
Autonomous Sensor Data Processing for Ubiquitous Computing Scenarios

Lars Nagel1, Georg Groh , Michael Berger1 2, Michael Pirker2

Content areas:

Multi-Agent Systems: Autonomous Agents
Learning: Case-Based Reasoning

Knowledge Representation/Reasoning: Ontologies

Abstract
The paper investigates local preprocessing of sen-
sor data by autonomous agents. Means of artificial
intelligence are applied to facilitate a rich and
comprehensive preprocessing in order to reduce the
amount of communication in spite of reasonable
configuration costs. Scenarios for applications are
presented, from which requirements are derived.
After a short discussion of related approaches, an
architecture for autonomous information process-
ing (AIP architecture) is developed as a base for
implementing a framework for the generation of
agents. A prototype for computer aided care of eld-
erly people is explained.

1 Introduction
Ubiquitous Computing, Pervasive Computing and Ambient
Intelligence are keywords for the idea of computerizing and
networking ordinary items and of modeling their local con-
texts in order to broaden their usefulness, individually and
as parts of a larger system. For an effective context-
detection, a variety of environment sensors are necessary.
We suggest that the task of preprocessing and fusing the

1 Technische Universität München
2 Siemens AG

large amounts of sensor data in such a Ubiquitous Comput-
ing environment can be accomplished best in form of an
intelligent, local preprocessing architecture (AIP).
First we will discuss two Ubiquitous Computing scenarios,
in which AIP modules can be employed and which demon-
strate important aspects of the problem field. Based on these
scenarios requirements will be derived for a local preproc-
essing architecture (AIP) including several aspects such as
Filtering, Sensor Data Fusion, Learning and Classification
capabilities, Locality, Inter-AIP-Communication and ge-
neric interfaces. We will then describe the architecture and
some aspects of a prototypical implementation in more de-
tail. A short section on how the architecture was used to
realize one of the described scenarios will conclude this
paper.

2 Scenarios
Scenarios for Ubiquitous Computing have been suggested in
many different areas by many authors. We have chosen two
example scenarios which are especially well suited to dem-
onstrate fields of application for the AIP.

2.1 Automotive Applications
In modern cars, several computers process input from nu-
merous sensors that measure great amounts of data to pro-
vide safety and comfort. Most of the sensors and tasks are

independent of each other and located in different places.
That makes them well suited for intelligent data
(pre)processing in local AIP modules. Examples of such
higher level applications are:
Automatic air conditioning system: Self-regulating air con-
ditioning systems have become quite common in middle
class cars. The necessary data is provided by sensors that
could be read out by an AIP module observing the airing,
heating, humidity and amount of dust in the air. Typical
sensors for this application are solar sensors, measuring the
direction of incidence and the radiation intensity of the sun,
and sensors for temperature and humidity. Moreover the
passenger's settings are part of the input.
Detection of Overfatigue: Many car accidents happen, when
drivers are so tired that their reactivity is heavily reduced.
Often drivers do not realize, when their attention weakens.
Hence, an unbiased computer system could help monitoring
the driver's behavior and alerting him by sound, when his
driving abilities are decreasing. Appropriate sensors and
data could be a camera monitoring his eyes, pressure sen-
sors in the seat, the journey time, the course of speed, the
steering behavior and maybe even body sensors taking
pulse, blood pressure or breathing rate. As normally a single
one of these values is not significant and as false alarms
should be avoided, a fusion of sensor data is self-evident.

