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Abstract

Macro tree transducers (mtts) are an expressive formabsmefsoning about
XSLT-like document transformations. Here we are inteikstethe exact type
checking problem for mtts. While the problem is decidables involved tech-
nique of inverse type inference is, however, known to hay®egntial worst-case
complexity (already for top-down transformations with@atrameters). We pre-
sent new type checking algorithms based on forward typeenfee through exact
characterizations of output languages. The algorithme $hat exact type check-
ing for call-by-value mtts with few parameters can be donedtynomial time,
given that the output type is specified by a deterministiomuatton and that the
mtt visits every input node only constantly often. For gahertts, a fast approx-
imative type checking algorithm is presented. The algor#hin this paper are
based on results about context-free tree and graph gramriamally, the new
approach is generalized from mtts to macro forest transdwekich additionally
support concatenation as built-in output operation.

1 Introduction

Currently, the extensible markup language XML is the stathftzrmat for exchanging
structured data. Its widespread use has initiated lots ok ¥asupport processing of
XML on many different levels: customized query languages®L, such as XQuery
transformation languages like XSLT, and programming laggusupport in the form
of special purpose languages like XDuce, or in the form oflisig facilities for main-
stream programming languages like JAXB. A central problanXML processing is
the (static) type checking problem: given an input and ouXML type and a trans-
formation f, can we statically check whether all outputs generated mn inputs
conforming to the input type conform to the output type? XMipés are intrinsi-
cally more complex than the types found in conventional progning languages, and
henceforth the type checking problem for XML poses new emgles on the design of
type checking algorithms. The excellent survey [22] give®egerview of the different
approaches to XML type checking.

In its most general setting, the type checking problem forlXtvansformations
is undecidable. Hence, general solutions are bound to bexpmative; for XSLT,



approximative solutions seem to work well for practicanhsformations [21]. An-

other approach is to restrict the types and transformatioeach a way that the type
checking problem becomes decidable; we then refer to tHegmoasexact XML type

checking In the exact setting it is common to use recognizable tneguages as type
formalism. Recognizable tree languages capture the treetste of all known type

formalisms for XML, and compositions of macro tree transsigsqmtts) capture the
tree translation core of the known XML query and transfoioratanguages [7, 20].
Even though the class of translations for which exact typeckimg is decidable is
surprisingly large, the price to be paid for exactness is aldremely large: the com-
plexity of the known algorithms for compositions of mtts iscaver of exponentials
whose height grows with the number of transducers in the oaitipn. In fact, the

design space for exact type checking comes as a huge “exii@neasteland”; even
for simple top-down transformations, exact type checkm@xponential-time com-
plete [26].

In previous work [17], we have provided an exact type cheghkilgorithm for the
very powerful transformation language TL by decomposirgrgsuch transformation
into at most three mtts — independently of the used match alettspatterns. This
work together with the results of [7] (showing that pebbéettransducers can be sim-
ulated by compositions of mtts) have established macrdita@sducers as an adequate
model for formally reasoning about XML transformations. r fpoactical considera-
tions, however, one is interested in useful subclasseamsformations for which exact
type checking is tractable. Such classes are investigatdddstens and Neven [18].
Their restrictions on transducers are, however, rathezrsevHere we report on an-
other successful escape from exponential wasteland ifympamial time: we show
that exact type checking can be done in polynomial time fargd class of practically
interesting transformations obtained by putting only mi#dtrictions onto the trans-
ducers. More precisely, we show that exact type checkindpeaolved in polynomial
time for any transformation realized by a macro tree transdwith few parameters
which translate each node of the input tree at most onceegitihmtts), or more gener-
ally, which translate every node only constantly oftéibéunded copyingtts). Note
that no restriction is put on the copying that the mtt appiieiss accumulating param-
eters: parameters may freely be copied! Note further, thatabove results are for
nondeterministicransducers with call-by-value semantics. Nondetermiro$trans-
ducers is specially important for practical implementasiof type checking, because
there it can be used to simulate a conditional (like, e.gata dalue comparison) of the
query or programming language. Our proofs are based ontsdsoin tree language
and graph grammar theory. In particular, we use forward igfezence and construct
from the input type and the transducer a context-free tregraph grammar, which
generates the output set of the transformation. Since ahgahktersection emptiness
of such grammars with deterministic tree automata is in PFHIMe obtain the de-
sired result. Besides exact characterizations of outpgtiages of transducers we also
propose a simpler scheme for approximative type checkirighwib based on an over-
approximation of the output language through contextiree grammars. Finally, we
extend our approach to transducers which directly operaferests of unranked trees
and also support concatenation as a built-in output operati



Related Work

Approximative type checking for XML transformations is tgally based on (sub-
classes of) recognizable tree languages. Using the pédtegnage XPath [3], XQuery
[1] is a functional language for querying XML documents whis strongly-typed.
Type checking here is performed via forward type inferendesr computing approx-
imative types for each expression. Approximative typeneee is also used in the
functional transformation language XDuce [15] and itsdaup version CDuce [12];
navigation and deconstruction are based on an extensibe pktitern matching mech-
anism of functional languages with regular expressiontroos. Recently, Hosoya et
al. proposed a type checking system based on the approxetgpie inference of [14]
for parametric polymorphism for XML [13]. Type variableganterpreted as markings
indicating the parameterized subparts. In [21] Mgller epabpose a sound type check-
ing algorithm (originally developed for the Java-basedjlzage XAcT [16]) based on
an XSLT flow analysis that determines the possible outcorhpattern matching op-
erations; for the benefit of better performance the algorideals with regular approx-
imations of possible outputs.

The first technique for exact type checking has been propogddilo et al. [20].
There, inverse type inference is proposed for translatigmsh can be expressed as
k-pebble tree transducers. Inverse type inference was tidieed by Tozawa [30] for
a subset of XSLT which roughly corresponds to top-down fotr@smisducers (without
parameters) [26]. Inverse type inference for a much moreessive transformation
language is considered in [17].

2 Macro Tree Transducers

An XML document can be seen as a sequential representats@yaénces of unranked
trees also called hedges forests Here is a small example document representing a
mail file:

<doc>

<mbox>
<mail>
<sender> Homer Simpson </sender>
<address> homer@simpson.com </address>
<subject> CONFIDENTIAL </subject>
<body> ... </body> </mail>
<spam><mail> ...
<subject> V.I.A.G.R.A. </subject>

. <Imail></spam>

</mbox>

<trash> ... </trash>

</doc>

In this example, the elementsbox andtrash are meant to collect the incoming
and deleted mails, respectively. Besides nomml elements, thenbox also contains



Figure 1: An unranked tree and its binary encoding.

mails inside aspam element indicating that these mails have been identifieppas s
e.g., by some automated filter.

The transformation model which we consider first, thoughesdnot operate on
forests directly but on their representations as binargstreThe empty forest then is
represented as a leafand the content of an element nadis coded as the left child
of a while the forest of right siblings of the element is reprdedras the right child.
Figure 1 illustrates the relationship between unrankesbtemd their representation as
binary trees. In the following we use the term ‘tree’ as a symo for ranked tree For
a finite (ranked) alphabét the set7s; of trees ovel is defined by:

t == b | a(t,..., tk)

whereb, a € ¥ are symbols of rank zero and two, respectively; thus, werasgiiven
a fixed rank mapping for the elementsXf Often, we consider leaf nodes together
with constructor applications by allowirigto equal0. If leaf nodes additionally can
be labeled by elements of a $ét= {y1, v, . .. } of variables, theffx(Y") denotes the
set of trees over andY'.

