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Variational multiscale large eddy simulation of
turbulent flow in a planar asymmetric diffuser

By V. Gravemeier†

1. Motivation and objectives

Two important aspects characterize variational multiscale large eddy simulation (LES).
Firstly, a variational projection separates scale ranges within the variational multiscale
LES, rather than a spatial filter as in traditional LES. Secondly, the (direct) influence
of the subgrid-scale model, which is introduced to represent the effect of the unresolved
scales on the resolved scales, is confined to the small resolved scales. Thus, the larger
scales are solved as a direct numerical simulation (DNS), that is, without any (direct)
influence of the modeling term. Of course, the large resolved scales are still indirectly
influenced by the subgrid-scale model due to the inherent coupling of all scales. The initial
publication on the variational multiscale LES by Hughes et al. (2000) and a recent review
article by Gravemeier (2005b) provide a detailed description of this phenomenon. Various
test cases have been studied to investigate the performance of the variational multiscale
method in practical applications, and generally good results have been reported. However,
most of these studies have been within simpler configurations. A brief overview of the
flow problems addressed so far, along with the respectively applied numerical methods
and the respective approach for separating the scale groups, can be found in Gravemeier
(2005b).

In the present study, the variational multiscale LES is applied to turbulent flow in a
planar asymmetric diffuser. The Reynolds number of the investigated flow is about 10,000,
based on the half-width of the inlet channel and the streamwise bulk mean velocity.
Several features of turbulent flow in a diffuser indicate its higher complexity. These
include most notably:
• A large unsteady separation bubble that is due to an adverse pressure gradient and

that emerges about halfway down the lower deflected wall. The flow reattaches within
the outlet channel.
• A sudden change in the streamwise pressure gradient from slightly favorable to

strongly adverse at the diffuser throat and a subsequent gradual decrease to weakly
adverse.
• A slowly growing internal layer that emerges at the upper flat wall in the relaxation

zone downstream of the sharp variation in the streamwise pressure gradient, according
to the recent numerical study in Wu et al. (2006).

Experimental studies of turbulent flow in a planar asymmetric diffuser have been pre-
sented in Buice & Eaton (1997) and in Obi et al. (1993). A DNS of the flow at this
Reynolds number in the present diffuser configuration is still prohibitively expensive.
Large eddy simulations have been conducted by Kaltenbach et al. (1999) and recently
by Wu et al. (2006). The diffuser problem was also a test case at a workshop in 1999;
see Hellsten & Rautaheimo (1999). The selection was due in part to the difficulty of
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accurately predicting the point of separation and the extent of the recirculation region.
These observations also suggest that the diffuser configuration would be a challenging
test case for evaluating the variational multiscale LES in the present study. A detailed
version of the present study can be found in Gravemeier (2005c).

The predecessor of the present work is the study in Gravemeier (2005a). In that study,
a class of scale-separating operators based on multigrid operators was proposed and an-
alyzed. The scale-separating operators were consistently used for both the extraction
of the small scales, to which the subgrid-scale model is applied, and any scale separa-
tion necessary for a dynamic modeling procedure. All scale-separating operators were
implemented in the CDP-α code, the flagship LES code of the Center for Turbulence
Research; see, for example, Ham et al. (2003) for some features of this code. Underlying
this code is a second-order energy-conserving finite volume method particularly suited
for applications on unstructured colocated grids. A comparison of two representatives
of the proposed class of multigrid scale-separating operators with discrete smooth filters
revealed its superiority, both in terms of quality of results and required computational
effort. This superiority was particularly significant for one of these two scale-separating
operators. This particular operator was shown to provide a projective scale separation
in Gravemeier (2005a), and it is essentially the same operator as the one proposed in
Koobus & Farhat (2004).

