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AbstractThe TimeWarp mechanism accomplishes an e�cient synchronization betweenthe components of a distributed, discrete event-driven simulator. Using an optimisticsimulation strategy, the components of the simulator may calculate ahead locally,sending results to other components without waiting for any events produced by thosecomponents, ignoring possible causality problems. In case of an incorrect calculationcaused by messages received too late, a component must perform a rollback and cancelsome messages already sent, possibly initiating further rollbacks in other components.Nevertheless the distributed TimeWarp algorithm returns a correct result.In this paper this technique is modelled with the development methodology Fo-cus and the correctness is formally investigated. Starting from a simple, centralizedsimulator three development steps are performed, reaching a distributed simulatorusing TimeWarp. The simulators on various abstraction levels are formally speci-�ed, and the development steps are veri�ed using the techniques of Focus.
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1 IntroductionSimulations are used in several areas as e.g engineering, computer science and economicapplications. Since simulation of complex systems is in general a task costing a lot ofcalculation e�ort, parallelization of the calculation is a promising way to reach a substantialspeedup. If the simulation is carried out by several computers simulating di�erent parts,these parts are not totally independent from each other and therefore the computers haveto communicate and exchange information. So a kind of loose synchronization is necessaryto assure that all information is available at the right place when it is needed there.In this paper only simulators for a speci�c type of models are considered: The modelsare described adequately through state transitions at discrete points in time triggered byevents that contain information what change of states happens when. A non-conservative,optimistic and e�cient synchronization mechanism which can be used for that kind ofmodel is the TimeWarp mechanism that is tackled formally in this paper. The formaltreatment of the TimeWarpmainly aims at two di�erent aspects of correctness. One is theinspection of the correctness of the algorithm calculating the value for the global virtual time(gvt). This gvt contains information about the global progress of the simulation. The otheraspect of correctness deals with the distribution over several simulators, the communicationbetween them, and the handling of stragglers, cancellations, and the rollbacks that canoccur when errors have to be corrected. This aspect plays a crucial part concerning thebehaviour of the components of the simulators, and is essential to make the distributedsimulator work. This paper is focusing on the second aspect that is not yet formallyinvestigated. The �rst one is already treated formally in literature ([Gaf85], [KRF+96])and necessary prerequisites for the correctness of the gvt-algorithm are simply assumed inthis paper.The object of this paper is to present a formal development of a distributed, correctsimulator for event-driven models that uses TimeWarp for the synchronization betweenthe components. The meaning of \correct" can only be stated relative to another formaldescription of a simulator, which may be very abstract and is not required to be e�cient,but de�nes the functionality of a simulator in a way that is near to intuition, easy tounderstand and therefore suitable for validation. This is done in a �rst step. Combiningthree intermediate steps altogether four versions of simulators are speci�ed, and each oneis proved to have essentially the same functionality with only slight di�erences concerningthe behaviour in time.As formal foundation the methodology Focus ([BS97]) is used. It o�ers mathematical,well-founded methods and techniques for specifying distributed systems on various abstrac-tion layers and for relating the di�erent levels through a provided notion for re�nement.Since Focus is mainly concentrating on reecting the communication between components,it is well suited for the purpose of this paper.Two main motivations for this work can be mentioned. One is the demand of users ofsimulators implementing TimeWarp for being sure that the results are correct. One5



cooperation partner who implemented the TimeWarp for simulating digital circuits ex-pressed this desire. Another motivation is the chance to demonstrate and test the abilitiesof Focus (and formal methods in general) in larger case studies and to get new impulsefor further improvements.The paper is structured in a way that the formal speci�cation of TimeWarp is gettingmore and more detailed so that the reader can follow to that detail level he is interested in.The development is shown starting from an informal description ofTimeWarp through theformal speci�cation of simulators at di�erent abstraction levels up to the formal veri�cationwith the proofs in the appendix. This paper is intended to be readable stand-alone; allconcepts of Focus that are needed for understanding are briey explained.Section 2 of this paper contains an informal description of the TimeWarp algorithm. Insection 3 a short introduction to the concepts of Focus is provided. An outline of thestepwise development of the algorithm together with some aspects of how the algorithmis modelled is given in section 4. The formal speci�cations of all four abstraction layersare described in section 5. In section 6 the relation between the di�erent abstraction levelsis investigated, and the idea of the formal proofs is outlined. A summary of the papertogether with some conclusions is contained in section 7. A summary of all de�nitions andthe proofs are found in the appendix.This work originates from a cooperation of the projects A6 and B4 of the \Sonder-forschungsbereich 342" of the Technical University of Munich, having the aim to developtools and methods for the e�cient use of parallel and distributed computer architectures.With this cooperation project, A6 was able to test the suitability and bene�t of the useof the developed formal methodology (namely Focus) in this case study supplied by B4,whose main focus lays in parallel simulation of digital circuits and communication net-works. The results of this work show the pro�t that can be gained from a cooperation ofpartners from theory- and application-oriented projects.2 Simulating with TimeWarpIn this section the basic concepts of the simulation of event-driven and discrete simulationmodels are described, valid for both distributed and non-distributed simulators. Thenthe idea of the TimeWarp mechanism is explained, o�ering an e�cient method for thesynchronization in a distributed simulator.If something of the real world is to be simulated, this world has to be described by anadequate model that is an appropriate abstraction. TimeWarp cannot be used for all kindof models but only for those that have certain properties stated now. A lot of examplesfor models that ful�ll these requirements exist, e.g. the simulation of digital circuits andtra�c ow simulations.� The time in such a model must be adequately described by discrete points of time(comparable with natural numbers) in contrast to a continuous time (real numbers).6



According to the virtual time paradigm ([Jef85]) there is a clear distinction betweenthe virtual time of the simulation model and the physical time of the simulator itself.� At each single moment of the (physical) time the model is in a speci�c state, con-taining a description of the state of all constituents of the model, e.g. the (virtual)time to be simulated next in the simulator.� The changes between one state and the next can be described by a set of events, con-taining information about what change in the model is happening when (concerningvirtual time).The way how a non-distributed simulator for a model like this is working is quite simple:It is started with an initial state of this model, and an initial set of triggering events.These events contain a description (d) of what is changing in the state of the model andwhen this change has to happen (texecute or te). When the time vt is simulated, all eventswith vt = texecute have to be considered, causing a change in the state of the model andcreating resulting events. A simple simulator starts with simulating time 0, calculates allevents that derive from this simulation step and inserts them in the event set, proceedswith simulating time 1, then 2, and so on. The creation-time (tgenerate or tg) of eventsis also noticed. Due to causality, it can be assumed that te � tg + 1, stating that theconsequences of the simulation of a certain time only concern the future. Events can berepresented (together with the symbol \+" for reasons explained later) by a quadruple ofthe form[+; tgenerate; texecute; d]To achieve a faster simulation of complex systems, it is promising to use parallel computa-tion in a distributed system of interacting components. For that, the model to be simulatedmust be split into several partitions, one for every available simulating component. Everycomponent should be able to simulate as independently as possible, using a local virtualtime (lvt) describing the time which is to be simulated next in its partition. Since someevents are created in one partition but have to be executed in another, events must beexchanged between the components of the simulator. To preserve causality it must beassured that a component simulating the time lvt must have all events available that havean execution time equal to lvt.A distributed simulator with conservative synchronization uses waiting to avoid causalityerrors, i.e. a component does wait until it is sure that all required events have been receivedfrom other components. The behaviour of a simulator using TimeWarp is di�erent:instead of wasting time by waiting, the components assume optimistically that no furtherevents will come and just proceed in computing. Due to that behaviour, there is a need tocare about stragglers. These are messages that arrive too late, i.e. with an execution timete smaller than the actual lvt. Since such an event was not yet available when simulatingthe time te, the receipt of this straggler signals that probably the computation steps from7



simulating te until now were wrong. This error has to be corrected by a rollback, undoingall activities of the local simulator back to the situation before te was simulated.To make the components capable to do rollbacks, additional mechanisms and data struc-tures must be provided. The components of the simulator must be able to react on strag-glers. To do a rollback, older states of the model must be saved, and the componentsmust be able to cancel messages that have been already sent during a computation thatturned out to be possibly wrong. Cancelling is done by re-sending the message that hasgot invalid, but marked with a negative sign. Two messages of the form [+; tg; te; d] and[�; tg; te; d] are called antimessages and annihilate each other when they \meet". Thereare two di�erent cancellation strategies: Using aggressive cancellation all messages alreadysent are cancelled at once when doing a rollback. Lazy cancellation delays sending antimes-sages until it is sure that sent messages are indeed wrong. Sometimes stragglers have animpact only to some sent messages, so that some cancellations can be avoided. This laststrategy needs more e�ort for the implementation, but leads to simulations that can takea short-cut of the critical path (given by the causality graph of all events).As now also cancellations are sent between the components, it must be de�ned how theyreact on these messages. Fortunately, this mechanism is quite simple. If a cancellationwas received for an event whose execution time lies in the future (relative to lvt), thenthis event is just deleted and no further action is needed. If there occurs a cancellationof an event that was already processed, an ordinary rollback must be performed, and thecomputation is done again without this event.The rollbacks can lead to a kind of snowball e�ect. If one component sends cancellingmessages causing rollbacks in other components, these could cause further rollbacks, andso on. It will not happen that all simulators rollback to the beginning (with lvt = 0) andstart all over, what can be concluded from inspecting the algorithm for the global virtualtime, that is an essential part of the TimeWarp.The global virtual time (gvt) contains the information about the general progress of thedistributed simulator. This value is a kind of minimum of all lvt values together withthe execution time of messages still on the way between components. So if this value isknown, it can be assured that there are no longer any events in the system that will causea rollback to a time before this gvt. An approximation of this value can be calculated bya central instance when it is supplied with enough information from the components ofthe simulator. This algorithm together with its properties is described in literature as e.g.[Bau94] and [JS85], and was proved formally to be correct in [Gaf85] and [KRF+96].The e�ects of the rollbacks with their cancellation messages should be made invisible fromthe outside of the simulator. So the results returned to the user should be free from thesemessages. To achieve this, the simulators �rstly keep back the results that are meant forthe environment. When a new value for gvt is calculated by the central instance, it isbroadcasted to all components. As reaction, those send all results that are now safe frombeing cancelled to the central instance, and they clean up their store of old states to whichno rollback will ever occur again. 8



