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Abstract

In this thesis, we study various decay and production processes of charged Higgs
bosons at the Large Hadron Collider (LHC) in the context of a general complex
Minimal Supersymmetric Standard Model (MSSM) with minimal flavor violation.
We investigate the effect of the complex phases of the soft supersymmetry breaking
parameters and of the Higgsino mixing parameter, µ, on the decay widths and
production rates. The CP violating asymmetries induced by those phases are also
considered.

The calculations are done at the one-loop level. This is nontrivial since there
are a large number of Feynman diagrams and various types of singularities (UV
divergences, soft and collinear singularities, threshold singularities). We discuss in
detail our calculation method and how to handle those divergences. In particular, the
topic of one-loop remormalization and neutral-Higgs mixing effects in the complex
MSSM for processes involving Higgs bosons are addressed.

The higher order corrections to the decay of charged Higgs bosons into aW -boson
and the lightest neutral Higgs boson are calculated and shown to be significantly
large. The CP asymmetry arising from all complex phases is considered, especially
from the top-quark trilinear coupling, At, and µ, which induce a large contribution
to the CP asymmetry.

We perform a complete calculation of the next-to-leading order (NLO) elec-
troweak (EW) corrections to the charged Higgs production in association with a
W -boson via the bb̄ annihilation channel and a consistent combination with other
contributions including the standard and supersymmetric-QCD corrections and the
gg fusion, with resummation of the leading radiative corrections to the bottom-Higgs
couplings and the neutral Higgs-boson propagators. We observe a strong dependence
of the production rates on the phases of At and of the gluino-mass parameter M3

and a large CP asymmetry arising mainly from the gg fusion.

The NLO EW corrections to the charged Higgs production in association with
a top quark and a tagged bottom quark via gg fusion are calculated and shown
to be still sizable even after subtracting the large tan β enhancement. The strong
dependence of the NLO EW corrections on the phase of At is observed.

Our studies show the importance of the higher order corrections to the decays
and the productions of the charged Higgs bosons in the complex MSSM. For the
searches of charged Higgs bosons at the LHC, those corrections should be taken into
account when doing analysis.
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Chapter 1

Introduction

The Standard Model (SM) has successfully described three fundamental interactions
(strong, weak and electromagnetic interactions) by using local gauge symmetry [1,
2, 3, 4, 5, 6, 7]. It is successful in the sense that most of its predictions have been
shown to be consistent with experimental data. In the SM, the Higgs mechanism is
used to break the electroweak (EW) gauge symmetry and thus generates masses for
weak gauge bosons [8, 9, 10, 11, 12]. After EW symmetry breaking, there exists a
neutral spin-0 particle, the Higgs boson. It is the only ingredient of the SM which
has not been observed so far.

In spite of its success there exist many open questions indicating that the SM
is only a limiting case of a more fundamental theory. Among many extensions of
the SM, the Minimal Supersymmetric Standard Model (MSSM) is a promising one
[13, 14, 15]. It extends the Poincaré group to include fermionic operators which
can transform bosonic states to fermionic states and vice versa. As a consequence,
each SM particles has a superpartner. However, supersymmetry (SUSY) cannot be
an exact symmetry because if it were the superparticle mass should be equal to
the mass of its corresponding SM partner and hence the superparticles should have
been detected. No observation of superparticles indicates that if they exist they
must be heavier than the SM partners and hence SUSY must be somehow broken.
Independently of the SUSY breaking mechanism, soft SUSY breaking terms can be
introduced to the low energy Langrangian [16]. The soft SUSY breaking parameters
and the Higgsino mixing parameter, µ, in general are complex. If those parameters
are assumed to be real, it is known as the real MSSM (rMSSM). Otherwise, one
speaks of the complex MSSM (cMSSM).

With the new symmetry, the MSSM can provide good solutions to many prob-
lems of the SM. One of them is the well-known hierarchy problem: owing to the
contribution of new particles, all quadratic divergences are cancelled and thus the
EW scale is stablized [17, 18]. The MSSM allows for the unification of the three
gauge couplings and gives an explanation for the EW symmetry breaking. The
lightest superparticle can be a candidate for dark matter. Another problem relates
to the matter-antimatter asymmetry which requires the existence of CP violation.
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2 Chapter 1. Introduction

With only one complex phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
[19], the SM cannot explain the observed asymmetry. The cMSSM, however, can
provide the required CP violation of the matter-antimatter asymmetry, but still
satisfy other CP violating observables [20].

The MSSM Higgs sector has a richer structure than that of the SM. Unlike the
SM where one Higgs doublet and its complex conjugate can be used to give masses
to all fermions, the MSSM requires the existence of at least two Higgs doublets with
opposite hypercharges. After EW symmetry breaking, there are three neutral (h,H
and A) and a pair of charged Higgs (H±) bosons. The discovery of charged Higgs
bosons will be an unambiguous signal of physics beyond the SM. The Large Hadron
Collider (LHC) has been successfully operating at 7TeV center-of-mass energy and
will be at 14TeV for a future upgrade. Search for charged Higgs bosons is one of
the purposes of the LHC [21, 22].

This thesis studies charged Higgs boson production and decay processes in the
context of the cMSSM with minimal flavor violation. We consider the impact of
the complex phases of the soft SUSY breaking parameters and of the Higgsino
mixing parameter on the production rates and decay widths. We study also CP
violating asymmetry arising from those phases. That observable quantifying the
difference between a process and its CP conjugate process can be easily measured
in experiment. Our studies are done for the LHC at both 7TeV and 14TeV.

We calculate the production rates and decay widths at one-loop level. There are
at least two reasons to go beyond the tree level. First, the theoretical uncertainties
are reduced. Second, the higher order corrections involve the entire particle spectrum
and thus can be used to get more information of the theory. From the technical point
of view, next-to-leading order (NLO) calculation is challenging since there are a large
number of Feynman diagrams and various types of singularities (UV divergences,
soft and collinear singularities, threshold singularities). We discuss in detail our
calculation method and how to handle those divergences.

We first study the charged Higgs boson decay into a W-boson and the lightest
neutral Higgs, h1, which is one of important decay modes. Through loop contribu-
tions, the complex phases of the soft SUSY breaking parameters and of the Higgsino
mixing parameter enter the Higgs sector, which is CP conserving at lowest order (see
for example [23] and references therein). As a consequence, the three neutral Higgs
bosons in general mix and form the neutral mass eigenstates h1,2,3 with both CP-
even and CP-odd properties, giving rise to a CP violating asymmetry in the decays
H± → W±h1. A first calculation of the asymmetry arising from the phases of the
trilinear τ̃ coupling, Aτ and of gaugino mass, M1, was done in [24]. In this thesis, we
extend the calculation of [24] including contributions from all complex phases in the
cMSSM, in particular from At, Ab and µ, which enter through Feynman diagrams
with stop and sbottom involving large Yukawa couplings, further enhanced by the
color factor. We show the results from the complete set of one-loop diagrams, in-
cluding besides the Higgs self energies all the loop contributions to the H± →W±h1
vertex.
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pp → W∓H± is an interesting mechanism for charged Higgs boson production
at the LHC. It does not only give a considerable production rate but also allows
to study CP violating effects. There have been many discussions devoted to the
pp → W∓H± processes in the MSSM over the last two decades. These studies
assume all the soft SUSY breaking parameters to be real and hence CP violation is
absent [25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. In this thesis, we extend the calculation
for pp→W±H∓ to the MSSM with complex parameters. For the first time, the full
NLO EW corrections to the bb̄ annihilation channel are calculated and consistently
combined with the other contributions including the standard and supersymmetric-
QCD corrections and the gg fusion. We discuss CP-violating effects arising from
the complex phases of At and M3. The important issues related to the neutral
Higgs mixing and large radiative corrections to the bottom–Higgs couplings are also
systematically addressed.

Another mechanism for charged Higgs boson production is the one in association
with a top quark and a bottom quark where the bottom quark is considered to be
tagged. This is a potential channel for the searches of charged Higgs bosons at the
LHC. The NLO SM-QCD and SUSY-QCD corrections to pp→ H−tb̄ were calculated
in [35, 36]. Ref. [36] shows that the NLO QCD corrections are negative and their
absolute values are smaller than 20% for a charged Higgs boson mass from 200 to
500GeV with pT,b > 20GeV, pT,b is the transverse momentum of the bottom quark.
The EW corrections may have large impact on the cross section and distributions
and have not been studied yet. In this thesis, we study the EW corrections to
the gg → H−tb̄ process, which gives dominant contribution to pp → H−tb̄, in the
cMSSM.

The outline of this thesis is as follows. In Chapter 2, we give an overview of
the SM, particle content, the Lagrangian density, and the Higgs mechanism. We
discuss also several interesting features of a simple extension of the SM, the Two-
Higgs-Doublet Models (THDMs), with an emphasis on the presence of the charged
Higgs bosons. Some open questions of the SM are addressed.

In Chapter 3, we motivate the MSSM as a promising extension of the SM. We
briefly describe the construction of a supersymmetric theory and apply it for the SM.
The particle spectrum of the MSSM is also described in detail. We emphasize the
Higgs sector with a richer structure than that of the SM but more predictive than
the THDMs. We keep all the phases of the soft parameters which have considerable
impacts on our calculations. A short review of the published results of the searches
for the charged Higgs bosons is presented at the end of the chapter.

In Chapter 4, we discuss various singularities of the scalar integrals, UV diver-
gences, soft and collinear singularities (they are considered as the special cases of
Landau singularities). We describe in detail their conditions and treatments. For
the UV divergences, we need regularization to calculate the divergent integrals and
renormalization to remove the divergences. We address regularization schemes of
dimensional regularization and of dimensional reduction, which is used in our cal-
culation. We discuss the renormalization of the MSSM, in particular the Higgs and
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gauge sector and the quark sector. For the soft and collinear singularities, we use
the mass regularization scheme to separate the singular part and the finite part.
To cancel the soft and collinear singularities the contributions from the radiation of
a massless particle are added to the virtual contributions. We describe the phase
space slicing and the dipole subtraction methods for phase space integration.

In Chapter 5, we first discuss how higher order corrections are included in the
determination of the neutral Higgs boson masses. We then describe one-loop calcu-
lations involving the Higgs bosons in the external lines. Two improvements used in
our calculation, the neutral Higgs boson propagator resummation and the effective
bottom–Higgs couplings, are addressed in detail.

In Chapter 6, we consider all possible decay modes of the charged Higgs bosons.
We then concentrate on the one-loop contributions to the charged Higgs decay modes
H± →W±h1 and the CP asymmetry. The CP asymmetry arising from the phases of
the trilinear couplings At, Ab, Aτ , of the gaugino massM1 and of the Higgsino mixing
parameter µ are considered. We discuss also the normal threshold singularities (two-
point Landau singularities enhanced by derivative) encountered in our calculations
and how to treat them properly.

In Chapter 7, the NLO cross sections and CP asymmetry of the charged Higgs
production in association with a W boson at the LHC are investigated. There are
two partonic processes: bb̄ annihilation and gg fusion. We present the calculation
of the SM-QCD, SUSY-QCD and EW corrections to the former. gg fusion is a
loop-induced process with the contributions arising from quark and squark loops,
mainly of the third generation. We discuss also the check of QCD gauge invariance
and the three-point Landau singularities. We use the two improvements mentioned
in Chapter 5 and show that they have large impact on the cross sections and the
CP asymmetry.

In Chapter 8, we study the exclusive cross section for the charged Higgs pro-
duction in association with top and bottom quarks. At leading order, we compute
all contributions of the order O(α2

sα). They arise from the partonic processes, gg
fusion, qq̄ annihilations q = u, d, c, s, b. Other contributions of order O(αsα

2) arising
from gγ induce is also included. The gg contribution is dominant. We present the
calculation of the NLO EW corrections to gg → H−tb̄ and show that the corrections
are still sizable even after subtracting the large tanβ enhancement effects.

The conclusions are presented in Chapter 9.

This thesis includes several appendices. The notations and conventions are pre-
sented in Appendix A. In Appendix B, we list the dipole subtraction functions used
in our calculations. The counterterms and renormalization constants are collected
in Appendix C. We present an explicit calculation of ∆mb in Appendix D. Appendix
E contains the two-body decay widths of all possible decay modes of the charged
Higgs bosons. In Appendix F, we describe our input parameters.



Chapter 2

The Standard Model

2.1 Introduction

The Standard Model is a fundamental theory which describes the electromagnetic,
weak and strong interactions. Many of its predictions have been tested and are in
good agreement with experimental results [37, 38]. These successes make it play
a center role in particle physics. It is a Yang-Mills theory based on the direct
product of the external Poincarè symmetry group and the internal gauge symmetry
group SU(3)C⊗ SU(2)L⊗U(1)Y group. The gauge group SU(3)C is used to describe
strong interaction in terms of Quantum Chromodynamics (QCD) [4, 5, 6, 7]. The
electromagnetic and weak interactions are unified in the EW theory based on the
symmetry group SU(2)L⊗U(1)Y [1, 2, 3].

The particle spectrum of the SM consists of 6 leptons (νe, e, νµ, µ, ντ , τ), 6 quarks
(u, d, c, s, t, b) divided into 3 generations, 8 gluons (ga) mediating strong interaction
and 4 gauge bosons (W±, Z, γ) mediating electroweak interaction. The left-handed
fermions are in doublets representations of SU(2)L while the right-handed (R) ones
are singlets, except that there is no right-handed neutrino. The gauge bosons are
in the adjoint representations of the corresponding gauge group. Gauge invari-
ance requires all particles to be massless, however experiments show that particles
mediating weak interaction Z,W± must be massive. This means the gauge sym-
metry must be broken somehow. In the SM one introduces the Higgs mechanism
[8, 9, 10, 11, 12] to generate masses for the gauge bosons. Fermion masses arise
from Yukawa interactions. The Higgs mechanism is based on the idea of sponta-
neous symmetry breaking, i.e. Lagrangian is gauge invariant but the vacuum is not
[39, 40]. More details will be given in the next section. With a Higgs doublet of
SU(2), the SM gauge group will be broken to SU(3)C⊗U(1)Q, U(1)Q is symmetry
group for Quantum Electrodynamics (QED). SU(3)C⊗U(1)Q is an exact symmetry
of the theory since there is no evidence showing gluons and photon to be massive.
Concerning other discrete symmetries, the model violates parity (P), charge conju-
gate (C) and also their combination CP. However, it automatically conserves the

5



6 Chapter 2. The Standard Model

baryon and lepton numbers.

The free parameters of the SM are three gauge couplings (gs, g, g
′), one vacuum

expectation value (vev) of the Higgs field, the Higgs mass, nine fermion masses
(neutrinos are assumed to be massless), three angles and one phase of the CKM
matrix. In total, there are eighteen free parameters. All particles have been dis-
covered in experiments except for the Higgs boson. The three gauge couplings have
been measured quite accurately [37]. The relation between W-mass and Z-mass, the
couplings among the three electroweak gauge bosons measured in experiments are
in agreement with those predicted by the SM. Only the Higgs boson has not been
observed so far.

2.2 The SM Lagrangian and the Higgs mechanism

The classical Lagrangian of the SM is composed of gauge, fermion, Higgs and Yukawa
parts,

L = LG + LF + LH + LY . (2.1)

Explicitly, the gauge part of the Lagrangian is given by

LG = −1

4
Ga

µνG
aµν − 1

4
F i
µνF

iµν − 1

4
BµνB

µν , (2.2)

where a = 1, ..., 8; i = 1, 2, 3 and

Ga
µν = ∂µg

a
µ − ∂µg

a
ν + gsf

abcgbµg
c
ν ,

F i
µν = ∂µW

i
µ − ∂µW

i
ν + gǫijkW j

µW
k
ν ,

Bµν = ∂µBµ − ∂µBν , (2.3)

(2.4)

ga are the SU(3) gauge fields, W i are the SU(2) gauge fields, B is the U(1) gauge
field, fabc are the structure constants of SU(3) and ǫijk are the structure constant
of SU(2). The structure constants are real and totally antisymmetric in all indices.
The fermionic part of the Lagrangian reads

LF = il̄iLγ
µDµliL + iēiRγ

µDµeiR

+ iQ̄iLγ
µDµQiL + iūiRγ

µDµuiR + id̄iRγ
µDµdiR, (2.5)

where i is the generation index (i = 1, 2, 3),

liL =

{(
νe
e

)

L

,

(
νµ
µ

)

L

,

(
ντ
τ

)

L

}
, eiR =

{
eR, µR, τR

}
, (2.6)

QiL =

{(
u
d

)

L

,

(
c
s

)

L

,

(
t
b

)

L

}
, uiR =

{
uR, cR, tR

}
, diR =

{
dR, sR, bR

}
.

(2.7)
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and the covariant derivatives

Dµ =





∂µ − igT iW i
µ − ig′Y Bµ, for liL

∂µ − ig′Y Bµ, for liR

∂µ − igsT
a
s G

a
µ − igT iW i

µ − ig′Y Bµ, for QiL

∂µ − igsT
a
s G

a
µ − ig′Y Bµ, for uiR, diR,

contain group generators: T a
s = λa/2, T

i = σi/2, λa are the Gell-Mann matrices, σi
are the Paulli matrices and Y is the hypercharge (Q = I3 + Y/2).

A SU(2) Higgs doublet, Φ = (φ+, φ0)
T
, with hypercharge (Y = 1) is introduced

to the SM in order to give masses for the gauge bosons. The Higgs Lagrangian reads

LH = (DµΦ)
†(DµΦ)− V (Φ), V (Φ) = −µ2Φ†Φ+ λ(Φ†Φ)2, (2.8)

with µ2 and λ constants.

Fermion masses are obtained from Yukawa interactions,

LY = −λeijL̄iΦ̃ejR − λdijQ̄
iΦ̃djR − λuijQ̄

iΦujR + h.c, (2.9)

where λe,d,uij (i, j = 1, 2, 3) are Yukawa couplings, and Φ̃ = iσ2Φ
∗.

Now we discuss the Higgs mechanism. The conditions for the scalar potential
given in Eq. (2.8) to develop a non-zero expectation value (〈Φ〉 6= 0) to break the
electroweak symmetry SU(2)L×U(1)Q down to the electromagnetic symmetry U(1)Q
are following:

• the potential has to be bounded from below, therefore λ > 0,

• the potential has an unstable maximum at zero, hence µ2 > 0,

• the potential has stable minima which are degenerate.

Combining all above requirements, one can show that the vev of the Higgs doublet
is

〈Φ〉 =
(
|〈φ+〉|
|〈φ0〉|

)
=

(
0
v√
2

)
, v =

√
µ2

λ
. (2.10)

The upper component carrying electric charge Q = +1 cannot have a non-zero
expectation value since one requires unbroken U(1)Q symmetry. |〈φ0〉| = v/

√
2

coressponds to a circle on a complex plane, since φ0 is complex scalar field. Choosing
a specific point on that circle and expanding Higgs field around that point give

Φ(x) =

(
φ+(x)
φ0(x)

)
=

(
G+(x)

(v +H(x)− iG0(x)) /
√
2

)
. (2.11)

Substituting the above expression into the scalar potential, one finds the neutral
Higgs boson H to have a mass mH =

√
2λv2. G± and G0 are massless. They are
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well known as Nambu-Goldstone bosons. They are unphysical states and can be
absorbed by the gauge fields to generate masses for physical gauge bosons W± and
Z, 




W±
µ =

W 1
µ∓iW 2

µ√
2

,

Zµ = cWW
3
µ − sWBµ,

Aµ = sWW
3
µ + cWBµ,

(2.12)

where cW = cos θW , sW = sin θW , θW is called the weak mixing angle and

cW =
g√

g2 + g′2
, sW =

g′√
g2 + g′2

. (2.13)

The masses of W- and Z-bosons are given by

MW =
gv

2
, MZ =

gv

2cW
. (2.14)

The photon Aµ remains massless, since U(1)Q is not broken. The mass terms for
the fermionic fields are obtained by substituting (2.11) into (2.9),

Lf
mass = −

λeijv√
2
ēiLe

j
R −

λdijv√
2
d̄iLd

j
R −

λuijv√
2
ūiLu

j
R + h.c, (2.15)

where the fermionic fields are the flavor states. In order to find mass eigenstates
one needs to diagonalise the λe,u,d matrices by unitary matrices, V e,u,d

L,R as follows,

λdiag
f = V f

L λ
fV f†

R , f i
L,R → V f

L,R,ijf
j
L,R, f = e, u, d. (2.16)

Then the masses of the fermions are given by

mf =
λfv√
2
, f = e, µ, τ, u, c, t, d, s, b. (2.17)

Neutrinos are kept massless since they are purely left-handed in the minimal model
and do not couple to the Higgs field. Those unitary transformations lead to the
appearance of a unitary matrix in the charged current interaction, in particular

LWud = igV ∗ij
CKMd̄

i
Lγ

µujLW
−
µ + h.c, VCKM = V u

L V
d†
L . (2.18)

VCKM is the well-known CKM matrix [19]. A general 3 × 3 unitary matrix can
be parameterized by nine independent parameters. For the CKM matrix, one can
remove five of them by rephasing six quark fields. The four remaining parameters
are three mixing angles and one phase which are the only source of flavor and CP
violations in the SM. For the lepton sector, there is no such similar matrix since
neutrinos are massless one can chose their rotation matrice equal to the one of the
charged leptons, then that matrix is a unit matrix.

However, the evidence of the neutrino oscillations requires massive neutrinos (at
least two of three neutrinos have masses), then there is an appearance of a flavor
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mixing matrix V PMNS [41]. Different from the CKM matrix, the PMNS matrix
can have two additional complex phases due to the possibility of neutrinos being
Majorana fermions. It is an interesting topic for many extensions of the SM. In this
thesis we always consider neutrinos to be massless. Neutrino masses are irrelevant
for our considered processes.

Another observation is that the unitarity of the CKM matrix assures the absence
of the flavor changing neutral currents (FCNC) at tree level. This property is known
as the GIM mechanism [42].

2.3 The Two-Higgs-Doublet models

One introduces the Higgs mechanism to break the EW symmetry spontaneously,
thus to generate particle masses. The Higgs sector of the SM is minimal since
only one Higgs doublet is used. However, there is no experimental and theoretical
constraint on the number of the Higgs bosons. It is possible to extend the Higgs
sector of the SM. A simple extension is the one with an addition of an extra Higgs
doublet. These models are called the Two-Higgs-Doublet models. The addition of
the new Higgs doublet leads to several interesting features as follows.

1. The spectrum of the Higgs sector consists of three neutral Higgs bosons (two
CP-even states h,H and one CP-odd state A) and two charged Higgs bosons
H±.

2. The models can introduce a new source of CP violation [43]. Besides CP
symmetry is broken explicitly by the complex phase of the CKM matrix in
the SM, the THDMs can introduce a new phase which is the relative phase
between the two expectation values (v1 and v2) of the two Higgs doublets
leading to the spontaneous CP symmetry breaking.

3. The free parameters of the Higgs sector are four masses (mh, mH , mA, mH±)
and two mixing angles (tanβ = v2/v1 and the mixing angle α between the two
CP-even Higgs bosons).

4. FCNCs can appear at tree level due to the fact that both the Higgs doubles
can couple to all fermions. The experimental restrictions on the FCNCs lead
to three types of models.

• The THDM type I, only one Higgs doublet couples to all fermions [44].
This model is similar to the SM. The differences are a smaller vev and
larger Yukawa couplings.

• The THDM type II, one Higgs doublet couples to up-type fermions while
the other couples to down-type fermions [45]. The MSSM belongs to this
type.
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• The THDM type III, this is the most general THDM without FCNC at
tree level [46]. Both the two Higgs doublets couple to the up- and down-
type fermions but their Yukawa couplings matrices must be diagonalized
simultaneously with the quark mass matrix.

In a general THDM, there is the appearance of charged Higgs bosons. The finding
of these charged Higgs bosons would confirm a richer spectrum of the Higgs sector
compared to the one of the SM.

2.4 Why go beyond the SM?

Despite of great agreements between the SM predictions and the experimental data.
The SM is not satisfactory. The reasons can be classified into two groups. The first
group is related to the following conceptual problems.

• The SM does not describe gravity which becomes important at small distance
(equivalently high energy like the Planck scale, 10−19 GeV). An attempt to
incorporate gravitational force together with other forces is string theory.

• The SM is not the ultimate theory. It is believed to be an effective theory
valid to a certain energy scale. Then this leads to the hierarchy problem. It
is due to the appearance of quadratic divergences in the theory. More details
are given in Section 3.1.

• The SM describes three interactions but their gauge couplings do not unify:
αs = g2s/4π and α = g2/4π meet at 1016 GeV while α and α′ = g′2/4π meet
at about 1013 GeV. In Grand Unified Theories (GUT), by using one simple
Lie group as the symmetry group, the three interactions emerge into a single
interaction. Examples of GUT groups are SU(5) and SO(10); for a review see
[47].

• The SM does not explain why the number of generations is three. An possible
extension of the SM such as the 331 models based on the symmetry group
SU(3)C ⊗ SU(3)L ⊗ U(1)N [48] can give an explanation. In such models, the
absence of chiral anomaly requires the number of generations to be three.

The second group is related to the following experimental indications of new physics
beyond the SM.

• Experiments on neutrino oscillations have established that neutrinos have a
mass (for a review see [49]). The SM assumes neutrinos to be massless. The
neutrino mass-squared differences and mixing angles are measured by the os-
cillation experiments. Limits on the absolute mass scale which are obtained
from non-oscillation experiments show that neutrino masses are very small
(mν < 2 eV) [37].
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• An impressive amount of data from the observations of the rotation curves
of galaxies, studies of microwave background radiation and supernova distant
measurements indicates the existence of dark matter. The observations do not
provide any information about what the dark matter is made of, but give some
properties of dark matter. It must be stable (its lifetime must be higher than
the age of the Universe), slow (cold dark matter), electrically and color neutral
and massive; for a review see [50]. The SM cannot provide any candidate for
dark matter. Even if the neutrinos are massive, they cannot be viable dark
matter candidates since their masses are not sufficient to provide the observed
dark matter densities.

• The observable universe has more matter than antimatter. This is well known
as the matter-antimatter asymmetry. In order to explain such asymmetry, the
three Sakharov conditions must be fulfilled [51]. One of the three conditions
is the existence of CP violation. With only one CKM phase, the SM does not
contain enough CP violation to explain the observed asymmetry, for a review
see [20]. This makes many extensions of the SM which provide new sources of
CP violation very attractive.

• The anomalous magnetic moment of muon is measured accurately in experi-
ment and precisely predicted in the SM [52]. The experimental measurements
have shown a deviation of about 3σ above the SM prediction (for a review
see [53]). This has led to many speculations on the presence of new physics.
SUSY extensions can provide a good explanation for this discrepancy, thanks
to the additional contributions from the supersymmetric particle loops.

Among many extensions of the SM, we focus on the supersymmetric version of the
SM, especially the MSSM which is a promising candidate. It can provide solutions
to many of the above questions. We discuss it in the next chapter.





Chapter 3

Supersymmetry

3.1 Introduction

Supersymmetry (SUSY) is a symmetry between bosons and fermions. In other
words, this symmetry allows bosonic particles, which have integer spin and obey
Bose-Einstein statistics, and fermionic particles, which have half-integer spin and
obey Fermi-Dirac statistics, to be in the same multiplet. It was born in the early
1970s, but there is, to date, no direct experimental evidence of its relevance to nature.
However, its beautiful idea and mathematical formulation have been applied widely,
then resulted in many theories such as the MSSM, supergravity and superstring,
etc. Especially the MSSM has inspired an enormous amount of theoretical and
experimental studies. Indeed, supersymmetry plays a central role in the development
of physics beyond the SM.

Here some important historical events related to the birth of supersymmetry are
reviewed. Supersymmetry started with a desire to find a symmetry that relates par-
ticles with different spins. In the 1960s, some attempts to find such a symmetry have
been made but failed. One example is SU(6) symmetry in the non-relativistic quark
model. Those failures led to the so-called no-go theorem [54] proved by Coleman
and Mandula in 1967. They shown that the most general Lie algebra of symmetry
operators consists of the generators Pµ and Mµν of the Poincaré group and internal
symmetry generators, e.g. SU(3) color, SU(2) isospin, U(1) hypercharge generators,
etc. The latter must commute with the former. It means that the internal symme-
tries cannot relate particles with different masses and spins. One of the assumptions
in Coleman and mandula’s proof turned out to be unnecessary: they had made all
transformation parameters to be ordinary numbers and their corresponding oper-
ators to obey the commutation relations. In fact this theorem does not apply for
the Grassmann numbers and fermionic symmetry generators which obey anticom-
mutation relations. This was first proposed by Golfand and Likhtman in 1971 [55].
They extended the Poincaré algebra to include fermionic generators. Followed up
by Volkov and Akulov, they discovered supersymmetry in four dimensions in a non-

13
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linear realization in 1973 [56]. Independently, Wess and Zumino [57, 58] presented a
renormalizable field model of a spin-1/2 particle in interaction with two spin-0 par-
ticles where particles are related by a symmetry transformation. In 1976, Freedman,
van Nieuwenhuizen and Ferrara [59] and independently Deser and Zumino [60] used
the idea of local supersymmetry to construct the supergravity.

The first classification of all supersymmetry algebras was done by Haag, Lo-
puszanski and Sohnius [61] in 1974. They built the supersymmetry algebra based
on the generators of the Poincaré group and additional fermionic generators Qαi

and their Hermitian adjoint Q̄i
α̇; α, α̇ are spinor indices taking two values 1, 2 while

the indices i, j label different Qα and run from 1 to some integer N , see Section 3.2
for more details. These fermionic operators change a bosonic state into a fermionic
state and vise versa. In particular, they raise or lower the projection value of spin
along the z axis by one half. In general, there are at most 2N independent raising
operators and 2N lowering operators. For N = 1, there is only one Q. This is known
as the simple supersymmetry. If N > 1, we speak of an extended supersymmetry.
However, N cannot be arbitrary. N ≤ 8 if one requires no particles with spin > 2
in the supermultiplets. Now one wishes to incorporate those supersymmetry into a
realistic theory, particularly the SM which is based on the SU(3) ⊗ SU(2) ⊗ U(1)
gauge group. Since quarks and leptons belong to chiral representations (complex
representations), it is impossible to apply the extended supersymmetry. Because in
the extended supersymmetry, fermions and vector bosons are in the same multiplet
and the latter belongs to a real representation, not a complex one. The only case
can be used is N = 1. This makes our supermultiplets much simpler. There is only
one superpartner corresponding to a particle in a supermultiplet. The superpartners
of quarks and leptons are now scalar bosons.

Although no experimental evidence shows to date the existence of supersymme-
try in nature, many physicists find it interesting and think that it may relate to
the real world. Here we review two major arguments in favor of supersummetry.
The first argument is based on Haag, Lopuszanski and Sohnius theorem [61] from
which we learn that the largest symmetry an interaction theory may have is the
direct product of a supersymmetry and an internal gauge group. One has been very
successful in describing three fundamental interactions by using two of its three in-
gredients, the Poincaré group and the internal gauge group. It would be better if
one could incorporate all three ingredients into a theory.

The second argument relates to the hierarchy problem [17, 18]: why MZ ≪ MP ?
Here MZ is a typical electroweak scale and MP is the Planck scale where gravity
becomes as strong as the other interactions. This hierarchy problem leads to the
instability of the electroweak scale as seen in the following. Consider a theory
which contains fermions and bosons like the SM. When one computes the radiative
corrections to the Higgs boson mass, one encounters quadratic divergences. At one-
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loop level, the correction is given by (see for example [62]),

δm2
H =

1

8π2

(
NBλB −NFλ

2
F

)
Λ2

+
1

4π2

(
NBλBm

2
B log

Λ

mB

−NFλ
2
Fm

2
F log

Λ

mF

)
+ · · · (3.1)

where the cutoff Λ represents the scale up to which the SM remains valid, the dots
stand for finite terms, NB, NF are the number of bosons and fermions corresponding
to their masses mB, mF and their couplings λB, λF , respectively. In the SM there
is neither a relation between NB and NF nor λB and λF . If we chose the cutoff
to be the GUT scale, MGUT ∼ 1016 GeV, or the Planck mass MP ∼ 1019 GeV,
this radiative correction will be much larger than the physical Higgs mass which
is bounded (mH . 1 TeV) due to unitarity and perturbative reasons. The same
problem happens to the radiative corrections to W and Z boson masses. One can say
this is not a problem for a renormalizable theory: one can redefine bare parameter,
which is not physical value, to absorb all divergences. Then the quantum corrections
remain small. However, this seems unnatural in comparison with the case of fermions
or photon: for fermions one-loop corrections are proportional to its mass mF and
only logarithmically divergent, owing to a chiral symmetry that keep the corrections
naturally small, for photon radiative corrections to its mass vanish at all order due
to gauge symmetry. For bosons, there is no such symmetry that renders small boson
mass natural.

In supersymmetry, there are equal numbers of fermions and bosons, NB = NF .
The couplings are also equal, λB = λ2F . These lead to cancellation of the quadratic
divergences, leaving

δm2
H =

NFλ
2
F

4π2

(
m2

B −m2
F

)
log

Λ

mB
+ · · · . (3.2)

The correction remains small even for Λ ∼ MP provided that |m2
B −m2

F | . 1TeV2.
In fact the correction will vanish if the boson and the fermion masses are the same.
That happens when supersymmetry is not broken. Supersymmetry is not the only
way to solve this naturalness problem. There are other solutions. For example in
technicolour model the Higgs boson is not a fundamental particle but a composite
state, for a review see [63] and references therein. Lagrangian for the Higgs sector
becomes an effective theory and valid up to a scale which the composite state reveals.
This scale should not be as large as the Planck mass and not too far from electroweak
scale, then δm2

H ∼ m2
H . However, the argument based on symmetry to prevent large

quantum corrections is, in general, more favored by theorists.

Apart from the aforementioned arguments there are additional motivations ex-
isting in some specific realizations of supersymmetry. The MSSM is the most famous
example.

• The MSSM allows for the unification of three gauge couplings at GUT scale
(for a review see [64]).
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• The lightest Higgs particle is predicted to have mass less than 140 GeV while
it is a free parameter in the SM [65, 66].

• It provides a possible explanation for the origin of the electroweak symmetry
breaking [64].

• The lightest superparticle can be a candidate for dark matter.

• It contains new sources of CP violation.

• The predicted anomalous magnetic moment of muon is consistent with the
measured value [67].

Now we are going to construct the Lagrangian of a supersymmetric theory. It
is compact and elegant to use the superfield language. In the following sections we
discuss all the necessary ingredients used for our purpose.

