
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Exact XML Type Checking in Polynomial Time

Sebastian Maneth, Thomas Perst, Helmut Seidl

ABCDEFGHIJKLMNO
TUM-I0521

Dezember 05

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-12-I0521-100/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2005

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

Exact XML Type Checking in Polynomial Time

Sebastian Maneth
National ICT Australia Ltd.

Sydney, Australia
sebastian.maneth@nicta.com.au

Thomas Perst, Helmut Seidl
Technische Universität München

Garching, Germany
{perst,seidl }@in.tum.de

December 20, 2005

Abstract

Macro tree transducers (mtts) are an expressive formalism for reasoning about
XSLT-like document transformations. Here we are interested in the exact type
checking problem for mtts. While the problem is decidable, the involved tech-
nique of inverse type inference is, however, known to have exponential worst-case
complexity (already for top-down transformations withoutparameters). We pre-
sent new type checking algorithms based on forward type inference through exact
characterizations of output languages. The algorithms show that exact type check-
ing for call-by-value mtts with few parameters can be done inpolynomial time,
given that the output type is specified by a deterministic automaton and that the
mtt visits every input node only constantly often. For general mtts, a fast approx-
imative type checking algorithm is presented. The algorithms in this paper are
based on results about context-free tree and graph grammars. Finally, the new
approach is generalized from mtts to macro forest transducers which additionally
support concatenation as built-in output operation.

1 Introduction

Currently, the extensible markup language XML is the standard format for exchanging
structured data. Its widespread use has initiated lots of work to support processing of
XML on many different levels: customized query languages for XML, such as XQuery
transformation languages like XSLT, and programming language support in the form
of special purpose languages like XDuce, or in the form of binding facilities for main-
stream programming languages like JAXB. A central problem in XML processing is
the (static) type checking problem: given an input and output XML type and a trans-
formationf , can we statically check whether all outputs generated byf on inputs
conforming to the input type conform to the output type? XML types are intrinsi-
cally more complex than the types found in conventional programming languages, and
henceforth the type checking problem for XML poses new challenges on the design of
type checking algorithms. The excellent survey [22] gives an overview of the different
approaches to XML type checking.

In its most general setting, the type checking problem for XML transformations
is undecidable. Hence, general solutions are bound to be approximative; for XSLT,

1

approximative solutions seem to work well for practical transformations [21]. An-
other approach is to restrict the types and transformationsin such a way that the type
checking problem becomes decidable; we then refer to the problem asexact XML type
checking. In the exact setting it is common to use recognizable tree languages as type
formalism. Recognizable tree languages capture the tree structure of all known type
formalisms for XML, and compositions of macro tree transducers (mtts) capture the
tree translation core of the known XML query and transformation languages [7, 20].
Even though the class of translations for which exact type checking is decidable is
surprisingly large, the price to be paid for exactness is also extremely large: the com-
plexity of the known algorithms for compositions of mtts is atower of exponentials
whose height grows with the number of transducers in the composition. In fact, the
design space for exact type checking comes as a huge “exponential wasteland”: even
for simple top-down transformations, exact type checking is exponential-time com-
plete [26].

In previous work [17], we have provided an exact type checking algorithm for the
very powerful transformation language TL by decomposing every such transformation
into at most three mtts — independently of the used match and select patterns. This
work together with the results of [7] (showing that pebble tree transducers can be sim-
ulated by compositions of mtts) have established macro treetransducers as an adequate
model for formally reasoning about XML transformations. For practical considera-
tions, however, one is interested in useful subclasses of transformations for which exact
type checking is tractable. Such classes are investigated by Martens and Neven [18].
Their restrictions on transducers are, however, rather severe. Here we report on an-
other successful escape from exponential wasteland into polynomial time: we show
that exact type checking can be done in polynomial time for a large class of practically
interesting transformations obtained by putting only mildrestrictions onto the trans-
ducers. More precisely, we show that exact type checking canbe solved in polynomial
time for any transformation realized by a macro tree transducer with few parameters
which translate each node of the input tree at most once (“linear” mtts), or more gener-
ally, which translate every node only constantly often (b-bounded copyingmtts). Note
that no restriction is put on the copying that the mtt appliesto its accumulating param-
eters: parameters may freely be copied! Note further, that the above results are for
nondeterministictransducers with call-by-value semantics. Nondeterminism of trans-
ducers is specially important for practical implementations of type checking, because
there it can be used to simulate a conditional (like, e.g., a data value comparison) of the
query or programming language. Our proofs are based on results from tree language
and graph grammar theory. In particular, we use forward typeinference and construct
from the input type and the transducer a context-free tree orgraph grammar, which
generates the output set of the transformation. Since checking intersection emptiness
of such grammars with deterministic tree automata is in PTIME, we obtain the de-
sired result. Besides exact characterizations of output languages of transducers we also
propose a simpler scheme for approximative type checking which is based on an over-
approximation of the output language through context-freetree grammars. Finally, we
extend our approach to transducers which directly operate on forests of unranked trees
and also support concatenation as a built-in output operation.

2

Related Work

Approximative type checking for XML transformations is typically based on (sub-
classes of) recognizable tree languages. Using the patternlanguage XPath [3], XQuery
[1] is a functional language for querying XML documents which is strongly-typed.
Type checking here is performed via forward type inference rules computing approx-
imative types for each expression. Approximative type inference is also used in the
functional transformation language XDuce [15] and its follow-up version CDuce [12];
navigation and deconstruction are based on an extension of the pattern matching mech-
anism of functional languages with regular expression constructs. Recently, Hosoya et
al. proposed a type checking system based on the approximative type inference of [14]
for parametric polymorphism for XML [13]. Type variables are interpreted as markings
indicating the parameterized subparts. In [21] Møller et al. propose a sound type check-
ing algorithm (originally developed for the Java-based language XACT [16]) based on
an XSLT flow analysis that determines the possible outcomes of pattern matching op-
erations; for the benefit of better performance the algorithm deals with regular approx-
imations of possible outputs.

The first technique for exact type checking has been proposedby Milo et al. [20].
There, inverse type inference is proposed for translationswhich can be expressed as
k-pebble tree transducers. Inverse type inference was also studied by Tozawa [30] for
a subset of XSLT which roughly corresponds to top-down forest transducers (without
parameters) [26]. Inverse type inference for a much more expressive transformation
language is considered in [17].

2 Macro Tree Transducers

An XML document can be seen as a sequential representation ofsequences of unranked
trees also called hedges orforests. Here is a small example document representing a
mail file:

<doc>
<mbox>

<mail>
<sender> Homer Simpson </sender>
<address> homer@simpson.com </address>
<subject> CONFIDENTIAL </subject>
<body> ... </body> </mail>

<spam><mail> ...
<subject> V.I.A.G.R.A. </subject>
... </mail></spam>

</mbox>
<trash> ... </trash>

</doc>

In this example, the elementsmbox andtrash are meant to collect the incoming
and deleted mails, respectively. Besides normalmail elements, thembox also contains

3

mail spam mail

mbox trash

doc

mail

doc

mbox e

spam

mail

e

trash

e

Figure 1: An unranked tree and its binary encoding.

mails inside aspam element indicating that these mails have been identified as spam,
e.g., by some automated filter.

The transformation model which we consider first, though, does not operate on
forests directly but on their representations as binary trees. The empty forest then is
represented as a leafe and the content of an element nodea is coded as the left child
of a while the forest of right siblings of the element is represented as the right child.
Figure 1 illustrates the relationship between unranked trees and their representation as
binary trees. In the following we use the term ‘tree’ as a synonym for ranked tree. For
a finite (ranked) alphabetΣ the setTΣ of trees overΣ is defined by:

t ::= b | a(t1, . . . , tk)

whereb, a ∈ Σ are symbols of rank zero and two, respectively; thus, we assume given
a fixed rank mapping for the elements ofΣ. Often, we consider leaf nodes together
with constructor applications by allowingk to equal0. If leaf nodes additionally can
be labeled by elements of a setY = {y1, y2, . . . } of variables, thenTΣ(Y) denotes the
set of trees overΣ andY .

