical properties of the system for reasons

of efficiency.

Magalhaes [2004] and Magalhaes and Ferguson [2003, 2005] specified the coupling modes for

the case, that one wall is covered completely by the interface. Furthermore they gave an

outlook for coupling with just a part of a wall. In this thesis both cases are investigated.

In order to exemplify the influence of the wavenumber, a rectangular room with reflective

walls [0, Lx = 6m]× [0, Ly = 3m]× [0, Lz = 2m] is considered and the coupling modes are

calculated with the Spectral Finite Element formulation, implemented by Pospiech [2011].

Figure 5.5 shows the fluid velocity vC
x in x-direction as well as the velocity potential ΦC

of the holohedral coupling modes, which cover the whole wall, when a sinusoidal vibration

pattern is prescribed at the interface with a circular frequency of excitation Ω = 459 rad
s

.

The velocity vC
x fulfills equation (5.18) at the interface and the boundary conditions at the

reflective walls.

Comparing the velocity- and potential-fields for different multi-indices n = (n1, n2) while

keeping the frequency of excitation fixed, one observes far-fields, which means oscillating si-

nusoidal patterns, for small wavenumbers in the acoustic fluid, whereas with rising wavenum-

bers near-field solutions are obtained. They are characterized by an exponential decaying

behavior perpendicular to the interface.
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(a) vC

(1,1)x
(b) ΦC

(1,1)

(c) vC

(2,1)x
(d) ΦC

(2,1)

(e) vC

(3,2)x
(f) ΦC

(3,2)

Figure 5.5: Holohedral coupling modes for the velocity potential ΦC
n(x) and the fluid velocity

vC
nx

(x) perpendicular to the interface of the rectangular room with reflective walls
[0, Lx = 6m] × [0, Ly = 3m] × [0, Lz = 2m] for different multi-indices n = (n1, n2)
with Ω = 459 rad

s
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(a) vC

(1,1)x
(b) ΦC

(1,1)

(c) vC

(2,1)x
(d) ΦC

(2,1)

(e) vC

(3,2)x
(f) ΦC

(3,2)

Figure 5.6: Subregional coupling modes for the velocity potential ΦC
n(x) and the fluid velocity

vC
nx

(x) perpendicular to the interface of the rectangular room with reflective walls
[0, Lx = 6m] × [0, Ly = 3m] × [0, Lz = 2m] for different multi-indices n = (n1, n2)
with Ω = 459 rad

s
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These near-field effects can be used to reduce the number of unknowns in the CMS approach.

If the focus is laid on the sound field in the cavity, it is sufficient to consider just the coupling

modes, which radiate far-fields into the acoustic volume.

In figure 5.6 the subregional coupling modes are depicted for the interface y ∈ [0.5; 2.0]

and z ∈ [0.5; 1.5]. Their impact on the acoustic fluid is smaller than in case of holohedral

coupling modes (compare figure 5.5). Also concerning the decay characteristics one observes

differences.

To define a sufficient number of coupling modes for an efficient numerical computation, this

effect has to be predicted with low numerical effort. A calculation of the coupling modes

with the SFEM in advance in order to investigate the decay characteristics would be too

expensive.

In the following an efficient strategy for the selection of the coupling modes is developed.

Applying Integral Transform Methods and filtering techniques in the spatial domain one can

estimate these decay characteristics with negligible numerical effort. Starting from the wave

equation in terms of displacements

∂2u(x, y, z, t)

∂x2
+
∂2u(x, y, z, t)

∂y2
+
∂2u(x, y, z, t)

∂z2
=

1

c2
A

∂2u

∂t2
(5.19)

a Fourier transformation is applied. For a start infinite dimensions of the interface are

assumed and the spatial coordinates y and z, defining the plane of the interface, are trans-

formed in the wavenumber domain. Furthermore the transformation into the frequency

domain is carried out, considering vibrations in the steady state with a circular frequency of

excitation Ω:

∂2û(x, ky, kz,Ω)

∂x2
+

[(
Ω

cA

)2

− k2
y − k2

z

]
û(x, ky, kz,Ω) = 0 (5.20)

The ordinary differential equation (5.20) is solved with the exponential approach

û(x, ky, kz,Ω) = A1(ky, kz,Ω) eλx + A2(ky, kz,Ω) e−λx where: λ =

√
k2
y + k2

z −
Ω2

c2
A

.

(5.21)

In this approximative method the rear panel is considered to be parallel to the interface.

At the interface at x = 0 a vibration pattern û0(ky, kz) is applied and at the rear panel (at

x = Lx) rigid wall conditions are defined.
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Thus one obtains the solution for the displacement field of the homogeneous problem:

û(x, ky, kz,Ω) =


û0(ky, kz)

(
−e−λLx

(eλLx−e−λLx )
eλx + eλLx

(eλLx−e−λLx )
e−λx

)
, λ 6= 0

û0(ky, kz)
(

1− x
Lx

)
, λ = 0

(5.22)

Equation (5.22) contains all the information about the decay characteristics of the vibration

pattern for each wavenumber-frequency combination. The ranges for the far-field, the near-

field and the transition zone, where a linear decay is observed, are listed in (5.23).

k2
y + k2

z



<
Ω2

c2
A

, far-field

>
Ω2

c2
A

, near-field

=
Ω2

c2
A

, linear decay

(5.23)

In the ky, kz-domain the transition zone marks a circle with the radius Ω
cA

. Up to now infinite

dimensions were assumed for the interface. In the practical problem finite absorbers with

dimensions LBCx × LBCz have to be applied. Therefore the infinite vibration pattern u0(y, z)

is multiplied with a filter function Θ(y, z) in the spatial domain:

ufin0 (y, z) = u0(y, z) Θ(y, z) (5.24)

Θ(y, z) =

 1, −
LBCy

2
≤ y ≤

LBCy
2
∧ −L

BC
z

2
≤ z ≤ LBCz

2
0, else

(5.25)

The multiplication with a 2d rectangular function in the spatial domain equals a convolution

with a 2d sinc−function in the wavenumber domain.

Θ(y, z)
4

ky kz
sin

(
LBCy

2
ky

)
sin

(
LBCz

2
kz

)
(5.26)

In order to decide, whether a coupling mode has to be considered, just the Fourier trans-

formation of the velocity pattern of the wall containing the interface vC(x = 0)x has to be

computed and evaluated according to condition (5.23). In figures 5.7 and 5.8 the results are

depicted for the holohedral and the subregional coupling modes. The magenta colored circle

specifies the transition zone. The wavenumbers within this circle refer to far-field solutions.
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(a) vC

(2,1)(x = 0)x (b) F
(
vC

(2,1)x
(x = 0)

)

(c) vC

(3,2)x
(x = 0) (d) F

(
vC

(3,2)x
(x = 0)

)

(e) vC

(4,2)x
(x = 0) (f) F

(
vC

(4,2)x
(x = 0)

)
Figure 5.7: Near-field effects of the holohedral coupling modes
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(a) vC

(2,1)x
(x = 0) (b) F

(
vC

(2,1)x
(x = 0)

)

(c) vC

(3,2)x
(x = 0) (d) F

(
vC

(3,2)x
(x = 0)

)

(e) vC

(4,2)x
(x = 0) (f) F

(
vC

(4,2)x
(x = 0)

)
Figure 5.8: Near-field effects of the subregional coupling modes
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A comparison of the velocity fields and the potential fields in figures 5.5 and 5.6 with the

corresponding transformed patterns of the interface velocities in figures 5.7 and 5.8 shows,

that the coupling modes resulting in far-field solutions can be identified very well by this

method.

For the subregional coupling modes the transition to near-fields is linked with smaller multi-

index combinations than for the holohedral coupling modes (compare figures 5.5 and 5.6), be-

cause a fixed multi-index combination ((2, 1) or (3, 2) for instance) results in higher wavenum-

bers for the subregional than for the holohedral modes, as one observes comparing figures

5.7b and 5.8b as well as 5.7d and 5.8d.

Also the effect caused by the spatial limitation of infinite vibration patterns is clearly recog-

nized. The infinite sinusoidal vibration patterns ufin0 (y, z) in figures 5.7e and 5.8a show the

same wavenumber spectrum. The convolution effects, occurring due to the finite interface,

depend on the size of the interface in relation to the wavelength. As one can see in equation

(5.26), small filter functions cause broad sinc-functions in the transformed domain (see figures

5.7f and 5.8b). In figure 5.8b the maxima merge in kz-direction due to the convolution and

just one maximum is observed at kz = 0. This leads to far-fields in the subregional modes,

whereas mainly near-fields occur for the holohedral modes due to a wider filtering range. The

phenomenon, that in case of filtering functions with a small range the hydrodynamic short-

circuit cannot work efficiently, was explained by Cremer and Müller [1982] for instance.

The number of normal modes, which has to be considered, depends on the frequency of

excitation Ω, if the load pattern is able to excite all modeshapes (in case of a randomly

positioned spherical source for example). Then it is sufficient to consider the normal modes

up to 1.5 Ω. In case of load patterns, which excite individual vibration-patterns in particular,

of course normal modes have to be taken into account, which are able to build up these

patterns. The number of coupling modes can be limited efficiently selecting the far-fields in

the wavenumber domain.

The kinetic and the potential energy can be evaluated with the help of (5.4) and (5.5) to

represent the acoustic fluid in the Hamilton approach.

The implementation of the compound absorber in the FSI-formulation is discussed in the

following sections.
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5.3 Coupling with Impedances

For the coupled FSI-problem a weak formulation, based on variational principles, was chosen

in section 5.1. Therefore the Lagrangian, which is the difference of kinetic and potential

energy, has to be computed for each component respectively. For the acoustic fluid this was

done in section 5.2, where the SFEM was applied for the spatial discretization.

For the porous compound absorber however, a model based on the ITM is much more efficient

than a finite element description, where the velocity of the solid and the fluid component of

the porous material and also the pore pressure would have to be considered as state variables

in each node. Absorptive structures are implemented in the formulation of equilibrium (5.2)

with the help of impedances. They can be computed with ITM and, by the way, they are

measures of high engineering significance.

The idea of calculating the Lagrangian out of impedances was published already in 1959 for

problems in Electrical Engineering. Meixner [1959] gave the proof, that the difference of

electrical and magnetic energies coincides for equivalent terminal networks, which are loaded

with identical electromotive forces. Equivalent networks are different systems, which have

the same impedance. They show an identical current I(t) for an individual voltage U(t).

Both systems have different electric energies at a specific time t. Also the magnetic energies

are different, but the difference of both is the same for equivalent systems.

This idea was picked up in this work to compute the Lagrangian of the compound absorbers

out of impedances. Vibrating systems have to fulfill the same differential equations as elec-

trical oscillating circuits (RLC-circuit). They consist of a capacitor C, an inductor L and a

resistor R. The capacitor is able to store electric charge and it is equivalent to a spring in a

mechanical system. The inductor can be substituted by the mass and the resistor acts like

a damper in vibrating systems.

Meixner [1959] stated, that the Lagrangian of the RLC-circuit is gained out of the imaginary

part of the impedance and the electrical power, introduced into the network, can be included

with its real part.