2. Variational finite volume formulation

A weighted residual formulation of the Navier-Stokes equations is given as follows: find
{u, p} ∈ Sup, such that

BNS (v, q; u, p) = (v, f)Ω ∀{v, q} ∈ Vup, (2.1)

where v and q denote the weighting functions. Sup and Vup represent the combined
formulation of the solution and weighting function spaces for velocity and pressure: Sup :=
Su × Sp and Vup := Vu × Vp. The form BNS (v, q; u, p) on the left hand side of (2.1),
which is linear on the first slot (i.e. v, q) and non-linear on the second slot (i.e. u, p), is
defined as

BNS (v, q; u, p) =

(
v,
∂u

∂t

)

Ω

+ (v,∇ · (u⊗ u))Ω + (v,∇p)Ω − (v,∇ · (2νε (u)))Ω

+ (q,∇ · u)Ω . (2.2)

The domain Ω is now discretized into n control volumes Ωi (i = 1, ..., n), with control
volume boundaries Γi. The weighting functions are chosen to be

vh =
∑

i

vhi , qh =
∑

i

qhi , (2.3)

where

vhi = 1, qhi = 1 in Ωi (2.4)

and zero elsewhere. In (2.4), 1 explicitly means that each component of vhi is of unit value.
The characteristic control volume length of the discretization is h. With these definitions
at hand, the weighted residual equation (2.1) may be reformulated as a variational finite
volume equation for each vhi and qhi : find {uh, ph} ∈ Shup, such that

BFV
NS

(
vhi , q

h
i ; uh, ph

)
=
(
vhi , f

)
Ω

∀{vhi , qhi } ∈ Vhup. (2.5)
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The semi-linear form BFV
NS

(
vhi , q

h
i ; uh, ph

)
on the left hand side of (2.5) is obtained from

(2.2) after applying Gauss’ theorem to the convective term, to the pressure term, to the
viscous term, and to the continuity term as

BFV
NS

(
vhi , q

h
i ; uh, ph

)
=

(
vhi ,

∂uh

∂t

)

Ω

+
(
vhi ,

(
uh ⊗ uh

)
· n
)

Γi
+
(
vhi , p

hn
)

Γi

−
(
vhi , ν

(
∇uh

)
· n
)

Γi
+
(
qhi ,u

h · n
)

Γi
. (2.6)

In (2.6), n indicates the respective outward normal vector of unit length to Γi, where Γi
denotes the boundary of the support of vhi and qhi , respectively.

The characteristic length scale h chosen in large eddy simulations is usually consider-
ably larger than the smallest length scale of the problem under investigation. In no way
can all scales of the problem be resolved. Therefore, the subgrid viscosity approach, a
standard way of taking into account the (dissipative) effect of unresolved scales in the
traditional LES, is applied. According to this, a subgrid viscosity term is added to (2.5),
resulting in

BFV
NS

(
vhi , q

h
i ; uh, ph

)
−
(
vhi , νT

(
∇uh

)
· n
)

Γi
=
(
vhi , f

)
Ω
, (2.7)

where νT denotes the subgrid viscosity. Note that the subgrid viscosity term is added to all
resolved scales of the problem in (2.7). Note also that the reason for introducing a model
term in this context is mathematically different from the usual necessity of introducing a
model term due to the appearance of a subfilter-scale or a subgrid-scale stress tensor in
the strong formulation of the Navier-Stokes equations in a traditional LES. Nevertheless,
the physical necessity of accounting for the missing effect of unresolved scales on the
resolved scales is the same in both the traditional and the variational multiscale LES.

3. Separation of scales and multiscale formulation

The resolved velocity vector uh is separated into a large-scale part and a small-scale
part subject to

uh = (u + u′)
h
. (3.1)

With respect to this complete resolution level, a large-scale resolution level is identified
a priori. This level is characterized by the control volume length h, where h > h and

accordingly yields a large-scale velocity uh. The small-scale velocity is consistently defined
on the complete resolution level, characterized by the length h, as

u′h = uh − uh, (3.2)

where uh denotes the large-scale value transfered to this level. The scale separation
used in the present study relies on multigrid operators. At the outset of the numerical
simulation, two grids are created: a coarser grid, which is called the “parent” grid, and
a finer grid, which is called the “child” grid. The child grid is obtained by an isotropic
hierarchical subdivision of the parent grid. In the simulations of the present study, a
subdivision by a factor of two in each spatial direction is exclusively applied. For more
details concerning the implementation, refer to Gravemeier (2005a).

