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Sand 13, D-72076 Tübingen, Fed. Rep. of Germany

Peter Rossmanith

Institut für Informatik, Technische Universität München,

Arcisstr. 21, D-80290 München, Fed. Rep. of Germany



Abstract

A fixed-parameter-tractable algorithm, or FPT algo-
rithm for short, gets an instance (I, k) as its input and
has to decide whether (I, k) ∈ L for some parameter-
ized problem L. Many parameterized algorithms work in
two stages: reduction to a problem kernel and bounded
search tree. Their time complexity is then of the form
O(p(|I|) + q(k)ξk), where q(k) is the size of the problem
kernel. We show how to modify these algorithms to ob-
tain time complexity O(p(|I|)+ξk), if q(k) is polynomial.
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1 Introduction

A parameterized problem usually consists of two components—
the input and aspects of the input that constitute a parameter.
For example, the NP -complete Vertex Cover problem has
an undirected graph G as its input and a positive integer k
as its parameter; the question is whether there is a set of at
most k vertices that cover all edges in G. The central question
of parameterized complexity theory [4] is as follows: Given a
parameterized problem L with input size n and parameter k,
is there an algorithm solving L in time f(k)nα, where α is a
constant independent of k and n and f is an arbitrary function
depending only on k. A problem with such an algorithm is called
fixed parameter tractable and the corresponding complexity class
of problems is called FPT . Vertex Cover is in FPT [1, 3, 4],
the currently best known FPT algorithm running in time faster
than O(kn + 1.3kk2) [2, 9, 10].

There is, however, a problem concerning the definition of
FPT— the function f may grow arbitrarily fast. Thus, there
are currently only a few parameterized problems known that
have an (exponential) function f that grows as “slowly” as in
the case of Vertex Cover. The development of efficient FPT

algorithms hence is an active field of research [4, ?, 7]. To the
authors’ best knowledge, at least the majority of efficient FPT

algorithms known so far (e.g., [1, ?, 5, 8, 9]) are based on com-
bination of two standard methods: bounded search trees and
reductions to problem kernel [4]. Here, we show how to sig-
nificantly improve all FPT algorithms based on the combina-
tion of these two techniques. Hence, we contribute to the pos-
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itive toolkit for designing FPT algorithms, which according to
Downey and Fellows [4, page 20] belongs to the current research
horizons in parameterized complexity: “The positive toolkit for
designing FPT algorithms contains several key methods that
are very deep and general—but for which practicality is still
not yet clearly established.” In the following, we provide a sim-
ple, practical, and generally applicable method to speed up FPT

algorithms.
The basic idea of improvement is in a sense to interleave

reduction to problem kernel and bounded search tree method.
More specifically, assume that we have an FPT algorithm run-
ning in time O(p(n) + q(k)ξk), where ξ is a (small) constant
and p and q are polynomials. Moreover, ξk shall be the size
of the bounded search tree and q(k) the size of the problem
kernel. Then our new technique shows how to get rid of the
factor q(k), thus transforming the above algorithm into a time
O(p(n) + ξk) one. It is important here to note that this im-
provement is not due to asymptotic tricks, but that q(k) can
be replaced by a small constant. We shall just swiftly men-
tion that our technique leads to a significant improvement of
the so-called klam values (cf. [4, pages 13–14]) for many prob-
lems. For example, consider Vertex Cover again. The first
nontrivial parameterized algorithm for this problem had run-
ning time O(kn+1.32472kk2) [1], recently further developed to
O(kn+ 1.29175kk2) and recently even further [2, 10]. Compare
the growth of the two functions 1.32472kk2 and 1.29175kk2. For
instance, for k = 100 the first one is bounded by 1.64×1016 and
the second by 1.32×1015, hence where k = 100, it improves by a
factor of roughly 12. By way of contrast, the improvement from
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1.29175kk2 to 1.29175k is a factor of about 10000. In this con-
text, observe that the second improvement involves, due to our
technique, a small constant factor, which, however, is by mag-
nitudes smaller than 10000. Summarized, this shows that for
practical parameter sizes (k ≈ 100 is very natural in the case of
Vertex Cover and many other parameterized problems) our
improvement has a potentially much higher benefit than small
(but in no way trivial) improvements in the exponential base ξ
of the search tree size may have.