3.2 Supersymmetry algebra

In Haag, Lopuszanski and Sohnius theorem [61], the most general supersymmetry
algebra or Poincaré superalgebra is given by

[Pµ, Pν] = 0, (3.3)

[Pµ,Mρσ] = i(ηµρPσ − ηµσPρ), (3.4)

[Mµν ,Mρσ] = i(ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ), (3.5)

[Qαi,Mµν ] =
1

2
(σµν)

β
α Qiβ , (3.6)

[
Q̄i

α̇,Mµν

]
= −1

2
Q̄i

β̇
(σ̄µν)

β̇
α̇ , (3.7)

[Qαi, Pµ] =
[
Q̄i

α̇, Pµ

]
= 0 , (3.8)

{Qαi, Q̄
j

β̇
} = 2δji (σ

µ)αβ̇Pµ , (3.9)

{Qαi, Qβj} = 2εαβZij , (3.10)

{Q̄i
α̇, Q̄

j

β̇
} = 2εα̇β̇Z

ij , with Z ij = Z†
ij, Zij = −Zji, (3.11)

where α, β(α̇, β̇) are undotted (dotted) spinor indices, i, j = 1, N with N being an
integer, Zij are some linear combination of internal symmetry generators. Zij com-
mute with anything, therefore they are called central charges. The largest possible
internal symmetry which can act non-trivially on Q is U(N). It, however, is unnec-
essary to be a symmetry of action. When N = 1, there is only one Q. Due to the
antisymmetric characteristic, Z vanishes. The non-trivial acting internal symme-
try now is the U(1) which has become known as R-symmetry. The supersymmetry
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algebra has its simplest form,

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0,

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ,

[Qα, Pµ] =
[
Q̄α̇, Pµ

]
= 0. (3.12)

3.3 Superspace and superfields

Superspace is the Minkowski space plus four additional coordinates which are anti-
commuting Grassmann numbers (see Appendix A.3). Hence, superspace has eight
dimensions. A point in the superspace is given by the supercoordinates (xµ, θα, θ̄α̇),
µ = 1, 2, 3, 4, α = 1, 2 and α̇ = 1̇, 2̇. Here we use the Weyl formalism. θ and θ̄ are
Weyl spinors (see Appendix A.2 for more details). A superfield is an operator-valued
function defined on the superspace. A general superfield can be expanded in terms
of the Grassmann variables θ and θ̄ as

Φ(x, θ, θ̄) = φ(x) + θψ(x) + θ̄χ̄(x) + θθF (x) + θ̄θ̄F ′(x) + (θσµθ̄)Vµ(x)

+(θθ)θ̄λ̄(x) + (θ̄θ̄)θλ′(x) + (θθ)(θ̄θ̄)D(x). (3.13)

Owing to the anticommuting properties of Grassmann variables, the higher power
terms of θ and θ̄ vanish. All x-dependent functions on the right-hand side of
Eq. (3.13) are called component fields. Since the superfield is a Lorentz scalar
or pseudoscalar, the Lorentz properties of the component fields are given by

φ(x), F (x), F ′(x), D(x) : complex scalar or pseudoscalar fields,

ψ(x), λ′(x) : left-handed Weyl spinor fields,

χ̄(x), λ̄(x) : right-handed Weyl spinor fields,

Vµ(x) : complex vector field.

(3.14)

A general superfield contains 16 bosonic and 16 fermionic real degrees of freedom.
Now we need to know how the superfield transforms under a supersymmetry trans-
formation. First, we use the operator

L(x, θ, θ̄) = ei(x
µPµ+θαQα+θ̄α̇Q̄α̇), (3.15)

to define
Φ(x, θ, θ̄) = L(x, θ, θ̄)Φ(0, 0, 0). (3.16)

With the help of the Baker-Campbell-Hausdorff formula (eAeB = eA+B+ 1

2
[A,B]) and

supersymmetry algebra (3.12), one can show that under a finite supersymmetry
transformation denoted by Tξ, a superfield transforms as

TξΦ(x
µ, θ, θ̄) = L(0, ξ, ξ̄)Φ(xµ, θ, θ̄)

= Φ(xµ + iξσµθ̄ − iθσµξ̄, θ + ξ, θ̄ + ξ̄). (3.17)
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We now can find out a differential operator representation of Q and Q̄ by using an
infinitesimal supersymmetry transformation Tρ to act on the superfield, thus

L(0, ρ, ρ̄)Φ(xµ, θ, θ̄)− Φ(xµ, θ, θ̄) = Φ(xµ + iρσµθ̄ − iθσµρ̄, θ + ρ, θ̄ + ρ̄)− Φ(xµ, θ, θ̄).

(3.18)

Expanding the two sides of Eq. (3.18) in terms of infinitesigmal parameters ρ, ρ̄ we
get the left-hand side (LHS)

LHS = (iραQ
α + iρ̄α̇Q̄α̇)Φ(x

µ, θ, θ̄), (3.19)

and the right-hand side (RHS)

RHS =
[
(iρσµθ̄ − iθσµρ̄)∂µ + ρα

∂

∂θα
+ ρ̄α̇

∂

∂θ̄α̇
]
Φ(xµ, θ, θ̄). (3.20)

Identifying terms on two sides, one gets

Qα = −i ∂
∂θα

+ (σµθ̄)α∂µ, Q̄α̇ = −i ∂
∂θ̄α̇

− (θσµ)α̇∂µ. (3.21)

The supersymmetry covariant derivatives, which are useful for the construction of
the supersymmetric Lagrangian, are invariant under the supersymmetry transfor-
mation in the sense that

{Dα, Qα} = {Dα, Q̄α} = {D̄α, Qα} = {D̄α, Q̄α} = 0, (3.22)

then one finds

Dα =
∂

∂θα
+ i(σµθ̄)α∂µ, D̄α̇ = − ∂

∂θ̄α̇
− i(θσµ)α̇∂µ. (3.23)

With the help of the covariant derivatives, one defines the following irreducible
representations of the superfields,

D̄α̇Φ(x, θ, θ̄) = 0 ⇒ (left-handed) chiral superfield, (3.24)

DαΦ
†(x, θ, θ̄) = 0 ⇒ (right-handed) anti-chiral superfield, (3.25)

Φ(x, θ, θ̄) = Φ†(x, θ, θ̄) ⇒ vector superfield. (3.26)

We now want to find the expression of the chiral superfield in terms of component
fields by solving the condition (3.24). It can be easily done by changing variables
xµ → yµ = xµ + iθσµθ̄. One can show that D̄α̇Φ1(y, θ) = 0. Therefore, the chiral
superfield Φ1(x, θ, θ̄) = Φ1(y, θ) which has the power series expansion in θ:

Φ1(y, θ) = φ(y) +
√
2θψ(y) + θθF (y). (3.27)

In terms of the original variables (x, θ, θ̄),

Φ1(x, θ, θ̄) = eiθσ
µ θ̄∂µ

(
φ(x) +

√
2θψ(x) + θθF (x)

)

= φ(x) +
√
2θψ(x) + iθσµθ̄∂µφ(x) +

i√
2
(θθ)(θ̄σ̄µ∂µψ(x))

+θθF (x)− 1

4
(θθ)(θ̄θ̄)✷φ(x). (3.28)
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Similarity for the anti-chiral superfield, one can solve the constraint (3.25) by chang-
ing variables xµ → zµ = xµ − iθσµθ̄. Then the solution is

Φ2(x, θ, θ̄) = Φ2(z, θ̄) = e−iθσµθ̄∂µ
(
φ(x) +

√
2θ̄ψ(x) + θ̄θ̄F (x)

)
. (3.29)

One can easily show that the Hermitian conjugate of the chiral superfield is a anti-
chiral superfield. Under an infinitesimal supersymmetry transformation, the com-
ponent fields of a chiral superfield transform as

δSφ(x) =
√
2θψ(x), (3.30)

δSψ(x) = i
√
2σµθ̄∂µφ(x) +

√
2θF (x), (3.31)

δSF (x) = ∂µ

(
−i

√
2ψ(x)σµθ̄

)
. (3.32)

For the vector superfield denoted as V , the condition (3.26) requires it to be real.
Hence its complete expansion is

V = C(x) + θχ(x) + θ̄χ̄(x) +
1

2
θθ (M(x) + iN(x))

+
1

2
θ̄θ̄ (M(x)− iN(x)) + (θσµθ̄)Vµ(x) + (θθ)θ̄

(
λ̄(x) +

i

2
σ̄µ∂µχ(x)

)

+(θ̄θ̄)θ

(
λ(x) +

i

2
σµ∂µχ̄(x)

)
+

1

2
(θθ)(θ̄θ̄)

(
D(x)− 1

2
∂µ∂

µC(x)

)
.(3.33)

The supersymmetric generalization of a gauge transformation for a general non-
Abelian case is defined as

Φ → e−i2gΛΦ, (3.34)

Φ† → Φ†ei2gΛ
†

, (3.35)

e2gV → e−i2gΛ†

e2gVei2gΛ, (3.36)

where g is coupling constant and Λ = ΛaT a and V = V aT a with Λa being chiral
superfields, V a being vector superfield and T a being the generators of the gauge
group.

Eq. (3.33) shows that the vertor superfield contains many component fields.
Some of them can be eliminated by exploiting gauge invarance. In practice, it is
convenient to work in the Wess-Zumino gauge [58] where C, χ, M and N fields are
set to be zero, then

V = (θσµθ̄)Vµ(x) + (θ̄θ̄)θλ(x) + (θθ)θ̄λ̄(x) +
1

2
(θθ)(θ̄θ̄)D(x). (3.37)

For an Abelian gauge theory, the behaviors of the component fields under an in-
finitesimal supersymmetry transformation are

δSλ = −iDθ − 1

2
σµσ̄νθ(∂µVν − ∂νVµ), (3.38)

δSV
µ = i(θσµλ̄− λσµθ̄), (3.39)

δSD = ∂µ
(
−θσµλ̄+ λσµθ̄

)
. (3.40)
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We now discuss the F and D component fields. They are auxiliary fields, F is a
complex scalar field while D is a real scalar field. The appearance of these auxiliary
fields is to ensure the equality of the bosonic and fermionic degrees of freedom in a
supermultiplet for off-shell as well as on-shell consideration. In a four-dimensional
theory those F and D fields have mass dimension two. They do not contribute
to the propagating degrees of freedom because the kinetic terms are absent. They
will be eliminated by applying the on-shell equation of motion. It is important to
note that they transform into total space-time derivatives under the supersymmetry
transformation, see Eq. (3.32) and Eq. (3.40). Therefore, the space-time integrals
of those terms are supersymmetry invariances. This characteristic is used to build
the supersymmetric Lagrangian.

Finally, we list here some useful characteristics of the superfields which are
needed in the construction of a supersymmetric Lagrangian.

• The product and sum of two chiral superfields are again chiral superfields.

• The product and sum of two vector superfields are also vector superfields.

• The sum of a chiral superfield and an anti-chiral superfield is a vector super-
field.

• The product of a chiral superfield and an anti-chiral superfield is a vector
superfield.

3.4 Supersymmetric Lagrangian

As we have seen in the previous section, the space-time integrals of the F-term of
the chiral superfields and the D-term of the vector superfields are invariant under
the supersymmetry transformation. One can build a general supersymmetric La-
grangian as the sum of these terms. The F- and D-terms are found by integrating
out the Grassmann variables of a superfield, particularly

LSUSY = LF + LD =

∫
d2θLf +

∫
d2θd2θ̄Ld, (3.41)

where Lf is a chiral superfield and Ld is a vector superfield.

Now we consider the first term. We can use the property of the superfields,
namely the product and sum of two chiral superfields is a chiral superfield. The
general chiral superfield Lf can be built from other chiral superfields as

Lf ≡ W =
∑

i

aiΦi +
1

2

∑

ij

mijΦiΦj +
1

3!

∑

ijk

λijkΦiΦjΦk, (3.42)

where mij and λijk are totally symmetric matrices and i, j = 1, ..., N with N being
the number of chiral superfields. This part is so-called superpotential W. Since we



3.4. Supersymmetric Lagrangian 21

work in a renormalizable theory, there is no terms with product of more than three
superfields. Then LF can be expressed in terms of component fields,

LF =
∑

i

aiFi +
∑

ij

mij

(
φiFj −

1

2
ψiψj

)
+
∑

ijk

λijk
2

(φiφjFk − φiψjψk)

=
∑

i

∂W
∂φi

Fi −
1

2

∑

ij

∂2W
∂φi∂φj

ψiψj, (3.43)

which contains the mass terms and the interaction terms of scalar and fermionic
fields. The chiral superfield can be constructed from the vector superfields by defin-
ing a supersymmetric field strength tensor,

Wα =
1

4
D̄D̄e−2gVDαe

2gV. (3.44)

It is of course a chiral superfield since D̄W = 0. The F-term which must be gauge
invariant quantity is given by

LF =

∫
d2θ

1

16g2
Tr(WαW

α) = −1

4
F a
µνF

aµν + iλ̄aσ̄µ(Dµλ)
a +

1

2
DaDa, (3.45)

where the usual field strength tensors are

F a
µν = ∂µV

a
ν − ∂νV

a
µ + gfabcV b

µV
c
ν , (3.46)

with coupling constant g, the structure constants fabc and the gauge covariant deriva-
tive

Dµ = ∂µ + igT aV a
µ . (3.47)

We now construct LD which generates the kinetic terms for the scalars and
fermions. We use the property of chiral superfield: the product of a chiral superfield
and an anti-chiral superfield is a vector superfield. The Lagrangian has to be gauge
invariant, hence for a non-Abelian gauge LD is given by

LD =
∑

i

∫
d2θd2θ̄Φ†

ie
2gVΦi

=
∑

i

[
(Dµφi)

†Dµφi + iψ̄iσ̄
µDµψi −

√
2g
(
ψ̄iλ̄

aT aφi + φ†
iλ

aT aψi

)

+gφ†
iD

aT aφi + F ∗
i Fi

]
. (3.48)

To summarize, the general supersymmetric Lagrangian reads,

L =

∫
d2θ

(
1

16g2
Tr(WαW

α) +W
)
+
∑

i

∫
d2θd2θ̄Φ†

ie
2gVΦi + h.c. (3.49)

The auxiliary fields F and D do not have kinetic terms. Their equation of motions
are simply

Fi = −∂W
∗

∂φi
, Da = −g

∑

i

φ†
iTaφi. (3.50)
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Substitute the above expressions in the Lagrangian, one finds the scalar potential

W (φ) =
∑

i

FiF
∗
i +

1

2

∑

a

DaDa =
∑

i

∂W
∂φi

∂W∗

∂φ∗
i

+
1

2

∑

a,i

(gφ†
iTaφi)

2. (3.51)

We will use the above procedure to construct the supersymmetric Lagrangian of
the MSSM.

3.5 The Minimal Supersymmetric Standard Model

3.5.1 Particle content

The SM [1, 2, 3] based on the gauge group SU(3)C × SU(2)L × U(1)Y contains the
matter fields (fermions and Higgs boson) and the gauge fields (gluons, W and Z
bosons, photon). Since they are in different representations of the gauge group, the
fermions and the Higgs boson belong to complex representations while the gauge
bosons belong to real representations, they cannot be superpartners of each other. In
order to construct the MSSM one has to introduce new particles. Each known par-
ticle has a superpartner: the superpartners of fermions are called sfermions (squarks
and sleptons) and the ones of gauge bosons are called gauginos (gluinos, winos,
bino). The field content of the MSSM are shown in Table 3.1.

The MSSM and the SM Higgs sectors are different. While the SM consists of
only one Higgs doublet and its complex conjugate to give masses to all the matter
fermions, in the MSSM two Higgs doublets H1 and H2 with opposite hypercharges
are needed. This has the following reasons. First, the holomorphic property of the
MSSM superpotential does not allow for the appearance of both a superfield and its
complex conjugate. Thus the trick to use one Higgs doublet and its complex conju-
gate as in the SM fails. Secondly, the superpartners of the Higgs bosons (Higgsino)
contribute to gauge anomaly. Thus two Higgs doublets with opposite hypercharges
are needed to make the theory anomaly free.

The particles listed in the Table 3.1 are not necessarily the physical states of
the theory. After SUSY breaking and electroweak breaking, particles carrying the
same quantum numbers can mix to form the mass eigenstates. For example, the
charged Higgsinos and the charged winos generate charginos, the neutral Higgsinos
and the neutral wino and bino generate neutralinos, the left-handed sfermions and
the right handed sfermions mix also to form sfermion-1 and sfermion-2, etc. The
gluinos are an exception, they are color-octet fermions and hence do not mix with
other particles. More details of those mixings and the mass eigenstates will be given
in the Subsection 3.5.3.
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Super-
fields

Bosons Fermions (SU(3)C ,SU(2)L,U(1)Y ) Name

V̂s g g̃ (8, 1, 0) gluons, gluinos

V̂ W±, W 0 W̃±, W̃ 0 (1, 3, 0) W-bosons, Winos

V̂ ′ B B̃ (1, 1, 0) B-boson, Bino

Q̂ Q̃ =

(
ũ L

d̃ L

)
Q =

(
u L

d L

)
(3, 2, 1/3)

squarks, quarks
Û Ũ = ũ∗R U = u†R (3∗, 1, -4/3)

D̂ D̃ = d̃∗R D = d†R (3∗, 1, 2/3)

L̂ L̃ =

(
ν̃L

ẽL

)
L =

(
νL

eL

)
(1, 2, -1)

sleptons, leptons

Ê Ẽ = ẽ∗R E = e†R (1, 1, 2)

Ĥ1 H1 =

(
H0

11

H−
12

)
H̃1 =

(
H̃0

11

H̃−
12

)
(1, 2,-1)

Higgs, Higgsinos

Ĥ2 H2 =

(
H+

21

H0
22

)
H̃2 =

(
H̃+

21

H̃0
22)

)
(1, 2, 1)

Table 3.1: The MSSM particle content. The superfields are denoted with a hat. The
superpartners of the SM particles carry a tilde. The generation and color indices
have been suppressed. The numbers in parentheses denote the dimension of the
representations of the corresponding gauge groups. The stars present the complex
conjugate representations.

3.5.2 Lagrangian of the MSSM

If supersymmetry were an exact symmetry then the SM particles and their cor-
responding superpartners would have the same masses and the SM superparticles
would be detected. Up to now, no experiment has discovered any of them. If the
superparticles exist, they must be heavier than their corresponding SM partners.
This means supesymmetry must be broken at an energy scale Λ. In general, the
Lagrangian of the MSSM at low energy (E < Λ) can be written as

LMSSM = LSUSY + Lsoft. (3.52)

The first term is invariant under supersymmetry transformations while the second
term breaks softly supersymmetry. However both of them are SM gauge invariant.
Further restrictions can be imposed on these terms such as renormalizability, baryon
and lepton number conservations, R-parity, flavour conservation, ect.

To construct the supersymmetric part of the Lagrangian, we use the superfield
formalism established in Section 3.4. With the help of Grassmann variables, the
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expansions of the supperfields in Table 3.1 in terms of component fields read

V̂s = θσµθ̄gµ + (θ̄θ̄)θg̃ +
1

2
(θθ)(θ̄θ̄)DVs , (3.53)

V̂ = θσµθ̄Wµ + (θ̄θ̄)θW̃ +
1

2
(θθ)(θ̄θ̄)DV , (3.54)

V̂ ′ = θσµθ̄Bµ + (θ̄θ̄)θB̃ +
1

2
θθ(θ̄θ̄)DV ′ , (3.55)

Q̂ = eiθσ
µθ̄∂µ

(
Q̃+

√
2θQ + θθFQ

)
, (3.56)

Û = eiθσ
µθ̄∂µ

(
Ũ +

√
2θU + θθFU

)
, (3.57)

D̂ = eiθσ
µθ̄∂µ

(
D̃ +

√
2θD + θθFD

)
, (3.58)

L̂ = eiθσ
µθ̄∂µ

(
L̃+

√
2θL+ θθFL

)
, (3.59)

Ê = eiθσ
µθ̄∂µ

(
Ẽ +

√
2θE + θθFE

)
, (3.60)

Ĥi = eiθσ
µθ̄∂µ

(
H̃i +

√
2θHi + θθFHi

)
, i = 1, 2, (3.61)

where the color indices and the generation indices have been suppressed. For the
vector superfields, the supersymmetric field strength tensors are given by

WV̂sα
=

1

4
D̄D̄e−2gsV̂sDαe

2gsV̂s,

WV̂ α =
1

4
D̄D̄e−2gV̂Dαe

2gV̂,

WV̂ ′α =
1

4
D̄D̄e−2g′V̂′

Dαe
2g′V̂′

, (3.62)

where

V̂s = T a
s V̂

a
s , V̂ = T aV̂ a, V̂

′ =
Y

2
V̂ ′, (3.63)

with T a
s , T a and Y/2 being generators of SU(3)C , SU(2)L and U(1)Y , respectively.

Now we construct the superpotential. The requirement of the renormalizability
leads to a structure of the MSSM superpotential similar to Eq. (3.42). In addition,
the gauge invariant restrictions eliminate the linear terms (there is no chargeless
gauge singlet in SM). Then the superpotential reads

WMSSM = ǫij
(
λIJe Ĥ

i
1L̂

jIR̂J − λIJu Ĥ
i
2Q̂

jIÛJ + λIJd Ĥ
i
1Q̂

jID̂J − µĤ i
1Ĥ

j
2

)
, (3.64)

where λe, λu and λd are 3×3 Yukawa coupling matrices, i, j are weak isospin indices
and I, J = 1, 2, 3 are generation indices. µ is called the Higgsino mixing parameter
and is in general a complex number. It should be observed that this superpotential
satisfies the requirement of the baryon (B) and lepton (L) number conservation.
However, B and L number conservations cannot be treated as fundamental symme-
tries since they are known to be violated by non-perturbative electroweak effects
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[68]. Hence a new symmetry, the so-called R-parity or equivalently matter parity
is introduced. If we require R-parity to be a symmetry of the MSSM, then the
terms which violate B and L number conservations are not allowed. More about
this symmetry will be given at the end of this section.

One can now write down the general expression of the supersymmetric part of
the MSSM Lagrangian in terms of both chiral superfields and vector superfields,

LSUSY =

∫
d2θ

(
1

16g2s
Tr(WV̂sα

W α
V̂s
) +

1

16g2
Tr(WV̂ αW

α
V̂
)

+
1

16g′2
Tr(WV̂ ′αW

α
V̂ ′) +WMSSM

)

+

∫
d2θd2θ̄

(
L̂†e2gV̂+2g′V̂′

L̂+ Ê†e2g
′V̂′

Ê + Q̂†e2gsV̂s+2gV̂+2g′V̂′

Q̂

+ Û †e2gsV̂s+2g′V̂′

Û + D̂†e2gsV̂s+2g′V̂′

D̂ + Ĥ†
i e

2gV̂+2g′V̂′

Ĥi

)
+ h.c.

(3.65)

It should be observed that the above Lagrangian contains no mass terms. The mass
terms for the superparticles will be generated after supersummetry is broken and
the masses for the SM particles are generated after EW symmetry breaking. So far,
LSUSY introduces only one more prarameter µ in comparason to the SM parameters.

As we have mentioned supersymmetry is not an exact symmetry. It must be
broken. The origin of supersymmetry breaking is not clear. Many models proposed
spontaneous SUSY breaking mechanism, for a review see [64] and references therein.
Independence of the nature of SUSY breaking mechanism, the Lagrangian at low
energy contains terms which break SUSY explicitly. Those terms should be soft
since they have couplings of positive mass dimension. This restriction is to pre-
vent the appearance of quadratic divergence in quantum corrections to scalar mass,
which may kill the advantage of SUSY where all quadratic divergences are cancelled
stabilizing the EW scale. In the MSSM, the soft breaking terms found by Girardello
and Grisaru [16] are used. Then possible terms which violate supersymmetry but
are gauge and R-parity invariant reads

Lsoft = −1

2

(
M3g̃

ag̃a +M2W̃
iW̃ i +M1B̃B̃ + h.c

)

−Q̃†
M

2
Q̃
Q̃− L̃†

M
2
L̃
L̃− ˜̄uM2

Ũ
˜̄u† − ˜̄dM2

D̃
˜̄d† − ˜̄eM2

Ẽ
˜̄e†

−m2
H1
H†

1H1 −m2
H2
H†

2H2 − (bH1H2 + h.c)

−
(
˜̄uAuQ̃H1 − ˜̄dAdQ̃H2 − ˜̄eAeL̃H2 + h.c

)
, (3.66)

where M2
F̃

(F = Q,U,D, L,E) and Af (f = u, d, e) are 3×3 matrices in flavor space,
Mi (i=1,2,3) are gaugino masses. Adding these soft SUSY breaking terms, one has
introduced 105 additional free parameters to the MSSM (26 masses, 37 mixing angles
and 42 CP-violating phases). It should be observed that the soft parameters can be
complex and thus provide new sources of flavor and CP violations.
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To quantize the theory, gauge fixing terms are used. Since the gauge sector of
the MSSM is the same as of the SM, the ’t Hooft linear gauge fixing Lagrangian can
be chosen as

Lfix =− 1

2ξG
(F a

G)
2 − 1

2ξA
F 2
A − 1

2ξZ
F 2
Z − 1

2ξW
F+
WF

−
W , (3.67)

where

F a
G = ∂µG

aµ,

FA = ∂µA
µ,

FZ = ∂µZ
µ −MZξZG

0,

F+
W = ∂µW

+µ + iMW ξWG
+, (3.68)

with ξG, ξA, ξZ , ξW being the gauge fixing parameters. Since our theory is gauge
invariant, any physical quantity is independent of gauge fixing parameters. Then in
a practical calculation, one can chose specific values for them. For the simplicity of
the gauge boson propagators, one commonly uses the ’t Hooft Feynman gauge ξG =
ξA = ξZ = ξW = 1. In such gauge, the unphysical Nambu-Goldstone bosons, G±

and G0 have masses equal to the masses of corresponding gauge bosons. In addition
the mixing terms between the Nambu-Goldstone bosons and the longitudinal gauge
bosons are eliminated. In one-loop calculations, we use the ’t Hooft Feynman gauge
since we do not want the appearance of high rank tensor one-loop integrals. However
in tree-level calculation we prefer to use the unitary gauge, in which gauge fixing
parameters are infinite, because of less number of Feynman diagrams.

It is clear that the gauge fixing terms are not gauge invariant. They could
give unphysical contributions to physical processes, in particular at loop-level. One
has to eliminate these contributions to restore gauge invariance. This is done by
introducing the Faddeev-Popov ghost terms [69],

Lghost = c̄α
δFα

δθβ
cβ, α, β ∈ {G,A, Z,W±}, (3.69)

where cα, c̄α is ghost and anti-ghost field corresponding to the gauge boson α; θα

are infinitesimal gauge transformation parameters and Fα are given in Eq. (3.68).
The ghost fields are scalar fields but have fermionic properties. They belong to the
adjoint representation of the gauge group. From Eq. (3.67) and Eq. (3.69), one sees
that the ghost and Nambu-Goldstone boson squared masses are proportional to the
squared masses of the corresponding gauge boson:

M2
cG

=M2
cA

= 0, (3.70)

M2
cZ

=M2
G0 = ξZM

2
Z , (3.71)

M2
c±W

=M2
G± = ξZM

2
W . (3.72)

Both the ghosts and the Nambu-Goldstone bosons are unphysical fields and hence
do not appear as external lines of Feynman diagrams.
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To summarize, the quantized Lagrangian of the MSSM reads

LMSSM = LSUSY + Lsoft + Lfix + Lghost. (3.73)

R-parity

R-parity is a discrete multiplicative symmetry. R-parity of a particle can be defined
as

PR = (−1)2s+3(B−L), (3.74)

where s is the spin, B is baryon number and L is lepton number. An assignment of
quantum numbers for the superfields is following: B is 1/3 for Q̂, −1/3 for Û , D̂
and zero for the remaining superfields; L is 1 for L̂, -1 for R̂ and zero for other super-
fields. With this definition, the SM fields have PR = +1 while their supersymmetric
partners have PR = −1. If R-parity is an exact symmetry then sparticles cannot
mix with particles and only vertices with an even number of sparticles are allowed.
This leads to the following phenomenological consequences.

• The lightest supersymmetry particle (LSP) with PR = −1 must be stable. It
can be an attractive candidate for dark matter.

• Sparticles can only decay into a state which contains an odd number of LSP
plus the SM particles.

• At the colliders, sparticles can only be produced in pairs.

There is a well-known phenomenological motivation in favor of R-parity conser-
vation which will be shortly discussed below. Without R-parity conservation, then
following terms are allowed in the superpotential (see for example [70])

W6R = ǫij
(
λIJKL̂

i
IL̂

j
J R̂K + λ′IJKL̂

i
IQ̂

j
JD̂K +mI L̂i

IĤ
j
1

)
+ ǫijkλ

′′
IJKÛ

i
ID̂

j
JD̂

k
K ,

(3.75)

where λ, λ′ and λ′′ are Yukawa couplings, mI are mass parameters, I, J,K = 1, 2, 3
and i, j = 1, 2. It should be observed that the first three terms violate lepton number
by one unit while the fourth term violates baryon number by one unit. Those terms
leads to the B- and L-violating processes. Especially if both λ′ and λ′′ are present,
then proton will decay for example into e+π0 or e+K0. The mean time of proton
has lower limit about 2.1 × 1029 years [71]. This severe constraint makes the value
of any product of couplings λ′ and λ′′ extremely small, for squark masses below 1
TeV |λ′ · λ′′| < 10−9 in the absence of squark flavor mixing and |λ′ · λ′′| < 10−11

in the present of squark flavor mixing [72]. So one sees that R-parity conservation
is not the only way to keep the proton stable. However, the model with R-parity
conservation has lesser number of free parameters and thus is simpler. In this thesis,
we therefore perform our calculations in the MSSM with R-parity conservation.
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Parameters of the MSSM

The general MSSM at low energy where no specific assumptions are made about
the underlying SUSY breaking mechanism consists of 105 parameters (26 masses,
37 mixing angles and 42 complex phases) of the soft SUSY breaking terms and
18 parameters of the SUSY conserving terms. Performing analysis in the general
MSSM then comparing with experimental data are very difficult due to the large
number of soft parameters which can have arbitrary values. Most of analysis in
both experiment and theory have been done with some assumptions to restrict the
number free parameter. In our calculation we use also the common restriction on
the FCNCs. Unlike the SM where the GIM mechanism ensure the absence of the
FCNCs at tree-level, the MSSM can contains the FCNCs in interactions with the
Z-boson, the neutral Higgs bosons and the gauginos already at tree-level. These new
interactions can give large contributions to FCNC processes such as K0 − K̄0 mass
difference. The experimental data of FCNC processes have put severe bounds on the
favor mixing parameters. For simplicity, we assume that FCNCs are absent at tree-
level, i.e. the mass matrices and trilinear couplings are diagonal in the generation
space. This assumption is reasonable since our calculations mainly concern the third
generation of fermions. The effects of the CKM matrix are negligible for processes
discussed here, we therefore set it to be diagonal. To study CP violating effects, we
therefore still keep the possible phases of the remaining parameters which are the
gaugino masses Mi (i = 1, 2, 3), the Higgsino mass parameter µ and the trilinear
couplings Af :

Mi = |Mi|eiφi ,
µ = |µ|eiφµ,

Af = |Af |eiφf , f = u, c, t, d, s, b, e, µ, τ. (3.76)

In summary, the MSSM parameters consist of

• gauge couplings: gs, g, g
′;

• fermion masses: mf (f = u, c, t, d, s, b, e, µ, τ);

• gaugino masses: Mi (i = 1, 2, 3);

• sfermion masses: M2
Q̃
,M2

Ũ
,M2

D̃
,M2

L̃
,M2

Ẽ
for each generation;

• Higgsino mixing parameter: µ;

• trilinear couplings Af for each fermion species;

• Higgs sector parameters: MH± , tan β = v2/v1 with v1 and v2 being the vacuum
expectation values of the two Higgs doublets.
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3.5.3 The MSSM mass spectrum

If the supesymmetry and gauge symmetry are not broken, then the MSSM parti-
cles are massless. The explicit soft supersymmetry breaking and spontaneous elec-
troweak symmetry breaking generates mass terms for the particles. In many cases,
particles which have the same spin, electric charge, color charge and R-parity do
mix with each other. Unitary transformations are needed to find mass eigenstates.
In this section, we discuss the masses of the MSSM particles.

Higgs bosons and gauge bosons

The scalar Higgs potential is given by

VH = (|µ|2 +m2
H1
)H∗

1iH1i + (|µ|2 +m2
H2
)H∗

2iH2i + ǫij[bH1iH2j + b∗H∗
1iH

∗
2j ]

+
1

8
(g2 + g′2)(H∗

1iH1i −H∗
2iH2i)

2 +
1

2
g2|H∗

1iH2i|2, (3.77)

where i, j = 1, 2. The terms proportional to |µ|2 are from the F-terms. The terms
proportional to gauge couplings are from the D-terms and the remaining terms are
from the soft SUSY breaking terms. Unlike the SM where the quartic coupling is
a free parameter, it however relates to the gauge couplings g, g′ in the MSSM. This
interesting feature leads to the restrictions on mass of the lightest Higgs bosons.
The parameter b in the potential can be complex, however we can rephase the two
Higgs doublets to make b real. As of now b is considered as real parameter. For short
notation, we denote m̃2

H1
= |µ|2 + m2

H1
and m̃2

H2
= |µ|2 + m2

H2
. Like the SM, the

Higgs mechanism is used to break the EW symmetry and hence generate masses for
gauge bosons. The two Higgs doublets having non-vanishing vacuum expectation
values can be decomposed as follows,

H1 =

(
H0

11

H−
12

)
=

(
(v1 + φ0

1 − iχ0
1)/

√
2

−φ−
1

)
,

H2 =

(
H+

21

H0
22

)
= eiξ

(
φ+
2

(v2 + φ0
2 + iχ0

2)/
√
2

)
, (3.78)

where ξ is a possible relative phase between the two Higgs doublets. The vacuum
expectation values v1 and v2 can be chosen to be real and positive.

Using the decomposition of the Higgs fields, one can find the W boson and Z
boson masses

M2
W =

1

4
g2(v21 + v22),

M2
Z =

1

4
(g2 + g′2)(v21 + v22), (3.79)

and the photon remains massless. These relations are identical to those of the SM
with v2 = v21 + v22. As usual, one defines the weak mixing angle θW and tan β as
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follows,

tW ≡ tan θW =
g

g′
, tanβ =

v2
v1
. (3.80)

We now want to find the Higgs mass spectrum. Substituting Eq. (3.78) into
Eq. (3.77), one gets

VH = · · ·+ Tφ0
1
φ0
1 + Tφ0

2
φ0
2 + Tχ0

1
χ0
1 + Tχ0

2
χ0
2 (3.81)

+
1

2

(
φ0
1, φ

0
2, χ

0
1, χ

0
2

)
Mn




φ0
1

φ0
2

χ0
1

χ0
2


+

(
φ−
1 , φ

−
2

)
Mc

(
φ+
1

φ+
2

)
+ · · · .

Here we consider only the linear and quadratic terms, the dots refer to the constant
and higher power terms. Tφ/χ are the tadpole coefficients and are given by

Tφ0
1

= m̃2
H1
v1 + bv2 cos ξ +

1

8
(g2 + g′2)(v21 − v22)v1, (3.82)

Tφ0
2

= m̃2
H2
v2 + bv1 cos ξ +

1

8
(g2 + g′2)(v22 − v21)v2, (3.83)

Tχ0
1

= bv2 sin ξ, (3.84)

Tχ0
2

= −bv1 sin ξ. (3.85)

The stable minimum point of the potential requires the tadpole coefficients to be
zero. Consequently, ξ = 0. This means that the Higgs sector is CP conserving at
tree-level, and the Higgs mass eigenstates have defined CP numbers. Now one can
express the symmetric 4× 4 mass matrix Mn and 2× 2 mass matrix Mc as

Mn =

(
Mφφ Mφχ

Mφχ Mχχ

)
, (3.86)

with

Mφφ =




T
φ0
1

v cos β
− b tanβ cos ξ +M2

Z cos2 β b cos ξ −M2
Z sin β cos β

b cos ξ −M2
Z sin β cos β

T
φ0
2

v sinβ
− b cotβ cos ξ +M2

Z sin2 β


 ,

(3.87)

Mφχ =


 0 −

T
χ0
1

v sinβ
T
χ0
1

v sinβ
0


 , (3.88)

Mχχ =




T
φ0
1

v cos β
− b tanβ cos ξ b cos ξ

b cos ξ
T
φ0
2

v sinβ
− b cotβ cos ξ


 , (3.89)

and

Mc =




T
φ0
1

v cos β
− b tan β cos ξ +M2

W sin2 β eiξb−M2
W sin β cos β

e−iξb−M2
W sin β cos β

T
φ0
2

v sinβ
− b cot β cos ξ +M2

W cos2 β


 .