2.2 Elderly Care
In Germany the proportion of people older than 60 years
grew from 14 % in 1990 to 24.1 % in 2001 and will reach
34.4 % by 2030. The number of people who require care
will grow from 2 millions today to 2.8 millions in 2020.
[Pötsch, 2003; Haustein, 2003] Against this background
computer-supported health monitoring of elderly people
might be a solution in order to keep the care financially fea-
sible whilst at the same time retaining a maximum auton-
omy for the elderly.
Such a computer system would be fed by sensor data that
reports the behavior of the monitored person, measures bod-
ily functions or retrieves ambient conditions. The sensors
indicate, where the person is and what she is doing, and the
system logs and processes the information noticing e.g.,
when she has forgotten to take her pills or when she is in
distress. [Ross, 2004] In these cases the person and/or her
doctor or relatives are informed. The system's rules should
be formulated by application developers with medical
knowledge or could be learned by a supervised learning
algorithm.
Typically the situations are restricted to a single room and
hence can be handled locally. However, there are cases,
where data from other sensors improve the reliability e.g.
when the person walks to another room, the data from that
room confirms the change.
This scenario was implemented as a test case for the AIP
module.

3 Requirements
After the examination of operational areas for the AIP mod-
ule, a few requirements will be derived from the scenarios:
Filtering: An obvious task of a module processing sensor
data is filtering. In the elderly care scenario filtering is
needed to provide that the medical staff is only informed of
alerts and important changes and not burdened with irrele-
vant messages.
Sensor data fusion: In applications, in which a software
agent needs to perceive and picture its environment on the
basis of sensory data, it is often necessary to fuse data to get
a more accurate or more complete picture. E.g. the detection
of overfatigue depends on multiple sensors, and only in
combination these sensors will provide sufficient data to
model the situation correctly. Providing data on a higher
level fusion can also refine the filtering process. Located on
a middleware an AIP will thereby be able to substantially
reduce data traffic.
Learning: There are two ways to apply learning algorithms
in the scenarios. On the one hand the AIP module could be
trained, how to classify more complex situations, before it is
started. On the other hand it could adapt itself at runtime. In
the elderly care scenario, for example, when the user or the
doctor is notified, they can give feedback, whether the situa-
tion was rated correctly. As the filtering of sensor data is
mainly a classification problem, learning algorithms can
also support the filtering process.
Locality: In spite of ever faster computers a central com-
puter reaches its limits, when it has to read and process large
amounts of raw data. Hence it is advisable, to process or
preprocess locally. This separation of concern makes the
program logic simpler and clearer and thus more reliable.
Moreover, local preprocessing diminishes the amount of
communication.
Inter-AIP-Communication: Although locality is given in the
described scenarios, local areas often cannot be encircled
strictly. In the elderly care home scenario the different
rooms of the person's flat are appropriate sections, but
changing to another room can be retraced better, when adja-
cent AIP modules are able to communicate. Another moti-
vation for enabling communication between AIP modules is
the joint access to sensors.
Generic sensor interface: Because of the great variety of
sensor types it is necessary to provide a generic sensor inter-
face. Every AIP module must allow the connection to every
sensor type - during initialization and preferably also at run-
time.
Generic management interface: The scenarios showed the
need for different means of data processing but also that not
all of them are applied in all cases. Since memory space
may be limited it should be possible to have an AIP module,
which meets the requirements exactly, without wasting re-
sources. That could be achieved by placing a set of fixed
modules at the user's disposal. More appropriate is a con-
struction kit with a fixed kernel, to which arbitrary tools can
be attached. The application designer then can tailor the

module to his needs. In order to initialize and manipulate
these tools independent of the actual tool instances, a ge-
neric management interface - that is the interface used by
the application above - is needed.