Consider for example a transformation which cleans up the mail folder by moving
all sub-documents marked as spam into the trash, while leaving all mail elements un-
touched. When executed on the example document above, the transformation generates
as output:

<doc>
<mbox>

<mail>
<sender> Homer Simpson </sender>
<address> homer@simpson.com </address>
<subject> CONFIDENTIAL </subject>
<body> ... </body> </mail>

</mbox>
<trash>

<spam><mail> ...
<subject> V.I.A.G.R.A. </subject>
... </mail></spam>
... </trash>

</doc>

4

Using our representation of forests by binary trees (Fig. 1), this transformation is real-
ized by the following macro tree transducer. It has three initial rules transforming the
document root and its direct successors:

1 init(doc(x1, x2)) →doc(mbox(x1), e)

2 mbox(mbox(x1, x2)) →mbox(mail(x1),

trashinit(x2, spam(x1)))

3 trashinit(trash(x1, x2), y1)→trash(trash(x1, y1), e),

a functionmail for collecting all ordinary mails inmbox

4 mail(mail(x1, x2)) →mail(copy(x1), mail(x2))

5 mail(spam(x1, x2)) →mail(x2)

6 mail(e) →e,

a functionspamfor collecting the spam mails inmbox

7 spam(mail(x1, x2)) →spam(x2)

8 spam(spam(x1, x2)) →spam(copy0(x1), spam(x2))

9 spam(e) →e

10 copy0(mail(x1, x2)) →mail(copy(x1), mail(x2))

11 copy0(e) →e,

and finally, a functiontrashfor copying the content oftrash and completing it with the
spam mails frommbox

12 trash(spam(x1, x2), y1) →spam(copy0(x1), trash(x2, y1))

13 trash(mail(x1, x2), y1) →mail(copy(x1), trash(x2, y1))

14 trash(e, y1) →y1

The first line inspects the root node of the document, generates a fresh nodedoc in the
output whose children are determined by the recursive callmbox(x1) which transforms
thembox node of the input document. The second line produces ambox node in the
output and splits the processing into two parts: the call to the functionmail transforms
the content ofmbox, while the call totrashinitconstructs the transformedtrash folder.
Since we want to move all mails marked as spam intotrash we have to pass the content
of mbox to the transformation oftrash (because we cannot go back to a node and visit
its content again).

The functionsmail andspamdefine the complementary transformations of the con-
tent ofmbox. Functionmail returns the list of ordinary mails whilespamreturns the
list of all spam mails. The method is straight-forward: reaching a node with labelmail

(spam for spam) a new node is generated in the output, followed by a copy of its con-
tent and the transformation result of the remainder ofmbox’ content (line 4). Reaching

5

a node labeledspam (mail), it is discarded and only the rest of the list is processed (line
5).

Functiontrashwrites a copy of the content oftrash into the output by means of the
rules in lines 12 and 13. The last rule copies the already produced list of spam mails
from mbox after the last element oftrash, by writing the content of parametery1 into
the output.

Formally, amacro tree transducerM (mtt for short) is a tuple

(Q, Σ, Q0, R)

whereQ is the (ranked) set of function names or states,Σ is the (ranked) alphabet of
input symbols,Q0 ⊆ Q is the set of initial functions, andR is a finite set of rules of
the form

q(a(x1, . . . , xn), y1, . . . , yk) → t,

whereq ∈ Q is of rankk + 1, a ∈ Σ is of rankn, x1, . . . , xn are input variables,
y1, . . . , yk, k ≥ 0 are the accumulating parameters ofq, andt is an expression describ-
ing the output actions of the rule. Possible actions are described by the grammar:

t ::= b(t1, . . . , tm) | yj | q′(xi, t1, . . . , tm),

whereb is a label of an output node (we leave an alphabet∆ of output symbols unspec-
ified because our results do not depend on it),yj is one of the accumulating parameters
(1 ≤ j ≤ k), q′ ∈ Q of rankm, andxi is one of the input variables (1 ≤ i ≤ n). If
we deal with binary encodings of forests, the ranksn of input symbols are either zero
or two. Also, we assume that initial function symbolsq0 ∈ Q0 have no accumulating
parameters. Accordingly, right-hand sides ofq0-rules do not contain parametersyj.

Intuitively, the meaning of the action expressions is as follows: The output can
either be an elementb whose content is recursively determined, the content of one
of the accumulating parametersyj , or a recursive call to some functionq′ on thei-th
subtree of the current input node.

The evaluation of an mtt begins at the root node of the input. Given an input tree
t, an mttM starts processing by evaluating one of its initial functions q0 for the root
node ofs. A function q with actual accumulating parameterst1, . . . , tk is applied to
an input subtreea(s1, . . . , sn) by carrying out the following steps. First, we (nondeter-
ministically) choose one of the rulesq(a(x1, . . . , xn), y1, . . . , yk) → t for q. Then we
substitutesi andtj for the variablesxi andyj in the right-hand sidet.

Since function calls may be nested, the order in which they are evaluated influences
the value of the final output. There are two well-known evaluation orders: outside-in
or inside-out. Inoutside-incall-by-name order (OI), outermost calls are evaluated first.
The parameters of a function call may themselves contain function calls which are thus
transferred to the body in an unevaluated form [9]. The OI order describes the same
translations as if leaving the order completely unrestricted [9]. In this paper, however,
we consider theinside-outevaluation order. This order corresponds to call-by-value
parameter passing as provided by mainstream imperative programming languages like
C or functional languages such as ML or OCaml. The inside-outevaluation strategy
evaluates innermost calls first, meaning that fully evaluated output trees are passed in
accumulating parameters when a function call is evaluated.

6

As in [26], we will not use an operational semantics of mtts based on rewriting,
but prefer a denotational formulation which greatly simplifies proof arguments. In
perspective, the meaning[[a]] of stateq of M with k accumulating parameters is defined
as a function from input trees to sets of trees with parameters inY = {y1, . . . , yk}:

[[q]] : TΣ → 2TΣ(Y)

When, during a computation, we evaluate an innermost callq(s, t1, . . . , tk), it suffices
to substitute actual parameterstj for the formal parametersyj of all terms from[[q]](s)
to obtain the set of produced outputs. The values[[q]] for all q are jointly defined as the
least functions satisfying:

[[q]](a(s1, . . . , sd)) ⊇ [[t]] σ

for every ruleq(a(x1, . . . , xd), y1, . . . , yk) → t of M , where

[[yj]] σ = {yj}
[[b(t1, . . . , tm)]] σ = {b(t′1, . . . , t

′
m) | t′i ∈ [[ti]] σ}

[[q′(xi, t1, . . . , tl)]] σ = {t′[t′1/y1, . . . , t
′
l/yl] |

t′ ∈ [[q′]](σ(xi)), t
′
i ∈ [[ti]] σ},

σ is a substitution withσ(xi) = si for i = 1, . . . , d, andt′j/yj denotes the substitution
of the treet′j for all occurrences of the parameteryj. Note that the call-by-value se-
mantics is reflected in the last equation: the same treest′i are used for all occurrences
of a variableyi in the treet′ corresponding to a potential evaluation of the function
symbolq′. The transformation realized by the mttM on a non-empty input trees, is
the functionτM : TΣ → 2TΣ induced by the initial functions fromQ0 of M

τM (s) =
⋃

{[[q0]](s) | q0 ∈ Q0}

For a given setS ⊆ TΣ we denote byτM (S) the set of all outputs which are produced
by M on input trees inS:

τM (S) =
⋃

{τM (s) | s ∈ S}.

Since we are concerned with techniques for type checking we need to define the
type of the input and output language of a transformation. Usually, types for XML
documents are given by a document type definition (DTD) [31] or a schema [10, 4].

A convenient abstraction of the existing XML type formalisms, in particular DTDs,
are recognizable (or: regular) tree languages [23, 24]. In the context of this work we
use bottom-tree automata to define recognizable tree languages. As usual, abottom-up
finite state tree automaton(fta) is a tupleA = (P, Σ, δ, F) whereP is a finite set of
states,F ⊆ P is a set of accepting states, andδ ⊆ P × Σ × P k is a set of transitions
of the form(p, a, p1 . . . pk) wherea is a symbol of rankk from the alphabetΣ and
p, p1, . . . , pk are states inP . Our finite automata will operate on binary representations
of forests, i.e., there exists a distinguished symbole (representing the empty forest) of
rank0 and all other elements ofΣ have rank2.

7

A transition(p, a, p1 . . . pk) denotes that ifA arrives in statepi after processing the
treeti, then it can assign statep to the treea(t1, . . . , tk). A run ofA on a treet ∈ TΣ is
a mapping which assigns to each nodev of t a stater(v) ∈ P , following the transitions
in δ.