The derivation of the Lagrangian for plate-like compound absorbers and the computation

of the virtual work of the non-conservative damping forces, which is equal to the variation

of the work of the damping forces, is sketched in the following using the example of the

Kirchhoff plate.
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5.3.1 Lagrangian and Virtual Work

For the acoustic fluid the trial functions, which are essential elements in the Ritz-approach,

were defined in section 5.2. Also for the impedance boundary conditions, which represent

absorptive structures, elastic structures or compound absorbers consisting of several mate-

rials in practice, trial functions have to be prescribed. The velocity pattern vBC(y, z, t) is

chosen for a forced vibration in the steady state as the product of a spatial function ψn(y, z)

and a time dependent function representing the harmonic response for a circular frequency

of excitation Ω. The displacement field uBC(y, z, t) is derived out of vBC(y, z, t).

vBC(y, z, t) =
nmax∑
n=1

ψn(y, z)
(
CneiΩt + Cne−iΩt

)
(5.27)

uBC(y, z, t) =
nmax∑
n=1

ψn(y, z)

(
Cn
iΩ
eiΩt − Cn

iΩ
e−iΩt

)
(5.28)

In the following derivations the abbreviation nmax = N is used for the number of coupling

modes. The trial functions are specified with the conjugate complex coefficients Cn and Cn. In

the formulation of Hamilton’s principle the coupling of the acoustic fluid and the compound

absorber is realized by Lagrange multipliers. If the same velocity pattern, which is chosen for

the absorber in equation (5.27) is applied as a boundary condition at the absorber-interface

in section 5.2.2 for the computation of the coupling modes, the coupling condition can be

satisfied simply by substituting Cn = Bn and Cn = Bn in equations (5.27) and (5.28).

As the ITM, used for the model of the boundary conditions, provides results in terms of the

wavenumbers ky and kz, it is convenient to approximate the spatial component of the trial

function with a 2d Fourier series

ψ̂n(y, z) =
rmax∑

r=−rmax

smax∑
s=−smax

Enrs e
i(ky(r)y+ kz(s)z). (5.29)

The range of the indices r and s in the Fourier series is defined to r = −rmax . . . rmax

and s = −smax . . . smax. In the following these ranges are no longer depicted explicitly.

The complex Fourier coefficients are obtained, carrying out the 2d Fourier integrals for the

lengths of repetition Lrep
y and Lrep

z :

Enrs =
1

Lrep
y L

rep
z

Lrep
z∫

0

Lrep
y∫

0

ψn(y, z) e−i(ky(r) y+kz(s) z) dy dz (5.30)

where: ky (r) =
r 2π

Lrep
y

and kz (s) =
s 2π

Lrep
z



98 5 Fluid Structure Interaction

The definition of Lrep
y and Lrep

z is discussed in section 5.3.2 depending on the choice of the

trial functions.

Inserting (5.29) into (5.27) and (5.28) one obtains for the approximative expressions v̂BC(y, z, t)

and ûBC(y, z, t).

v̂BC(y, z, t) =
N∑
n=1

ψ̂n(y, z)
(
CneiΩt + Cne−iΩt

)
︸ ︷︷ ︸

ẏn(t)

(5.31)

ûBC(y, z, t) =
N∑
n=1

ψ̂n(y, z)

(
Cn
iΩ
eiΩt − Cn

iΩ
e−iΩt

)
︸ ︷︷ ︸

yn(t)

. (5.32)

The time depending functions yn(t) and ẏn(t) are abbreviated with yn and ẏn in the follow-

ing.

Lagrangian for plate-like flexible structures

The Lagrangian for the flexible part of the compound absorber is derived exemplarily using

the example of the Kirchhoff plate in the following. The absorptive character will be consi-

dered by the virtual work of the damping forces later on. In order to simplify the expressions,

in the following the spatial trial functions ψ̂n(y, z) are abbreviated with ψ̂n.

Assuming a constant mass distribution µ the kinetic energy TBC of the Kirchhoff plate is

given in equation (5.33). The only requirement forced by the Ritz method is, that the trial

functions have to fulfill the kinetic boundary conditions. The Fourier series of the trial

functions (5.31) is introduced to approximate the kinetic energy (compare appendix A.5).

TBC =
1

2
µ

Lz∫
0

Ly∫
0

v2
BC dy dz (5.33)

TBC ≈
1

2
µ

Lrep
z∫

0

Lrep
y∫

0

v̂2
BC dy dz =

1

2
µ

Lrep
z∫

0

Lrep
y∫

0

[
N∑
n=1

ψ̂n ẏn

]2

dy dz (5.34)

Henceforward the spatial integral over the domain of the Fourier series
Lrep
z∫
0

Lrep
y∫
0

dy dz is abbre-

viated with
∫

Arep

dA. The spatial integral in (5.34) is expanded according to equation (A.56),
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given in the appendix.

∫
Arep

[
N∑
n=1

ψ̂n ẏn

]2

dA =

∫
Arep

N∑
n=1

(
ψ̂n ẏn

)2

dA+ 2

∫
Arep

N−1∑
k=1

N∑
l=k+1

ψ̂k ẏk ψ̂l ẏl dA

=
N∑
n=1

ẏ2
n

∫
Arep

ψ̂2
n dA+ 2

N−1∑
k=1

N∑
l=k+1

ẏk ẏl

∫
Arep

ψ̂k ψ̂l dA (5.35)

The trial functions for uBC and vBC are real valued. This leads to conjugate complex Fourier

coefficients Ers in (5.30). The spatial integrals are computed with the help of the theorem

of Parseval1, which states, that the L2 norm of a Fourier series can be calculated with the

L2 norm of the Fourier coefficients. A detailed description is given in the appendix A.6.

Inserting equations (A.59) and (A.60) in (5.34) and (5.35) the kinetic energy follows to

TBC ≈
1

2
µLrep

y L
rep

z

[
N∑
n=1

ẏ2
n

∑
r

∑
s

|Enrs|2 + 2
N−1∑
k=1

N∑
l=k+1

ẏk ẏl
∑
r

∑
s

EkrsElrs

]
. (5.36)

For the potential energy UBC of the Kirchhoff plate one proceeds in a similar way. Starting

from the general formulation (compare appendix A.5)

UBC =
1

2
B′

Lz∫
0

Ly∫
0

(
∂ 2uBC

∂y2
+
∂ 2uBC

∂z2

)2

− 2 (1− ν)

[
∂ 2uBC

∂y2

∂ 2uBC

∂z2
−
(
∂ 2uBC

∂y ∂z

)2
]
dy dz,

(5.37)

where B′ is the bending stiffness of the plate and ν marks the Poisson ratio, and inserting

the Fourier approximation (5.32), the derivatives of the spatial trial functions ψ̂n have to be

computed with respect to the coordinates y and z. The derivatives result in multiplications

with the wavenumbers ky and kz. They are depicted in equation (5.38).

The products of the Fourier coefficients and the wavenumbers are expressed with the coeffi-

cients E ′′nrs, E
88
nrs and E ′ 8nrs in order to simplify the derivations in the appendix A.6.

1M. A. Parseval, 1799
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In the following the derivatives are abbreviated by ψ̂′′n, ψ̂88
n and ψ̂′ 8n :

∂ 2ψ̂n
∂y2

=
∑
r

∑
s

(
−k2

y

)
Enrs︸ ︷︷ ︸

E′′nrs

ei(kyy+kzz) = ψ̂′′n

∂ 2ψ̂n
∂z2

=
∑
r

∑
s

(
−k2

z

)
Enrs︸ ︷︷ ︸

E88
nrs

ei(kyy+kzz) = ψ̂88
n

∂ 2ψ̂n
∂y ∂z

=
∑
r

∑
s

(i ky) (i kz)Enrs︸ ︷︷ ︸
E′ 8nrs

ei(kyy+kzz) = ψ̂′ 8n

(5.38)

Adding the time-dependent components of the approach

∂ 2ûBC

∂y2
=

N∑
n=1

ψ̂′′n yn;
∂ 2ûBC

∂z2
=

N∑
n=1

ψ̂88
n yn;

∂ 2ûBC

∂y ∂z
=

N∑
n=1

ψ̂′ 8n yn (5.39)

equation (5.37) reads:

UBC ≈
1

2
B′

[ ∫
Arep

[ N∑
n=1

(
ψ̂′′n + ψ̂88

n

)
yn

]2

dA−

− 2 (1− ν)

∫
Arep

N∑
n=1

ψ̂′′n yn

N∑
n=1

ψ̂88
n yn −

( N∑
n=1

ψ̂8 ′
n yn

)2

dA

] (5.40)

The second summand in equation (5.40) vanishes inserting the Fourier series and carrying

out the integrals (compare equation (A.71) in section A.6).

UBC ≈
1

2
B′
∫
Arep

[ N∑
n=1

(
ψ̂′′n + ψ̂88

n

)
yn

]2

dA. (5.41)

Inserting the derivatives of the Fourier members (5.38) one obtains with (A.61) to (A.63)

UBC ≈
1

2
B′ Lrep

y L
rep

z

[ N∑
n=1

y2
n

∑
r

∑
s

(
k2
y + k2

z

)2

|Enrs|2 +

+ 2
N−1∑
k=1

N∑
l=k+1

yk yl
∑
r

∑
s

(
k2
y + k2

z

)2

EkrsElrs

]
.

(5.42)

In the variational formulation (5.2) the Lagrangian is integrated within an arbitrary time-

range from t1 to t2.
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Integrating over one time period T using (A.72) to (A.75) yields the Lagrangian

T∫
0

LBC dt =

T∫
0

TBC dt−
T∫

0

UBC dt

≈ 1

2
µLrep

y L
rep

z

[
N∑
n=1

2T CnCn
∑
r

∑
s

|Enrs|2 +

+ 2
N−1∑
k=1

N∑
l=k+1

T
(
CkCl + CkCl

)∑
r

∑
s

EkrsElrs

]
−

− 1

2
B′ Lrep

y L
rep

z

[
N∑
n=1

2T

Ω2
CnCn

∑
r

∑
s

(
k2
y + k2

z

)2

|Enrs|2 +

+ 2
N−1∑
k=1

N∑
l=k+1

T

Ω2

(
CkCl + CkCl

)∑
r

∑
s

(
k2
y + k2

z

)2

EkrsElrs

]
.

(5.43)

Substituting the impedance of the Kirchhoff plate

Im (Z (r, s,Ω)) = µΩ− B′

Ω

(
ky(r)

2 + kz(s)
2
)2

(5.44)

in equation (5.43) the formulation for the Lagrangian of plate-like flexible structures in terms

of wavenumber- and frequency-dependent impedances is gained.

T∫
0

LBC dt ≈
T

Ω
Lrepy Lrepz

[
N∑
n=1

CnCn
∑
r

∑
s

Im (Z (r, s,Ω)) |Enrs|2 +

+
N−1∑
k=1

N∑
l=k+1

(
CkCl + CkCl

)∑
r

∑
s

Im (Z (r, s,Ω)) EkrsElrs

] (5.45)

If the trial functions, which build up the velocity field of the absorber, are orthogonal, the

off diagonal terms vanish and equation (5.45) can be simplified to

T∫
0

LBC dt ≈
T

Ω
Lrepy Lrepz

[
N∑
n=1

CnCn
∑
r

∑
s

Im (Z (r, s,Ω)) |Enrs|2
]
. (5.46)

In case of sinusoidal or cosinusoidal trial functions and a rectangular plate absorber the

Fourier approximation is not necessary and would even cause errors (compare section 5.3.2).

The simplified expression for the Lagrangian Lsin
BC, which is deduced from (5.46) is given in

equation (5.59).
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Virtual Work of the damping Forces

With the imaginary part of the impedance the flexible characteristics of the absorber can be

modeled, as shown above. The absorptive characteristics, which are expressed by the real

part of impedance (compare section 4.3), are considered in the variational formulation (5.2)

with the virtual work of the non-conservative damping forces.

A virtual displacement δŵ(y, z, t) is applied to the system, which is assumed to be at rest

during the process of application [see Wauer 2008].