2 FPT algorithms

Many FPT algorithms work in two stages [4]: Firstly, the in-
stance is transformed into an equivalent one that is smaller in
size. To be specific, its size is bounded by a function that de-
pends on the parameter only. This stage is called reduction

to problem kernel. Secondly, the new small instance is solved
recursively by solving several derived instances with smaller pa-

rameters. Since the parameters in the recursive calls are smaller,
the recursion eventually terminates (either by finding a solution
or by realizing that no solution exists because of k ≤ 0). That
stage is called bounded search tree.

In the following we describe each stage in more detail and
introduce all necessary notation that is needed to improve the
algorithm. We also illustrate each concept within the example of
Vertex Cover. The instance of Vertex Cover is an undi-
rected graph and a parameter k. The question the algorithm
must answer is whether or not a vertex cover of size at most k
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exists. (A vertex cover is a subset of vertices C such that every
edge in the graph is incident to at least one vertex in C.)

2.1 Reduction to problem kernel

Let L be a parameterized problem, i.e., L consists of pairs (I, k),
where I has a solution of size k. In the case of Vertex Cover

L consists of all (G, k), where G is an undirected graph that has
a vertex cover of size k. Reduction to problem kernel consists
of replacing the original instance (I, k) with a new one (I ′, k′)
so that k′ ≤ k, |I ′| ≤ q(k′), and (I, k) ∈ L ⇔ (I ′, k′) ∈ L. What
is particularly important is that the size of the new instance
is bounded by a function of the parameter alone. We call this
function q. In general, q might be arbitrary, but in this paper we
restrict q to being polynomial as is usually the case for efficient
FPT algorithms.1

In the case of Vertex Cover, reduction to problem kernel
is carried out as follows: If the degree of some vertex is bigger
than k then delete this vertex from the graph and decrease k
by 1. This leads to an equivalent instance as this vertex has to
part of every vertex cover of size k (otherwise all its incident
edges would have to be covered by other vertices, which is not
possible since there are too many of them). If no vertex with
such a high degree remains, the number of vertices of the graph
can be at most k(k + 1), if there is a vertex cover of size k:
The vertex cover itself contains k vertices and all other vertices

1In general, k′ ≤ k is not necessary. All results also hold if k′ is bounded

by some polynomial in k.
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must be adjacent to one of them. Since each member of the
vertex cover has at most k neighbors there can be at most k2

additional vertices. To finish the reduction to problem kernel
it needs merely be observed as to whether there are more than
k(k + 1) vertices and, if yes, replace the instance with some
small instance that has no solution.2 In that way, we replaced
the original instance (G, k) with (G′, k′). In particular q(k) =
k(k + 1).

Let R denote the function that performs the reduction to
problem kernel, i.e., R(I, k) = (I ′, k′) and let P (|I |) be the
number of steps required to perform the reduction. We de-
mand P be bounded by some polynomial. For Vertex Cover

P (|G|) = O(|G|) if the graph is represented by an adjacency list.

2.2 Bounded search trees

Let (I ′, k′) be an instance after reduction to problem kernel.
Many algorithms solve the problem by constructing a search
tree that looks exhaustively for solutions. In order to gain effi-
ciency, branches will be pruned. Pruning of branches is subject
chiefly to two conditions: Either we can be sure that the branch
contains no solution or, if there are two branches A and B we
can prune B if we can be sure that a solution in B implies a
solution in A of the same size at most. The main objective to
find ever more efficient FPT algorithms involved decreasing the
size of the search tree. In the following we analyze first the size

2This is only done for technical reasons here. The algorithm could al-

ready stop, since in this case it is clear that no vertex cover of size at most k

exists.
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of the tree as well, but then take a look at the time taken for
processing the tree. The next section building on this analysis
improves the overall time to traverse the search tree, but not its
size, which will not be affected at all.