4 Related Work
The AIP architecture has to deal with related work concern-
ing several sub-problems such as e.g. choosing the right
means for Rule-Processing, choosing appropriate classifica-
tion and learning algorithms and building and using ontolo-
gies for special AIP use cases (as models of the problem
domain). For the sake of brevity, we will consider these as
background issues and refer to the discussion in [Nagel,
2006].
Context, Context-Modeling and Context-Acquisition are
other issue which are clearly related to AIP. Our concept of
Autonomous Sensor Data (Pre-)Processing can also be
viewed as an architecture for Context-Modeling and Con-
text-Acquisition. Besides general aspects (e.g. definition
issues) of context (which are discussed in [Nagel, 2006])
several other Context-Modeling and –Acquisition frame-
works have been proposed, such as Dey’s Architecture to
Support Context-Aware Applications [Dey, 1999] or
Fuchs’s Context Meta Model [Fuchs, 2004].
Dey’s architecture can be regarded as a context server which
is a class of systems that extract and aggregate sensor data
in order to provide it to applications, but which are not de-
signed to process data. Due to the idea of generating agents
to suit a particular scenario, the Policy Based Adaptive Ser-
vices for Mobile Commerce [Rukzio, 2005] are also similar
to the AIP. The agents realize the acquisition and rule-based
processing of context over a network, but show (therefore) a
lack of locality and more sophisticated processing tools.
Other architectures specialize on the processing of data from
particular types of sensors (such as RFID data, e.g. the Sin-
gularity Architecture [Rose, 2005]) or aim at a central col-
lection of data continuously provided by a multitude of
autonomous ubiquitous computing agents (like Motes
[Mainwaring, 2002]).
Since in most cases many sensors must contribute data in
order to distill a useful context model instance [Wu, 2003],
the field of Sensor Data Fusion is of high relevance too.
Brooks and Inyar [Brooks, 1998] divide sensor data fusion
scenarios in three classes: Scenarios with complimentary,
competitive and cooperative sensors. The scenarios that the
AIP aims at, clearly belong to the most advanced class, the
class of processing cooperative sensors which explains the
need for knowledge processing modules in the architecture.

5 Architecture
Based on the requirements derived from the scenarios the
AIP architecture is developed. We stated that a generic AIP
module to which arbitrary tools can be attached, is prefer-
able to a set of fixed AIP modules. Different implementa-
tions of rule engines, Bayesian networks, reasoners, learning
components and other tools thus can be connected to the
AIP module. The advantage is that for any application and
hardware the optimal software can be chosen.
Due to the demand of being able to use multiple and arbi-
trary processing tools it is advisable to install a central
knowledge base to which all processing tools have access
and into which all sensor data and processed data is written.
Moreover the knowledge base should be the only link be-
tween the processing tools, because allowing direct ex-
change between processing tools is hardly feasible and
would unnecessarily complicate program logic and consis-
tent data storing.
The use of a central knowledge base, shared by all other
components, suggests a star topology with the knowledge
base placed in its center. But to emphasize the importance of
the interfaces towards application and sensors a three layer
architecture was chosen, consisting of sensor layer, process-
ing layer and management layer. It is displayed in figure 1.

5.1 Sensor Layer
The sensor layer is used to connect arbitrary sensors to the
AIP module and to provide data to the knowledge base of
the processing layer. The sensor layer consists of the generic
sensor interface, the sensor manager and the data supplier.
The sensor interface must allow for pull mode and push
mode. In pull mode a sensor sends the actual measured
value on request, whereas in push mode a sensor notifies its
subscribers, whenever a sensor value is measured. All sen-
sor data is collected by the data supplier that does the for-
warding to the local knowledge base or potentially to other
AIP modules. The data supplier as upward interface also
receives sensor requests from the processing layer.
In sensor requests the relevant sensor can be specified di-
rectly by its URL or by its properties, e.g. by the quantity it
measures and additional context information. In both cases
the sensor manager will be called on to choose a suitable
sensor from its catalogue. The AIP module is informed
about newly available sensors via the management interface
of the management layer. Mobile, wireless sensors commu-
nicating with the interface can be marked „in range“ or „out
of range“ via push registry.