δŵ(y, z, t) =
N∑
n=1

ψ̂n(y, z)

[
δ Cn
iΩ

eiΩt − δ Cn
iΩ

e−iΩt
]

︸ ︷︷ ︸
δyn(t)

(5.47)

Considering a plate-like structure with a damping coefficient c, the virtual work is gained

out of the integral over the surface dA = dy dz of the plate. As done for the Lagrangian

in the last section, the integral over the time period T is calculated and the approximation

with the Fourier series is applied according to (5.27) and (5.47):

T∫
0

δWBC dt = −
T∫

0

∫
A

c vBC δw dAdt

= −
T∫

0

∫
Arep

N∑
n=1

c ψ̂n ẏn

N∑
n=1

ψ̂n δyn dA dt

The application of (A.55), (A.59) and (A.76) yields:

T∫
0

δWBC dt = −
T∫

0

N∑
k=1

N∑
l=1

ẏk δyl

∫
Arep

c ψ̂k ψ̂l dA dt

≈ −
T∫

0

Lrepy Lrepz

N∑
k=1

N∑
l=1

ẏk δyl
∑
r

∑
s

c EkrsElrs dt

≈ − T
iΩ
Lrepy Lrepz

N∑
k=1

N∑
l=1

(
CkδCl − CkδCl

)∑
r

∑
s

c EkrsElrs (5.48)
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Substituting the real part of the impedance the virtual work of the damping forces for

plate-like absorptive structures reads in terms of wavenumber- and frequency-dependent

impedances:

T∫
0

δWBC dt ≈ −
T

iΩ
Lrepy Lrepz

N∑
k=1

N∑
l=1

(
CkδCl − CkδCl

)∑
r

∑
s

Re (Z (r, s,Ω)) EkrsElrs

(5.49)

In case of orthogonal trial functions again a simplified description is possible.

T∫
0

δWBC dt ≈ −
T

iΩ
Lrepy Lrepz

N∑
n=1

(
CnδCn − CnδCn

)∑
r

∑
s

Re (Z (r, s,Ω)) |Enrs|2

(5.50)

In the same way as for the Lagrangian, in case of sinusoidal or cosinusoidal trial functions

and a rectangular plate absorber an analytical solution is obtained for the virtual work of

the non-conservative forces. The expression for δW sin
BC , which is corresponding to (5.50) is

given in equation (5.60).

Virtual Work of external Loads

The computation of the virtual work δWload for the compound absorber is just required if

this system is modeled as a single finite structure without coupling to the acoustic fluid or

if a load is applied at the interface. In the second case δWload can be computed using the

FSI-coupling mode as well. Equation (5.52) shows the resulting expression for δWload.

T∫
0

δWload dt =

T∫
0

Lz∫
0

Ly∫
0

p (y, z, t) δw dy dz dt (5.51)

e.g. p (y, z, t) = p (y, z) cos (Ωt)

T∫
0

δWload dt =

T∫
0

Lz∫
0

Ly∫
0

1

2
p (y, z)

(
eiΩt + e−iΩt

) N∑
n=1

δ yn ψ̂n dy dz dt

≈ T

2iΩ

N∑
n=1

(
δCn − δCn

) Lrepz∫
0

Lrepy∫
0

p (y, z)
∑
r

∑
s

Enrs e
i(kyy+kzz) dy dz

(5.52)
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5.3.2 Choice of the Trial Functions

The trial function ψn(y, z) for the considered boundary conditions at the interface in a 3d

acoustic volume is defined as the product of two one-dimensional functions

ψn(y, z) = ψ y
n1

(y)ψ z
n2

(z), (5.53)

where n is defined as a multi-index n = (n1, n2) in equation (5.53). For the implementation

in the equilibrium formulation the Fourier series of the trial function ψ̂n(y, z) is used. In

this section properties of trial functions are discussed. Their individual advantages and

disadvantages in the Fourier approach are analyzed and requirements are defined in order

to reduce numerical errors. In the following four different types of functions are compared.

The examinations are restricted to one dimension. Therefore just ψ y
n1

(y) is discussed.

For simply supported structures the fundamental system for the simply supported Euler-

Bernoulli beam

ψ sin

n1
(y) = sin

(
n1 π y

Ly

)
(5.54)

could be applied for example. In case of the sinusoidal approach the computation of the

Lagrangian could be carried out without a Fourier series as it is discussed later. Neverthe-

less the Fourier expansion is presented as an academic example in this section in order to

exemplify the occurring phenomena.

In case of clamped compound absorbers for example the well known system out of hyperbolic

functions [see Petersen 1996] could be implemented in the Ritz approach:

ψ hyp

n1
(y) = sin (λn1 y)− sinh (λn1 y) + γn1 [cosh (λn1 y)− cos (λn1 y)] (5.55)

λn1 =
n1 βn1

Ly
γn1 =

sinh(βn1)− sin(βn1)

cosh(βn1)− cos(βn1)

β1 = 4.73004074 β2 = 7.85320462

β3 = 10.99560783 βn1 = (n1 + 0.5)π, n1 > 3

In figures A.3 and A.4, which are depicted in the supplement A.7, the Fourier approxima-

tion of the trial functions, defined above, and also the first and second derivative of the

Fourier series are depicted. The length of repetition for the periodic functions is defined to

Lrepy = L, where the most accurate results can be achieved for the energy-expressions, if the

requirements, which are derived in this chapter, are fulfilled by the trial functions.
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The rate of convergence of the Fourier series was discussed by Hamming [1973] for instance.

It depends on the discontinuities of the function ψn(y) itself and its derivatives ∂kψn(y)
∂yk

. If

corners occur, in case of the even sinusoidal modes for example, one has to consider Fourier

members up to high wavenumbers for a good approximation of the function. For both,

the sinusoidal and the hyperbolic modes, the function itself, which is introduced into the

formulation of the kinetic energy T , is approximated with a sufficient accuracy. Having

a look at the second derivatives of the hyperbolic modes ∂2ψ hyp
n (y)
∂y2 , one recognizes a step

in the function at the interval boundaries in case of odd modeshapes. Due to this step a

uniform convergence of the Fourier series is not possible. The series converges pointwise.

An overshoot occurs, which travels towards the discontinuity for rising wavenumbers. This

effect is known as the Gibbs phenomenon [Gibbs 1899]. From the signal processing point of

view the effect could be explained by a convolution of the function ψn(y) with the inverse

Fourier transformed of an ideal rectangular low pass filter (because just a finite number of

wavenumbers can be considered).

Thus in case of hyperbolic trial functions the second derivatives of the odd modeshapes are

described badly with the Fourier series (see figure A.4f). In case of the sinusoidal functions

the effect occurs already in the approximation of the first derivatives. The second derivatives

are described even worse as one can see in figure A.3e. This bad approximation leads to

errors in the computation of the potential energies. The error analysis for a timber beam of

a length Ly = 5m with a Young ’s modulus of E = 1.2 1010 N
m2 , a density of ρ = 380 kg

m3 and a

rectangular cross section 0.1m · 0.15m (EI = 3.375 105Nm2) is presented in figure 5.9. The

kinetic energy T is approximated well with the Fourier approach, whereas in case of sinusoidal

modes an increasing number of wavenumbers has to be considered with an increasing number

of modes.
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Figure 5.9: Error analysis for the kinetic energy T and the potential energy U of the modeshapes
for different trial functions, computed with the Fourier approximation with rmax = 10
Fourier members and a frequency of excitation of 120Hz
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The potential energy U however cannot be expressed with a sufficient accuracy due to the

bad approximation of the second derivatives. Very high error orders occur for the even

sinusoidal modes and for the odd modes in case of the hyperbolic approach. The spline

approaches, mentioned in figure 5.9, are introduced later on.

Different methods are applied in mathematics for reducing the oscillations due to the Gibbs

phenomenon. The σ-approximation for example makes use of a modified computation of

the Fourier coefficients introducing the sinc-function (Lanczos-σ factor), which is the inverse

Fourier transformed of the ideal rectangular low pass filter and therefore responsible for the

oscillations. The Lanczos-σ factor σk(l) = sinc
(
k
l

)
has to be introduced in equation (5.30)

for both directions.

Eσ
nrs = Enrs sinc

(
r

rmax

)
sinc

(
s

smax

)
(5.56)
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Figure 5.10: Reduction of Gibb’s phenomenon with the Lanczos-σ factor for a Fourier approxi-
mation of the second derivative for the hyperbolic approach ψ hyp

n1
(y) with rmax = 60

Fourier members

In figure 5.10 the Fourier series of
∂2ψ hyp

2 (y)

∂y2 is sketched with rmax = 60 Fourier members.

The σ-approximation was applied to reduce the oscillations, where the Lanczos-σ factor was

weighted by a power of four. Fejer’s method for example would eliminate the oscillations

completely [compare Hamming 1973], but the absolute value of the function is underesti-

mated and the partial sum rises very slow near the discontinuity. Thus both methods are

not suitable. They are not able to approximate the trial functions well near the discontinuity

and lead to significant errors in the potential energies (compare figures 5.14a and 5.14b).
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The requirement for a good approximation up to the second derivative with a Fourier series

is, that the trial functions are continuously differentiable up to the first derivative. If global

functions should be applied, polynomials up to an order 6 + 2 (nmax − 1), where nmax marks

the highest constraint mode to consider, would fulfill these requirements. The system of

equations to specify the polynomial coefficients gets ill conditioned for higher modeshapes

however.

Therefore the application of piecewise defined spline functions is discussed in the following.

A spline of order three

ψ spline 3

n1
(y) =

n1∑
i=1

ai + bi(x− xi−1) + ci(x− xi−1)2 + di(x− xi−1)3, (5.57)

where the supporting points xi (i = 0, 1, . . . , n1) are distributed uniformly in [0, Ly], is used

at first. Considering ψn1(0) = ψn1(Ly) = 0 and ∂2

∂y2ψn1(0) = ∂2

∂y2ψn1(Ly) the conditions for

a good approximation are fulfilled, which can bee seen in figure A.5 in the appendix. This

approach can just serve as an academic example and is without practical relevance, because

it fulfills the kinetic boundary conditions of the clamped beam for even modeshapes and

shows simply supported properties for odd modeshapes.

In order to simulate clamped conditions a spline of order five can be defined

ψ spline 5

n1
(y) =

n1∑
i=1

ai + bi(x− xi−1) + ci(x− xi−1)2 + di(x− xi−1)3+ (5.58)

+ ei(x− xi−1)4 + fi(x− xi−1)5

for the boundary conditions ψn1(0) = ψn1(Ly) = 0, ∂
∂y
ψn1(0) = ∂

∂y
ψn1(Ly) = 0 and ∂2

∂y2ψn1(0) =
∂2

∂y2ψn1(Ly) = 0. The corresponding Fourier expansion is sketched in figure A.6.

In the following example the four different types of trial functions are compared concerning

their ability for the Fourier approach using the example of the simple Euler-Bernoulli beam:

Ly

F

y

Figure 5.11: Euler-Bernoulli beam under a single load F
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It is loaded by a single load F , which is able to excite all the modeshapes in the computed fre-

quency band. The point of observation is defined following the same criterion. The frequency

response function for the velocity is calculated with a Ritz approach, where the Lagrangian

is computed out of the impedance of the Euler-Bernoulli beam according to equation (5.45).

The virtual work of the single load results out of equation (5.49). Equilibrium is established

with Hamilton’s principle.