In general, let (I, k) be a node of the search tree. To solve
(I, k), it is replaced by several instances (I1, k − d1), (I2, k −
d2), . . . , (Im, k − dm) so that di > 0 and |Ii| ≤ |I | for all i ∈
{1, . . . ,m} and (I, k) ∈ L iff (Ii, k − di) ∈ L for some i ∈
{1, . . . ,m}. The leaves consist commonly of those instances with
k ≤ 0. Since all di > 0, the children’s parameters are strictly
smaller and the tree has a finite size. An upper bound on the
size of the tree is easy to obtain by solving the corresponding
recurrence for the number of leaves:

Sk = Sk−d1
+ Sk−d2

+ · · · + Sk−dm
.

The solution has the general form Sk = Θ(p(k)ξk), where 1/ξ
is the smallest positive, real root of the reflected characteristic
polynomial

1 − zd1 − zd2 − · · · − zdm

and p(k) is a polynomial [6]. If ξ is a unique root, as is almost
always the case, p is simply a constant and therefore Sk = Θ(ξk).
In the following we assume that ξ is a unique root. If that were
not the case, then p is not a constant, but some polynomial of
degree > 0. In that case ξk should be replaced by p(k)ξk in the
next section.

Finally, let R(|I |) be the time needed to compute (I1, k −
d1), (I2, k− d2), . . . , (Im, k− dm) from (I, k). Again we demand
that R(|I |) be bounded polynomially.
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For Vertex Cover several complicated methods for the
construction of small bounded search trees exist. We present a
comparatively simple one, which yields a relatively big search
tree: Let (G, k) be an instance of Vertex Cover. Pick any
one edge {x, y}. Each vertex cover has to contain at least one of
x and y in order to cover {x, y}. So let (G1, k−1) and (G2, k−1)
be the children of (G, k) in the search tree, where we get G1 by
deleting x and all its incident edges from G and G2 analogously
by deleting y. The size of the search tree is at most 2k , i.e.,
ξ = 2 and R(|G|) = O(|G|) if G is represented by an adjacency
list [3].

The overall time complexity for the second stage bounded

search tree is O(R(q(k))ξk). For Vertex Cover we thus get
O(k22k).

3 Accelerating FPT algorithms

In the following, we will deal with a large class of fixed-parameter-
tractable algorithms. Let us summarize the conditions that
these algorithms have to undergo: They have to be FPT algo-
rithms that work in two stages, reduction to problem kernel and
bounded search tree. Reduction to problem kernel takes P (|I |)
steps and results in an instance of size at most q(k), where both
P and q are polynomially bounded. The expansion of a node in
the search tree takes R(|I |) steps, which must also be bounded
by some polynomial, the search tree size being O(ξk). The over-
all time complexity of the algorithm is then

O(P (|I |) + R(q(k))ξk),
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where (I, k) is the instance to be solved. In the following we
show how to modify the second stage of the algorithm in order
to improve the time complexity to

O(P (|I |) + ξk).

Generally, we now use the following algorithm to expand a node
(I, k) in the search tree:

if |I | > c · q(k) then replace (I, k) with R(I, k) fi;
replace (I, k) with (I1, k − d1), (I2, k − d2), . . . , (Im, k − dm)

Here c ≥ 1 is a constant that can be chosen with the aim of fur-
ther optimizing the running time. There is a tradeoff in choos-
ing c: The optimal choice depends on the implementation of the
algorithm, but in the end it affects only the constant factor in
the overall time complexity. Therefore we neglect optimizing c
in this paper.

A closer look shows that we in fact seem to increase the time
needed to expand a node in the search tree. This is generally
speaking true: Sometimes we apply reduction to problem kernel
prior to splitting into recursive calls. However, these additional
reductions to problem kernel also decrease the instance size in
the middle of the search tree. Since the time for splitting is
bounded polynomially in the instance size, this also helps to
decrease the time to expand a node. It proves to be the case
that while we waste time near the root of the search tree, we
gain much more time near the leaves. Note that the technique
of interleavin reduction to problem kernel and bounded search
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trees was already used for developing efficient FPT algorithms
for Vertex Cover [?, 10]. There, however, it was used to
reduce the number of case distinctions in the search tree; it was
not considered with the aim of removing the factor R(q(k)) as
we do.

