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Hypergraph Constrution and Its Appliation to theCompositional Modelling of Conurreny(Extended version)Barbara K�onig (koenigb�in.tum.de)Fakult�at f�ur Informatik, Tehnishe Universit�at M�unhenAbstrat. We de�ne a onstrution operation on hypergraphs using a olimit and show thatits expressiveness onerning graph rewriting is equal to the graph expressions of Courelleand the double-pushout approah of Ehrig. With an indutive way of representing graphs,graph rewriting arises naturally as a derived onept. The usefulness of our approah forthe ompositional modelling of onurrent systems is then shown by de�ning the semantisof a proess alulus with mobility and of Petri nets.1 IntrodutionGraph rewriting is one adequate approah for modelling the semantis of onurrent systems:multi-dimensional strutures desribing interonneted omputers or other omponents an benaturally desribed by graphs. When trying to model semanti frameworks for onurreny (suhas proess algebras) with graph rewriting, we run into problems sine it is hard to representompositionality and modularity inherent in these formalisms in the world of graphs. Proessalgebras rely on ompositionality in the de�nition of their syntax and their semantis, and inalmost all proofs. Compositionality is easy to ahieve in a \string-based" syntax: systems areonstruted out of smaller systems by onatenating their desriptions, onnetions are establishedby having ommon hannel names.We propose an analogue to onatenation in the world of hypergraphs: hypergraphs haveso-alled \external nodes", their interfae to the outside, and in order to attah two (or more)hypergraphs, information is needed on how these external nodes should be merged. Suh a form ofgraph onatenation was proposed in [1℄ in the form of \graph expressions", where three operators(disjoint sum, node fusion, rede�nition of external nodes) were introdued. These operators anbe used in order to gradually onstrut hypergraphs out of smaller hypergraphs.We propose a similar approah of graph onstrution where the information on how to onate-nate graphs is not provided by operators, but rather by part of a olimit. The onstrution itselfonsists of ompleting the olimit and is related to the double-pushout approah [3℄. The expres-sive power of graph rewriting in our approah is the same as for graph expressions [1℄ (and thusthe same as in the double-pushout approah [8℄). Compared to [1℄ we have additional informationin the uniqueness property of the olimit and embeddings of the subgraphs into the onstrutedgraph whih are provided by the olimit. This information an be helpful when we want to reasonabout onurrent systems or if we want to extend the formalism. We still have a desription of thegraph in terms of edge and node sets, whih makes it easy to add additional labels or annotations.We demonstrate the usefulness of our approah by giving a ompositional semantis of a proessalulus with mobility and of Petri nets. Note that, although we model onurrent systems, thesemantis itself will not be onurrent in the sense of true onurreny (as in [6℄).2 Hypergraphs and Hypergraph ConstrutionWe �rst de�ne some basi notions, namely hypergraph, hypergraph morphism, and isomorphism(see also [8℄). Hypergraphs are a generalization of direted graphs where an arbitrarily long se-quene of nodes is assigned to every edge. The order of nodes with respet to a ertain edge is