The tree languageL(A) accepted byA consists of the treest ∈ TΣ by whichA
can reach an accepting state, or, equivalently, all trees having runs which map their
roots to an accepting state. Coming back to our example, an fta describing (the binary
representation of) valid mailbox documents before applying the transformation can
have as set of statesP = {pdoc, pmbox, pe, pmail, ptrash, pspam, pcontent, . . .} and set of
transitions:

δ = {(pdoc, doc, pmboxpe), (pmbox, mbox, pspamptrash),
(pspam, mail, pcontentpspam), (pspam, mail, pcontentpe),
(pspam, spam, pmailpspam), (pspam, spam, pmailpe),
(pmail, mail, pcontentpmail), (pmail, mail, pcontentpe),
(ptrash, trash, pspampe), (pe, e), . . . },

wherepcontent is the state characterizing valid content of mails where we have omitted
further states and transitions for checking its validity, e.g., of sender, address, subject

andbody etc. According to this automaton, the elementmbox contains a possibly
empty sequence ofmail andspam elements where everyspam element contains arbi-
trarysequencesof mails.

Convention. In the rest of this paper, we will not mention the input types in our
theorems and proofs. Instead, we always implicitly assume that this type has been
encoded into the mtt. This can be done as follows. Assume thatthe input typeS is
given by a (possibly nondeterministic) finite tree automaton A. From an mttM , we
then build a new mttMA whose function symbols are pairs consisting of a function of
M and an automaton state ofA. E.g., from a rule

q(a(x1, x2), y1) → b(q1(x1, y1), q2(x2, y1))

we obtain the following new rule

〈q, p〉(a(x1, x2), y1) → b(〈q1, p1〉(x1, y1), 〈q2, p2〉(x2, y1))

if (p, a, p1p2) is a transition ofA. Note that the predecessor statepi corresponds to the
input variablexi and therefore occurs in the right-hand side as the second component
in recursive calls onxi. The new set of initial states then is the set of all pairs〈q0, f〉
consisting of an initial state ofM and an accepting state ofA. In particular, the new
mtt MA is of sizeO(|M | · |A|). As usual, thesize|M | of an mttM is the sum of the
sizes of all its rules where the size of a rule is defined as the sum of the sizes of the
terms representing the left- and right-hand sides of the rule. The size|A| of a finite
automatonA is defined analogously.

3 Linear Mtts

In this section we want to prove that type checking is in PTIMEfor mtts that pro-
cess every node of the input tree at most once. Syntactically, this can be guaranteed

8

by requiring that in every right-hand side, each input variable xi occur at most once.
Mtts satisfying this restriction are calledlinear [9]. As an example of linear mtt
consider the mttappwhich evaluatesL@-symbols as concatenation in the binary tree
representation of forests. The set or rules ofapp is:

init(a(x1, x2)) → a(app(x1, e), app(x2, e))
app(e, y1) → y1

app(a(x1, x2), y1) → a(app(x1, e), app(x2, y1))
app(@(x1, x2), y1) → app(x1, app(x2, y1))

The first rule defines the action for the initial function symbol init. The labela should
be considered as a generic representative of any symbol in the document besidese and
@. Since mtts operate on ranked trees, they do not support concatenation as a base op-
eration. We will lift this restriction in Section 5. The mttapp, however, shows that it is
possible to evaluate symbolic occurrences of a concatenation operator@. Applications
of this constructor are evaluated in the last rule: The evaluation of the right child is
stored in the parameter while the left child is recursively traversed until reaching the
leaf symbole.

Note that linearity for an mtt in particular implies that thenumber of function calls
in right-hand sides is bounded by the maximal rank of input symbols (in our case: 2).
Here, we observe for linear mtts that their output languagescan be described by means
of rules where the input arguments of all occurring functionsymbols is simply deleted.
Accordingly, the resulting rules no longer specify a transformation but generate output
trees. A set of rules which we obtain in this way, constitutesa context-free tree gram-
mar (cftg). The grammar characterizing the output language of the linear mttapp, for
example, looks as follows:

init → a(app(e), app(e))
app(y1) → y1 | a(app(e), app(y1)) | app(app(y1))

whereinit, app are nonterminals, andapp has one parameter. Note that selection of
rules depending on input symbols now is replaced with nondeterministic choice de-
noted by “|”.

Context-free tree grammars were invented in the 70s [28]. See [8] for a compre-
hensive study of their basic properties. Formally, a cftgG can be represented by a
tuple(E, Σ, P, E0) whereE is a finite ranked set of function symbols or nonterminals,
E0 ⊆ E is a set of initial symbols of rank 0,Σ is the ranked alphabet of terminal nodes
andP is a set of rules of the formq(y1, . . . , yk) → t whereq ∈ E is a nonterminal
of rankk ≥ 0. The right-hand sidet is a tree built up from variablesy1, . . . , yk by
means of application of nonterminal and terminal symbols. In the example, we have
represented the cftg only by its set of rules. As for mtts, inside-out (IO) and outside-in
(OI) evaluation order for nonterminal symbols must be distinguished [8]. Here, we use
the IO or call-by-value evaluation order. The least fixpointsemantics for the cftgG is
obtained straightforwardly along the lines for mtts — simply by removing the corre-
sponding input components (and the substitutionσ when evaluating right-hand sides).
In particular, this semantics assigns to every nonterminalq of rankk ≥ 0, a set:

[[q]] ⊆ TΣ(Y)

9

for Y = {y1, . . . , yk}. The language generated byG is:

L(G) =
⋃

{[[q0]] | q0 ∈ E0}

Theorem 1 (Corollary 5.7 of [9]) The output language of a linear mttM can be char-
acterized by a cftgGM . The cftgGM can be constructed fromM in linear time.

Proof. Given a linear mttM = (Q, Σ, Q0, R) we constructGM = (E, Σ, P, E0)
whereE = Q andE0 = Q0. The new nonterminals differ, however, from the function
symbols inM in that the input argument has been canceled. Thus, the symbol q now
has rankk iff the function symbolq of M hask accumulating parameters. For every
rule

q(a(x1, . . . , xn), y1, . . . , yk) → t,

of the mtt, there is precisely one production inP :

q(y1, . . . , yk) → t′,

where the new right-hand sidet′ is obtained by replacing every callq′(xi, . . .) in t by
q′(. . .). A formal proof thatGM indeed characterizes the output language ofM can be
found, e.g., in [9]. ⋄

The characterization of mtt output languages by cftgs is useful because (1) empti-
ness for (IO-)cftgs is decidable in linear time (using a similar algorithm as the one for
ordinary context-free (word) grammars, see, e.g.,[5]), and (2) cftgs are closed under
intersection with recognizable tree languages [8].

While for the specification of input types, we allowednondeterministicfinite tree
automata, our further constructions require the output type to be specified by adeter-
ministicautomaton. As usual, we call a ftaA = (P, Σ, δ, F) deterministic(dfta) if for
each symbola ∈ Σ of rankk ≥ 0 and every tuplep1 . . . pk of states, there is exactly
one statep with (p, a, p1 . . . pk) ∈ δ, i.e.,δ is a functionδ : Σ × P k → P . In theory,
deterministic ftas can be exponentially larger than nondeterministic ones. In practise,
however, they are usually not much larger than a corresponding nondeterministic one.

In our example, the output type could, e.g., indicate that after transformation, the
elementmbox should contain only a list ofmail elements. For this purpose, we can use
a deterministic bottom-up tree automaton with set of states

{pe, ptrash, pdoc, pmail, pspam, pmbox, pcontent, pfail , . . .},

where statepcontent codes that a mail has a correct content. The leafe is accepted by
the statepe. For all other symbols, we only list the transitions not resulting in the error
statepfail . The statepdoc is obtained for a node labeleddoc with left child mbox and
right child e:

e

pe

doc pe

pmbox pdoc

10

Each table representsδ for the label given in its upper left corner. States in the first
row are possible states for the right child, and accordinglystates in the first column are
possible states for the left child. Formbox andtrash we have the following transition
tables:

mbox ptrash

pmail pmbox

pe pmbox

trash pe

pspam ptrash

pmail ptrash

pe ptrash

Finally, these are the transitions formail andspam:

mail pe pmail pspam

pcontent pmail pmail pspam

spam pe pmail pspam

pcontent pspam pspam pspam

Now assume the output type is given by a dfta. In order to obtain precise complexity
estimations for type checking, we briefly recall the construction for intersecting cftgs
with dftas.

Theorem 2 Let G be a cftg.