In order to analyze the running time of the above mathe-
matically, we describe the time to expand a node (I, k) and all
its descendants by a recurrence. Let Tk denote an upper bound
on the time to process (I, k). The following recurrence exists
for Tk:

Tk = Tk−d1
+ Tk−d2

+ · · · + Tk−dm
+ O(P (q(k)) + R(q(k)))

The time to expand (I, k) itself is at most O(P (q(k))+R(q(k))),
since |I | = O(q(k)) since |I | > c · q(k) is constantly prevented.
In order to solve this non-homogeneous linear recurrence we
need a special solution. To get its general solution we add the
general solution of the corresponding homogeneous recurrence
Tk = Tk−d1

+ Tk−d2
+ · · · + Tk−dm

. However, we already know
that all solutions of this homogeneous recurrence are bounded by
O(ξk). Consequently we are only required to find a small special
solution of the non-homogeneous recurrence. In our case the
inhomogeneity is a polynomial. Therefore, there exists a special
solution that is also a polynomial in k. It is easy to construct
such a special solution explicitly. There is always a polynomial
solution that has the same degree as the inhomogeneity p. (If r
is a polynomial special solution then r(k)−

∑
m

i=1 r(k−di) = p(k)
and the highest degree monomials on the left side cannot cancel
each other.) All solutions of Tk are therefore bounded by O(ξk).
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In order to illustrate this, let us solve the recurrence for
the simple algorithm that solves Vertex Cover (cf. Subsec-
tion 2.2). The recurrence reads

Tk = 2Tk−1 + C · k2 + D · k + E,

where C, D and E are constants that depend on the implemen-
tation of the algorithm. The initial conditions are simple, say,
T0 = 0. The reflected characteristic polynomial is 1 − 2z and
its unique root is 1/2. The general solution of the homogeneous
recurrence is λ2k for λ ∈ R. Since it is a recurrence of first
order, the dimension of its space of solutions is one, too.

A special solution is Tk = −Ck2−(4C+D)k−(6C+2D+E).
The general solution is then λ2k − Ck2 − (4C + D)k − (6C +
2D + E) and the solution for T0 = 0 is Tk = (6C + 2D + E) ·
2k − Ck2 − (4C + D)k − (6C + 2D + E).

4 The modification is necessary

In this section, we show that an improved analysis alone cannot
achieve the speedup of the last section. That is, the interleav-
ing of reduction to problem kernel and the bounded search tree
really is necessary to get the claimed improvements. Without
modification, the algorithms in general have a running time of
Ω(P (|I |) + R(f(k))ξk). As an example, we can again use Ver-

tex Cover. Look at Figure 1 for a definition of a family of
instances of Vertex Cover defined for odd k. There is no so-
lution of size ≤ k, since the optimal vertex cover has size 5

2k− 3
2

(in the head k − 2 vertices and half the vertices of the tail).
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Figure 1: An instance of Vertex Cover. The following graph
is the k = 15 member of a family of instances (Gk, k) for Ver-

tex Cover. The graph Gk consists of a tree with degree k − 1
and depth 2 to which a path with 3k + 1 vertices is attached
(called the tail). It is easy to see that the smallest vertex cover
for Gk has size 5

2
k − 3

2
and therefore the whole family has no

members in Vertex Cover.
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The graph contains exactly (k − 1)(k − 2) + 1 vertices in the
head and 3k + 1 vertices in the tail (altogether k2 + 4). Re-
duction to problem kernel does not affect this graph since the
degree of every vertex is at most k, although its size is very
near the maximum possible k(k + 1). Now assume that the un-
modified algorithm chooses edges from right to left. This leads
to a search tree of size 2k, the largest possible. While the al-
gorithm examines this graph, it removes nodes and edges, but
the head remains unchanged. Consequently, instances have size
Ω(k2) during each splitting step. The overall time complexity
therefore is the worst possible — Ω(k22k). Of course, a better
time complexity can also be achieved by changing the order of
choosing edges. Nevertheless, the time bound is Θ(k22k) in the
worst case.

After the modification the running time is decreased tremen-
dously. After the second edge is removed and k decreased by
two, the whole head is removed from the graph.