Application

Management Interface

Rule Preprocessor Data Preprocessor

Rule Engine Knowledge Base

Data Supplier

Sensor Manager

Tool Preprocessor

Any Tool

Data Reader

Communication

Sensor Interface

Sensor

Management Layer

Processing Layer

Sensor Layer

Figure 1: AIP architecture

5.2 Processing Layer
The core of the processing layer is the knowledge base. It
gets data from the data supplier and from the application via
the management layer. On the knowledge base a rule engine
accomplishes two tasks. On the one hand it transforms low
level sensor data into data suitable for higher applications,
on the other hand it processes this high level data and initi-
ates two types of actions, namely sensor requests and notifi-
cations to the application. Sensor requests are sent to the
data supplier or to the communication sub module respec-
tively. The communication sub module forwards remote
sensor requests via inter-AIP-communication.
Conversion of low level data into high level data is neces-
sary to ease the application programmer's work. As an ex-
ample it is difficult and hence less reliable to state correctly
a condition of the type "motion detector 3 changes to 1". If
we assume the elderly care scenario the application pro-
grammer would prefer something like "the person is in the
bedroom".
The knowledge base is based on an ontology that can be
logically divided into two parts. The first part describes the
relationship between sensors and the AIP module and is
provided by the AIP. Naturally any context data referring to
AIP module and sensors are stored here as well as the in-
coming sensor data. The second part is the one that repre-
sents the ontology of the application and has to be written

by the application developer. When high level data is de-
duced from the sensor it needs to be sorted into the world
model of the application.
Besides the rule engine other processing tools can be ap-
plied. Each of these tools needs data from the knowledge
base that offers methods for polling and subscribing. Actu-
ally the processing tools could directly work on the data of
the knowledge base. Unfortunately there is no knowledge
base software on which several tools can work simultane-
ously. Each tool must retrieve data from the knowledge
base, process it and write the results back. Therefore any
means of data processing must be adapted to this scheme.
Bayesian networks or neural networks, for instance, can
store data in their variables (Bayesian network nodes) or
input units respectively. Whenever relevant changes to the
knowledge base occur, the component’s algorithm needs to
be started. The Bayesian network calculates the probabilities
for the query variables anew, compares them with given
limits and returns the results. The neural network starts the
pass through the network, interprets the outputs and sends
them back.

5.3 Management Layer
The management layer consists of management interface
and data reader. The management interface is used by the
application to adapt sensor manager, knowledge base and
processing tools. In particular it is possible to add and re-
move sensors, facts and rules, and furthermore to query the

knowledge base. In reverse direction, the management inter-
face forwards notifications to the application.
The data reader interprets the configuration file passed by
the application. Based on its values the initialization is
started, preparing the sensor manager and the components
on the processing layer, especially the rule engine, the
knowledge base and its ontology. During initialization and
at runtime, inputs for the knowledge base and the processing
tools are sent to the preprocessors first. Due to the preproc-
essors the management interface can be kept generic, be-
cause their task is the transformation of the inputs to the
tool's specific format.

5.4 Inter-AIP-Communication
Although a basic idea of this framework is that the AIP
modules act locally, it happens that data must be exchanged
between AIP modules without the involvement of the appli-
cation. There are two ways to establish inter-AIP-
communication, namely either in the sensor layer or in the
processing layer.
If the communication module is part of the sensor layer,
only raw sensor data is remotely available. As in the local
case, the requesting AIP module should be able to choose
whether it wants to receive data in pull or push mode from
the remote sensor. When placed into the processing layer,
the communication sub module can act in a similar way
compared to the processing tools, because it gets data from
the knowledge base and also puts data into it. The only dif-
ference to processing tools is that the communication proc-
ess needs to be triggered, e.g. by the rule engine. As an on-
tology transfer might be necessary before high level data
can be exchanged between two knowledge bases of different
AIP modules, such an exchange becomes much more diffi-
cult to accomplish than a low level data transfer.