relevant. Intuitively we onstrut hypergraphs by drawing edges (with nodes) and then mergingthe nodes, rather than by drawing nodes and then onneting them by edges. This intuition willalso guide our hoie of a hypergraph onstrution operator.De�nition 1. (Hypergraph, Hypergraph Morphism, Isomorphism) Let L be a �xed setof labels. A hypergraph H is a tuple H = (VH ; EH ; sH ; lH ; �H) where VH is a set of nodes, EHis a set of edges disjoint from VH , sH : EH ! V �H maps eah edge to a string of soure nodes,lH : EH ! L assigns a label to eah edge, and �H 2 V �H is a string of external nodes.Let H;H 0 be two hypergraphs. A hypergraph morphism � : H ! H 0 onsists of two mappings�E : EH ! EH0 , �V : VH ! VH0 satisfying1 �V (sH (e)) = sH0 (�E(e)) and lH(e) = lH0 (�E(e)) forall e 2 EH . If furthermore �V (�H) = �H0 we all � a strong hypergraph morphism and denoteit by � : H � H 0. The hypergraphs H and H 0 are alled isomorphi (H �= H 0) if there exists abijetive strong morphism (= isomorphism) from one hypergraph into the other.The arity of a hypergraph H is de�ned as ar(H) = j�H j while the arity of an edge e of His ar(e) = jsH(e)j. We an regard hypergraphs and hypergraph morphisms (respetively stronghypergraph morphisms) as objets respetively morphisms of a ategory.Notation: We all a hypergraph disrete, if its edge set is empty. mdenotes a disrete graph of arity m 2 lN with m nodes where everynode is external (see (a), external nodes are labelled (1), (2), : : : in theirrespetive order).H = [l℄n is the hypergraph with exatly one edge e with label l wheresH(e) = �H , j�H j = n, �H ontains no dupliates and VH = Set(�H),where Set(s) is the set of all elements of a string s (see (b), nodes areordered from left to right).
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We now present the \onatenation operation" disussed in the introdution. The onstrutionplan telling us how this onatenation is supposed to happen is represented by hypergraph mor-phisms mapping disrete graphs to disrete graphs. The following de�nitions use onepts fromategory theory, namely ategories and olimits. For an introdution to these onepts see [3, 2℄.De�nition 2. (Hypergraph Constrution) Let H1; : : : ; Hn be hypergraphs and let2 �i :mi !D; i 2 [n℄ be morphisms where ar(Hi) = mi 2 lN and D is a disrete graph. There is always aunique strong morphism �i :mi � Hi for every i 2 [n℄.Let H (with morphisms � : D ! H, �i : Hi ! H) be the olimitof �1; : : : ; �n; �1; : : : ; �n suh that � is a strong morphism. We de�ne:Nni=1(Hi; �i) = H. (Alternatively we write (H1; �1)
 : : :
 (Hn; �n)|or
(H1; �1), if n = 1|instead of Nni=1(Hi; �i).) i
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φGenerally, olimits do not neessarily exist, but they always exist in our ase. The olimit isunique up to bijetive morphisms, but not unique up to isomorphism. Therefore we demand abovethat the morphism � from D into the olimit be a strong morphism and thereby determine thestring of external nodes of the result. Furthermore the morphisms �i generated by the olimit arealways embeddings (as de�ned in [1℄).Hypergraph onstrution without ategory theory: although the haraterization of hypergraphonstrution is more elegant in the ategorial setting, we an also desribe it without ategorytheory. We assume that the node and edge sets of D and H1, : : : , Hn are pairwise disjoint.Furthermore let � be the smallest equivalene on their nodes satisfying�i(v) � �i(v) if i 2 [n℄, v 2 Vmi1 Appliation of morphisms to sequenes of nodes is onduted pointwise.2 [n℄ stands for the set f1; : : : ; ng.



The nodes of the onstruted graph are the equivalene lasses of �. ThusNni=1(Hi; �i) is isomor-phi to ((VD [ n[i=1VHi )=�; n[i=1EHi ; sH ; lH ; �=�)where sH(e) = [v1℄� : : : [vk℄� if e 2 EHi and sHi(e) = v1 : : : vk. Furthermore lH(e) = lHi(e) ife 2 EHi . And we de�ne �=� = [v1℄� : : : [vk℄� if �D = v1 : : : vk.In other words: we join all graphs D;H1; : : : ; Hn and fuse exatly the nodes whih are theimage of one and the same node in the mi. �D beomes the new sequene of external nodes.Now the morphisms � : D � H and �i : Hi ! H an be de�ned as follows: �(v) = [v℄� ifv 2 VD. Furthermore �i(v) = [v℄� if v 2 VHi and �i(e) = e if e 2 EHi .Example: we want to onstrut a graph H onsisting of a hyperedge representing amessage (labelled M) and two hyperedges representing proesses (labelled P , Q). (Wewill show in setion 5 how to model the reeption of a message by a proess with graphrewriting.)H onsists of two subgraphsH1 (ontaining the proess labelled P and a message) andH2(ontaining a proess labelled Q) whih are onatenated aording to the \onstrutionplan" given by the disrete morphisms �1, �2. E.g. the third external node of H1 is fusedwith the third external node of D. This, in turn, is fused with the �rst external node ofH2. Isolated nodes in H are generated by nodes in D whih are not in the range of eitherof the �i.
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HExample: another example is an operator whih takes two hypergraphs of the same arityand attahes them at their external nodes, i.e. the nodes are merged in their respetiveorder. Let m be a �xed natural number and let � : m � m be a strong morphism. Wede�ne H12H2 = (H1; �)
 (H2; �) for H1; H2 satisfying ar(H1) = ar(H2) = n.3 Graph Expressions and the Double-Pushout Approah3.1 Graph ExpressionsGraph expressions were introdued by Mihel Bauderon and Bruno Courelle in [1℄ as an alge-brai struture for graph onstrution. They introdued three operators (explained below) and aomplete set of equations relating hypergraphs if and only if they are isomorphi. We will nowintrodue the three operators and give their orresponding version in our framework in terms ofthe disrete morphisms �i.