Consider for example a transformation which cleans up thiefolder by moving
all sub-documents marked as spam into the trash, whilerigaall mail elements un-
touched. When executed on the example document aboveattsidrmation generates
as output:

<doc>
<mbox>
<mail>
<sender> Homer Simpson </sender>
<address> homer@simpson.com </address>
<subject> CONFIDENTIAL </subject>
<body> ... </body> </mail>
</mbox>
<trash>
<spam><mail> ...
<subject> V.LA.G.R.A. </subject>
. </mail></spam>
... <ltrash>
</doc>



Using our representation of forests by binary trees (Figthd$ transformation is real-
ized by the following macro tree transducer. It has thregainiules transforming the
document root and its direct successors:

1 init(doc(zy, x2)) —doc(mboxXz1),e)
2 mboXmbox(z1, z2)) — mbox(mail(z1),

trashinit(xz,, spaniz)))
s trashinit(trash(z1, z2), y1)—trash(trash(z1, 1), e),

a functionmail for collecting all ordinary mails imbox

+ mail(mail(z1, z2)) —mail(copy(x1), mail(z2))
s mail(spam(x1, x2)) —mail(xz)
¢ mail(e) —e,

a functionspamfor collecting the spam mails imbox

7 spanmimail(z1, x2)) —spanizs)

s spanmispam(z,2)) —spam(copy,(z1), spanizsz))
s spante) —e

w0 copy,(mail(z1, x2)) —mail(copy(x1), mail(z2))
1 copy(e) —e,

and finally, a functiortirashfor copying the content afrash and completing it with the
spam mails fronmbox

© trash(spam(z1,22),y1) —spam(copy,(x1), trash(za, y1))
13 trash(mail(zq, z2),51)  —mail(copy(x1), trash(za, y1))
14 trash(e, yl) —Y

The first line inspects the root node of the document, geesmfresh nodéoc in the
output whose children are determined by the recursiventiadiX =, ) which transforms
the mbox node of the input document. The second line producedex node in the
output and splits the processing into two parts: the calhé&ftinctionmail transforms
the content ofnbox, while the call tatrashinit constructs the transformechsh folder.
Since we want to move all mails marked as spamirdsh we have to pass the content
of mbox to the transformation afrash (because we cannot go back to a node and visit
its content again).

The functionsnail andspamdefine the complementary transformations of the con-
tent of mbox. Functionmail returns the list of ordinary mails whilgpamreturns the
list of all spam mails. The method is straight-forward: tgag a node with labahail
(spam for span) a new node is generated in the output, followed by a copysafan-
tent and the transformation result of the remaindenbéx’ content (line 4). Reaching



a node labeledpam (mail), it is discarded and only the rest of the list is processed (|
5).

Functiontrashwrites a copy of the content ofash into the output by means of the
rules in lines 12 and 13. The last rule copies the alreadyymredi list of spam mails
from mbox after the last element afash, by writing the content of parametgy into
the output.

Formally, amacro tree transducek/ (mtt for short) is a tuple

(Q7 Ea QOa R)

whereQ is the (ranked) set of function names or stabéss the (ranked) alphabet of
input symbols@Qy C @ is the set of initial functions, ang is a finite set of rules of
the form

q(a(xla" '7xn)ﬂy17" 73/1@) - t7

whereq € Q is of rankk + 1, a € X is of rankn, z1,...,x, are input variables,
Y1, -- -, Yk, k > 0 are the accumulating parametergypéndt is an expression describ-
ing the output actions of the rule. Possible actions arerdestby the grammar:

t o= b1, o tm) |y | ¢ (2, b1, ),

whereb is a label of an output node (we leave an alphabef output symbols unspec-
ified because our results do not depend oryit)s one of the accumulating parameters
(1 <j <k),q € Q of rankm, andz; is one of the input variabled (< i < n). If
we deal with binary encodings of forests, the ranksf input symbols are either zero
or two. Also, we assume that initial function symbaejse @, have no accumulating
parameters. Accordingly, right-hand sides;gfrules do not contain parameters

Intuitively, the meaning of the action expressions is afo¥es: The output can
either be an elemernt whose content is recursively determined, the content of one
of the accumulating parameteys, or a recursive call to some functigf on thei-th
subtree of the current input node.

The evaluation of an mtt begins at the root node of the inpiteGan input tree
t, an mttM starts processing by evaluating one of its initial funcsigg for the root
node ofs. A function ¢ with actual accumulating parameteis. . . , tx is applied to
an input subtree(sy, . . ., s,) by carrying out the following steps. First, we (nondeter-
ministically) choose one of the rule$a(z1, ..., x,),y1, ..., yx) — t for ¢. Then we
substitutes; andt; for the variables:; andy; in the right-hand side.

Since function calls may be nested, the order in which theyaaluated influences
the value of the final output. There are two well-known evdraorders: outside-in
or inside-out. Imutside-incall-by-name order (Ol), outermost calls are evaluatet firs
The parameters of a function call may themselves contaictimmcalls which are thus
transferred to the body in an unevaluated form [9]. The Okonrkscribes the same
translations as if leaving the order completely unrestdd®]. In this paper, however,
we consider thénside-outevaluation order. This order corresponds to call-by-value
parameter passing as provided by mainstream imperatigggroning languages like
C or functional languages such as ML or OCaml. The insidecwatuation strategy
evaluates innermost calls first, meaning that fully evadatutput trees are passed in
accumulating parameters when a function call is evaluated.



As in [26], we will not use an operational semantics of mttsdzhon rewriting,
but prefer a denotational formulation which greatly sirfiei proof arguments. In
perspective, the meanitjg] of stateg of M with k£ accumulating parameters is defined
as a function from input trees to sets of trees with parareétér = {y1,...,yx}:

lq] : Tz — 27=()

When, during a computation, we evaluate an innermosy¢allt+, . . . , tx), it suffices
to substitute actual parameteror the formal parameterg; of all terms from[g] (s)
to obtain the set of produced outputs. The valfsgdor all ¢ are jointly defined as the
least functions satisfying:

[al(a(s1,---584)) 2 [t] o

for every ruleg(a(z1,...,24),v1,-..,yk) — t Of M, where
yilo = {y;}
[b(t1,...,tm)] o = {b(#,...,t.,) |t €[t:] o}
[[q/(xiatla"'vtl)]]a = {t/[t/l/ylvvtg/yl] |

t" € [q'](o(x:)), t; € [t:] o},

o is a substitution withr(z;) = s; fori = 1,.. ., d, andt’ /y; denotes the substitution
of the treet} for all occurrences of the parametgr. Note that the call-by-value se-
mantics is reflected in the last equation: the same t‘eae used for all occurrences
of a variabley; in the treet’ corresponding to a potential evaluation of the function
symbolg’. The transformation realized by the nitf on a non-empty input treg is
the functionry; : 7s; — 27® induced by the initial functions fror@, of M

7a(s) = H{I90](5) | a0 € Qo}

For a given seb C Tx. we denote by, (S) the set of all outputs which are produced
by M on input trees irf:

v (S) = U{TM(S) | s €S},

Since we are concerned with techniques for type checkingeeel mo define the
type of the input and output language of a transformationuallg types for XML
documents are given by a document type definition (DTD) [3H schema [10, 4].