(3.90)
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Here we keep the tadpoles for the later purpose of renormalization. To find the
Higgs mass eigenstates, one has to diagonalize those mass matrices by orthogonal
transformations




h
H
A
G


 = Un




φ0
1

φ0
2

χ0
1

χ0
2


 ,

(
H±

G±

)
= Uc

(
φ±
1

φ±
2

)
(3.91)

which satisfy

Mn
diag = UnMnU

T
n
, Mc

diag = UcMcU
T
c
. (3.92)

The transformation matrices can be parameterized as in the following way,

Un =




− sinα cosα 0 0
cosα sinα 0 0
0 0 − sin βn cos βn
0 0 cos βn sin βn


 , Uc =

(
− sin βc cos βc
cos βc sin βc

)
. (3.93)

It is not difficult to show that at tree level βn = βc = β, ξ = 0 and

m2
A = − 2b

sin 2β
cos ξ cos2(β − βn) = − 2b

sin 2β
, (3.94)

m2
h/H =

1

2

[
m2

A +M2
Z ∓

√
(m2

A −M2
Z)

2 + 4m2
AM

2
Z sin2(2β)

]
, (3.95)

M2
H± = m2

A +M2
W , (3.96)

m2
G = m2

G± = 0, (3.97)

and the mixing angle α is determined through

tanα = − (m2
A +M2

Z)sin βcos β

M2
Z cos2 β +m2

A sin2 β −m2
h

, −π
2
< α < 0, (3.98)

where α is conventionally chosen to be negative. In the decoupling limit mA → ∞
then (β − α) → π/2. From Eq. (3.97), one should observe that mA, mH and MH±

can be arbitrarily large, however mh is bounded above: mh < MZ | cos 2β|. This is
a consequence of a fixed Higgs quartic coupling as we have already mentioned. The
lightest neutral Higgs h is commonly considered as the SM like Higgs boson since in
the limit mA ≫ MZ its couplings with fermions and gauge bosons are identical to
those of the SM.

In summary, the Higgs sector has the following spectrum:

2 CP even neutral Higgs bosons : h,H

1 CP odd neutral Higgs boson : A

2 charged Higgs bosons : H−, H+

3 Nambu-Goldstone bosons : G0, G−, G+. (3.99)
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Neutralinos and charginos

The two neutral gauginos (W̃ 0, B̃) and the two neutral Higginos (H̃0
1 , H̃

0
2 ) do mix

to form four mass eigenstates called neutralinos. The mass mixing matrix written
in the basis (W̃ 0, B̃, H̃0

1 , H̃
0
2 ) is given by

Mχ̃0 =




M1 0 −MZsW cos β MZsW sin β
0 M2 MZcW cos β MZcW sin β

−MZsW cos β MZcW cos β 0 −µ
MZsW sin β MZcW sin β −µ 0


 . (3.100)

The neutralino masses can be achieved by diagonalizing this matrix with a unitary
transformation N




χ̃0
1

χ̃0
2

χ̃0
3

χ̃0
4


 = N




B̃0

W̃ 0

H̃0
1

H̃0
2


 ,




mχ̃0
1

0 0 0

0 mχ̃0
2

0 0

0 0 mχ̃0
3

0

0 0 0 mχ̃0
4


 = N

∗
Mχ̃0N

†, (3.101)

where the masses in accordance with the convention mχ̃0
1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4
are

all positive and real. Neutralinos are Majorana fermions. The lightest one χ̃0
1 is the

lightest supersymmetric particle in a wide range of the mSUGRA parameter space
which can be a good dark matter candidate.

For the charged gauginos W̃± and the charged Higgsinos H̃−
1 , H̃

+
2 , their mixing

matrix reads

Mχ̃± =

(
M2

√
2 sin βMW√

2 cos βMW µ

)
. (3.102)

Unlike the neutralino case, this mass matrix is not symmetric. To diagonalize it,
one needs two unitary transformations U and V

(
χ̃+
1

χ̃+
2

)
= V

(
W̃+

H̃+
2

)
,

(
χ̃−
1

χ̃−
2

)
= U

(
W̃−

H̃−
1

)
, (3.103)

with (
mχ̃±

1
0

0 mχ̃±
1

)
= U

∗
Mχ̃±V

†, (3.104)

where the non-negative entries mχ̃±
1
, mχ̃±

2
are

mχ̃±
1,2

=
1

2

[
|M2|2 + |µ|2 + 2M2

W

∓
√

(|M2|2 + |µ|2 + 2M2
W )2 − 4|µM2 −M2

W sin 2β|2
]
. (3.105)

Last but not at least, the gaugino masses M1,M2 and the Higgsino mixing pa-
rameter µ, which in general are complex, enter those mass mixing matrices. After
diagonalization the mass matrices are real and positive, the effect of the complex
phases presents in the transformation matrices. As a result the couplings of neu-
tralinos and charginos may have complex phases.
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Quarks and leptons

Similar to the SM fermions, the fermion masses come from the Yukawa interaction
terms where the Yukawa couplings are exactly the same as those in the superpo-
tential. The mass matrices which mix fermions with different flavors arise after two
Higgs fields getting vacuum expectation values. A difference with the SM where
one Higgs doublet couples with both up- and down-type fermions, in the MSSM H1

couples with down-type fermions while H2 couples with up-type fermions.

For the lepton sector, we treat neutrinos as massless with only left-handed com-
ponents. The charged-lepton mass eigenstates can be set equal to their flavor states
with masses

ml =
λlv1√

2
=

√
2λlMW sW cos β

e
, (3.106)

where l = e, µ, τ .

For the quark sector, four unitary matrix V u,d
L,R are used to rotate flavor states to

mass eigenstates, yielding

mq =
λqv2√

2
=

√
2λqMW sW sin β

e
, mq′ =

λq′v1√
2

=

√
2λq′MW sW cos β

e
, (3.107)

where q = u, c, t and q′ = d, s, b.

Squarks and sleptons

The left- and right-handed sfermions with the same flavor mix after the EW sym-
metry breaking. Their mass terms in the Lagrangian are given by

Lsfermion masses = −
(
f̃ ∗
L, f̃

∗
R

)
Mf̃

(
f̃L
f̃R

)
− ν̃∗m2

ν̃ ν̃, (3.108)

where f ∈ {e, u, d} and the generation index has been suppressed,

m2
ν̃ =M2

L̃
+

1

2
M2

Z cos 2β, (3.109)

and

Mf̃ =

(
m2

f +M2
f̃L

+M2
Z cos 2β(If3 −Qfs

2
W ) mfX

∗
f

mfXf m2
f +M2

f̃R
+M2

Z cos 2βQfs
2
W

)
,

(3.110)
with

Xf = Af − µ∗{cotβ, tanβ}. (3.111)

Here {cotβ, tanβ} apply for up- and down-type sfermions, respectively. M2
f̃L

are

MQ̃ for squarks and ML̃ for sleptons. M2
f̃R

are MŨ for up-type squarks and MD̃ for
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down-type squarks and MẼ for sleptons. Note that if one allows flavor mixing then
the mass matrices will be 3 × 3 for sneutrinos and 6 × 6 for the charged sleptons,
up-type squarks and down-type squarks.

The masses M2
f̃L

and M2
f̃R

coming from the soft SUSY breaking terms are real

and positive while Af , µ are complex. Their phases are independent parameters. In
fact, only the phases of Xf (φXf = arg (Xf)) are important for this sector. The
unitary transformations can be used to diagonalize these mass matrices,
(
f̃1
f̃2

)
= Uf̃

(
f̃L
f̃R

)
,

(
m2

f̃1
0

0 m2
f̃2

)
= Uf̃Mf̃U

†
f̃
, Uf̃ =

(
cf̃ sf̃
−s∗

f̃
cf̃

)
, (3.112)

where

cf̃ =

√
m2

f +M2
f̃L

+M2
Z cos 2β(If3 −Qfs2W )−mf̃2√
m2

f̃1
−m2

f̃2

, (3.113)

sf̃ =
mfX

∗
f√

m2
f +M2

f̃L
+M2

Z cos 2β(If3 −Qfs
2
W )−mf̃2

√
m2

f̃1
−m2

f̃2

, (3.114)

and

m2
f̃1,2

= m2
f +

1

2

[
M2

f̃L
+M2

f̃R
+ If3M

2
Z cos 2β

∓
√

[M2
f̃L

−M2
f̃R

+M2
Z cos 2β(If3 − 2Qfs

2
W )]2 + 4m2

f |Xf |2
]
.(3.115)

We can parameterize cf̃ = cos θf̃ and sf̃ = e−iφXf sin θf̃ ; θf̃ are rotation angles. The
short relation

sin 2θf̃ =
2|Xf |mf

m2
f̃1
−m2

f̃2

. (3.116)

is very convenient for later calculations.

The off-diagonal elements of the sfermion mixing matrices are proportional to the
corresponding fermion masses. The first and second generation fermion masses are
small and hence the mixing angles and the CP-violating effects due to the complex
phases of Xf are small.

Gluinos

The gluinos are superpartners of gluons. They belong to the adjoint representation
of SU(3) group. There are eight of them. They are Majorana fermions and carry
color charge. Therefore, they do not mix with any other particles in the MSSM.
At tree level, the gluino mass is determined by the soft SUSY breaking parameter
M3, mg̃ = |M3|. M3 can have arbitrary complex phase. This phase enters the
gluino-quark-squark interactions and hence induces CP-violating effects in physical
processes.
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Figure 3.1: The LEP 95% C.L bounds on the mass of charged Higgs as a function of
the branching ratio of decay mode H− → τντ . The analysis was done based on the
collected dada of the four experiments at energies from 189 to 209 GeV. The thin
solid line indicates the expected exclusion limits while the thick solid one indecates
the observed limits. The shaded region is excluded at 95% confidence level.

3.6 Experimental searches for charged Higgs bosons

The charged Higgs bosons have been searched in experiments. No signal has been
found. Some constraints are obtained. In this section we review the published results
of the searches for charged Higgs bosons in a general THDM.

3.6.1 Direct searches

Direct searches are based on the charged Higgs boson production processes at collid-
ers. The produced charged Higgs bosons decay into SM particles or an even number
of sparticles if allowed by kinematics. The mass of the charged Higgs boson deter-
mines the dominant decay modes. A consistent combination of the production cross
sections with the decay widths provides signals of particular final state configura-
tions. In principle all the final configurations should be studied. However, some
may be more favored than the others. In the searches at LEP, Tevatron and LHC,
the dominant production processes and dominant decay modes are considered.



36 Chapter 3. Supersymmetry

Charged Higgs boson searches at LEP

The Large Electron-Positron Collider (LEP) with four detectors (ALEPH, DELPHI,
L3 and OPAL) operating from 1989 to 2000 had been searching for charged Higgs
bosons produced through the channel e−e+ → H−H+. The center-of-mass energy
ranging from 189 GeV to 209 GeV allow them to search for charged Higgs bosons in
the low mass region where they decay mainly into τντ or cs. The analyses were done
in the framework of the THDMs where the charged Higgs mass is a free parameter,
thus can be arbitrarily small. The MSSM belongs also to the THDMs, but the
charged Higgs mass has a constraint due to the tree-level relation M2

H± =M2
A+M

2
W .

If one takes into account the quantum corrections then the mass of the charged Higgs
bosons can be less than MW in some special regions of parameter space. No charged
Higgs event was found then they required MH± > 78.9 GeV at 95% confidence level
[73] regardless of the value of Br(H− → τντ ). For the dependence on Br(H− → τντ ),
one can see in Fig. 3.1.

For the MSSM, the constraint on the mass of the CP-odd Higgs boson A is an
useful information to set a constraint on the mass of the charged Higgs bosons. At
LEP, A can be produced in association with h and H . A combined LEP analysis
derived a low mass bound, mA > 93.4 GeV for the CP conserving scenario [74]. This
leads to a limit MH± > 120 GeV. For the CP violating scenario the limits are much
weaker.

Charged Higgs boson searches at Tevatron

The Tevatron was colliding protons and anti-protons at energies of 1.8 TeV for Run
I and of 1.96 TeV for Run II. The two experiments CDF and D0 have been searching
for charged Higgs bosons. Their analyses were done for two Higgs mass region: light
mass region is defined as MH± < mt and the remaining heavy mass region. For the
light mass region, they used the collected data for tt̄ production and then a (anti)top
quark decay into a charged Higgs boson and a bottom quark [75, 76, 77, 78]. The
charged Higgs bosons then decay into following final states: cs, τντ , t

∗b and Wh.
No further exclusion bound on MH± was found. The CDF experiment reported
an excluded region in the (MH±, tan β) plane for the specified MSSM parameters
as can be seen in Fig. 3.2 [77]. The same analysis at D0 has set an upper limit
on Br(t → H+b) for the charged Higgs mass from 80 to 155 GeV. They exclude
Br(t→ H+b) > 0.2 at 95% C.L. [79].

For the charged Higgs mass range from 180 to 300 GeV, the D0 experiment
reported a search using the channel qq̄′ → H+ → tb̄ → W+bb̄ → l+νbb̄ where l
represents an electron or a muon [80]. The analysis has been done in the context of
the THDM. An excluded region in the (MH± , tan β) plane was found in the THDM
type I, see in Fig. 3.3. For the THDM type II and type III, their analysis sensitivity
is not sufficient to exclude regions. No similar analysis has been presented for the
MSSM charged Higgs bosons.
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Figure 3.2: The CDF 95% C.L excluded region in the (MH± , tanβ) plane. The
MSSM parameters are set to MSUSY = 1000 GeV, µ = −500 GeV, At = Ab =
2000 GeV, Aτ = 500GeV, M2 = M3 = MQ̃ = MŨ = MD̃ = MẼ = ML̃ = MSUSY ,
and M1 = 0.498 M2. The SM-expected exclusion limits are indicated by black solid
lines and the ±1σ confidence band around it is obtained by generating pseudo-
experiments.

Charged Higgs boson searches at the LHC

The Large Hadron Collider (LHC) colliding opposite beams of either protons has
been successfully operating at the center-of-mass energy of 7 TeV. The two experi-
ments ATLAS and CMS are designed to hunt the SM Higgs boson and new physics.
To date they have recorded an amount of data of about 4 fb−1. A few analyses for
the charged Higgs bosons have been presented and focused on the light mass region
[81, 82, 83]. Similar to the Tevatron the charged Higgs bosons are mainly produced
from pp → tt̄ → H+bW−b̄ mechanism and pp → tt̄ → H+bH−b̄ to a lower extent.
Compared to the Tevatron results, ATLAS has obtained a stronger limit on the
branching fraction, Br(t→ bH+) < 0.1. It is based on the data set of the integrated
luminosity of 1.03 fb−1 and valid for 80GeV < MH± < 160GeV [83]. At CMS, the
limit is a bit stronger, Br(t → bH+) < 0.05 [82] in the same mass range. There is,
to date, no available analysis for the heavy mass region.

3.6.2 Indirect searches

Most of the indirect searches for charged Higgs bosons have been done in the rare
decays of B mesons where an intermediated charged Higgs boson can give significant
contributions due to the large bottom charged Higgs couplings. There are three
important decay modes: leptonic decay B → τ + ντ , semileptonic decay B →
D+ τ +ντ and B → Xs+γ. The charged Higgs bosons together with the W bosons
contribute already at tree level. Comparing experimental data with theoretical
predictions has led to severe excluded region on the (tanβ,MH±) plane as seen in
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Fig. 3.4 [84]. These analyses have been done in the context of the THDM type
II. The limits are not applied for the MSSM. Unlike the THDM, the SUSY loop
contributions can be rather large depending on the soft SUSY parameters.

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

tanΒ

M
H
±
@G

eV
D

B ® XsΓ Rb LEP B ® ΤΝ B ® DΤΝ K ® ΜΝ

Figure 3.4: Combined direct and indirect bounds on MH± in the THDM type II as
a function of tanβ. The colored areas are excluded by the constraints at 95% C.L.



Chapter 4

Treatment of divergences in
one-loop calculations

In this chapter, we discuss the divergences which we encounter in our computations
of the one-loop EW and QCD corrections.

4.1 Singularities of one-loop integrals

A generic Feynman diagram in Fig. 4.1 involves an integral over the loop momentum
q in D-dimensional space time,

T N
µ1···µP =

∫ ∞

−∞

dDq

(2π)D
qµ1

· · · qµP∏N
i=1[(q + ki)2 −m2

i + iε]
, (4.1)

where N is the number of loop propagators, P is the tensor rank (P < N for a
renormalisable theory), pi are external momenta,

k1 = p1, k2 = p1 + p2, · · · , kN = 0, (4.2)

q + kNmN

q + k1

q + k2

q + kN−1

m1

m2

mN−1

p1

p2 p3

pN

pN−1

Figure 4.1: A generic one-loop diagram
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and ε is an infinitesimally possitive parameter.

The one-loop integral in Eq. (4.1) is divergent in the limit q → ∞, provided
that 4 + P ≥ 2N . This is called ultraviolet (UV) divergence and can be computed
by using a regularization method. The divergences are removed in renormalization
process, more details will be discussed in Section 4.2.

It is well known that any tensor one-loop integral can be decomposed into a set
of four scalar integrals (one-, two-, three-, four-point scalar integrals) by making use
of the Passarino-Veltman reduction method [85]. As of now we focus only on the
scalar integral T N

0 . It can be rewitten in the Feynman parameter representation as

T N
0 =

∫ ∞

0

N∏

i=1

dxiδ(1−
N∑

i=1

xi)

∫ ∞

−∞

dDq

(2π)D
1

{
∑N

i=1 xi[(q + ki)2 −m2
i + iε]}N

.

(4.3)

There are two types of singularities of complex integrals which cannot be avoided
by deforming the contour of the integral: end-point singularities happen when the
integrand is singular at one of the end-points of the contour, pinch singularities
happen when two or more singular points of the integrand approach the contour
from opposite sides and coincide. The scalar loop integrals in general may contain
these two types of singularities and they are called Landau singularities.

The necessary conditions for the singularities of this integral in the physical
region are [86, 87, 88, 89, 90, 91]:





xi[(q + ki)
2 −m2

i ] = 0, ∀i ∈ {1, ..., N},∑N
i=1 xi(q + ki)

µ = 0,

xi real and xi ≥ 0,

q + ki = (q + ki)
∗.

. (4.4)

If there exists a solution with some parameters xi not equal to zero then the first
equation means that the corresponding internal particles are on mass shell and the
second one means that momentum of those particles are linear dependent. The two
last equations define the physical region. Now we focus on the solution with non-
zero xi, i = 1, ...,M (M ≤ N). Multiplying the second condition with (q + kj)µ,
j = 1, ...,M , then we get a set of equations





Q11x1 +Q12x2 + · · ·+Q1MxM = 0,

Q21x1 +Q22x2 + · · ·+Q2MxM = 0,
...

QM1x1 +QM2x2 + · · ·+QMMxM = 0,

(4.5)

where Qij elements are

Qij = 2(q + ki)(q + kj) = m2
i +m2

j − (ki − kj)
2, i, j = 1, ...,M. (4.6)
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Here the first condition has been used. Q matrix is called Landau matrix. The
above equations have non trivial solutions for xi if and only if det(Q) = 0. The
necessary conditions for the appearance of the singularities in the physical region is
therefore rewritten as





det(Q) = 0,

(q + ki)
2 = m2

i , ∀i ∈ {1, . . . ,M},
xi > 0, ∀i ∈ {1, . . . ,M},
q = q∗.

(4.7)

For M = N , we have leading Landau singularity (LLS). For M < N , it is
sub-leading Landau singularity (sub-LLS). In practice, it is important to know the
nature of these singularity and whether they are integrable. The singular part can be
calculated in the following way. First, performing integration over loop momentum
q, we get

T N
0 = T (N)

∫ ∞

0

N∏

i=1

dxiδ(1−
N∑

i=1

xi)
1

∆N−D/2
, (4.8)

where

T (N) =
(−1)NΓ(N −D/2)

(4π)D/2
, ∆ =

1

2

N∑

i,j=1

xixjQij − iε, (4.9)

the factor T (N) is responsible for UV-divergence. Now we denote x̄ = {x̄1, x̄2, ..., x̄N}
which satisfies Landau equations





∆(x̄) = 0,

x̄i = 0, ∀i ∈ {M, . . . , N},
∂∆
∂xi

∣∣
xi=x̄i

= 0, ∀i ∈ {1, . . . ,M}.
(4.10)

Expanding ∆ about x̄ one gets

∆ = ∆(x̄) +
N∑

i=1

(xi − x̄i)
∂∆

∂xi

∣∣
xi=x̄i

+
1

2

N∑

i=1

(xi − x̄i)
∂2∆

∂xi∂xj
(xj − x̄j)− iε. (4.11)

Then performing integration over xi, the singular part in the limit xi → 0+, i =
M, . . . , N is given by (more details see for example [91])

(T N
0 )sing ∝ [∆(x̄)− iε](D−M−1)/2 . (4.12)

Here we assume that the singularities are not further enhanced. The Landau singu-
larity appears when ∆(x̄) → 0. In four dimensions we have

• for M = 4, (T N
0 )sing ∝ 1√

∆(x̄)
, this is a four-point Landau singularity;
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• for D = 4,M = 3, (T N
0 )sing ∝ ln∆(x̄), this is a three-point Landau singularity;

• for D = 4,M = 2, (T N
0 )sing ∝

√
∆(x̄), this is two-point Landau singularity

(normal threshold);

• for D = 4,M = 1; (T N
0 )sing ∝ ∆(x̄), this is regular.

We observe that only the three- and four-point Landau singularities are divergent.
In our one-loop calculation for the process gg → W∓H± we encounter three-point
singularities. Fortunately, these singularities are integrable. Hence they do not cause
problems for hadronic cross section, but the partonic cross section is divergent at
the singular point. We will discuss this interesting issue in Subsection 7.3.3.

On the other hand, there exist cases in which the effects of landau singularities
can be enhanced and make the loop integrals divergent. Indeed the soft and collinear
singularities are enhanced Landau singularities. They will be discussed in detail in
Section 4.3.

4.2 UV divergences

4.2.1 Regularization

To deal with the UV-divergent integrals it is convenient to use a regularization
method to separate the results into a finite part and a divergent part. There are
several different regularization schemes. They all introduce new parameters such as
a cut-off Λ in Pauli-Villars method [92], an ǫ-dimensional parameter in dimensional
regularization [93]. The divergent part then can be expressed in terms of those pa-
rameters and will be removed by renormalization process in which counterterms are
introduced to precisely cancel UV divergences. In practical calculation, it is more
convenient to use a regularization scheme which respects a given symmetry of the
theory, e.g. gauge symmetry, supersymmetry. Of course, this does not mean one
cannot use other schemes which violate the symmetry. However in such cases the
symmetry restoring counterterms need to be added. It is well known the dimensional
regularization preserves gauge invariance and its variant dimensional reduction [94]
preserves supersymmetry. For our purpose, we will discuss those two schemes in
more detail. There is a another approach known as differential regularization [95]
which provides finite Green functions without any intermediate regulator or coun-
terterms, however it introduces many arbitrary constants which have to be fixed
at the end of the calculations by requiring the fulfillment of the relevant symmetry
identities. A constrained version has been shown to be equivalent to dimensional
reduction at one-loop level [96].
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Dimensional regularization

Dimensional regularization (DREG) is an elegant and convenient way which cal-
culate ill-defined loop integrals by moving from 4 to d dimensional space where
d = 4− 2ǫ. Then one can compute the loop-integrals without worrying about diver-
gences. The results then can be expanded in terms of ǫ. The results in 4 dimensions
are obtained by taking the limit ǫ→ 0. The UV-divergent terms appear as ǫ-poles.
This process is gauge invariant since the Ward identities holds for any value of d
[93]. Dimensional regularisation introduces also an arbitrary mass parameter, renor-
malization scale µR, to take care of the dimension of the couplings in d dimensional
space. How to deal with this scale relates to definition of renormalization schemes.
The only disadvantage in the application of this scheme is the difficulty with the def-
inition of γ5 matrix in d-dimensional space, since it is an intrinsically 4-dimensional
object. ’t Hooft and Veltman [93] used the definition γ5 = iγ0γ1γ2γ3 in d dimen-
sions. It however leads to the violation of the axial-vector Ward identities. An
alternative definition where {γ5, γµ} = 0 for all d is preferred for theories being free
of axial anomalies like the SM. Therefore, this prescription is commonly used for
the SM. Unfortunately, this scheme does not preserve supersymmetry manifestly.
Because the number of the components of the supersymetric generators Qα depends
on d. This leads to the number of bosonic fields may not equal to the number of
fermionic fields for any d dimensions. Therefore DREG needs to be modified if one
wishes to apply it for the supersymmetric theory.

Dimensional reduction

Dimensional reduction (DRED) was first proposed by Siegel [94] to modify DREG by
fixing the number of the components of Qα for any d to preserve supersymmetry. In
practical calculations it is done as follows. Momenta, space-time coordinate vertors,
metric tensor are in d dimensions while vector fields and γ matrices are still in 4
dimensions. To distinguish the 4-dimensional vectors and its d-dimensional ones he
separated a vector into a d vector and a d − 4 vector. It is done for γµ matrices
and polarization vectors ǫµ. Then he pointed out an inconsistency related to the
analytic continuation [97]. The combination of ǫ tensor and γ matrices leads to the
relation, 0 = d(d − 1)(d − 2)(d − 3)(d − 4), which is true for d = 0, 1, 2, 3, 4 and is
not applicable for non-integer d. A mathematically consistent way of using DRED
was formulated in [98] by realizing the 4-dimensional space as a quasi-4-dinemsional
space. Such space have the essential 4-dimensional properties but is in fact infinite
dimensional. Concerning the γ5 problem, the two definitions as in DREG can be
used in an axial anomaly free theory. DRED was proven to preserve supersymmetry
at one-loop level. A general proof for higher oder has not been available.
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4.2.2 Renormalization

After using a consistent regularisation to compute the UV-divergent loop integrals,
one needs to remove all the divergent parts to obtain finite S-matrix elements.
Renormalization is a procedure which absorbs all those divergences into the cou-
plings and the masses the classical Lagrangian. We can do that because they are
unphysical quantities (bare quantities). Based on renormalizablity, one can classify
three groups of theories:

• super-renormalizable theories contain only couplings with positive mass di-
mension,

• reromalizable theories contain only couplings with non-negative mass dimen-
sion,

• non-renormalizable theories contain couplings with negative mass dimension.

The SM and MSSM belong to the second group.

There are different renormalization approaches. We will use the counterterm
method for convenience. In this method, one first has to chose a set of independent
parameters, then replacing the bare couplings g0 and masses m2

0 by the renormalized
ones g and m2, respectively,

g0 = Zgg = (1 + δZg)g, m0 = m+ δm, (4.13)

where the renormalization constants δZg and δm2 are UV-divergent. Renormal-
ization of masses and couplings are enough to make all S-matrix elements finite.
However, it is not enough to make all Green functions finite. For this purpose one
has to renormalize fields by replacing the bare fields by the renormalized ones

Φ0 =
√
ZΦΦ = (1 +

1

2
δZΦ)Φ. (4.14)

Using those relations, the classical Lagrangian can be split into a renormalized part
and a counterterm part

L(g0, m0,Φ0) = L(g,m,Φ) + δL(g,m, δZg, δm, δZΦ). (4.15)

Now one has to use a set of rules to define the renormalization constants. That set of
rules determine a renormalization scheme. Then in the computation of the virtual
correction one has to compute all loop diagrams and the counterterm diagrams.
All the UV-divergences from loop diagrams will be canceled precisely with the ones
from the counterterm diagrams. The results are finite and only depend on the
renormalized parameters and possibly on µR.

In the following we discuss three popular renormalization schemes used in this
thesis. It is noted that the renormalization constants in every renormalization
schemes have the same divergent part but differ in the finite part.
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On-shell scheme

In the on-shell scheme [99, 100, 101], the renormalization constants are chosen in a
way that the renormalized parameters are equal to the physical parameters order
by order in perturbation theory. A physical mass is the real part of the pole of the
propagator. They can often be measured with high accuracy such as the masses
of the W and Z bosons and of the charged leptons. If there exists a mixing of
particles, the on-shell scheme requires their mass matrix to be diagonal. For a
coupling one needs to associate it with a specific vertex. Then on-shell coupling
means that all corrections to the vertex vanish when external fields are on-shell,
i.e. p2i = m2

i . The only electromagnetic coupling e of the vertex eeγ is measured
in the low energy limit. That is why this scheme is favored in QED and in the
electroweak theory. The on-shell renormalization of a field requires the residue of
its propagator to be one. Therefore, in actual loop calculation, one simply removes
all the wave function corrections since they vanish in the on-shell scheme. However
using the on-shell scheme is questionable in many cases such as the quark masses,
the unknown Higgs masses and the strong coupling, since they are not well defined.
Other renormalization scheme may be helpful.

MS scheme

In dimensional regularization, the UV-divergent parts are proportional to ∆ = 2/ǫ−
γE + ln 4π at one-loop level, γE is Euler-Mascheroni constant. A simplest way to
remove all UV divergences is to define renormalization constants in such a way that
they precisely cancel only the terms proportional to 1/ǫ. This scheme is called
Minimal Subtraction scheme (MS) [102]. One can do more than that by absorbing
not only ǫ-poles but also the constant −γE+ln 4π. This is done in Modified Minimal
Subtraction scheme (MS) [103, 104] where the counterterms are now proportional
to ∆.

DR scheme

It is identical to MS scheme but it is used in the dimensional reduction. At one-loop
level the renormalization constants in two schemes are identical. In higher order,
they may be different.

It should be noted that, the S-matrix elements do not depend on the renormal-
ization scheme, if contributions from all orders are included. However we cannot do
that. In practice we have to truncate the calculation at some fixed order. Conse-
quently, the S-matrix elements now depend on which renormalization scheme is used.
The difference between them is of the higher order effects. In many cases choosing a
good renormalization scheme leads to a more reliable prediction. In our calculation
we will use a combination of two schemes, the on-shell and the DR schemes.
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4.2.3 Renormalization of the MSSM

For the evaluation of one-loop diagrams, we will use FeynArts [105] and FormCalc [96]
packages. In FeynArts there is a MSSM model file which contains all couplings in
MSSM at tree-level. For our calculations we have to implement all necessary coun-
terterms. In this section, we discuss renormalization of those parts of the MSSM
which we need.

The Higgs and gauge sectors

We focus only on one-loop corrections in the complex MSSM. We will follow closely
the conventions of [101, 23]. Now we have to chose a set of independent parameters
for the sectors. It must satisfy the completeness property so that all remaining pa-
rameters can be expressed in terms of the independent parameters. The two sectors
depend on eight real parameters {v1, v2, g, g′, m̃2

1, m̃
2
2, b, ξ}. For the sake of conve-

nience we shift to another set of eight parameters {MW ,MZ , e,MH±, tanβ, Th, TH , TA},
where Th, TH and TA are tadpoles corresponding to the tree-level Higgs mass eigen-
states h,H and A, respectively. Instead of MH± one can choose mA since they are
related by MH±

2 = m2
A+M

2
W . However we are working in the complex MSSM where

A mixes with h and H beyond tree level. It is therefore better to choose MH±.

Now we define the relations between the bare parameters and the renormalized
parameter as follows

e0 = e(1 + δZe), Th0 = Th + δTh,

M2
W0 =M2

W + δM2
W , TH0 = TH + δTH ,

M2
Z0 =M2

Z + δM2
Z , TA0 = TA + δTA,

Mn0 = Mn + δMn, tanβ0 = tan β(1 + δ tanβ),

Mc0 = Mn + δMn, (4.16)

where the bare parameters are denoted by an index 0, Mn is a neutral Higgs mass
matrix written in the basis (h,H,A,G), Mc is a charged Higgs mass matrix written
in the basis (H±, G±) and the counterterm mass matrices are

δMn =




δm2
h δm2

hH δm2
hA δm2

hG

δm2
hH δm2

H δm2
HA δm2

HG

δm2
hA δm2

HA δm2
A δm2

AG

δm2
hG δm2

HG δm2
AG δm2

G


 , δMc =

(
δM2

H± δm2
H−G+

δm2
G−H+ δm2

G±

)
. (4.17)

The explicit expression for mass counterterms δmh/H/A/H±/G± can be found in [23].

In order to have finite Green functions we need to renormalize the fields. For
the gauge fields, we have

W±
0 = (1 +

1

2
δZW )W±, (4.18)

(
γ
Z

)

0

=

(
1 + 1

2
δZγγ

1
2
δZγZ

1
2
δZZγ 1 + 1

2
δZZZ

)(
γ
Z

)
. (4.19)
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For the neutral Higgs fields, we define



h
H
A
G




0

=




1 + 1
2
δZhh

1
2
δZhH

1
2
δZhA

1
2
δZhG

1
2
δZhH 1 + 1

2
δZHH

1
2
δZHA

1
2
δZHG

1
2
δZhA

1
2
δZHA 1 + 1

2
δZAA

1
2
δZAG

1
2
δZhG

1
2
δZHG

1
2
δZAG 1 + 1

2
δZGG







h
H
A
G


 , (4.20)

and the charged Higgs fields
(
H+

G+

)

0

=

(
1 + 1

2
δZH−H+

1
2
δZH−G+

1
2
δZG−H+ 1 + 1

2
δZG−G+

)(
H+

G+

)
,

(
H−

G−

)

0

=

(
1 + 1

2
δZH−H+

1
2
δZG−H+

1
2
δZH−G+ 1 + 1

2
δZG−G+

)(
H−

G−

)
. (4.21)

For the purpose of later uses we list the tree-level relations of various renormal-
ization constants in the following.