1. It can be decided in linear time whether or notL(G) = ∅.

2. For every dftaA, a cftgGA can be constructed such thatL(GA) = L(G)∩L(A).
The grammarGA can be constructed in timeO(N ·nk+1+d) whereN is the size
of G, k is the maximal rank of the nonterminals ofG, d is the maximal number
of occurrences of nonterminals in right-hand sides, andn is the number of states
of the finite tree automaton.

Proof. Let A = (P, Σ, δ, F) andG = (E, Σ, P, E0). The set of nonterminals ofGA

consists of all tuples〈q, p0, p1 . . . pk〉 whereq ∈ E of rankk andp0, . . . , pk ∈ P . The
new nonterminal〈q, p0 . . . pk〉 is meant to generate all treest of the nonterminalq of
G for which there is a run ofA, starting in statespi for leavesyi, and ending in state
p0.

For every ruleq(y1, . . . , yk) → g of G the intersection grammarGA has the rules:

[q, p0 . . . pk](y1, . . . , yk) → g′

whereg′ ∈ T p0...pk [g] and the setsT p0...pk [g] are inductively defined as:

T pip1...pk [yi] = {yi}
T p0p1...pk [a(g1, . . . , gm)] = {a(g′1, . . . , g

′
m) |

δ(a, p′1, . . . , p
′
m) = p0 ∧ ∀ i : g′i ∈ T p′

ip1...pk [gi]}
T p0p1...pk [q′(g1, . . . , gm)] =

{[q′, p0p
′
1 . . . p′m](g′1, . . . , g

′
m) | ∀ i : g′i ∈ T p′

ip1...pk [gi]}

11

By fixpoint induction, we verify for everyq ∈ E of rankk ≥ 0 and statesp0, . . . , pk ∈
P that:

[[q, p0 . . . pk]] = [[q]] ∩ {t ∈ TΣ(Y) | δ∗(t, p1 . . . pk) = p0} (∗)

whereY = {y1, . . . , yk} andδ∗ is the extension of the transition function ofA to trees
containing variables fromY , namely, forp = p1 . . . pk:

δ∗(yi, p) = pi

δ∗(a(t1, . . . , tm), p) = δ(a, δ∗(t1, p), . . . , δ
∗(tm, p))

The set of new initial nonterminals consists of all[q0, f] whereq0 ∈ E0 andf is an
accepting state ofA. The correctness of the construction follows from equation(∗).

For a cftg of sizeN with at mostk parameters and at mostd occurrences of nonter-
minals in right-hand sides, and a tree automaton withn states, the intersection grammar
is of sizeO(N · nk+1+d): since there can be in the worst casenk+1 copies of a rule of
the cftgG and for every non-terminal occurring in the right-hand sidewe may choose
arbitrary output states. This completes the proof. ⋄

Note that the complexity bound provided for the construction of Theorem 2 is a
worst-case estimation. Practically, one can organize the construction such that only
nonterminals of the intersection grammar are constructed which generate nonempty
languages. Also, trap states can be excluded which may not show up in any accepting
run to the automatonA. In this way, the number of newly constructed nonterminals will
generally be much smaller than the bounds stated in the theorem. Consider, e.g., the
cftg characterizing the output language of the linear mttapp. Assume we are interested
in an output type as given by a dfta with the following transitions:

e

pe

a pe pa

pe pa pa

pa pa pa

wherepa is the final state andpe is the state assigned to leaf nodese. In order to obtain
a characterization of erroneous outputs, we construct the complement automatonA by
inverting final and non-final states. Then we construct the intersection grammar with
A:

[init, pa] → a([app, pepe](e), [app, pepe](e)) |
a([app, pape](e), [app, pape](e))

[app, pape](y1) → a([app, pepe](e), [app, pepe](y1)) |
a([app, pape](e), [app, pepe](y1)) |
a([app, pape](e), [app, pape](y1)) |
[app, papa]([app, pape](y1))

[app, papa](y1) → a([app, pape](e), [app, papa](y1)) |
[app, papa]([app, papa](y1)) | y1

[app, pepe](y1) → [app, pepe]([app, pepe](y1)) | y1

In our example, the initial nonterminalinit gives rise only to a tuple containing the state
pa. We conclude therefore that the intersection is indeed empty.

12

In general, we are interested in type checking transformations implemented through
mtts. Since we have already coded the input type specification into the mttM , type
checking amounts to verifying, for a given output typeTout, whether or notτM (TΣ) ⊆
Tout. Applying our above constructions we obtain our first type checking result.

Theorem 3 Type checking for a linear mttM can be done in timeO(N · nk+1+d)
whereN is the size of the mtt,k is the maximal number of accumulating parameters,
d is the maximal rank of an input symbol andn is the size of a dfta for the output type.

Proof. Following Theorem 1, we first construct forM the cftgGM characterizing
the output language ofM . Then, following Theorem 2, we construct the intersection
grammar betweenGM and the complement automaton of the dfta. SinceM is linear,
there are at mostd nonterminals in right-hand sides ofGM . Finally we check non-
emptiness of the intersection grammar, which can be done in linear time. ⋄

The algorithm in the proof of Theorem 3 can also be applied toNON-linearmtts.
Then, the constructed cftg does no longer precisely characterize the output language of
the transformation, because dependencies on input subtrees (viz. several function calls
on the same input variablexi) have been lost in the grammar. Rather, the cftg generates
a superset and hence provides a conservative over-approximation.

Theorem 4 AssumeGM is the cftg constructed for an arbitrary mttM . ThenτM (TΣ) ⊆
L(GM).

Since the cftg still provides a safesupersetof produced outputs, type checking
based on cftgs is sound in the sense that it accepts only correct programs.

Consider, e.g., our example of Section 2. We construct for each mtt rule exactly
one production of the cftgGM and obtain:

init → doc(mbox, e)
mbox → mbox(mail, trashinit(spam))
trashinit(y1) → trash(trash(y1), e)
trash(y1) → spam(copy0, trash(y1)) |

mail(copy, trash(y1)) | y1

copy0 → mail(copy, copy0) | e

mail → mail(copy, mail) | mail | e

spam → spam(copy0, spam) | spam| e

where the two function callsmail andspamon the same input variablex1 are simply
represented by the two nonterminalsmail and spam, respectively. The intersection
grammar contains the following rules forinit:

[init, pdoc] → doc([mbox, pmbox], e)
[mbox, pmbox] → mbox([mail, pmail],

[trashinit, ptrashpe]([spam, pe])) |
mbox([mail, pmail],

[trashinit, ptrashpspam]([spam, pspam]))

13

where we only have listed rules using nonterminals with nonempty semantics. We omit
the remaining rules of the intersection grammar but note that no nonterminal[init, p] is
found to represent a nonempty set forp 6= pdoc. We thus conclude that type checking
succeeds, and indeed, all mail sequences markedspam have been removed by the mtt
from mbox.

Note that when approximating the output languages of general mtts with cftgs, then
we no longer may assume that the maximal numberd of occurrences of nonterminals
in a right-hand side of this grammar is bounded by a small constant. If d turns out
to be unacceptably large, we still can apply the well-known trick of constructing an
equivalent cftgG′ where the maximal depth of right-hand sides is bounded by 2 [11].
This will increase the size of the grammar by a factor at mostO(k2) and reduce the
maximal number occurring nonterminals in right-hand sidesto at mostk + 1.

4 MTTs with bounded copying

In this section we investigate in how far the exact techniques from the last section can
be extended to more general classes of mtts. The goal again isto find precise and
tractable characterizations of the output language. If themtt is no longer linear, we
must take into account that distinct function calls could refer to the same input node
and therefore must be “glued together”, i.e., be jointly evaluated.

In general, an arbitrary number of function calls may be applied to the same sub-
document of the input. In many practical transformations, though, this is not the case.
Instead, typical transformations consult every part of theinput only a small number of
times. In our running example withmail andspam, every subtree of the input is pro-
cessed at most twice. Therefore, we consider the subclass ofmtts which areb-bounded
copying in the input, b ≥ 1. Every such mtt is allowed to process every subtree of the
input at mostb times. Thus in principle,b-bounded copying is a semantic property.
In particular, it implies that every variablexi occurs at mostb times in corresponding
right-hand sides (as, e.g., in the syntactic definition in [19]), but it also rules out that
increasing numbers of copies can be produced, say, by repeated application of copying
rules in a loop. This (dynamic) property has been defined and investigated in [6] un-
der the name “finite-copying in the input”; intuitively, theproperty says that the state
sequence at any given node of the input tree (i.e., the sequence of states that process
the node) may not be longer thanb; note, however, that [6] only deals with total de-
terministic mtts. Instead of dealing with semanticb-bounded copying, we find it more
convenient to consider syntacticb-bounded copying only. In order to introduce this
notion precisely, let us assume w.l.o.g. that every state ofM is useful, i.e., can produce
an output for at least one input tree.