Disjoint Sum: H1�H2 is the hypergraph resulting from the disjoint union of the node and edgesets and of the soure and labelling funtions of H1 and H2. Furthermore �H1 and �H2 areonatenated to form the sequene of external nodes of H1 � H2. H1 � H2 �= N2i=1(Hi; �i)where �1, �2 are de�ned as in �gure 1 (a) (m = ar(H1), n = ar(H2)).Rede�nition of External Nodes: Let � : [p℄ ! [m℄ and m = ar(H). Then ��(H) is thehypergraph resulting from rede�ning the external nodes ofH aording to �, i.e. �H is replaedby3 b�H�(1) : : : b�H�(p). The rest of the hypergraph stays unhanged.We exploit the fat that � an always be deomposed into � = �1 Æ : : : Æ�k where eah �i hasone of the following three forms listed below. Aording to [1℄ ��(H) �= ��k (: : : ��1(H) : : : ).Thus we only have to onsider these three ases.In eah of the following ases ��(H) �= 
(H; �).Permutation of External Nodes: � : [m℄! [m℄ is a bijetion. � is de�ned in (b).Hiding an External Node: � : [m℄! [m+ 1℄ where �(i) = i. � is de�ned in ().Dupliating an External Node: � : [m+1℄! [m℄ where �(i) = i if i 2 [m℄ and �(m+1) =m. Then � is de�ned as in �gure 1 (d).Fusing External Nodes: Let Æ be an equivalene relation on [m℄ where m = ar(H). �Æ(H) isobtained by fusing all external nodes whih are related by Æ. The arity of the hypergraph isnot hanged.Aording to [1℄ �Æ(H) �= �Æk (: : : �Æ1(H) : : : ) where eah Æi is an equivalene generated bya single pair (i; j) with i; j 2 [m℄. With the permutation operation de�ned above it suÆesto de�ne a olimit onstrution fusing the last two nodes of a hypergraph. Let Æ0 be theequivalene on [m℄ generated by the pair (m � 1;m). Then �Æ0(H) �= 
(H; �) where � isde�ned as in �gure 1 (e).
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Fig. 1. Converting a graph expression into the orresponding olimit onstrution.We have shown how to emulate all three operators by olimits. It is still left to show how thesubsequent appliation of olimits an be onverted into one single olimit onstrution. We willdelay this until setion 4.3.2 The Double-Pushout ApproahThe double-pushout approah to graph rewriting was introdued by Ehrig [3℄, the double-pushoutapproah to hypergraph rewriting is presented in [8℄. Our olimit onstrution is losely related tothis approah. We will now make this onnetion preise. If, in the diagram in de�nition 2, we setn = 1 and allow D to be an arbitrary non-disrete graph, we obtain exatly the right-hand sideof a double-pushout.This does not yet reveal anything about the expressive power of our approah. We will nowde�ne the notion of a rewriting step: let r = (L;R) be a rewriting rule, where L;R are hypergraphs3 bsi denotes the i-th element of the string s.