For more detailed descriptions of the TimeWarp see e.g. [JS85], [Jef85], [Fuj90] and[Bau94]. In [Bau94] it is implemented for simulating digital circuits with a measurablespeedup.The above description should give an idea of the functionality of the TimeWarp mech-anism. Since the interaction between the components is quite complex, it is not obviousthat the returned results of such a simulator are correct. Thus, a formal speci�cation andveri�cation of the TimeWarp as done in the next sections can lead to interesting insights.3 The Methodology FocusFocus is a powerful methodology for the development of distributed reactive systems.It o�ers methods with a formal foundation for specifying and re�ning systems throughseveral abstraction layers in a top-down manner. Since Focus contains a variety of tech-niques, speci�cation formalisms and semantic choices, it is not possible to give an extensiveintroduction in this paper. The interested reader is referred to literature as [BS97] and[BDD+93] for an introduction, to [BBSS97] for an overview on case studies done with Fo-cus, and [HSSS96] for the description of the supporting tool AutoFocus. In this sectiononly a very short and speci�c introduction to some aspects relevant for this case study ispresented.According to the concept of Focus a distributed system consists of a number of componentsthat can be partially connected with each other or with the environment via asynchronousone-way communication channels, comparable with unbounded FIFO-bu�ers. By de�ningthe behaviours of the components and the topology of the connecting network of channelsthe system is su�ciently de�ned. The behaviour of this system can be deducted from thebehaviour of its constituents.To describe the topology of a distributed system, a graphical notation is su�cient. Thecomponents are depicted as named boxes, and the channels as named arrows pointing fromcomponents that are allowed to write messages on that channel to components that readthese messages. Arrows coming from or pointing to the outside symbolize connections withthe environment.The basic data structure needed for the de�nition of components are timed streams, i.e.in�nite sequences of messages including the special message p (say tick) denoting thatone time intervall had passed. In the so-called synchronous model used here, a globaland discrete time is assumed, and in every time intervall at most one message can betransported between two components. The situation that no message has been sent duringan intervall is denoted by p1. With these streams the whole communication history ismodelled: a speci�c stream that is associated with a channel between two componentscontains all information what message is sent when between these components. Other1This de�nition is slightly di�erent from the usual de�nition, but this can be ignored for the purposeof this paper. 9



spec Voter: (I1)N ! O1data m : Integer = 0Ij PRE O POST8j 2 N : p m0 = mp8j 2 N : 8k; l 2 N ok m0 = m + 1ij ik = il 6= p8j 2 N : 9k; l 2 N fail m0 = m� 1ij ik 6= ilTable 1: A speci�cation by a tablesemantic variants common in Focus ignore aspects of time totally (untimed model) oradmit a �nite sequence of messages (instead of just one message) to be sent during onetime intervall (general timed model).To de�ne a component, �rst the interface must be declared. This contains a description ofits input and output channels as well as the type of messages that can be received or sentvia these channels. The behaviour of a component can be described precisely by de�ninga relation between its input streams and its output streams, containing the set of commu-nication histories that are valid for this component. One way to describe this relation isto de�ne a stream-processing function that maps input streams to output streams. Thisfunction reads an input stream message by message, and writes - as reaction - some out-put messages onto the output channels. Stream-processing functions have to ful�ll furthersemantic properties as continuity, realizability, time-guardedness and more, as explainedin literature. It is possible to use state parameters to store control states or additionaldata that can be helpful for easier modelling.One way to specify a stream-processing function is using a tabular notion as explained nowwith the example in Table 1. This component represents a kind of voter that compares allincoming messages and yields \ok" if they are the same and \fail" otherwise, and calculatesinternally the di�erence between the number of occurences of these two messages. Theinterface of the component called Voter is given in the �rst line. It reads input from N(with N as an arbitrary natural number) input channels containing messages of a type I(not necessarily speci�ed more detailed at this abstraction layer), and writes to an outputchannel with type O = fok, failg. The index 1 denotes an in�nite timed stream withmessages of the appropriate type, extended by the additional symbol p. Voter has a statevariable m of type Integer that is initialized by 0.The table itself contains one column for every input channel, one (optional) column fora precondition, one column for every output channel and one (optional) column for the10



postcondition. The number of the input channels Ij is parameterized here. Nevertheless,the according columns for the input channels can be represented by one column, super-scribed by an indexed name as shown in the example. The distinction between di�erentbehaviours for a given input is now de�ned by the entries in the columns for the inputand the precondition in a way that resembles pattern-matching in functional programminglanguages. The �rst line in the example describes the case that on all input lines no mes-sage (i.e. a p) is received. The second and third line instantiate the arriving messageswith the variables ij. The second line describes the case that all read messages are thesame, while in the last case at least two messages are di�erent. In all cases from all inputchannels exactly one message (maybe p) is read and \removed" from the channel. Notethat it would be allowed to use the data state m in de�ning the precondition so that thebehaviour could depend on the actual value of m. In this example exactly one of the threecases will be true. If more or none of the cases could occur at the same time, the behaviouris underspeci�ed.The output is now de�ned for all cases by the according columns. Changes of the statecan be described by a predicate in the postcondition, using the convention that variableswithout primes denote the original values and variables with primes the new ones. So inthe �rst case of this example, no input results in no output (denoted by p), in the othercases an \ok" or \fail" message is written to O, and the value of m is increased resp.decreased2.The semantic (i.e. the relation between the input and output streams) of such a table canbe derived in a uniform way suitable for automatic treatment. Two variants of notions aregiven here. The �rst one de�nes the behaviour of Voter by a function V oter calculatingan output stream for an arbitrary input stream tuple i. It is de�ned byV oter : (I1)N ! O1V oter(i) = p & f [0](i)Since due to semantic reasons all streams have to start with a p, this p is appended by theoperator & in front of the rest of the output that is calculated by the state-based auxiliaryfunction f , whose state is initialized by 0, as speci�ed in the table. The de�nition of fderives from a simple translation of the lines of the table into conditional equations:true ) f [m]((p; : : : ;p)&i) = p & f [m](i) ^i1 = i2 = : : : = iN 6= p ) f [m]((i1; : : : ; in)&i) = ok & f [m + 1](i) ^9k; l 2 N : ik 6= il ) f [m]((i1; : : : ; in)&i) = fail & f [m� 1](i)In the proofs of this paper the following, equivalent way to formulate the semantic turnedout to be suitable. This notion uses a relation with the name VOTER and the dot-notation2Note that the variable m is used neither in the precondition nor for the output, and could thereforebe ommited without changing the behaviour. So this speci�cation does not make too much sense, but isstill suitable to show the expressiveness of tables. 11
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denoting that i and o are related by the relation R):8i0; o0 : S 0[i0; o0] ) 9i; o : RI [i; i0] ^ RO[o; o0] ^ S[i; o]An important aspect for the top-down-development is compositionality. It assures thatcomponents can be re�ned independently. To gain compositionality the two IAR-relationsmust ful�ll the IAR property. This property is assured if a concrete stream has exactlyone corresponding stream on the abstract level (i.e. R[x; z] ^ R[y; z] ) x = y). Weakerconditions for IAR relations can be found in literature mentioned below.If all these necessary conditions are ful�lled, the re�nement (stating that S and S 0 aredoing the same with respect to RI and RO) is written asS (RI ;RO); S 0The interaction-re�nement has some specialized variants, namely behaviour re�nement(restricting underspeci�cation), structural re�nement (splitting a component into a networkof interacting subcomponents) and interface re�nement (changing the interface). These arefurther investigated in [Bro92] and [Bro93], and summarized in [BS97], together with allformal de�nitions and further properties of ';' omitted in this short introduction.4 Modelling TimeWarp with FocusThis section outlines the stepwise development of the distributed, TimeWarp-synchronizedsimulator through four steps.When modelling with Focus, a model for time must be chosen. For the purpose of thispaper, the synchronous time model of Focus is used, for the following reasons: To beable to model that messages are not arriving at a certain time, it is inevitable to usetimed streams. In the synchronous time model there is at most one message at a time,or none (symbolized by p). This time-model turned out to be suitable for the treatmentof the TimeWarp as done in this paper, as for example the proofs turn out to be easierformulated by knowing that messages that are sent at the same time occur at the samepositions in the streams. In addition, all stream processing functions are meant to bestrongly time-guarded, i.e. the reaction of all components is not instaneous, but needs atleast one tick. This choice avoids problems that can occur in feedback-loops, and has noother drawbacks.When arguing about the correctness of the TimeWarp-based, distributed simulator it isobvious that there is the need for a clear de�nition of what correct means. Correctnesscan be de�ned only in relation to a �rst formal speci�cation of an event-driven simula-tor. This should be kept as easy as possible and will be modelled in this case by onesingle and abstract component that calculates the results of a simulation in a simple and13



classi�cation of simulator centralized distributedevent-driven CED DEDsingle-step CSS DSSTable 2: The four abstraction layersstraightforward way. Then more and more complex variants of the simulator are given,whose correctness can then be described relatively to the preceding versions in a formalway. During development two major steps have to be made:� Distribution from a centralized component to several communicating components.Note that some (possibly simple and une�cient) synchronization is needed to ensurecorrect results.� Optimizing the synchronization through the TimeWarp mechanism.To reduce the complexity of the system development, it is useful to keep these two majorsteps separated in di�erent development steps. For that reason, we propose four di�erentabstraction layers, identi�ed as CED, CSS, DSS and DED, whose properties are sum-marized in Table 2. CED represents the most abstract, DED the most concrete layerinvestigated in this paper.On all levels a slight simpli�cation is now introduced: the initial phase is left out, i.e. allconcerned components are considered to know the information about the simulation modelwith all initial events. The way how the components are getting this information is notmodelled. This simpli�cation reduces some technical overhead, and is not essential to theproblem to be tackled in this paper.The most abstract simulator, CED, is quite simple, and represents the basis for all furtherconsiderations. Since all information is available in this component from the beginning,no input channels are necessary. On the output channel all events that result from the
SIM O