For all statesq of M , we define the maximal copy numbersb[q] as the least fixpoint
of a constraint system over:

N = {1 < 2 < . . . < ∞},

the complete lattice of naturals extended with∞. The constraint system consists of all
constraints:

b[q] ≥ b[q1] + . . . + b[qm]

14

whereq(a(x1, . . . , xl), y1, . . . , yk) → t is a rule ofM and, for somei, andq1, . . . , qm

is the sequence of occurrences of callsqj(xi, . . .) for the same variablexi in the right-
hand sidet. The mttM then issyntacticallyb-bounded copying(or, ab-mtt for short)
iff for all states,[q] ≤ b.

In our mailbox example this constraint system looks like:

b[init] ≥ b[mbox] b[mbox] ≥ b[trashinit]
b[mbox] ≥ b[mail] + b[spam] b[mail] ≥ b[copy]
b[spam] ≥ b[copy0] b[trashinit] ≥ b[trash]
b[trash] ≥ b[copy] b[trash] ≥ b[copy0]
b[copy0] ≥ b[mail]

where we have removed trivial constraints such asb[mail] ≥ b[mail]. Thus, the
copy number ofinit andmboxequal 2 while all other copy numbers equal 1 (the least
element ofN).

The least solutions of such constraint systems over the naturals can be determined in
linear time [29]. In fact, the latter paper also provides a simple criterion which precisely
characterizes whether or not all copy numbers are finite. It amounts to checking that
for every constraintb[q] ≥ b[q1] + . . . + b[qm], wheneverq andqj are in the same
strong component of the variable dependence graph of the constraint system then the
constraint is of the simple form:b[q] ≥ b[qj] only. The next theorem thus follows from
the definitions and [29].

Theorem 5 Assume thatM is an mtt without useless states.

1. It can be decided in linear time whether the mttM is syntacticallyb-bounded for
someb.

2. If M is syntacticallyb-bounded-copying thenb ≤ 2|M|.

3. The syntactic copy numbers of every state ofM can be determined in linear time.

Still, we may worry how syntactic bounded copying is relatedto semantic bounded
copying. An alternative syntactic restriction, which implies our restriction ofb-bounded
copying, is the notion of ”single use restriction (sur)”, originally invented in the con-
text of attribute coupled grammars, but later generalized to mtts [6]. In that paper it
is shown for a restricted case of mtts, that finite-copying (=semantic bounded copy-
ing) implies sur, and hence syntactic bounded copying. We conjecture that, also for
our (nondeterministic, IO) mtts, a similar result can be proved which shows that the
semanticb-bounded copying restriction implies the syntactic one.

Depart from fundamental considerations, we here are interested in mtts where ev-
ery input node is visited only asmall number of times. Since an input node can be
visited more than once, we need a language model which allowsus to glue together
multiple computations. For this purpose, we proposecoupled replacement grammars
(crgs). This concept is a restricted form ofcontext-free graph grammars(cf., e.g., [5])
and seems similar to the grammar formalism proposed in [27].We deliberately have
refrained from introducing the latter (notationally heavy) concept in order to present
an abridged version which is streamlined for our application. This abridged version

15

1 2

a

A

e

y1

b

y2

Figure 2: An example hypergraph.

can be viewed as a mild generalization of context-free tree grammars where right-hand
sides are no longer trees. In particular, we allow nonterminals to have multiple roots
(“outputs”). Thus, right-hand sides of rules now are (restricted forms of) hypergraphs
such as the one shown in Figure 2. The idea is that the new right-hand sides concep-
tually consist of a tuple of trees which are glued together atnonterminals. Therefore,
we can assume that every argument of a nonterminal is dedicated to a specific output.
Thus, the functionality of a nonterminalA with r outputs can be described by a tuple
〈k1, . . . , kr〉 meaning that the firstk1 arguments are dedicated to the first output and so
forth. This tuple is called thesort of A. Semantically, the nonterminalA is meant to
returnr-tuples of trees. In order to obtain a linear representationwhich is reminiscent
of terms, we allow us to introduce unique auxiliary names forthe components of an
occurrence of the nonterminalA which then are used similar to nonterminals in cftgs.
The hypergraph from Figure 2 then would be represented as:

let (A1, A2) = A
in (a(y1, A1(e)), A2(b(y2)))

In general, we define a coupled context-free tree grammar (ccftg) to consist of rules

A(y1, . . . , ym) → g

whereA is a nonterminal of sort〈k1, . . . , kr〉 with m = k1 + . . . + kr andg is a
hyper-graph of the form:

let defs in (t1, . . . , tr)

wheredefs is a sequence of component declarations

(B1, . . . , Bs) = B

with B a nonterminal of some sort〈k′
1, . . . , k

′
s〉 such that the componentsBj have

ranksk′
j . Furthermore,(t1, . . . , tr) is a tuple of trees which are built up from variables,

terminals and components according to the following restrictions:

1. Every declared componentBj occurs at most once;

2. The treeti may only contain variablesymi+1, . . . , ymi+ki
for mi = k1 + . . . +

ki−1.

16

The semantics of rewriting in a hyperedge replacement grammar in a “standard”
language theoretic way (by means of derivation steps) can befound in [5], but here we
are only interested in hypergraphs as compact representations of tree tuples. Therefore,
we only consider a least fixpoint semantics based on the interpretation of nonterminals
as sets of tree tuples. More precisely, we interpret a nonterminalA of sort〈k1, . . . , kr〉,
by a subset:

[[A]] ⊆ TΣ(Y1) × . . . × TΣ(Yr)

whereYj = {y1, . . . , ykj
}.

The semantics is based on an evaluation function[[g]] α of a right-hand sideg
for A w.r.t. an appropriate assignmentα of the componentsBj to trees. Ifg ≡
let defs in (t1, . . . , tr) then

[[g]] α = ([[t1]] α, . . . , [[tr]] α)

where the values[[ti]] α are inductively defined by:

[[a(e1, . . . , en)]] α = a([[e1]] α, . . . , [[en]] α)
[[ymi+j]] α = yj (mi = k1 + . . . + ki−1)
[[Bj(e1, . . . , en)]] α = α(Bj)[[[e1]] α/y1, . . . , [[em′

j
]] α/yn]

Note that during evaluation, we have re-scaled the indices of the variablesy... in ti to
be from the sety1, . . . , yki

.
The sets[[A]], A a nonterminal, then are obtained as the least assignment of such

sets for which
[[A]] ∋ [[g]] α

for every ruleA(y1, . . . , ym) → g of G, and assignmentsα for which

(α(B1), . . . , α(Bs)) ∈ [[B]]

whenever(B1, . . . , Bs) = B is a definition ing.
The languageL(G) generated by the grammarG then is given by the union of the

sets[[S]], S a start symbol ofG.
Now consider again ab-bounded-copying mttM . The goal is to glue together

inside a right-hand side ofM , all occurring function symbols which are called with the
samexi. Assume for example, that the following two rules are part ofa 2-mtt.

q1(a(x1, x2), y1, y2) → b(q2(x2, y2), q3(x1, q3(x1, y1)))
q2(a(x1, x2), y1) → q3(x2, c(y1))

The right-hand sides can be represented by the two graphs shown in Figure 3. Note
that both calls toq3 in the first rule are on the same variablex1 as well asq2 in the
first rule andq3 in the second rule onx2. The idea must therefore be to jointly produce
the outputs for these pairs of calls by gluing them together into nonterminals[q3, q3]
and [q2, q3], respectively. The graphical representation of the resulting structure is
displayed in Figure 4. It seems as if the gluing had introduced acycleinto the structure.
The present cycle, though is “harmless” since it only introduces a flow from ”one
component” of the new box into the other and not vice versa. The right-hand sides of

17

q3b

q2

x2 y2

q3

x1 q3

x1 y1

x2 c

y1

Figure 3: Right-hand sides as trees.