The general class of scale-separating operators based on multigrid operators is formu-
lated as

uh = Sm
[
uh
]

= P ◦R
[
uh
]

= P
[
uh
]
, (3.3)

where the multigrid scale-separating operator Sm consists of the sequential application of
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a restriction operator R and a prolongation operator P . Applying the restriction operator

on uh yields a large-scale velocity uh defined at the degrees of freedom of the parent grid,
which is then prolongated, in order to obtain a large-scale velocity uh defined at the
degrees of freedom of the child grid. Various restriction as well as prolongation operators
may be used in (3.3). Two special combinations of restriction and prolongation operators
were analyzed in Gravemeier (2005a) and were compared to discrete smooth filters, which
are widely used in traditional LES. It was shown that these two multigrid scale-separating
operators represent computationally efficient methods for separating the resolved scales
of the problem in comparison with discrete smooth filters. Both multigrid scale-separating
operators rely on the same restriction operator but apply different prolongation operators
afterwards.

The restriction operator is defined as a volume-weighted average over all child control
volumes within one parent control volume subject to

uhj =

ncop∑
i=1

|Ωi|uhi
ncop∑
i=1

|Ωi|
, (3.4)

where uhj denotes the large-scale velocity at the center of the parent control volume

Ωj , and ncop denotes the number of child control volumes in Ωj . The first prolongation
operator P p yields a constant prolongation, which is given as

uhi = P p
[
uhj

]
i

= uhj ∀ Ωi ⊂ Ωj (3.5)

and zero elsewhere. It was shown in Gravemeier (2005a) that the scale-separating oper-
ator defined as

Spm := P p ◦R (3.6)

has the property of a projector, which is indicated by the additional superscript “p”. The
projector (3.6) is the same operator used in Koobus & Farhat (2004), although in that
study it was not derived from the general formulation (3.3) and was therefore not split
into a restriction and prolongation operator.

The second prolongation operator considered in the present study yields a linear pro-
longation subject to

uhi = P s
[
uhj

]
i

= uhj +
(
∇huhj

)
· (ri − rj) ∀ Ωi ⊂ Ωj (3.7)

and zero elsewhere. The vectors ri and rj denote geometrical vectors pointing to the
centers of the child control volume Ωi and of the parent control volume Ωj , respectively.

The operator ∇h describes the discrete gradient operator on the parent grid. Due to this,
values from neighboring parent control volumes and, consequently, from child control
volumes contained in these neighboring parent control volumes influence the final large-
scale value in the child control volume Ωi. The prolongation P s does not provide us with
a projective scale-separating operation. Rather, it produces a smoothing prolongation,
which is, at least, smoother than the prolongation produced by P p. Thus, it is indicated
by the additional superscript “s”, and the complete scale-separating operator is defined
as

Ssm := P s ◦R. (3.8)
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For the actual scale separation within a variational finite volume formulation, a large-
scale velocity weighting function given as

vh =
∑

i

vhi , (3.9)

where

vhi = 1 in Ωi (3.10)

and zero elsewhere, is introduced analogous to the large-scale velocity solution function.
Ωi denotes the i-th control volume of the discretization with the characteristic control
volume length h. The separation of the weighting functions enables a decomposition of
the variational equation (2.5) into a large- and a small-scale equation. The coupled system
of large- and small-scale equations, which results from an initial three-scale separation,
may be found, for instance, in Gravemeier (2005b). For the particular scale separation
used in the present work, these two equations may eventually be reunified to one final
equation; see Gravemeier (2005b). In this final equation, the scale separation based on
Sm remains perceptible only with respect to the subgrid viscosity term. Based on the
variational finite volume formulation (2.7), the following problem statement for each vhi ,

qhi , and vhi , where the child grid control volume Ωi is contained in the parent grid control
volume Ωi, is obtained: find {uh, ph} ∈ Shup, such that

BFV
NS

(
vhi , q

h
i ; uh, ph

)
−
(
v′hi , ν

′
T

(
∇u′h

)
· n
)