In figures 5.12 and 5.13 the results are sketched for the spline of order five. The Ritz-

method with an analytical calculation of the kinetic and potential energy out of the trial

function is compared against the Fourier approach, where the Lagrangian is computed out

of the impedance of the beam using the coefficients of the Fourier approximation of the trial

functions. The energies are depicted in figure 5.12.
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Figure 5.12: Results for the kinetic energy T and the potential energy U for the trial functions
(spline of order 5), computed with the Fourier approximation (with rmax = 10 and
rmax = 15 Fourier members) and comparison against the reference solution

The reference solution, which is the Ritz-approach using the trial function without a Fourier

approach, can be approximated with sufficient accuracy, because both, the kinetic and the

potential energy, are built up well. Only 15 Fourier members are necessary for a good
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approximation of the frequency response function up to the fourth modeshapes as one can

see in figure 5.13.
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Figure 5.13: Frequency response function of the velocity v(y), computed with the Fourier appro-
ximation (with rmax = 10 and rmax = 15 Fourier members) for splines of order 5 and
comparison against the reference solution for this type of trial function ψ(y)

This example shows, that the idea to implement the boundary conditions via their impedances

Z(ky, kz,Ω) and a Fourier series of the trial function ψ̂n(y, z), which was suggested for the

compound absorber, is applicable, if the requirements concerning the differentiability are

fulfilled.

In figure 5.14 the frequency response functions for the different approaches, calculated with

the Fourier series and the Ritz method, are compared against the analytical solution of the

simply supported beam or the clamped beam in order to visualize the phenomena, discussed

above. In figures 5.14a and 5.14b one observes, that in case of the sinusoidal (hyperbolic)

trial functions the Fourier approach is not able to build up the even (odd) natural frequencies

respectively. Having a look at the approximation of the second derivatives (figures A.3e and

A.4f) one recognizes that the potential energy U is drastically overestimated for the sinusoidal

functions and therefore the resonances are completely missed. In case of hyperbolic functions

U is underestimated because of the jump in the second derivative, which cannot be built

up accurately with the Fourier series, not even using a σ-approximation or Fejer’s method.

Even if the results look better at first glance, this approach is unusable, with the exception

of systems, where the mass is dominating the stiffness, because the results won’t improve

significantly considering more Fourier members and the approximation seams to have a

lower energy level, than the analytical solution, which disagrees with the mechanical laws of

conservation.
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(b) Hyperbolic sine and hyperbolic cosine
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(c) Spline of order 3
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Figure 5.14: Frequency response function of the velocity v(y), computed with the Fourier appro-
ximation (FS) with rmax = 10 Fourier members for different types of trial functions
ψ(y) and comparison against the analytical solution for the clamped beam (cb) and
the simply supported beam (ssb)
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The spline of order three was just introduced in this academic example as the lowest order

spline, which meets the requirements. As one observes in figure 5.14c this trial function

approximates the clamped beam in case of even and the simply supported beam in case

of odd modeshapes, because of the special characteristics of this spline function (compare

figure A.5). Therefore it cannot be used in practice.

The spline of order five however, meets the requirements for the numerical approximation

as well as the kinematic boundary conditions of a clamped structure. The result of the

frequency response function is sketched in figure 5.14d. The numerical errors due to the

Fourier approximation can be kept small by low costs (number of Fourier members), which

was shown in figure 5.13. In this case the resonances are overestimated by the numerical

approach (as one would expect). The quality of the prediction of course depends on the

ability of the chosen approach to approximate the analytical solution. In view of the fact,

that the trial functions, used in figures 5.14a and 5.14b, are the analytical solutions of the

problem already, the approximation of the clamped structure with the spline of the order

five is satisfactory.

Of course, as usual in the Ritz method, the internal forces of the beam should not be cal-

culated out of the derivatives of the trial functions. Because of their definition the bending

moment would vanish at the clamped support, which violates the laws of equilibrium. In-

stead, one has to calculate the internal forces out of the static problem considering the inertia

forces, defined with the help of the accelerations out of the Ritz method.

For the room acoustical problems, underlying this thesis, the internal forces in the absorptive

boundaries or the compound absorbers are not of relevance. Considering higher frequencies in

acoustical simulations even the differences between simply supported or clamped boundaries

are negligible.

The application of the Fourier series for the sinusoidal approach was just done for academic

reasons in this section. If a sinusoidal or a cosinusoidal trial function, as defined in equations

(5.53) and (5.54), should be used and if the compound absorber has got a rectangular shape,

the Lagrangian and also the expressions for the virtual work can be computed analytically.

Then errors due to the Fourier approximation based on n1 2π
Ly

and n2 2π
Lz

can be avoided.
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The corresponding expressions can be deduced out of equations (5.46) and (5.50):

T∫
0

Lsin
BC dt =

Ly Lz
4

T

Ω

N∑
n=1

CnCn Im

[
Z

(
n1 π

Ly
,
n2 π

Lz
,Ω

)]
(5.59)

T∫
0

δW sin
BC dt = −Ly Lz

4

T

iΩ

N∑
n=1

(
CnδCn − CnδCn

)
Re

[
Z

(
n1 π

Ly
,
n2 π

Lz
,Ω

)]
(5.60)

5.4 System of Equations

As pointed out in section 5.1 Hamilton’s principle is applied for the formulation of the

equilibrium of the coupled system. According to equation (5.2) the Lagrangian has to be

set up for all components of the problem and the virtual work must be computed for the

external forces as well as for the dissipative behavior of the absorbers.

Normal and coupling modes, which are specified in the CMS approach in equation (5.7), are

computed for the acoustic fluid as trial functions in the scope of a Ritz approach and the

Lagrangian of the fluid as well as the virtual work of the external loads are computed with

equations (5.3)–(5.5) and (5.6) respectively. The Lagrangian of the compound absorber and

the virtual work of the non-conservative damping forces are computed with (5.45) and (5.49)

for instance.

The unknown complex coefficients Ai and Bi refer to the normal and the coupling modes in

the acoustic volume, whereas Ci are the coefficients of the trial functions of the compound

absorber. As pointed out in section 5.3.1 the coupling condition of the fluid and the absorber

at the interface simply results in Bi = Ci and B̄i = C̄i, because the same velocity pattern is

chosen for the trial function of the absorber and for the boundary condition of the fluid at the

absorber-interface. Thus the vectors for the unknown coefficients x and the corresponding

conjugate complex values x̄ read:

x =
[
A1 · · · Ammax B1 · · · Bnmax

]T
x̄ =

[
Ā1 · · · Āmmax B̄1 · · · B̄nmax

]T (5.61)

The solution of the variational problem in equation (5.2) is reduced to a problem of mini-

mization because of the Ritz approach. It is advantageous to express the conjugate complex

coefficients with real and imaginary values in order to formulate the extremal problem:
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x =
[
xR + ixI

]T
(5.62a) x̄ =

[
xR − ixI

]T
(5.62b)

The real and imaginary parts of the complex coefficients mark the new set of unknowns

y =
[
xR xI

]T
, where the total number of real valued unknowns is 2 (mmax + nmax). Here

mmax and nmax are the maximum numbers of normal and coupling modes respectively.

xR =
[
AR1 · · · ARmmax

BR1 · · · BRnmax

]T
xI =

[
AI1 · · · AImmax

BI1 · · · BInmax

]T (5.63)

For the consideration of the virtual work a vector δy is specified analogously. Carrying out

the minimization of the Lagrangian one obtains a system of real valued linear equations

K y = F, (5.64)

where the matrix of coefficients Kij reads

Kij =

∂2
T∫
0

LA dt

∂yi ∂yj
+

∂2
T∫
0

LBC(Z) dt

∂yi ∂yj
+

∂2
T∫
0

δW nc
BC(Z) dt

∂ δyi ∂yj
(5.65)

and the load vector F =
[
FR FI

]T
considers the external forces:

Fi = −
∂
T∫
0

δW nc
Load dt

∂ δyi
(5.66)

Defining submatrices Krs for the matrix of coefficients, equation (5.64) reads:[
K11 K12

K21 K22

] [
xR

xI

]
=

[
FR

FI

]
(5.67)

In consequence of the complex property of the unknown coefficients the relations

K11 = K22 (5.68)

K21 = −K12 (5.69)

hold for the submatrices. Of course the system of equations can be established with mmax +
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nmax unknown complex coefficients as well:[
K11 + iK21

]
x =

[
FR + iFI

]
(5.70)

After solving the system of linear equations the sound field in the acoustic cavity, expressed

with its primary variables pA(x, t) and vA(x, t), is composed according to section 5.2.

5.5 Numerical Results for the FSI-problem

5.5.1 Application to 1d Structures

Comparison with reference solution for a SDOF impedance

In the following the FSI-approach, which was derived in the previous sections, is applied

to the simple geometry V = [0, Lx] × [0, Ly] = [0, 8m] × [0, 1m], which is sketched in

figure 5.15. Plane waves are excited in the structure applying a pressure p0 at x = Lx, which

is harmonically oscillating in time with a circular frequency of excitation Ω.

Ly

Lx

Z(Ω)

Source

Figure 5.15: Geometry of the benchmark example

The boundary at x = 0 is described by the point impedance Z(Ω)

Z(Ω) = i

(
Ωm− k

Ω

)
+ c , (5.71)

where m = 10 kg, k = 104 N
m

and c = 200 Ns
m

are the mass, the stiffness, and the damping

coefficient of the impedance boundary condition. For this problem the analytical solution

can be derived for the harmonic response. Starting from the fundamental system [see Fahy

2000]

p(x, t) = Aei (Ω t−kA x) +B ei (Ω t+kA x) (5.72)

vx(x, t) =
1

ρA cA

[
Aei (Ω t−kA x) −B ei (Ω t+kA x)

]
(5.73)
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the impedance at the interface x = 0 reads:

Z ′(Ω) =
Z(Ω)

Z0

= − p(x = 0, t)

v(x = 0, t) ρ0 c
= −A+B

A−B
⇔ B

A
=
Z ′ − 1

Z ′ + 1
(5.74)

The complex coefficients A and B can be derived out of the boundary conditions 1+Z′

1−Z′ 1

e−i kA Lx ei kA Lx

 [A
B

]
=

[
0

p0

]
. (5.75)

For the numerical simulation the set of basis functions has to be defined. It consists of four

normal and two coupling modes for the pressure p(x, y, t) and the sound velocity v(x, y, t).

The first coupling mode provides the coupling with the point impedance. The second one is

necessary for the application of the loading at x = Lx, because the normal modes, which are

computed for reflective wall conditions, prohibit any normal displacement at the boundaries.

They are computed out of equation (A.34) obeying the boundary conditions (A.35, A.36).

The geometry is subdivided into eight equally sized elements. The normal and the coupling

modes for the pressure and the sound velocity are computed with the SFEM as described in

section A.3. The polynomial degree of the basis functions in each element is P = 5 and the

number of quadrature points is W = 7.

In the following the spatial average of the transfer functions for the sound pressure LAmp,

as defined in equation (5.76), is computed for a harmonic excitation up to a frequency of

excitation 150Hz and compared against the analytical solution.

LAmp = 10 log

√√√√ 1

V

∫
V

∣∣∣∣ pp0

∣∣∣∣2 dV [dB] (5.76)
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Figure 5.16: Comparison of analytical and numerical solution for the spatial average of the ampli-
fication factor of the sound pressure LAmp
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(a) mmax = 5 normal modes
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(b) mmax = 7 normal modes

0 20 40 60 80 100 120 140 160
-5

0

5

10

15

20

25

Frequency [Hz]

L A
m

p [d
B

]

 

 
m

max
=9

reference

(c) mmax = 9 normal modes
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(d) mmax = 11 normal modes

Figure 5.17: Study on the number of normal modes considered in the CMS
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In figure 5.16 the numerical results are depicted for three normal modes. One observes a

good agreement of both solutions in the frequency range, which is covered by the set of trial

functions. An increasing difference between the analytical and the numerical solution occurs

from the third resonance on (around 53Hz) and arises from the low number of normal modes

in relation to the maximum frequency of excitation.

