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ABSTRACT
In this paper we describe an infrastructureless indoor navi-

gation system based on wireless inertial measurement units
(IMUs). After a short calibration, only one IMU is required,
that can be placed in the user’s pocket, in contrast to other
approaches that require the constant use of a cumbersome
foot-mounted IMU. The position accuracy of the system can
be improved through map-matching, where the used maps
are automatically refined by analyzing user-generated move-
ment patterns.

1. INTRODUCTION

As the importance of location-based services grows,
the accuracy of location becomes a crucial issue for the
success of such services. While outdoor localization via
GPS is widely used, indoor localization without the aid
of costly infrastructure still remains an area of active
research. The practicality of indoor localization is of-
ten hindered by insufficient position accuracy or by the
need for expensive and cumbersome sensor systems. A
number of previous studies have proposed using the
principle of zero updated velocities (ZUPT). This was
first proposed in [6, 3] to cope with accuracy problems
arising from the small size of the inertial measurement
units (IMUs). Unfortunately, ZUPT requires the IMU
to be placed on the foot, which we consider as a major
drawback of this technique, since it either conflicts with
the aesthetic aspects of everyday life or requires special
shoes with a built-in sensor.

To overcome these inconveniences we propose a mo-
bile localization system, based on a small wireless IMU
to be placed inside the user’s pocket and a handheld de-
vice for visualization. Hip-based placement of IMUs was
already advocated by Ladetto in [4]. His system needs
to be firmly attached to the user’s hip and provides less
accurate data than a foot-mounted unit. Further, it re-
quires extensive calibration using external components
such as a differential global positioning system (D-GPS)
with a reference station.

To facilitate such calibration, we, on the other hand,
propose an automatic calibration routine based on reg-
ular GPS and a second wireless IMU attached to the
user’s shoe that is only used initially for a short dura-
tion. The calibration has to be performed in a region
with GPS coverage. This is not a serious restriction -
e.g., assume a user entering an airport building inside
which indoor localization-based service are to be used.
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Figure 1: System Architecture

Just before the user enters this building, GPS coverage
is available and is used to calibrate the system. The
shoe-mounted IMU is only necessary for this first cal-
ibration phase when the user starts using the system,
and can be detached thereafter.

In order to improve the accuracy of the system, we
propose an online update of the IMU’s drift parame-
ters, in combination with a map matching approach.
This is based on a coarse map (e.g., only building con-
tours) that is similar to the one proposed in [1]. We
refine this map using the history of movement patterns.
The map data can be sporadically transmitted to a cen-
tral server which fuses the map information with maps
gathered from other users and redistributes the refined
maps. Using such automatically refined maps allow us
to achieve good map matching accuracy without the
need for manually providing detailed maps — as pro-
posed in [7] — which are often not available.

2. SYSTEM ARCHITECTURE

Figure 1 shows the systems architecture. The main
components of the proposed system are the IMUs, a mo-
bile handheld and a GPS-receiver. The data fusion al-
gorithms run on the handheld device in real-time. The
maps used for orientation and filter improvement are
stored locally and sporadically transmitted to a map
server (if present). Updates from a map server are only
necessary only if a new area is to be explored. The map-
ping information is anonymous and has globally valid
tags. Hence, the system need not be bound to a dedi-
cated server and no tight coupling or link monitoring is
necessary.
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The two used IMUs were both custom built using
low-cost MEMS sensors. The hip-mounted IMU is of
the size of a cigarette box and contains a 3D accelerom-
eter, a 3D magnetic field sensor, three 1D gyrometers
and a high-precision pressure and temperature sensor
for altitude measurements. The shoe-mounted IMU is
smaller than a matchbox and does not contain the mag-
netic field sensor and the altitude sensor. Sensor data
in each IMU is preprocessed on an MSP430 low-power
micro-controller and then transmitted via Bluetooth.
The entire system is powered via lithium polymer bat-
teries and can be charged using any standard USB port.
Because of the low-power mircocontroller and the high
efficiency of the switching supplies, the achieved run-
times almost reach 24 hours for low transmission fre-
quencies.

3. SENSOR DATA FUSION

Once the system is started, it first requires a starting
position which will be obtained automatically via GPS
if the user resides in a region with GPS coverage. If no
GPS signal is available, the starting position must be
entered interactively, e.g., by indicating a point on the
map in the handheld device. After the first localization,
the handheld device initiates a wireless synchronisation
of the IMUs to ensure that the timestamps generated
by all devices match. Once initialized, the IMUs trans-
mit their sensor data to the handheld via Bluetooth.
The data fusion and position estimation is entirely per-
formed on the handheld device (which is currently a
QT-enabled mobile phone or a laptop). No interaction
with any server is required.

3.1 User Calibration Phase

When the system is used for the first time by an user,
a calibration phase is necessary. During this phase, the
GPS and the foot-mounted IMU are used to obtain the
calibration parameters from the user’s walking profile
(step size, etc.). Once sufficient data is collected (ap-
prox. 2 minutes of walking), calibration is performed
automatically by determining the users v/f relation.
This is similar to the approach described by Ladetto
in [4]. If no further calibration is desired, the shoe-
mounted IMU may be detached. In contrast to the
approaches mentioned in [1, 7] this IMU is not neces-
sary for the navigation process, which we believe greatly
enhances the usability of our system.