with ar(L) = ar(R). Then r=) is the smallest relation whih is generated by the following tworules and is losed under isomorphism.L r=) R H1 r=) H 01(H1; �1)
 (H2; �2) r=) (H 01; �1)
 (H2; �2)Proposition 1. Let G, H be hypergraphs and let r = (L;R) be a rewriting rule. Then G r=) H ifand only if G an be transformed into H by r in the double-pushout approah (with a produtionspan L�m� R where m = ar(L) = ar(R)).Proof. It was already shown in [1℄ that the expressive power of rewriting in terms of graph ex-pressions is equal to the expressive power of the double-pushout approah (where omponentsof a prodution span might be non-injetive). The proposition follows from the fat that graphexpressions are equivalent to our form of graph onstrution (see setion 3.1).We now show the proposition in a more diret way and explain in detail how the double-pushoutapproah relates to our approah:{ �rst, we prove that if H is a olimit of �1; �2; �1; �2 in diagram (a) and diagram (b) onsistsof two pushouts, then H �= H 0.
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H’Diagrams (a) and (b) an always be ompleted to form olimits, sine we an always expliitlyonstrut the olimit as in the remark after de�nition 2.� We �rst onstrut a morphism  : H ! H 0. From diagram (b) it follows that �K Æ �D :D ! H 0, �01 : H1 ! H 0 and �K Æ �02 : H2 ! H 0. Sine diagram (a) is a olimit this impliesthe existene of a morphism  : H ! H 0 satisfying  Æ � = �K Æ �D,  Æ �1 = �01 and Æ �2 = �K Æ �02 (see �gure () below).
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� In the same way we an show that there is a morphism  02 : H 0 ! H : from diagram (a)it follows that � : D ! H and �2 : H2 ! H . This implies the existene of  01 : K ! Hsatisfying  01 Æ �02 = �2 and  01 Æ �D = �. Sine there is a morphism �1 : H1 ! H , it followsthat there exists a morphism  02 : H 0 ! H satisfying  02 Æ �01 = �1 and  02 Æ �K =  01.� We will now show that  02 Æ  = idH0 : we know that ( 02 Æ  ) Æ � =  02 Æ �K Æ �D = �,( 02 Æ  ) Æ �1 =  02 Æ �01 = �1 and ( 02 Æ  ) Æ �2 =  02 Æ �K Æ �02 = �2. Sine a morphismsatisfying these onditions is unique and there is already one morphism (idH0) satisfyingthem, it follows that  02 Æ  = idH0 .� The next step is to show that also  Æ  02 = idH . We �rst show that  Æ  01 = �K byregarding the pushout on the left-hand side in diagram (b) and the hypergraph H 0: weknow that �K Æ �D =  Æ � = ( Æ  01) Æ �D and �K Æ �02 =  Æ �2 = ( Æ 01) Æ �02. Sine themorphism satisfying these onditions is unique it follows that �K =  Æ  01.Furthermore it follows that ( Æ  02) Æ �01 =  Æ �1 = �01 and ( Æ  02) Æ �K =  Æ  01 = �K .Sine (beause of the pushout on the right-hand side in diagram (b)) there is a uniquemorphism satisfying these onditions, and we know that idH is satisfying them, it followsthat  Æ  02 = idH .� Sine  02 Æ  = idH0 and  Æ  02 = idH it follows that  is bijetive. It is left to show thatit is a strong morphism:  (�H) =  (�(�D)) = �K(�D(�D)) = �H0 . (�; �K ; �D are strongby de�nition.){ We now assume that G (L;R)) H . Beause of proposition 2 in setion 4 we an assume thateah of the two rewrite rules generating (L;R)) is used exatly one. Thus we an onlude thatG �= (L; �1)
 (J; �2) and H �= (R; �1)
 (J; �2). We now set K = 
(J; �2) (as in the pushout onthe right-hand side in diagram (b)). Then G is the pushout of �D Æ �1 and �1 (the anonialstrong morphism) in diagram (b). (We assume that H1 = L, H2 = J and H 0 = G.) In thesame way we an desribe H as a pushout of �D Æ �1 and the anonial strong morphism fromm1 into R.{ Now assume we an transform G into H by applying the prodution span L�m� R in thedouble-pushout approah. (In [4℄ it was shown that every double-pushout an be onvertedinto a double-pushout where the middle graph in the prodution span is disrete. We an alsoassume that all its nodes are external, that it is therefore isomorphi to m and that there arestrong morphisms �L : m � L and �R : m � R.) A double-pushout has the form shown in�gure (e).
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We assume thatK 0 is the same hypergraph asK with a di�erent sequene of external nodes. Weobtain K 0 by replaing the sequene of external nodes of K by �K Æ (�m). Let � : n+m! D(where n = ar(K)) be a disrete morphism suh that K �= 
(K 0; �), i.e. � hides the last mnodes of K 0 (ompare with setion 3.1). Now let � :m! D be a disrete morphism suh that4�(�m) = �(b�n+1:::n+m), therefore �0(�(�m)) = �0(�(b�n+1:::n+m)) =  (�m) and �0 Æ � =  .(�0 is generated by the pushout in �gure (f).)This implies that G �= (L; �) 
 (K 0; �). And in the same way we an show that H �= (R; �)
(K 0; �). It thus follows that G (L;R)) H .4 Let s = a1 : : : an be a string of elements. Then bsi1:::im = ai1 : : : aim



24 Some Properties of Hypergraph ConstrutionAs promised in the previous setion we now introdue a mehanism for ombining several onstru-tion operations into one by ollapsing hierarhies of graph onstrution. In the world of stringsthis has a rough analogue in the assoiativity of onatenation, whih does not hold for graphonstrution.Proposition 2. In the following let i range over [n℄ and j range over [ni℄. Let �ij :mij ! Di and�i : mi ! D be morphisms with mi = ar(Di). Let �i : mi � Di be the unique strong morphismsand let the �i be the morphisms generated by olimit (a) in the �gure below. Then it holds forarbitrary hypergraphs Hij with mij = ar(Hij) thatnOi=1 ( niOj=1(Hij ; �ij); �i) �=Oi;j (Hij ; �i Æ �ij) (1)Proof.The proof of the proposition is shown in the �gure.While the left-hand side of equation (1) is formed by apply-ing �rst olimits (b) to theHij followed by an appliation ofolimit (a)+(), the same goal an be ahieved by formingolimit (a) �rst and applying olimits (b)+() afterwards.This argumentation is valid sine the ombination of twoolimits always yields another olimit.
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i 2Example: we translate a sequene of rede�nitions of external node into graph onstru-tions and ollapse them into one single appliation of a olimit. Assume we want toompute ��(H) where ar(H) = 3, � : [3℄ ! [3℄ and �(1) = 2, �(2) = �(3) = 1. Asexplained in setion 3.1 we an deompose � into � = �1 Æ �2 Æ �3 with �1 : [3℄ ! [2℄(hiding an external node), �2 : [2℄ ! [2℄ (permutation, exhanging the �rst and theseond node) and �3 : [2℄! [3℄ (dupliating an external node).We an now onstrut the respetive disrete morphisms �1, �2 and �3 (aording to�gure 1) and ombine them aording to proposition 2. The result is � shown in the�gure below. That is ��(H) �= 
(H; �) for every hypergraph H of arity 3.
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Hyperedges are the basi units of graph onstrution. Just as every element of a vetor spaean be deomposed into base vetors in a unique way, there is a unique deomposition of ev-ery hypergraph into hyperedges. Note that isolated nodes are reated by nodes of the disretehypergraph D whih are not in the range of any of the �i.