A convenient abstraction of the existing XML type formalsrim particular DTDs,
are recognizable (or: regular) tree languages [23, 24]héncontext of this work we
use bottom-tree automata to define recognizable tree lgeguds usual, Bottom-up
finite state tree automata(ffta) is a tupleA = (P, %, §, F') whereP is a finite set of
states,F' C P is a set of accepting states, ahd. P x ¥ x P* is a set of transitions
of the form(p, a, p1 ...px) wherea is a symbol of ranki from the alphabeE and
p,p1,- - -, i are states ilP. Our finite automata will operate on binary representations
of forests, i.e., there exists a distinguished syn#gépresenting the empty forest) of
rank0 and all other elements &f have rank.



A transition(p, a, p1 . . . px) denotes that ifA arrives in state; after processing the
treet;, then it can assign stageto the treea(t1, ..., tx). Arunof Aonatree € 7y is
a mapping which assigns to each ned# ¢ a state*(v) € P, following the transitions
ind.

The tree languagé(A) accepted byA consists of the trees € 7x, by which A
can reach an accepting state, or, equivalently, all treem@pauns which map their
roots to an accepting state. Coming back to our examplegageficribing (the binary
representation of) valid mailbox documents before appglytime transformation can

have'e_ls set of stateB = {pdoo Pmbox, Pes Pmails Ptrash, Pspam Pcontent - - } and set of
transitions:

0= {(pdoe, dOC, PmboxPe ) s (pmbox, m bOX, psparrptrash) s
(pspam  mMail,  DeontenPspam),  (Pspam Mail,  Deontenpe),
(pspam spam, pmailpspam), (pspam spam, pmailpe)u
(pmail, mail, pcontenpmail), (pmail, mail, pcontenpe),
(ptrash7 tr35h7 pspanpe)7 (pe7 e)7 s }7

wherepeontentiS the state characterizing valid content of mails where axelomitted
further states and transitions for checking its validitg. eof sender, address, subject
andbody etc. According to this automaton, the elemetiiox contains a possibly
empty sequence ahail andspam elements where evegpam element contains arbi-
trary sequencesf mails.

Convention. In the rest of this paper, we will not mention the input typesur
theorems and proofs. Instead, we always implicitly assumaé this type has been
encoded into the mtt. This can be done as follows. Assumethieasinput typesS is
given by a (possibly nondeterministic) finite tree automato From an mttM, we
then build a new mtfi/ 4 whose function symbols are pairs consisting of a function of
M and an automaton state df E.g., from a rule

q(a(z1,22),y1) — b(qi(z1,91), g2(x2,91))

we obtain the following new rule

(g,p)(a(w1,22),91) — b({q1, p1)(21, Y1), (92, P2) (T2, 91))

if (p,a, p1p2) is a transition ofA. Note that the predecessor stateorresponds to the
input variabler; and therefore occurs in the right-hand side as the secongaoent
in recursive calls on:;. The new set of initial states then is the set of all péits f)
consisting of an initial state of/ and an accepting state df. In particular, the new
mtt M 4 is of sizeO(|M]| - |A]). As usual, thesize|M | of an mtt)/ is the sum of the
sizes of all its rules where the size of a rule is defined as uhe f the sizes of the
terms representing the left- and right-hand sides of the. riihe sizg A| of a finite
automatord is defined analogously.

3 Linear Mtts

In this section we want to prove that type checking is in PTIKE mtts that pro-
cess every node of the input tree at most once. Syntactithit/can be guaranteed



by requiring that in every right-hand side, each input vaga:;; occur at most once.
Mtts satisfying this restriction are callduhear [9]. As an example of linear mtt
consider the mtappwhich evaluated.@-symbols as concatenation in the binary tree
representation of forests. The set or ruleappis:

a(apqxl ) e)7 ap[xx27 e))
Y1

init(a(xy, z2))
apqeayl)
app(a(r1,72),41) a(app(z1,e), app(zz; y1))
app(@(z1,z2),y1) app(z1, app(w2, y1))

The first rule defines the action for the initial function syoshimit. The label should
be considered as a generic representative of any symba? ishadbument besidesand
@. Since mtts operate on ranked trees, they do not supporatamation as a base op-
eration. We will lift this restriction in Section 5. The na&pp however, shows that it is
possible to evaluate symbolic occurrences of a concatenafierato@. Applications
of this constructor are evaluated in the last rule: The atadun of the right child is
stored in the parameter while the left child is recursivefwérsed until reaching the
leaf symboke.

Note that linearity for an mtt in particular implies that thember of function calls
in right-hand sides is bounded by the maximal rank of inputlsgls (in our case: 2).
Here, we observe for linear mtts that their output languagede described by means
of rules where the input arguments of all occurring funcgmbols is simply deleted.
Accordingly, the resulting rules no longer specify a transfation but generate output
trees. A set of rules which we obtain in this way, constitaesntext-free tree gram-
mar (cftg). The grammar characterizing the output languagéefinear mtiapp, for
example, looks as follows:

init — a(app(e),app(e))
app(y1) — w1 | a(apple),app(y1)) | app@pp(y1))

whereinit, app are nonterminals, andpp has one parameter. Note that selection of
rules depending on input symbols now is replaced with na@rdehistic choice de-
noted by 1.

Context-free tree grammars were invented in the 70s [28 [8for a compre-
hensive study of their basic properties. Formally, a cftgan be represented by a
tuple(E, X, P, Ey) whereE is a finite ranked set of function symbols or nonterminals,
Ey C Eis a set of initial symbols of rank @; is the ranked alphabet of terminal nodes
andP is a set of rules of the form(y,,...,yx) — t whereq € E is a nonterminal
of rankk > 0. The right-hand side is a tree built up from variableg, , . .., y; by
means of application of nonterminal and terminal symbafsthe example, we have
represented the cftg only by its set of rules. As for mttsdieout (I0) and outside-in
(Ol) evaluation order for nonterminal symbols must be ditiished [8]. Here, we use
the 10 or call-by-value evaluation order. The least fixpai@mantics for the cftg is
obtained straightforwardly along the lines for mtts — signpy removing the corre-
sponding input components (and the substitutiomhen evaluating right-hand sides).
In particular, this semantics assigns to every nontermgiorankk > 0, a set:

[q] € Z=(Y)

I A



forY = {y1,...,yx}. The language generated &Yis:

L(G) = U{[[QO]] | g0 € Eo}

Theorem 1 (Corollary 5.7 of [9]) The output language of a linear mftcan be char-
acterized by a cft@r ;. The cftgG,; can be constructed frody in linear time.

Proof. Given a linear mttM = (Q, %, Qo, R) we constructy, = (E, %, P, Ey)
whereE = Q andEy = Qp. The new nonterminals differ, however, from the function
symbols inM in that the input argument has been canceled. Thus, the $yymimw
has rankk iff the function symboly of M hask accumulating parameters. For every
rule

ga(z1, ..., xn), Y1, -, Yk) — t,
of the mtt, there is precisely one productionfn

q(yla' .. 7yk) - tla

where the new right-hand sidgis obtained by replacing every call(z;,...) in t by
¢ (...). Aformal proof thatG ), indeed characterizes the output languag&fofan be
found, e.g., in [9]. o

The characterization of mtt output languages by cftgs isulibecause (1) empti-
ness for (10-)cftgs is decidable in linear time (using a &malgorithm as the one for
ordinary context-free (word) grammars, see, e.g.,[5] @) cftgs are closed under
intersection with recognizable tree languages [8].