• For the weak mixing angle

cW ≡ cos θW =
MW

MZ

, s2W ≡ sin2 θW = 1− M2
W

M2
Z

,

sW0 = sW + δsW , δsW =
c2W
2sW

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
. (4.22)

• For the two Higgs doublets, one can introduce two renormalization constants
before the rotation (this was done in the papers [106, 107, 108])

(H1)0 =

(
1 +

1

2
δZH1

)
H1, (H2)0 =

(
1 +

1

2
δZH2

)
H2, (4.23)

then

δZhh = sin2 αδZH1
+ cos2 αδZH2

,

δZAA = sin2 βδZH1
+ cos2 βδZH2

,

δZhH = sinα cosα(δZH2
− δZH1

),

δZAG = sin β cos β(δZH2
− δZH1

),

δZHH = cos2 αδZH1
+ sin2 αδZH2

, (4.24)

δZGG = cos2 βδZH1
+ sin2 βδZH2

,

δZH−H+ = sin2 βδZH1
+ cos2 βδZH2

,

δZG−G+ = cos2 βδZH1
+ sin2 βδZH2

,

δZH−G+ = δZG−H+ = sin β cos β(δZH2
− δZH1

),

δZhA = δZHA = δZhG = δZHG = 0,

where the last equation is the consequence of CP-conserving Higgs sector at
the tree level.
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• For two vacuum expectation values

(v1)0 = (1 +
1

2
δZH1

)(v1 + δv1), (v2)0 = (1 +
1

2
δZH2

)(v2 + δv2), (4.25)

then

δ tan β =
1

2
(δZH2

− δZH1
) +

δv2
v2

− δv1
v1
. (4.26)

Renormalized self energies

The above renormalization constants will be fixed by applying a set of renormaliza-
tion conditions on the renormalized tadpoles, self energies and three vertex functions.
We list here explicit expressions of the self energies needed. The gauge boson self
energies can be decomposed into the transverse and longitudinal parts as

Σµν
V V (k) =

(
gµν − kµkν

k2

)
ΣT

V V (k
2) +

kµkν

k2
ΣL

V V (k
2), (4.27)

and the Higgs to gauge boson mixing self energies

Σµ
SV (k) = kµΣSV (k

2). (4.28)
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We use hi (i = 1, 2, 3) to denote the neutral Higgs bosons (h,H,A) and V for W,Z.
The renormalized self energies denoted by a hat are given by

Σ̂T
V V (k

2) = ΣT
V V (k

2) + (k2 −M2
V )δZV − δM2

V ,

Σ̂L
V V (k

2) = ΣV V (k
2)−M2

V δZV − δM2
V ,

Σ̂T
γZ(k

2) = ΣT
γZ(k

2) + k2
(
δZγZ

2
+
δZZγ

2

)
−M2

Z

δZZγ

2
,

Σ̂L
γZ(k

2) = ΣL
γZ(k

2)−M2
Z

δZZγ

2
,

Σ̂T
γγ(k

2) = ΣT
γγ(k

2) + k2δZγγ,

Σ̂hihj(k
2) = Σhihj (k

2) +

(
k2 −

m2
h1

+m2
hj

2

)
δZhihj − δm2

hihj
,

Σ̂hiG(k
2) = ΣhiG(k

2)− δm2
hiG
,

Σ̂GG(k
2) = ΣGG(k

2) + k2δZGG − δm2
GG, (4.29)

Σ̂H−H+(k2) = ΣH−H+(k2) + δZH−H+(k2 −M2
H±)− δM2

H± ,

Σ̂H−G+(k2) = ΣH−G+(k2) + δZH−G+(k2 − 1

2
M2

H±)− δm2
H−G+ ,

Σ̂G−H+(k2) = Σ̂∗
H−G+(k2),

Σ̂G−G+(k2) = ΣG−G+(k2) + k2δZG−G+ − δm2
G±,

Σ̂AZ(k
2) = ΣAZ(k

2) +
MZ

2
(δZAG + sin 2βδ tan β),

Σ̂GZ(k
2) = ΣGZ(k

2) +
MZ

2

(
δZGG + δZZZ +

δM2
Z

M2
Z

)
,

Σ̂H−W+(k2) = ΣH−W+(k2) +
MW

2
(δZG−H+ + sin 2βδ tan β),

Σ̂G−W+(k2) = ΣG−W+(k2) +
MW

2
(δZG−G+ + δZW +

δM2
W

M2
W

).

Renormalization conditions

The renormalization conditions are used to fix all the aforementioned renormaliza-
tion constants.

• The vanishing tadpole conditions

T 1-loop
h + δTh = 0, T 1-loop

H + δTH = 0, T 1-loop
A + δTA = 0, (4.30)

to ensure v1, v2 are the minimum of the one-loop Higgs potential. So, in actual
calculations all tadpoles are removed.

• The gauge boson masses and fields are renormalized in on-shell scheme as in the
SM. The mass renormalization constants δM2

W , δM
2
Z and the field renormal-

ization constants δZW , δZZ , δZγZ , δZZγ, δZγγ are defined from the following
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on-shell conditions

R̃e Σ̂T
W−W+(M2

W ) = 0, Re Σ̂T
ZZ(M

2
Z) = 0,

Re Σ̂T
γZ(M

2
Z) = 0, Re Σ̂T

Zγ(0) = 0,

Re Σ̂T
γγ(0) = 0,

R̃e
∂Σ̂T

W−W+(k2)

∂k2

∣∣∣∣
k2=M2

W

= 0, Re
∂Σ̂T

ZZ(k
2)

∂k2

∣∣∣∣
k2=M2

Z

= 0,

Re
∂Σ̂T

γγ(k
2)

∂k2

∣∣∣∣
k2=0

= 0, (4.31)

where R̃e takes only the real part of loop integrals.

• The electromagnetic coupling e is renormalized in the on-shell scheme, i.e. the
amputated renormalized eeγ vertex function receives no correction,

Γ̂µ
eeγ(k, p, p

′)
∣∣
k2=0,p2=p′2=m2

e
= ieγµ. (4.32)

This leads to [101]

δZe = −1

2
δZγγ +

sW
2cW

δZZγ =
1

2

∂ΣT
γγ(k

2)

∂k2

∣∣∣∣
k2=0

+
sW
cW

ΣT
γZ(0)

M2
Z

. (4.33)

• The charged Higgs mass are renormalized in on-shell scheme

R̃e Σ̂H−H+(M2
H±) = 0. (4.34)

• The last point is the renormalization of tan β. This is problematic because of
the fact that tan β is not a directly measurable quantity. Unlike the electron
charge e and particle masses there is no obvious way to relate tanβ to an
observable. There exists in literature a number of renormalization schemes for
tan β; see [109] for a review. The following are two oft used schemes.

– Dabelstein, Chankowski, Pokorski and Rosiek scheme (DCPR) [107, 106]:

δv1
v1

=
δv2
v2
, Σ̂AZ(M

2
A) = 0. (4.35)

From Eq. (4.26), Eq. (4.31) and Eq. (4.35), one gets

δ tanβ =
1

sin 2βMZ
ΣAZ(M

2
A). (4.36)

One can alternatively use the vanishing condition for Σ̂H−W+(M2
H±)[110]

instead of Σ̂AZ(M
2
A) and gets

δ tan β =
1

sin 2βMW
ΣH−W+(M2

H±). (4.37)
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– The DR scheme [111] imposes conditions

δv1
v1

=
δv2
v2
,

δZH1
= −

[
Re

dΣ̂HH

dk2
∣∣
α=0

]div

,

δZH2
= −

[
Re

dΣ̂hh

dk2
∣∣
α=0

]div

,

δ tan β =
1

2
(δZH2

− δZH1
), (4.38)

where div takes only the UV-divergent part which proportional to
∆ = 2/ǫ− γE + ln 4π in dimensional reduction.

Unfortunately, as shown by Freitas and Stökinger [109], there is no satisfac-
tory scheme which is simultaneously gauge-independent, process-independent
and numerically stable. However, DR appears to be a good scheme since it is
manifestly process-independent and it is numerically stable [111, 112]. It is not
gauge-independent in general gauge but it is gauge-independent at one-loop
level in Rξ gauges [109]. Moreover, this scheme is technically convenient in im-
plementation. So it is often used in one-loop calculations. In our calculations
we will use this scheme. It should be mentioned that there exists process-
dependent schemes such as the ones based on the decay modes A → τ−τ+

or H− → τ−ν. They are manifestly gauge independent. In those schemes
tanβ can be computed from physical observables (decay widths of those decay
modes). They are not often used in practical because of technical difficulties in
implementation (e.g. three-point functions with infrared singularities appear).
Recently, the on-shell(A → τ−τ+) scheme has been implemented in SLOOPS
[113] for the real MSSM.

Renormalization of the fermion sector

The renormalization of the fermion fields in the presence of CP violation is a bit
more involved than the CP-conserving case. We therefore give here explicit formulae
for mass and wave function renormalization constants of the quark fields. The quark
self-energy can be decomposed as

Σq(p) = p/PLΣq,L(p
2) + p/PRΣq,R(p

2) + PLΣq,l(p
2) + PRΣq,r(p

2). (4.39)
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We note that Σq,l(p
2) = Σq,r(p

2) = Σq,S(p
2) in the case of CP invariance. The

renormalized self-energy is written as

Σ̂q(p) =Σq(p) + Σ̃q(p), (4.40)

Σ̃q(p) =
1

2
(δZq,L + δZ∗

q,L)p/PL +
1

2
(δZq,R + δZ∗

q,R)p/PL

+
mq

2
(2
δmq

mq
+ δZq,L + δZ∗

q,R)PL +
mq

2
(2
δmq

mq
+ δZ∗

q,L + δZq,R)PR. (4.41)

In general, δZq,L and δZq,R are complex1. δmq can always be made real by rephasing
the field ψL (or ψR). At this step any phases can be absorbed into the two factors
δZq,L and δZq,R which will have to be determined. It is obvious that the squared
amplitude is invariant under a global rephasing

ψ = ψL + ψR −→ eiφψ(ψL + ψR). (4.42)

From this freedom we can, for example, make δZq,R real while δZq,L remains complex.
We therefore need 4 conditions to determine the 3 renormalization constants. The
OS conditions are

R̃e Γ̂q(p)u(mq) = 0,

[
1

p/−mq

R̃e Γ̂q(p)

]
u(mq) = iu(mq), (4.43)

R̃e ū(mq)Γ̂q(p) = 0, ū(mq)

[
R̃e Γ̂q(p)

1

p/−mq

]
= iū(mq), (4.44)

where Γ̂q(p) = i[p/−mq+Σ̂q(p)] and p2 = m2
q. R̃e sets the imaginary part of the loop

integrals to zero since they are not involved in the renormalization. The hermiticity
of the Lagrangian imposes [99]

Γ̂q(p) = −γ†0Γ̂†
q(p)γ0. (4.45)

It is obvious that Eq. (4.44) can be derived from Eq. (4.43) and Eq. (4.45). From
these conditions we get the following results

δmq =
1

2
R̃e
{
mq

[
Σq,L(m

2
q) + Σq,R(m

2
q)
]
+ Σq,l(m

2
q) + Σq,r(m

2
q)
}
,

δZq,L = − R̃e
{
Σq,L(m

2
q)−

1

2mq

(
Σq,l(m

2
q)− Σq,r(m

2
q)
)

+ mq
d

dp2
[
mq

(
Σq,L(p

2) + Σq,R(p
2)
)
+ Σq,l(p

2) + Σq,r(p
2)
]
p2=m2

q

}
,

δZq,R = − R̃e
{
Σq,R(m

2
q)−

1

2mq

(
Σq,r(m

2
q)− Σq,l(m

2
q)
)

+ mq
d

dp2
[
mq

(
Σq,L(p

2) + Σq,R(p
2)
)
+ Σq,l(p

2) + Σq,r(p
2)
]
p2=m2

q

}
,(4.46)

where we have used the freedom Eq. (4.42) to take Im(δZq,R) = − Im(δZq,L). These
results agree with the ones in [114].

1If we impose CP invariance then δZq,L and δZq,R can be taken real.
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4.3 Soft and collinear singularities

Now we turn to two special solutions of the Landau equations, which lead to diver-
gences in loop integrals. They are known as mass singularities. We have seen that a
general one-loop scalar integral T N

0 is a function of internal masses and external mo-
menta. In some cases T N

0 can contain singularities at the origin of the mass variables
independently of the orientation of the external momenta. It has been shown by
Kinoshita [115] there are two physical configurations that both lead to logarithmic
mass divergences. The soft singularity occurs when two external on-shell particles
exchange a massless particle (photon or gluons). The collinear singularity arises
when an external massless particle splits into two massless particles inside a loop.
Both of them can be separated and computed by using mass regularization or dimen-
sional regularization. In mass regularization photon or gluons are given a regularized
mass λ, then the divergent parts appear as ln(λ). In dimensional regularization the
divergences appear as 1/ǫn pole (ǫ = (4−D)/2), n = 1, 2. Both singularities are in
fact related to the singularities of real radiation of massless particles. In particular,
the mass divergent parts in virtual contributions exactly cancel with the singularities
in the real radiation contributions order by order when summed over all degenerate
states. This is known as Kinoshita-Lee-Nauenberg (KLN) theorem [115, 116]. In the
following we will discuss in detail the treatment of those singularities. We will use
the mass regularization scheme. Therefore we consistently work in four space-time
dimensions. One should be careful when using mass regularization for QCD correc-
tion calculations since giving a small mass to gluons may break gauge invariance,
in particularly, when the QCD loops involve three-gluon couplings. In our QCD
one-loop calculation involving only quark-antiquark-gluon couplings it is safe to use
mass regularization.

4.3.1 Conditions

Assuming there is at least one massless particle at nth position in the scalar one-
loop integral (4.3) then the Landau matrix contains the element Qnn = 2m2

n. The
Landau equations can have a solution (we follow the convention in Section 4.1)





(q + kn)
2 = m2

n → 0,

x̄n = 1,

x̄i = 0, ∀i ∈ {1, . . . , n− 1, n+ 1, . . . , N},
∆(x̄) = m2

n → 0,

(4.47)

x̄n = 1 due to the constraint
∑N

i=1 xi − 1 = 0. Here we only concentrate in mass
singularities therefore we will ignore other possible solutions. Now the expansion
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(4.11) becomes

∆ = m2
n +

∑

i 6=n

xi
∂∆

∂xi
+

1

2

N∑

i,j(6=n)=1

xixj
∂2∆

∂xi∂xj
− 1

2

N∑

i,j(6=n)=1

xixj
∂2∆

∂xn∂xj

−1

2

N∑

i,j(6=n)=1

xixj
∂2∆

∂xn∂xi
+

1

2

N∑

i,j(6=n)=1

xixj
∂2∆

∂xn∂xn
. (4.48)

Substituting

∆ =
N∑

i=1

xim
2
i −

N∑

i<j

xixj(ki − kj)
2, (4.49)

into Eq. (4.48) we get

∆ = m2
n +

∑

i∈B
xiβi +

∑

i∈C
xiβi +

1

2

N∑

i,j(6=n)=1

xixjGij, (4.50)

where
βi = m2

i − (ki − kn)
2, ∀i ∈ B,C, (4.51)

and
Gij = 2kikj. (4.52)

B is the largest set of i such that βi = 0 and C is for non-vanishing βi. nB is the
number of elements of set B. The scalar integral in Eq. (4.3) becomes

T N
0 = T (N)

∫ ∞

0

N∏

i=1

dxi
δ(1−

∑N
i=1 xi)

(m2
n +

∑
i∈B xiβi +

∑
i∈C xiβi +

1
2

∑N
i,j(6=n)=1 xixjGij)N−2

.

(4.53)

Now we consider some special cases:

• nB = 0, 1 the singular parts of one-loop integral which are taken in the limit
xn → 1 will vanish if m2

n → 0.

• nB = 2 then the singular parts is logarithmic as we can see easily in the 3-point
function (we assume m3 → 0)

T 3
0 = T (3)

∫
dx1dx2

1

m2
3 +

1
2

∑2
i,j=1 xixjGij

, (4.54)

which can be integrated around x1 = x2 = 0 to get

(T 3
0 )sing ∝ lnm2

3. (4.55)

The two elements of B must be direct neighbors of nth particle, i.e. ,

m2
n−1 = (kn−1 − kn)

2 = p2n−1, m2
n+1 = (kn+1 − kn)

2 = p2n. (4.56)
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If an element of set B is not a direct neighbor of nth particle, for example
i = n + 2, then the condition m2

n+2 = (kn+2 − kn)
2 = (pn + pn+1)

2 cannot
happen for every orientation of momenta pn and pn+1. The same reason does
not allow for nB > 2. The momentum transfer of nth propagator q + kn goes
to zero. Therefore this is called soft singularity. Any loop diagrams which
contain photon or gluons satisfy the above conditions hence are soft divergent.

We have seen that soft singularity is one-point Landau singularity enhanced by
conditions in Eq. (4.56). The number of propagators involved are three. Therefore
N < 3 there is no soft singularity. For N > 3, soft singularities of N-point integrals
can always expressed in terms of 3-point integrals, more details are given in [117].

The scalar N-point function in Eq. (4.53) can have mass divergence if the follow-
ing conditions are fulfilled

m2
n → 0, m2

n+1 → 0, (kn+1 − kn)
2 → 0. (4.57)

In fact, it gives the following solution of the Landau equations,




(q + kn)
2 = m2

n → 0,

(q + kn+1)
2 = m2

n+1 → 0,

x̄n + x̄n+1 = 1,

x̄i = 0, ∀i ∈ {1, . . . , n− 1, n+ 2, . . . , N},
∆(x̄) = m2

n +m2
n+1 → 0.

(4.58)

In this case the nth and (n + 1)th propagator are on mass shell and their transfer
momenta tend to collinear to each other. Therefore this is called collinear singularity.
It involves two propagators hence for N < 2 there is no collinear singularity. The
nature of this singularity is also logarithmic. We encounter the collinear singularities
in loop diagrams which contain interactions of light quarks with photon or gluons
and of charged fermions with photon and triplet gluon couplings. In addition to
the collinear conditions, if βn−1 or βn+2 also vanish then the collinear and soft
singularities overlap. The divergent part will be proportional to lnm2

n lnm
2
n+1 .

4.3.2 Real radiations of massless particles

The mass singularities in real radiation processes arise from the phase space integral

I =

∫
d3q

q0

1

(2piq)(2pjq)
, (4.59)

where pi , pj are the momenta of the particles that emit the massless particle, q is
momentum of the massless particle. The product of two momenta can be expressed
as

2piq = 2q0pi0

(
1−

√
1− m2

i

p2i0
cos θc

)
, (4.60)
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where θc is the angle between ~pi and ~q. Since the momentum of massless particle
can go to zero, the above integral has end point singularity in the limit q0 → 0. This
singularity is called the soft singularity as in the case of virtual loop. If the emitting
particle is aslo massless, i.e. m2

i → 0 then the integrand has a pole at θc = 0. The
integral has also end point singularity. Since two particles are collinear to each other,
this is called the collinear singularity.

In one-loop calculations these bremsstrahlung processes are combined with the
virtual contribution although they appear to have different final states. The rea-
sons are very simple: i) experimentally they are not distinguishable in the soft and
collinear limits, ii) they have the same power of coupling constants, hence of the
same order in the perturbative theory. In practice, the two parts are computed
separately but they are divergent. The numerical results can have large integration
errors and thus make prediction unreliable. Fortunately, the divergent part can be
factorized and computed analytically in virtual corrections. We expect to do the
same in the real radiation processes. Then the divergences will be eliminated before
doing the numerical integrations. It turns out to be more difficult than in the virtual
parts. There are essentially two types of methods to carry out real radiation contri-
butions: the phase space slicing (PSS) method [118, 119, 120, 121] and subtraction
method [122, 123].

The PSS method is based on the idea to separate the integration region into soft
and collinear region and the hard non collinear region with the help of two cutoff
parameters. In the soft and collinear region, matrix elements can be approximated
and hence the integration can be computed analytically. In the hard non collinear
region the integrand are finite and thus are integrated numerically. In principle,
the final results are independent of the two cut-offs. However there are subtleties
in practice. If the cut-offs are large then the integration error of the finite part is
small but the approximation of matrix elements in the soft and collinear region is
not good enough. The serults can be wrong in this case. If the cut-offs are small
then the integration error is large. Therefore one has to choose the right cutoffs to
get a reliable result. This method is intuitive and simple in implementation but not
very efficient in performance.

The subtraction method is based on the idea to add and subtract counterterms.
The counterterms are the approximation of the real radiation matrix elements. They
are exactly equal to the real radiation matrix element in the soft and collinear limits.
There exists two general formulations of the subtraction method: residue approach
[124] and dipole subtraction [125]. The dipole subtraction uses the subtraction
method together with factorization formulae of the approximated matrix element in
the soft and collinear regions as in the PSS method. Compared to the PSS method,
the subtraction dipole method need more analytical work, and thus is more difficult
to implement. But in exchange, its numerical error is smaller than that of the PSS
method as it was pointed out in [126].

In our calculations we implement both the PSS method and the dipole subtrac-
tion. In the following we discuss them in more details to understand and implement
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them properly.

A. Phace space slicing method

Let us describe this method for one-loop contributions to a generic process with
n particles in the initial state (n = 1 for decay processes while n = 2 for collider
processes) and m particles in the final state. The real contribution to this process
can be written as

σn→m+1 =

∫
dΦm+1|M1|2, (4.61)

where the phase space measure is given by

dΦm+1 =
m∏

i=1

dk3i
2ki0(2π)3

dq3

2q0(2π)3
(2π)4δ4(

n∑

a=1

pa −
m∑

i=1

ki − q), (4.62)

pa, ki and q are momenta of initial states, final states and of the emitted massless
particle, respectively (we use a, b indices for initial states while i, j indices for final
states). M1 is the tree-level amplitude of the n→ m+1 process. The integral phase
space can be decomposed into soft and hard region. If collinear singularities exist
then the hard region can be decomposed into hard-collinear and hard-non-collinear
region. Therefore, the real contribution is written as

σn→m+1 = σS
n→m+1 + σH

n→m+1, (4.63)

σH
n→m+1 = σHC

n→m+1 + σHC
n→m+1. (4.64)

The soft region is determined by 0 ≤ q0 ≤ ∆E (∆E = δs
√
s/2),

√
s is the center-

of-mass energy of the process and δs is the soft cutoff parameter. Thus 2q0/
√
s >

δs defines the hard region. The hard-colinear region satisfies additional collinear
condition: the angle between an emitted particle and an emitting particle θc becomes
smaller than δc, δc is collinear cutoff. The complement region is hard-non-collinear.

Here we present the approximation formulae used in our calculations in the soft
and collinear region for photon radiations.

Soft region

The squared matrix element |M1|2 is approximately proportional to |M0|2 of the
tree-level process without radiation of photon, (see e.g. Ref. [101]). We can write

σn→m+1 =

∫
dΦm|M0|2

∑

i,j

− α

4π2
(±Qi)(±Qj)Iij, (4.65)

where Qi is the relative electric charge of ith external particle, + sign is for in-
comming parrticle, − sign is for out-going particles and

Iij =

∫

q0≤∆E

dq3

2q0

2pipj
(piq)(pjq)

. (4.66)
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This integral has been calculated analytically by ’t Hooft and Veltman [127] using
a mass regulator (λ) for photon,

Iij = 4π
αpipj

(αpi)2 − p2j

{
1

2
ln

(αpi)
2

p2j
ln

4∆E2

λ2
+ (4.67)

+

[
1

4
ln2 u0 − |~u|

u0 + |~u| + Li2

(
1− u0 + |~u|

v

)
+ Li2

(
1− u0 − |~u|

v

)]u=αpi

u=pj

}
,

with

v =
(αpi)

2 − p2j
2(αpi0 − pj0)

, (4.68)

and α is a solution of
α2p2i − 2αpipj + p2j = 0, (4.69)

satisfying
αpi0−pj0

pj0
> 0. The spence function is defined as

Li2(x) = −
∫ 1

0

ln(1− xy)

y
dy. (4.70)

Some special limits are useful. For pi = pj , one can get the result by taking the limit
of the expression in Eq. (4.68) as α approaches 1 and using the following formulae

lim
α→1

α lnα

α2 − 1
=

1

2
,

lim
α→1

Li2(1− αx)− Li2(1− x)

α2 − 1
=

x ln x

2(1− x)
, (4.71)

then

Iii = 2π

(
ln

4∆E2

λ2
+
pi0
|~p| ln

pi0 − |~pi|
pi0 + |~pi|

)
. (4.72)

If the ith particle is massless then the above formula is simplified as

Iii = 2π

(
ln

∆E2

λ2
+ ln

m2
i

|pi|2
)
, (4.73)

which is the sum of soft and collinear singularities. mi is a mass regulator. For
~pi = −~pj = ~p, we have

Iij = 2π
pipj

(pi0 + pj0)|~p|

[
1

2
ln
pi0 + |~p|
pi0 − |~p| ln

4∆E2

λ2
− Li2

(
2|~p|

pi0 + |~p|

)

−1

4
ln2 pi0 + |~p|

pi0 − |~p| + (i↔ j)

]
. (4.74)

If pi0 = pj0 = p0 and mi → 0 then

Iij = 2π

[
ln

4|~p|2
m2

i

ln
4∆E2

λ2
− 1

2
ln2 4|~p|2

m2
i

− π2

3

]
. (4.75)
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In this case, the soft and collinear singularities overlap and appear as the product
of the two logarithms.

In practice, the integrated soft contributions can be combined with the virtual
parts since they have the same phase-space integral.

Hard-collinear region

The collinear singularities appear in the initial state contributions and final state
contributions (the interference is collinear finite). Therefore one can treat them
separately. In the collinear region, the phase space integral can be factorized into
a m-particle part and a collinear part. For the squared matrix element, one can
use leading pole or collinear approximation where it can be factorized into a leading
order squared matrix element and a splitting kernel. Then the cross section is simple
enough to be integrated over the collinear phase space. The results are presented as
[128]

• for initial state

σHC,initial
n→m+1 (s) =

∑

a

∫ 1−δs

0

dz
α

2π
Q2

a

(
Pff (z) ln

s′baδc
2zm2

a

− 2z

1− z

)
σborn
n→m(s

′
ab),

(4.76)

• for final state

σHC,final
n→m+1 (s) =

∑

i

∫ 1−δs

0

dz
α

2π
Q2

i

(
Pff(z) ln

s′jiδcz
2

2m2
i

− 2z

1− z

)
σborn
n→m(s

′
ij),

(4.77)

where Pff(z) is the splitting function

Pff(z) =
1 + z2

1− z
, (4.78)

and s′xy = (px+zpy)
2, px stands for the sum of the momenta of the remaining particles

in the initial or final states. It should be emphasized that the final state collinear
singularities cancel with the one in the virtual contributions. However the initial
state collinear singularities do not since they are not summed over all degenerated
states. Therefore one has to deal with them in a proper way depending on which
collider machine we are working with. For e−e+ collider, one can factorize initial
collinear singularities and define a density function to resum these singularities. For
hardron collider, one can redefine parton distribution functions to absorb them. In
our processes we have initial collinear singularities in the bb̄ → W∓H± processes
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and final collinear singularities in gg → H−tb̄ process. Redefinition of bottom
distribution is necessary. We will discuss more detail in the following Subsection C.

The above discussion can be also applied for gluon emission. However a lot of
care must be taken since gluons carry color charge. In general there exist color
correlations between soft (collinear) factor with the leading order squared matrix
element. In our QCD contributions to bb̄ →W∓H±, there exists only bb̄g couplings
and thus gluons behave like photon. All the above formulae can be used with the
replacement αQ2

a → αs4/3 and λ2 is now an infinitesimal mass of gluons.

The emission of light fermions lead also to collinear singularities (there is no soft
singularities related to massless fermions). The phase space now is divided into the
collinear and hard parts with only one cutoff δc. We focus on the processes where
light quarks are emitted from photon or gluons in the initial states. In particular
we denote them as a + γ(g) → q +X, a is an incomming parton, X is a set of final
states. These processes are called photon- or gluon-induced processes. The collinear
contribution for photon-induced processes is given by [129]

σaγ→qX = 3
Q2

qα

2π

∫ 1

0

dz

(
Pqγ(z) ln

δ2cp
2
q0(1− z)2

m2
q

+ 2z(1− z)

)
σaq̄→X(zs), (4.79)

where the splitting function is

Pqγ(z) = z2 + (1− z)2, (4.80)

and s = (pa + pγ)
2. For the gluon-induced process, the factor 3Q2

qα is replaced by
1/2αs. These singularities still remain after adding of virtual and real contributions
and are removed by redefining distribution function of quark q.

B. Dipole subtraction method

In this section, we discuss the dipole subtraction method implemented in our cal-
culations. We follow the procedure described in [126]. In subtraction method, the
real contribution is computed by adding an integral

σn→m+1 =

∫
dΦm+1(|M1|2 − |Msub|2) +

∫
dΦm+1|Msub|2, (4.81)

where the subtraction function |Msub|2 must approach |M1|2 in the soft and collinear
regions and must be simple enough to be integrated analytically over the singularity
regions. It should be noted that the first integral can be done numerically over the
full phase space with vanishing photon, gluon and fermion masses. For the second
integral, the integration over the singular variables can be carried out analytically
with the help of a regulator (the photon mass, gluon mass and light quark masses).
In general it consists of two pieces: one piece contains all soft and collinear singu-
larities which can be combined with the virtual contribution to cancel all the soft
singularities and the other one is a convolution piece which contains only collinear
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singularities. First, we discuss photon radiations. The subtraction function can
be constructed from the auxiliary functions gsub

ff ′ and the leading squared matrix
element |M0|2 without photon emission,

|Msub(a+ b→ X + q)|2 = −
∑

f 6=f ′

QfQf ′e2gsub
ff ′ (pf , pf ′ , q)|M0(ã+ b̃→ X̃)|2, (4.82)

where f, f ′ are the charged particles which can be fermions or massive bosons, f is
called the emitter whereas f ′ is called the spectator and q is momenta of photon. The
tilde notations imply that the momenta of those particles can be different with the
ones in the left hand side. For the evaluation of |M0(ã+b̃→ X̃)|2 one has to define a
mapping from Φm+1 to Φm for each dipole term on the right hand side. The auxiliary
functions must contain all soft and collinear singularities, see in Appendix B. Now
we proceed to calculate the second term in Eq. (4.81). Performing the integration
over the singular region, we get [126]

∫
dΦm+1|Msub|2 = − α

2π

∑

f 6=f ′

QfQf ′

{∫ 1

0

dx

[ ∫
dΦm(x)

1

x
Gff ′(x)|M0(xpf , pf ′)|2

−
∫
dΦm(1)Gff ′(x)|M0(pf , pf ′)|2

]

+

∫
dΦmGff ′|M0(pf , pf ′)|2

}
, (4.83)

where the distributions Gff ′(x) contain collinear singularities and the endpoint func-
tions Gff ′ contains both soft and and collinear singularities. Note that for final state
emitter and final state spectator Gff ′(x) vanish. For the gluon radiation in our cal-
culations for bb̄ →W∓H± process, we have to replace αQfQf ′ by 4/3αs.

For a light quark emitted from a photon in initial state, the dipole subtraction
result consists of a finite part and a convolution part,

σaγ→qX =

∫
dΦm+1(|M1|2 − |Msub|2) + σsub

aγ→fX , (4.84)

where

|Msub|2 = Q2
qe

2hγa(q, pa, pf)|Maf̄→X(pa, xγapγ)|2, (4.85)

and

σsub
aγ→fX = 3

Q2
fα

2π

∫ 1

0

dxHγa(mf , x, paq)σaf̄→X(pa, xq). (4.86)

For the process ag → qX occured in our calculation, we have to replace 3Q2
fα by

1/2αs. All the necessary subtraction functions (gsub
ff ′ ,Gff ′ , Gff ′ , hγa,Hγa) are pre-

sented in Appendix B.
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C. Regularized parton distribution functions

As mentioned, the initial state collinear singularities still remain after adding the
virtual and the real corrections. For hardon colliders we can absorb these collinear
singularities into the parton distribution functions (PDF). For the processes that
involve only the (anti-)quarks in the initial states in the lowest order, one only
needs to replace the unrenormalized quark PDF by the renormalized one and a
counterterm part

q(x) → q(x, µ2
R) + δq(x, µ2

R), (4.87)

where

δq(x, µ2
R) = −

αQ2
q

2π

∫ 1

x

dz

z
q
(x
z
, µ2

F

){
ln
(

µ2
F

m2
b

)
[Pqq(z)]+

− [Pqq(z)(ln(1− z)2 + 1)]+ + Cqq(z)

}

−
3αQ2

q

2π

∫ 1

x

dz

z
γ
(x
z
, µ2

F

)[
ln
(

µ2
F

m2
b

)
Pqγ + Cqγ(z)

]
. (4.88)

The splitting functions are given by

Pqq(z) =
1 + z2

1− z
, Pqg(z) = Pqγ(z) = z2 + (1− z)2, (4.89)

and the [. . .]+ prescription is understood in the usual way,

∫ 1

x

dzf(z)

[
g(z)

1− z

]

+

=

∫ 1

x

dz
[f(z)− f(1)]g(z)

1− z
− f(1)

∫ x

0

dz
g(z)

1 − z
. (4.90)

Following the standard conventions of QCD, the factorization schemes are specified
by

CMS
qq (z) = CMS

qg (z) = 0,

CDIS
qq (z) =

[
Pqq(z)

(
ln(

1− z

z
)− 3

4

)
+

9 + 5z

4

]

+

,

CDIS
qγ (z) = Pqγ ln(

1− z

z
)− 8z2 + 8z − 1. (4.91)

For photon-like gluon radiation processes, one can still apply the above formulae
with a replacement of αQ2

q by 4/3αs and the photon PDF by the gluon PDF. In
this thesis we use the MRST2004qed set of PDFs [130] which include O(αs) QCD
and O(α) photonic corrections. As explained in [129], the consistent use of these
PDFs requires the MS factorization scheme for the QCD, but the DIS scheme for
the photonic corrections.



Chapter 5

Higher order corrections and
resummations

In this chapter we first give a brief review of the higher corrections to the Higgs
boson masses and mixing. We discuss also the using of the DR scheme in one-loop
calculations involving Higgs bosons in the external lines. For the last two sections, we
give an introduction of the resummation of the higher order corrections to the Higgs
mixing propagators and to the bottom–Higgs couplings used in our calculations.

5.1 Higher order corrections to Higgs masses and

mixings

As we have seen in Subsection 3.5.3, at tree level the MSSM Higgs sector are defined
by two input parameters, tanβ and MH± . All the remaining parameters (the neutral
boson masses, mixing angles) are predicted. The masses of the lightest Higgs boson
is bounded from above by mh < |MZ cos 2β| as a consequence of the fixed quartic
Higgs couplings. It has been known that the loop effects can modify significantly
the Higgs boson masses and mixings. In particular, the corrections including the
one- and two-loop contributions can raise the upper bound of mh to about 140 GeV
[23, 65, 66].

We now discuss how to define the loop corrected masses for the neutral Higgs
bosons in the Feynman diagram approach. For simplicity we first consider the case
where a scalar Higgs boson does not mix with other particles (one can require the
mixing to vanish in a renormalization scheme). The full propagator is defined by

∆hh =
i

p2 −m2
h



1 +

−Σ̂hh(p
2)

p2 −m2
h

+

[
−Σ̂hh(p

2)

p2 −m2
h

]2
+ · · ·





=
i

p2 −m2
h + Σ̂hh(p2)

, (5.1)
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where Σ̂hh(p
2) is the renormalized self-energy and mh is the tree-level Higgs mass.

The loop corrected Higgs mass Mh is defined as the pole of this full propagator, i.e.
[
p2 −m2

h + Σ̂hh(p
2)
]
p2=M2

h−iMhΓh
= 0, (5.2)

where Γh is the total decay width of the Higgs boson. If Σ̂hh(p
2) is computed up

to all orders of the perturbation theory then Mh is equal to the physical Higgs
mass. Solving Eq. (5.2) analytically or numerically with full complex momentum
dependence is in general very difficult. Therefore, instead of using Eq. (5.2) one can
use an approximation equation provided that Γh ≪ Mh,

M2
h −m2

h + Re Σ̂hh(M
2
h) +

Im Σ̂hh(M
2
h)(Im Σ̂hh)

′(M2
h)

1 + (Re Σ̂hh)′(M2
h)

= 0, (5.3)

where we have used a short-hand notation F ′ = dF/dp2.

At higher order, mixing between h,H and A occurs (if all complex phases are
vanishing h,H do not mix with A). Moreover, there is the mixing of the neutral
Higgs bosons with G and Z, but they yield only sub-leading two-loop contribu-
tions to the Higgs boson masses, see [23]. We do not consider such mixing in the
determination of the neutral Higgs masses, but they are taken into account in ac-
tual one-loop calculations involving the neutral Higgs bosons, see Section 5.2. The
loop-corrected masses (pole masses) of the neutral Higgs boson are the poles of the
propagator matrix,

∆hHA = −
[
Γ̂hHA(p

2)
]−1

, (5.4)

with

Γ̂hHA(p
2) = i

[
p2 −M(p2)

]
,

M(p2) =




m2
h − Σ̂hh(p

2) −Σ̂hH(p
2) −Σ̂hA(p

2)

−Σ̂hH(p
2) m2

H − Σ̂HH(p
2) −Σ̂HA(p

2)

−Σ̂hA(p
2) −Σ̂HA(p

2) m2
A − Σ̂AA(p

2)


 .