5 Applications: Improving klam val-

ues

To measure the goodness of an FPT algorithm, Downey and Fel-
lows introduced the notion of klam values [4, pages 13–14]: Let
U be some reasonable (depending on technology) speed limit,
say U = 1020. Since it is known that every problem in FPT

is solvable in time f(k) + nc for a constant c, the question is
how big k may be so that f(k) ≤ U remains. This is called the
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Table 1: Comparing klam values for various FPT algorithms
for Vertex Cover.

f(k) klam Reference New f(k) New klam

k22k ≈ 55 [3] 2k ≈ 65

k21.325k ≈ 130 [1] 1.325k ≈ 160

k21.320k ≈ 132 [?] 1.320k ≈ 165

k21.292k ≈ 150 [9] 1.292k ≈ 179

max{k21.256k , k1.291k} ≈ 157 [10] 1.291k ≈ 180

k1.271k ≈ 170 [2] 1.271k ≈ 192

number of klams that the algorithm is worth.
Let us once more consider Vertex Cover. Table 1 lists

some known results for the f(k) function for Vertex Cover,

also showing each of the improvements due to our new tech-
nique. Note that we omit taking constant factors into account,
which would be only slightly increased due to our new technique.
Compared to the asymptotic improvements we obtain, however,
these may be neglected for the sake of ease.

Table 1 shows that, in principle, the improvements due to
our new technique increase according to the size of the problem
kernel. Here, we have kernel sizes of O(k2) and O(k). It also
shows, however, that the improvements concerning the klam
values commonly are significantly larger through our technique
than they are through improved bases of the exponential factors
obtained in a series of papers. Moreover, observe that the very
recent improvement of Stege and Fellows [10] to our previous
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result [9] becomes very small when our technique is applied.
Finally, note that it is fairly easy to give an algorithm run-

ning in time O(nO(1) + k63k) for the Hitting Set for Size

Three Sets problem with applications in computational biol-
ogy [4]. Clearly, it is conceivable that the exponential factor
can be improved to some degree. By means of our new tech-
nique, however, the above result can automatically be improved,
so that O(nO(1) + 3k). Thus, the klam value improves from 24
to 41. This shows the great potential of our new technique espe-
cially for comparatively large problem kernel sizes (here O(k6)).
Downey and Fellows’ monograph [4] contains dozens of further
problems where our technique works out of the box.

6 Conclusion

We introduced a new, simple, and prospective technique for
speeding up FPT algorithms based on reductions to problem
kernel and bounded search trees. As a rule, the potential for
improvement due to our method increases the larger the prob-
lem kernel in the underlying parameterized problem is. For
example, associated candidate problems (see [4] for details) are
k-Leaf Spanning Tree (problem kernel size O(k2)) and Hitting
Set for Size Three Sets (problem kernel size O(k6)). Thus, our
method belongs in the toolkit of every designer of efficient FPT

algorithms.
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1982.

[7] R. Niedermeier. Some prospects for efficent fixed parameter al-
gorithms (invited paper). In B. Rovan, editor, Proceedings of the
25th Conference on Current Trends in Theory and Practice of
Informatics (SOFSEM), number 1521 in Lecture Notes in Com-
puter Science, pages 168–185. Springer-Verlag, 1998.

16



[8] R. Niedermeier and P. Rossmanith. New upper bounds for
MaxSat. Technical Report KAM-DIMATIA Series 98-401, Fac-
ulty of Mathematics and Physics, Charles University, Prague,
July 1998. Extended abstract to appear at 26th Interna-
tional Colloquium on Automata, Languages, and Programming
(ICALP’99), Prague, July 1999.

[9] R. Niedermeier and P. Rossmanith. Upper bounds for Vertex
Cover further improved. In C. Meinel and S. Tison, editors,
Proceedings of the 16th Symposium on Theoretical Aspects of
Computer Science, number 1563 in Lecture Notes in Computer
Science, pages 561–570. Springer-Verlag, 1999.

[10] U. Stege and M. Fellows. An improved fixed-parameter-tractable
algorithm for vertex cover. Technical Report 318, Department
of Computer Science, ETH Zürich, April 1999.
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