While for the specification of input types, we allowadndeterministidinite tree
automata, our further constructions require the output tgpbe specified by deter-
ministicautomaton. As usual, we call a fta= (P, X, §, F') deterministic(dfta) if for
each symboh € ¥ of rankk > 0 and every tuple; . .. p; of states, there is exactly
one statey with (p,a, p; ...px) € 6, i.e.,d is a functions : ¥ x P* — P. In theory,
deterministic ftas can be exponentially larger than nosmheinistic ones. In practise,
however, they are usually not much larger than a correspgnbndeterministic one.

In our example, the output type could, e.g., indicate thegrdfansformation, the
elemenimbox should contain only a list ahail elements. For this purpose, we can use
a deterministic bottom-up tree automaton with set of states

{p6‘7 Ptrash, Pdoc, Pmail; Pspam Pmbox; Pcontent Pfail 5 - - '}7

where statevcontentcodes that a mail has a correct content. The deiafaccepted by
the statepe. For all other symbols, we only list the transitions not tdsg in the error
statepr,i. The statepqoc is obtained for a node labeleldc with left child mbox and

right childe:

e doc De
De Pmbox | Pdoc

10



Each table represenésfor the label given in its upper left corner. States in thet firs
row are possible states for the right child, and accordistgies in the first column are
possible states for the left child. Ferbox andtrash we have the following transition

tables:

trash | pe

mbox | Prash
Pmail Pmbox
De Pmbox

Dspam | Ptrash
Pmail Ptrash
De Dtrash

Finally, these are the transitions fi@ail andspam:

mail DPe Pmail | Pspam

Pcontent | Pmail | Pmail | Pspam

Spam Pe Pmail | Pspam
Dcontent | Pspam | Pspam | Pspam

Now assume the output type is given by a dfta. In order to ali@cise complexity
estimations for type checking, we briefly recall the constinn for intersecting cftgs

with dftas.

Theorem 2 Let G be a cftg.
1. It can be decided in linear time whether or #¢tz) = 0.

2. Forevery dftad, a cftgGG 4 can be constructed such thetG 4) = L(G)NL(A).
The grammat 4 can be constructed in tin@(N - n**1+4) whereN is the size
of G, k is the maximal rank of the nonterminals@f d is the maximal number
of occurrences of nonterminals in right-hand sides,arthe number of states

of the finite tree automaton.

Proof. Let A = (P, %,4, F) andG = (E, %, P, Ey). The set of nonterminals @f 4
consists of all tuple$q, po, p1 - . . px) Whereq € E of rankk andpy, ...,px € P. The
new nonterminalg, po . . . px) iS meant to generate all treesf the nonterminaf; of
G for which there is a run ofi, starting in stategp; for leavesy;, and ending in state

Po-
For every ruleg(ys, . .., yx) — g of G the intersection gramméf 4 has the rules:

[@.p0---Pel(y1, - k) — ¢

whereg’ € TPoPk[g] and the setg?°--Px[¢] are inductively defined as:

TPibrPry;] = {ui}
Tropr-Prla(gr,....gm)] = {algh,---.9m) |

d(a,ph,...,pl,) =poAYi: gi € TPiPL-Pk lg:]}
TPop1---Pk [q/(glv ce. 7gm)] =

/

{ld',poph - L ](gh, - gh) | Vi s g € TPiP-Pr[g]}

11



By fixpoint induction, we verify for every € E of rankk > 0 and stategg, ..., px €
P that:

lg.po-- o] =[adl N {t € Ix(Y) | 6" (t,p1-..pk) =po} (%)

whereY = {y1,...,yr} andd* is the extension of the transition function 4fto trees
containing variables fror’, namely, forp = p; . .. pi:

5 (yip) = pi

5*(aty, ... tm),p) 5(a,0*(t1,p),- -+, 6*(tm,p))

The set of new initial nonterminals consists of all, f] whereqy € Ey and f is an
accepting state ofl. The correctness of the construction follows from equation

For a cftg of sizeV with at mostk parameters and at masbccurrences of nonter-
minals in right-hand sides, and a tree automaton wikates, the intersection grammar
is of sizeO(N - n*+1+4): since there can be in the worst cage™! copies of a rule of
the cftgG and for every non-terminal occurring in the right-hand sidemay choose
arbitrary output states. This completes the proof. o

Note that the complexity bound provided for the constructid Theorem 2 is a
worst-case estimation. Practically, one can organize ¢lmsteuction such that only
nonterminals of the intersection grammar are constructeidlwgenerate nonempty
languages. Also, trap states can be excluded which may owt 8p in any accepting
run to the automatoA. In this way, the number of newly constructed nonterminalls w
generally be much smaller than the bounds stated in thegheo€onsider, e.g., the
cftg characterizing the output language of the linearapti Assume we are interested
in an output type as given by a dfta with the following traiosis:

e a Pe | Pa
DPe | Pa | Pa

Pe
Pa | Pa | Pa

wherep; is the final state ang, is the state assigned to leaf no@esn order to obtain
a characterization of erroneous outputs, we constructdhmgtement automatos by
inverting final and non-final states. Then we construct thergection grammar with
A:

[init, pa) —  a([app pepe](e), [app pepe](e)) |
a([app papel(e), [app, pape|(e))

[app papel(y1) —  a([app pepel(e), [apR pepel (1)) |
a([app pape|(e), [aPR pepe](y1)) |
a([app pape] (e), [app. pape (v1)) |

app papa) ([aPR pape] (y1))

[app papal(y1) —  a([app papel(e), [aPR papa) (¥1)) |
[apR papal ([@PR papal (¥1)) | 11

[app pepel(y1) —  [aPR pepe] ([@PR pepe] (¥1)) | 11

In our example, the initial nonterminiit gives rise only to a tuple containing the state
pa. We conclude therefore that the intersection is indeed gmpt

12



In general, we are interested in type checking transfoonaimplemented through
mtts. Since we have already coded the input type specificatio the mttM, type
checking amounts to verifying, for a given output tyfig:, whether or not,;(7x) C
Tout- Applying our above constructions we obtain our first typealting result.

Theorem 3 Type checking for a linear mtt/ can be done in im@ (N - nk+1+d)
whereN is the size of the mttk is the maximal number of accumulating parameters,
d is the maximal rank of an input symbol ands the size of a dfta for the output type.

Proof. Following Theorem 1, we first construct fad the cftg Gy, characterizing
the output language af/. Then, following Theorem 2, we construct the intersection
grammar betwee&’,; and the complement automaton of the dfta. Sihtés linear,
there are at most nonterminals in right-hand sides 6f,,. Finally we check non-
emptiness of the intersection grammar, which can be dorieeai time. o

The algorithm in the proof of Theorem 3 can also be applied@N-linearmtts.
Then, the constructed cftg does no longer precisely cheniaetthe output language of
the transformation, because dependencies on input salftieeseveral function calls
on the same input variablg) have been lost in the grammar. Rather, the cftg generates
a superset and hence provides a conservative over-ap@Etam

Theorem 4 Assume( ), is the cftg constructed for an arbitrary m#t. Thenr,,(7x) C
L(Gur)-

Since the cftg still provides a saBipersetof produced outputs, type checking
based on cftgs is sound in the sense that it accepts onlyctqnagrams.