Figure 2: Centralized Simulation (CED, CSS)14



SP i SP n

X1 Y1 Xi Yi nX Yn

C 1,n

C n,1

C i,1

C 1,i C i,n

C n,i

  CL  

O

1SP

Figure 3: Distributed Simulation (DSS, DED)simulation are sent. Since this simulation is event-driven, only the points of time areconsidered for which events are existent. During the time between two succeeding events\nothing is happening" in the model, meaning it is su�cient that the local virtual timejumps in steps. A graphical representation of this component is given in Figure 2.The next simulator, CSS plays an intermediate role just to make the veri�cation stepbetween CED and DSS easier by splitting it up into two smaller steps. The only di�erenceis that all points of time are considered, even those without corresponding events thatdescribe something to happen at that time. Thus, this version of the simulator makes thesame simulations steps as CED, but additionally \empty" steps in-between. The graphicalrepresentation (Figure 2) is the same as the one of CED.The simulator called DSS is a distributed simulator, meaning that the actual simulationis performed by several, similar components SPi that simulate disjoint parts of the model.For a correct simulation preserving causality, it is necessary that all relevant events areavailable in a component when this component is performing a simulation step. In DSSa very easy synchronization mechanism is realized by making all components steppingthrough all points of time synchronously. All components make a calculation step for aspeci�c time, then new events are exchanged via channels Cij (connecting SPi with SPj)15



and all components continue with the calculation step for the next point of time. Sincethis stepwise proceeding through time was chosen already in CSS, the output of DSS is thesame as the one of CSS. In Figure 3 a further central component CL can be recognized.This component collects the events of all simulating components and produces the overalloutput by just merging these events. The interface of the system to the environmentkeeps therefore the same, i.e. only one output channel. Note that the channels namedXj (for all j) are not really used in this simulator, i.e. no messages at all are sent overthese channels. They are already existent in this simulator to make the re�nement to thenext, more concrete simulator easier. Alternatively it would be possible to insert a furtherdevelopment step in which these channels are introduced by an interface re�nement step.The timing model of the last two simulators resembles the so-called cycle-based simulatorsif they would be extended by a speci�c management of the events, allowing a delay of thepassing of messages di�erent from one.The TimeWarp mechanism itself is realized in DED, that can be depicted also by Figure3. The di�erence to DSS is the synchronization mechanism, i.e. the way the componentsproceed with their local virtual time and talk to each other. The components now simulatedi�erent points of time, and have to use the more complex protocol including stragglers andcancelling messages. In this simulator, the central component CL has not only to collectand merge the results, but it has also to implement the gvt-algorithm. It can do this bygetting information about the local virtual times of the other components and sending thenew gvt to the components if a new value has been calculated.These four abstraction layers are speci�ed formally in section 5, and the validity of thecorresponding re�nement relations is shown in section 6. The output of the di�erent simu-lators is not precisely the same, since there are slight di�erences concerning the behaviourin time. But when the outputs are viewed with an appropriate abstraction concerningtime, the results are identical.During the modelling of TimeWarp as done in this paper, some simpli�cations were madeto keep the speci�cations simpler. They are summarized in the following.� The termination of the simulation is not taken into account. The simulators justcompute without terminating, sending empty messages once the event set gets empty.� The input of the initial events is not modelled as already mentioned. It is assumedthat all components already have their start-up information.� Lazy cancellation is not used, since the mechanism for rollbacks would be even morecomplicated.� The storage of the components is not limited, so all states could be stored and nooptimization is necessary.� The algorithm for calculating gvt is assumed to be correct.16



� The e�ort for one simulation step is assumed to be constant (i.e. one tick) for allcomponents. If di�erent costs or calculations speeds for the di�erent componentsshould be modelled, this could be done by allowing a component to delay its outputby sending a (�nite) sequence of ticks �rst.� The medium for communication (i.e. a physical network) is not modelled, but it isassumed that all components are connected directly with each other. The communi-cation is assumed to be totally free from any faults, what can be achieved in realityby using appropriate communication protocols.Despite these simpli�cations the model is still an adequate abstraction of TimeWarp forinvestigating the essential concepts.5 The Speci�cationsIn this section the four views for the di�erent abstraction layers already introduced insection 2 are formally speci�ed. The necessary sets and functions are introduced step bystep. All de�nitions are summarized in appendix A. The re�nement relations between thedi�erent simulators are investigated in the next section 6.5.1 Centralized, Event-Driven Simulation (CED)This �rst view provides a speci�cation of a centralized simulator. Since this is the �rstformalization, this speci�cation describes the behaviour as simple and abstract as possible.A lot of the details is hidden in the auxiliary functions. The simulator called CED isspeci�ed by Table 3.CED does not receive any input, and delivers a stream of the type O = EV ENTS1,an in�nite, timed stream containing sets of events as messages. Thus, CED has the typefg ! O. Note that at this abstract level there is no further knowledge necessary aboutthe structure of the elements of EV ENTS. CED contains a triple as internal data state:� In the variable s the current state of the simulation model is stored, e.g. the stateof all (technical) internals of the circuit whose run is to be simulated. The valueSTART contains the initial state of the simulation model.� The variable ev stores the current set of events, containing events still to be executedtogether with events already executed. The triggering events that are assumed tobe already available at the beginning of the simulation are contained in the constantEV .� In vt the next time that is to be simulated is stored. Through the appropriate call ofthe function nxt it is initialized with the �rst time for which a simulation step hasto be executed. 17



spec CED : fg ! Odata s : STATES = STARTev : EV ENTS = EVvt : TIME1 = nxt(EV; 0)O POST�0(sim(s; ev; vt)) ev0 = ev [ sim(s; ev; vt)s0 = next(s; ev; vt)vt0 = nxt(ev0; vt)Table 3: Speci�cation of simulator CEDThe function nxt and other functions only mentioned shortly in this chapter are speci�edin detail in appendix A.The behaviour is speci�ed by a simple, slightly degenerated table. Since there is no input tothis component at all, this component outputs a stream of events autonomously. ConsiderCED to be in the data state described by the values of (s; ev; vt). Then for every step thefunction call sim(s; ev; vt) is performed. This yields all events that arise from simulatingthe model described by s for the time vt considering all events out of ev with timestampsequal to vt. The resulting events are all stored in the set ev0 (the new ev), and some ofthem, namely those that are relevant for the overall result, are selected by the function �0and sent as output to O. For the case that there are no resulting events, �0(;) delivers anempty output message, i.e. a tick p. The following state of the simulation is calculatedby the function next. The next point of time that has to be simulated can be concludedfrom the new event set ev0. The search for the next relevant event after vt is made by theappropriate function call of nxt.
5.2 Centralized, Single-Step Simulation (CSS)The Simulator CSS di�ers from Simulator CED only in its stepwise proceeding of the localvirtual time. It is speci�ed in Table 4.This simulator performs calculations for all points of time, even when there are no eventsexistent for that time. So vt is initialized by 0, and incremented by 1 at every step. Thishas the e�ect that many function calls of sim will deliver the empty set as result and nextwill yield the same s as it was supplied with if there are no events that describe any changein the model at the respective point of time.18



spec CSS: fg ! Odata s : STATES = STARTev : EV ENTS = EVvt : TIME1 = 0O POST�0(sim(s; ev; vt)) ev0 = ev [ sim(s; ev; vt)s0 = next(s; ev; vt)vt0 = vt+ 1Table 4: Speci�cation of simulator CSS5.3 Distributed, Single-Step Simulation (DSS)Simulator DSS is a distributed simulator. It is assumed that the model to be simulated issplit into an arbitrary number of n partitions. DSS is speci�ed to consist of one centralcomponent CLSS and n similar components SP1SS to SPnSS. Each of them performs thesimulation of one partition. The two kinds of components are speci�ed formally in thissection.The controller CLSS is speci�ed by Table 5. This table is no longer a degenerated one,since the behaviour is dependent from the input. CLSS collects all the events that arereceived via the channels Yj (for all j 2 N)5 and outputs the union of these sets directly(i.e. one tick later, due to the selected time-model of Focus) to the channel O. Theexpression mN =df Sj2N mj is de�ned as abbreviation. The union-operator for sets has tobe extended to be de�ned over p to make it formally correct, so A [p = p[ A = A hasto be valid for all sets A of events. Since there is no storage of any information necessary,this component does not have any data state. As already mentioned, the channels Xj arenot needed, so no messages are sent on these channels, denoted by p.The components SPiSS (for all i 2 N) work quite similarly to the simulator CSS. The maindi�erence is that every component takes over the simulation of only a part of the model.The communication is more complex: In order to achieve correct results, every simulatorhas to exchange events that are not interesting for the overall result but needed in othersimulators. For this the channels Cij are used, connecting SPiSS with SPjSS. Since thechannels Cii (connecting components with itself) prove to be useful in the next level ofabstraction, they are not excluded. The events that have to be sent to the environmentare put on the channel Yi connected to CLSS.Two additional functions are required to be able to specify in an abstract way that SPiSSsimulates only a certain partition of the model:5Note that the indices i and j are meant to range over N = f1; : : : ; ng for the rest of this paper.19



spec CLSS: Y n ! O �XnYj O Xj8j 2 N : mN pmjTable 5: Speci�cation of controller CLSS� The function parti, applied to a description s of a simulation model, delivers allinformation of partition i of the model that is necessary to simulate this partition.� The function �i selects the subset of a given set of events that have to be consideredwhen simulating partition i.On this abstract level, there is no need to de�ne these functions in detail. A loose algebraicspeci�cation of some properties is su�cient, as for example the following requirement:parti(next(s; ev; vt)) = next(parti(s);�i(ev); vt)It denotes the property that if a simulation step is made for the timestamp vt with onlythe information about partition i of s and about the events that have to be considered inpartition i (right-hand side of the formula), then the same state is reached in partition iof the model when the whole model is simulated, and then only partition i is inspected(left-hand side of the formula). Requirements like this were found during the processof proving the re�nement relations, and are summarized in appendix A. When thesefunctions are implemented in future stages of the development, they just have to ful�llthese requirements, and none further.In the speci�cation of SPiSS in Table 6 the variables s and ev are initialized in a way thatSPiSS will simulate partition i. At every step, this component reads all event-sets on thechannels Cij from its \colleagues". When the simulating functions (i.e. sim and next) arecalled, all these received events together with the events stored locally in ev are considered.By the function �0 and �j the resulting events are distributed to the colleagues and to thecentral controller, so that all components get the information they need.Some of the calculated events are needed in the same partition where they have been gen-erated. Instead of putting them in ev directly, the component SPiSS sends these messagesto itself over the channel Cii, and therefore ev0 results from a union with the value evN andnot with the results from the call of function sim. This makes the speci�cation and theproofs simpler, since the quanti�cation covers the index set 1 : : : n in a uniform way. Incase of \real" messages being sent on one of the channels Xi (i.e. a message di�erent from20