1 2

b

q2, q3 q3, q3

y2 c

y3

y1

Figure 4: The merged right-hand sides.

the new function symbol[q2, q3], e.g., then are obtained by pairing together all possible
pairs of right-hand sides of rules for the same input symbol and again gluing together
function symbols which are called for the same inputs.

Technically, we define the gluing operation for a given sortk = 〈k1, . . . , kr〉 and
sequencet = (t1, . . . , tr) of trees as follows. For everyxi occurring in the sequence,
we introduce a definition(〈i, 1〉, . . . , 〈i, s〉) = [q1, . . . , qs] if q1, . . . , qs is the sequence
of occurrences of function symbols applied toxi. Letdefs denote the sequence of these
definitions. Then the transformationglue(k, t) should yield the graph:

let defs in (t′1, . . . , t
′
r)

where the primed termt′i is obtained fromti by replacing variablesyj with ymi+j for
mi = k1 + . . . + ki−1 and by replacing thel-th occurrence of a callq′(xi, . . .) with
〈l, i〉(. . .). The gluing operation allows us to construct a ccftg which characterizes the
output language of ab-mtt:

Theorem 6 For everyb-mttM , there is a ccftgGM such thatτM (TΣ) = L(GM). The
ccftgGM can be constructed in timeO(|M |b).

Proof. The construction ofGM is the immediate generalization of the corresponding
construction of a cftg for linear mtts. Now, however, the nonterminals consist of tuples
[q1, . . . , qr] of states of theb-mtt. The initial nonterminals ofGM consist of all[q0], q0

an initial state ofM . Every ruleq(a(x1, . . . , xd), y1, . . . , yk) → t of M gives rise to
the grammar rule:

[q](y1, . . . , yk) → glue(〈k〉, (t))

Furthermore, whenever a fresh nonterminal[q1, . . . , qr] occurs in a right-hand side,qj

of rankkj , we consider all tuples of rules:

qi(a(x1, . . . , xd), y1, . . . , yk) → ti , i = 1, . . . , r

18

which agree in the input symbola and construct:

[q1, . . . , qr](y1, . . . , ym) → glue(k, t)

for m = k1+ . . .+kr, k = 〈k1, . . . , kr〉 andt = (t1, . . . , tr). During this construction,
we maintain the invariant that the sum of the copy numbersb[qi] of the nonterminal
[q1, . . . , qr] on the left-hand side of the rule is an upper bound to the corresponding
sums of copy numbers for the nonterminals occurring in the newly constructed right-
hand side. SinceM is structurallyb-bounded-copying, this invariant ensures that only
tuples of states of length at mostb are constructed. This gives the complexity estima-
tion.

In order to prove that the resulting grammarGM characterizes the output language
of M , we verify by fixpoint induction:

[[q1, . . . , qr]] =
⋃

{[[q1]](s) × . . . × [[qr]](s) | s ∈ TΣ}

where[[. . .]] on the left- and right hand sides are meant w.r.t. to the grammarGM and
to the mttM , respectively. ⋄

Coming back to our example (cf. Section 2), we construct fromthe mtt rules the
following grammar:

[init] →

1

doc

embox

|
mbox

1

trashinit

mail, spam

[trashinit](y1) →
trash

1

trash e

y1

[trash](y1) →

1

y1 |

1

spam

trash

y1

copy0
|

1

mail

trashcopy

y1

[mail, spam] →
mail

copy mail, spam

1 2

|

2

spam

mail, spam

1

copy0

|

1 2

ee

where the productions for the nonterminal[copy] can be constructed straight-forwardly
from the mtt rules. The rules for the new nonterminal[mail, spam] indicate how pairs
of output trees are generated when the mtt functionsmail andspamare applied to the
same input.

19

As for linear mtts, the characterization of output languages by means of grammars
is only useful if the grammar formalism is effectively closed under intersection with
recognizable languages and each grammar can be tested for emptiness. The key obser-
vation is that these two properties hold for ccftgs.

Theorem 7 AssumeG is a ccftg.

1. It can be decided in linear time whether or notL(G) = ∅.

2. For every dftaA, a ccftgGA can be constructed such thatL(GA) = L(G) ∩
L(A). The grammarGA can be constructed in timeO(N · nm+(d+1)·b) where
N is the size ofG, m is the maximal number of inputs of a nonterminal ofG, d
is the maximal number of occurrences of a nonterminal in right-hand sides,b is
the maximal number of outputs of a nonterminal andn is the size of the dfta.

The proof is based on a straight-forward generalization of the corresponding con-
struction in Theorem 2. Note that now, however, nonterminals may return up tob
results. The number of nonterminals therefore may increaseby a factornm+b. Given
one of these nonterminals, we may have to choose a different state for each output of a
nonterminal occurring in a right-hand side. This explains the additional factornb·d.

Let us return to our running mailbox example together with the output type from
Section 3. We present here only a manageable part of all productions of the intersec-
tion, but all omitted rules can be constructed in the same way. First we present the rules
constructed from the initial nonterminalinit:

[init, pdoc] →

1

doc

embox, pmbox

They are obtained from the ccftg rules by building all possible and consistent new
right-hand sides in which every nonterminal is equipped with dfta states for the inputs
as well as for the outputs.

The new nonterminals consist of a nonterminal from the ccftgcharacterizing the
output language and a tuple of sequences of states from the bottom-up tree automaton:
one sequence for every component of the nonterminal. The nonterminalinit, e.g., is
annotated with the statepdoc alone, sinceinit has only one component with no inputs.
In the following rules, the nonterminalmboxis annotated withpmbox where the anno-
tations of the right-hand sides differ in the states for the outputs of the nonterminal
[mail, spam].

[mbox, pmbox] →

1

mbox

mail, spam, pe, pe

trashinit, ptrash

| g2 | g3 | g4

The graphsg2, g3, g4 are as the first one, but the bottom edge has as last two entries
of its label the pairspe, pspam for g2, pmail, pspam for g3, andpmail, pe for g4. We

20

will not list all rules of the intersection grammar but consider in detail the nonterminal
[mail, spam]. This nonterminal has been obtained through merging of two mtt function
symbols without accumulating parameters and therefore is annotated with a pair of
states. We thus obtain the rules:

[mail, spam, pe, pe] →
1 2

ee

[mail, spam, pmail, pe] →
mail

1 2

mail, spam, pe, pecopy, pcontent

[mail, spam, pe, pspam] →

1 2

spam

copy0, pcontent

mail, spam, pe, pe

[mail, spam, pmail, pspam] →
mail

1 2

mail, spam, pe, pspamcopy, pcontent

Theorem 7 provides us with the technical background to proveour main theorem:

Theorem 8 Type checking for ab-mtt M can be done in timeO(N b · nb·(k+1+d))
whereN is the size of the mtt,k is the maximal number of accumulating parameters,
d is the maximal rank of an input symbol andn is the size of a dfta for the output type.

5 Macro Forest Transducers

Macro tree transducers have the disadvantage that they do not operate on forests di-
rectly but refer to representations of forests through ranked trees. This limitation,
though, can be lifted. In [25], we have proposed macro foresttransducers (mfts) which
operate on forests directly. Mfts generalize mtts by providing concatenation as addi-
tional operation on output forests. This extra feature implies that some mft translations
cannot be realized by a single mtt alone but only by the composition of a mtt with
the transformationapp from Section 3 [25]. Our transformation of the mailbox, for
example, can be represented by a forest transducer as follows:

21

1 init(doc〈x1〉x2) →doc〈mbox(x1)〉

2 mbox(mbox〈x1〉x2) →mbox〈mail(x1)〉

trashinit(x2, spam(x1))

3 trashinit(trash〈x1〉x2, y1)→trash〈copy1(x1) y1〉

4 mail(mail〈x1〉x2) →mail〈copy(x1)〉mail(x2)

5 mail(spam〈x1〉x2) →mail(x2)

6 spam(mail〈x1〉x2) →spam(x2)

7 spam(spam〈x1〉x2) →spam〈copy0(x1)〉spam(x2)

8 copy1(mail〈x1〉x2) →mail〈copy(x1)〉 copy1(x2)

9 copy1(spam〈x1〉x2)→spam〈copy0(x1)〉 copy1(x2)

10 copy0(mail〈x1〉x2) →mail〈copy(x1)〉 copy0(x2)

where again the functioncopyis responsible for correctly copying the content of mail
elements into the output. The functionsmail, spam, copy1, andcopy0 additionally have
a rule translatinge to e. Note that in order to have a more compact notation, we have
represented elements by the label of their root, followed with the content in brackets.
Due to concatenation of output forests in lines 2, 3, 4 and 7, an accumulating parameter
is only used by the functiontrashinit for transporting the spam mails extracted from
thembox element, into the content of the right sibling ofmbox.