Γ′
i

= BFV
NS

(
vhi , q

h
i ; uh, ph

)
−
(
vhi , ν

′
T

(
∇
(
uh − uh

))
· n
)

Γi
+
(
vhi , ν

′
T

(
∇
(
uh − uh

))
· n
)

Γi

= BFV
NS

(
vhi , q

h
i ; uh, ph

)

−
(
vhi , ν

′
T

((
∇uh

)
· n−

(
∇uh

)
· n
))

Γi
+
(
vhi , ν

′
T

((
∇uh

)
· n−

(
∇uh

)
· n
))

Γi

=
(
vhi , f

)
Ω
, (3.11)

where v′h denotes the small-scale part of the velocity weighting function and ν ′T the sub-
grid viscosity depending on the small resolved scales, to be defined below. The boundary
Γi is split up into a large-scale boundary Γi and accordingly, a small-scale boundary
subject to

Γ′i = Γi − Γi. (3.12)

For one of the scale-separating operators (i.e., Spm), a further simplification of (3.11)
is possible. A crucial difference between Spm and Ssm consists of the fact that there is
no large-scale (subgrid) viscous flux for Spm across the small-scale boundary subject to
(3.12). As a result, (3.11) may be specified for Spm as

BFV
NS

(
vhi , q

h
i ; uh, ph

)
−
(
v′hi , ν

′
T

(
∇uh

)
· n
)

Γ′
i

=
(
vhi , f

)
Ω
, (3.13)

since it is guaranteed by the definition of Spm that
(
∇uh

)
·n = 0 and, hence,

(
∇uh

)
·n =(

∇u′h
)
· n on Γ′i. The validity of (3.13) for Spm in the finite volume method provides

substantial computational savings in contrast to Ssm. All calls of the scale-separating
computational subroutine during the actual solution procedure (e.g. at the beginning
of each solver iteration step for determining the updated large-scale velocity field for
the residual calculation) are not required for Spm. Note that in both (3.11) and (3.13)
the subgrid viscosity term directly acts only on the small resolved scales, in contrast to
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(2.7). The indirect influence on the large resolved scales, however, is ensured due to the
inherent coupling of the large and small resolved scales.

4. Subgrid-scale modeling

Two different versions of the Smagorinsky model are used for the calculation of the
subgrid viscosity νT and ν′T, respectively. The subgrid viscosity νT is given as

νT = (CSh)
2 ∣∣ε

(
uh
)∣∣ , (4.1)

where ε denotes the rate-of-deformation tensor and depends on the complete resolved
velocity uh, and CS denotes the Smagorinsky model constant. In the case of ν ′T, the
dependence is restricted to the small-scale part of the velocity as

νT = (CSh)2 ∣∣ε
(
u′h
)∣∣ = (CSh)2 ∣∣ε

(
uh − uh

)∣∣ . (4.2)

The actual evaluation of (4.1) or (4.2) is performed in every child control volume Ωi

so that a value νT,i or ν′T,i, respectively, in every child control volume is obtained. The
characteristic length scale of the child control volume Ωi is assumed to be the cube root
of the respective measure, that is,

hi = |Ωi|
1
3 . (4.3)

The choice of the constant CS in the case of turbulent flow in a diffuser is not an easy
one, since there appears to be a complete lack of available data for this case. For the
channel flow simulations in Gravemeier (2005a), the constant was chosen to be 0.1. This
choice is maintained for the simulations of the inflow channel to the diffuser. For the actual
diffuser, a value of CS = 0.18 is applied. It represents the value obtained in Lilly’s analysis
(see, for example, Lilly (1967)), thereby balancing turbulent kinetic energy production
and dissipation, but it has mainly been applied for homogeneous isotropic turbulence.
However, this choice is supported by a simple comparison of values observed during
dynamic calculations in the inflow channel and in the diffuser. Considering a volume-
averaged value of CS over the respective domain, values of approximately 0.15 and 0.25
are obtained in the inflow channel and in the diffuser, respectively (a ratio of about 0.6).
Setting 0.1 in this ratio, a constant CS ≈ 0.17 can be calculated for the diffuser based on
this rough approximation, which is close to the chosen value 0.18.