Proposition 3. (Unique Fatorization) Let H be a hypergraph. Then there exists a naturalnumber n, labels li and morphisms �i :mi ! D (where i 2 [n℄ and D is a disrete hypergraph) suhthat H �=Nni=1([li℄mi ; �i). This fatorization is unique up to isomorphism and index permutation.Proof. With setion 3.1 and [1℄ it is straightforward to see that suh a fatorization of a hypergraphH is always possible (isolated nodes in H are generated by nodes of the disrete graph G whihare not in the range of any of the �i.)We will now show that the fatorization is unique. LetH �= nOi=1 ([li℄mi ; �i) H �= n0Oi=1([l0i℄m0i ; � 0i)where �i : mi ! D, i 2 [n℄ respetively � 0i : m0i ! D, i 2 [n0℄. Let �i : [li℄mi ! H , i 2 [n℄ and� : D � H respetively �0i : [l0i℄m0i ! H , i 2 [n0℄ and �0 : D0 � H be the morphisms generated bythe olimit.Sine n respetively n0 stand for the number of edges of H it follows that n = n0. And sine the�i respetively �0i are the embeddings of the edges into H , it follows that there is a permutation� : [n℄! [n℄ suh that �i = �0�(i), whih implies that mi = m0�(i) and li = l0�(i).It is left to show that �i and � 0�(i) are equal up to isomorphism. We prove that �V is a bijetion(the same holds for �0V with the same arguments). From the remark after de�nition 2 it followsthat a hypergraph isomorphi to H an be onstruted by taking the union of D and the edges[li℄mi and fusing the nodes aording to the equivalene �. Beause of the speial nature of thehypergraphs whih are onatenated (the [li℄mi have no dupliates in their sequenes of externalnodes and no internal nodes), it follows that every nodes of an edge [li℄mi is related to some nodein D and that no two di�erent nodes of D are related. That is, the equivalene lasses are exatlythe nodes of D. Sine �V is isomorphi to a funtion that maps every node of D to its equivalenelass, it follows that �V : VD ! VH is a bijetion.It follows that(�i)V = ��1V Æ (�i)V Æ (�i)V = ��1V Æ (�0�(i))V Æ (�0�(i))V = ��1V Æ �0V Æ (� 0�(i))V��1V Æ �0V : VD0 ! VD is a bijetion and sine �i, � 0�(i) are de�ned only on disrete graphs they arethe same up to isomorphism. 2As in vetor spaes we an de�ne linear mappings on hypergraphs.De�nition 3. (Linear Mapping) A linear mapping L maps hypergraphs to hypergraphs of thesame arity and satis�es L(Nni=1(Hi; �i)) �=Nni=1(L(Hi); �i).Proposition 4. (Unique Linear Mapping) For eah mapping of hyperedges [l℄m to hypergraphsof arity m, there is exatly one linear mapping (up to isomorphism) whih is an extension of theoriginal mapping.Proof. Let L0 map hyperedges to hypergraphs of the same arity.{ We �rst show that there is at most one linear mapping L whih extends L0: let H be anarbitrary hypergraph and let H �=Nni=1([li℄mi ; �i) be the unique fatorization of H aordingto proposition 3. If there is a linear mapping L it satis�es: L(H) �= Nni=1(L0([li℄mi); �i) andL(H) is �xed up to isomorphism.{ We now show that there is at least one linear mapping L. We de�ne L as follows:L( nOi=1([li℄mi ; �i)) = nOi=1(L0([li℄mi); �i)This is well-de�ned sine the fatorization of every hypergraph is unique. It is left to showthat L is a linear mapping.