Formally, amacro forest transducerM (mft for short) is similarly defined as an
mtt. Now, however, rules are of the form:

q(a〈x1〉x2, y1, . . . , yk) → f or
q(e, y1, . . . , yk) → f

where right-hand sidesf now are expression forests which can be constructed accord-
ing to the following grammar:

f ::= e | b〈f〉 | q′(xi, f1, . . . , fm) | yj | f1f2

Here,b is a label of a node in the output,yj is one of the accumulating parameters
from the left-hand side,q′ is a function name, andxi is one of the input variables of
the left-hand side (i = 1, 2 if available at all).

Again, initial function symbolsq0 may not have accumulating parameters.
The evaluation of an mft begins at the root node of the leftmost tree in the input

forest. Then it traverses the input forest as if it were a binary tree meaning that in every
step, it may proceed either to the content of the current nodeor to its right context. It
is only when producing output that it may refer to the new ability of concatenation.
As for mtts, we adopt aninside-outevaluation strategy, i.e., call-by-value passing of
parameters. The only difference, thus, compared to mtts is that we now additionally
may concatenate forests in accumulating parameters as wellas in the outputs of the
transducer. LetFΣ denote the set of all forests with node labels fromΣ. Accordingly,

22

letFΣ(Y) denote the set of all forests with node labels fromΣ which additionally may
contain (forest) variables from the setY . The least fixpoint semantics for the mftM
then assigns to every stateq with k ≥ 0 accumulating parameters a function:

[[q]] : FΣ → 2FΣ(Y)

whereY = {y1, . . . , yk}. The definition of the translationτM realized by the mftM
then is analogous to the definition for mtts in Section 2.

In the following, we will not mention explicitly given inputtypes in our theorems
and proofs. Instead, we always implicitly assume that this type has been encoded into
the mft. For that, we assume that the input type is specified bya (possibly nondetermin-
istic) finite forest automaton (fta for short) which is essentially the same as a finite tree
automaton running on the binary representation of the forest. This automaton then is
simulated during transformation along the same lines as in Section 2. In the following,
we therefore concentrate on the output languages of mfts.

6 Linear Mfts

The constructions which we have provided for describing or approximating the output
languages of mtts naturally can be extended to mfts as well. The only property which
we have to take care of is that the grammar notions are appropriately generalized to
deal with concatenation of forests.

Thus, we introduce the concept of acontext-free forest grammarG (cffg for short)
as a tuple(E, Σ, P, E0) whereE is a finite ranked set of function symbols or nonter-
minals,E0 ⊆ E is a set of initial symbols of rank 0,Σ is the alphabet of terminal nodes
andP is a set of rules of the formq(y1, . . . , yk) → f whereq ∈ E is a nonterminal
of rankk ≥ 0. The right-hand sidet is built up from the empty forest and variables
y1, . . . , yk by means of concatenation, application of nonterminal and terminal sym-
bols. Note that this new grammar formalism can be consideredas a generalization of
Fischer’s macro grammars [11] from strings to forests. As inthe rest of the paper, we
refer to the inside-out mode of evaluation of nested nonterminal occurrences.

Again, the cffg for our example mft is obtained by canceling the input:

init → doc〈mbox〉
mbox → mbox〈mail〉trashinit(spam)
trashinit(y1) → trash〈copyy1〉
mail → mail〈copy〉mail | mail | e

spam → spam| spam〈copy〉spam| e

The notion of linearity for mfts is completely analogously defined as linearity for
mtt. We obtain:

Theorem 9 Consider an mftM . Then a cffgGM can be constructed in linear time
with the following properties:

1. τM (FΣ) ⊆ L(GM).

23

2. If M is linear, thenτM (FΣ) = L(GM).

For Theorem 9 to be useful, we additionally verify that emptiness for cffgs is ef-
ficiently decidable and also that cffgs are closed under intersection with recognizable
forest languages. While emptiness still can be decided withvery much the same algo-
rithm as for cftgs, also the construction of a grammar for theintersection works pretty
much along the same lines. We have to take care, however, thatour deterministic finite-
state representation of the output type is compatible with concatenations.

Therefore we propose to use finite forest monoids (compare, e.g., the discussion in
[2]). A finite forest monoid(ffm) consists of a finite monoidM with a neutral elemente,
a finite subsetF ⊆ M of accepting elements, and finally, a functionup : Σ×M → M
mapping a symbol ofΣ together with a monoid element for its content to a monoid
element representing a forest of length1.

Given a deterministic bottom-up tree automatonA = (P, Σ, δ, FA), we can con-
struct a finite forest monoid as follows. LetM = P → P be the monoid of functions
from the set of automata states into itself where the monoid operation is function com-
position. In particular, the neutral element of this monoidis the identity function.
Moreover, the functionup is defined by:

up(a, f1)(p) = δ(a, f1(δ(e)), p)

Finally, the set of accepting elements is given by:

F = {f ∈ M | f(δ(e)) ∈ FA}

This construction shows that every recognizable forest language can be recognized by
a finite forest monoid.

Although the ffm for a bottom-up tree automaton generally can be exponentially
larger, this need not always be the case.

For our running example the monoid consists of the neutral elemente together with
the following elements:

doc, mbox, trash, mboxtrash, mail, spam, fail

Besides the compositions withe and those resulting infail, we havembox · trash =
mboxtrash, and moreover:

mail spam
mail mail spam
spam spam spam

We summarize our observations for cffgs in the next theorem:

Theorem 10 AssumeG is a cffg.

1. It can be decided in linear time whether or notL(G) = ∅.

2. For every ffmM , a cffg GM can be constructed such thatL(GM) = L(G) ∩
L(M). The grammarGM can be constructed in timeO(N · nk+1+d) whereN
is the size ofG, k is the maximal rank of a nonterminal ofG, d is the maximal
number of occurrences of a nonterminal in right-hand sides and n is the size of
the finite forest monoid.

24

a

A

21

B

b

y1 y1

Figure 5: An example right-hand side of a ccffg.

Theorem 10 immediately gives us a first precise type checkingresult for linear mfts
and an approximative type checking method for general mfts.Here, we only state the
exact result:

Theorem 11 Type checking for a linear mftM can be done in timeO(N ·nk+3) where
N is the size of the mft,k is the maximal number of accumulating parameters, andn
is the size of a ffm for the output type.

7 MFTs with bounded copying

We are now going to extend the methods from the last section tosyntacticallyb-
bounded copying mfts (b-mfts) for short. We deliberately omit the formal definition
but appeal to the reader that it is completely analogous to the ranked tree case of mtts.
In oder to describe the output languages of such transducers, we again glue together
function calls which refer to the same node in the input forest.

For this purpose, we propose coupled context-free forest grammars (ccffgs). This
concept is not so well-established in the literature. It is meant to be a generalization
of context-free forest grammars where we allow nonterminals to have multiple roots.
Graphically, an example of a right-hand side is shown in Figure 5. The idea is that
every new right-hand side now conceptually consists of a tuple of forests which are
glued together at nonterminals. In the example, the first output forest corresponds to
the concatenation of the treeb〈B〉 and the forest returned by the first component of the
nonterminalA while the second component of the nonterminalA provides the second
output forest.

As before, we assume that every argument of a nonterminal is dedicated to a spe-
cific output of this nonterminal. Thus, the functionality ofa nonterminalA is described
by a sort〈k1, . . . , kr〉 meaning that the firstk1 arguments are dedicated to the first out-
put and so forth. The linear representation of right-hand sides which we choose here is
identical to the representation in the tree case:

let defs in (f1, . . . , fr)

— with the only exception that the body of thelet construct now consists of a tuple
of forests which are built up from the empty forest and variables by application of
components of nonterminals, terminal symbols and concatenation. The example from
Figure 5 thus is represented by:

let (A1, A2) = A
in (b〈B〉A1, A2〈y1y1a〉)

25

The least fixpoint semantics of a ccffg interprets every nonterminalq of sort〈k1, . . . , kr〉
as a set of forest tuples:

[[A]] ⊆ FΣ(Y1) × . . . ×FΣ(Yr)

whereYj = {y1, . . . , ykj
}. Now consider again ab-bounded-copying mftM . Using

the same gluing technique as for mtts, we obtain:

Theorem 12 For everyb-mft M , there is a ccffgGM with

τM (FΣ) = L(GM)

The ccffgGM can be constructed in timeO(|M |b).