(5.5)

The mixing mass matrix M(p2) contains the renormalized Higgs self-energies, Σ̂ij ,
i, j = h,H,A, defined in Eq. (4.31). In general, the three poles are complex and
written as

M2
ha =M2

ha − iMhaΓha , a = 1, 2, 3, (5.6)

where Mha are the loop-corrected masses with the convention

Mh1
< Mh2

< Mh3
, (5.7)

and Γha are the corresponding total decay widths. The evaluation of the poles can
be performed by diagonalising the mass matrix M(p2). For more details of the
diagonalisation method with full mometa dependence we refer to [23].
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There are two public Fortran codes which help to evaluate the loop corrected
masses and mixings of the MSSM Higgs bosons in the general complex MSSM. The
program FeynHiggs is based on Feynman diagrammatic approach [65, 131, 132, 66,
133], which we have described above. The other code, CPsuperH [134], is based on
the renormalization group improved effective potential approach [135, 136, 137, 138].
In our calculation we use FeynHiggs where one has the possibility to include various
important two-loop contributions to the renormalized self energies. We include the
full-phase-dependent αsαt corrections and the (αsαb, αtαt, αtαb) corrections with
interpolated complex phases dependence for the charged Higgs decay calculation
(see Chapter 6).

For the charged Higgs bosons, they do mix with the charged Nambu-Goldstone
bosons G± and the longitudinal part of the W-bosons. In the real MSSM, one can
choose mA as input parameter. The loop-corrected mass for the charged Higgs boson
then can be determined through the pole of its propagator. In the complex MSSM,
we chose MH± as an input parameter and hence it is renormalized on-shell. Similar
to the neutral Higgs case, the mixing between H± and G±,W± contributes to the
processes involving the charged Higgs bosons at one-loop order, see Section 5.2.

5.2 Amplitudes of processes with external Higgs

bosons

In DR scheme we are using for the Higgs field renormalization, the residue of the
Higgs boson propagators are not equal to one. Finite wave-function renormalization
therefore has to be taken into account, together with Higgs mixings. Moreover such
inclusion is to ensure the on-shell property of the Higgs bosons [23, 139]. In our
calculations, the neutral and charged Higgs bosons can appear in the external lines.
We present the expressions of the amplitudes for such processes in the following.

For a neutral Higgs boson hi (i = 1, 2, 3) with loop-corrected mass Mhi in the
external state, the one-loop amplitude is given by

Mhi(Mhi) =
√
Zi

(
Mh0

i
+
∑

j 6=i

ZijMh0
j

)

+
Σ̂G0hi(p

2)

p2 −M2
Z

MG0 +
pµΣ̂Zhi(p

2)

p2 −M2
Z

Mµ
Z , (5.8)

where the wave function renormalization factors

Zi =
1(

i
∆ii(p2)

)′
(M2

i )
,

Zij =
∆ij(p

2)

∆ii(p2)

∣∣∣∣
p2=M2

i

, (5.9)
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involve the elements ∆ij of the the propagator matrix ∆hHA in Eq. (5.4), h0i (i=1,2,3)
refer to h,H,A, respectively. p is the momentum of hi, p

2 = M2
i . Mh0

i
denote the

amplitudes of the tree-level and one-loop Feynman diagrams with external Higgs
bosons h0i . Mh0

j
, MG0 and MZ are the tree-level amplitudes with h0j (j 6= i), G0

and Z, respectively. Σ̂G0hi and Σ̂Zhi are the renormalized self-energies defined in
Eq. (4.31). For short notation we define the Z matrix as

Z =




√
Zh

√
ZhZhH

√
ZhZhA√

ZHZHh

√
ZH

√
ZHZHA√

ZAZAh

√
ZAZAH

√
ZA


 . (5.10)

Eq. (5.8) can be expressed in terms of elements of Z matrix,

Mhi =
∑

j

ZijMh0
j
+

Σ̂G0hi(p
2)

p2 −M2
Z

MG0 +
pµΣ̂Zhi(p

2)

p2 −M2
Z

Mµ
Z . (5.11)

For a charged Higgs boson, the loop amplitudes are given by

MH± =
√
ZH−H+MH±

+
Σ̂G±H∓(p2)

p2 −M2
W

MG± +
pµΣ̂W±H∓(p2)

p2 −M2
W

Mµ
W±, (5.12)

where the wave function renormalization factor is given by

ZH−H+ =
[
1 + Re

∂

∂p2
Σ̂H−H+

]−1∣∣
p2=M2

H±

, (5.13)

with the DR-renormalized self-energy Σ̂H−H+ and p being the momentum of H±,
p2 = M2

H± . The renormalized self-energies Σ̂G±H∓ and Σ̂W±H∓ are defined in
Eq. (4.31). To simplify calculations the following Slavnov-Taylor identities (see
for example [113, 114]) can be used.

Σ̂hG(p
2) +

ip2

MZ
Σ̂hZ(p

2) =0, (5.14)

Σ̂HG(p
2) +

ip2

MZ

Σ̂HZ(p
2) =0, (5.15)

Σ̂AG(p
2) +

ip2

MZ

Σ̂AZ(p
2) =(p2 −m2

A)f0(p
2), (5.16)

Σ̂G+H−(p2)− p2

MW
Σ̂W+H−(p2) =(p2 −M2

H±)f±(p
2), (5.17)

where

f0(p
2) =

α sin 2(β − α)M2
Z

32πs2WM
2
W

[B0(p
2, m2

h,M
2
Z)−B0(p

2, m2
H ,M

2
Z)], (5.18)

f±(p
2) =

α sin 2(β − α)

32πs2W
[B0(p

2, m2
h,M

2
W )−B0(p

2, m2
H ,M

2
W )]. (5.19)
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5.3 Amplitudes of the processes with internal neu-

tral Higgs bosons

In our calculation of W∓H± productions at the LHC, both subprocesses, bb̄ →
W∓H± and gg → W∓H±, include s-channel diagrams with internal neutral Higgs
bosons. The loop effects to the neutral Higgs boson masses and mixing should be
taken into account. We will verify in our numerical studies that the effects of this
inclusion are significant for both cross section and CP asymmetry.

In a general amplitude with external neutral Higgs bosons that do not appear
inside loops, the structure describing the Higgs-exchange part of an amplitude is
given by

M(p2) =
∑

ij

Γi∆ij(p
2)Γj, i, j = h/H/A, (5.20)

where Γi,j are the one-particle irreducible Higgs vertices. p2 is the momentum of
the Higgs propagator which is given in terms of 3 × 3 matrix ∆hHA in Eq. (5.4).
By using this matrix we effectively resum all the one-loop corrections to the Higgs
propagators.

There are several approximations one can do to simplify the above expression as
done in [23]. They introduced the concept of effective couplings.

• In the p2 = 0 approximation, the mass matrix in Eq. (5.5) can be diagonalized
by a rotation matrix



h1
h2
h3


 = Rn



h
H
A


 , RnM(0)RT

n
= diag(M2

h1,p2=0,M
2
h2,p2=0,M

2
h3,p2=0).

(5.21)
Since the mass matrix M(0) is real and symmetric in this approximation, Rn

is a real and orthogonal matrix. Therefore one can define the effective Higgs
couplings as

Γeff
i =

∑

j

RnijΓj, . (5.22)

The amplitude now reads

M =
∑

j

Γeff
j

i

p2 −M2
hj ,p2=0

Γeff
j . (5.23)

• In the p2 on-shell approximation, the self-energies are defined as

Σ̂ii(p
2) → Re Σ̂ii(m

2
i ), Σ̂ii(p

2) → Re Σ̂ii((m
2
i +m2

j )/2), (5.24)
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where only the real parts are taken. The mass matrix then can be diagonalized
by a unitary transformation



h1
h2
h3


 = Un



h
H
A


 , (5.25)

UnM(p2on-shell)U†
n

= diag(M2
h1,p2on-shell,M

2
h2,p2on-shell,M

2
h3,p2on-shell).

The effective couplings are then defined as in Eq. (5.22) with a replacement
Rn → Un.

In our calculation we keep the full momentum dependence of self-energies and
their imaginary parts. This imaginary part can give strong effects in the large
momentum region.

5.4 Effective bottom–Higgs couplings

The Yukawa Lagrangian expressed in the quark flavor states reads

LY = λijd ǫIJ d̄
i
Rq

j
LIH1J − λiju ǫIJ ū

i
Rq

j
LIH2J + h.c, (5.26)

where i, j = 1, 2, 3, I, J = 1, 2 and the antisymmetric tensor ǫ12 = −ǫ21 = +1. One
can perform a rotation on quark fields to transform it from the flavor eigenstates
to the mass eigenstates with the help of the unitary matrices (V u,d

L/R). For Higgs
phenomena the interactions with the third generation are important and therefore
we can neglect the flavor mixing. The Lagrangian now reads

LY = λbǫIJ b̄RqLIH1J − λtǫIJ t̄RqLIH2J + h.c, (5.27)

where λb and λt are Yukawa couplings. Then one can express the Lagrangian in
terms of the tree-level Higgs mass eigenstates (h,H,A,G,H±, G±) by using the
rotations defined in Eq. (3.91) and gets the tree-level bottom–Higgs couplings:

λbb̄h = i
λb√
2
sinα(PL + PR),

λbb̄H = −i λb√
2
cosα(PL + PR),

λbb̄A =
λb√
2
sin β(PL − PR),

λbb̄G = − λb√
2
cos β(PL − PR), (5.28)

λbt̄H+ = i (λtcos βPL + λbsin βPR) ,

λtb̄H− = i (λbsin βPL + λtcos βPR) ,

λbt̄G+ = i (λtsin βPL − λbcos βPR) ,

λtb̄G− = i (−λbcos βPL + λtsin βPR) ,
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where PL,R = (1 ∓ γ5)/2, the bottom and top couplings are related to their corre-

sponding masses as λb =
√
2mb/(vcos β) and λt =

√
2mt/(vsinβ), v =

√
v21 + v22 =

2MW sW/e.

It is well known that the bottom–Higgs couplings can get large SM-QCD, SUSY-
QCD and SUSY-EW corrections. In order to obtain reliable predictions these large
universal corrections should be absorbed into the the bottom–Higgs couplings. This
can be done in two steps. First, the large SM-QCD corrections which is proportional
to αs ln(m

2
b) are absorbed by using the running bottom-quark mass [140]. Second,

the large SUSY-QCD and SUSY-EW corrections which are proportional to tan β
can be resummed by using the effective bottom–Higgs couplings. In the following
we discuss this procedure in detail.

5.4.1 The running bottom quark mass

For calculating one-loop SM-QCD corrections, if one renormalizes the bottom mass
in on-shell scheme then the bottom mass is defined as the pole mass while in DR
scheme it is understood as the running DR mass. At one-loop level, they are related
by the following relation

mDR
b (µR) = mb

[
1− αs

π

(
5

3
− ln

m2
b

µ2
R

)]
. (5.29)

We note, in passing, that the relation between the pole mass and the MS mass is
different

mMS
b (µR) = mb

[
1− αs

π

(
4

3
− ln

m2
b

µ2
R

)]
. (5.30)

We see that the DR mass depends explicitly on the renormalization scale µR which
is often chosen to be the characteristic scale of a given process. This mass is sensitive
only to short distance aspect of QCD. It is therefore advantageous to adopt the DR
scheme for our processes in which the characteristic scale is large compared to the
bottom mass. Moreover this scheme leads to the one-loop QCD corrections to be
independent of αs ln(m

2
b). For processes in which the characteristic scale is of the

order of the bottom mass, the DR mass is not an useful quantity. It is better to
use the pole mass in those processes. However, one should keep in mind that the
pole mass of a quark is not a physical quantity in a truly non-perturbative sense.
Since the confinement of quarks in QCD implies that there is no pole in the quark
propagator.

We take the QCD-MS mass mb(mb), which is extracted from experimental data,
as an input parameter. In order to compute the MS mass at a higher energy scale
one can use the renormalization group equation (RGE) of the bottom mass and thus

mMS
b (µR) =

{
U6(µR, mt)U5(mt, mb)mb(mb) for µR > mt

U5(µR, mb)mb(mb) for µR ≤ mt
(5.31)



70 Chapter 5. Higher order corrections and resummations

 [GeV]
R

µ
50 100 150 200 250 300 350 400 450 500

 [
G

eV
]

D
R

b
m

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Figure 5.1: The DR bottom mass as a function of the energy scale.

where the evolution factor Un reads (see e.g. [141])

Un(Q2, Q1) =

(
αs(Q2)

αs(Q1)

)dn [
1 +

αs(Q1)− αs(Q2)

4π
Jn

]
, Q2 > Q1

dn =
12

33− 2n
, Jn = −8982− 504n+ 40n2

3(33− 2n)2
. (5.32)

with n being the number of active quark flavors (n = 5 for mb(mb) < Q ≤ mt and
n = 6 for Q > mt). From the MS mass we can compute the DR mass by using the
two-loop order relation [142]

mDR
b (µR) = mMS

b (µR)

[
1− αs(µR)

3π
− α2

s(µR)

144π2
(73− 3n)

]
. (5.33)

For the running αs which appears in the above relations, we use the approximate
analytic solution of renormalization group equation of αs at three-loop level

αs(µR) =
4π

β0t

(
1− β1

β2
0

ln t

t
+
β2
1(ln

2 t− ln t− 1) + β0β1
β4
0t

2

)
, (5.34)

where t = ln (µ2
R/Λ

2
n); Λn is a constant of integration at which the perturbatively-

defined strong couplings would diverge; and β0 = 11 − 2/3n, β1 = 51 − 19/3n,
β2 = 2857− 5033/9n+325/27n. We chose Λ5 = 228.9× 10−3 GeV to reproduce the
world average αs(MZ) = 0.1197 [143] and Λ6 can be computed from the relation

Λ6 = Λ5

(
mt

Λ5

)−2/21(
2 ln

mt

Λ5

)−107/1127

, (5.35)
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Figure 5.2: One-loop QCD contribution to δλ̃db (left pannel) and δλ̃ub (right pannel).
Similar diagrams with the replacement of H0∗

22 by H0
11 and H∗

21 by H12 will contribute
to δλub and δλdb , respectively.

which is derived from the requiring that αs(µR) is continuous at µR = mt up to the
first order term.

In Fig. 5.1 we show the running mDR
b as a function of the energy scale. There is a

negligible discontinuity at µR = mt because the higher order terms are not included
in Eq. (5.35).

In our calculation, we use the DR scheme for renormalization of bottom mass,
therefore in the bottom–Higgs couplings listed in Eq. (5.29) mb is replaced by mDR

b .

5.4.2 ∆mb resummation

The subject has been widely studied in the literature. In summary, there two ap-
proaches for the resummation of large tan β effect: the diagrammatic resummation
[144, 145] and effective Lagrangian approach [141, 146, 147, 148]. The discussion
in this section follows the latter. As seen in Eq. (5.26), at tree level the interac-
tion of the down-type quarks to H2 doublet are forbidden to ensure the analytic
property of the superpotential. Once the higher order corrections are considered,
these interactions are not vanishing and hence appear in the effective Lagrangian as
follows

LY = (λb + δλ
u/d
b )ǫIJ b̄RqLIH1J + δλ̃

u/d
b ǫIJ b̄RqLIH̃2J

−λtǫIJ t̄RqLIH2J + h.c + · · · , (5.36)

where H̃2 = iσ2H
∗
2 , index u is for i = 1, J = 2 and index d is for I = 2, J = 1.

For example at one-loop level the SUSY-QCD contributions to δλ̃
u/d
b comes from

Feynman diagrams depicted in Fig. 5.2. In general, δλ̃ub and δλ̃db are different by the
SU(2)L-breaking terms. For simplicity we set δλub = δλdb = δλb and δλ̃ub = δλ̃db = δλ̃b.
This is done in the decoupling limits where MSUSY is much larger than the EW scale.
Therefore one can neglect the EW breaking effects. Now we can write the effective
Lagrangian as

LY = λb(1 + ∆1)ǫIJ b̄RqLIH1J + λb∆mbǫIJ b̄RqLIH̃2J

−λtǫIJ t̄RqLIH2J + h.c + · · · , (5.37)
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where we have replaced δλb = λb∆1 and δλ̃b = λb∆mb. Substituting the expressions
of the two Higgs doublet Eq. (3.78) into Eq. (5.37) we get the relation of the bottom
Yukawa coupling and the bottom mass

λb =

√
2mb

v cos β(1 + ∆1 +∆mb tanβ)
. (5.38)

One should keep in mind that mb is real and positive while ∆1 and ∆mb are in
general complex. The effective bottom–Higgs couplings are as follows:

λ̄bb̄h =
iemDR

b

2sWMW

sinα

cos β

(
∆1

bPL +∆1∗
b PR

)
,

λ̄bb̄H =
−iemDR

b

2sWMW

cosα

cos β
(∆2

bPL +∆2∗
b PR),

λ̄bb̄A =
emDR

b

2sWMW
tan β(∆3

bPL −∆3∗
b PR),

λ̄bt̄H+ =
ie√

2sWMW

(
mt

tan β
PL +mDR

b tan β∆3∗
b PR

)
,

λ̄tb̄H− =
ie√

2sWMW

(
mDR

b tan β∆3
bPL +

mt

tan β
PR

)
, (5.39)

where

∆1
b =

1−∆b/(tanβtanα)

1 + ∆b
,

∆2
b =

1 +∆btanα/tanβ

1 + ∆b
,

∆3
b =

1−∆b/(tanβ)
2

1 + ∆b

,

∆b =
∆mb

1 + ∆1

. (5.40)

In these couplings mb has been replaced by mDR
b to include the large QCD correction

as mentioned in previous section. It should be noted that the couplings of the bottom
quark and the Nambu-Goldstone bosons (G0, G±) are the same as the tree-level
couplings written in Eq. (5.29). This is a consequence of gauge invariance.

In order to compute ∆mb and ∆1 one has to consider all one-loop contributions
to vertex H0

22b̄RbL, but take only the terms proportional to tan β. One commonly
takes masses of the external lines to zero limit. In the Appendix D we present
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explicit calculation for ∆mb in the complex MSSM. Here are the results we found

∆mb = ∆mSQCD
b +∆mSEW

b ,

∆mSQCD
b =

2αs(Q)

3π
M∗

3µ
∗ tan β I(m2

b̃1
, m2

b̃2
, m2

g̃), Q = (mb̃1
+mb̃2

+mg̃)/3,

∆mSEW
b = ∆mH̃t̃

b +∆mW̃
b +∆mB̃

b ,

∆mH̃t̃
b =

αt

4π
A∗

tµ
∗ tanβ I(m2

t̃1
, m2

t̃2
, |µ|2)

∆mW̃
b = − α

8πs2W
M∗

2µ
∗tanβ

[
2|U t̃

11|2I(m2
t̃1
, |M2|2, |µ|2) + 2|U t̃

21|2I(m2
t̃2
, |M2|2, |µ|2)

+ |U b̃
11|2I(m2

b̃1
, |M2|2, |µ|2) + |U b̃

21|2I(m2
b̃2
, |M2|2, |µ|2)

]

∆mB̃
b = − α

72πc2W
M∗

1µ
∗tanβ

[
3(|U b̃

11|2 + 2|U b̃
12|2)I(m2

b̃1
, |M1|2, |µ|2)

+ 3 (2|U b̃
22|2 + |U b̃

21|2)I(m2
b̃2
, |M1|2, |µ|2) + 2I(m2

b̃1
, m2

b̃2
, |M1|2)

]
, (5.41)

with the auxiliary function

I(a, b, c) = − 1

(a− b)(b− c)(c− a)

(
ab ln

a

b
+ bc ln

b

c
+ ca ln

c

a

)
, (5.42)

and

∆1 = −2αs(Q)

3π
M∗

3AbI(m
2
b̃1
, m2

b̃2
, m2

g̃). (5.43)

By setting all the phases to zero we obtain the results for the real MSSM (rMSSM),
which agree with those given in [149, 141].

We remark that ∆b is complex and depends on φµ, φf , φi with i = 1, 2, 3. The
effective couplings Eq. (5.39) are used in the calculations of the pp → W∓H± and
pp→ H−tb̄ processes. For the NLO EW corrections we use the tree-level couplings
Eq. (5.29) with mb = mDR

b (µR).

In the explicit one-loop calculations, we have to subtract the ∆b-related correc-
tions which have already included into the tree-level contribution to avoid double
counting. This can be done by adding the following counterterms

δmh
b = mDR

b

(
1 +

1

tanαtanβ

)
(∆bPL +∆∗

bPR),

δmH
b = mDR

b

(
1− tanα

tan β

)
(∆bPL +∆∗

bPR),

δmA
b = mDR

b

[
1 +

1

(tanβ)2

]
(∆bPL −∆∗

bPR),

δmH+

b = mDR
b

[
1 +

1

(tanβ)2

]
∆∗

bPR,

δmH−

b = mDR
b

[
1 +

1

(tanβ)2

]
∆bPL, (5.44)
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to δmb in the corresponding bottom–Higgs-coupling counterterms, as listed in Ap-
pendix C. Moreover, Eq. (5.44) is used with ∆b = ∆mSQCD

b , ∆mSEW
b for the

SUSY-QCD and EW corrections, respectively.



Chapter 6

H± → W±h1: decay widths and
CP violating asymmetry

Understanding the decays of the charged Higgs bosons is an important step for their
searches at any collider. This chapter will summarize all possible two-body decay
modes and focus on one specific mode (H± →W±h1).

6.1 Introduction

The charged Higgs bosons in the MSSM can have following two-body decay modes.

• Decays into fermions are H− → ff ′, where f ∈ {e, µ, τ, d, s, b} and f ′ are their
corresponding SU(2)L doublet partners, and H− → χ̃0

i χ̃
−
j , i = 1, . . . , 4 and

j = 1, 2. The dominant decay modes are the decay into fermions of the third
generation due to the large Yukawa couplings.

• Decays into one vertor boson and one scalar boson areH± →W±hi, i = 1, 2, 3.
In the decoupling limit, the decay into W±h1 is suppressed due to the tree-level
coupling ∝ cos(β − α) going to zero while decays to other Higgs bosons h2, h3
are kinematically supressed because of mass degeneration MH± ∼ Mh2

∼Mh3
.

However we will show in the this chapter the decay modes H± →W±h1 receive
large one-loop corrections and have large CP violating effect.

• Decays into two scalar bosons are H− → f̃if̃
′
j where the sfermions f̃i, f̃

′
j (i, j =

1, 2) are the corresponding superpartners of the fermions. Decaying into the
third generation sfermions are dominant if the charged Higgs mass is large
enough.

In the literature, there are extensive studies for those decay modes and the
one-loop corrections to some of those modes have been calculated: one-loop SM-
QCD corrections to H− → qq′ [150, 151] and to H− → b̃¯̃t [152] one-loop QCD

75
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Figure 6.1: The branching ratios of the charged Higgs boson as functions of the
charged Higgs mass. The upper panel is for tan β = 5 while the lower panel is for
tan β = 15.

to H− → q̃q̃′ [153]. There are several public codes on the market to compute the
decay widths as well as branching ratios at tree level with some leading higher order
corrections: FeynHiggs [154] and CPsuperH [155] for both real and complex MSSM;
HDCAY [156] for real MSSM. At one- loop level recently the FHOLD package [157]
for real MSSM was published. For our purpose of full control and understanding,
we have computed all tree-level decay widths of the aforementioned channels in the
complex MSSM. The analytic expressions are found in Appendix E. In Fig. 6.1 we
show the branching ratios of the charged Higgs boson in the CPX scenario, see in
Appendix F.2.2. The total decay widths are displayed in Fig. 6.2.

In the complex MSSM, the CP violating effects related to the complex phases
of the soft-breaking parameters manifest considerably in the charged Higgs decays
and productions while the ones due to the CKM phase are suppressed. It is worth
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Figure 6.2: The total decay width of charged Higgs as functions of the charged Higgs
mass in the CPX scenario.

studying those effects for the future discoveries of the charged Higgs boson to answer
the question if there exists new sources of CP violation beyond the well-known CKM
phase. The CP violating asymmetries for two important decay modes H± → τντ
and H± → bt have been already studied in [158, 159].

Another interesting decay modes of the charged Higgs boson decaysH− →W−h1
and H+ → W+h1, where the asymmetry between the decay rates is a CP-violating
observable. A first approximate calculation was done in [24], studying the CP
asymmetry as derived from the phases of the trilinear τ̃ coupling, Aτ , and of M1,
yielding asymmetries of the order 10−2; contributions from the quark/squark sector
were not included.

We have extended the calculation of [24] including contributions from all physical
phases in the general complex MSSM with minimal flavor violation, in particular
from At and Ab, which enter through Feynman diagrams with stops and sbottoms
involving large Yukawa couplings, further enhanced by the color factor. We show the
results from the complete set of one-loop diagrams. The results have been published
in [160].

6.2 Decay widths

We can write the decay amplitudes of processes H± →W±h1 as follows,

A(H± → W±h1) =
(
ǫλ · pH±

)
M(H± →W±h1) (6.1)

with the W polarization vectors ǫλ and the H± momentum pH± . The decay widths
integrated over the 2-particle phase space and summed over the W helicities λ are
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obtained in the form

Γ(H± →W±h1) = R2 · |MH±→W±h1
|2 , (6.2)

with

R2 =
λ3/2(M2

H±,M2
W ,M

2
h1
)

64πM3
H±M2

W

, λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz . (6.3)

Following the prescription in Section 5.2, the decay amplitude at higher order can
be written in the following way,

MH±→W±h1
=
√
ZH−H+

[
Z11

(
M tree

H±→W±h + δMH±→W±h

)

+ Z12M
tree
H±→W±H + Z13M

tree
H±→W±A

]
,

(6.4)

where the tree-level expressions M tree are given by

M tree
H±→W±h =

e cos(β − α)

sW
, M tree

H±→W±H = −e sin(β − α)

sW
,

M tree
H±→W±A = ±i e

sW
. (6.5)

The charged-Higgs wave function renormalization
√
ZH−H+ is defined in Eq. (5.13).

The neutral-Higgs wave function renormalization factors Zkl are given in Eq. (5.10),
and

δMh ≡ δMH±→W±h = δM1PI
H±→W±h + δMG,Wmix

H±→W±h (6.6)

which summarize the residual 1PI-irreducible contributions to the 3-point vertex
function and the mixing of H± with G± and W±. The mixing of h with G0 and Z
bosons is not included because the couplings H±W∓G0(Z) do not exist at tree level.
The Feynman diagrams contributing to this term at the one-loop level are shown
in figure 6.3. There is no explicit wave function renormalization for the W boson,
since the W propagator has been renormalized on-shell yielding residue = 1.

For the charged Higgs boson, the factor ZH−H+ is IR-divergent. We regularise
the IR-divergence in the one-loop expanded version with the help of a small photon
mass so that we take only the one-loop contribution of the factor ZH−H+ which is

ZH−H+ ≃ 1− Re
∂

∂p2
Σ̂H−H+

∣∣
p2=M2

H±
≡ 1− δZH−H+ ,

√
ZH−H+ ≃ 1− 1

2
δZH−H+ . (6.7)

Substituting the amplitude (6.4) into the expression (6.2), one obtains the decay

width, denoted as Γ
(0+1+2)
Z

later in the thesis. Keeping the Z factors in the squared
amplitude is justified since they contain also the leading higher-order terms which
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Figure 6.3: One-loop Feynman diagrams contribute to δMh.
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correspond to the effective-potential approximation. In the squared one-loop am-
plitude, we keep also the term involving δM2

h . This term can play an important
role at large value of MH− ,i.e. MH− ≥ Mt̃1 +Mb̃1

, where the decay channel into t̃1
and b̃1 is open, while it is negligible at lower MH− . The inclusion of this term while
neglecting other two-loop contributions is consistent in perturbation theory, since
the tree-level vertex function M tree

h ∼ cos(β − α) ∼ M2
Z/M

2
H− goes to near zero at

large MH− . For the δM2
h term, we take only the (s)top/(s)bottom diagrams which

are IR finite and give the dominant contributions, as checked in [161].

For comparison with other approximations, we introduce the following notations
for decay width:

• The Born appriximation decay width Γ(0) is defined by

Γ(0) = R2 ·
∣∣M tree

h

∣∣2. (6.8)

• The improved Born approximation for the decay width Γ
(0)
Z

with the Z factors
taken into account:

Γ
(0)
Z

= R2 ·
∣∣∑

i

Z1iM
tree
i

∣∣2, i = h,H,A. (6.9)

• The one-loop improved decay width Γ
(0+1)
Z

that does not include δM2
h :

Γ
(0+1)
Z

= R2 ·
{∣∣∑

i

Z1iM
tree
i

∣∣2 (6.10)

+2
∑

i

Re
[
Z∗

11Z1iM
tree
i (δMh −

1

2
M tree

h δZH−H+)∗
]}
.

Real photon emission

The soft singularities in the virtual corrections are canceled by adding the real
photon radiation contribution,

H± →W± + h1 + γ, (6.11)

see Fig. 6.4 for the Feynman diagrams. We use the phase space slicing method, then
the soft contribution reads

Γsoft(H± →W±h1γ) = − α

2π2
(IHH + IWW − IHW − IWH)

×R2 · Re
[
Z11M

tree
h

∑

i

Z1iM
tree∗
i

]
, (6.12)

where the soft integrals Iij (i, j = H,W ) are defined in Eq. (4.68). It should be
mentioned that the cancellation of the soft singularities is only ensured if the mass
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Figure 6.4: Feynman diagrams for H− → W− + h/H/A+ γ.
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of h1 is the tree-level mass. If the loop-corrected mass is used then the tree-level
relations are violated. This leads to an incomplete cancellation. We have checked
analytically and numerically. For the hard contribution we numerically integrate
over the 3-particle phase space with the help of the soft cutoff parameter. In Fig. 6.5,
we show the dependence of each contributions on the cutoff. The results are expected
as explained in Section 4.3.2. The sum of soft and hard contributions is rather stable
around δs = 10−3 and the integration error is acceptable. Therefore we chose that as
a default value in the following numerical analysis. It should be noted that the results
obtained here are computed in the unitary gauge forW boson exchange. For another
gauge, one should be careful to include the full set of gauge invariant diagrams and
to be consistent with the virtual contributions. Since this is an improved one-loop
calculation, finding the full set is not trivial.

6.3 CP asymmetry

The CP violating asymmetry in the charged-Higgs decay into a W -boson and the
lightest neutral Higgs, h1, is defined in terms of the individual partial decay widths
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asymmetry.

Γ(H± → W±h1)

δCP =
Γ(H− →W−h1)− Γ(H+ → W+h1)

Γ(H− →W−h1) + Γ(H+ → W+h1)
. (6.13)

In practice, there are two ways to compute the CP asymmetry: (i) to compute
both decay widths of H− → W−h1 and of the CP-conjugate process H+ → W+h1
and then using the definition (6.13); (ii) to compute separately the CP-violating and
the CP-invariant contributions to the decay MH−→W−h1

and then taking their ratio.
The CP-violating term comes from the imaginary part of the complex couplings
(together with the imaginary part of the loop integrals), while the CP-invariant
term is from the real part. Therefore the CP-violating term changes sign, but the
CP-invariant term does not when going from H− → W−h1 to H+ →W+h1. Hence,
one can identify the Feynman diagrams shown in figure 6.6 as those contributing to
the CP-violating part.

We have performed our calculation in the two ways, with perfect agreement.
The full result for δCP is obtained when both the numerator and denominator of the
asymmetry (6.13) are computed with the inclusion of higher order terms. This is
different with the approximation used in Ref. [24] where the numerator is computed
at strict one-loop order and the denominator is tree-level like, and is necessary since
in specific case the process is loop dominated, as we will illustrate in the numerical
analysis.

6.4 Calculational details

We have used FeynArts 3.4 [105] to generate the Feynman diagrams. The am-
plitudes are further evaluated with the help of FormCalc 6.0 and with the library
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LoopTools 2.4 [96, 162]. All the dependent couplings and masses of internal lines
are computed with tree-level relations. The relevant counterterms are presented
in Appendix C. The mass of the external neutral Higgs and the renormaliza-
tion factors Zij are calculated by using FeynHiggs 2.6.5 [132, 65, 131, 66]. In
FeynHiggs 2.6.5 there are serveral obtions which affect our results. Therefore we
need to specify them. For renormalization scheme, we chose DR scheme for both
Higgs-field renormalization constants and tan β to be consistent with the scheme
used in our one-loop calculations. The Higgs self-energies in Eq. (5.5) are com-
puted with full momentum dependence and with the inclusion of various important
two-loop contributions (αsαt, αsαb, αtαt, αtαb) which are so far evaluated at zero
momentum. The top mass and bottom mass are chosen to be the pole mass, again
to be consistent with our input parameters.

For the CP asymmetry calculation, we have generated two codes as mentioned in
previous section. One code is generated by FeynArt, FormCalc and using Looptool
while the other one generated by FeynArt further evaluated by our self-made Form
code and using the analytic expressions for the imaginary parts of loop integrals.

In our calculation, we encounter normal threshold singularities when MH± ap-
proaches the production threshold of two scalar particles, for instance up and down
squarks. Let’s consider the derivative of the charged Higgs self-energy with the ex-
change of stops and sbottoms:

d
dp2

H− H−

t̃i

b̃j

|GH−t̃ib̃j
|2 d

dp2B0(p
2,M 2

t̃i
, M 2

b̃j
)

where GH− t̃i b̃j
are the coupling constants and B0(p

2,M2
t̃i
,M2

b̃j
) denotes the scalar

two-point function. The derivative of the scalar two-point function reads

d

dp2
B0(p

2,M2
t̃i
,M2

b̃j
)
∣∣
p2=M2

H±
∝
∫ 1

0

dx
d

dp2
log(p2x2 − x(p2 +M2

t̃i
−M2

b̃j
) +M2

t̃i
− iǫ)

∝
∫ 1

0

dx
x2 − x

M2
H±x2 − x(M2

H± +M2
t̃i
−M2

b̃j
) +M2

t̃i
− iǫ

∝
∫ 1

0

dx
x2 − x

M2
H±(x− x1 − iǫ)(x− x2 + iǫ)

, (6.14)

where

x1/2 =
(M2

H± +M2
t̃i
−M2

b̃j
)±

√
λ(M2

H±,M2
t̃i
,M2

b̃j
)

2M2
H±

. (6.15)

The integral has a pinch singularity (see Section 4.1) if x1 = x2 and 0 < x1 < 1, i.e.

λ(M2
H± ,M2

t̃i
,M2

b̃j
) = 0. (6.16)



84 Chapter 6. H± → W±h1: decay widths and CP violating asymmetry

One of the solutions is

MH± =Mt̃i +Mb̃j
, (6.17)

if all the masses are real and positive. In fact this singularity is the two-point Landau
singularity enhanced by derivative. The singularity part is

[
d

dp2
B(p2,M2

t̃i
,M2

b̃j
)
∣∣
p2=M2

H±

]

sing

∝ 1

x1 − x2
∝ 1√

det(Q)
, (6.18)

where Q is the Landau matrix and det(Q) = λ(M2
H± ,M2

t̃i
,M2

b̃j
), following the con-

vention in Section 4.1. The nature of this singularity is 1/
√
x and divergent. It

should be noted that if one mass is zero, the singularity will vanish.

For the diagrams with fermions in the loop, the normal threshold singularity
does not appear. Let us explain this. The self-energy in general is given by

Σ(p2) ∝1

4

(
|aL|2 + |aR|2

) (
A2

0(M
2
1 ) + A2

0(M
2
2 )
)

(6.19)

+
[
M1M2Re (aLa

∗
R) +

1

4
(M2

1 +M2
2 − p2)

(
|aL|2 + |aR|2

) ]
B0(p

2,M2
1 ,M

2
2 ),

where charged Higgs bosons couple to fermions as (aLPL + aRPR) and M1,M2 are
the fermion masses. The derivative of the self-energy with respect to p2 at MH±

reads

d

dp2
Σ(p2)|p2=M2

H±
∝

[
M1M2Re (aLa

∗
R) +

1

4
(M2

1 +M2
2 −M2

H±)
(
|aL|2 + |aR|2

) ]

× d

dp2
B0(p

2,M2
1 ,M

2
2 )

∣∣∣∣
p2=M2

H±

−1

4

(
|aL|2 + |aR|2

)
B0(M

2
H± ,M2

1 ,M
2
2 ), (6.20)

where the second term is not divergent at the normal threshold. For tree-level
couplings of charged Higgs and fermions, aL and aR are real and propotional to
fermion masses in such way that the factor

[
M1M2Re (aLa

∗
R) +

1
4
(M2

1 + M2
2 −

M2
H±) (|aL|2 + |aR|2)

]
vanishes.