In order to actually calculate CS as a model parameter, the dynamic modeling proce-
dure is applied as proposed in Germano et al. (1991), which enables a computation of CS

as a function of time and position. The procedure was adapted in Gravemeier (2005a)
to the particular scale separation used in the present work, where it is discussed in fuller
detail. In order to account for potential numerical problems related to negative values of
CS, a special clipping proposed in Mahesh et al. (2002) is performed.

5. Numerical results

The diffuser geometry, which basically matches the experimental configuration in Buice
& Eaton (1997) and in Obi et al. (1993), as well as the numerical setup in Kaltenbach et
al. (1999) and in Wu et al. (2006), is shown in Fig. 1 in the x1-x2-plane. The inlet plane
is located at x1 = −5, followed by an inlet channel of length 5δc, where the inlet channel
half-width δc is set to be of unit length. The latter inlet channel half-width δc matches
that of the preceding inflow channel. The asymmetric diffuser of length 42δc opens with
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Figure 1. Diffuser geometry in x1-x2-plane

an angle of 10◦. This corresponds to an expansion ratio of hin/hout = 4.7. It is followed
by an outlet channel of height 9.4δc and length of approximately 58δc, which locates the
outlet plane at about x1 = 100. The outlet channel length matches the one in Wu et
al. (2006) and is considerably longer than the one in Kaltenbach et al. (1999). Due to
the relatively long distance between the last point of measurement and the outlet plane,
any significant upstream influence of the outlet plane is minimized. Nevertheless, the
recovery into a canonical channel flow will not be reached even within this longer outlet
channel. See Buice & Eaton (1997) and Kaltenbach et al. (1999). Both the upstream
corner at x1 = 0 and the downstream corner at x1 = 42 are rounded with a radius of
r = 19.4, where the curvature centers are located as shown in Fig. 1. The length of the
domain in x3-direction (i.e. orthogonal to the depiction in Fig. 1) is chosen to be 8δc,
which matches the spanwise length in Wu et al. (2006) and represents the largest value
for the spanwise length investigated in Kaltenbach et al. (1999). The inflow channel,
in which the inflow velocity uin (t) (i.e. the unsteady Dirichlet boundary condition at
the inflow boundary Γin) is generated, matches the inlet channel in its dimensions in
x2- and x3-direction. According to Wu et al. (2006), an inflow channel length of 12δc

is chosen. No-slip boundary conditions are assumed at the upper and lower walls Γw of
the diffuser, a convective boundary condition is prescribed at the outflow boundary Γout,
and periodic boundary conditions are assumed on the boundaries Γper in x3-direction
(i.e. this periodicity is assumed orthogonal to the depiction in Fig. 1).

The diffuser, including inlet and outlet channel, is discretized using 290, 64, and 80
control volumes in x1-, x2-, and x3-direction, respectively. The respective parent grid
contains 145, 32, and 40 control volumes in x1-, x2-, and x3-direction, respectively. The
control volumes are uniformly distributed in the spanwise direction. In the wall-normal
direction, a cosine function for refinement towards the walls for the parent grid is used,
with the isotropic hierarchical subdivision procedure subsequently applied. In the stream-
wise direction, the following control volume distribution is employed: in the inlet channel,
h1 decreases linearly from 0.15 to 0.05 in the asymmetric diffuser section, h1 increases
linearly from 0.05 to 0.475, in the first section of the outlet channel (ranging from x1 = 42
to x1 = 74.5), h1 increases linearly from 0.475 to 0.825, and in the remaining section of
the outlet channel, the control volumes are uniformly distributed with h1 = 0.825. Com-
paring the discretization of the diffuser to the finer discretization in Wu et al. (2006),
which employed 590, 100, and 110 control volumes in x1-, x2-, and x3-direction, it is
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stated that less than 23% of the total number of control volumes are used in the present
case. The time step δt is fixed to be 0.002, starting from a zero velocity field as the initial
condition for the velocity. More details concerning the numerical setup can be found in
Gravemeier (2005c). All numerical simulations are conducted using the CDP-α code; see,
for example, Ham et al. (2003) for details of the code.