spec SPiSS: X � Cn ! Y � Cndata s : STATES = parti(START )ev : EV ENTS = �i(EV )vt : TIME = 0Xi Cji Yi Cij POSTp 8j 2 N : �0(sim(s; ev [ evN ; vt)) 8j 2 N : ev0 = ev [ evNevj �j(sim(s; ev [ evN ; vt)) s0 = next(s; ev [ evN ; vt)vt0 = vt+ 1Table 6: Speci�cation of simulator component SPiSSp), the behaviour of SPiSS is unspeci�ed. But since CLSS is obviously never sending amessage except p, this case will never arise.Simulator DSS itself can now be de�ned by the compositon of all participating n + 1components according to Figure 3 byDSS = CLSS 
 SP1SS 
 : : :
 SPnSSThe operator 
, suitable for combining components to networks, is used here in a veryunprecise way. A more formal de�nition is omitted here, since the graphical notation ismuch more intuitive. More formal arguments are used in appendix B.5.4 Distributed, Event-Driven Simulation (DED)The simulator DED, at last, realizes the TimeWarp mechanism that is already describedin previous chapters. There are again two kinds of components, one central controllinginstance and N simulating components, each dealing with a speci�c partition of the model.The functionality of these components is more complex compared to the previous DSS, andspeci�ed in this section.The component CLED, speci�ed in Table 7, still has to collect events from the simulatingcomponents, but has in addition the task to implement the gvt-algorithm. Since this algo-rithm and its correctness are already investigated in literature, the algorithm is modelledhere in a very abstract way, and its correctness is postulated by properties about functionsde�ned now.CLED contains one very abstract data element called z of the unspeci�ed set Z. It is simplyassumed that in this variable all necessary information needed for the algorithm can becoded. A more detailed description of the contents of this variable can be reached by datare�nement in future development steps. The initialization of z is done by using a speci�celement init. When messages are received on the channels Yj, all received events are sentdirectly to O. Since these messages mj can also contain information about the status21



spec CLED : Y n ! O �Xndata z : Z = initYj O Xj POST8j 2 N : mN 8j: z0 = update(z;mN )mj if triggered(z0)then gvt(z0) else pTable 7: Speci�cation of controller CLEDof the simulators (called info), the union-operator has to be generalized again to ignoreinfo messages when sending the set union mN . In this abstract speci�cation, there is onlyone unique value info, which of course has to be re�ned to more speci�c data throughdata-re�nment in future development steps. The info-messages themselves are used tocalculate the new state z0 using the function update. If a new value for gvt is available,this is indicated by the boolean function triggered. Then all simulating components areinformed by sending to them the appropiate value, calculated by the function gvt. If thereis no new value for gvt, no messages are sent to the components SPiED. The correctnessof the gvt-algorithm implemented by the functions update, triggered and gvt is easilypostulated by a�rming the liveness condition that there is indeed a real proceeding of theglobal virtual time.The component SPiED speci�ed in Table 8 di�ers from the preceding components in com-plexity. This component has to deal with stragglers and cancellations in the event setsthat are exchanged between the components, and with gvt messages received from thecontroller. These new requirements make new, appropriate data elements necessary tostore states for eventual rollbacks and for cancelling messages that have already been sentbut turn out to be wrong.The elements s and ev have the same task and initialization as in SPiSS. The variable vtfor the local time is initialized by a call of nxt with the �rst point of time for which anevent with an appropriate execution time is contained in ev. In outQ all events resultingfrom the calls of sim are stored for two reasons: The events that have to be sent outsidethe simulator via CLED must be kept back in outQ until an appropriate gvt-message isreceived, assuring that no relevant rollback will happen anymore. Additionally outQ alsocontains the messages already sent to the colleagues, so that the component knows whichmessages are to be cancelled (i.e. sent again with a negative sign) when a rollback occurs.The variable hist is also needed to allow rollbacks: a list of the states s together with atimestamp (saying when this state was valid) are stored in this set. Again sets are usedfor specifying these two new elements at this abstract level. In later steps, the sets can beimplemented through more e�cient data structures.22



spec SPi ED: X � Cn ! Y � Cndata s : STATES = parti(START )ev : EV ENTS = �i(EV )vt : TIME = nxt(ev; 0)outQ : EV ENTS = ;hist : HIST = ;Xi Cji PRE Yi Cij POSTp 8j : nxt(evN ; 0) info 8j : ev0 = ev + evNevj � vt �j(sim(s; ev + evN ; vt)) s0 = next(s; ev + evN ; vt)vt0 = nxt(ev0; vt)outQ0 = outQ [ sim(s; ev + evN ; vt)hist0 = hist [ f(s; vt)gp 8j : nxt(evN ; 0) info 8j : ev0 = ev + evNevj < vt �j(cancel(outQ; vt0; vt)) s0 = get(hist; vt0)vt0 = nxt(evN ; 0)outQ0 = outQ+ cancel(outQ; vt0; vt)hist0 = hist� f(s; t)jt � vt0ggvt 8j : �0(select( 8j: outQ0 = outQ� select(outQ; gvt)evj outQ; gvt)) evN i� j = i hist0 = hist� f(s; t)jt � gvtgp i� j 6= iTable 8: Speci�cation of simulator component SPiED
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The speci�cation of SPiED in Table 8 contains three lines, distinguishing three di�erentkinds of messages on the input channels. The �rst two cases are discriminated by a precon-dition. These cases contain the speci�cation of the behaviour if no gvt-message is receivedfrom the controller.In the �rst case no rollback is triggered. This case can be recognized by the component byinspecting the received events in evN : If all of their execution times are not earlier than thepoint of time that is to be executed next (stored in vt), the component can perform a usualsimulation step, which is similar to the steps CED is doing. The function sim is called,supplied with all information needed, and the resulting events are sent to the colleaguesand stored in outQ for further reference. The old state s together with vt is stored in hist.To the controller some information info is sent, but no resulting events. Note that theoperator + is used (instead of [) when merging the new received events with the eventsalready stored in ev. This operator returns a kind of set union, but dissolves messages withtheir antimessages. If, for example, there was an event already received that will have tobe taken into account when simulating some future point of time, and now a cancellationis received, these two messages just dissolve, get invisible and have no more inuence onfuture calculations. The function + is speci�ed in section A. The new vt0 is set to thenext time when an event has to be considered, so the simulation-time is jumping from onerelevant point of time to the next.The second line describes the behaviour when a rollback is initiated by an event with a timestamp referring to a point of time that was already executed. It is not important if thismessage is a positive message (event) or negative message (cancellation of an event). Sincethe simulation step of the past time was done without this event, this step together withall the following could be wrong and must be corrected by a rollback. The time to which vthas to be set back is described by vt0. The function cancel(outQ; vt0; vt) selects all eventsout of outQ that have been generated between vt0 and vt and signs them negative. Theyare sent to the colleagues (and itself) again, so that all sent messages (including internalevents) are cancelled. Then outQ can be reduced by all events that are now cancelled. Notethat the operator + together with the negative signs introduced by cancel has exactly thedesired e�ect. The state s which was valid when executing the time vt0 is seeked in histby the function get, and is assigned to s0, meaning the state is reset. Then all states inhist that are no longer needed are deleted.The third line deals with the case that a message was received containing a new value forthe gvt. In this case it is assured that no events with an execution time before gvt will everoccur again. This means that all events generated before gvt can be sent to the centralcomponent that forwards them to the environment. The variables outQ and hist can thenbe cleaned up since information concerning the time before gvt is no longer needed. Whenthe gvt-message is received, there are in general events arriving on the Cij-channels in thesame moment. These messages may not be lost. For that reason a very simple way tobu�er those messages is chosen for this speci�cation: The component sends all receivedevents again to itself, so that it will receive them again with the next tick. The colleaguesdo not get any message in this case. 24



6 The Veri�cationIn this section the re�nements between the di�erent abstraction levels are described in orderto make it plausible for the reader unfamiliar with formal veri�cation why the TimeWarp-simulator DED yields the correct result as de�ned by the simple simulator CED.The relation between two levels of abstraction is described by an Interaction-Re�nement(IAR). All of the following three subsections contain� a speci�cation of the necessary IAR-relation,� a statement of the proof obligation, and� a description of the idea of the proof.The formal proofs are not given here, but can partially be found in appendix B.6.1 Re�nement of CED to CSSThe di�erence between CED and CSS is the di�erent behaviour concerning time. WhileCED performs calculation steps only for the relevant points of time when events with anappropriate execution time are existent, CSS makes simulation steps for all t 2 TIME,thus including steps with no production of output. So the output of CSS contains justmore p-messages than the output of CED, and the output of both simulators is the samewhen a suitable abstraction concerning this di�erence is made.This abstraction is modelled as IAR by de�ning a relation between the output streamsof CED and CSS, as illustrated in Figure 4. Since these components do not have inputchannels, no IAR-relation must be de�ned for the left-hand side of the diagram.The relation RT (for ReTime) between the output streams for both simulators states thatthey are the same when all ps are left out and just the order of messages is considered inthe streams. The formalization is easy since the standard operator : can be used:RT [o1; o2] � o1 = o2Note that the relation RT does not satisfy the condition for compositionality mentioned insection 3. For a stream o2 on the concrete level arbitrary many streams o1 of the abstractlevel (ful�lling the relation RT ) exist. This contradicts the requirement for IAR-relations.Since for the aim of this paper only the overall result of the simulation is interesting,the compositionality of this re�nement step can be dropped. If this component shouldbe integrated in an environment, further considerations would be necessary and another,compositional re�nement relation should be given. When relating abstract with concretestreams, this relation would insert p-messages exactly at these points in the stream whereCSS would do \empty" steps, i.e. steps with no output of any events. Due to the higher25
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Figure 4: Re�nement of CSS to CEDcomplexity of the formal treatment and since there is no need concerning the purpose ofthis paper, this is not further realized here.The formal notion of the re�nement statement, saying that the output of both CED andCSS is the same relative to RT , is given by (with y denoting the empty relation)CED (y;RT ); CSS:The proof is based on a comparison of the calculations of both simulators. CED performsonly e�cient steps of the form z o! z0 (with z and z0 as internal states), while CSS executesseveral empty steps until its vt reaches the value when the same e�cient step has to beperformed. Thus, the corresponding calculation has the formz p! z� p! : : : p! z�� o! z0with the e�cient step at the end. In the proof, the corresponding internal states of bothsimulators are related by the re�nement relation r, de�ned byr((s; ev; vt)) = (s; ev; nxt(ev; vt))The proof with all details can be found in appendix B.1.6.2 Re�nement of CSS to DSSWhen comparing the simulators CSS and DSS one can observe that their behaviour visiblefrom outside is nearly the same, since both simulators work in a stepwise manner and dosimulation steps for all points of time. Since in DSS all results are passed through the26
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Figure 5: Re�nement of CSS to DSScontroller CLSS the output is sent to channel O one tick later. This interaction re�nementcan be depicted as done in Figure 5 with the relation DELAY easily de�ned byDELAY [o2; o3] � o3 = p & o2The main aspect of this re�nement step is to show that the distribution of the computationto several components still leads to the same results as delivered from the centralized CSS.To show that the outputs of both simulators are the same (with the time delay considered),the states of both systems can be related as described now. The state Z2 of CSS is simplygiven by the values of its data elements. The state Z3 of DSS in a speci�c moment isgiven by the product of the states of all components SPiSS and the messages that are justbeing transmitted on the internal channels. Since the synchronized model is chosen, on allchannels there is at most one message at a time. Between the states of both simulatorsa relation R can be de�ned stating that both simulators are in equivalent states, meaningthey will produce the same output (modulo the mentioned delay) from now on:R[Z2; Z3] � 8i 2 N : parti(s) = si ^�i(ev) = evi [ cj2N;i ^vti = vtThe second line, for example, states what is necessary for the event sets occurring in bothsimulators to make the states Z2 and Z3 be in relation R: the part of event set of CSSthat belongs to partition i must be equal to the event set stored already in SPiSS togetherwith the events that are just on their way to SPiSS and received by it in the next step.With use of the algebraic speci�cations of the auxiliary functions it can be proved that8t 2 TIME : R[Z2:t;Z3:t]. From that it can be concluded that 8t 2 TIME : o2:t =o3:(t + 1), which implies the proof obligation that is proved in detail in appendix B.2:CSS (y;DELAY ); DSS 27