Coming back to our example (cf. Section 2), we construct fromthe mft rules the
following grammar:

[init] →
1

doc

mbox

|
trashinit

mail, spam

mbox

1

[trashinit](y1) → trash

1

y1copy1

[mail, spam] →
mail mail, spam

copy

21

|
2

mail, spam

spam

1

copy0

|

1 2

ee

where the rules for the nonterminals[copy], [copy0] and [copy1] can be constructed
straight-forwardly from the mft rules. The rules of the lastline are for the new non-
terminal[mail, spam] indicating that the mft functionsmail andspam, respectively, are
applied on the same input variable.

As for linear mfts, the characterization of output languages by means of gram-
mars is only useful if the grammar formalism is effectively closed under intersection
with recognizable languages and each grammar can be tested for emptiness. Now in
the same way how ccftgs cooperate nicely with deterministicftas, our new grammar
formalism works nicely together with finite forest monoids.Therefore, Theorem 7
literally holds if we replace “ccftg” with “ccffg” and “dfta” with “ffm”, respectively.

Let us return to our running mailbox example together with the output type from
Section 2. We present here only a manageable part of all productions of the intersec-
tion, but all omitted rules can be constructed in the same way. First we present the rules

26

constructed from the initial nonterminalinit:

[init, doc] →

1

doc

mbox, mboxtrash

They are obtained from the ccffg rules by building all possible and consistent new
right-hand sides in which every nonterminal is equipped with ffm states for the inputs
as well as for the outputs. The new nonterminals consist of a nonterminal from the ccffg
characterizing the output language and a tuple of sequencesof monoid elements. Here,
the nonterminalinit is annotated with the statedoc because this is the only consistent
annotation of the hypergraph representation of the right-hand side.

Applying this technical background on ccffgs we arrive at our main theorem for
macro forest transducers:

Theorem 13 Type checking for ab-mft M can be done in timeO(N b ·nb·(k+3)) where
N is the size of the mft,k is the maximal number of accumulating parameters, andn
is the size of a finite forest monoid for the output type.

8 Conclusion

We have exhibited exact type-checking algorithms for useful classes of XML transfor-
mations based on a precise characterization of output languages. For our approach, the
input type could always be described by a nondeterministic finite automaton. In or-
der to obtain tractable algorithms, we assumed for macro tree transducers, that output
types are given asdeterministicfinite automata, whereas for macro forest transducers,
we even assumed legal outputs to be represented by finite forest monoids. The latter
was necessary to elegantly cope with the extra ability of concatenating separately pro-
duced output forests. Besides exact but partial methods, wealso provided approximate
type-checking based on context-free tree grammars which isexponential only in the
number of accumulating parameters. Note that this approachgoes far beyond what is
possible with approximations of outputs through recognizable sets.

All our techniques rely on ainside-outor call-by-value evaluation strategy for pa-
rameters. One may wonder in how far similar techniques may work a foroutside-inor
call-by-name evaluation corresponding to transformations expressed in (fragments of)
lazy functional languages such as Haskell. While the approximate technique based on
context-free tree grammars can readily be extended, it remains unclear whether similar
constructions could provide exact techniques for useful subclasses of transducers as
well.

27

References
[1] S. Boag and D. Chamberlin et.al., editors. XQuery 1.0: AnXML Query Language. W3C

Working Draft, World Wide Web Consortium, November 2003. Available online
http://www.w3.org/TR/xquery/.

[2] M. Bojańczyk and I. Walukiewicz. Unranked Tree Algebra. Technical report, University
of Warsaw, 2005.

[3] J. Clark and S. DeRose, editors. XML Path Language (XPath) 1.0. W3C
Recommendation, World Wide Web Consortium, November 1999.Available online
http://www.w3.org/TR/xpath.

[4] J. Clark and M. Murata et al.RelaxNG Specification. OASIS. Available online
http://www.oasis-open.org/committees/relax-ng.

[5] J. Engelfriet. Context-Free Graph Grammars. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, pages 125–213. Springer-Verlag, Berlin, 1997.

[6] J. Engelfriet and S. Maneth. Macro Tree Transducers, Attribute Grammars, and MSO
Definable Tree Translations.Inform. and Comput., 154(1):34–91, 1999.

[7] J. Engelfriet and S. Maneth. A Comparison of Pebble Tree Transducers with Macro Tree
Transducers.Acta Informatica, 39:613–698, 2003.

[8] J. Engelfriet and E.M. Schmidt. IO and OI. (I&II).J. Comp. Syst. Sci., 15:328–353, 1977.
and 16:67–99, 1978.

[9] J. Engelfriet and H. Vogler. Macro Tree Transducers.J. Comp. Syst. Sci., 31:71–146,
1985.

[10] D.C. Fallside, editor. XML Schema. W3C Recommendation, World Wide Web
Consortium, 2 May 2001. Available onlinehttp://www.w3.org/TR/xmlschema-0/.

[11] M. J. Fischer.Grammars with Macro-like Productions. PhD thesis, Harvard University,
Massachusetts, 1968.

[12] A. Frisch. Regular Tree Language Recognition with Static Information, 2004. PLAN-X
2004.

[13] H. Hosoya, A. Frisch, and G. Castagna. Parametric Polymorphism for XML. In32nd
ACM Symp. on Principles of Programming Langugaes (POPL), pages 50–62, 2005.

[14] H. Hosoya and B.C. Pierce. Regular expression pattern matching for XML. Journal of
Functional Programming, 13(6):961–1004, 2002.

[15] H. Hosoya and B.C. Pierce. XDuce: A Statically Typed XMLProcessing Language.ACM
Trans. Inter. Tech., 3(2):117–148, 2003.

[16] C. Kirkegaard, A. Møller, and M.I. Schwartzbach. Static Analysis of XML
Transformations in Java.IEEE Transactions on Software Engineering, 30:181–192, 2004.

[17] S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML Type Checking with Macro Tree
Transducers. In24th Symp. on Principles of Database Systems (PODS), pages 283–294,
2005.

[18] W. Martens and F. Neven. Typechecking Top-Down UniformUnranked Tree Transducers.
In 9th Inter. Conference on Database Theory (ICDT), pages 64–78. LNCS 2572, 2002.

[19] W. Martens and F. Neven. Frontiers of Tractability for Typechecking Simple XML
Transformations. In23rd ACM Symp. on Principles of Database Systems (PODS), pages
23–34. ACM Press, 2004.

28

[20] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML Transformers.J. Comp. Syst.
Sci., 66:66–97, 2003.

[21] A. Møller, M. Olesen, and M. Schwartzbach. Static Validation of XSL Transformations.
Technical Report RS-05-32, BRICS, October 2005.

[22] A. Møller and M. I. Schwartzbach. The Design Space of Type Checkers for XML
Transformation Languages. In10th International Conference on Database Theory
(ICDT), pages 17–36. LNCS 3363, 2005.

[23] M. Murata, D. Lee, and M. Mani. Taxonomy of XML Schema Languages using Formal
Language Theory. InExtreme Markup Languages 2000, 2000.

[24] F. Neven. Automata Theory for XML Researchers.SIGMOD Record, 31(3):39–46, 2002.

[25] T. Perst and H. Seidl. A Type-Safe Macro System for XML. In Extreme Markup
Languages, Montréal, Quebec, 2002. Available online
http://www.idealliance.org/papers/extreme02/.

[26] T. Perst and H. Seidl. Macro Forest Transducers.Information Processing Letters,
89:141–149, 2004.

[27] P. Réty, J. Chabin, and J. Chen. R-Unification thanks toSynchronized-Contextfree
Languages. In19th Workshop on Unification (UNIF), 2005.

[28] W.C. Rounds. Mappings and Grammars on Trees.Math. Systems Theory, 4:257–287,
1970.

[29] H. Seidl. Least Solutions of Equations overN . In Int. Coll. on Automata, Languages and
Programming (ICALP), pages 400–411. Springer, LNCS 820, 1994.

[30] A. Tozawa. Towards Static Type Inference for XSLT. InACM Symp. on Document
Engineering, pages 18–27, 2001.

[31] W3C. Extensible Markup Language (XML) 1.0, second edition, 6 October 2000.
Available onlinehttp://www.w3.org/TR/2000/REC-xml-20001006.

29