6 Implementation
The prototypic implementation follows the AIP architecture
and is fully functioning including the inter-AIP-
communication, which is realized on the sensor layer. The
management interface, however, is restricted to the basic
functions for sensor manipulation, rule engine and knowl-
edge base. An extension for additional processing tools is
not yet implemented. The entire software was written in
Java making it platform independent and allowing object-
oriented programming.
The implementation of sensor manager and sensor interface
follows the specification Mobile Sensor API [Niemela,
2005]. Its generic SensorConnection interface which has to
be implemented by every sensor, involves methods for poll-
ing and subscribing. Context information about sensors is
provided by SensorInfo objects that are held by the sensor
manager. When a sensor request comes in, the sensor man-
ager identifies the sensor either by its URL or by its Quan-
tity and ContextType, and the sensor provides data to the
requesting AIP module via the data supplier.

The data supplier that is not part of the Mobile Sensor API,
is the interface to the processing layer and fed with sensor
requests by the rule engine and by the communication ob-
ject. Besides sensor and mode (push or pull) sensor requests
need to address the sensor's AIP module either by its ID or
by a keyword indicating where the sensor is to be searched
for. Here, LOCAL refers to the local AIP module, and
REMOTE specifies a broadcast. As collection point for all
sensors the data supplier forwards sensor data to the respec-
tive consumers, namely to the local knowledge base or to
other AIP modules via the communication object. For this
the communication object opens socket connections to other
AIP modules.
The processing layer contains two factories, namely the
KnowledgeBaseFactory and the RuleEngineFactory, which
instantiate the knowledge base or rule engine specified in
the configuration file. Usable knowledge bases are e.g. RDF
/ OWL based or relational data bases. They need to imple-
ment the interface KnowledgeBase, which provides methods
for polling and subscribing and for manipulating and query-
ing the data base. For the prototype Jena was chosen in
combination with the Context Engine [Fuchs, 2004] as its
interface. The knowledge base is initialized with three files
written in OWL containing respectively the AIP specific
ontology, the application-oriented ontology and initial
knowledge.
Employed rule engines have to implement the RuleEngine
interface that includes methods for adding and removing
rules as well as for sending notifications to the application
and sensor requests to the data supplier. In the AIP imple-
mentation the rule engine Drools was chosen, but every
Java based rule engine could easily be used. As the common
rule languages differ considerably no uniform rule language
was established for the management interface. The rule base
has to be formulated in the rule language of the employed
rule engine.
The management interface is split in two. On the applica-
tion's side it is represented by the AIPInterface class. Its
public interface is identical with the public interface of the
AIP class on the AIP module's side and serves therefore as a
stub. Besides providing methods to control the tools on the
processing layer and the sensor manager the AIP class ini-
tializes the AIP module. The XML-based configuration file
must specify the AIP module's ID, the IP addresses of appli-
cation and neighbouring AIP modules, class names of
knowledge base and rule engine, and the names of the files
containing ontology, initial knowledge and rule base.

7 Use Case
As a demonstration and test of architecture and implementa-
tion the elderly care scenario (see section 2.2) was imple-
mented. For this a Java application was written that uses six
AIP modules in order to monitor the person's behavior and
her bodily functions. Person, environment and
sensors are simulated by software. „Measured“ values are
determined by random generators and by actions of the per-

son that can be moved through the flat by mouse clicks.
Figure 2 shows the configuration that has been used.
The AIP modules are located in the rooms and on the per-
son's body. Simulated sensors are motion detectors and
thermometers in every room, switches in doors, pressure
sensors in furniture, RFID readers for tagged items like pill
boxes, a pulse meter and a thermometer on the body. Warn-
ings and alerts are displayed on the television screen and
sent to the medical staff, i.e. here they are shown in the main
window.

Figure 2: Elderly care scenario

The AIP modules in the rooms are initialized with equiva-
lent ontologies, but with different initial knowledge describ-
ing the actual room and its observed objects. The AIP mod-
ule on the body has a slightly different ontology. The body
AIP is actually dispensable, because the connected sensors
could dynamically be added to the local room AIP via push
registry.