DED
DSS

- O4
- O3O??

6
6

Figure 6: Re�nement of DSS to DED6.3 Re�nement of DSS to DEDTo show that DSS and DED calculate the same simulation results demands a precisespeci�cation what \same results" means in this context, since the way they calculatetheir results is quite di�erent. While DSS follows a very predictable and easy manner ofcalculation, the method of DED is much more complex. Results of DSS are sent directlyafter calculation via the controller. The simulators of DED keep the results back for awhile until an according gvt-message is arriving. So the IAR-relation called O in Figure6 has to reect this idea. When de�ning this relation, the detailed contents of the eventshave to be considered.The TimeWarp-mechanism is made invisible to the environment concerning the cancella-tion mechanism. So all occurring events are (positive) events, antimessages do not appearin the resulting stream. Only the position in the stream, i.e. the Focus-time when theyappear, is di�erent. This can be formulated by the relation O throughO[o3; o4] � 8t; tg; te 2 TIME :[+; tg; te; d] 2 o4:t) [+; tg; te; d] 2 o3:(tg + 2) ^[+; tg; te; d] 2 o3:t) t = tg + 2 ^ 9t0 2 TIME : [+; tg; te; d] 2 o4:t0If an event occurs in the result stream of DED, then it occurs also in the stream of DSSexactly two ticks after being generated in that simulator, and, if there is an event inthe stream of DSS, then it is located at the right position (namely two ticks after beinggenerated) and this event is also appearing at some time in the output of DED. Thisrelation (together with all the following) complies the condition of an IAR-relation, asshown in appendix B.4.On the basis of this relation the following re�nement step can be proved:DSS (y;O); DED 28



The complexity of the proof can be reduced by taking advantage of the compositionality.If suitable IAR-relations can be de�ned for all internal channels Xi; Yi and Cij, and appro-priate re�nement relations can be shown for all components, the validity of the statementabove can be concluded. These relations can be de�ned (using the same letter for boththe channels and the relations) throughY [~y3; ~y4] � 8i 2 N :[+; tg; te; d] 2 y4i :t) [+; tg; te; d] 2 y3i :(tg + 1)^ [+; tg; te; d] 2 y3i :t) t = tg + 1 ^ 9t0 2 TIME : [+; tg; te; d] 2 y4i :t0X[~x3; ~x4] � 8i 2 N : 8t 2 T ime :x3i :t = p^ (x4i :t = p _ 9gvt : x4i :t = gvt)^ 8l 2 TIME : 9k; gvt 2 TIME : gvt � l ^ x4i :k = gvtC[c3; c4] � 8i; j 2 N :[+; tg; te; d] 2 c4ij:t ^ 8k 2 TIME; k > t : [�; tg; te; d] 62 c4ij:k )[+; tg; te; d] 2 c3ij:(tg + 1)_ �i = j ^ 9l 2 N : [+; tg; te; d] 2 cli:(t� 1)�^ [+; tg; te; d] 2 c3ij:t)t = tg + 1^ 9t0 2 TIME : [+; tg; te; d] 2 c4ij:t0^ 8k 2 TIME; k > t0 : [�; tg; te; d] 62 c4ij:kThese relations describe the connection between the \simple" streams of DSS and the\complex" streams (with another order of the received messages and including antimessagesand stragglers) of DED. For example the relation C states the following concerning thestreams on the channels between SPiSS resp. SPiED. If there is an event in a stream ofDED, and there comes no corresponding cancelling antimessage later on, then this eventis also occurring at the right position in the stream of DSS, or this event was just receivedone tick before and re-sent by a component to itself. In addition, for the other way round,if there is an event in a stream of DSS, then it is at the right position (one tick after beinggenerated) and it is also occurring in the stream of DED with no cancelling message cominglater. So the idea why all streams of DSS and DED contain the same information from anabstract point of view must be "coded\ in these relations. This is a very important partof the verifying process that cannot be automated.With these relations the proof obligation can be formulated by two local re�nements (onefor the controller and one for the simulating components) that can be proved separately.
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Figure 7: Re�nement of CLSS to CLEDRe�nement from CLSS to CLEDThe statement of the interaction re�nementCLSS (Y ;OkX); CLEDis represented in Figure 7. The proof is straightforward and done by just expanding allinvolved relations. It is shown in appendix B.3.1.Re�nement from SPiSS to SPiEDThe statementSPiSS (XkC;Y kC); SPiEDwhich is illustrated by Figure 8 is more interesting. To prove it, the single computationsteps of both simulators must be compared. Since the communication mechanism of SPiEDis much more complicated than the one for SPiSS and rollbacks occur at this abstractionlayer, this comparison is not possible in a direct way. Hence the following steps have to becarried out:� First it is shown that the proof obligation is valid for special streams of SPiED,namely streams without rollbacks and without interfering gvt-messages that interruptthe normal computation for one step. For this speci�c subset of streams a directcomparison of the calculation steps is possible. On the additional assumption thatall events in outQ are eventually sent via channel Y (this can be concluded from theassumed correctness of the gvt-algorithm) the resulting outputs of the componentsof both abstraction layers can be shown to be identical.30
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Figure 8: Re�nement of SPiSS to SPiED� It must be proven that for streams containing rollbacks (i.e. input streams thattrigger rollbacks and output streams resulting from computations with rollbacks)and containing gvt-messages similar streams without rollbacks and with delayed gvt-messages exist that belong to the same abstract streams of layer DSS. The generalre�nement relation can then be concluded.A proof sketch can be found in appendix B.3.2. For the �rst step, the states of bothsimulators are compared by a relation, and one computation step of SPiED is related toseveral steps of SPiSS with a similar input/output behaviour. The equality of the abstractcounterparts of these two di�erent kinds of streams (with and without rollbacks) can bedemonstrated intuitively by using diagrams.6.4 Overall Re�nementThe stepwise re�nements in the previous sections can now be combined using the transi-tivity of the re�nement relation;. It can be directly concluded thatCED (y;RT�DELAY�O); DEDwith � as a composing operator for relations. To make this result more readable, a functionresult is de�ned (in appendix A) that abstracts from any information about time andcausality in the resulting streams, and just delivers the set of all occurring events in astream. With this function the equalityresult(CED()) = result(DED())is valid (proved in appendix B.5), stating that DED returns the same resulting events asCED does - so the TimeWarp-mechanism is correct!31



7 ConclusionIn this paper a distributed, event-driven simulator was developed step by step. The devel-opment started with a speci�cation of a simulator that is as simple as possible since thisstep must be validated and cannot be veri�ed. Then two intermediate steps are performed,leading �nally to a complex speci�cation of a system forming a distributed simulator thatimplements TimeWarp. The development steps are formally described and veri�ed usingthe re�nement concept of Focus.While modelling the simulators, some extensions of the description methods have beenproposed that turned out to be useful. For instance, an extensive multiple use of similarcomponents occured, revealing the need for appropriate notions. A suggestion for tabularspeci�cations was given that uses a variable number of communication channels, describedby parametrized columns. In addition, a tabular notion for describing the communica-tion behaviour for synchronous communication was suggested. Some ideas that could leadto an improved support of the treatment of re�nement relations can be found in the de-tailed proofs, e.g. proofs reecting the states of systems by using the concept of re�nementmappings.During this case study some experiences were gained which are summarized in the following:Since Focus o�ers a wide variety of techniques and di�erent variants of the semantic model,it turned out to be di�cult to decide in favour of one possibility and choose the appropriateoption. But once this obstacle is managed, the techniques of Focus make a speci�cationof TimeWarp possible that is much more compact than informal descriptions, and statesits behaviour in a clear and unambigious way suitable for further investigation. So thespeci�cation meets the requirements of a formal description.The notion of re�nement o�ered by Focus turned out to be quite powerful. All re�nementrelations could be expressed as interaction re�nements. The property of compositionalityand modularity was quite useful to structure the development and the proofs. So theimportance of these concepts is con�rmed again by the experiences gained here.The modelling of the simulators was not straightforward, and several decisions concerningthe level of abstraction had to be made. So the speci�cations were not developed in onemonolithic step as it could appear from this presentation, but they were often modi�ed andgradually improved. During formal proving some inconsistencies and insu�ciencies werefound that had to be corrected. For example some requirements of the auxiliary functionswere found that are essential but were forgotten before. So the proofs also turned out tobe - next to the statement of correctness they verify - a good validation method for thespeci�cations, because they enforce an intensive occupation with the speci�cations duringthat several errors can be revealed.The proofs turned out to be quite di�cult, what is not too surprising since TimeWarp is acomplicated distributed mechanism. But even for facts that seem to be quite obvious a lotof technical overhead has to be done. There is naturally a strong interconnection betweenthe chosen model and the proofs, and trying to �nd the proofs leads to modi�cations of the32