3.2 Adaptive Extended-Kalman-Filtering

Once the sytem is calibrated, it continuously pro-
cesses sensor data from the hip-mounted IMU. The ori-
entation of the user is calculated by fusing the data in an
Extended-Kalman-Filter (EKF). We dynamically adapt
the filtering to the state of the user’s movement. When

the user is stationary, the gyrometers are not used as
filter input. Here, the 3D pose is entirely based on the
acceleration data and the magnetic field, and the filter
incorporates a bigger resilience to orientation changes.
On the other hand, when the user is moving, the impact
of the magnetic field is varied according to the fluctu-
ation in the total observed magnetic field. Compared
to standard approaches based on fixed and predeter-
mined variances, we obtain a significant gain in robust-
ness against magnetic disturbances, without loosing the
drift-correction aspect of magnetic field measurements.

3.3 Online Drift and Horizon Update

A problem arises when the magnetic field is so much
deteriorated that no drift correction is possible. This
can be the case when the user is in the proximity of
large metallic elements or electronic devices e.g. switch-
ing supplies. In this case, drift correction based on the
magnetic field is no longer possible. Without a foot-
mounted IMU continuous calibration using ZUPT [3, 6]
is also infeasible. To overcome the problem of increas-
ing altitude errors due to gyrometer drifts, we use an
approach similar to the wvirtual horizon that was pro-
posed by Ladetto in [4]. Ladetto used a static cali-
bration phase and a post-processing phase in order to
model a virtual horizon function. This was used to de-
termine the static mount point of the IMU relative to
the user and to model the induced altitude variation
during each step taken. In Ladetto’s work, the horizon
function was not changed after the initial calibration,
resulting in non-negligible errors when the sensor’s po-
sition shifts. In order to avoid this shortcoming, we
developed an online horizon calibration method. When-
ever the system detects a resting period of more than
200 milliseconds, the static position of the IMU is cal-
culated, the drift parameters for the gyrometers are up-
dated and the static variation of the magnetic field is
determined. During periods of walking, a shift in the
IMU’s position is also detected via the low frequency
variation of the accelerometer values. This variation is
fed into the Extended-Kalman-Filter and used to dy-
namically estimate the gyro-drift. Hence, we obtain a
dynamic drift correction close those obtained by ZUPT,
however, without the need of a shoe-mounted sensor.

3.4 Step Detection

Step detection is based on both gyometer and acceler-
ation data. The acceleration data is used to determine
the step events. Between two step impacts lies a point
where the sensor direction exactly indicates the user’s
propagation direction. The attitude measured at this
point is then used for step propagation and position es-
timation. The step length is determined by inserting
the current step frequency into the calibrated v/f rela-
tion.
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Once the heading and step-length are determined we
use a adaptive particle filter [2], to determine position
updates. We extended this particle filter with a module
using the observed itineraries in order to improve the
granularity of a given map. The learning process starts
as soon as the probability density function for the po-
sition of the user — equipped with our proposed system
— converges. We assume that the position of the user
is known at startup, hence the initial variance in the
probability density distribution is low and the particle
distribution converges quickly. This leads to a fast start
of the learning process.

Figure 2 shows a simulated itinerary inside an office
building. The points indicate the center of the parti-
cle distributions the circles indicate their variance. The
user enters a formerly unvisited room without prior in-
formation except for the coarse-grained map. The parti-
cle distribution is relatively wide. When the user leaves
the room again on the same itinerary the distribution
becomes significantly denser indicating a higher posi-
tion accuracy.
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Figure 2: Evolution of the particle distribution
through learning. The right figure shows im-
proved position accuracy (i.e., smaller variance)

A similar mechanism for simultaneous mapping and
localization (SLAM), solely based on IMU data has re-
cently been proposed in [5]. Our approach differs from
this since it relies on a coarse map and uses a less
sophisticated filter. But since we can base the indi-
vidual learning process on far less particles, our algo-
rithm runs in real-time and does not require offline post-
processing. The module learns the accessibility of the
building based on the evolution of the particle distribu-
tion over time and an individual user can immediately
profit from a more accurate mapping information.

At larger intervals the refined map is uploaded onto
a central server and fused with maps obtained from
other users. Thus, with increasing user numbers a fine-

grained map of the traveled itineraries is created, which
represents all accessible places within region. The re-
sulting distribution can be spread to provide more ac-
curate maps to all users of the system, increasing the
position accuracy significantly. This is especially fea-
sible within buildings such as airports, where location-
based services also appear to have a significant about
of potential.

4. CONCLUDING REMARKS

Our main goal in this paper was to provide a practical
and user-friendly indoor navigation solution — (i) with
wearable unobtrusive sensors, and (ii) without the ne-
cessity of having major infrastructural changes to be
imposed on the areas to navigated. We hoped to achieve
this goal by using a pocket-placeable IMU as the main
sensor. To overcome the drift-induced accuracy prob-
lems resulting from this setup, we introduced an auto-
matic drift and horizon correction method. Further, we
increased position accuracy using coarse-grained maps
that can be easily obtained from conference organiz-
ers or building plans. These maps are subsequently
enhanced using user-generated detail. Using this ap-
proach we hope to obtain sufficient position accuracy
for a wide variety of location-based services without re-
lying on cumbersome sensors and attachments. As a
part of future work, we plan to evaluate this setup in
a variety of building topologies. It would also be in-
teresting to investigate techniques for improved energy
efficiency, e.g., by occassionally switching off a part of
the system.
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