Let H �= Nni=1(Hi; �i). Aording to proposition 3 Hi �= Nnij=1([lij ℄mij ; �ij) for suitablelij ;mij ; �ij . It follows that L(H) �= L( nOi=1( niOj=1([lij ℄mij ; �ij); �i))From proposition 2 follows the existene of morphisms �i suh thatL(H) �= L(Oi;j ([lij ℄mij ; �i Æ �ij)) =Oi;j (L0([lij ℄mij ); �i Æ �ij)Again from proposition 2 it follows thatL(H) �= nOi=1( niOj=1(L0([lij ℄mij ); �ij); �i) �= nOi=1 (L(Hi); �i) 2One an view the appliation of a linear mapping as a synhronous rewriting step, replaingevery hyperedge at the same time.Examples: we de�ne a mapping that dupliates every edge in a hypergraph. If H =(V;E; s; l; �) is a hypergraph, dupl (H) is de�ned by (V;E [ �E; s [ �s; l [ �l; �) where �E =f�e j e 2 Eg, �s : �E ! V � with �s(�e) = s(e) and �l : �E ! L with �l(�e) = l(e).dupl is a linear mapping and an be generated by �xing the images of single hyperedges:dupl([l℄m) = [l℄m2[l℄m (where 2 is the operator de�ned in setion 2).Note that a mapping that dupliates all nodes, an not be linear.Another simple example is a mapping that deletes all edges, i.e. produes a disretegraph. We de�ne disrete(H) = (V; ;; ;; ;; �). It is linear and an be generated by de�ningdisrete([l℄m) =m for all hyperedges.The usefulness of linear mappings will beome lear in the following setion where we use alinear mapping in order to analyse mobile proesses. Another important use of linear mappingsis to annotate hypergraphs. We an extend the onstrution operation in order to onatenatehypergraphs with annotations (e.g. nodes labelled with monoid elements), as will be done insetion 6. We an then de�ne an extended notion of a linear mapping whih maps hypergraph toannotated hypergraph and satis�esL( nOi=1(Hi; �i)) �= nOi=1(L(Hi); �i)where we use the extended onstrution operation on the right-hand side.5 Typed Proess GraphsWe show how to model a proess alulus, losely related to the asynhronous polyadi �-alulus[14℄, by so-alled proess graphs. There is an enoding from the �-alulus into proess graphs[10, 9℄. On the other hand there is a straightforward enoding of proess graphs into losed ationaluli [7℄ and a lose relation of our proess graphs to the ones in [16℄. A proess graph is de�nedindutively in the following way.De�nition 4. (Proess Graphs) A proess graph P is indutively de�ned as follows: P is ahypergraph where eah edge e is either labelled with (n)Q where Q is again a proess graph and1 � n � ar(Q) (e is a proess waiting for a message with n ports arriving at its �rst node), with!Q (e is a proess whih an repliate itself reating aribitrary many instanes of Q) or with theonstant M (e is a message sent to its last node). The redution relation (reeption of a messageand its nodes by a proess) is generated by the rewrite rules in �gure (a) and is losed under graphonstrution.



(a)
(m) (m+n’)(1) (m+1)

...

M

...

(n)Q Q

(1) (m) (m)(1)

...

!Q

...

!QQThe rewrite rule in (a) is not always de�ned, it may fail if ar(Q) 6= m + n0 in the messagereeption rule or ar(Q) 6= m in the repliation rule. Furthermore we want to avoid that n 6= n0 inthe message reeption rule, that is we want to ensure that the expeted number of nodes is reeived.We use morphisms, graph onstrution and a linear mapping in order to de�ne a ondition whihis suÆient for avoiding this kind of runtime errors and whih an be heked statially.Proposition 5. Let L be a linear mapping whih is de�ned on the hyperedges as follows: L([M ℄n) =[t℄n (t is a new edge label), L([!Q℄m) = L(Q) if m = ar(Q) and L([(n)Q℄m) = (L(Q); �)
([t℄n+1; �)if n+m = ar(Q) (unde�ned otherwise). �; � are de�ned in �gure (b).
(1)

...

...

...
... ...(m+n)(m+1)(m)(1)

(m)(1)(n+1)(n)

... ...

...

(b)ζ

ξLet P be a proess graph. If there exists a strong morphism  : L(P ) � H into a hypergraph Hwhih satis�es e1; e2 2 EH ; bsH(e1)ar(e1) = bsH(e2)ar(e2) ) e1 = e2 (2)(i.e. all messages that share the last node are already the same) then P will never enounter aruntime error during redution.Proof. Let P be a proess graph with  : L(P )� H where H satis�es ondition 2.We now show that P does not enounter a runtime error in its next redution step, along withthe fat that the subjet redution property ist satis�ed. The subjet redution property says thatif P ) P 0, then there is also a strong morphism  0 : L(P 0) � H . These two properties togetherensure absene of runtime errors for the entire redution.We proeed by indution on the redution rules:{ Let P be the left-hand side of the message reeption rule in �gure (a). From proposition 2 itfollows that L(P ) �= (L(Q); �1)
 ([t℄n+1; �2)
 ([t℄n0+1; �3) =: R where �1; �2; �3 are de�ned asfollows:
(1) ... (n’)

(1) ... (n+1)(n) ζ2

ζ1...
(m+n)(m+1)(m)(1)

(n’+1) ...(m+1) (m+n’)

... ...

ζ3

... ...
(m)(1)

...

...