Consider, e.g., our example of Section 2. We construct foh @att rule exactly
one production of the cftg;; and obtain;

init — doc(mboxe)

mbox — mbox(mail, trashinit(spam))

trashinit(y,;) — trash(trash(y1),e)

trash(y; ) — spam(copy,, trash(y)) |
mail(copy, trash(y1)) | v1

copy, —  mail(copy, copy,) | e

mail —  mail(copy, mail) | mail | e

spam — spam(copy,, spamn | spam| e

where the two function callmail andspamon the same input variable, are simply
represented by the two nonterminatail and spam respectively. The intersection
grammar contains the following rules fimit:

[initapdoc] - dOC([mbox_pmbox]ae)
[mboxpmbox] - mbox([ma“,pman],

[trashinit, prastpe] ([SPampe])) |
mbox([mail, pmail,
[

trashin it; ptraslpsparr] ( [Spam pspan] ))

13



where we only have listed rules using nonterminals with ngoty semantics. We omit
the remaining rules of the intersection grammar but noterthaonterminalinit, p] is
found to represent a nonempty set fo# pgoc. We thus conclude that type checking
succeeds, and indeed, all mail sequences mapked have been removed by the mtt
from mbox.

Note that when approximating the output languages of gén#tawith cftgs, then
we no longer may assume that the maximal numbef occurrences of nonterminals
in a right-hand side of this grammar is bounded by a small teonis If d turns out
to be unacceptably large, we still can apply the well-knovicktof constructing an
equivalent cftgz’ where the maximal depth of right-hand sides is bounded byl P [1
This will increase the size of the grammar by a factor at n@@t?) and reduce the
maximal number occurring nonterminals in right-hand sidest mostt + 1.

4 MTTswith bounded copying

In this section we investigate in how far the exact techrédguem the last section can
be extended to more general classes of mtts. The goal agtinfiisd precise and
tractable characterizations of the output language. Ifntitieis no longer linear, we
must take into account that distinct function calls couliéréo the same input node
and therefore must be “glued together”, i.e., be jointlyleated.

In general, an arbitrary number of function calls may be igpolpio the same sub-
document of the input. In many practical transformatioheugh, this is not the case.
Instead, typical transformations consult every part ofitipeit only a small number of
times. In our running example witlail andspam, every subtree of the input is pro-
cessed at most twice. Therefore, we consider the subclasgoivhich aré-bounded
copying in the inpytb > 1. Every such mtt is allowed to process every subtree of the
input at most times. Thus in principleb-bounded copying is a semantic property.
In particular, it implies that every variable occurs at most times in corresponding
right-hand sides (as, e.g., in the syntactic definition @])]1but it also rules out that
increasing numbers of copies can be produced, say, by expapplication of copying
rules in a loop. This (dynamic) property has been defined avektigated in [6] un-
der the name “finite-copying in the input”; intuitively, theeoperty says that the state
sequence at any given node of the input tree (i.e., the sequerstates that process
the node) may not be longer thannote, however, that [6] only deals with total de-
terministic mtts. Instead of dealing with semaritibounded copying, we find it more
convenient to consider syntactiebounded copying only. In order to introduce this
notion precisely, let us assume w.l.0.g. that every stafe @§ useful, i.e., can produce
an output for at least one input tree.

For all stateg; of M, we define the maximal copy numbefsg| as the least fixpoint
of a constraint system over:

N={l<2<... <o},

the complete lattice of naturals extended with The constraint system consists of all
constraints:
blg] > blg] + ...+ blgm]

14



whereg(a(z1,...,21),y1,...,yx) — tisarule ofM and, for some, andqs, ..., gm
is the sequence of occurrences of callge;, . . .) for the same variable; in the right-
hand side.. The mttM then issyntacticallyb-bounded copyingor, ab-mtt for short)
iff for all states,[¢] < b.

In our mailbox example this constraint system looks like:

blinit] > b[mbox b[mbox > b[trashinif
bimbox > b[mail] + b[spam b[mail > blcopy
blspamp > b[copy) bltrashinif > bjtrash
bltrasH > b[copy bltrash > blcopy]
blcopy] > b[mail

where we have removed trivial constraints suctbf@saill > b[mail]. Thus, the
copy number ofnit andmboxequal 2 while all other copy humbers equal 1 (the least
element of\).

The least solutions of such constraint systems over thealaitan be determined in
linear time [29]. In fact, the latter paper also providesage criterion which precisely
characterizes whether or not all copy numbers are finitemtunts to checking that
for every constrainb[g] > b[¢gi] + ... + b[gm], Whenevely andg; are in the same
strong component of the variable dependence graph of thetreamt system then the
constraint is of the simple fornd{g| > b[g;] only. The next theorem thus follows from
the definitions and [29].

Theorem 5 Assume thafl/ is an mtt without useless states.

1. It can be decided in linear time whether the mits syntacticallyp-bounded for
someb.

2. If M is syntacticallyp-bounded-copying thel < 21,
3. The syntactic copy numbers of every statdbtan be determined in linear time.

Still, we may worry how syntactic bounded copying is relatedemantic bounded
copying. An alternative syntactic restriction, which ingslour restriction of-bounded
copying, is the notion of "single use restriction (sur)”iginally invented in the con-
text of attribute coupled grammars, but later generalipeohtts [6]. In that paper it
is shown for a restricted case of mitts, that finite-copyingefsantic bounded copy-
ing) implies sur, and hence syntactic bounded copying. Wgecture that, also for
our (nondeterministic, 10) mtts, a similar result can bevewhich shows that the
semantid-bounded copying restriction implies the syntactic one.

Depart from fundamental considerations, we here are istiedan mtts where ev-
ery input node is visited only amall number of times. Since an input node can be
visited more than once, we need a language model which allene glue together
multiple computations. For this purpose, we proposepled replacement grammars
(crgs). This concept is a restricted formaafntext-free graph grammafsf., e.g., [5])
and seems similar to the grammar formalism proposed in [@/.deliberately have
refrained from introducing the latter (notationally hepepncept in order to present
an abridged version which is streamlined for our applicati@his abridged version
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Figure 2: An example hypergraph.

can be viewed as a mild generalization of context-free tramgrars where right-hand
sides are no longer trees. In particular, we allow nonteafsito have multiple roots
(“outputs”). Thus, right-hand sides of rules now are (liegtd forms of) hypergraphs
such as the one shown in Figure 2. The idea is that the newhayid sides concep-
tually consist of a tuple of trees which are glued togetheraaterminals. Therefore,
we can assume that every argument of a nonterminal is deditata specific output.
Thus, the functionality of a nontermindl with » outputs can be described by a tuple
(k1, ..., k,) meaning that the firgt; arguments are dedicated to the first output and so
forth. This tuple is called theort of A. Semantically, the nonterminal is meant to
returnr-tuples of trees. In order to obtain a linear representatibich is reminiscent
of terms, we allow us to introduce unique auxiliary namestli@ components of an
occurrence of the nontermindlwhich then are used similar to nonterminals in cftgs.
The hypergraph from Figure 2 then would be represented as:

let (Al,AQ):A
in  (a(y1, Ai(e)), A2(b(y2)))