In figure 5.17 a comparison regarding the number of normal modes mmax, considered in

the SFEM, is depicted. In order to avoid the numerical error due to modal truncation it

is recommended to consider normal modes up to a natural frequency, which is 50% above

the maximum frequency of excitation. Following this rule of thumb, one has to consider

mmax = 11 normal modes for a maximum frequency of excitation of 150Hz, where a good

agreement with the analytical solution is achieved. If higher modeshapes are excited explic-

itly due to the pattern of the load, these patterns have to be considered in the computation

as well.

In addition to the setup with k = 1.0 104, where the impedance of the boundary condition

was tuned to 5Hz, another configuration, which is tuned to 65Hz, is sketched in figure 5.18

in order to visualize the efficiency of the approach.
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(a) k = 1.0 · 104 - tuned to 5Hz
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(b) k = 1.7 · 106 - tuned to 65Hz

Figure 5.18: Coupling with variously tuned impedances
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Dissipation due to a porous absorber

In the following example the FSI of the acoustic fluid and porous absorbers is discussed

in order to present the application of the method to measured impedances as well as to

impedances out of numerical simulations. The rectangular acoustic volume, sketched in

figure 5.19, with V = [0, Lx] × [0, Ly] = [0, 3m] × [0, 1m] is modeled with Spectral Finite

Elements as described in section A.3.

Ly

Lx

Z(Ω)

Source

dTPM

Figure 5.19: 1d structure with porous absorber

A layer out of porous material with a thickness d is mounted on the reflective wall at x = 0

and plane waves are excited in the system at x = Lx in x-direction in the frequency range

up to 275Hz. The response of the sound pressure within the cavity is evaluated along the

x-coordinate.

A layer of Melamine Foam with a thickness of 7.2 cm, a 10.2 cm layer of Polyurethane Foam

and a 10.3 cm layer of Mineral Wool are used in this example to represent the porous sheet.

These porous materials served as measured references in section 4.4.1, where the impedance

Z(Ω) and the absorption ratio α(Ω) were computed with the TPM-ITM-model (compare

figures 4.12, 4.14, 4.16). In the following the measured values and the numerical impedances

are applied as boundary conditions for the computation.

Figure 5.20 shows the transfer functions for the pressure, averaged over the acoustic volume

according to equation (5.76). The results with the computed impedances Zsim are plotted

against the solution with measured impedances Zmeas.

A reduction of the amplitudes, especially at the location of the natural frequencies of the

system, can be observed as well as the fact, that the porous absorber is working more

efficiently for higher frequencies. Here the resulting wavelengths λ are shorter and therefore

the sound velocity within the absorber compared to the maximum velocity is higher than

for low frequencies of excitation.
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The results also illustrate, that the simulation of the acoustic properties for porous foams

with the TPM/ITM-model as a step of preprocessing for a FSI-simulation is suitable, be-

cause there is a good agreement between the results with the measured and the simulated

impedances.
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(a) 7.2 cm layer of Melamine Foam
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(b) 10.2 cm layer of Polyurethane Foam
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(c) 10.3 cm layer of Mineral Wool

Figure 5.20: FSI-coupling with porous layers

The slight frequency shifts, which are observed between the results computed with Zsim and

Zmeas in case of the polyurethane foam, occur, because the imaginary part of the impedance,
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which is sketched in figure 4.14b, is approximated worse than in case of the melamine foam

and the mineral wool.

5.5.2 Application to 2d Structures

Holohedral and subregional coupling

In this section the FSI-model is applied to a 2d rectangular geometry V = [0, Lx]× [0, Ly] =

[0, 6m]× [0, 2m]. The structure is modeled with 192 spectral finite elements and loaded by

a harmonically oscillating point source with an amplitude p0 = 1 [Pa] at x = 1.15m and

y = 0.77m. A porous absorber is mounted at the interface x = 0, where sinusoidal coupling

modes were specified (compare section 5.3.2).

Two different coupling techniques are compared (see figure 5.21). Whereas the holohedral

coupling modes cover the whole interface, in case of the subregional coupling modes, which

were introduced in section 5.2.2, just a part of the wall is covered with the absorber. In

Ly

LxdTPM

Z(kx,ky ,Ω)

pLoad

(a) holohedral coupling

Ly

LxdTPM

Z(kx,ky ,Ω)

pLoad

(b) subregional coupling

Figure 5.21: 2d structure with porous absorber

the first step frequency-response functions are computed. The location of the load is chosen

arbitrarily in order to excite nearly all modeshapes. Analogously to the 1d case, the response

for several points of observation is averaged according to equation (5.76) and the absorber

is specified as a 7.2 cm layer of Melamine Foam, a 10.2 cm layer of Polyurethane Foam and

a 10.3 cm layer of Mineral Wool, where the numerical impedances out of the TPM-ITM

computation are used.

The results for the averaged FRFs are depicted in figure 5.22 for the holohedral coupling

modes. The subregional results are presented for an absorber with a length of 1m in figure

5.23. Both results are figured against the results for the reflective box. In contrast to the 1d

case, the modal density is increasing for higher frequencies. Comparing the holohedral results



5.5 Numerical Results for the FSI-problem 121

in figure 5.22 for the different porous materials, one again observes a different efficiency, which

is linked to the absorption ratios α(Ω) (compare figures 4.12, 4.14, 4.16). In addition to the

dependency on frequencies, the absorption is depending on the angle of incidence of the

wavenumber respectively (compare figure 4.30).
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(a) 7.2 cm Melamine Foam – compare figure 4.12
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(b) 10.2 cm layer of Polyurethane Foam – compare figure 4.14
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(c) 10.3 cm layer of Mineral Wool – compare figure 4.16

Figure 5.22: FSI-Model with various porous absorbers - holohedral coupling

The results for the subregional coupling modes show the same characteristics. Due to the

fact, that the absorptive area, which is totally installed in the room, is just one half of the
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area, installed in the holohedral case, the resulting sound pressure level is higher. Due to

the fact, that the absorptive interface is normal to the x-axis, modeshapes with dominant

velocities in x-direction are reduced more efficiently, than modeshapes in y-direction. This is

observed in figure 5.23a for example, where the resonances at 28Hz and 57Hz (the first and

the second plane wave mode in x-direction) are reduced more significantly than the peaks

at 86Hz, 172Hz and 273Hz. There the first modeshapes in y-direction occur in addition

to modes in x-direction (multiple eigenvalues).
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(a) 7.2 cm Melamine Foam – compare figure 4.12
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(b) 10.2 cm layer of Polyurethane Foam – compare figure 4.14
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(c) 10.3 cm layer of Mineral Wool – compare figure 4.16

Figure 5.23: FSI-Model with various porous absorbers - subregional coupling
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In the second step the spatial resolution of the pressure and the velocity fields is computed

for individual frequencies of excitation. The results are shown exemplarily for the Melamine

Foam as porous material. The location of the sound source is marked with a white circle in

figures 5.24 to 5.26 and the absorber is marked with a bold black line at x = 0.

(a) Sound-velocity vx(x, y) [m/s] in x-direction

(b) Sound-velocity vy(x, y) [m/s] in y-direction

(c) Sound-pressure p(x, y) [Pa]

Figure 5.24: FSI-Model with a 7.2 cm Melamine Foam (holohedral coupling) – spatial resolution
for an excitation with a unit point source at a frequency of 228Hz

The system is excited with a frequency of 228Hz, which is equal to the natural frequency of

the (8, 0)-mode of the room with reflective walls. This modeshape dominates the harmonic
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response for both coupling cases, whereas the small interface (5.25) ”disturbs” the reflective

modeshape less than the holohedral one does. Exciting the subregional system with 229.5Hz

(see figure 5.26), the vibration pattern is already characterized by the (5, 2)-mode of the room

with reflective walls due to the high modal density.

(a) Sound-velocity vx(x, y) [m/s] in x-direction

(b) Sound-velocity vy(x, y) [m/s] in y-direction

(c) Sound-pressure p(x, y) [Pa]

Figure 5.25: FSI-Model with a 7.2 cm Melamine Foam (subregional coupling) – spatial resolution
for an excitation with a unit point source at a frequency of 228Hz
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(a) Sound-velocity vx(x, y) [m/s] in x-direction

(b) Sound-velocity vy(x, y) [m/s] in y-direction

(c) Sound-pressure p(x, y) [Pa]

Figure 5.26: FSI-Model with a 7.2 cm Melamine Foam (subregional coupling) – spatial resolution
for an excitation with a unit point source at a frequency of 229.5Hz
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Inclined walls

The variability of the method concerning geometric modeling is shown, in principle, in the

next example. The normal and coupling modes can be computed for arbitrary geometries

with the SFEM. The only restriction, given by the application of the ITM for the Lagrangian

of the absorber, is, that the interface has to be plain.

In the following the box model of the last example is modified by inclining the rear-wall.

The wall containing the interface could be inclined as well. The geometry of the system is

sketched in figure 5.27, where L1
x = 6m, L2

x = 1.5m and Ly = 2m. The model is set up with

192 spectral finite elements. The interface is covered with a 7.2 cm layer of Melamine Foam

in analogy to the last example. Two different load cases are investigated. At first the unit

point source is located at x = 1.15m and y = 0.77m and in a second computation the load

is applied at x = 5.89m and y = 1.71m, where the locations are chosen under the premise

of exciting nearly all modeshapes.

Z(kx,ky ,Ω)

Ly

L1
xdTPM L2

x

pLoad

pLoad

(a) holohedral coupling

Z(kx,ky ,Ω)

Ly

L1
xdTPM L2

x

pLoad

pLoad

(b) subregional coupling

Figure 5.27: 2d structure with with inclined wall and porous absorber

In figures 5.28 and 5.29 the steady state response for the sound pressure level is sketched

for both load cases. The different interface-specifications are compared against the system

with reflective walls for a frequency of excitation of 163Hz. Due to the fact, that the

frequency of excitation is near to a natural frequency, one specific modeshape is excited

and very high sound pressures occur in case of the undamped system (figures 5.28c and

5.29c). A significant reduction is achieved due to the application of the absorptive layer at

the boundary. Comparing the results in figures 5.28a and 5.28b as well as in figures 5.29a

and 5.29b one observes lower sound pressure levels for the holohedral case, because here

the absorptive area, which is introduced into the system by the boundary condition, and

therefore the dissipation of energy is higher than for subregional coupling.
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(a) 7.2 cm Melamine Foam – holohedral coupling

(b) 7.2 cm Melamine Foam – subregional coupling

(c) System with reflective walls

Figure 5.28: Sound-pressure p(x, y) [Pa] for a frequency of excitation of 163Hz – spatial resolution
for a unit point source at x = 1.15m and y = 0.77m

The point source, located at x = 1.15m and y = 0.77m, yields higher sound pressure levels

than the load, applied at x = 5.89m and y = 1.71m. This results out of the modal load,

which is higher for this load case as one can see from the velocity patterns in figures 5.30

and 5.31.
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(a) 7.2 cm Melamine Foam – holohedral coupling

(b) 7.2 cm Melamine Foam – subregional coupling

(c) System with reflective walls

Figure 5.29: Sound-pressure p(x, y) [Pa] for a frequency of excitation of 163Hz – spatial resolution
for a unit point source at x = 5.89m and y = 1.71m
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(a) Sound source at xL = 1.15m, yL = 0.77m – holohedral coupling

(b) Sound source at xL = 1.15m, yL = 0.77m – subregional coupling

(c) Sound source at xL = 5.89m, yL = 1.71m – holohedral coupling

(d) Sound source at xL = 5.89m, yL = 1.71m – subregional coupling

Figure 5.30: Sound-velocity vx(x, y) [m/s] in x-direction for an excitation with a unit point source
at a frequency of 163Hz – spatial resolution
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(a) Sound source at xL = 1.15m, yL = 0.77m – holohedral coupling

(b) Sound source at xL = 1.15m, yL = 0.77m – subregional coupling

(c) Sound source at xL = 5.89m, yL = 1.71m – holohedral coupling

(d) Sound source at xL = 5.89m, yL = 1.71m – subregional coupling

Figure 5.31: Sound-velocity vy(x, y) [m/s] in y-direction for an excitation with a unit point source
at a frequency of 163Hz – spatial resolution
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5.5.3 Application to 3d Structures

Finally the investigation of a 3d structure is presented. The rectangular geometry

V = [0, Lx] × [0, Ly] × [0, Lz] = [0, 6m] × [0, 3m] × [0, 2m], which is sketched in figure

5.32, is modeled with 288 spectral finite elements. In the CMS 50 normal and 6 coupling

modes (ny = 2 in y-direction and nz = 3 in z-direction) are considered. A spherical unit

pressure source is applied at x = 0.5m, y = 1.3m and z = 0.9m. It is oscillating with a

frequency of 122Hz. The 7.2 cm layer of Melamine Foam, which is known out of former ex-

amples is mounted at the interface and the boundary conditions for the interface are defined

as line couplings. Thus sinusoidal trial functions can be used, where the expressions for the

FSI-formulation are computed out of equation (5.59).