As in Gravemeier (2005a), three different methods are investigated:

i) The dynamic Smagorinsky (DS) model in a non-multiscale application subject to
(2.7), with the subgrid viscosity subject to (4.1)

ii) The constant-coefficient-based Smagorinsky model within the multiscale environ-
ment (CMS) subject to (3.11) or (3.13), respectively, with the subgrid viscosity subject
to (4.2)

iii) The dynamic Smagorinsky model within the multiscale environment (DMS) subject
to (3.11) or (3.13), respectively, with the subgrid viscosity subject to (4.2).

All of these methods are analyzed for the scale-separating operator Spm. In the follow-
ing diagrams, the abbreviation DMS-PM, for instance, indicates the variational multiscale
LES incorporating a dynamic Smagorinsky model, with the scale-separating operator
Spm applied. The scale-separating operator Ssm is only investigated for CMS, since this
method revealed the most notable differences between the scale-separating operators for
the test case in Gravemeier (2005a). Results are also reported for simulations using no
model at all (NM), which represents a coarse (i.e., not sufficiently resolved) DNS. Based
on evaluations in Gravemeier (2005a), the characteristic length scale ratio for the DS-
and DMS-simulations using Spm is set to 2.5. The Wu-LES, to which the results are
compared, applies the same dynamic Smagorinsky model in a traditional non-multiscale
LES (i.e. DS), including the same special clipping according to Mahesh et al. (2002).
However, the differences in the DS method used in the present study refer to, on the
one hand, the fact that the Wu-LES used traditional discrete smooth filters instead of
the multigrid scale-separating operators for dynamic modeling. On the other hand, the
discretization, both in terms of the number of control volumes and in the generation of
the grid, is different, as outlined above.

Evaluating the necessary computational effort provides the following numbers. Setting
the computational effort for NM to 1.0, the relative measures for CMS-PM, CMS-SM,
DS-PM and DMS-PM are approximately 1.08, 1.34, 1.27, and 1.32, respectively. These
numbers are even more impressively in favor of CMS-PM than the ones for the channel
in Gravemeier (2005a). Thus, it is confirmed that CMS in combination with PM is
a very computationally efficient method. In the present case, it is substantially more
efficient than, for instance, DS. Using the scale-separating operator SM, the numbers
increase drastically for CMS. Less effort is required for PM than for SM because of
the opportunity to use (3.13) in preference to (3.11), which obviates the execution of a
potential scale-separating operation at the beginning of each iteration within the SOR
solver, as mentioned in section 3.

Figure 2 depicts the results for the skin friction coefficient along the upper wall of the
diffuser. It is apparent that all methods tend to under-predict Cf compared to the results
from the Wu-LES and from the Buice-experiment. The worst results are produced by
CMS-SM. The profile for NM is closest to the ones from the Wu-LES and the Buice-
experiment immediately behind the diffuser throat, but it gets worse in its prediction
further downstream. DS-PM yields a fairly good prediction throughout the diffuser, and
DMS-PM produces worse results than DS-PM. The prediction produced by CMS-PM is
the best overall. It is the only method yielding results that almost match the experimental
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Figure 2. Skin friction coefficient (factor 1000) along the upper wall of the diffuser

results in the section of the diffuser between x1 ≈ 18 and x1 ≈ 46 at the upper wall. In this
part of the diffuser, which is approximately the region in which the flow is separated, as
will be seen below, CMS-PM appears to produce even better results than the more finely
discretized Wu-LES. Furthermore, it seems to be the only one of the present methods that
would have been able to predict the first point from the Buice-experiment at x1 ≈ −10,
if the inlet channel had been elongated.