This normal threshold problem can be overcome by using complex masses for the
relevant unstable particles, see [163] and references therein. In our case, the normal
threshold of top and bottom squarks is concerned. This singularity appears in the
renormalization factor of the charged Higgs boson, δZH−H+ , in particular in the
derivative of the two-point functions, which we treat according to the substitutions

M2
t̃i
→M2

t̃i
− iMt̃iΓt̃i , M2

b̃j
→M2

b̃j
− iMb̃j

Γb̃j
, i, j = 1, 2. (6.21)

The required decay widths have been computed in lowest order including all signif-
icant two-body decays. We do not present the analytic expressions of those decay
widths since they are very lengthy.
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Table 6.1: Masses of Higgs bosons and SUSY particles (in GeV) for the parameter
set (F.2) and φ1 = φτ = φt = φb = π/2, MH± = 300 GeV, |At| = 800 GeV.

tan β Mh1
Mν̃ Mτ̃1

Mτ̃2
M

χ̃
±
1

M
χ̃
±
2

M
χ̃0
1

M
χ̃0
2

M
χ̃0
3

M
χ̃0
4

M
t̃0
1

M
t̃0
2

M
b̃0
1

M
b̃0
2

5 114.7 190 155 206 138 272 88 142 208 272 373 645 406 508

15 120 189 151 209 146 267 89 148 212 226 373 645 448 515

Various cross checks on our calculations have been performed. Besides numerical
and analytical checks of UV- and IR-finiteness, our results were checked against
those obtained by a independent calculation [161] for the real MSSM, and very
good agreements has been found.

6.5 Numerical studies

In this section we perform a numerical analysis. The SM input parameters are
presented Appendix F.1. It should be noted that the masses of top and bottom is
understood as the pole masses. For the soft-SUSY breaking parameters we use the
modified mmax

h scenario specified in Appendix F.2.1. In addition, we chose µ to be
zero as default value in order to be consistent with the experimental data of the
electric dipole moments. The phases of trilinear couplings of the first and second
generations have marginal effects on the CP rate asymmetry because the masses of
the corresponding fermions are small. In the following, those phases are also taken
to be zero. The phase of M3, which enters from two loop order, is set to be zero
as default. Since we use the DR scheme for tan β and the Higgs fields, our results
depend on the renormalization scale µR; more details will be given in section 6.5.5.
We chose µR = mt, which is the default value in FeynHiggs.

The relevant Higgs and SUSY particle masses we show in Table 6.1 for MH± =
300 GeV, |At| = 800 GeV. In the following analysis, we will varyMH±, tan β, relevant
phases and the trilinear couplings |Aτ/t/b| to show their impact on the decay width
and the CP asymmetry.

6.5.1 Decay width: full results

We shall investigate the importance of the higher order effects on the H− →W−h1
decay width and show that the Born approximation is in general insufficient. We
choose φ1 = φτ = φt = φb = π/2 for this analysis.

On the top panel of Fig. 6.7, we show the Born, improved Born, improved one-
loop and full decay widths as functions of the charged Higgs mass at tan β = 5. The
Born, improved Born and improved one-loop decay widths are defined in Eq. (6.8),
Eq. (6.9) and Eq. (6.11), respectively. The relative corrections for the improved
one-loop and full results are shown on the right panels. We define the relative
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Figure 6.7: The Born, improved Born, improved one-loop and full decay widths
corresponding to dot-dashed, dashed, dotted and solid lines are displayed as func-
tions of the charged Higgs boson mass (top panel), tanβ (middle panel) and φt

(bottom panel). The right panels show the relative corrections of the improved
one-loop and full decay widths compared to the improved Born decay width for
φ1 = φτ = φt = φb = π/2.
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Figure 6.8: The branching ratios of the decay H− →W−h1 as functions of MH± for
different values of tanβ.

correction as δ(0+1(+2)) = (Γ
(0+1(+2))
Z

− Γ0
Z
)/Γ0

Z
. For MH± = 300GeV, the one-loop

vertex corrections can go up to 12.4% while at MH± = 1.6TeV corrections reduce
to -35.4% compared to improved Born result. For low MH±, the improved one-
loop and the full result are quite close to each other, but around and above the
t̃1b̃1 threshold, the full result is clearly larger. Several normal threshold points as
discarded in Section 6.4 can be seen in the plot.

On the middle panel of Fig. 6.7, we display the Born, improved Born and im-
proved one-loop decay widths as function of tan β at MH± = 300GeV. It is clear
that the decay widths strongly depend on the value of tanβ. They drop rapidly as
tanβ increases. Similarly on the bottom panel φt is varied instead. This shows us
how important φt effects on our full results.

From the Fig. 6.7, we conclude that that the Born result is extremely poor
approximation to the full result, thus should not be used.

In Fig. 6.8, we show the branching ratio of the decay H− → h1W
− for different

values of tan β, using the full decay width. The other relevant decays of the charged
Higgs boson are computed in lowest order as specified in Appendix E. For tanβ = 5,
the branching ratio can reach 6.4% at MH± ≃ 219GeV. Around this point, the
charged Higgs bosons decay mainly to t b and τ ντ . When the mass of charged Higgs
boson increases, the channels to charginos and neutralinos, stop and sbottom open.
Thus, the branching ratio of H− → h1W

− drops rapidly, which makes it difficult to
access δCP experimentally. The branching ratio depends also strongly on the value
of tanβ, especially for low values of tanβ, where the channels H± → h1W

± are
interesting.
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Figure 6.9: δCP as function of the charged Higgs mass. The left panel is for φτ = π/2
while the right panel is for φ1 = π/2. The solid, dashed and dotted lines are for
tan β = 5, 10 and 15, respectively.

6.5.2 CP asymmetry: φτ and φ1 dependence

We want to display the impact of individual phases on the CP asymmetry. We
therefore keep the phase considered non-zero while all the others are put to zero.
The dependence on the phases φτ and φ1 was studied already in [24]1. As mentioned
before, we improved the calculation by taking important loop contributions into the
denominator, hence our numerical results are of two to three times smaller.

For φτ = π/2, δCP as functions of MH± with different values of tanβ are shown
in the left panel of figure 6.9. The diagrams (b, c, f, g) in figure 6.6 with τ̃ and
ν̃τ loops yield a contribution to the CP violating term. Below the ν̃τ τ̃1 threshold
at MH± ≃ 345GeV, δCP is negligible, in spite of contributions from beyond-one-
loop terms with the Z factors. The high peaks correspond to the ν̃τ τ̃2 threshold
at MH± ≃ 396GeV. Increasing tan β leads to a rapid decrease of the denominator,
owing to the decreasing tree-level coupling, which is the main reason for the strongly
rising δCP. With tanβ = 5, the largest value of δCP is about 0.05%, however with
tan β = 15, δCP can go up to 0.91%.

For φ1 = π/2, δCP is shown in the right panel of figure 6.9. The diagrams (a,
c, d, e) in figure 6.6, with neutralino and chargino loops, contribute to the CP

1For a comparison, we have used the same approximation and the same set of input parameters
as in Ref [24] . Our results are in agreement with theirs for the case of φτ = −π/2, φ1 = 0 . For
the case φτ = 0, φ1 = −π/2, we found a difference resulting from the coupling between neutral
Higgs bosons and neutralinos, Alk in eq. (A.3) of Ref. [24] where an extra factor 1/2 is present.
Adapting this factor,we get agreement
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Figure 6.10: The CP asymmetry as functions (a) of the charged Higgs mass, (b) of
|At|. The solid, dashed and dotted lines are for tan β = 5, 10 and 15, respectively.

violating term. There are five visible thresholds, χ̃±
1 χ̃

0
1 at MH± ≃ 226GeV, χ̃±

1 χ̃
0
2 at

MH± ≃ 280GeV, χ̃±
1 χ̃

0
3 at MH± ≃ 346GeV, χ̃±

1 χ̃
0
4 at MH± ≃ 400GeV and χ̃±

2 χ̃
0
3 at

MH± ≃ 480GeV. δCP can reach 0.3% above the χ̃±
1 χ̃

0
1 threshold, in general, however,

it is rather small.

6.5.3 CP asymmetry: φt and φb dependence

Significantly larger values of δCP can occur when φt and φb are non-zero and the CP
violating terms get contributions from diagrams with top and bottom squarks loops
(figure 6.6). The left panel of figure 6.10 shows the CP asymmetry as a function
of the charged Higgs mass for φt = π/2. There are two visible thresholds, t̃1b̃1 at
MH− ≃ 873GeV and t̃2b̃2 at MH− ≃ 1149GeV for tan β = 5.

The CP asymmetry is sizeable both for MH± below and above the t̃1b̃1 threshold,
especially for larger values of tanβ. Below the t̃1b̃1 threshold, the most important
term contributing to the CP asymmetry is the interference between diagram (c) in
figure 6.6 and the triangles with top and bottom quarks. Close to the threshold, the
interference of the diagrams (b, f, g) in figure 6.6 and the tree diagram are dominant.
We observe that the individual contribution from the H-W mixing diagrams and the
triangles with same particles inside loops can be much larger than the Born-term at
the t̃ib̃j thresholds. However, they carry opposite signs and are almost of the same
order of magnitude. The sum of both can be comparable with the Born term and
is very sensitive with respect to φt, |At| and tan β.
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Figure 6.11: The CP asymmetry as function of charged Higgs mass, for φb = π/2.
The solid, dashed and dotted lines are for tan β = 5, 10 and 15, respectively.

Above the t̃1b̃1 threshold, δCP can become very large. It can rise up to -51.6%
at MH−=1600 GeV, tan β=15. This is a common feature of charged Higgs decays,
as mentioned in Refs[158, 164]. Moreover, δCP has a strong dependence on |At|,
as one can see in the right panel of figure 6.10. The |At| range is compatible with
Mh1

> 114.5GeV.

The impact of the phase φb on δCP is shown in figure 6.11. It can be sizeable
above MH− around the t̃1b̃1 threshold, however it is still small compared to the effect
of the phase φt. For |At| = 800GeV, the largest value of δCP obtained for tanβ = 15
is about 8% close to the t̃2b̃2 threshold.

The dependence of the CP asymmetry on the phase of At is illustrated in figure
6.12a, where we present δCP as a function of the charged Higgs mass with different
values of φt =

π
2
, π

3
, π

6
. Figure 6.12b shows the CP asymmetry at MH− = 400 GeV

as a function of phase φt with tan β = 5, 10, 15. For tanβ = 15 the maximum is at
0.92% for φt = 0.51π. Compared to the contributions from φ1 and φτ at low values
of MH− , the impact of φt on δCP is considerably bigger, although not very strong
from the absolute numbers.
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Figure 6.12: The CP asymmetry as function (a) of the charged Higgs mass for
different values of φt = {π
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} (b) of the CP asymmetry as functions the phase

φt for tanβ = 5, 10, 15.
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Figure 6.13: The CP asymmetry as functions of charged Higgs mass, for φµ = π/2.
The solid, dashed and dotted lines are for tanβ = 5, 10 and 15, respectively.
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6.5.4 CP asymmetry: φµ dependence

The phase of µ is severely constrained by the experimental limits on the electric
dipole moments of electron and neutron. This bounds can, however, be circum-
vented by a specific fine-tuning of the phases of µ and of the non-universal SUSY
parameters [165], leaving room also for a large phase φµ. We thus illustrate the
effect of a large φµ on δCP in Figure 6.13, which displays δCP as a function of MH±

for φµ = π/2. The CP violating part receives contributions from all diagrams in
figure 6.6. For charged Higgs boson masses below the t̃1b̃1 threshold, the main con-
tribution to δCP comes from the neutralino-chargino loops; above the threshold it is
again dominated by the t̃1b̃1 loops.

6.5.5 Scale dependence

In this section we discuss the dependence of the decay widths and the CP asymme-
tries on the renormalization scale µR. On the left panel of Fig. 6.14 shows decay
width versus µR at MH± = 400 GeV and tanβ = 10. To understand the depen-
dences, it should be noted that the loop-corrected mass of h1 varies from 119.1
GeV to 119.6 GeV when µR runs from mt/2 to 2mt. Therefore the phase-space
factor changes slightly. The other reason for the dependences is the Z factors
from the Higgs renormalization. Now we define the uncertainty of the result as
(Γ(µR = mt/2) − Γ(µR = 2mt))/Γ(µR = mt). Then for the full decay width, the
uncertainty is about 2.7%.

The dependence of δCP on µR is displayed on the right panel of Fig. 6.14. Unlike
the deday width, δCP is the ratio of CP violating part and CP conserving part so
that the phase-space factor is cancelled out. Therefore the dependence comes mainly
from the CP violating contribution in the numerator of (6.13). The strict one-loop
contribution to the CP violating part does not depend on µR since it arises from
the imaginary part of one-loop integrals. We however consider also higher-order
terms, like the Higgs-mixing term ZhAM

tree
A δMh, which depends on µR through the

Z factors. For φτ and φ1, such terms are negligible and the dependence on µR is
irrelevant. For φµ and φt they are more important, as one can see in the figure.
For MH± values above the t̃1b̃1 threshold, the one-loop contribution is the most
important, and then the µR dependence is much weaker.

6.5.6 The CPX scenario

A case of particular interest is the CPX scenario (see in Appendix F.2.2) where the
SUSY parameters maximize the CP-violating effects due to the large value of the
product Im (µAt)/M

2
SUSY.

In figure 6.15a, we display the CP asymmetry caused by the complex phase of
At for tan β = 5, 10, 15. As one can see, δCP is quite large both below and above



6.5. Numerical studies 93

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.32

0.34

0.36

0.38

0.40

0.42

ΜR�mt

G
HH
-
®

W
-
h 1
L�

10
-

2
@G

eV
D

MH ±= 400 GeV, tanΒ=10

Φ1=ΦΤ=Φt =Φb=Π�2

GZ
H0+1+2L

GZ
H0+1L

GZ
H0L

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
-0.5

0.0

0.5

1.0

1.5

ΜR�mt

∆
C

P
@%
D

MH±= 400 GeV, tanΒ=10

Φ1= Π�2

ΦΤ= Π�2

Φt= Π�2

ΦΜ= Π�2

Figure 6.14: The decay widths (left) and CP asymmetry (right) as functions of the
renormalization scale. µR is varied in the range [mt/2, 2mt].

t̃1b̃1 threshold. For tanβ = 5, δCP is about -6% at MH± ≃ 400GeV and can reach
100% at MH± ≃ 1116GeV. In figure 6.15b, the decay width is shown as function
of M±

H . Note that above the t̃1b̃1 threshold, the one-loop correction becomes very
large, making the improved one-loop width negative, which demonstrates that this
kind of approximation is unphysical and shows the importance of not truncating the
squared amplitude.
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in the CPX scenario.



Chapter 7

W∓H± production and CP
asymmetry at the LHC

7.1 Introduction

At the LHC, the charged Higgs bosons can be produced via the following mecha-
nisms:

• gg, qq̄ → tt̄→ H+bt̄, for mt > MH± +mb;

• gb→ tH−;

• gg, qq̄ → H−tb̄;

• bb̄, gg →W±H∓;

• gg, qq̄ → H+H−;

• qq̄′ → H−hi, (i = 1, 2, 3).

The first channel could be the dominant one if the charged Higgs mass is light
enough since the top-pair production cross section is very large at the proton colliders
(Tevatron and LHC). If the charged Higgs mass is larger than the top mass, charged
Higgs bosons will be produced mainly through the other channels.

The pp → W±H∓ is one of the interesting processes. It does not only give a
considerable production rate but allows to study CP violating effects. There have
been many discussions devoted to the pp → W±H∓ processes in the MSSM over
the last two decades. These studies assume all the soft supersymmetry-breaking
parameters to be real and hence CP violation is absent. The two main partonic
processes are bb̄ annihilation and the loop-induced gg fusion. The first study [25]
computed the tree-level bb̄ contribution and the gg process with third-generation
quarks in the loops using mb = 0 approximation. This calculation was then extended
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for finite mb, thus allowing the investigation of the process for arbitrary values of
tan β [26, 27]. The inclusion of the squark-loop contribution to the gg channel was
done in [28, 29]. The next-to-leading order corrections to the bb̄ annihilation are
more complicated and not complete as yet; the full NLO electroweak corrections
are still missing. The Standard Model QCD (SM-QCD) corrections were calculated
in [30, 31], the supersymmetric-QCD (SUSY-QCD) corrections in [32, 33], and the
Yukawa part of the electroweak corrections in [34]. There are also studies on the
experimental possibility of observingW∓H± production at the LHC with subsequent
hadronic H− → t̄b decay [166] and leptonic H− → τ−ν̄τ decay [167, 168].

This chapter is devoted to the W±H∓ production processes. First, we extend
the calculation for pp → W±H∓ to the MSSM with complex parameters. Second,
the full NLO EW corrections to the bb̄ annihilation channel are calculated and
consistently combined with the other contributions to provide the complete NLO
corrections to the pp → W±H∓ processes. Third, CP-violating effects arising in
the cMSSM are discussed. The important issues related to the neutral Higgs mixing
and large radiative corrections to the bottom–Higgs couplings are also systematically
addressed. Most of the results presented here have been published in [169].

7.2 The subprocess bb̄→W∓H±

7.2.1 The leading order contributionb b W Hhi bb W Ht
Figure 7.1: Tree-level diagrams for the partonic process bb̄ → W±H∓. hi with
i = 1, 2, 3 denote the neutral Higgs bosons h, H and A, respectively.

At tree level, there are four Feynman diagrams including three s-channel dia-
grams with a neutral Higgs exchange and a t-channel diagram, as shown in Fig. 7.1.
At very high center-of-mass energy, the t-channel diagram gives dominant contribu-
tion.

The hadronic cross section at leading order (LO) is given by

σpp
LO(S) =

∫ 1

0

dτ
dLpp

bb̄

dτ
σ̂bb̄
LO(ŝ = τS, α2, µR), (7.1)

with the parton luminosity

dLpp
ij

dτ
=

1

1 + δij

∫ 1

τ

dx

x
[f p

i (x, µF )f
p
j (
τ

x
, µF ) + f p

j (x, µF )f
p
i (
τ

x
, µF )], (7.2)
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where f p
i (x, µF ) is the PDF of parton i at momentum faction x and factorization

scale µF and σ̂bb̄
LO(ŝ, α

2, µR) is LO partonic cross section at CM energy (
√
ŝ) of the

bb̄ system and given by

σ̂bb̄
LO(ŝ, α

2, µR) =
λ1/2(ŝ,M2

H±,M2
W )

32πŝ2

∫ 1

0

d cos θ
1

4

3

9

∑

ρ,ρ̄=±1,ξ=0,±1

|MLO
ρ,ρ̄,ξ|2. (7.3)

The helicity amplitudes,

MLO
ρ,ρ̄,ξ = ǫµ(ξ, pw)v̄(ρ̄, pb̄)Γµu(ρ, pb), (7.4)

are calculated with the tree-level bottom–Higgs couplings in Eq. (5.29) with mb =

mDR
b (µR). b, b̄ and W are chracterized by their momemta pb, pb̄, pW and their he-

licities ρ, ρ̄, ξ, respectively. θ is an angle between ~pW and ~pb. It should be noted
that other qq̄-subprocesses (q = u, d, c, s) are neglected due to the smallness of
light-quark-Higgs couplings.

One observes that the LO amplitudes contain the bottom–Higgs couplings and
the neutral Higgs propagators. These quantities can get large radiative corrections
as detailed in Chapter 5. In order to obtain reliable predictions, two important
issues related to the bottom–Higgs Yukawa couplings and the neutral Higgs mixing
have to be addressed. To quantify these effects, we define two approximations for
the tree-level subprocesses bb̄ →W∓H±.

• The improved-Born approximation (IBA): the LO amplitudes are computed
with the effective bottom–Higgs couplings in Eq. (5.39) where the large SM-

QCD corrections are absorbed into running bottom mass mDR
b and large SUSY

corrections are resummed into ∆b and the resummed neutral Higgs mixing
propagators Eq. (5.4) are used.

• The IBA1: the LO amplitudes are computed with the effective bottom–Higgs
couplings in Eq. (5.39).

7.2.2 NLO SM-QCD contributionsbb W Hhig bb bb WHtbg t b b WHt bg t bb WHttt g bb WHg bb t
Figure 7.2: One-loop SMQCD diagrams for the partonic process bb̄→ W∓H±.

The NLO contribution includes the virtual and real gluonic corrections. The
calculation suffers UV, soft and collinear divergences. The UV divergences are
canceled by the renormalization of the masses and wave functions of top and bottom.
The soft divergences are canceled by summing the virtual and real contributions.
The leftover initial state collinear divergences are factorized and absorbed into the
(anti)bottom PDFs.
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The virtual corrections

The virtual corrections, displayed in Fig. 7.2, contain a gluon in the loops. The
calculation is done by using the technique of constrained differential renormalization
(CDR) [170] which is, at one-loop level, equivalent to regularization by dimensional
reduction [94, 96]. We have also checked by explicit calculations that it is also
equivalent to dimensional regularization [93] in this case.

Concerning renormalization, the bottom-quark mass appearing in the Yukawa
couplings is renormalized by using the DR scheme. It means that the running
mDR

b (µR) (see Subsection 5.4.1) is used in the Yukawa couplings and the one-loop
counterterm reads

δmDR
b = −mb

CFαs

4π
3CUV , (7.5)

where CF = 4/3. The bottom-quark mass related to the initial state (in the kine-
matics p2

b,b̄
= m2

b and the spinors) is treated as the pole mass since the correct

on-shell (OS) behavior must be assured. Indeed the mOS
b effect here is very small

and can be neglected. As mentioned in Subsection 5.4.1, the final results are in-
dependent of ln(mOS

b ). We will therefore set mOS
b = mDR

b (µR) everywhere in this
chapter. The finite wave-function normalization factors for the bottom quarks can
be taken care of by using the OS scheme for the wave-function renormalization as
discussed in Subsection 4.2.3. For the top quark, the pole mass is used throughout
this thesis. Accordingly, the mass counterterm is calculated by using the OS scheme
(Subsection 4.2.3). Here we list explicit expressions of top mass counterterm and
top and bottom wave-function counterterms

δmOS
t = −mt

CFαs

4π

(
3CUV + 5− 6 ln

mt

µR

)
, (7.6)

δZOS
q,L = δZOS

q,R =
CFαs

4π

(
−CUV + 2 ln

mq

µR
− 4 ln

λ2

mq
− 4

)
, q = t, b (7.7)

where λ is the gluon mass regulator. Indeed, the results are independent of renor-
malization scheme for δZt,L/R.

The real corrections

The real QCD corrections consist of the processes with external gluons,

b+ b̄ → W− +H+ + g, (7.8)

b+ g → b+H+ +W−, (7.9)

b̄+ g → b̄+W− +H+, (7.10)

corresponding to the Feynman diagrams shown in Fig. 7.3. For the gluon-radiation
process, soft and collinear divergences occur. The soft singularities cancel against



7.2. The subprocess bb̄ →W∓H± 99bb WHgtt bb WHgtb bb WHgbt bb WHgbhi bb W Hgb hi
(a)b g W Hbb hi bg W Hbb hi bg WHbtb bg WHbt t b g W H bb t
(b)b g W Hbb hi bg W Hbb hi bg WHbtb b g W Hbb t bg WH bt t
(c)

Figure 7.3: Tree-level real QCD radiation diagrams.

those from the virtual corrections, while the collinear singularities are regularized
by the bottom-quark mass. The gluon–bottom-induced processes are infrared finite
but contain collinear singularities, which are regularized by the bottom-quark mass
as well. After adding the virtual and real corrections, the result is collinear divergent
and proportional to ln(m2

b/ŝ). These singularities are absorbed into the (anti)bottom
PDFs, as discussed in Section 4.3.2.

We apply both the dipole subtraction scheme and the two-cutoff phase space
slicing method to extract the singularities from the real corrections as detailed in
Subsection 4.3.2. The two techniques give the same results within the integration
errors. Fig. 7.4a shows the agreement between the two methods. However, the error
of the dipole subtraction scheme is much smaller than the one of the phase space
slicing method. Therefore, we use the dipole subtraction scheme for the rest of this
chapter.

To summarize, the hadronic cross section of the SM-QCD corrections consist of,
for the dipole subtraction method:

∆SMQCD =

∫ 1

0

dτ
dLpp

bb̄

dτ
∆σ̂bb̄ +

∫ 1

0

dτ
dLpp

bg

dτ
∆σ̂bg, (7.11)
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Figure 7.4: Partonic cross sections as functions of CM energy
√
ŝ are shown for

a) bb̄ → W−H+g and b) bb̄ → W−H+γ. The results are obtained by the phase
space slicing method (red stars) and the dipole subtraction method (black stars) in
the CPX scenario with MH± = 200 GeV and tanβ = 10. Gluon and photon mass
regulators are set to be unit.

with

∆σ̂bb̄ =σ̂bb̄→W−H+

virt,SMQCD(ŝ, α
2αs, µR)

+
CFαs

π
Gbb̄(ŝ)σ̂

bb̄→W−H+

LO (ŝ, α2, µR)

+
CFαs

π

∫ 1

0

dxGbb̄(x, ŝ)
[
σ̂bb̄→W−H+

LO (xŝ, α2, µR)− σ̂bb̄→W−H+

LO (ŝ, α2, µR)
]

+ σ̂bb̄→W−H+g
LO,finite (ŝ, α2αs, µR), (7.12)

and

∆σ̂bg =
CFαs

π

∫ 1

0

dxHbg(x, ŝ)σ̂
bb̄→W−H+

LO (xŝ, α2, µR)

+σ̂bg→W−H+b
LO,finite (ŝ, α2αs, µR)

+σ̂b̄g→W−H+b̄
LO,finite (ŝ, α2αs, µR), (7.13)

where

Gbb̄(S) = ln
m2

b

S
ln
λ2

S
+ ln

λ2

S
− 1

2
ln2 m

2
b

S
+

1

2
ln
m2

b

S
− π2

3
+ 2, (7.14)

Gbb̄(x, S) =
1 + x2

1− x

(
ln

S

m2
b

− 1

)
+ 1− x+ 2

1 + x2

1− x
ln(1− x), (7.15)

Hbg(x, S) = [x2 + (1− x2)] ln
S(1− x)2

µ2
R

+ 2x(1− x), (7.16)
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the finite contributions of the real gluon and (anti)bottom radiation is defined in
Subsection 4.3.2

σ̂2→3
LO,finite(ŝ, α

2αs, µR) =

∫
dΦ3(|M2→3

LO |2 − |Msub|2), (7.17)

and the parton luminosity Lpp
ij are defined in Eq. (7.2). In the above formulae

we have combined the PDF counterterm contributions with the convolution piece
since they have similar structure. It should be mentioned that we use the effective
bottom–Higgs couplings for the SM-QCD corrections. The neutral Higgs mixing
resummation is not used for the SM-QCD corrections.

7.2.3 Subtracting the on-shell top-quark contribution

A special feature of the gluon-induced processes in (7.10) is the appearance of on-
shell top-quarks decaying into bW (and bH+ when kinematically allowed), which
requires a careful treatment and has been discussed in the previous literature, e.g.
in [171, 172, 173]. Our approach is similar to the one described in [171, 172], with
the difference that we perform the zero top-quark width limit.

[GeV]tΓ
1 2 3 4 5 6 7 8 9 10

[fb
]

σ
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0.114

0.115

0.116

0.117  / ndf 2χ  1.855 / 8
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Figure 7.5: Dependence of the partonic cross section σb̄g→W−H+b̄
reg on the width

regulator Γt.

We demonstrate the procedure in terms of the process b̄g → W−H+b̄. The
Feynman diagrams (Fig. 7.3c) include a subclass involving the decay t̄ → b̄W−.
When the internal t̄ can be on-shell, the propagator pole must contain a finite width
Γt, which is regarded here as a regulator:

i

q2 −m2
t

−→ i

q2 −m2
t + imtΓt

. (7.18)

This on-shell contribution is primarily a t̄H+ production and should therefore not
be considered a NLO contribution. For the genuine NLO correction, the on-shell
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top contribution has to be discarded in a gauge invariant way. Starting from the
full set of diagrams, the squared matrix element reads as follows,

|M |2 = |MOS|2 + 2Re[MOSM
∗
non-OS] + |Mnon-OS|2, (7.19)

where the subscripts OS and non-OS denote the contribution of the on-shell t̄ diagrams
and the remainder, respectively. The OS part, differential in the bW invariant mass,
to be subtracted can be identified as

dσb̄g→W−H+b̄

dM2
bW

∣∣∣∣
sub

OS

= σb̄g→H+t̄Br(t̄→ b̄W−)
mtΓt

π[(M2
bW −m2

t )
2 +m2

tΓ
2
t ]
, (7.20)

where Br(t̄ → b̄W−) = ΓLO
t̄→b̄W−/Γt. The ratio on the right-hand side (rhs) of

Eq. (7.20) approaches δ(M2
bW − m2

t ) when Γt → 0. The subtracted NLO contri-
butions, regularized with the help of Γt, can be written in the following way,

σb̄g→W−H+b̄
reg (Γt) =

∫
dM2

bW

(
dσb̄g→W−H+b̄

OS

dM2
bW

− σb̄g→H+t̄ mtΓtBr(t̄→ b̄W−)

π[(M2
bW −m2

t )
2 +m2

tΓ
2
t ]

)

+ σb̄g→W−H+b̄
inter + σb̄g→W−H+b̄

non-OS , (7.21)

where the interference and non-OS terms arise from the second and third terms in
Eq. (7.19).

There is strong cancellation between the first term in the rhs of Eq. (7.21) and
the rest after subtraction of the collinear part, which makes the result of Eq. (7.21)
very small, yielding an essentially linear dependence on Γt as displayed in Fig. 7.5.
We can thus perform the limit Γt → 0 and obtain a gauge invariant expression by

σb̄g→W−H+b̄
reg = lim

Γt→0
σb̄g→W−H+b̄

reg (Γt). (7.22)

Fig. 7.6 shows that the finite gluon-induced contribution obtained in this way
at the hadronic level (after proper subtraction of the collinear part) is very small
for large values of MH± , but it can be of some significance when the charged Higgs
boson is light.

The method described above is completely analogous for the process bg →
W−H+b. For low masses, MH± < mt, the intermediate on-shell top quark can
also decay into H+b. This additional OS contribution can be extracted by using the
same extrapolation method. For completeness, we list here the expressions for the
decay widths of t→ bW+ and t→ bH+ at lowest order,

ΓLO
t→bW+ =

α

16m3
tM

2
W s

2
W

(m2
t −M2

W )2(m2
t + 2M2

W ), (7.23)

ΓLO
t→bH+ =

α

16m3
tM

2
W s

2
W

(m2
t −M2

H±)2
[
(mDR

b tanβ)2|∆3
b |2 +

m2
t

tan2 β

]
, (7.24)

where the b-quark mass has been neglected.
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Figure 7.6: The finite hadronic cross section σb̄g→W−H+b̄
reg after subtracting the OS

top-quark and the collinear-singularity contributions as a function of MH± .bb W Hhi~g ~bw~bx bb WHt~bw~g ~tx b b WHt~bw~g ~tx bb WHtt~g ~tw bb WH~g ~bw~bx ~ty
Figure 7.7: One-loop SUSY QCD diagrams for the partonic process bb̄ →W∓H±.

7.2.4 NLO SUSY-QCD contributions

The NLO SUSY-QCD contributions consist only of the virtual one-loop correc-
tions, visualized by the Feynman diagrams with gluino loops in Fig. 7.7. The
only UV divergent part is the top-quark self energy, which is renormalized in the
on-shell scheme. As discussed in Section 5.4.1, large corrections proportional to
αsM

∗
3µ

∗ tanβ have been summed up to all orders in the bottom–Higgs couplings
included in the IBA. We therefore have to subtract this part from the explicit one-
loop SUSY-QCD corrections to avoid double counting by using the counterterms in
Eq. (5.44). We define the remaining one-loop SUSY-QCD corrections as

∆SUSYQCD =

∫ 1

0

dτ
dLpp

bb̄

dτ
σ̂bb̄→W−H+

virt,SUSYQCD(ŝ = τS, α2αs, µR), (7.25)

where the partonic cross section is computed with the effective bottom–Higgs cou-
plings and with the tree-level neutral Higgs propagators.

We have checked the UV finiteness. Our codes have been checked against the
results of [33] for the real MSSM. Good agreements have been found.
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7.2.5 NLO electroweak contributions

The full NLO EW contributions to the processes bb̄→ W∓H± in the MSSM have not
been computed yet. They comprise both virtual and real corrections. Similar to the
SM-QCD corrections, the calculation contains UV, soft and collinear divergences.
Therefore the similar procedure will be applied here.

The virtual correctionsb hi WH�b Z; 
b G0 hi WH�b b�b WHtt
WHbWb H�bb�b WHt

b�b WHZ; 
 Wb�b WHh0; H0 W b hi; G0 W�b Hhi �b

b WHG�b Z; 
b WHGh0;H0;G0�bb Z; 
 W�b H b�b WHt

Figure 7.8: One-loop EW contributions for the partonic process bb̄→ W∓H±. The
shaded regions are the one-particle irreducible vertices.

For the virtual part, Fig. 7.8 illustrates the various classes of one-loop Feynman
diagrams. As before, the calculation is performed using the CDR technique. We
have also worked out all the necessary counterterms in the cMSSM and implemented
them in FeynArts-3.4[174, 175]. Explicit expressions for the counterterms can be
found in Appendix C.

Concerning renormalization, for the Higgs field wave functions and tanβ, we
use the DR renormalization scheme as specified in Eq. (4.38). Since the charged
Higgs is in the external line, we follow the prescription described in Subsection 5.2.
The wave function renormalization factor ZH−H+ should be taken into as explained
in Section 6.1. One should aslo include the mixing of H± with G± and W± on
the external line of the charged Higgs. The other renormalization constants are
determined according to the OS scheme. To make the EW corrections independent
of lnmf from the light fermions f 6= t, we use the fine-structure constant at MZ , α =
α(MZ) as an input parameter. This means that we have to modify the counterterm
as

δZα(MZ )
e = δZα(0)

e − 1

2
∆α(M2

Z),

∆α(M2
Z) =

∂ΣAA
T

∂k2

∣∣∣∣
k2=0

− ReΣAA
T (M2

Z)

M2
Z

, (7.26)
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where the photon self-energy includes only the light fermion contribution, to avoid
double counting.

The real correctionsb b W H
hi b b W H
hi G b b W H
hiW b b W H 
hi H bb WH
tt bb WH
tbbb WH
t H bb WH
bt bb WH 
t G bb WH 
t W bb WH
bhi bb W H
b hi
(a)b
 WHbhi b 
 W Hbb hi b 
 W H bb t b
 WHbtH b
 WHbtb b
 WHbt tb
 WHbhiG b
 WHbhiW b
 WHbGt b
 WHbWt b
 WHbhiH b
 W Hbb hi
(b)b
 WHbhi b 
 W Hbb hi b 
 W Hbb t b
 WHbtG b
 WHbtW b
 WHbhiGb
 WHbhiW b
 WHbtb b
 WH bt t b
 WHbhiH b
 WH bH t b
 W Hbb hi
(c)

Figure 7.9: Photon-radiation and photon-induced EW diagrams.