In general, we define a coupled context-free tree grammégjdo consist of rules

A(yla"'aym)_) g

where A is a nonterminal of sortky, ..., k.) with m = k; + ... + k. andg is a
hyper-graph of the form:
let defs in (ty,...,t,)

wheredefs is a sequence of component declarations
(B1,...,Bs) =B

with B a nonterminal of some sotk, ..., k.) such that the component3; have
ranksk:.;. Furthermore(ty, .. ., t,.) is atuple of trees which are built up from variables,
terminals and components according to the following retstms:

1. Every declared componeft; occurs at most once;

2. The treeg; may only contain variableg,,, +1, ..., Ym,+k, fOrm; = k1 +... +
kifl.
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The semantics of rewriting in a hyperedge replacement granima “standard”
language theoretic way (by means of derivation steps) cdoural in [5], but here we
are only interested in hypergraphs as compact represemsatf tree tuples. Therefore,
we only consider a least fixpoint semantics based on thepirgttion of nonterminals
as sets of tree tuples. More precisely, we interpret a nomited A of sort(k1, ..., k),
by a subset:

[[A]] - TE(Yl) X ... X TE(Y;)

whereY; = {y1,...,yx, }-

The semantics is based on an evaluation funcfigh « of a right-hand sidg
for A w.r.t. an appropriate assignmemtof the components3; to trees. Ifg =
let defs in (t1,...,t,) then

[[g]] a = ([[tl]] Q. [[tr]] a)

where the valueft;] « are inductively defined by:

[a(er,...,ex)] @ = a(fer] a, ..., [en] @)
[[ymﬂrj]] « = Y (mz =k +...+ kifl)
[[Bj(elv"'aen)]] o = Q(Bj)[[[el]] O‘/ylv"'v[[em_;]] a/y"]

Note that during evaluation, we have re-scaled the indi€éiseovariablesg; . in ¢; to
be from the sey, ..., yx, .

The setqA], A a nonterminal, then are obtained as the least assignmentbf s
sets for which

[4] > gl o
for every ruleA(ys,...,ym) — g of G, and assignments for which

(@(B1),...,a(Bs)) € [B]

whenever By, ..., B;) = B is a definition ing.

Thelanguagel(G) generated by the grammé@rthen is given by the union of the
sets[S], S a start symbol o&5.

Now consider again a-bounded-copying mtii/. The goal is to glue together
inside a right-hand side d¥7, all occurring function symbols which are called with the
samer;. Assume for example, that the following two rules are pad 8fmitt.

q1(a(z1,72),y1,92) —  blaa(z2,92), ¢3(1, g3(21, 1))
q2(a(z1,72),y1) = g3(w2,c(y1))

The right-hand sides can be represented by the two grapmsshadrigure 3. Note
that both calls tgy; in the first rule are on the same variahle as well asg, in the
first rule andys in the second rule om,. The idea must therefore be to jointly produce
the outputs for these pairs of calls by gluing them togethtr honterminalggs, g3)
and [go, ¢3], respectively. The graphical representation of the rgplstructure is
displayedin Figure 4. Itseems as if the gluing had introdwagycleinto the structure.
The present cycle, though is “harmless” since it only introes a flow from "one
component” of the new box into the other and not vice versa right-hand sides of
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Figure 4: The merged right-hand sides.

the new function symbdks., gs], e.9., then are obtained by pairing together all possible
pairs of right-hand sides of rules for the same input symhdlagain gluing together
function symbols which are called for the same inputs.

Technically, we define the gluing operation for a given doet (kq,..., k) and
sequence = (t4,...,t,) of trees as follows. For every; occurring in the sequence,
we introduce a definitioq(z, 1), ..., (i, s)) = [q1,-- -, ¢s] if @1, ..., ¢s IS the sequence
of occurrences of function symbols appliedto Let defs denote the sequence of these
definitions. Then the transformatigfue(k, ¢) should yield the graph:

let defs in (t},...,t.)

where the primed terrt] is obtained front; by replacing variableg; with y,,,,; for
m; = k1 + ...+ k;—1 and by replacing théth occurrence of a call' (x;, . ..) with
(l,7)(...). The gluing operation allows us to construct a ccftg whichrelaterizes the
output language of &mtt:

Theorem 6 For everyb-mtt M, there is a ccftgxy, such thatry, (7s) = L(Gar). The
ccftg G s can be constructed in tin@(| M |°).

Proof. The construction o7, is the immediate generalization of the corresponding
construction of a cftg for linear mtts. Now, however, the tesminals consist of tuples
[q1, - - -, qr] Of states of thé-mtt. The initial nonterminals of75; consist of allgo], qo

an initial state ofA/. Every ruleq(a(z1,...,%4),y1,...,yx) — tOf M givesrise to
the grammar rule:

[ (y1, .- ye) — glue((k), (t))

Furthermore, whenever a fresh nontermijgal . . . , -] occurs in a right-hand side;
of rankk;, we consider all tuples of rules:

Qi(a(xlw"axd)myla"'ayk) -t 3 i:17"'ar
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which agree in the input symbeland construct:

[qla" '7qT](yla' .. 7ym) - glue(kai)

form =k +...+k., k= {k1,..., k) andt = (¢1,...,t.). During this construction,
we maintain the invariant that the sum of the copy numbgrs of the nonterminal
[q1,---,qr] ON the left-hand side of the rule is an upper bound to the spmeding
sums of copy numbers for the nonterminals occurring in thvelyneonstructed right-
hand side. Sincé/ is structurallyb-bounded-copying, this invariant ensures that only
tuples of states of length at mdsare constructed. This gives the complexity estima-
tion.

In order to prove that the resulting gramnday; characterizes the output language
of M, we verify by fixpoint induction:

[a1, - 0] = J{aal(s) x ... x [ar](s) | s € T}

where[. ..] on the left- and right hand sides are meant w.r.t. to the grandf, and
to the mttM, respectively. o

Coming back to our example (cf. Section 2), we construct ftbexmtt rules the
following grammar:

®
linit]  — |
(o] [&]

[trashinif(y;) —

@ @
& ED [

[trash(y:) — |

‘ copy)‘ ‘ trash‘ | ‘ copy‘ ‘ trash ‘

@
spam
[mail, spam  — o] |

mail, spam

[e] [e]
where the productions for the nontermif@py can be constructed straight-forwardly
from the mtt rules. The rules for the new nontermifmadil, span indicate how pairs

of output trees are generated when the mtt functinas andspamare applied to the
same input.
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As for linear mtts, the characterization of output langsagge means of grammars
is only useful if the grammar formalism is effectively cldsender intersection with
recognizable languages and each grammar can be testeddtness. The key obser-
vation is that these two properties hold for ccftgs.

Theorem 7 AssumeG is a ccftg.
1. It can be decided in linear time whether or #¢z) = 0.

2. For every dftad, a ccftgG 4 can be constructed such thatG4) = £L(G) N
L(A). The grammars 4 can be constructed in im@(N - n™+(d+1)-t) where
N is the size ofG, m is the maximal number of inputs of a nonterminal@fd
is the maximal number of occurrences of a nonterminal intsigdnd sides) is
the maximal number of outputs of a nonterminal anid the size of the dfta.

The proof is based on a straight-forward generalizatiomefaorresponding con-
struction in Theorem 2. Note that now, however, nonternsimaay return up td
results. The number of nonterminals therefore may incrbgsefactorn™ . Given
one of these nonterminals, we may have to choose a diffeiaptfor each output of a
nonterminal occurring in a right-hand side. This explahesadditional facton®<.