The absorber is mounted at x = 0. Whereas in case of the holohedral coupling the porous

foam covers the whole interface, in the subregional case the absorber is located at y ∈
[0.5m; 2.0m] and z ∈ [0.5m; 1.5m]. The spatial distribution of the resulting sound field is
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(a) holohedral coupling
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d
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y

z

(b) subregional coupling

Figure 5.32: 3d structure with porous absorber

depicted in figures 5.34 and 5.36. The structure is excited at a frequency of 122Hz, where a

multiple eigenvalue of the system with reflective walls is located. The (3, 0, 1) mode (three

zero-crossings in the x-direction, none in the y-direction, and one in the z-direction for the

pressure field) and the (0, 1, 1) mode are at resonance there. One observes the contributions

of these modes in the results.

As discussed in the 2d examples already, in case of subregional coupling the peak reduction

due to the absorber is less significant, because less absorptive area is installed in the system

and the modeshapes related to velocity patterns, which are dominant in the y- and z-direction

are damped less than the patterns in x-direction because of the location of the absorber.

For acoustic design therefore is in inevitable to get the spatial information as well as the

energetic values of the result.



132 5 Fluid Structure Interaction

Lx
Ly

Lz

d

x

y

z

Figure 5.33: 3d structure with porous absorber – holohedral coupling

(a) p(x, y, z) [Pa] (b) vx(x, y, z) [m/s]

(c) vy(x, y, z) [m/s] (d) vz(x, y, z) [m/s]

Figure 5.34: 7.2 cm Melamine Foam (holohedral coupling) – Response for an excitation with a unit
point source at a frequency of 122Hz
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Figure 5.35: 3d structure with porous absorber – subregional coupling

(a) p(x, y, z) [Pa] (b) vx(x, y, z) [m/s]

(c) vy(x, y, z) [m/s] (d) vz(x, y, z) [m/s]

Figure 5.36: 7.2 cm Melamine Foam (subregional coupling) – Response for an excitation with a
unit point source at a frequency of 122Hz
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Conclusions and Outlook

In the field of engineering acoustics the simulation of sound fields in cavities with absorptive

boundaries is an important task, especially if the spatial resolution of the sound field is of

interest. The application of commercial FE-methods is often limited for such applications.

The number of unknowns is increasing significantly with increasing frequencies, on the one

hand side, because of the grid-refinement to build up the short wavelengths, occurring in this

range, and on the other hand side, because of the huge effort to consider the porous material

with a high level model. If porous foams would have to be modeled with FEM, unknowns for

the displacements of the constituents and for the pressure would have to be introduced in the

model. For porous materials, which are used for acoustical optimization in civil engineering

and automotive design, often measurement results are available for characteristic parameters,

like impedances for instance.

On the one hand side the method, which has been derived in this work, allows to investigate

porous absorbers or compound absorbers, consisting of porous and elastic layers, numerically

in order to deduce measures like impedances or absorption ratios, on the other hand side

these absorbers can be considered in a coupled model with acoustic fluids for computations

in the steady state.

The model is based on a Component Mode Synthesis, where the normal and coupling modes,

as well as the energies in the fluid and the virtual work of the load, are computed with the

SFEM. This method is advantageous for smooth solutions like they occur in acoustics and

provides a high accuracy at comparable low costs. Test functions are applied at the interface

between acoustic fluid and absorber. After a spectral decomposition of the trial functions, the

Lagrangian of the absorber and the virtual work of the dissipative forces, which are considered

in the Hamilton principle, are computed at the basis of impedances in the wavenumber-

frequency-domain. The quality of the approximation of the energetic expressions with the

impedance-based computation has been discussed for several trial functions and criteria for

the choice of the trial functions have been defined. Because wavenumbers are linked to

the angle of incidence of a sound wave, hitting the respective surface, wavenumber- and
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frequency-dependent impedances are able to express the absorber concerning all properties,

which are necessary for the coupling.

These impedances can be gained directly out of measurements and used for the coupling

method. Measurement results for plain-wave impedances have been presented and introduced

into the coupling algorithm.

On the other hand the impedances for compound absorbers can be computed with numerical

models. Therefore a method, based on the ITM has been derived in this thesis, where the

equations of motion are established for the different materials and then transformed into the

wavenumber- and frequency domain applying a Fourier transformation. For the description

of the porous material the Theory of Porous Media has been applied, which is strictly based

on the mechanical laws of conservation and provides a wide range of possibilities to specify

the porous foam. In the scope of the TPM a rigid solid phase is modeled in combination with

a compressible gas in the pores. The friction between the constituents depends on the seepage

velocity and the permeability constant. In this thesis a relation between the permeability and

the specific flow resistance – a well known quantity in acoustics – is given. The fundamental

system is computed in the transformed domain after applying a Helmholtz-decomposition,

and the transformed stresses and displacements are established. The solutions for foams,

elastic layers and air cushions are combined to compound absorbers, observing the boundary

condition at the interfaces of the individual layers. Applying an incident sound wave for

arbitrary wavenumber-frequency combinations the impedance is obtained at the surface of

the absorber.

The method has been validated by simulating compound absorbers in several examples. The

results have been discussed in the light of common engineering models for porous foams

and additionally compared against measurements. The impedance-based FSI formulation

for coupled problems of acoustic fluids and absorbers has been validated with analytical

solutions for simple problems. In addition to that the application of the method has been

presented for 2d- and 3d-structures computing the pressure and velocity fields as well as the

frequency response functions for different load cases.

In the scope of this work topics out of various engineering disciplines like material mechanics,

structural dynamics, technical acoustics and room acoustics have been discussed and several

methods e.g. Integral Transform methods, impedance approaches, Finite Element Methods

or measurements have been used. Consequently links to future research topics result for all

of these disciplines and methods.

In the material mechanical formulation of the porous absorber the damping-losses of porous
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materials coupled with the acoustic fluid due to the flow resistance and heat conduction

effects (for high frequencies) can be a part of future research, where experimental tests can

be applied to enrich the optimization of the model. In addition, the wavenumber-dependence

of the damping characteristics of foams can be investigated with the help of the ITM model

and accompanying measurements in the free field for varying angles of incidence.

The limits of the method in the mid-frequency range are of special interest, too. Since the

modal density of the acoustic volume is increasing rapidly for high frequencies, even the

CMS-based approach is getting numerically expensive because of an increasing number of

modeshapes, which has to be considered. In addition, the number of degrees of freedom for

the computation of the normal and coupling modes with the SFEM is increasing, because a

very fine spatial discretization is required for the acoustic fluid in this frequency range.

Due to the use of the ITM, the FSI-method is restricted to models with plane interfaces

between absorber and acoustic fluid. This is sufficient for most of the applications in civil

engineering. In case of very complex geometries, which have to be modeled for specific

problems in automotive engineering for instance, an expansion of the method is necessary.

Applying mapping techniques at the interface, curved geometries can be modeled (up to a

certain limit, which is depending on the frequency range) with SFEM, where the impedance

of the absorber still can be computed with the ITM assuming a plane geometry.

Even impulse response functions, which are usually computed with ray tracing methods in

the time domain, can be computed out of the results in the frequency domain if an inverse

Fourier transform is applied. The efficiency of the method for this application is linked to

the frequency range, which has to be considered, and the required sampling interval as well

as to the volume of the system.
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A.1 Vector Calculus

In the derivation of the TPM balance equations for the porous medium in section 2.2 the

expressions are defined and simplified with the help of vector calculus. The definition of the

operators as well as the relations, which are used for the simplification are sketched below.

Differential operators

u, . . . scalar field v, . . . vector field T, . . . tensor field (of 2nd order)

grad u = ∇ ⊗ u

= gi
∂

∂θi
⊗ u

= u,k gk

= u|k gk

(A.1)

grad v = ∇ ⊗ v

= gi
∂

∂θi
⊗ v

= gi
∂

∂θi
⊗
(
vj gj

)
= vj|i gi ⊗ gj

=
(
vj,i +v

kΓki
j
)
gi ⊗ gj

(A.2)
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grad T = ∇ ⊗ T

= gi
∂

∂θi
⊗T

= gi
∂

∂θi
⊗ tij gj ⊗ gj

= tij|k gk ⊗ gi ⊗ gj

=
(
tij,k +tnjΓnk

i + tinΓnk
j
)
gk ⊗ gi ⊗ gj

(A.3)

div v = ∇ · v

= gi
∂

∂θi
· v

= gi
∂

∂θi
·
(
vj gj

)
= vj|i gi · gj
= vj|i δij
= vj|j
= vj,j + vkΓkj

j

(A.4)

div T = ∇ ·T

= gi
∂

∂θi
·T

= gi
∂

∂θi
· tij gi ⊗ gj

= tij|k
(
gk · gi

)
⊗ gj

= tij|k δki gj

= tij|i gj
=
(
tij,i +t

njΓni
i + tinΓni

j
)

gj

(A.5)

rot v = ∇× v

= gi
∂

∂θi
× v

= gi
∂

∂θi
×
(
vj gj

)
= vj|i gi × gj

= vj|i εijk gk

=
(
vj,i − vmΓij

m
)
εijk gk

(A.6)
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Relations for differential operators

u, ρ, λ, . . . scalars a, b, v, . . . vectors A, B, V, . . . tensors of 2nd order

grad (c u) = c grad u (A.7)

grad (u1 u2) = u1 grad u2 + u2 grad u1 (A.8)

∇⊗ (u1u2) = u1∇⊗ u2 + u2∇⊗ u1 (A.9)

div (a + b) = div a + div b (A.10)

∇ · (a + b) = ∇ · a +∇ · b (A.11)

div cv = c div v (A.12)

div I = 0 (A.13)

div grad v = ∇ · ∇ ⊗ v = ∇2 ⊗ v = ∆v = vi,kkei (A.14)

div (grad v)T = grad div v (A.15)

div grad v = grad div v − rot rot v (A.16)

rot (a + b) = rot a + rot b (A.17)

∇× (a + b) = ∇× a +∇× b (A.18)

rot (cv) = c rot v (A.19)

rot (uv) = u rot v − v × grad u (A.20)

∇ × (uv) = u∇ × v − v × ∇⊗ u (A.21)

div (ρv) = ρ div v + v · grad ρ (A.22)

∇ · (ρv) = ρ∇ · v + v · ∇ ⊗ ρ (A.23)

div rot v = ∇ · ∇ × v = 0 (A.24)

div (v1 × v2) = v2 · rot v1 − v1 · rot v2 (A.25)

rot grad u = ∇×∇⊗ u = 0 (A.26)

div v =
1

2

(
grad v + (grad v)T

)
· I (A.27)
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A.2 Fourier Transform - Short Summary

Definition

The function f (x, y, z, t) is transformed from the original into the Fourier domain f̂ (kx, ky, z, ω)

via

f (x, y, z, t) f̂ (kx, ky, z, ω)

f̂ (kx, ky, z, ω) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

((
f
(
x, y, z, t

)
e−ikxx dx

)
e−ikyy dy

)
e−iωt dt (A.28)

The z-coordinate is not transformed in equation (A.28) in order to enable layered structures

in this direction.