In Figs. 3-6, the profiles for the mean streamwise velocity at four locations along the
diffuser are displayed. Behind the entry to the asymmetric diffuser section, all methods
predict a velocity profile that is in qualitative agreement with the ones from the Wu-LES
and the Obi-experiment, although all of them under-predict the maximum velocity (see
Fig. 3). The best prediction is produced by CMS-PM, followed by DS-PM, DMS-PM,
CMS-SM, and NM in descending order of their quality of approximation. CMS-PM even
appears to under-predict the experimental data by approximately the same amount as
the Wu-LES over-predicts it. The second location depicted in Fig. 4 is slightly more than
halfway down the diffuser, and the flow separation, which should be expected at x1 ≈ 16
according to the Buice-experiment, has already taken place. By observing Fig. 4 as well
as Figs. 5-6, it is apparent that CMS-SM is inadequate, since it is the only method that
fails to predict the flow separation. The best approximation of the results from the Obi-
experiment in Fig. 4 is provided by CMS-PM and the second best by DS-PM, as both
are even closer to the experimental data than is the Wu-LES towards the lower wall.
Compared to the experimental data, the Wu-LES does not predict the separation point
as accurately as does CMS-PM and DS-PM. At the next location further downstream
depicted in Fig. 5, CMS-PM almost matches the experimental data in the lower part
of the diffuser, predicting the reversed flow very accurately. In the outlet channel, this
very good approximation cannot be completely maintained (see Fig. 6). DMS-PM is less
accurate at all three locations shown in Figs. 4-6. Aside from CMS-SM, NM produces
the worst prediction, with the exception of Fig. 5 (i.e. close to the end of the asymmetric
diffuser section), where it is at least slightly better than DMS-PM. However, the most
obvious failure of NM is its clear overestimation of the recirculating velocity in the outlet
channel. Thus, it does not provide a reasonable approximation of the flow separation as
well as of the reattachment point, which should be expected at x1 ≈ 52, according to the
Buice-experiment.
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Figure 3. Mean streamwise velocity at x1 = 6.4
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Figure 4. Mean streamwise velocity at x1 = 22.4
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Figure 5. Mean streamwise velocity at x1 = 38.4

6. Conclusions

Variational multiscale large eddy simulation has been applied to turbulent flow in
a diffuser. Turbulent flow in a diffuser represents a challenging test case, in particu-
lar due to the appearance of flow separation, which is caused by an adverse pressure
gradient, and subsequent reattachment. Two different scale-separating operators based
on multigrid operators, which are applicable within both a finite element and a finite
volume method, have been used for separating large resolved scales and small resolved
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Figure 6. Mean streamwise velocity at x1 = 58.4

scales. Dynamic as well as constant-coefficient-based subgrid-scale modeling has been
employed within the variational multiscale LES. All approaches have been implemented
in a second-order energy-conserving finite volume method particularly suited for appli-
cations on hybrid unstructured grids in complex geometries. The results obtained by the
various approaches have been compared to results from a recent non-multiscale LES with
dynamic subgrid-scale modeling performed on an approximately 5 times finer grid and
experimental results.

The results have led to the following conclusions. For results not shown in this Brief,
see Gravemeier (2005c).
• The constant-coefficient-based variational multiscale LES using the projective scale-

separating operator (CMS-PM) produces the most accurate results for the wall static
pressure coefficient and for the skin friction coefficient along the diffuser, as well as for the
mean velocity in streamwise direction and the root-mean-square velocity in wall-normal
direction. Within the flow separation region, CMS-PM provides even better predictions
of the skin friction coefficient and the mean streamwise velocity than does a traditional
LES on a considerably finer grid.
• CMS-PM and non-multiscale LES with dynamic subgrid-scale modeling (DS-PM)

yield the most accurate results for the root-mean-square velocity in streamwise direction,
both being of similar accuracy overall for these values.
• The constant-coefficient-based variational multiscale LES using the smoothing, non-

projective scale-separating operator (CMS-SM) fails to predict the flow separation and
reattachment at the lower wall. As a result, this scale-separating operator should be
disqualified from further use.
• The variational multiscale LES with dynamic subgrid-scale modeling using the pro-

jective scale-separating operator (DMS-PM) produces worse predictions than does DS-
PM for almost all investigated values.
• Computationally, CMS-PM is by far the most efficient of all approaches considered

in the present study. In particular, it reduces the computing time by about 18% compared
to DS-PM. This is an even larger reduction compared to the channel flow simulations in
Gravemeier (2005a), where the computing time was reduced by about 5%.
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