DThe ondition in the de�nition of L tells us that m+ n = ar(Q) and sine we will later showthat n = n0 we have thus eliminated the �rst sort of runtime error.Now let �1 : L(Q)! R, �2 : [t℄n+1 ! R, �3 : [t℄n0+1 ! R be the embeddings into R generatedby the olimit. Furthermore we know that there exists a strong morphism  : R � H . Ouraim is to show that  Æ �1 : L(Q)! H is the strong morphism we are looking for. We proeedin two steps:



� We �rst show that  (�1(b�l(Q)1:::m)) = b�H1:::m: (�1(b�L(Q)1:::m)) =  (�1(�1(b�m+n1:::m)))=  (�(�1(b�m+n1:::m))) =  (�(b�D1:::m)) =  (b�R1:::m)= b�H1:::m(�1 ist the anonial strong morphism fromm+ n into L(Q) and � : D � R is the strongmorphism generated by the olimit.)� In the next step we show that  (�1(b�L(Q)m+1:::m+n)) = b�Hm+1:::m+n0 and thus n = n0whih avoids the seond sort of runtime errors.Let e be the one edge in [t℄n+1 = T and let e0 be the one edge in [t℄n0+1 = T 0. It followsthat bsH( (�2(e)))ar(e) = b (�2(sT (e)))n+1 = b (�2(�T ))n+1= b (�2(�2(�n+1)))n+1 = b (�(�2(�n+1)))n+1= b (�(�3(�n0+1)))n0+1 = b (�3(�3(�n0+1)))n0+1 = b (�3(�T 0))n0+1= b (�3(sT 0(e)))n0+1 = bsH( (�3(e)))ar(e0)(�2 respetively �2 are the anonial strong morphisms from n+ 1 into [t℄n+1 respetivelyfrom n0 + 1 into [t℄n0+1.) Condition (2) implies that  (�2(e)) =  (�3(e0)). It follows thatn+ 1 = ar(e) = ar( (�2(e))) = ar( (�3(e0))) = ar(e0) = n0 + 1 and thus n = n0. Now (�1(b�L(Q)m+1:::m+n)) =  (�1(�1(b�m+nm+1:::m+n)))=  (�(�1(b�m+nm+1:::m+n))) =  (�(�2(b�n+11:::n)))=  (�2(�2(b�n+11:::n))) =  (�2(bsT (e)1:::n)) = bsH( (�2(e)))1:::n= bsH( (�3(e0)))1:::n =  (�3(bsT 0(e0)1:::n)) =  (�3( 3(b�n0+11:::n)))=  (�(�3(b�n0+11:::n))) =  (�(b�Dm+1:::m+n0)) = b�Hm+1:::m+n0Together we onlude that  (�1(�L(Q))) = �H and  Æ�1 is thus the desired strong morphism.{ Let P = [!Q℄n be the left-hand side of the repliation rule in �gure (a). Then P ) P 0 andP 0 = Q2[!Q℄n. L(P ) = L(Q) and L(P 0) = L(Q)2L(Q). Sine L(P ) = L(Q) is de�ned, itfollows that ar(Q) = m and therefore L(P 0) is also de�ned. We have to show that there existsa strong morphism  : L(Q)2L(Q) � L(Q) (L(Q)2L(Q) = (L(Q); �) 
 (L(Q); �) where� : n� n).Obviously the identity morphism id : L(Q)�L(Q) is a strong morphism. Furthermore thereis a unique strong morphism �0 : n � L(Q)and it holds that �0 Æ � = id Æ �0. Now let� : n � L(Q)2L(Q) be the morphism gen-erated by the olimit. The properties of aolimit imply the existene of a morphism : L(Q)2L(Q)! L(Q) suh that  Æ � = �0.Sine � and �0 are both strong, it follows that is also a strong morphism.
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{ Let P1 ! P 01; P2 �= P 02P = (P1; �1)
 (P2; �2)) (P 01; �1)
 (P 02; �2) = P 0L(P ) �= (L(P1); �1) 
 (L(P2); �2). Let �i : L(Pi) ! L(P ), i 2 [2℄ be the embeddings and let� : D ! L(P ) be the strong morphism generated by the olimit. It follows that5 Æ �i : L(Pi)� H [ (�i(�L(Pi)))℄5 Let H be a hypergraph. H[�0℄ is the hypergraph we obtain from H by replaing �H with �0.



The indution hypothesis implies that there is a strong morphism  01 : L(P 01)� H [ (�i(�L(Pi)))℄.Furthermore we set  02 =  Æ �2.Let mi = ar(Pi) = ar(P 0i ). Now let �0i : mi � L(P 0i ) be the anonial strong morphisms,and let �0i : L(P 0i ) ! L(P 0) and �0 : D � L(P 0) be the morphisms generated by the olimitL(P 0) �= (L(P 01); �1)
 (L(P 02); �2).We know that  0i : L(P 0i )! H and  Æ �0 : D ! H . If we an show that  0i Æ �0i = ( Æ �) Æ �ithe properties of the olimit guarantee the existene of a morphism  0 : L(P 0) ! H . Andsine  0 Æ �0 =  Æ � and  ; �; �0 are strong, it follows that  0 is also a strong morphism.
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It is left to show that �i Æ  0i = ( Æ �) Æ �i: 0i(�0i(�mi)) =  0i(�L(P 0i ))=  (�i(�L(Pi))) =  (�(�i(�mi)))And thus  0i Æ �0i = ( Æ �) Æ �i. 2L extrats pure ommuniation struture from a proess graph, i.e. an edge of the form [t℄nindiates that its nodes (exept the last) might be sent or reeived via its last node. Condition (2)makes sure that the arity of the arriving message mathes the expeted arity and that nodes thatmight get fused during redution are already fused in H . It thus guarantees absene of unde�nedrewrites for the entire redution.H an be regarded as a type of P and we an easily unfold H into well-known type trees of�-alulus proesses [15℄. The method presented above orresponds to a type system for the �-alulus with reursive types and simple polymorphism. The type of a proess an also be spei�edby indutive typing rules rather than by a linear mapping.More expressive (generi) type systems for the analysis of proesses, whih an be niely inte-grated into the graph-based setting, an be found in [10, 9℄.As an example we regard the following proess graph:
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(1)