The inverse transform follows equation (A.29)

f̂ (kx, ky, z, ω) f (x, y, z, t)

f (x, y, z, t) =
1

(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

((
f̂
(
kx, ky, z, ω

)
eikxx dkx

)
eikyy dky

)
eiωt dω (A.29)

Derivatives

The derivative of a function f (x, y, z, t) with respect to a parameter, which is transformed

according to (A.28), which means with respect to x, y or t is simplified to a multiplication

with the transformed variables kx, ky and ω respectively.

dn

dtn
f (x, y, z, t) (i ω)n f̂ (kx, ky, z, ω) (A.30)

dn

dxn
f (x, y, z, t) (i kx)

n f̂ (kx, ky, z, ω) (A.31)

dn

dyn
f (x, y, z, t) (i ky)

n f̂ (kx, ky, z, ω) (A.32)

A detailed introduction into the Fourier transformation method as well as a summary of the

rules of calculation and examples for its application are provided by Buchschmid [2010] for

instance.
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A.3 Spectral Finite Element Method

The normal and the coupling velocity potential modes ΦN
j and ΦC

k , which were introduced in

the FSI-formulation in chapter 5 are numerically computed with the Spectral Finite Element

Method (SFEM). The Spectral Finite Element Method as well as the Spectral Method are

convenient to deal with very smooth solutions for acoustic problems to receive spectral

convergence [Trefethen 2000; Pospiech and Rentrop 2009; Buchschmid et al. 2010; Pospiech

2011].

The SFEM is used to compute the modes, which formulate the Lagrangian function of the

air (5.3), that means the normal and coupling modes of the pressure pA(x) and the sound

velocity vA(x). After transforming the wave equation (5.9) with the help of the Fourier

transformation from the time domain into the frequency domain, the Helmholtz equation

(5.10) is obtained. Multiplying (5.10) with test functions ν(x) and integrating by parts one

yields the weak formulation of the Helmholtz equation.∫
V

∇Φ∇ν − k2ΦνdV =

∫
∂V

∇Φνds (A.33)

The solution of equation (A.33) is computed with the SFEM. After the domain partition and

an approximation of Φ with basis functions, which are equal to the test functions, equation

(A.33) ends up in the global matrix vector formulation

(
K− k2M

)
Φ̃ = F, (A.34)

where K stands for the global stiffness matrix, M for the global mass matrix, F incorporates

the normal derivative of Φ at the domain boundaries, and Φ̃ is the vector of the global

coefficients of the basis functions in each element.

To find a solution for the coefficients in equation (A.34), boundary conditions for the related

normal and coupling modes
{

ΦN
j ,Φ

C
k

}
have to be enforced at the domain boundaries. For the

mmax normal modes homogeneous Neumann boundary conditions have to be fulfilled every-

where, due to the totally reflecting walls. These boundary conditions end up in a right-hand

side F = 0 and consequently in a general eigenvalue problem. The resulting normal modes

of the potential ΦN
1 ,Φ

N
2 , ...,Φ

N
mmax

are related to the complex coefficients A1,A2, ...,Ammax

in (5.7). For the potential coupling modes ΦC
k a boundary condition must be defined. This

boundary condition can be an inhomogeneous Neumann boundary condition on ΓN (A.35)
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or a given inhomogeneous Dirichlet boundary condition on ΓD (A.36).

∂ΦC
k (x)

∂n
= gk(x), ∀x ∈ ΓN ⊂ ∂V (A.35)

ΦC
k (x) = hk(x), ∀x ∈ ΓD ⊂ ∂V (A.36)

Because of the inhomogeneous Neumann or Dirichlet boundary conditions equation (A.34)

has a nonzero right-hand side F. Therefore a system of linear equations has to be solved

for each coupling mode. The coupling modes belong to the coefficients B1,B2, ...,Bnmax in

(5.7). According to Karniadakis and Sherwin [2005] the basis functions for the SFEM on the

reference interval ξ ∈ [−1, 1] result from the modal continuous C0 expansion of polynomials

from degree 1 to Q.

Nq(ξ) =



1−ξ
2

, q = 0

(1−ξ
2

)(1+ξ
2

)J1,1
q (ξ) , 0 < q < Q

1+ξ
2

, q = Q

(A.37)

J1,1
q in (A.37) denotes the Jacobi polynomial with parameters α = 1, β = 1 and polynomial

degree q. In three dimensions the related hexahedral tensor product expansion is defined for

the reference domain [−1, 1]3 with {ξ1, ξ2, ξ3} ∈ [−1, 1].

Nqrs(ξ) = Nq(ξ1)Nr(ξ2)Ns(ξ3), 0 ≤ q, r, s ≤ Q (A.38)

In two dimensions for instance there exist 4 vertex-modes, 4 (Q− 1) edge-modes, and (Q− 1)2

interior-modes. They are depicted in figure A.1.

Figure A.1: 2d Legendre basis functions Nqr for a polynomial degree Q = 3
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Thereby the modal face orientation and connectivity has to be considered at the boundaries

between adjacent elements. For the integrals in every element of the domain the Gauss-

Lobatto-Legendre quadrature with the quadrature points ξj and weights w0,0
j is applied.

ξj =



−1 , j = 1

ξ1,1
j−2,W−2 , j = 2, ...,W − 1

1 , j = W

w0,0
j = 2

W (W−1)(J1,1
j−2(ξj))

2 , j = 1, ...,W

(A.39)

The quadrature points ξ1,1
j−2,W−2, which are clustered and symmetrically distributed in [−1, 1],

are the (W − 2) zeros of the (W − 2) th-order Jacobi polynomial J1,1
W−2. When using the

Gauss-Lobatto-Legendre quadrature of order W , a polynomial u (ξ) ∈ P2W−3 is integrated

exactly. Consequently for basis functions up to order Q the number of quadrature points

W = Q + 2 is chosen for integration. For the kinetic and the potential energy in equations

(5.4) and (5.5) and for the load in equation (5.6) the same quadrature rule is used as for the

computation of the modes.
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A.4 Preconditioning

Modification of the System of Equations

There occur different magnitudes for one individual coefficient in the equations of (4.14)

and also for the coefficients within one individual equation. This leads to an ill conditioned

system of equations. Therefore a scaling of rows and columns is applied as a preconditioning

using diagonal matrices DR and DC for rows and columns respectively.

DR =


1

max|K11..1m| · · · 0
...

. . .
...

0 · · · 1
max|Kn1..nm|

 DC =


1

max|[DR K]11..n1| · · · 0
...

. . .
...

0 · · · 1
max|[DR K]1m..nm|


(A.40)

The elements of (4.14) are scaled with the help of (A.40).

DR K x = DR f (A.41)

DR K DC D−1
C x = DR f (A.42)

Substituting K? = DR K DC, f? = DR f and x? = D−1
C x one obtains a system of equa-

tions (A.43), which is well conditioned. This system is solved for the transformed vector of

unknowns x?. The inverse transform in order to gain x is carried out with the help of (A.44).

K? x? = f? (A.43) x = DC x? (A.44)

Alternative Definition of the Scalar and Vector Potentials

If thick layers are defined in the absorber model, big arguments occur in the exponential

functions. This leads to ill conditioned systems of equations, which cannot be improved

sufficiently applying the method, outlined above. Then it is reasonable to rearrange the

definitions of the scalar and vector potentials in equations (2.73)–(2.76) for the porous foams,

(3.8) and (3.9) for the homogeneous layers as well as in (3.22) for the air before defining the

system of equations.

The argument in the exponential function eλ z is expressed as eλ (z−h) with respect to a

constant h, where h > z holds. It is suitable to choose the thickness of the layer for the
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constant h. The procedure is presented exemplarily for the homogeneous material [see e.g.

Lieb 1997].

The potentials out equations (3.8) and (3.9) are redefined as:

C1 e
κ1 z = C1 e

κ1 dH e−κ1 dH eκ1 z = C1 e
κ1 (z−dH) (A.45)

D1x e
κ2 z =D1x e

κ2 dH e−κ2 dH eκ2 z = D1x e
κ2 (z−dH) (A.46)

D1y e
κ2 z =D1y e

κ2 dH e−κ2 dH eκ2 z = D1y e
κ2 (z−dH) (A.47)

The displacements in the transformed domain read after the transformation analogously to

equation (3.16):

û
x
H

ûyH

ûzH

 =

ikxe
κ1(z−dH) ikxe

−κ1z 0 0 −κ2e
κ2(z−dH) κ2e

−κ2z

ikye
κ1(z−dH) ikye

−κ1z κ2e
κ2(z−dH) −κ2e

−κ2z 0 0

κ1e
κ1(z−dH) −κ1e

−κ1z −ikyeκ2(z−dH) −ikye−κ2z ikxe
κ2(z−dH) ikxe

−κ2z





C1

C2

D1x

D2x

D1y

D2y


(A.48)
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A.5 Linear Structural Model for the Kirchhoff Plate

In section 5.3 the calculation of the Lagrangian for a plate structure based on an impedance

description is deduced using the example of the Kirchhoff plate. The derivation of the energy

expressions, which are used there, is sketched in the following [see Wauer 2008; Petersen 1982,

1996].

Mechanical models for 3d structures, which can be expressed with less than three metric

parameters are deduced from continuum models by introducing kinematic relations, where in

general two approaches are used [see Wauer 2008]. In a systematic approach the condensation

is achieved step by step. Primary variables, which are displacements in the mid-surface of

plates or shells for instance, are defined and introduced into the displacement field, which

simplified via ansatz-functions over the condensed dimension. The simplified displacement

field is then used in the mechanical laws of conservation. Near to this systematic approach

a direct method is often used in engineering practice, where the kinematic relations are

introduced heuristically and analytical, mechanical principles, like Hamilton’s principle are

applied.

The direct method is used to deduce the energetic expressions for the rectangular Kirchhoff

plate starting from a plane load-bearing structure. An infinitesimal element is sketched in

figure A.2, where the y, z-plane of the reference frame is defined in the mid-surface of the

plate.

x, u

y

z

dy

dz

d

Figure A.2: Infinitesimal plate element
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In the y, z-plane tension/compression and shear occur whereas perpendicular to the mid-

surface bending is carried. In this plane state of stresses σx as well as τyx, τzx vanish.

Potential Energy

The potential energy of the internal forces U can be written in terms of σy, σz and τyz.

U =
1

2

∫
V

σzεz + σyεy + τyzγyz dV (A.49)

Assuming a linear elastic material Hooke’s law is applied and the stresses are defined in

terms of the strains:

σy =
E

1− ν2
(εy + νεz)

σz =
E

1− ν2
(εz + νεy)

τyz = Gγyz =
E

2 (1 + ν)
γyz =

E (1− ν)

2 (1− ν2)
γyz =

E

1− ν2

1

2
(1− ν) γyz

(A.50)

Inserting the relations for σy, σz and τyz in equation (A.49) one obtains

U =
1

2

E

1− ν2

∫
V

ε2y + 2νεyεz + ε2z +
1

2
(1− ν) γ2

yz dV (A.51)

=
1

2

E

1− ν2

∫
V

(εy + εz)
2 − 2 (1− ν)

(
εyεz −

1

4
γ2
yz

)
dV

for the potential energy of the internal forces. As pointed out by Bauchau and Craig [2009], in

the scope of the Kirchhoff theory it is assumed, that the normal material line is rigid, straight

and normal to the deformed mid-plane during the deformation, i.e. plain cross sections, which

are perpendicular to the mid-plane, remain plain during the process of deformation.