The real EW contributions correspond to the processes with external photons,

b+ b̄ → W− +H+ + γ,

b+ γ → b+H+ +W−,

b̄+ γ → b̄+W− +H+, (7.27)

described by the Feynman diagrams of Fig. 7.9. They are calculated in the same way
as the real QCD corrections, discussed in Section 7.2.2 and Section 7.2.3. However,
the formulae are more complicated than the ones of the QCD case since photon
now can be emitted from both initial and final states. It should be mentioned
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Figure 7.10: The finite hadronic cross sections σb̄g→W−H+b̄
reg (dashed line) and

σb̄γ→W−H+b̄
reg (solid line) after subtracting the OS top-quark and the collinear-

singularity contributions as a function of MH± .

that we do not use either the effective bottom–Higgs couplings or the Higgs mixing
resummation for both virtual and real EW corrections.

Naively, we would expect this photon contribution to be much smaller than the
one from the gluon, due to the smallness of the EW coupling α and the photon
PDF. This is not always true, however, since the photon couples to the W± and
H± as well. The soft singularities are completely cancelled, as in the case of QCD.
The EW splitting γ → H+H− (similarly for γ → W+W−), on the other side,
can introduce large collinear correction in the limit MH±/Q → 0, Q is a typical
energy scale. The constraint M±

H > MW prevents those splittings from becoming
divergent. We observe, however, that the finite corrections (after subtracting the
collinear bottom-photon and the OS top-quark contributions) from the above b̄γ
process are still larger than the corresponding QCD ones for MH± < 200GeV, e.g.
for MH = 150GeV and

√
s = 14TeV by a factor of 2 as illustrated in Fig. 7.10. The

photon-induced contribution should thus be included in the NLO calculations for
W±/H± production at high energies. This requires the knowledge of the photon
density in the proton, which at present is contained in the set MRST2004qed [130]
of PDFs.
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Figure 7.11: One-loop Feynman diagrams for the partonic process gg →W∓H±.

7.3 The subprocess gg → W∓H±

7.3.1 The leading order cross section

The subprocess gg → W∓H± is loop induced with quark- and squark-loop contri-
butions. Fig. 7.11 summarizes various one-loop Feynman diagrams, which involve
three- and four-point vertex functions. No renormalization is needed, the UV diver-
gences cancel among (s)quark loops. The hadronic cross section reads

σpp
gg(S) =

∫ 1

0

dτ
dLpp

gg

dτ
σ̂gg→W−H+

(ŝ, α2α2
s), (7.28)

where the partonic cross section

σ̂gg→W−H+

(ŝ, α2α2
s) =

λ1/2(ŝ,M2
H± ,M2

W )

32πŝ2

∫ 2

1

d cos θ
∑

ρ,ρ̄=±1,ξ=0,±1

1

4

CF

64
|Mρρ̄ξ|2,

CF =
8∑

a,b=1

[
Tr

(
λa
2

λb
2

)]2
= 2, (7.29)

contains the helicity amplitude

Mgg
ρρ̄ξ = ǫ∗µ(ξ, pW )ǫν(ρ, pg)ǫ

σ(ρ̄, pg)Γµνσ. (7.30)

Here ǫν(ρ, pg), ǫ
σ(ρ̄, pg) denote the polarization vectors of the incoming gluons. This

structure of the amplitude will allow us checking for the QCD gauge invariance, see
Subsection 7.3.2.
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Since the (s)quark couple to a Higgs boson, the one-loop amplitude is propor-
tional to (s)quark-Higgs couplings. The dominant contributions therefore arise from
the diagrams with the third-generation (s)quarks. As in [29], the contribution from
the first two generations of (s)quarks is neglected in our calculation. Compared to
the previous work [29], our calculation is improved by using the effective bottom–
Higgs couplings and the resummed neutral Higgs propagators. It turns out that
these improvements affect sizably both the cross section and CP-violating asym-
metry. We have checked our results against those of [29] for the case of the real
MSSM using the tree-level couplings and tree-leve Higgs propagators and found
good agreement.

7.3.2 QCD gauge invariance

In our calculation of the matrix elements with gluon or photon in the external lines,
we have to deal with polarization vectors. In the squared amplitude method, one
can use the completeness relation

∑

ρ=±1

ǫα∗µ (p, ρ)ǫβν (p, ρ) = δαβ
(
−gµν − η2pµpν

(η.p)2
+ ηµpν+ηνpµ

η.p

)
, (7.31)

where η is an arbitrary four-vector and satisfies η.ǫ = 0 and η.p 6= 0. The cross-
section does not depend on η. In helicity amplitude method, using the two-component
Weyl-van-der-Waerden spinors Ref. [176], the two polarization vectors ǫµ± can be ex-
pressed as

ǫ+,ȦB =

√
2g+,ȦkB

〈g+k〉
ǫ−,ȦB =

√
2kȦg−,B

〈g−k〉

ǫ∗
+,ȦB

=

√
2kȦg+,B

〈g+k〉
ǫ∗−,ȦB

=

√
2g−,ȦkB

〈g−k〉∗
, (7.32)

where

kA =
√
2k0

(
eiφ cos θ

2

sin θ
2

)
, (7.33)

the momentum of particle is denoted as kµ = (k0, |k| cosφ sin θ, |k| sin φ sin θ, |k| cos θ)
and g± are arbitrary spinors with 〈g±k〉 6= 0. The Lorentz-invariant spinor product
is defined as

〈gk〉 = gAk
B = g1k2 − g2k1. (7.34)

The dotted index relates to the undotted one by complex conjugation,

gȦ = g∗A. (7.35)

We follow the method in [91]. The QCD gauge invariance can be check by varying
the two gauge spinor g±. We confirm the QCD gauge invariant amplitudes for
gg →W∓H±.
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Figure 7.12: Partonic cross section of gg → W−H+ using parameter set
MQ̃ = MŨ = MD̃ = 250GeV, Xb = 0, Xt = −470GeV, tanβ = 1.5 of [29] for
MH± = 100GeV (left) and MH± = 210GeV (right). The dashed lines shows only
contribution of quark loop diagrams while the dotted lines are for squark loop ones.
The total contributions are presented by the solid lines.

7.3.3 Three-point Landau singularities
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Figure 7.13: Feynman diagrams that can produce three-point Landau singularities.

We notice an interesting feature related to the anomalous thresholds. Figure on
the right panel of Fig. 7.12 shows a very sharp peak close to the normal tt̄ threshold
(similar to Fig. 1b of [29]). Careful observation reveals that the peak position is
slightly above 2mt and is obviously more singular than the normal thresholds on the
left panel of Fig. 7.12. This is indeed an anomalous threshold corresponding to the
three-point Landau singularity of the triangle and box diagrams in Fig. 7.13. the
Landau matrix of those triangle and box diagrams reads

Q =




2m2
t m2

t +m2
b −M2

W 2m2
t − ŝ

m2
t +m2

b −M2
W 2m2

b m2
t +m2

b −M2
H±

2m2
t − ŝ m2

t +m2
b −M2

H± 2m2
t


 . (7.36)

We will use the necessary and sufficient conditions for the appearance of a singularity
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in Eq. (4.7). First, the vanishing determination condition gives

ŝ± =
1

2m2
b

[
(M2

H± +M2
W )(m2

t +m2
b)− (m2

b −m2
t )

2 −M2
H±M2

W

±λ1/2(m2
t , m

2
b ,M

2
H±

)λ1/2(m2
t , m

2
b ,M

2
W )
]
, (7.37)

with MH± ≥ mt + mb. Now we can check if those values of ŝ satisfy the second
condition xi ≥ 0, i = 1, 2, 3. Since det[Q] = 0, we can chose x3 = 1. The two other
solutions are

x1 = −(m2
t −m2

b)
2 +M2

H±M2
W − (m2

t +m2
b)(M

2
H± +M2

W ) + 2m2
b ŝ

λ(m2
t , m

2
b ,M

2
W )

,

x2 = − ŝ(−m
2
b −m2

t +M2
W ) + 2m2

t (−M2
W +M2

H±)

λ(m2
t , m

2
b ,M

2
W )

. (7.38)

x1 > 0 is satisfied with ŝ = s−, but unsatisfied with ŝ = s+ . We now consider
ŝ = s−. From condition x2 ≥ 0, we get

s− ≥ 2m2
t (M

2
H± −M2

W )

m2
t −M2

W +m2
b

, (7.39)

which leads to

mb +mt ≤MH± ≤
√

2(m2
t +m2

b)−M2
W , (7.40)

and

2mt ≤
√
ŝ ≤

√
mt

mb

[(mt +mb)2 −M2
W ]. (7.41)

The partonic cross section is divergent at ŝ = ŝ− but the result is finite at the
hadronic level, i.e. after integrating over ŝ, since this singularity is logarithmic and
thus integrable.

Similarly, the three-point Landau singularities can occur in the squark diagrams
depicted in Fig. 7.14. The conditions for such singularities are similar to Eq. (7.40)
but with the squark masses instead. In Fig. 7.15, we illustrate the three-point
singularity of the squark contribution with MH± = 360GeV.

7.4 NLO hadronic cross section and CP asymme-

try

The NLO hadronic cross section

σpp
NLO = σbb̄

IBA(α
2) + ∆SM-QCD(α

2αs) + ∆SUSY-QCD(α
2αs) + ∆EW (α3) + σgg(α

2α2
s)

(7.42)
contains the various NLO contributions at the parton level, discussed in the previous
sections. As mentioned there, the mass singularities of the type αs ln(mb) and
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Figure 7.14: Several squark box diagrams can produce Landau singularity.
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Figure 7.15: Similar to Fig. 7.12 but with MH± = 360 GeV instead.
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α ln(mb) are absorbed in the quark distributions. We use the MRST2004qed set of
PDFs [130], which include O(αs) QCD and O(α) photonic corrections. As explained
in [129], the consistent use of these PDFs requires the MS factorization scheme for
the QCD, but the DIS scheme for the photonic corrections.

Having constructed in this way the hadronic cross sections σ(pp→W±H∓), we
can define the CP-violating asymmetry at the hadronic level in the following way,

δCP
pp =

σ(pp→W−H+)− σ(pp→W+H−)

σ(pp→W−H+) + σ(pp→W+H−)
. (7.43)

The numerator gets contributions from the NLO-bb̄ corrections (the LO is CP con-
serving) and the loop-induced gg process. However, the latter is much larger than
the former due to the dominant gluon PDF. The CP-violating effect is therefore
mainly generated by the gg channel. The LO-bb̄ contribution adds only to the CP
invariant part and therefore reduces the magnitude of the CP asymmetry.

7.5 Numerical studies

In this section we present the numerical results. Here we need to specify our input
parameters. In the set of SM parameters presented in Appendix F.1, we use the
QCD-MS b-quark mass, mb(mb), as an input parameter while the top-quark mass is
understood as the pole mass. For the soft SUSY-breaking parameters, we use the
CPX scenario. The complex phases of the trilinear couplings At, Ab, Aτ and the
gaugino-mass parameters Mi with i = 1, 2, 3 are chosen as default according to

φt = φb = φτ = φ3 = φ1 =
π

2
, (7.44)

unless specified otherwise. The phase of µ is chosen to be zero in order to be
consistent with the experimental data of the electric dipole moment. We will study
the dependence of our results on tanβ, MH± , φt and φ3 in the numerical analysis.
The φb dependence is not very interesting since it is similar to but much weaker
than that of φt.

The scale of αs in the SUSY-QCD resummation of the effective bottom–Higgs
couplings Eq. (5.41) is set to be Q = (mb̃1

+mb̃2
+mg̃)/3. If not otherwise specified,

we set the renormalization scale equal to the factorization scale, µR = µF , in all
numerical results. Our default choice for the factorization scale is µF0 =MW+MH± .

Our study is done for the LHC at 7TeV and 14TeV center-of-mass energy. In the
numerical analysis, we will focus on the latter since the total cross section is about
an order of magnitude larger. Important results will be shown for both energies.
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Figure 7.16: The LO cross section with mb = mDR
b and the two improved Born

approximations (IBA) as functions of tan β (left) and MH± (right). σIBA1 includes
the ∆b resummation but not the Higgs mixing resummation, while σIBA includes
both. The lower panels show the corresponding relative corrections with respect to
the LO result.

7.5.1 pp/bb̄ → W∓H±: LO and improved-Born approxima-
tions

In this subsection, we study the effect of the bottom–Higgs coupling resummation
described in Section 5.4.1 and of the Higgs propagator matrix discussed in Sec-
tion 5.3.

The results for the approximations IBA and IBA1 defined in section 7.2.1 are
illustrated in Fig. 7.16 showing the dependence on tanβ in the left panel and on
the mass MH± in the right panel. The relative correction δ, with respect to the LO
cross section, is defined as δ = (σIBA − σLO)/σLO. For small values of tan β the left-
chirality contribution proportional to mt/ tanβ is dominant while the right-chirality
contribution proportional to mb tan β dominates at large tan β. The cross section
has a minimum around tanβ = 8.

The effect of ∆b resummation is best understood in terms of Fig. 7.16 and
Fig. 7.17. The important point is that ∆b is a complex number and only its real part
can interfere with the LO amplitude. Thus, the ∆b effect is minimum at φt,3 = ±π/2
where the dominant ∆mSQCD,H̃t̃

b are purely imaginary and is largest at φt,3 = 0,±π.
φt enters via EW corrections and φ3 via the SUSY-QCD contributions. Fig. 7.17
shows that the ∆b effect can be more than 150%. In Fig. 7.16 where ∆b is mostly
imaginary we see the effect of order O(∆2

b) which is about −15% at tan β = 10. We
observe also that the Higgs mixing resummation in the s-channel diagrams has a
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Figure 7.17: Similar to Fig. 7.16, but with φt (left) and φ3 (right) varied instead.

much smaller impact, less than 10%, as expected.

7.5.2 pp/bb̄→ W∓H±: full NLO results

In this section, we investigate the effects of the SUSY-QCD, SM-QCD, and EW
contributions at NLO. As in the previous section, we present here two sets of plots.
In Fig. 7.18 we show the dependence of the total cross sections on tan β and MH±

at the default CPX phases, in particular φt = φ3 = π/2. As explained above, the
O(∆b) effect is turned off in this CPX scenario. The SUSY-QCD and EW NLO
terms are therefore small at large tan β, as shown in Fig. 7.18 (left). The SM-QCD
correction is about −20% for small tan β and changes the sign around tan β = 11
due to the competition between the bb̄ and the g-induced contributions. All the
NLO contributions for different values of tan β and MH± can be found in Table 7.1.
Fig. 7.19 shows the dependence of the total cross sections on φt and φ3 for tanβ = 10
and MH± = 200GeV. The EW corrections depend strongly on φt, and the SUSY-
QCD corrections on φ3. At φt = φ3 = 0,±π the effects are largest. The remaining
EW and SUSY-QCD corrections, beyond the O(∆b) contribution, are still rather
large. In particular, there is the following term of the SUSY-QCD correction,

∆̃t =
2αs

3π
M∗

3µ
∗ tanβJ(m2

g̃),

J(m2) = |U b̃
11|2|U t̃

12|2I(m2, m2
t̃1
, m2

b̃1
) + |U b̃

21|2|U t̃
12|2I(m2, m2

t̃1
, m2

b̃2
)

+ |U b̃
11|2|U t̃

22|2I(m2, m2
t̃2
, m2

b̃1
) + |U b̃

21|2|U t̃
22|2I(m2, m2

t̃2
, m2

b̃2
), (7.45)
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Figure 7.18: The cross section obtained by using IBA and including various nonuni-
versal NLO corrections as functions of tan β (left) andMH± (right). The lower panels
show the corresponding relative corrections to the IBA result.
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Figure 7.20: Diagrams that can introduce large SUSY-QCD (left) and EW (right)
corrections. G± are the charged Goldstone bosons.

which can be included in the top-Yukawa part of charged Higgs couplings as follows

λ̃bt̄H+ =
ie√

2sWMW

(
mt

tan β
(1− ∆̃t)PL +mDR

b tan β∆3∗
b PR

)
,

λ̃tb̄H− =
ie√

2sWMW

(
mDR

b tanβ∆3
bPL +

mt

tanβ
(1− ∆̃∗

t )PR

)
. (7.46)

This term originates from the left diagram in Fig. 7.20 and is important for small
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Figure 7.21: In the IBA2, we use the effective bottom–Higgs couplings defined in
Eq. (7.46) and the Higgs mixing resummation.

tan β. This finding agrees with the discussion in [147] where other subleading cor-
rections are also discussed. If the couplings Eq. (7.46) are used we find that the
new-improved LO results move significantly closer to the full NLO results, see in
Fig. 7.21. The situation in the left part of Fig. 7.19 is due to the EW corrections.
It indicates that there are still large corrections proportional to Atµαt/(4π) which
can be associated with the right diagram in Fig. 7.20.
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Figure 7.22: The cross section (left) and CP asymmetry (right) as functions of φt.

The SM-QCD corrections (and EW corrections to a lesser extend) have a striking
structure for small masses MH± < mt (Fig. 7.18, right part). This is due to the finite
contribution of the process bg → W−H+b. When MH± < mt the intermediate top
quark can be on-shell and can decay to H+b. As discussed in Section 7.2.3, this
OS contribution has to be properly subtracted. The structure indicates that the
OS top-quark effect cannot be completely removed and this quantum effect on the
W−H+ production rate is an interesting feature, which was not discussed in previous
studies [30, 31].

7.5.3 pp/gg →W∓H±: neutral Higgs-propagator effects

Even though the gg-fusion subprocess is loop induced, its contribution can be of the
same order as the tree-level bb̄ → W∓H± contribution. Neutral Higgs bosons are
exchanged in the s-channel and can be described by using effective bottom–Higgs
couplings and the full Higgs-propagator matrix. The impact of the latter on the
total cross section and CP asymmetry is large as can be seen from Fig. 7.22. The
cross section can be reduced by 20% at φt = ±π, while the CP asymmetry increases
about 25% at φt = ±π/2. We observe also that the gg contribution is very sensitive
to φt.

7.5.4 pp→ W∓H±: total results at 7TeV and 14TeV

The total production cross section for the W−H+ final state at the LHC is shown
in Fig. 7.23 and Fig. 7.24, as well as in Table 7.1. The cross section increases by an
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Table 7.1: The total cross section in fb for pp/bb→ W−H+ including the IBA and
various nonuniversal NLO corrections and for pp/gg → W−H+ at

√
s = 14TeV.

The charged Higgs-boson masses are given in GeV.

tanβ MH± σIBA ∆EW ∆SMQCD ∆SUSYQCD σgg all

5 200 11.241(1) -1.0383(3) -2.012(3) -0.00821(1) 13.194(1) 21.377(3)
10 200 7.2568(9) -0.1989(5) -0.178(1) -0.00721(2) 7.9428(5) 14.815(2)
20 200 12.546(2) 0.1881(6) 0.752(3) -0.03570(6) 7.9968(6) 21.447(4)
10 150 12.497(1) -0.2574(5) -0.561(2) 0.00191(4) 8.7064(5) 20.387(3)
10 400 1.2907(2) -0.00530(7) 0.0328(2) -0.008954(7) 4.4386(3) 5.7477(4)
10 600 0.35740(5) -0.00832(2) 0.01594(5) -0.006263(4) 2.7481(1) 3.1069(2)

order of magnitude when the center-of-mass energy goes from 7TeV to 14TeV. The
gg contribution is largest for small tan β and largeMH± while the bb̄ dominates when
tan β > 12 and, approximately, MH± < 200GeV. In the right panel of Fig. 7.23, one
can see a little bump on the gg contribution around MH± = 200 GeV, attributed to
the three-point Landau singularities discussed in Section 7.3. The total cross section
depends strongly on the phases φt and φ3 as can be seen from Fig. 7.24. The gg
contribution is almost independent of φ3 since the gluino does not appear at the
one-loop level (the contribution through ∆b resummation is of higher-order effect).

The CP violating asymmetry is shown in Fig. 7.25 as a function of tan β and
MH± , and in Fig. 7.26 versus φt and φ3. The uncertainty bands obtained by varying
the renormalization and factorization scales (we set µR = µF for simplicity) in the
range µF0/2 < µF < 2µF0 are shown only in Fig. 7.25 since the uncertainty depends
strongly on tanβ and in particular on MH± , but not on the phases. A more detailed
account of the scale uncertainty of our results is given in the next section. As
discussed at the end of Section 7.4, the CP violating effect is dominantly generated
by the gluon-gluon fusion channel. The bb̄ channel contributes significantly to the
symmetric cross section and thus to the denominator of the CP asymmetry. It is
therefore easy to understand why δCP is small for large tan β and small MH± , as
seen in Fig. 7.25. The dependence on φ3 is explained by the same reasons: the
numerator is independent of φ3 while the denominator including σbb̄ has a minimum
at φ3 = 0. The CP asymmetry is therefore maximum around φ3 = 0.

7.5.5 Scale dependence

In this section we discuss the scale dependence of the total cross sections and CP
asymmetries. Since the calculation of the loop-induced subprocess gg → W∓H±

includes only the leading order contribution (with improvements on the bottom–
Higgs couplings and neutral Higgs-mixing propagators), there is no cancellation of
the renormalization/factorization-scale dependence in this channel. We therefore
concentrate on the scale dependence of the bb̄→W∓H± cross section calculated at
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Table 7.2: Cross sections in fb for pp/bb̄ → W−H+ and pp/gg → W−H+ at
different values of the factorization(renormalization) scale. The CP asymmetries in
percentage are also shown.

√
s = 7TeV

√
s = 14TeV

µR = µF σIBA σbb̄
NLO

σgg δCP σIBA σbb̄
NLO

σgg δCP

µF0/2 1.1028(2) 1.0434(3) 1.42088(9) 8.207(8) 6.6774(8) 6.633(2) 10.4606(6) 8.380(7)
µF0 1.1544(1) 1.0870(2) 1.02168(6) 6.967(8) 7.2568(9) 6.873(1) 7.9428(5) 7.457(8)
2µF0 1.1790(1) 1.1445(2) 0.7631(5) 5.868(7) 7.6648(9) 7.224(1) 6.2204(4) 6.591(8)

NLO, see Fig. 7.27 (left). We set µR = µF for simplicity. The remaining uncertainty
of the NLO scale dependence is approximately 9% (9%) when µF is varied between
µF0/2 and 2µF0, compared to approximately 14% (7%) for the IBA, at 14TeV
(7TeV) center-of-mass energy. The uncertainty is defined as δ = [|σ(µF0/2) −
σ(µF0)|+ |σ(2µF0)− σ(µF0)|]/σ(µF0). The IBA scale dependence looks quite small
because we have set both renormalization and factorization scales equal, leading to
an “accidental” cancellation. The IBA cross section increases as µF increases while
it decreases as µR increases. We recall that µF enters via the bottom-distribution
functions and µR appears in the running b-quark mass. That accidental cancellation
depends strongly on the value of tan β. We have verified, by studying separately the
renormalization and factorization scale dependence, that including NLO corrections
does reduce significantly each scale dependence.

Concerning the CP asymmetries, the scale dependence is shown in Fig. 7.27
(right). We again set here µR = µF . If µF is varied between µF0/2 and 2µF0,
the uncertainty is approximately 24% (34%) for 14TeV (7TeV) center-of-mass en-
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ergy. This uncertainty is so large because the dominant contribution to the CP
asymmetries (the subprocess gg →W∓H±) is calculated only at LO.

In Table 7.2 we show the values of the cross sections for the two subprocesses as
well as the CP asymmetries. The scale-dependence uncertainty of the gg →W∓H±

process is indeed very large. It is mainly due to the running strong coupling αs(µR)
which depends logarithmically on the renormalization scale.



Chapter 8

Electroweak corrections to
gg → H−tb̄ at the LHC

8.1 Introduction

In this chapter we investigate charged Higgs boson production in association with a
bottom quark and a top quark at the LHC. The dominant mechanism is gg → H∓tb.
The cross section for gg → H∓tb contains large logarithms, ∼ lnµF/mb, where µF

is of the order of the charged Higgs mass. They arise from the splitting of a gluon
into a collinear bb̄ pair. These large logarithms can be factorized and resummed to
all orders in perturbation theory. In doing so one introduces the (anti)bottom-quark
densities and defines a five-flavour scheme. For an inclusive observable, this channel
should be consistently combined with the channel gb→ tH−.

In our calculation, we assume the bottom quark to be tagged and hence consider
exclusive observables. The large logarithms are avoided by applying the following
cuts

pT,b > 20GeV, |ηb| < 2.5, (8.1)

where pT,b is the transverse momentum and ηb is then pseudo rapidity of the bottom
quark. The cross section after cuts is still considerable. This makes it a potential
channel for the searches of charged Higgs bosons.

This channel has been studied at the LHC (for a review see [62]). The study
in [177] showed a possibility of observing the charged Higgs boson via this channel
with four b-tags at the LHC. The conclusion was based on the comparison of the
signal arising from gg → H−tb̄ and the main background from gg → tt̄bb̄ provided
that a good b-tagging efficiency ∼ 50% is achieved. The QCD corrections to the
exclusive pp → H−tb̄ were calculated in [35]. Recently, Ref. [36] has studied the
QCD corrections to inclusive and exclusive pp → H−tb̄ 1. They have done the first

1For the inclusive cross sections, the NLO QCD corrections are in the range [−2, 7]% compared
to the LO cross sections, which were computed with LO PDFs and the effective bottom–Higgs

123
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comparison of theH± production with heavy quarks in the four-flavor and five-flavor
schemes.

In our study, the EW corrections to the gg → H−tb̄ process are calculated in the
complex MSSM. In the real MSSM, the corrections are equal for both gg → H−tb̄
and gg → H+t̄b. However, in the cMSSM they can be different. The differences
give rise to a CP violating asymmetry. This is the subject of our future studies.
Similar to the process pp → W∓H±, the EW corrections may have a large impact
on the total cross section. The NLO EW contributions are rather involved. On
the technical side, this calculation is challenging since it contains a large number of
one-loop diagrams involving two-, three-, four- and five-point loop integrals. The
results presented in this chapter will be published in [178].

8.2 The leading order cross section

At tree level, the gg contributions of order O(α2
sα) are dominant. Other contribu-

tions of the same order arising from quark-antiquark annihilations are much smaller,
since they involve only the s channel diagrams which are suppressed at high energy.
The quark-antiquark annihilations give also O(α3) contributions coming from tree-
level EW Feynman diagrams. A striking feature of the O(α3) contributions is that
they have a charged Higgs resonance,i.e. when MH± is larger than the sum of top
and bottom masses, the charged Higgs bosons can be on-shell and decay into top
and bottom quarks. It requires a consistent treatment in order to obtain the gauge
invariant results. This problem becomes more difficult at NLO and is not discussed
in this thesis.

The three classes of subprocesses contributing are

g + g → H− + t+ b̄, (8.2)

q + q̄ → H− + t+ b̄, (8.3)

b+ b̄→ H− + t+ b̄, (8.4)

where q denotes the light quarks, q = u, c, d, s. The first two channels have been
calculated in [179, 180, 177, 35, 36]. The corresponding Feynman diagrams of those
subprocesses are shown in Fig. 8.1.

There exists contributions of order O(αsα
2) arising from the gγ induced process,

g + γ → H− + t+ b̄, , (8.5)

whose Feynman diagrams are depicted in Fig. 8.2.

couplings, for MH± from 200 to 500GeV in the SPS 1b benchmark scenario characterized by large
tanβ (= 30). For the exclusive ones with pT,b > 20GeV, the NLO QCD corrections are negative
and larger than −20% in the same charged Higgs mass range. Ref. [36] claimed that their results
disagree with the ones in [35]. The exclusive cross sections of the former are two to three times
larger than that of the later.
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Figure 8.1: The QCD tree-level diagrams: (a) for gg → H−tb̄ subprocess, (b) for
qq̄ → H−tb̄ subprocesses (q = u, c, d, s) and (c) for bb̄→ H−tb̄ subprocess.

The hadronic LO cross section is given by convolution of the partonic cross
sections with the corresponding parton luminosity, see Eq. (7.2),

σpp
LO =

∑

ij=gg,qq̄,bb̄

∫ 1

0

dτ
dLpp

ij

dτ
σ̂ij→H−tb̄

LO (ŝ, α2
sα, µR)

+

∫ 1

0

dτ
dLpp

gγ

dτ
σ̂gγ→H−tb̄

LO (ŝ, αsα
2, µR), (8.6)

where s and ŝ = τs are the squared CM energies of the hadronic and partonic
processes, respectively.

The LO amplitudes involve the Yukawa couplings of the charged Higgs bosons
to the top and bottom quarks which can be modified to include the large universal
SM-QCD, SUSY-QCD and SUSY-EW corrections as discussed in Section 5.4. To
quantify the ∆mb effect we define the improved Born approximation (IBA) where
the effective bottom–Higgs couplings in Eq. (5.39) are used. The LO cross section
is computed with the tree-level bottom–Higgs couplings in Eq. (5.29) with mb =

mDR
b (µR).
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Figure 8.2: The tree-level diagrams for gγ → H−tb̄ subprocess. For the diagrams
marked with the star, the diagrams with an exchange of the incoming gluon and
photon also contribute.

8.3 The NLO electroweak contributions to gg →
H−tb̄

In this section we discuss the NLO EW corrections to the gg → H−tb̄ subprocess.
These corrections are of order O(α2

sα
2). Other contributions of the same order

arising from the remaining subprocesses in Eq. (8.3), Eq. (8.4) and Eq. (8.5) are
much smaller and will not be discussed here.

The NLO EW contributions are composed of a virtual part and a real part. The
virtual part contains UV divergences, soft and collinear singularities. In order to
cancel the UV divergence, a renormalization scheme is needed. We follow the renor-
malization procedure described in Subsection 7.2.5 for the process pp→W∓H±.

The virtual part comprises contributions of bottom- and top-quark self-energies,
of H−tb̄ and gqq̄ vertices, of box and pentagon diagrams. The generic classes of self-
energy and vertex diagrams which include the corresponding counterterms are shown
in Fig. 8.3. The box and pentagon diagrams which give UV-finite contributions are
depicted in Fig. 8.4 and Fig. 8.5, respectively.

The real EW corrections arise from the photonic bremsstrahlung process,

g + g → H− + t+ b̄+ γ, (8.7)

whose diagrams are shown in Fig. 8.6. This contribution is divergent in both soft
region (p0γ → 0) and quasi-collinear region (pbpγ → O(m2

b)). Mass regularization is
used to separate the divergent terms. In particular, the photon mass (λγ) is used for
the soft singularities while the bottom mass is used for the collinear singularities.
The soft singularities cancel against the one in the virtual contribution. If no cut is
applied on the bottom quark, the quasi-collinear singularities cancel also in the sum
of the virtual and the real contributions. However we required the bottom quark to
be tagged, the quasi-collinear singularities cancel incompletely. We do not need to
worry about the leftover quasi-collinear singularities since in this case bottom quark
is considered to be massive.

Similar to the pp → W∓H± calculation, the real corrections are computed by
using both the dipole subtraction method and phase-space slicing method. The
results are in good agreement as illustrated in Fig. 8.7. Although this statement is
not new, it provides a good check on our computational codes. In the numerical
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Figure 8.3: The one-loop self-energy and vertex diagrams for the electroweak virtual
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Figure 8.5: Diagrams with irreducible five-point vertices for the electroweak virtual
corrections to gg → H−tb̄ subprocess. S = h,H,A,G0 and V = γ, Z.
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Figure 8.6: Diagrams for real photon emission.

study, we will present the results of the dipole subtraction method because the
integration errors are smaller.

We conclude this section by summarizing the structure of the full NLO EW
hadronic cross section,

σpp
NLO,EW = σpp

IBA +∆
pp/gg
EW , (8.8)

where

∆
pp/gg
EW =

∫ 1

0

dτ
dLpp

gg

dτ

[
σ̂gg→H−tb̄

NLO,virt (ŝ, α
2
sα

2, µR) + σ̂gg→H−tb̄γ
NLO,real (ŝ, α2

sα
2, µR)

]
. (8.9)

8.4 Numerical studies

Similar to the process pp→W∓H±, we present the numerical results in this section
for the CPX scenario. The renormalization scale and the factorization scale are cho-
sen as µR = µF = (mt+MH±)/3. We use also the MRST2004qed set of PDFs [130].
For the other input parameters we refer to Section 7.5.

Our study is done for the LHC at 7TeV and 14TeV center-of-mass energy. As
for the case of pp → W∓H± we find similar effects for both energies. We therefore
focus on the case of 14GeV since the cross section is about an order of magnitude
larger. Important results will be shown for both energies.
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Figure 8.7: Partonic cross sections as functions of CM energy
√
ŝ in the left panel

and of cutoff parameter δs in the right panel are presented for the gg → H−tb̄γ
process. The results are obtained by using the phase space slicing method (red
stars) and the dipole subtraction method (black stars) in the CPX scenario with
MH± = 200 GeV and tanβ = 10. The photon mass regulator is set to be unit so
that all terms proportional to lnλγ vanish.

8.4.1 Checks on the results

The amplitudes are generated by using FeynArts-3.6 [105] and further simplified
with the support of FormCalc-6.1 [96]. The loop integrals contain five-point ten-
sor integrals up to rank three, four-point tensor integrals up to rank three. The
pentagon integrals are reduced to the box integrals by using the reduction method
in [181]. The two-, three- and four-point tensor integrals are further reduced into
the scalar integrals by using Passarino-Veltman reduction method [85]. The loop
integrals are evaluated with two independent libraries, LoopTools/FF [182, 162] and
LoopInts [183]. The latter uses the method of [184] and has an option to use
quadruple precision when numerical instabilities are detected. A good agreement
has been found. The phase-space integration is done by using the Monte Carlo
integrator BASES [185] and VEGAS [186].

Both the virtual and real contributions have been computed by two independent
codes. We have obtained full agreement. Moreover in the sum, both UV and IR
finiteness are verified. Using the method of the QCD gauge invariant check described
in Subsection 7.3.2, we have confirmed that the gg → H−tb̄ amplitudes are gauge
invariant at LO, IBA and NLO.
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Figure 8.8: The LO and IBA cross sections for pp → H−tb̄ as functions of tan β in
the left panel and of φt in the right panel. The lower parts of the figures show the
relative corrections.

8.4.2 Hadronic cross sections

We first study the effects of ∆mb resummation. In Fig. 8.8, we show the LO and
IBA cross sections defined in Section 8.2 as functions of tanβ in the left panel and
of φt in the right panel. We define the relative corrections as δ = (σIBA −σLO)/σLO.
As expected, the dependences on tan β and φt are determined by the H−tb̄ coupling
in a similar way to the bb̄→W∓H± process described in Subsection 7.5.1.

Table 8.1 shows the separated IBA contributions of the three subprocesses and
the NLO EW corrections to gg → H−tb̄ at

√
s = 14TeV for different values of MH±

and tanβ. Similar results are presented in Table 8.2 but for
√
s = 7TeV. We see

that the contributions of the gg fusion are dominant. They contribute more than
90% (83%) of the total IBA for

√
s = 14TeV (

√
s = 7TeV). The contribution of

the bb̄ is less than 1%. The contribution of the gγ is a bit larger than that of the bb̄.
The NLO EW contributions are comparable to the qq̄ contributions but with the
opposite sign.