(1) (2)

(1) (2) (3)

M

(3)
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(2)

M
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There is a server (the proess on the left) whih reeives messages on its �rst port (before theserver an reeive a message it must reate a opy of itself) and sends bak its seond port tothe address that was attahed to the message. At this address another proess (the proess onthe right) is waiting, it reeives the message with the seond port of the server and sends its ownmessage there.We use the following syntati sugar: the last node of a message (i.e. the node or port to whihthe message is sent) is onneted with the message by a dashed line. Nodes of hypergraph in innerlevel whih will be merged with nodes attahed to a message are shaded grey.



If we represent the three external ports by a; b;  respetively and denote the internal node byd, the proess graph above orresponds to the following proess in the �-alulus [14℄:!a(x):�xhbi j �ahi j (�d)((y):�yh; di)Typing the proess graph above intuitively means attening the hypergraph until it onsistsof only one hierarhy level. Hyperedges representing repliating proesses are disarded, messagesand proesses waiting for a message are appropriately replaed by edges labelled t. After foldingthe hypergraph (i.e. merging the hyperedges aording to ondition (2)) we obtain the followingtype graph T :
(2)(1) (3)

t t tWe an now reonstrut the type assignment of the orresponding �-alulus proess (a typeassignment onsists of type trees for every free name) by unfolding the type graph starting at oneof the external nodes. The nodes of the graph T are transformed into nodes of the tree: if there isan edge e with sT (e) = v1 : : : vn�1vn then v1; : : : ; vn�1 are the hildren of the parent vn (in thatorder). In this ase the unfolding of the type graph leads to in�nite trees whih an be representedby using a reursion operator �. Thus a valid type assignment for the �-alulus proess above isa : [��[[�; �℄℄℄; b : ��[[�℄; �℄;  : ��[[�; �℄℄[t1; : : : ; tn℄ is a tree with subtrees t1; : : : ; tn, � and � are tree-valued variables. There is somepolymorphism in the type of the proess: � is not bound and represents an arbitrary type tree.6 A Compositional Semantis for Petri NetsWe will now show another appliation of graph onstrution by giving a ompositional semantisfor Petri nets. A Petri net an easily be represented by a hypergraph H (ompare with [12℄):nodes are plaes and edges are transitions. Sine we do not distinguish soure and target nodesa priori, we partition the nodes of an edge into soures and targets with the labelling funtionl : E ! lN� lN. If l(e) = (s; t) then s+ t = ar(e), s is the number of soures (the �rst s nodes) andt (the last t nodes) is the number of targets. We also need an additional labelling z : VH ! Monmapping eah node to an element of a anellative ommutative monoid, in order to represent thetokens present at eah node. In our example we will set Mon = lN, but we ould also representhigh-level Petri nets by assuming that Mon is the set of all multi-sets over ertain elements.A Petri net is now a pair [H; z℄ where H is a hypergraph with labels taken from lN � lN andz : VH ! Mon is a mapping. Before we an de�ne the semantis we �rst have to extend our notionof hypergraph onstrution to hypergraphs with tokens. But this is easy sine our onstrutionoperation yields morphisms of the subgraphs into the onstruted graph. Let [Hi; zi℄ be Petri nets.We de�ne: nOi=1([Hi; zi℄; �i) �= [ nOi=1 (Hi; �i); z℄ where z(v) = nXi=1 X�i(w)=v zi(w)The �i are the morphisms of Hi into Nni=1(Hi; �i) yielded by the olimit. P is the ommutativeoperation of Mon.Indutive De�nition of Petri Nets: a Petri net N is either of the form [[s; t℄s+t; z℄ wherez : V[s;t℄s+t ! Mon orNni=1(Ni; �i) with adequate disrete morphisms �i, where the Ni are againPetri nets.Semantis of Petri Nets: we now assume thatMon = lN. A single transition �res if all its sourenodes are labelled with tokens. And if one transition �res, the entire net is hanged aordingly.



[T; z℄ =) [T; z0℄ N1 =) N 01(N1; �1)
 (N2; �2) =) (N 01; �1)
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