Let us return to our running mailbox example together with dlutput type from
Section 3. We present here only a manageable part of all ptioths of the intersec-
tion, but all omitted rules can be constructed in the same wiagt we present the rules
constructed from the initial nonterminiait:

[initv pdoc] —

mMbOX pmbox

They are obtained from the ccftg rules by building all polesénd consistent new
right-hand sides in which every nonterminal is equippedhita states for the inputs
as well as for the outputs.

The new nonterminals consist of a nonterminal from the ccltgracterizing the
output language and a tuple of sequences of states from tteerbap tree automaton:
one sequence for every component of the nonterminal. Theermamalinit, e.g., is
annotated with the stajgc alone, sincenit has only one component with no inputs.
In the following rules, the nonterminatboxis annotated withpmpox Where the anno-
tations of the right-hand sides differ in the states for thgpats of the nonterminal
[mail, span.

[MbOX pmboy  — | 921 93] 94

mail, spam pe, pe

The graphgs, g3, g4 are as the first one, but the bottom edge has as last two entries
Of ItS |abe| the pai@)e, pspam for g2, Pmails pspam for g3, andpmailn De for 94.- We
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will not list all rules of the intersection grammar but caesi in detail the nonterminal
[mail, span). This nonterminal has been obtained through merging of tttdunction
symbols without accumulating parameters and thereforan®tated with a pair of
states. We thus obtain the rules:

. ® @
[malla SPampea pE] - n
[mail, spam pmail, pe] - m
COPY, peonten] | Mail, spam pe, pe

[mail, spam pe, pspan —
mail, spam pe, pe
[mail, spam pmail, pspan] - mal

‘COP)’; PcomenJ ‘ mail, spam pe, pspam ‘

Theorem 7 provides us with the technical background to poowvenain theorem:

Theorem 8 Type checking for &-mtt M can be done in timg@(N? . pb-(k+1+d))
whereN is the size of the mttk is the maximal number of accumulating parameters,
d is the maximal rank of an input symbol ands the size of a dfta for the output type.

5 MacroForest Transducers

Macro tree transducers have the disadvantage that theytdmpeeate on forests di-
rectly but refer to representations of forests through eankees. This limitation,
though, can be lifted. In [25], we have proposed macro fdrassducers (mfts) which
operate on forests directly. Mfts generalize mtts by primgaconcatenation as addi-
tional operation on output forests. This extra feature iegathat some mft translations
cannot be realized by a single mtt alone but only by the coitippsof a mtt with
the transformatiorapp from Section 3 [25]. Our transformation of the mailbox, for
example, can be represented by a forest transducer as $ollow
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1 init(doc(z1)x2) —doc(mboxz1))

2 mboXmbox{z1)xs) — mbox{mail(z1))
trashinit(z,, spaniz;))

s trashinit(trash(zy )x2, y1)—trash{copy, (z1) y1)

+ mail(mail{zq)x2) —mail{copy(z1))mail(zs)
s mail(spam(zy)xz2) —mail(zz)
s spanfmail{zq)xs) —spanzs)

7 spanispam({xy)xs) —spam(copy,(z1))spantxz)

s copy(mail(z1)az) —mail(copy(a1)) copy,(22)
o copyy (spam (a1 )2)—spamicopy (1)) copy, (i2)
0 copy,(mail(zi)xs) —mail(copy(z1)) copy,(zz2)

where again the functiocopyis responsible for correctly copying the content of mail
elements into the output. The functiomsil, spam copy,, andcopy, additionally have
a rule translating to e. Note that in order to have a more compact notation, we have
represented elements by the label of their root, followetth Wie content in brackets.
Due to concatenation of output forests in lines 2, 3, 4 and acaumulating parameter
is only used by the functiotrashinit for transporting the spam mails extracted from
thembox element, into the content of the right siblingrabox.

Formally, amacro forest transducei! (mft for short) is similarly defined as an
mtt. Now, however, rules are of the form:

q(a<wl>x2ay17"'7yk)_>f or
Q(eaylv"'ayk) - f

where right-hand sideg now are expression forests which can be constructed accord-
ing to the following grammar:

fou= e b{f) | d (@i, fr, s fm) L5 | 1S

Here,b is a label of a node in the outpuj; is one of the accumulating parameters
from the left-hand sidey’ is a function name, and; is one of the input variables of
the left-hand sidei(= 1, 2 if available at all).

Again, initial function symbolg, may not have accumulating parameters.

The evaluation of an mft begins at the root node of the leftnireg in the input
forest. Then it traverses the input forest as if it were atyitree meaning that in every
step, it may proceed either to the content of the current wode its right context. It
is only when producing output that it may refer to the newigbif concatenation.
As for mtts, we adopt amside-outevaluation strategy, i.e., call-by-value passing of
parameters. The only difference, thus, compared to mttsaisvte now additionally
may concatenate forests in accumulating parameters asawll the outputs of the
transducer. LeFy, denote the set of all forests with node labels framAccordingly,
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let 75 (Y") denote the set of all forests with node labels frBrwhich additionally may
contain (forest) variables from the st The least fixpoint semantics for the niff
then assigns to every statevith £ > 0 accumulating parameters a function:

[q] : Fs — 273

whereY = {y1,...,yr}. The definition of the translation, realized by the mfi\/
then is analogous to the definition for mtts in Section 2.

In the following, we will not mention explicitly given inpuypes in our theorems
and proofs. Instead, we always implicitly assume that §pe thas been encoded into
the mft. For that, we assume that the input type is specified(ppssibly nondetermin-
istic) finite forest automaton (fta for short) which is egsalty the same as a finite tree
automaton running on the binary representation of the forsis automaton then is
simulated during transformation along the same lines ag@tié 2. In the following,
we therefore concentrate on the output languages of mfts.

6 Linear Mfts

The constructions which we have provided for describingopraximating the output
languages of mtts naturally can be extended to mfts as wh#.ohly property which
we have to take care of is that the grammar notions are agptelyrgeneralized to
deal with concatenation of forests.

Thus, we introduce the concept o€antext-free forest gramma¥ (cffg for short)
as atuplg E, X, P, Ey) whereF is a finite ranked set of function symbols or nonter-
minals,Ey, C E is a set of initial symbols of rank @; is the alphabet of terminal nodes
andP is a set of rules of the form(y:,...,yx) — f whereq € E is a nonterminal
of rankk > 0. The right-hand side is built up from the empty forest and variables
Y1, ..., Yx Dy means of concatenation, application of nonterminal anchinal sym-
bols. Note that this new grammar formalism can be considases generalization of
Fischer's macro grammars [11] from strings to forests. Atherest of the paper, we
refer to the inside-out mode of evaluation of nested nonteahoccurrences.

Again, the cffg for our example mft is obtained by cancelihg input:

init — doc(mbox

mbox — mbox{mail)trashinit(spamn)
trashinit(y;) — trash(copyy;)

malil — mail{copymail | mail | e
spam — spam| spam{copyispam| e

The notion of linearity for mfts is completely analogouskfidied as linearity for
mtt. We obtain:

Theorem 9 Consider an mft\M/. Then a cffgG), can be constructed in linear time
with the following properties:

1. T]V[(.FE) Q E(GM)
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2. If M is linear, thenry, (Fx) = L(G ).

For Theorem 9 to be useful, we additionally verify that emess for cffgs is ef-
ficiently decidable and also that cffgs are closed undersetgion with recognizable
forest languages. While emptiness still can be decidedweith much the same algo-
rithm as for cftgs, also the construction of a grammar forittersection works pretty
much along the same lines. We have to take care, howeveguhdeterministic finite-
state representation of the output type is compatible vaticatenations.