In Fig. 8.9 we show the dependence of the IBA and NLO EW cross sections on
tan β, MH± and φt at

√
s = 14TeV. The lower parts of the figures show the relative

corrections which are defined as δ = (σNLO−σIBA)/σIBA. After subtracting the ∆mb

corrections, the magnitude of the remaining EW contributions are still large. The
relative corrections increase with tanβ and MH± for the default value φt = π/2.
Similar to the bb̄ → W∓H±, the NLO EW corrections depend strongly on φt. The
cross section can be reduced by 25% at φt = 0. Similar behavior of the relative
corrections for

√
s = 7TeV can be seen in Fig. 8.10.
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Table 8.1: The total cross section in fb for pp → H−tb̄ including the IBA of the
four subprocesses and EW NLO corrections to gg → H−tb̄ at

√
s = 14TeV. The

charged Higgs-boson masses are given in GeV. The numbers in brackets show the
integration uncertainty in the last digit if they are significant.

tanβ MH± σ
pp/gg
IBA σ

pp/qq̄
IBA σ

pp/bb̄
IBA σ

pp/gγ
IBA ∆

pp/gg
EW all

5 200 38.833(7) 3.5810 0.3192 0.5587 -1.54(1) 41.75(2)
10 200 25.447(5) 2.3719 0.21044 0.3671 -2.64(1) 25.75(1)
20 200 43.992(8) 3.9727 0.3573 0.6297 -10.19(4) 38.76(4)
10 300 10.740(2) 0.45682 0.07538 0.13852 -1.19(2) 10.22(2)
10 400 5.207(1) 0.14292 0.03105 0.06405 -0.618(6) 4.827(6)
10 600 1.4829(3) 0.024444 0.006866 0.018339 -0.198(1) 1.334(1)

Table 8.2: Similar to Table 8.1 but for
√
s = 7TeV.

tanβ MH± σ
pp/gg
IBA σ

pp/qq̄
IBA σ

pp/bb̄
IBA σ

pp/gγ
IBA ∆

pp/gg
EW all

5 200 5.3652(9) 0.9885 0.03113 0.10578 -0.206(3) 6.284(3)
10 200 3.5138(6) 0.6551 0.020530 0.06948 -0.354(2) 3.905(2)
20 200 6.085(1) 1.0953 0.03483 0.11925 -1.369(6) 5.965(6)
10 300 1.2570(2) 0.09739 0.005772 0.22350 -0.141(4) 1.241(4)
10 400 0.5164(1) 0.024191 0.0019014 0.008903 -0.0597(8) 0.4917(9)
10 600 0.10583(2) 0.0026766 0.0002700 0.0019113 -0.01379(6) 0.09681(7)

8.4.3 Differential distributions

In this section we consider the differential distributions for IBA and NLO EW cor-
rections with respect to three kinematical variables: transverse momentum, rapidity
and invariant mass. The results are obtained with MH± = 200GeV, tanβ = 10 and√
s = 14TeV.

The transverse momentum and pseudo rapidity distributions of the charged Higgs
boson are shown in Fig. 8.11. The EW corrections do not change the shapes of those
distributions but reduce the number of the produced charged Higgs bosons. The
magnitude of the relative corrections increase with pT (H

−) and has a maximum
(about 10%) at the central pseudo rapidity.

In Fig. 8.12 we depict the distributions of the top quark. The behavior of the
pT -distributions is similar to the one of the charged Higgs boson. For the pseudo
rapidity distribution, the relative corrections are rather flat (about -10%) in the
region |ηt| < 3.

The distributions of the bottom quark depicted in Fig. 8.13 are quite different
from the ones of the heavy particles. At the very low and the very high pT , the
magnitude of the relative corrections are larger than the ones at the moderate pT .
For the pseudo distribution, the EW corrections reduced more the produced bottom
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Figure 8.9: The IBA and NLO EW cross sections for pp → H−tb̄ as functions of
tan β in the left panel, of MH± in the right panel and of φt in the lower panel for√
s = 14TeV.

quarks at the two edges than at the centre.

Fig. 8.14 shows the invariant mass and pT distributions of the tb̄ system. The
magnitude of the relative corrections increase with both invariant mass and pT .
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Figure 8.10: Similar to Fig. 8.9 but for
√
s = 7TeV.
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Figure 8.11: The IBA and NLO EW transverse momentum (left) and pseudo (right)
distributions of the charged Higgs bosons. The lower panels show the relative cor-
rections.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(t
)[

fb
/T

eV
]

T
/d

p
σd

-310

-210

-110

IBA

NLO

bt­ H→pp 
 = 14TeVs
 = 200GeV±HM

 = 10βtan
 > 20GeV

T,b
p

| < 2.5
b

η|

(t)[TeV]
T

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

[%
]

δ

-15

-10

-3 -2 -1 0 1 2 3

/d
y(

t)
[fb

]
σd

0

1

2

3

4

5

6

7 IBA

NLO

bt­ H→pp 
 = 14TeVs
 = 200GeV±HM

 = 10βtan
 > 20GeV

T,b
p

| < 2.5
b

η|

y(t)
-3 -2 -1 0 1 2 3

[%
]

δ

-12

-10

-8

Figure 8.12: Similar to Fig. 8.11 but for the top quark pT and pseudo rapidity
distributions
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distributions.
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Chapter 9

Conclusions

In this thesis, we have considered charged Higgs boson decay and production pro-
cesses at the LHC in the context of the complex MSSM. Those processes play an
important role for the searches of charged Higgs bosons. The decay widths and pro-
duction rates were computed at one-loop level where many techniques are involved.
In the first part of the thesis a review of the SM and the MSSM was presented and
one-loop computational techniques were discussed. In the second part, we presented
the detailed calculations for various processes and discussed numerical results.

We first computed the one-loop corrections to the decay modes H± → W±h1.
It is one of the important modes for the low charged Higgs mass besides the decays
into the third generations of fermions. We have presented the decay width and the
branching ratio of the decay H− → h1W

− and confirmed the importance of the
higher order contributions and strong dependence on complex phases. The higher
order contributions can increase the branching ratio of this decay mode significantly
and thus make it be an important mode for the searches of charged Higgs bosons.
The relative correction can change sign when the complex phase of the top trilinear
coupling, φt, varies from −π to π. The partial decay width turns out to be significant
in particular for small values of tan β and low masses of the charged Higgs boson.
With increasing mass it becomes rather small.

Furthermore, we have calculated the CP violating asymmetry, δCP, from the
decays H± → W±h1 originating from non-vanishing complex phases of the soft
SUSY breaking parameters and of the Higgsino mixing parameter, µ. All the phases
that can give sizable contributions to δCP are taken into account and discussed. The
impact of the phases of the τ and bottom trilinear couplings and of the gaugino mass,
M1, on CP rate asymmetry is of some significance only above the normal thresholds.
φt and φµ can yield large contributions to the CP asymmetry both below and above
the normal thresholds and can induce large δCP at large MH±. δCP depends strongly
on MH± , |At| and tanβ.

The dependence of the partial decay width and δCP on the renormalization scale
is also studied. We observed a small dependence for the former. However, the CP
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asymmetry induced by φt and φµ shows a large scale dependence resulting from the
wave function renormalization factor of the neutral Higgs boson, h1.

Second, we have studied the production of charged Higgs bosons in associa-
tion with a W boson at the LHC. The next-to-leading order (NLO) electroweak
(EW), SM-QCD and SUSY-QCD contributions to the bb̄ annihilation are calculated
together with the loop-induced gg fusion. Moreover, the CP violating asymme-
try, dominantly generated by the gg fusion, has been investigated. The leading
order (LO) cross sections contain the bottom–Higgs couplings which receive large
SM-QCD and SUSY-QCD and SUSY-EW corrections. In order to obtain reliable
predictions, these large universal corrections are absorbed into the bottom–Higgs
couplings. The SM-QCD corrections proportional to αs lnmb are absorbed by using
the running bottom-quark mass. The SUSY corrections proportional to tan β and
parameterized via ∆mb are resummed to all orders of perturbation theory. We have
shown that after subtracting the ∆mb effects the remaining NLO SUSY corrections
are still sizable. Another care relating to the neutral Higgs mixing propagator was
addressed. In the complex MSSM, the h,H and A neutral Higgs bosons in general
mix and form three mass eigenstates (h1,2,3) with both CP-even and odd properties.
We have resummed these mixing effects in the propagators and shown that they
have a large impact on the production rates and CP asymmetry.

Numerical results have been presented for the CPX scenario. It is shown that
the production rate and the CP asymmetry depend strongly on tan β, MH± and the
phases φt and of the gaugino mass M3. Large production rates prefer small tan β,
small MH± and the phases φt, φ3 about ±π. Large CP asymmetries occur at small
tan β, for MH± of about 250GeV, and φt ≈ ±π/2 and φ3 = 0.

We have also studied the dependence of the results on the renormalization and
factorization scales. For the bb̄ subprocess, the NLO corrections reduce significantly
the scale dependence while the gg fusion suffers from large scale uncertainty mainly
due to the running αs(µR). This makes the final results, in particular the CP
asymmetry, depend significantly on the scales. A two-loop calculation would be
needed to reduce this uncertainty to the level of a few percents.

Third, we have studied the NLO EW corrections to H− production via gg →
H−tb̄ where the bottom quark is considered to be tagged with transverse momentum
and pseudo rapidity cuts applied on the bottom quark. Although we have subtracted
the large tan β enhanced corrections, the remaining NLO EW contributions are still
sizable, as in the case of pp→W±H∓.

We have shown the dependence of the NLO EW corrections on tan β, MH± and
φt. Especially, the dependence on φt is rather strong. The correction can go from
positive to negative values if φt is varied between −π and π.

We have also studied the differential distributions of the final state particles at
φt = π/2. We have shown that the NLO EW corrections do not change the shape
of those distributions and are negative.
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In summary, the higher order effects are important for the charged Higgs boson
productions and decays, in particular for the complex SUSY parameters. The com-
plex phase effects enter cross sections and decay widths via one-loop contributions
and induce a considerable CP violating asymmetry. For the searches of charged
Higgs bosons at the LHC, those corrections should be taken into account when
doing analysis. For experimental purpose, a consistent combination of the decay
modes and production processes should be done and implemented in a Monte Carlo
generator. This is a subject of our future studies.





Appendix A

Notations and conventions

A.1 Metric conventions and Dirac matrices

We use the following conventions through this thesis, if not otherwise specified. The
covariant and contravariant four-vector position and momentum of a particle are

xµ = (t, ~x), pµ = (E, ~p),

xµ = (t,−~x), pµ = (E,−~p). (A.1)

The indices can be lowered and raised by using the spacetime metric tensor

xµ = ηµνx
ν , xµ = ηµνxν , (A.2)

with

ηµν = ηµν = diag(1,−1,−1,−1). (A.3)

The covariant and contravariant derivatives are

∂µ ≡ ∂

∂xµ
= (

∂

∂t
, ~∇), ∂µ ≡ ∂

∂xµ
= (

∂

∂t
,−~∇). (A.4)

The Dirac matrices γµ are defined so that they satisfy the anticommutation relations

{γµ, γν} ≡ γµγν + γµγµ = 2ηµν . (A.5)

In four dimensional space, the chirality matrix is

γ5 = iγ0γ1γ2γ3 ≡ − i

4!
ǫµνρσγµγνγργσ, (A.6)

where the Levi-Civita tensor is totally antisymmetric and ǫ0123 = −ǫ0123 = +1. The
left- and right-handed projection operators are

PL =
1− γ5

2
, PR =

1 + γ5

2
. (A.7)
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There are several representations of the Dirac matrices. Here we use the Weyl or
chiral basis in which the 4× 4 matrices are given in 2× 2 blocks,

γµ =

(
0 σµ
σ̄µ 0

)
, γ5 =

(
−1 0
0 1

)
, (A.8)

where

σµ = (σ0, σ1, σ2, σ3), σ̄µ = (σ0,−σ1,−σ2,−σ3). (A.9)

σ0 is unit matrix and σi (i=1,2,3) are the three Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.10)

The followings are some useful identities of Dirac matrices in d dimensional space:

γµγµ = d, (A.11)

γµγνγµ = (2− d)γν , (A.12)

γµγνγσγµ = dηνσ, (A.13)

γµγνγργσγµ = (2− d)γσγργν , (A.14)

Tr (γµ) = 0, (A.15)

Tr (γµγν) = dηµν , (A.16)

Tr (γµγνγργσ) = d (ηµνηρσ − ηµρηνσ + ηµσηνρ) , (A.17)

Tr
(
γ5
)
= Tr

(
γµγ5

)
= Tr

(
γµγνγ5

)
= 0, (A.18)

Tr
(
γµγνγργσγ5

)
= −4iǫµνρσ. (A.19)

(A.20)

A.2 Representations of Lorentz group: Weyl, Dirac

and Majorana spinors

The Lorentz group is composed of the boosts in three directions and the rotations
about three axes. Three boost generators Ki and three rotation generators Ji (i=1,
2, 3) obey the following commutation relations,

[Ki, Kj ] = −iǫijkJk,
[Ji, Kj ] = iǫijkKk,

[Ji, Jj ] = iǫijkJk. (A.21)

We define the generators

Ai =
1

2
(Ji + iKi), Bi =

1

2
(Ji − iKi), (A.22)
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which sastify

[Ai, Aj] = iǫijkAk,

[Ai, Bj] = 0,

[Bi, Bj] = iǫijkBk. (A.23)

Those six generators generate two separate groups of SU(2) Lie algebra. Therefore,
a representation of the Lorentz group can be labeled by two half-integer indices
(j, j′).

Weyl spinors are complex two component objects belong to irreducible represen-
tations (1/2, 0) and (0, 1/2) of the Lorentz group. The left-handed spinor ξ is the
(0, 1/2) representation while the right-handed χ is the (1/2, 0) representation. They
transform under the Lorentz group as

ξ → exp

(
iωiσi + θiσi

2

)
ξ ≡Mξ,

χ → exp

(
iωiσi − θiσi

2

)
χ ≡ Nχ. (A.24)

Two irreducible representations are inequivalent. The two matrices are related by

M = ǫN∗ǫ−1, ǫ = iσ2 ≡
(

0 1
−1 0

)
. (A.25)

Using a property of Pauli matrices

σ2σ
∗
i σ2 = −σi, (A.26)

one can easily show that σ2ξ
∗ transforms like χ and vice versa. To indicate two

different Weyl spinors, one can introduce undotted and dotted indices for the left-
and right-handed spinors, respectively. Those indices are lowered and raised by
using the ǫ tensor

ξα = ǫαβξ
β, ξα = ǫαβξβ, (A.27)

χα̇ = ǫα̇β̇χ
β̇ , χα̇ = ǫα̇β̇χβ̇, (A.28)

where the antisymmetric tensor takes the convention ǫ12 = ǫ12 = ǫ1̇2̇ = ǫ1̇2̇ =
+1. It can be proved that the following quantities are invariant under Lorentz
transformation

ξη ≡ ξαη
α = ξαǫ

αβηβ, χζ ≡ χα̇ζα̇ = χα̇ǫ
α̇β̇ζβ̇. (A.29)

Dirac spinor is composed of two types of Weyl spinor,

ψ =

(
ξα
χα̇

)
, (A.30)
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hence it contains four complex components. In other words, it is a (1/2, 0)⊕ (0, 1/2)
representation which transform under Lorentz group as

ψ →
(

exp
(
iωiσi+θiσi

2

)
0

0 exp
(
iωiσi−θiσi

2

)
)
ψ. (A.31)

The adjoint spinor of ψ is defined as

ψ̄ = ψ†γ0. (A.32)

From Dirac spinors, one can construct the following quantities with specific property
under Lorentz transformations,

ψ̄ψ : scalar,

ψ̄γ5ψ : pseudo scalar,

ψ̄γµψ : vertor,

ψ̄γµγ5ψ : axial vertor,

ψ̄(γµγν − γνγµ)ψ : antisymmetric tensor.

(A.33)

Majorana spinor is defined as

ψ ≡
(
ξα
ξ̄α̇

)
=

(
ξ

iσ2ξ
∗

)
. (A.34)

Majorana spinors are used to represent neutral fermions while Dirac spinors are for
charged fermions.

A.3 Grassmann numbers

Grassmann numbers are numbers that satisfy the anticommutation relation,

{θi, θj} = 0. (A.35)

In superspace one needs two Weyl spinors θα and θ̄α̇ (α, α̇ = 1, 2) which their com-
ponents are Grassmann numbers. Owing to the fermionic property of Grassmann
numbers, a function of θ has a finite Taylor series,

Φ(x, θ) = φ(x) + θψ(x) + θ2F (x), (A.36)

where θ2 = ǫαβθαθβ.

Derivatives of Grassmann variables are defined by

∂αθ
β ≡ ∂

∂θα
= +δβα, ∂αθβ ≡ ∂

∂θα
= −δαβ . (A.37)

The integrals over Grassmann variables satisfy the following properties.
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• Linearity ∫
dθ(af(θ) + bg(θ)) = a

∫
dθf(θ) + b

∫
dθg(θ), (A.38)

where a, b are ordinary numbers.

• Integration by parts ∫
∂

∂θ
f(θ)dθ = 0. (A.39)

• Shift invariance ∫
dθf(θ + η) =

∫
dθf(θ). (A.40)

From the above properties, one can write down some specific rules:

∫
dθ = 0, (A.41)

∫
dθ θ = 1, (A.42)

dθ θ = −θ dθ, (A.43)∫
dθ =

∂

∂θ
, (A.44)

δ(θ) = θ, δ(θ) is Dirac delta function. (A.45)

The followings are some useful formulae for the two-component Grassmann variable
θ:

∂αθ
2 = 2θα, (∂∂)θ2 = −4, (A.46)∫

dθdθ θ2 = −4. (A.47)





Appendix B

Dipole subtraction functions

In this appendix we present explicitly the functions needed for the dipole subtraction
method which are applied for the processes pp → W±H∓, pp → H−tb̄. The mass
of initial state quarks are considered as regulators. For detailed derivation and
momentum mapping we refer to [126]. We have four different cases.

• Initial-state emitter (a) and initial-initial state spectator (b): the auxiliary
function is defined as

gsub
ab (pa, pb, q) =

1

(paq)xab

(
2

1− xab
− 1− xab

)
, (B.1)

where xab = (papb − pak − pbk)/(papb). The distribution function is given by

Gab(x) = Pff (x)

[
ln

(
s

m2
a

)
− 1

]
+ 1− x, (B.2)

and the endpoint function reads

Gab(s) = ln
m2

a

s
ln
λ2

s
+ ln

λ2

s
− 1

2
ln2 m

2
a

s
+

1

2
ln
m2

a

s
− π2

3
+ 2. (B.3)

• Initial-state emitter (a) and final-state spectator (i) and vice versa: the aux-
iliary functions are defined by

gsub
ai (pa, pi, q) =

1

(paq)xia

[
2

2− xia − zia
− 1− xia

]
, (B.4)

gsub
ia (pi, pa, q) =

1

(piq)xia

[
2

2− xia − zia
− 1− zia −

m2
i

piq

]
, (B.5)

where

xia =
papi + paq − piq

papi + paq
, zia =

papi
papi + paq

. (B.6)
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The distribution functions are given by

Gia(x) =
1

1− x

{
2 ln

2− x− z1(x)

1− x
(B.7)

+
1

2
[z1(x)− 1]

[
3 + z1(x)−

4m2
ix

(P 2
ia −m2

i )(1− x)

]}
,

Gai(x) = Pff (x)

{
ln
m2

i − P 2
ia

m2
ax

+ ln[1− z1(x)]− 1

}

− 2

1 − x
ln[2− x− z1(x)] + (1 + x)[ln(1− x) + 1], (B.8)

where

z1(x) =
m2

ix

m2
i − P 2

ia(1− x)
, Pia = pi − pa − q. (B.9)

The endpoint functions reads

Gia = ln
m2

i

λ2
ln

(
2− P 2

ia

m2
i

)
+ 2 ln

λmi

m2
i − P 2

ia

− 2Li2
P 2
ia

P 2
ia − 2m2

i

(B.10)

+
1

2
ln2

(
2− P 2

ia

m2
i

)
+

(P 2
ia −m2

i )
2

2P 4
ia

ln

(
1− P 2

ia

m2
i

)
− π2

6
+

3

2
+

m2
i

2P 2
ia

,

Gia = ln
λ2

m2
a

ln
m2

a(2m
2
i − P 2

ia)

(m2
i − P 2

ia)
2

+ ln
λ2

m2
a

+ 2Li2
P 2
ia

2m2
i − P 2

ia

−2Li2
m2

i

2m2
i − P 2

ia

+ 2 ln
m2

am
2
i

(m2
i − P 2

ia)(2m
2
i − P 2

ia)
ln

2m2
i − P 2

ia

m2
i − P 2

ia

+
1

2
ln2 m2

a

2m2
i − P 2

ia

+
3

2
ln

m2
a

m2
i − P 2

ia

+
m2

i (m
2
i − 4P 2

ia)

2P 4
ia

ln

(
1− P 2

ia

m2
i

)

+
π2

3
− 1 +

m2
i

2P 2
ia

. (B.11)

• Final-state emitter (i) and final-state spectator (j): the auxiliary function
reads

gsub
ij =

1

piqRij(yij)

[
2

1− zij(1− yij)
− 1− zij −

m2
i

piq

]
, (B.12)

where

yij =
piq

pipj + piq + pjq
, zij =

pipj
pipj + pjpk

,

Pij = pi + pj + q, P̄ 2
ij = P 2

ij −m2
i −m2

j ,

λij = λ(P 2
ij, m

2
i , m

2
j), Rij(y) =

√
(2m2

j + P̄ 2
ij − P̄ 2

ijy)
2 − 4P 2

ijm
2
j√

λij
(B.13)

and
λ(x, y, z) = x2 + y2 + z2 − xy − yz − xz. (B.14)
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The endpoint function is given by

Gij = ln

(
λ2a23
m2

i

)
− 2 ln(1− a23) +

a23
2

+
3

2
+

P̄ 2
ij√
λij

[
λa1 ln

λ2m2
j

λija2

+2Li2(a1) + 4Li2

(
−
√
a2
a1

)
− 4Li2(−

√
a1a2) +

1

2
ln2 a1 −

π2

3

]
.

(B.15)





Appendix C

Counterterms and renormalization
constants

In this section, we list the Feynman rules and counterterms for vertices and propa-
gators which appear in our calculation. They can be expressed in terms of coupling
and field renormalization constants (RC) which relate the bare and renormalized
quantities. The RCs are defined as in Ref. [101] for the SM-like fields and as in
Ref. [23] for the Higgs sector. The following one-loop Feynman rules use the stan-
dard convention and notation of FeynArts [175]. In the vertices all momenta are
considered as incoming. We introduce the shorthand notation sα = sinα, cα = cosα,
tα = tanα, sβ = sin β, cβ = cos β, tβ = tanβ.

Fermion-Fermion-Scalar:

F1

F2

S
= ie(C−PL + C+PR)

b̄bh0 :





C− = sαmb

2cβMW sW

(
1 + δZe +

δmb

mb
+ s2βδ tan β − δM2

W

2M2
W

− δsW
sW

+ 1
2
δZhh − 1

2tα
δZHh +

1
2
δZb,L + 1

2
δZ∗

b,R

)

C+ = sαmb

2cβMW sW

(
1 + δZe +

δmb

mb
+ s2βδ tan β − δM2

W

2M2
W

− δsW
sW

+ 1
2
δZhh − 1

2tα
δZHh +

1
2
δZ∗

b,L + 1
2
δZb,R

)

b̄bH0 :





C− = − cαmb

2cβMW sW

(
1 + δZe +

δmb

mb
+ s2βδ tanβ − δM2

W

2M2
W

− δsW
sW

+ 1
2
δZHH − 1

2
tαδZhH + 1

2
δZb,L + 1

2
δZ∗

b,R

)

C+ = − cαmb

2cβMW sW

(
1 + δZe +

δmb

mb
+ s2βδ tanβ − δM2

W

2M2
W

− δsW
sW

+ 1
2
δZHH − 1

2
tαδZhH + 1

2
δZ∗

b,L + 1
2
δZb,R

)
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b̄bA0 :





C− = −i tβ mb

2MW sW

(
1 + δZe +

δmb

mb
+ s2βδ tanβ − δM2

W

2M2
W

− δsW
sW

+ 1
2
δZAA − 1

2tβ
δZG0A + 1

2
δZb,L + 1

2
δZ∗

b,R

)

C+ = i
tβmb

2MW sW

(
1 + δZe +

δmb

mb
+ s2βδ tan β − δM2

W

2M2
W

− δsW
sW

+1
2
δZAA − 1

2tβ
δZG0A + 1

2
δZ∗

b,L + 1
2
δZb,R

)

d̄juiH
− :





C− =
sβ√

2cβsWMW

{
V ∗
ijδmd + V ∗

ijmd(1 + δZe − δsW
sW

+ s2βδ tanβ

− δM2
W

2M2
W

+ 1
2
δZH−H+ − 1

2
δZG−H+/tβ)

+md

2

[
2δV ∗

ij +
∑

k(V
∗
ikδZ

d∗
kj,R + V ∗

kjδZ
u
ki,L)

]}

C+ =
cβ√

2sβsWMW

{
V ∗
ijδmu + V ∗

ijmu(1 + δZe − δsW
sW

− c2βδ tanβ

− δM2
W

2M2
W

+ 1
2
δZH−H+ + 1

2
δZG−H+tβ)

+mu

2

[
2δV ∗

ij +
∑

k(V
∗
ikδZ

d∗
kj,L + V ∗

kjδZ
u
ki,R)

]}

ūidjH
+ :





C− =
cβ√

2sβsWMW

{
Vijδmu + Vijmu(1 + δZe − δsW

sW
− c2βδ tanβ

− δM2
W

2M2
W

+ 1
2
δZH−H+ + 1

2
δZG−H+tβ)

+mu

2

[
2δVij +

∑
k(VikδZ

d
kj,L + VkjδZ

u∗
ki,R)

]}

C+ =
sβ√

2cβsWMW

{
Vijδmd + Vijmd(1 + δZe − δsW

sW
+ s2βδ tanβ

− δM2
W

2M2
W

+ 1
2
δZH−H+ − 1

2
δZG−H+/tβ)

+md

2

[
2δVij +

∑
k(VikδZ

d
kj,R + VkjδZ

u∗
ki,L)

]}

(C.1)

Fermion-Fermion-Vector:

F1

F2

Wµ

= ieγµC
−PL

d̄juiW
− : C− = − 1√

2sW

[
V ∗
ij(1 + δZe −

δsW
sW

+
1

2
δZW ) + δV ∗

ij

+
1

2

∑

k

(V ∗
kjδZ

u
ki,L + V ∗

ikδZ
d∗
kj,L)

]
(C.2)

ūidjW
+ : C− = − 1√

2sW

[
Vij(1 + δZe −

δsW
sW

+
1

2
δZW ) + δVij

+
1

2

∑

k

(VkjδZ
u∗
ki,L + VikδZ

d
kj,L)

]
,

Quark-Quark-gluon:
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qa

qb
gcµ

= −igsT c
abγµ(C

−PL + C+PR)

qq̄g : C− = 1 + δgs + δZg + δZq,L,

C+ = 1 + +δgs + δZg + δZq,R.

Scalar-Scalar-Vector:

S1, p1

S2, p2

Wµ

= ieC(p1 − p2)
µ

hH−W+ : C = −cos(β − α)

2sW

[
1 + δZe −

δsW
sW

+
1

2
δZWW +

1

2
δZhh

+
1

2
δZH+H− − sin(β − α)

2 cos(β − α)

(
δZHh − δZG−H+)

]

hH+W− : C =
cos(β − α)

2sW

[
1 + δZe −

δsW
sW

+
1

2
δZWW +

1

2
δZhh

+
1

2
δZH+H− − sin(β − α)

2 cos(β − α)

(
δZHh − δZG−H+)

]

HH−W+ : C =
sin(β − α)

2sW

[
1 + δZe −

δsW
sW

+
1

2
δZWW +

1

2
δZHH

+
1

2
δZH+H− − cos(β − α)

2 sin(β − α)

(
δZhH + δZG−H+)

]

HH+W− : C = −sin(β − α)

2sW

[
1 + δZe −

δsW
sW

+
1

2
δZWW +

1

2
δZHH

+
1

2
δZH+H− − cos(β − α)

2 sin(β − α)

(
δZhH + δZG−H+)

]

AH±W∓ : C = − i

2sW

[
1 + δZe −

δsW
sW

+
1

2
δZWW +

1

2
δZAA +

1

2
δZH+H−

]

G0H±W∓ : C = − i

4sW
(δZAG + δZG−H+)

Vector-Vector-Scalar:

V1,µ

V2,ν

H
= iegµνC
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The vertices VW∓H± with V = γ, Z do not appear at tree level. The countert-
erms are generated at one-loop level, however.

γW±H∓ : C =
MW

2
(δZG−H+ + sin 2βδ tan β),

ZW±H∓ : C = −MW sW
2cW

(δZG−H+ + sin 2βδ tan β).

One needs also counterterms for the renormalized propagators. The complete
set of counterterms for the scalar-scalar case can be found in Ref. [23]. We list here
extra pieces needed in our calculation.

Scalar-Vector:

A0, p Zµ
= −MZ

2
(δZAG + sin 2βδ tan β)pµ

H−, p W+
µ

= − iMW

2
(δZG−H+ + sin 2βδ tan β)pµ



Appendix D

Explicit calculation of ∆mb

In this Appendix we calculate the one-loop contributions to ∆mb given in Eq. (5.41).
They consist of SUSY-QCD and SUSY-EW contributions. For the internal squarks
we use the mass eigenstates. For the internal neutralinos and charginos we use
gauginos masses and Higgsino mixing parameter. All the external momenta are
set to zero. These contributions are UV and infrared finite so we can work in 4
dimensional space.

The SUSY QCD contributions

bR bL

b̃i b̃j

H0∗
22

g̃

−iδλ
SQCD
b b̄PLb < H0

22 >

−iδλ̃SQCD
b b̄PLb〈H0

2 〉 =
4

3
b̄(igs

√
2

√
M∗

3

mg̃

U∗
b̃
(j, 2)PL)(img̃)(−igs

√
2

√
M∗

3

mg̃

Ub̃(i, 1)PL)

×(−ihb̃ij)b
∫

d4q

(2π)4
i

q2 −M2
b̃i

i

q2 −M2
b̃j

1

q2 −m2
g̃

(D.1)

= −4

3

2ig2s
16π2

M∗
3h

b̃
ijU

∗
b̃
(j, 2)Ub̃(i, 1)C0(M

2
b̃i
,M2

b̃j
, m2

g̃)b̄PLb

where

mbXbb̃
∗
Rb̃L +mbX

∗
b b̃

∗
Lb̃R = hb̃ij b̃

∗
j b̃i,

b̃∗R = Ub̃(i, 2)b̃
∗
i , b̃L = U∗

b̃
(i, 1)b̃i, (D.2)

then

hb̃ij = mbXbUb̃(j, 2)U
∗
b̃
(i, 1) +mbX

∗
bUb̃(j, 1)U

∗
b̃
(i, 2). (D.3)
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Substituting (D.3) into (D.2), one gets

δλ̃SQCD
b

v2√
2

=
2

3

αs
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M∗

3mb(XbUb̃(j, 2)U
∗
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×U∗
b̃
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2
b̃i
,M2

b̃j
, m2

g̃).

(D.4)

Using the following relations

Ub̃(1, 1) = Ub̃(2, 2) = cb̃, Ub̃(1, 2) = −U∗
b̃
(2, 1) = sb̃, (D.5)

then we have
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b c
2
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b̃1
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=
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3
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×
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b c
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b̃2
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g̃). (D.6)

Using the tree-level relations

cb̃ = cos θb̃, sb̃ = e−iϕXb sin θb̃
ϕXb = argX∗

b

cb̃sb̃ =
mbX

∗
b

M2
b̃1
−M2

b̃2

, (D.7)

then we get
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∫
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+
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The first term is much smaller than the second term, hence we neglect it. The
second term we keep only term proportional to tan β, thus

δλ̃SQCD
b

v2√
2
= −2αs

3π
mbµ

∗M∗
3 tβC0(M

2
b̃1
,M2

b̃2
, m2

g̃). (D.9)

The Higgsino contributions
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−
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−
1
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√
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where
ht̃ij = mtXtUt̃(j, 2)U

∗
t̃ (i, 1) +mtX

∗
t Ut̃(j, 1)U

∗
t̃ (i, 2). (D.11)

One can simplify as

δλ̃H̃t̃
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16π2
mbλ

2
tµ

∗tβUt̃(i, 2)U
∗
t̃ (j, 1)(XtUt̃(j, 2)U

∗
t̃ (i, 1)

+X∗
t Ut̃(j, 1)U

∗
t̃ (i, 2))C0(M

2
t̃i
,M2

t̃j
, |µ|2). (D.12)

Expressing it in terms of st̃ and ct̃, one gets
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Keep only the leading term, one gets
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The wino contributions
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Simplify the above expression, one gets
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The bino contributions
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Simplifying the above expression, one gets

δλ̃B̃b hbv2 =
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Keeping only the leading terms, then the bino contributions read

δλ̃B̃b v2 =
α

72πc2W
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[
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]
. (D.19)

Using the relation of three-point scalar function with zero-external momentum and
the auxiliary function,

C0(a, b, c) = −I(a, b, c), (a 6= b 6= c), (D.20)

and

δλ̃bv2 = mb∆mbtβ, (D.21)

one can get the expressions in Eq. (5.41).





Appendix E

Two-body decay widths of charged
Higgs bosons

In this section we present the decay widths at tree level for all possible channels
listed in Section 6.1. We use g = 1, 2, 3 for generation index, i, j = 1, 2 for sfermion
index, c = 1, 2 for chargino index and n = 1, 2, 3, 4 for neutralino index.

ΓH−→ūg1dg2 =
6αλ1/2(M2

H± , m2
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, m2

dg2
)
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2
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3
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where

λ(x, y, x) =x2 + y2 + z2 − 2xy − 2yz − 2xz, (E.8)
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ũg1
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[(
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Wn1c1
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1√
2
(Un(n1, 2) + tWUn(n1, 1))Vc(c1, 1)

+Un(n1, 4)Vc(c1, 1)

]
, (E.12)

and for the other notations we refer to Subsection 3.5.3.



Appendix F

Input parameters

F.1 The SM parameters

The SM input parameters are taken from [187].

α−1(0) = 137.0359895, α(MZ) = 1/128.926, αs(MZ) = 0.1197,

MZ = 91.1876GeV, MW = 80.398GeV me = 0.51099891MeV,

mµ = 105.658367MeV, mτ = 1.777GeV, mu = 66MeV,

mc = 1.2GeV, mt = 173.1GeV, md = 66MeV,

ms = 150MeV, mb(mb) = 4.2GeV, mOS
b = 4.3GeV. (F.1)

For the mass of the light quarks, they are chosen to be consistent with the exper-
imental data of hadronic contribution to the photonic vacuum polarization [188].
The top mass is taken from the recent measurements [189]. mb(mb) is the QCD-MS
b-quark mass, while the top-quark mass is understood as the pole mass.

F.2 The soft SUSY-breaking parameters

F.2.1 The modified mmax
h scenario

The soft parameters are

µ = 200GeV,M2 = 200GeV, M3 = 0.8MSUSY, |Aτ | = |At| = |Ab| = 800GeV,

MQ̃ =MD̃ =MŨ =MSUSY = 500GeV, ML̃ = 200GeV, MẼ = 150GeV. (F.2)

The values of µ and M3 are chosen as in the mmax
h scenario to maximize the lightest

neutral Higgs mass [190]. M1 and M2 are connected via the GUT relation |M1| =
5/3 tan2 θW |M2|.
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F.2.2 The CPX senario:

The CPX scenario is chosen to maximize the CP-violating effects due to the large
value of the product Im (µAt)/M

2
SUSY [191]. According to [192], we use the following

set of (on-shell) parameters

µ = 2000GeV,MSUSY = 500GeV, |Af | = 900GeV,

M3 = 1000GeV,M2 = 200GeV,M1 = 5/3 tan2 θWM2.
(F.3)
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