speci�cations, which again have some inuence on already existing proofs that have to bemodi�ed again. So it seems that the process of speci�ying and verifying cannot be totallyseparated, even though an ideal way of developing a system would realize this separation:The speci�cations are done by focusing just on the application itself, while the proofs arecarried out independently - in the ideal case even automatically.These experiences give some motivation for future work to be done. Since a formal de-scription of TimeWarp is available now, further investigations are possible. Additionalre�nement steps can be done, leading to a veri�ed implementation of a distributed ande�cient simulator. The gvt-algorithm can be modelled in detail and veri�ed with themethods of Focus. And it is possible to examine formally if TimeWarp is really fasterthan other ways of (conservative) synchronization, and di�erent versions (e.g. the di�erentcancellation mechanisms) of TimeWarp could be compared.Concerning Focus, also some ideas for further improvements arised. In this work sev-eral components occurred, that compute essentially the same results, but show a di�erentbehaviour concerning time. It could be fruitful to investigate the concept of re-timing infurther detail and make it available for the methodology Focus. To broaden the accep-tance of Focus for users not too familiar with formal methods, it could be useful to o�era simpler and more pragmatic introduction to Focus or just to a selected sub-part ofFocus, i.e. a kind of \Focus light". Furthermore a guideline for developing systemswith Focus could help to reach this aim (as done for dynamic systems in [HS97a]). Someadditional support for proofs would also improve the methods of Focus, concerning thegeneral proof principles as well as the use of (semi-)automated provers during the processof development. With an integrated tool for specifying, verifying and simulating a systemthe usability would grow essentially. With AutoFocus the �rst steps are taken in thisdirection ([HS97b]).
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A De�nitionsThe following de�nitions, abbreviations, properties and operators are used in the proofsin section B. The properties of the auxiliary functions are formulated in a form similarto algebraic speci�cations. When implementing these functions, it just has to be assuredthat they ful�ll the properties given here.Types of Channels and ConstantsC = EV ENTS1EV ENTS = P(f[sn; tg; te; d] j sn 2 f+;�g; tg; te 2 TIME+g)with d containing the description of the change in the simulationmodel, caused by an event (not further speci�ed). Note that P(A)denotes the powerset of A.EV � EV ENTSHIST = STATES � TIMEn : constant de�ning the number of partitions of the modelN = f1; 2; : : : ; ngO = EV ENTS1STATES : Set of states of the simulated world (not further speci�ed), includingstatic and dynamic aspectsSTART 2 STATESTIME = f0; 1; 2; : : :gTIME+ = TIME [ f+1gX = fvt j vt 2 TIMEg1Y = (EV ENTS [ finfog)1Z : Set of data needed for implementing the gvt-algorithminit 2 ZAbbreviationsAN = Sj2N AjAN;i = Sj2N Aj;iAi;N = Sj2N Ai;j~x = (x1; : : : ; xn) 36



Types of the Auxiliary Functionscancel : EV ENTS � TIME � TIME ! EV ENTSget : HIST � TIME ! STATESgvt : Z ! TIME+join : (STATES � : : :� STATES)! STATESnxt : EV ENTS � TIME ! TIMEnt : EV ENTS � TIME ! TIMEnext : STATES � EV ENTS � TIME ! STATESPi : EV ENTS ! EV ENTS�i : EV ENTS ! EV ENTSparti : STATES ! STATES+ : EV ENTS � EV ENTS ! EV ENTSresult : EV ENTS1 ! EV ENTSselect : EV ENTS � TIME ! EV ENTSsim : STATES � EV ENTS � TIME ! EV ENTStriggered : Z ! BOOLEANupdate : Z � Y ! ZAlgebraic Properties of the Auxiliary FunctionsThe element +1 is an upper bound for all elements in TIME:8t 2 TIME : +1 > t (1)The union-operator is generalized to be de�ned on the special constants p and info. Thesetwo are treated like the empty set:A [ p = p[ A = A (2)A [ info = info [ A = A (3)The function result collects all elements occurring in the given stream and returns themas one set:result(x) = [t2T ime x:t (4)The function call nxt(ev; vt) (\next time") returns the earliest simulation-time t that iscontained as execution-time te in the events ev with t > vt. If there is no further event in37



ev, then +1 will be returned (the function min is assumed to return the minimum of aset, and +1 if this set is empty):nxt(ev; vt) = minftejte > vt ^ 9tg; d: [+; tg; te; d] 2 evg (5)The function nt(ev; vt) is used to make some proofs more readable, and is similar to nxt,but returns a simulation-time t with t � vt:nt(ev; vt) = minftejte � vt ^ 9tg; d: [+; tg; te; d] 2 evg (6)If there is no event in ev with the execution-time te = vt, then a simulation step for vt isneutral, i.e. does not change the state s and does not return any events:nt(ev; vt) > vt) s = next(s; ev; vt) ^ sim(s; ev; vt) = ; (7)If there are no events left (i.e. vt is set to +1), the simulation steps are neutral:s = next(s; ev;+1) ^ sim(s; ev;+1) = ; (8)The sum of two sets is de�ned to be the union of the sets with all matching messages andtheir antimessages being neutralized:A +B = (A [ B)� fe; �e j 9tg; te; d: e = [+; tg; te; d] ^�e = [�; tg; te; d] ^e; �e 2 A [ B g (9)�i(ev) contains all events in ev needed for simulating partition i. The basic propertiesare: �i(;) = ; (10)�i(A [ B) = �i(A) [ �i(B) (11)i 6= j ) �i(A) \ �j(A) = ; (12)[i2N �i(A) = A (13)Pi(ev) contains all events of ev created during a simulation step in partition i:Pi(;) = ; (14)Pi(A [ B) = Pi(A) [ Pi(B) (15)i 6= j ) Pi(A) \ Pj(A) = ; (16)[i2N Pi(A) = A (17)38



The single components of the distributed simulator together produce the same events asthe centralized simulator (this is an instance of axiom (17))[i2N Pi(sim(s; ev; vt)) = sim(s; ev; vt) (18)A single component works correctly, i.e. the events that are generated in partition i (left-hand-side) are indeed returned from the simulation that does only simulate partition i(right-hand-side):Pi(sim(s; ev; vt)) = sim(parti(s);�i(ev); vt) (19)The description of partition i after a step in the centralized simulator is exactly the sameas the description contained in a single component after doing a local simulation step. Thisis an analogon to (19):parti(next(s; ev; vt)) = next(parti(s);�i(ev); vt) (20)The function get returns the state out of hist that was stored with vt as timestamp:(s; vt) 2 hist , get(hist; vt) = s (21)All elements out of outQ that have a timestamp smaller than gvt are selected by select:[+; tg; te; d] 2 outQ ^ tg � gvt , [+; tg; te; d] 2 select(outQ; gvt) (22)The function cancel yields the antimessages to those events out of outQ that are generatedbetween vt0 and vt.[+; tg; te; d] 2 outQ ^ vt0 � tg � vt , [�; tg; te; d] 2 cancel(outQ; vt0; vt) (23)The interaction of the three functions update, triggered and gvt must assure that therewill be a monotonic increasing of the gvt messages. This is just postulated by (let (zi) asequence of states zi 2 Z):z0 = init ^ zi+1 = update(zi)) 8m 2 TIME : 9j; t 2 TIME : t � m ^ triggered(zj) = true ^ gvt(zj) = t (24)39



Operators from FocusOnly quite informal de�nitions are summarized here. See [BS97] for further reference andthe formal de�nitions.y 2 ; � ; : the empty relationA � B : a \concatenation" of relations:(A � B)[x; z], 9y : A[x; y] ^ B[y : z]AkB : a parallel composition of relations:(AkjB)[(x; x0); (y; y0)], A[x; y] ^B[x0; y0]x & xs : stream resulting from appending x in front of the stream xsx _ y ; the concatenation of the streams x and y�x : the stream x with all p-messages removedA; B : the re�nement relation as mentioned in section 3S 
 T : a component consisting of two subcomponents S and T , interconnectedin an appropriate way.A1 : an in�nite timed stream containing elements out of the set A and p.
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B ProofsIn this section of the appendix all proofs for the veri�cation steps can be found. The proofsare conducted in a more mathematical style, and are not formulated in a rigorous, logicallevel as it would be necessary for (semi-) automated theorem provers.B.1 Re�nement of CED to CSSThe statement to be shown according to section 6 isCED (y;RT ); CSSSince no input streams have to be considered, this interaction re�nement is slightly simplerthan a general interaction re�nement. Expanding the proof obligation leads to8o2 : CSS() = o2 ) 9o1 : CED() = o1 ^ RT [o1; o2] (25)Both components are state-oriented, deterministic and total. In the proof the single calcu-lation steps with the respective output are related to each other. The states of CED andCSS are both characterized by a triple of the form (for i 2 f1; 2g)zi = (si; evi; vti):The initial states result from the initialization de�ned by the speci�cations:z1init = (START;EV; nxt(EV; 0))z2init = (START;EV; 0)It turns out to be useful to introduce the abbreviation x a=b! y. It states that any componentS (whose identity should be clear from the context) makes a transition from state x to statey by reading the message a and writing the messsage b. This can be expressed semanticallyby (with i and o denoting the respective input and output streams)x a=b! y , S[x](a&i) = b&S[y](i), 9t 2 TIME : z:t = x ^ i:t = a ^ z:(t + 1) = y ^ o:(t+ 1) = bThis notion can be generalized to streams (instead of single messages a and b) in a straight-forward way. Using this notation and with expanding the relation RT as de�ned in section6 the proof obligation (25) can be reformulated to8o2; z2 : z2init o2! z2 ) 9o1; z1 : z1init o1! z1 ^ o1 = o2 (26)41