Restricting the system to the bending problem and neglecting higher order effects, the strains

are defined to:

εy = −x∂
2u

∂y2
= −xu′′

εz = −x∂
2u

∂z2
= −xu88

γyz = −2xu′ 8

(A.52)
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The angles occurring due to bending are linked to the out of plane displacement u via its

derivatives u′ and u8.

Inserting the strains into (A.51) one finally obtains

U =
1

2

E

1− ν2

∫
A

∫
d

x2
[
(u′′ + u88)

2 − 2 (1− ν)
(
u′′u88 − u′ 82

)]
dx dA

=
1

2

Ed3

12 (1− ν2)︸ ︷︷ ︸
B‘

∫
A

(u′′ + u88)
2 − 2 (1− ν)

(
u′′u88 − u′ 82

)
dA (A.53)

where B‘ is the abbreviation for the bending stiffness of the plate.

Kinetic Energy

Within the Kirchoff theory the rotational inertia is neglected and for the bending problem

just velocities perpendicular to the plate have to be considered. Then one obtains for the

kinetic energy T

T =
1

2

∫
A

µ

(
∂u

∂t

)2

dA with: µ = ρ d (A.54)

where µ is the mass distribution and ρ is the density of the homogeneous material. As the

result of the condensation the plate is described with the help of two metric parameters y

and z.
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A.6 Supplement: Coupling with Impedances

Integrating in space

The calculation of the Lagrangian of the absorptive component out of impedances is done in

section 5.3.1, where also non-orthogonal trial functions have to be considered. The velocities

and displacements of the substructure are defined as sums in a Fourier series. In order

to obtain the virtual work of the damping forces and energies for the formulation of the

Lagrangian for the Ritz approach, products of these sums have to be computed via

N∑
n=1

an

N∑
n=1

bn =
N∑
k=1

N∑
l=1

ak bl =
N∑
n=1

an bn +
N−1∑
k=1

N∑
l=k+1

ak bl +
N−1∑
k=1

N∑
l=k+1

bk al (A.55)

(
N∑
n=1

an

)2

=
N∑
n=1

a2
n + 2

N−1∑
k=1

N∑
l=k+1

ak al (A.56)

The integration over the surface of the boundary layer in equations (5.35) and (5.41) is done

in dependence of the Fourier coefficients using the theorem of Parseval.

Parseval Theorem

f(t) and g(t) are continuous functions, which are periodic in [0, T ]. The theorem of Parseval1

[compare Beerends et al. 2003; Meyberg and Vachenauer 2001] states that:

1

T

T∫
0

f(t) g(t) dt =
∞∑

k=−∞

ck dk (A.57a)

1

T

T∫
0

|f(t)|2 dt =
∞∑

k=−∞

|ck|2 (A.57b)

f(t) and g(t) are expressed as f(t) =
∞∑

k=−∞
ck e

i(k ω t) and g(t) =
∞∑

k=−∞
dk e

i(k ω t) using a

Fourier series. In section 5.3 a 2-D Fourier series is used to build up the trial functions

for velocity and displacements in equations (5.31) and (5.32). In case of surface integrals,

1M. A. Parseval, 1799
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equations (A.57a) and (A.57b) read

Lrep
z∫

0

Lrep
y∫

0

f (y, z) g (y, z) dy dz = Lrep

y L
rep

z

rmax∑
−rmax

smax∑
−smax

CrsDrs (A.58a)

Lrep
z∫

0

Lrep
y∫

0

|f (y, z) |2 dy dz = Lrep

y L
rep

z

rmax∑
−rmax

smax∑
−smax

|Crs|2 (A.58b)

where the functions f (y, z) and g (y, z) are replaced by ψ̂k and ψ̂l in (5.35). The integrals

appearing during the derivation in section 5.3.1 can be calculated with equations (A.58a)

and (A.58b). The results are listed below:∫
Arep

ψ̂k ψ̂ldA = Lrep

y L
rep

z

∑
r

∑
s

EkrsElrs (A.59)

∫
Arep

(
ψ̂n

)2

dA = Lrep

y L
rep

z

∑
r

∑
s

|Enrs|2 (A.60)

With equations (A.55) and (A.56) equation (5.41) is transformed.

∫
Arep

[
N∑
n=1

(
ψ̂′′n + ψ̂88

n

)
yn

]2

dA =
N∑
n=1

y2
n

∫
Arep

(
ψ̂′′n + ψ̂88

n

)2

dA+

+ 2
N−1∑
k=1

N∑
l=k+1

yk yl

∫
Arep

(
ψ̂′′k + ψ̂88

k

) (
ψ̂′′l + ψ̂88

l

)
dA

(A.61)

The surface-integrals in (A.61) are solved in equations (A.62) and (A.63), introducing the

abbreviations defined in (5.38) and applying (A.59) and (A.60).∫
Arep

(
ψ̂′′k + ψ̂88

k

) (
ψ̂′′l + ψ̂88

l

)
dA

= Lrep

y L
rep

z

∑
r

∑
s

(
E ′′krsE

′′
lrs + E ′′krsE

88
lrs + E 88

krsE
′′
lrs + E 88

krsE
88
lrs

)
= Lrep

y L
rep

z

∑
r

∑
s

(
k4
y + 2 k2

y k
2
z + k4

z

)
EkrsElrs

= Lrep

y L
rep

z

∑
r

∑
s

(
k2
y + k2

z

)2
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Analogously one obtains setting k = n and n = l in (A.62).∫
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Proof of Equation (5.41)

In section 5.3.1 the potential energy of the Kirchhoff -plate is formulated defining a Fourier

series for the velocity field. Starting from the formulation in (5.37) the Fourier series and its

derivatives are inserted according to (5.29) and (5.38).
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The second summand in (A.64)∫
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is discussed in detail in the following. It is splitted up in two integrals (A.66) and (A.67).
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Expression (A.67) is transformed to obtain an assembly, which is similar to (A.66)
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Equation (A.65) is calculated finally evaluating the corresponding terms in (A.66) and (A.68).
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Since (A.65) vanishes, equation (A.64) can be simplified.
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Integrating in time

In the variational formulation (5.2) the Lagrangian functions LBC and the virtual work of

the non-conservative forces δW nc
BC have to be integrated for the boundary conditions within

an arbitrary time-range from t1 to t2. In the scope of this work, the integral is computed

over one time period T in equations (5.43) and (5.48). The results are listed below. The



A.6 Supplement: Coupling with Impedances 153

results are used in section 5.3.1.
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A.7 Supplement: Fourier Approximation of the Trial
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[Babuška and Sauter 1997] Babuška, I. ; Sauter, S.: Is the pollution effect of the FEM
avoidable for the Helmholtz equation considering high wave numbers. In: SIAM Journal
on Numerical Analysis 34 (1997), p. 2392–2423

[Baer and Nunziato 1986] Baer, M. R. ; Nunziato, J. W.: A two-phase mixture the-
ory for the deflagration-to-detonation transition (DDT) in reactive granlar materials. In:
International Journal of Multiphase Flow 12 (1986), p. 861–889

[Bauchau and Craig 2009] Bauchau, O. A. ; Craig, J. I.: Structural Analysis. Springer,
2009

[Beerends et al. 2003] Beerends, R.J. ; Morsche, H.G. ; Berg, J.C. van den: Fourier
and Laplace Transforms. Cambridge University Press, 2003

[Beranek 1947] Beranek, L.: Acoustical Properties of Homogeneous, Isotropic Rigid
Tiles and Flexible Blankets. In: The Journal of the Acoustical Society of America 19
(1947), p. 556–568

[Biot 1941a] Biot, M.A.: Consolidation settlement under a rectangular load distribution.
In: Journal of Applied Physics 12 (1941), p. 426–430

[Biot 1941b] Biot, M.A.: General Theory of Three-Dimensional Consolidation. In: Jour-
nal of Applied Physics 12 (1941), p. 55–164



164 Bibliography

[Biot 1955] Biot, M.A.: Theory of Elasticity and Consolidation for a Porous Anisotropic
Solid. In: Journal of Applied Physics 26 (1955), p. 182–185

[Biot 1956a] Biot, M.A.: Theory of Deformation of a Porous Viscoelastic Anisotropic
Solid. In: Journal of Applied Physics 27 (1956), p. 459–467

[Biot 1956b] Biot, M.A.: Theory of propagation of elastic waves in a fluid saturated
porous solid. I Low frequency range. In: The Journal of the Acoustical Society of America
28 (1956), p. 168–178

[Biot 1956c] Biot, M.A.: Theory of propagation of elastic waves in a fluid saturated
porous solid. II Higher frequency range. In: The Journal of the Acoustical Society of
America 28 (1956), p. 179–191

[Biot 1961] Biot, M.A.: Mechanics of Deformation and Acoustic Propagation in Porous
Media. In: Journal of Applied Physics 33 (1961), p. 1482–1498

[Biot 1962] Biot, M.A.: Generalized Theory of Acoustic Propagation in Porous Dissipative
Media. In: Journal of the Acoustical Society of America 34 (1962), p. 1254–1264

[Biot and Willis 1957] Biot, M.A. ; Willis, D. G.: The elastic coefficients of the theory
of consolidation. In: Journal of Applied Mechanics 24 (1957), p. 594–601

[Bitsie 1996] Bitsie, F.: The structural acoustic energy finite element method and energy
boundary element method, Purdue University , USA, Ph.D. thesis, 1996

[Bluhm 1997] Bluhm, J.: A consistent model for saturated and empty porous media,
Fachbereich Bauwesen, Universität-Gesamthochschule Essen, Habilitation, 1997

[Bluhm 2002] Bluhm, J.: Porous Media: Theory, Experiments and Numerical Applica-
tions. Chap. Modelling of saturated thermoelastic porous solids with different tempera-
tures, p. 87 – 118, Springer, 2002

[Bluhm and de Boer 1997] Bluhm, J. ; Boer, R. de: The volume fraction concept in the
porous media theory. In: ZAMM - Journal of Applied Mathematics and Mechanics 77
(1997), p. 563–577

[de Boer 1992] Boer, R. de: Development of porous media theories - A brief historical
review. In: Transport in Porous Media 9 (1992), p. 155–164

[de Boer 2000] Boer, R. de: Theory of Porous Media. Highlights in Historical Development
and Current State. Springer, 2000

[de Boer 2005a] Boer, R. de: The Engineer and the Scandal: A Piece of Science History.
Springer, 2005

[de Boer 2005b] Boer, R. de: Trends in Continuum Mechanics of Porous Media. Theory
and Applications of Transport in Porous Media. Springer, 2005

[de Boer and Didwania 2004] Boer, R. de ; Didwania, A. K.: Two-Phase Flow and the
Capillarity Phenomenon in Porous Solids - A Continuum Thermomechanical Approach.
In: Transport in Porous Media 56 (2004), p. 137–170



Bibliography 165

[de Boer and Ehlers 1986] Boer, R. de ; Ehlers, W.: Theorie der Mehrkomponentenkon-
tinua mit Anwendungen auf bondemechanische Probleme, Teil I. / Fachbereich Bauwesen,
Universität-Gesamthochschule Essen. 1986. – Research Report

[Boskovic 2005] Boskovic, L.: Halbraumdynamik nach der Theorie Poröser Medien
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