8 Summary
We have argued that an intelligent autonomous data proc-
essing layer can be of great value in various ubiquitous
computing scenarios. Based upon requirements distilled
from the presented scenarios and other scenarios discussed
in [Nagel, 2006] we introduced an architecture for autono-
mous intelligent data processing which is suited to satisfy
the requirements.

References
[Brooks and Inyar, 1998] Multi-Sensor-Fusion: Fundamen-

tals and Applications with Software. PrenticeHall, 1998.

[Dey et al., 1999] An Architecture To Support Context-
Aware Applications. Tech. Report GIT-GVU-99-23,
Georgia Institute of Technology, 1999.

[Fuchs, 2004] A Modeling Technique for Context Informa-
tion. Mobile and Distributed Systems Group, Technische
Universität München, Germany, 2004.

[Haustein et al., 2003] Sozialhilfe in Deutschland 2003.
Statistisches Bundesamt, Wiesbaden, Germany, 2003,

 (UR
http://www.destatis.de/presse/deutsch/pk/2003/sozialhilfe_200
3i.pdf L, Dec. 2005).

[Mainwaring et.al., 2002] Wireless Sensor Networks for
Habitat Monitoring. Proc 1st Int’l Workshop on Wire-
less Sensor Networks and Applications, Atlanta, pp. 88-
97, 2002.

[Jena, 2005] Jena - A Semantic Web Framework for Java.
 (URLhttp://jena.sourceforge.net/ , Aug. 2005).

[Nagel, 2006] Autonomous Sensor Data Processing. Di-
ploma Thesis, Dept. Of Informatics, Chair for Applied
Informatics and Cooperative Systems, Technische Uni-
versität München, 2006.

[Niemela et al., 2005] JSR 256: Mobile Sensor API.
http://www.jcp.org/en/jsr/detail?id=256 (URL, Nov.
2005).

[Pötsch et al., 2003] Bevölkerung Deutschlands bis 2050.
Statistisches Bundesamt, Wiesbaden, 2003,

 (URL, Dec. 2
http://www.destatis.de/presse/deutsch/pk/2003/Bevoelkerung_
2050.pdf 005).

[Proctor et al., 2005] Drools. (URL, Oct.
2005).

http://www.drools.org/

[Rose, 2005] The Singularity Architecture. http://www.i-
konect.com/singularity/docs/SingularityArchitecture.pdf
(URL, 2005).

[Ross, 2004] Managing Care Through The Air. IEEE Spec-
trum, 3 Park Avenue, New York, USA, 2004.

[Rukzio et. al., 2005]
, 2nd Workshop on Mobile Commerce and Services

(WMCS 2005), Munich,

Policy Based Adaptive Services for Mobile
Commerce

 Germany, 2005.

[Russell and Norvig, 2003] Artificial Intelligence: A Mod-
ern Approach. Prentice Hall Series in Artificial Intelli-
gence, New Jersey, USA, 2003.

[Wu, 2003] Sensor Data Fusion for Context-Aware Compu-
ting Using Dempster-Shafer Theory. PhD Thesis, The
Robotics Institute, Carnegie Mellon University, Pitts-
burgh, 2003.

http://www.destatis.de/presse/deutsch/pk/2003/sozialhilfe_2003i.pdf
http://www.destatis.de/presse/deutsch/pk/2003/sozialhilfe_2003i.pdf
http://jena.sourceforge.net/
http://www.destatis.de/presse/deutsch/pk/2003/Bevoelkerung_2050.pdf
http://www.destatis.de/presse/deutsch/pk/2003/Bevoelkerung_2050.pdf
http://www.drools.org/
http://www.i-konect.com/singularity/docs/SingularityArchitecture.pdf
http://www.i-konect.com/singularity/docs/SingularityArchitecture.pdf
http://www.ist-simplicity.org/_publications/C22_Policy_Based.pdf
http://www.ist-simplicity.org/_publications/C22_Policy_Based.pdf