This will be shown with the help of the concept of re�nement mappings. In order to dothis, a function r is de�ned that relates similar states of both simulators. It maps statesof CSS to states of CED, and is de�ned in this case byr(s2; ev2; vt2) =df (s2; ev2; nt(ev2; vt2)) (27)and has two following properties that are shown later:r(z2init) = z1init (28)and 8m 2 EV ENTS; z2; z20 :z2 m! z20 ) r(z2) m! r(z20) _ �r(z2) = r(z20) ^m = p� (29)With the help of these properties of the function r the following stronger formalization ofthe proof obligation (26) is proved by induction over the length of o2:8o2; z2 : z2init o2! z2 ) 9o1 : r(z2init) o1! r(z2) ^ o1 = o2 (30)The base case for the induction described by o2 = � = o1 is trivial. With x _ y denotingthe concatenation of streams, and for simplicity, allowing y to be a single message, leto20 =df o2 _ m (31)and z2init o2! z2 m! z20If (30) is taken as induction hypothesis it can be concluded9o1 : r(z2init) o1! r(z2) ^ (32)o1 = o2 (33)It remains to be proved9o10 : r(z2init) o10! r(z20) ^ o10 = o20According to (29) there are two cases to investigate:42



� For case 1 assumer(z2) m! r(z20) (34)Then o10 can be taken aso10 =df o1 _ m (35)With that it follows from (32) and (34) resp. (35), (33) and (31)r(z2init) o1_m! r(z20)o10 = o1 _m = o1 _ m = o2 _m = o2 _m = o20� Assume for case 2r(z2) = r(z20) ^ (36)m = p (37)Taken o10 simply aso10 =df o1 (38)so again it can be concluded from (32), (36) and (38) resp. (38), (33), (37) and (31)r(z2o) o10! r(z20)o10 = o1 = o2 = o2 _m = o2 _m = o20It remains to be shown that both of the mentioned properties of r are valid. They followfrom the speci�cations of the simulators. Property (28) is obvious, following from thede�nitions of z10 and z20 .For the proof of (29) again two cases are to be distinguished:� For case 1 it is assumed thatnt(ev2; vt2) = vt2This means that at the simulation of the virtual time vt a \real" simulation step isdone and not an \empty" step. Letz2 m2! z20 43



be an arbitrary calculation step of CSS with z2 = (s; ev; vt). The indices are omit-ted here since the values for layer CED and CSS coincide. By expansion of thespeci�cation of CSS (Table 4) this step can be formulated as(s; ev; vt) �0(sim(s;ev;vt))! (next(s; ev; vt); ev [ sim(s; ev; vt); vt+ 1)and the values m2 und z20 result tom2 = �o(sim(s; ev; vt)z20 = (next(s; ev; vt); ev [ sim(s; ev; vt); vt+ 1)Following the de�nition of r (27) it can be derivedr(z2) = (s; ev; nt(ev; vt)) = (s; ev; vt)r(z20) = (next(s; ev; vt); ev [ sim(s; ev; vt); nt(ev [ sim(s; ev; vt); vt+ 1))If a calculation step of CED is inspected, starting from the state r(z2), this resultsin the statementr(z2) m1! z10with m1 = �o(sim(s; ev; vt)z10 = (next(s; ev; vt); ev [ sim(s; ev; vt); nt(ev [ sim(s; ev; vt); vt+ 1))Therefore m1 = m2 and z10 = r(z20) are indeed valid.� In case 2nt(ev2; vt2) > vt2is assumed. The case nt(ev; vt) = +1 is included. From the algebraic speci�cationof the auxiliary functions (7) and (8) it followsnext(s; ev; vt) = ssim(s; ev; vt) = ;As a result a calculation step of CSS starting from z2 = (s; ev; vt) has the form(s; ev; vt) p! (s; ev; vt+ 1) =df z2044



So r(z2) = (s; ev; nt(ev; vt))r(z20) = (s; ev; nt(ev; vt+ 1))Since furthernt(ev; vt) > vt) nt(ev; vt) = nt(ev; vt+ 1)it is shown thatr(z2) p! r(z20)� The casent(ev2; vt2) < vt2cannot occur according to the de�nition (6) of nt. 2B.2 Re�nement of CSS to DSSThe statement to be proved isCSS (y;DELAY ); DSSSince both CSS and DSS are components that are speci�ed by states, the proof is usingthese internal states as basis. The state of CSS consists of a simple triple of its internaldata states Z2 = (s; ev; vt). For the state of DSS the controller, the simulators and themessages on the internal channels have to be considered. Therefore, the state of DSS hasto be described as the product of the states of all constituents. Since the synchronizedmodel is chosen, it is su�cient to describe the state of a channel by the single messagethat is transferred at a certain time. The state Z3 therefore is an element of the setZ3 2 (STATES � EV ENTS � TIME)n �Xn � Y n � Cn2and can be written in the formZ3 = ((s1; ev1; vt1); : : : ; (sn; evn; vtn);x1; : : : ; xn;y1; : : : ; yn;c11 : : : ; c1n; c21; : : : c2n; : : : ; cn1; : : : cnn)45



In order to prove the re�nement the states of the two simulators are related through arelation R. It is valid in the intial state, and stays valid at each calculation-step bothsimulators perform. The relation R states informally that CSS and DSS are in similarstates concerning the progress of simulation. They pass similar states throughout theirwhole calculations. This relation is de�ned byR[Z2; Z3] � 8i 2 N : parti(s) = si ^�i(ev) = evi [ cN;i ^vti = vt (39)For the initial statesZ2:0 = (START;EV; 0)and Z3:0 = (: : : ; (parti(START );�i(EV ); 0); : : : ;p; : : : ;p; : : : ;p; : : :)it is obvious thatR[Z2:0;Z3:0]A calculation step of both systems can be represented by a transition from Z2 to Z20 andfrom Z3 to Z30 respectively with the abbreviations Z for Z:t and Z 0 for Z:(t + 1) for anarbitrary t 2 TIME.According to the speci�cations it holds thatCSS[(s; ev; vt)]() = �0(sim(s; ev; vt)) & CSS[(s0; ev0; vt0)]()with s0 = next(s; ev; vt) (40)ev0 = ev [ sim(s; ev; vt) (41)vt0 = vt+ 1 (42)and DSS[(: : : ; (si; evi; vti) : : : ; xi; : : : ; yi; : : : ; cij; : : :)]() =N[i=1Yi & DSS[(: : : ; (s0i; ev0i; vt0i) : : : ; x0i; : : : ; y0i; : : : ; c0ij; : : :)]()46



with s0i = next(si; evi [ cN;i; vti) (43)ev0i = evi [ (evN)i = evi [ cN;i (44)vt0i = vti + 1 (45)c0ij = �j(sim(si; evi [ cN;i; vti)) (46)x0i = p (47)y0i = �0(sim(si; evi [ cN;i; vti)) (48)Now R[Z2;Z3]) R[Z20;Z30 ]is proved by assuming R[Z2;Z3] valid and showing for all i 2 N :� parti(s0) = s0iparti(s0) = [40]parti(next(s; ev; vt)) = [20]next(parti(s);�i(ev); vt) = [39]next(si; evi [ cN;i; vti) = [43]s0i� �i(ev0) = ev0i [ c0N;i�i(ev0) = [41]�i(ev [ sim(s; ev; vt)) = [11]�i(ev) [ �i(sim(s; ev; vt)) = [18]�i(ev) [ �i(Sj2N Pj(sim(s; ev; vt))) = [19]�i(ev) [ �i(Sj2N sim(partj(s);�j(ev); vt)) = [11]�i(ev) [ Sj2N �i(sim(partj(s);�j(ev); vt)) = [39]evi [ cN;i [ Sj2N �i(sim(sj; evj [ cN;j; vtj)) = [46](evi [ cN;i) [ Sj2N c0j;i = [44]ev0i [ c0N;i� vt0i = vt0vt0i = [45]vti + 1 = [39]vt+ 1 = [42]vt0With R[Z2:0;Z3:0] and R[Z2:t;Z3:t]) R[Z2:(t + 1);Z3:(t+ 1)] the statement8t 2 TIME : R[Z2:t;Z3:t] (49)47



can be concluded by induction.Let Z2 = (s:t; ev:t; vt:t) be the state for a time t. On the one hand, the speci�cation ofCSS yieldso2:(t + 1) = �o(sim(s:t; ev:t; vt:t);but on the other hand it can be concluded thato3:(t + 2) = [Table 5]Sj2N yj:(t + 1) = [Table 6]Sj2N �o(sim(sj:t; evj:t [ cN;j:t; vtj:t)) = [11]�o(Sj2N sim(sj:t; evj:t [ cN;j:t; vtj:t)) = [49, 39]�o(Sj2N sim(partj(s:t);�j(ev:t); vt:t)) = [19]�o(Sj2N Pi(sim(s:t; ev:t; vt:t))) = [18]�o(sim(s:t; ev:t; vt:t))Together with the obvious facto3:1 = [j2N Yj:0 = [j2Np = pit follows8t 2 TIME : o2:t = o3:(t+ 1)and together with the de�ned property of the semantic o2:0 = o3:0 = p it follows thestatementDSS() = p & CSS();that was to be proved. 2B.3 Re�nement of DSS to DEDThe proof ofDSS (y;O); DEDis done by taking advantage of the modularity as mentioned already in section 6. So thetwo types of components can be re�ned separately.48



B.3.1 Re�nement of CLSS to CLEDThe statement to be provedCLSS (Y ;OkX); CLEDis according to the de�nition of re�nement a consequence ofCLED(~y4) = (o4; ~x4))9~y3; o3; ~x3 : CLSS(~y3) = (o3; ~x3) ^ Y [y3; y4] ^ O[o3; o4] ^X[x3; x4]that is proved now. Let the left-hand-side of the implication be valid for arbitrary y4i .From the speci�cation of CLED in Table 7 the following statement can be concluded:o4:(t + 1) = [i2N y4i :tFrom this it follows[+; tg; te; d] 2 o4:(t + 1), 9i 2 N : [+; tg; te; d] 2 y4i :t (50)The stream y3i can be de�ned in a unique way from y4i through the relation Y andY [y3; y4] (51)is therefore trivially valid. The output streams x3i and x4i show the property8i 2 N; t 2 TIME : x3i :t = p8i 2 N; t 2 TIME : (x4i :t = p_ 9gvt 2 TIME : x4i :t = gvt)8l 2 TIME : 9k; gvt 2 TIME : gvt � l ^ x4i :k = gvtdue to the speci�cation of the controllers and the postulated \liveness" of the gvt-algorithm(24). Hence it follows immediatelyX[ ~x3; ~x4] (52)The stream o3 is �xed uniquely according to speci�cation CLSS in Table 5 by the input ~y3through[+; tg; te; d] 2 o3:(t + 1), 9i 2 N : [+; tg; te; d] 2 y3i :t (53)From that it followsCLSS(~y3) = (o3; ~x3) (54)49