Therefore we propose to use finite forest monoids (compage the discussion in
[2]). A finite forest monoidffm) consists of a finite monoid/ with a neutral elemen,

a finite subset’ C M of accepting elements, and finally, a functigmn: X x M — M
mapping a symbol of: together with a monoid element for its content to a monoid
element representing a forest of length

Given a deterministic bottom-up tree automatbn= (P, %, d, F4), we can con-
struct a finite forest monoid as follows. L& = P — P be the monoid of functions
from the set of automata states into itself where the monpétation is function com-
position. In particular, the neutral element of this moni@dhe identity function.
Moreover, the functionp is defined by:

up(a, f1)(p) = d(a, f1(5(e)), p)

Finally, the set of accepting elements is given by:
F={feM][((e)) € Fa}

This construction shows that every recognizable foregidage can be recognized by
a finite forest monoid.

Although the ffm for a bottom-up tree automaton generally ba exponentially
larger, this need not always be the case.

For our running example the monoid consists of the neuteaheht together with
the following elements:

doc, mbox, trash, mboxtrash, mail, spam, fail

Besides the compositions withand those resulting ifail, we havembox - trash =
mboxtrash, and moreover:

| mail  spam
mail mail spam
spam | spam spam

We summarize our observations for cffgs in the next theorem:

Theorem 10 AssumeG is a cffg.

1. It can be decided in linear time whether or #gtz) = 0.

2. For every ffmM, a cffg Gy, can be constructed such thafG,) = L(G) N
L(M). The grammac,; can be constructed in tim@(N - n*+1+4) where N
is the size ofG, k is the maximal rank of a nonterminal 6f, d is the maximal
number of occurrences of a nonterminal in right-hand sigeknais the size of
the finite forest monoid.

24



Figure 5: An example right-hand side of a ccffg.

Theorem 10 immediately gives us a first precise type cheakisgit for linear mfts
and an approximative type checking method for general mfese, we only state the
exact result:

Theorem 11 Type checking for a linear mft/ can be done in tim& (N -n*+3) where
N is the size of the mftk is the maximal number of accumulating parameters,rand
is the size of a ffm for the output type.

7 MFTswith bounded copying

We are now going to extend the methods from the last sectiosymdacticallyb-
bounded copying mftsb{mfts) for short. We deliberately omit the formal definition
but appeal to the reader that it is completely analogousaeahked tree case of mtts.
In oder to describe the output languages of such transdugeragain glue together
function calls which refer to the same node in the input fores

For this purpose, we propose coupled context-free foreshgrars (ccffgs). This
concept is not so well-established in the literature. It esamt to be a generalization
of context-free forest grammars where we allow nontermsit@have multiple roots.
Graphically, an example of a right-hand side is shown in Féda The idea is that
every new right-hand side now conceptually consists of &etopforests which are
glued together at nonterminals. In the example, the firghutuforest corresponds to
the concatenation of the trééB) and the forest returned by the first component of the
nonterminald while the second component of the nontermiAgirovides the second
output forest.

As before, we assume that every argument of a nonterminaldated to a spe-
cific output of this nonterminal. Thus, the functionalityaofionterminal is described
by a sort(k+, . .., k) meaning that the firgt; arguments are dedicated to the first out-
put and so forth. The linear representation of right-haddsivhich we choose here is
identical to the representation in the tree case:

let defs in (f1,..., fr)

— with the only exception that the body of tihet construct now consists of a tuple
of forests which are built up from the empty forest and vddalby application of
components of nonterminals, terminal symbols and conetitan The example from
Figure 5 thus is represented by:

let (Al,AQ):A
in (b(B)A;, A2(y1y13))
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The least fixpoint semantics of a ccffg interprets every aontnalg of sort(k1, . .., k)
as a set of forest tuples:

[[A]] - fz(yl) X ... X .FE(Y;)

whereY; = {y1,...,y, }. Now consider again &bounded-copying mfi/. Using
the same gluing technique as for mtts, we obtain:

Theorem 12 For everyb-mft M, there is a ccffg=y, with
T]V[(.FE) = E(GM)
The ccffgGy can be constructed in tim@(| M |°).

Coming back to our example (cf. Section 2), we construct ftbenmft rules the
following grammar:

ini .
ni —
I

[trashinif(y;) —

mail, spa — g
[ ’ p nj\ ‘ mail ‘ ‘ mail, spau

[e] [e]
where the rules for the nontermingtopy}, [copy,] and [copy,] can be constructed
straight-forwardly from the mft rules. The rules of the ltise are for the new non-
terminal[mail, spanj indicating that the mft functionsail andspam respectively, are
applied on the same input variable.

As for linear mfts, the characterization of output langusabg means of gram-
mars is only useful if the grammar formalism is effectivelgsed under intersection
with recognizable languages and each grammar can be testedhptiness. Now in
the same way how ccftgs cooperate nicely with determinftis, our new grammar
formalism works nicely together with finite forest monoidsherefore, Theorem 7
literally holds if we replace “ccftg” with “ccffg” and “dftawith “ffm”, respectively.

Let us return to our running mailbox example together with dlutput type from

Section 2. We present here only a manageable part of all ptioths of the intersec-
tion, but all omitted rules can be constructed in the same wiagt we present the rules

L3
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constructed from the initial nonterminiait:

[init,doc] —

mbox mboxtrash

They are obtained from the ccffg rules by building all poks#nd consistent new
right-hand sides in which every nonterminal is equippedh\fin states for the inputs
as well as for the outputs. The new nonterminals consist ohéamminal from the ccffg
characterizing the output language and a tuple of sequehcesnoid elements. Here,
the nonterminainit is annotated with the statioc because this is the only consistent
annotation of the hypergraph representation of the rigimetside.

Applying this technical background on ccffgs we arrive at main theorem for
macro forest transducers:

Theorem 13 Type checking for a-mft M can be done in timé&(N®-nb(++3)) where
N is the size of the mftk is the maximal number of accumulating parameters,rand
is the size of a finite forest monoid for the output type.

8 Conclusion

We have exhibited exact type-checking algorithms for usdésses of XML transfor-
mations based on a precise characterization of output &gegu For our approach, the
input type could always be described by a nondeterministitefiautomaton. In or-
der to obtain tractable algorithms, we assumed for maceottessducers, that output
types are given adeterministicfinite automata, whereas for macro forest transducers,
we even assumed legal outputs to be represented by finitst fmi@oids. The latter
was necessary to elegantly cope with the extra ability oEatenating separately pro-
duced output forests. Besides exact but partial methodalsegrovided approximate
type-checking based on context-free tree grammars whielpsnential only in the
number of accumulating parameters. Note that this apprgaehb far beyond what is
possible with approximations of outputs through recodnlizaets.

All our techniques rely on @side-outor call-by-value evaluation strategy for pa-
rameters. One may wonder in how far similar techniques mak ador outside-inor
call-by-name evaluation corresponding to transformatiexpressed in (fragments of)
lazy functional languages such as Haskell. While the agprate technique based on
context-free tree grammars can readily be extended, itirenoaclear whether similar
constructions could provide exact techniques for usefbtksses of transducers as
well.
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