Now it can be shown[+; tg; te; d] 2 o4:(t + 1) ) [50]9i 2 N : [+; tg; te; d] 2 y4i :t ) [De�nition of Y , Section 6.3]9i 2 N : [+; tg; te; d] 2 y3i :(tg + 1) ) [53]9i 2 N : [+; tg; te; d] 2 o3:(tg + 2)and [+; tg; te; d] 2 o3:(t + 1) ) [53]9i : [+; tg; te; d] 2 y3i :t ) [De�nition of Y , Section 6.3]9i : t = tg + 1 ^ 9t0 : [+; tg; te; d] 2 y4i :t0 ) [50]t = tg + 1 ^ 9t0 : [+; tg; te; d] 2 o4:(t0 + 1)and with that it followsO[o3; o4] (55)Combining (54), (51), (55) and (52) shows the statement to be proved. 2B.3.2 Re�nement of SPiSS to SPiEDThe proof obligationSPiSS (XkC;Y kC); SPiEDis expanded toSPiED(x4; c4Ni) = (y4; c4iN)) 9x3; y3; c3ij : SPiSS(x3; c3Ni) = (y3; c3iN) ^X[x3; x4] ^ Y [y3; y4] ^ C[c3; c4]The proofs are not carried out in detail, only the basic ideas are sketched. The full proofswould need a lot of technical considerations with many di�erent cases, and would not bea help for a better understanding of the basic ideas. The proofs follow the idea describedin section 6, i.e. the formal treatment is splitted in two parts:� considering the computation without rollbacks and without interfering gvt-messages,and� showing how rollbacks can be \eliminated" and gvt-messages can be \delayed" withrespect to the abstract view of the level of DSS.50



Computation without rollbacksTo compare the calculation of SPiSS with a calculation from SPiED free from rollbacks, arelation R is used to relate states of the simulators, given throughR[z3; z4] � s3 = s4^ vt3 = vt4^ �(ev3 [ C3Ni; vt3) = �(ev4 + C4Ni; vt4)saying that two states are similar if s and vt contain the same values, and the event sets arethe same when only the events with an execution time less or equal to vt are considered.� is formally de�ned through�(ev; vt) =df f[sg; tg; te; d] j [sg; tg; te; d] 2 ev ^ te � vtgNow for every step of SPiED it can be shown that SPiSS is doing a sequence of similarsteps (namely the same step followed by a sequence of empty steps until the right vt isreached) with the same output :R[z3:t3; z4:t4] ) 9t30 : R[z3:t30 ; z4:(t4 + 1)]^ ev 2 St3�k<t30 C3iN :k , ev 2 outQ:(t4 + 1)Since it is obvious that after some empty steps of SPiSS the relation R is valid for the �rststate of SPiED, it can be followed together with the implication as induction step that theoutput of both simulators is the same, using the assumption that all events in outQ areeventually sent.It is easy to see that all events contained in outQ are sent via yi, i.e.ev 2 outQ:t ) 9k0 2 TIME : k0 � t ^ �0(fevg) 2 yi:k0So assume thatev 2 outQ:t with ev = [+; tg; te; d] (56)This must be a positive message as explained in B.5. From the liveness condition of thegvt-algorithm (24) it can be concluded that there will be a gvt-message on the channel xcausing this event to be sent:9k; gvt 2 TIME : gvt � tg (57)^ x:k = gvt (58)^ k � t (59)51



With (56) and (59) with the fact (here unproved) that events are not removed from outQtoo early, it can be concluded thatev 2 out:k (60)From the speci�cation of SPiED followsyi:(k + 1) = �0(select(outQ:k; gvt)) (61)(60) and (57) with (22) lead toev 2 select(outQ:k; gvt) (62)With (61) and (62) follows�0(fevg) 2 yi:(k + 1)that shows the statement to be proved. 2Elimination of RollbacksIn order to demonstrate the idea of the elimination of a rollback, Figure 9 is used. Acalculation of SPiED with a rollback (upper half) is compared with a similar calculationwithout this rollback (lower half), i.e. with a calculation where the message causing therollback was received early enough. In the �rst case, the simulation starts in the state(s; ev; vt). At times k to l the event sets c0 to cn are received (It can be assumed that noother rollbacks occur during this calculation, since then this one could be removed �rst).At time l a straggler is received, causing the cancellation of all outputs o1; : : : ; on at timel+1. The elements s and vt are set back to the original values, while ev0 still contains thesum of ev with the events in c0; : : : ; cn. From there the next calculation step is done.Now this calculation can be compared with another calculation without rollback: In thatcase, all messages co; : : : ; cn are received altogether at time k. So the calculation stepdone at this time is the same as the last one in the other case: State s and the eventset ev + co + : : : + cn+1 are used for simulating time vt. Note that for both cases thecorresponding streams of abstraction layer of DSS are the same, since all events are placedin the streams of DSS directly at the locations that correspond to their creation time.Delay of gvt-messagesWith Figure 10 it can be demonstrated how gvt-messages (with their consequences) aredelayed, i.e. moved backwards in the streams. Assume that the event sets c0, c1 and c2are received at times k, k + 1 and k + 2, and some internal events d0 (sent to itself by the52



SPiED k k+1 l l+1 l+2CiN ... c0 c1 : : : cn cn+1 ...CNi ... o1 : : : on �o1; : : : ;�on on+2 ...s : : : s s00Z4 ... ev : : : ev0 ev00vt : : : vt vt00CiN ... c0; : : : ; cn+1 ...CNi ... on+2 ...s s00Z4 ... ev ev00 ...vt vt00k k + 1Figure 9: Elimination of a rollbackcomponent at the preceding step) are received at tick k. In the upper case, gvt is receivedat time k. This causes the component just to send messages to the controller (not shownin the table), while the state Z4 does not change. All received events c0 [ d0 are sent toitself again via Cii. In the next tick, a calculation step for vt is performed, using the setev [ c0 [ c1 [ d0 as event set. As output o and d1 are produced, and the state results asnoted in the table.If it is assumed6 that c1 contains messages not needed for simulating the time vt, the samebehaviour is gained by delaying the gvt-message one tick backwards, illustrated by thelower half of the table. The calculation step for vt is here performed at time k, using theset ev[ c0[d0. The output o and the internal events d1 are produced, and again s0 and vt0and the proper event set are now forming the new state. At time k+1 now gvt is received,so that the state remains constant and all received events c1 [ d1 are sent again, so that atthe next tick k + 2 in both cases the event set to be considered for the next step to comeis ev [ c0 [ c1 [ d0 [ d1. So there are no further di�erences in the following calculations ofboth cases. Again, this move of the messages in the streams does not change the abstractrepresentation of the streams.6If this is not the case, the input streams should be rearranged in a way as it was done for eliminatingthe rollbacks. 53



SPiED k k+1 k+2CiN ... c0 c1 c2 ...Cii ... d0 c0 [ d0 d1 ...CNi ... - o ...X ... gvt p p ...s s s0Z4 ... ev ev ev [ c0 [ c1 [ d0 ...vt vt vt0CiN ... c0 c1 c2 ...Cii ... d0 d1 c1 [ d1 ...CNi ... o - ...X ... p gvt p ...s s0 s0Z4 ... ev ev [ c0 [ d0 ev [ c0 [ d0 ...vt vt0 vt0k k+1 k+2Figure 10: Delay of a gvt-messageB.4 Proof of the Interaction-Re�nement PropertyExemplarily only the IAR property for the relation O is shown here, i.e.O[x3; o4] ^ O[z3; o4]) x3 = z3To show the equality of the two streams x3 and z3 the equality of the single elementsof the streams is considered. These elements are sets of events. Assume the left-handside of the implication, let t an arbitrary t 2 TIME and e 2 x:t with e = [+; tg; te; d](Note that negative messages are not occurring in these streams). From O[x3; o4] it followst = tg+2 ^ 9t0 : e 2 o4:t0. Since also O[z3; o4] is assumed, e 2 z3:(tg+2) can be concludedand therefore e 2 z3:t. As e 2 z3:t implies e 2 x3:t in a similar way as well, the equality isshown. 254



B.5 Proof of the Overall Re�nementThe statement to be proved isresult(CED()) = result(DED())that is reformulated by de�ning o1 = CED() and o4 = DED() and expanding the de�nitionof result as[t2TIME o1:t = [t2TIME o4:tSince CED (y;RT�DELAY�O); DEDis valid, the relation(RT � DELAY � O)[o1; o4] � 9o2; o3: RT [o1; o2] ^DELAY [o2; o3] ^O[o3; o4]holds. Assume e to be in the left hand side of the above equality. Note that e is a positivemessage of the form [+; tg; te; d], since negative messages are not generated in CED:e 2 result(o1) ) [De�nition result, (4)]9t 2 TIME: e 2 o1:t ) [De�nition RT ]9t0 2 TIME: e 2 o2:t0 ) [De�nition DELAY ]9t0 2 TIME: e 2 o3:(t0 + 1) ) [De�nition O (second half), e positiv]9t00 2 TIME: e 2 o4:t00 ) [De�nition result, (4)]e 2 result(o4)Now assume e 2 result(o4). By inspecting the speci�cations it gets obvious that e againmust be a positive message: All events have been elements of the set outQ, and events areinserted there only by sim (producing only positive events) or deleted during a rollbackby \adding" negative messages already contained in outQ.e 2 result(o4) ) [De�nition result, (4)]9t 2 TIME: e 2 o4:t ) [De�nition O, e positiv]9tg 2 TIME: e 2 o3:(tg + 2) ) [De�nition DELAY ]9tg 2 TIME: e 2 o2:(tg + 1) ) [De�nition RT ]9t0 2 TIME: e 2 o1:t0 ) [De�nition result, (4)]e 2 result(o1)So both sides of the equality are proved. 2
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