TLTI

TECHNISCHE
UNIVERSITAT
MUNCHEN

INSTITUT FUR INFORMATIK

Sonderforschungsbereich 342:
Methoden und Werkzeuge fiir die Nutzung
paralleler Rechnerarchitekturen

DBFW: A Simple DataBase
FrameWork for the Evaluation and
Maintenance of Automated Theorem
Prover Data (incl. Documentation)

Peter Jakobi, Andreas Wolf

TUM-19747
SFB-Bericht Nr. 342/28/97 A
November 97

TUM-INFO-11-19747-130/1.—FI

Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©1997 SFB 342 Methoden und Werkzeuge fiir

Anforderungen an:

Druck:

die Nutzung paralleler Architekturen

Prof. Dr. A. Bode

Sprecher SFB 342

Institut fiir Informatik
Technische Universitdt Miinchen
D-80290 Miinchen, Germany

Fakultat fir Informatik der
Technischen Universitat Miinchen

DBFW: A Simple DataBase FrameWork for the Evaluation and
Maintenance of Automated Theorem Prover Data (incl.
Documentation)

Peter Jakobi, Andreas Wolf
Technische Universitat Minchen

Institut fir Informatik
D-80290 Miinchen

e-mail: {jakobi,wolfa}@informatik.tu-muenchen.de

November 19, 1997

Abstract

This paper describes a simple yet generic database implementation framework for medium sized datasets,
as they occur during tests and applications of automated theorem provers. The implementation covers
automatic extraction of database objects from a set of text files, a text-based interface for simple database
operations, and a tool for document, report and Webpage generation. This paper refers to a database of
SETHEO proof data (Setheodb) as an example. It concludes with the description of DBFW as a part of the
interactive proof system ILF' [6]. The paper also serves as offline documentation for the framework.

1. Introduction

In the field of automated theorem proving (ATP), a lot of time and resources are often spent on tuning
proof systems by evaluation of different parameter settings. In many (in our experience, almost all) cases,
the output of such prover runs is used only to answer one specific question, even if the data has the potential
to be reused. A database containing the results of such runs, together with an interface to access the stored
data in an easy to automate manner, can make this possible. The database approach also saves disk space,
as only relevant data is stored.

ATP systems are often used within the context of a workbench for constructing and checking proofs. Here,
it is of interest for the designer of the ATP system to get information about the tasks given to the prover
in an real environment. That feedback can be used to determine directions for further development of the
prover. The information also helps to refine parameter settings for specific domains and user requirements.

In this paper, we introduce DBFW, a Perl database implementation framework. The framework provides
e support for automatic extraction of database objects from text files,
e a query interface,
e maintenance support for database files, and
e support for easy conversion to or from DBFW database formats.

Section 2 describes the starting point for the creation of the framework and its design goals. Section 3
deals with implementation and usage; the model elimination style theorem prover SETHEO [12] is used as
a show-case application. Sections 4-6 offer hints for porting, describe available database formats and their
patterns, and sketch further applications!.

Throughout the paper, the Setheodb format for SETHEO [12] run data is used for examples and as a
reference application for the framework. Setheodb stores the relevant information extracted from the log files
of SETHEOQ program runs. Setheodb should be seen only as an example. The adaption of the scripts to
another ATP system involves little effort, provided that the system produces textual output containing the
relevant data.

We refer a reader interested in an introduction to the calculus of Tableaux to the books of Beth [3], Smullyan
[16], and Fitting [9]. The special context of model elimination is considered in the book of Loveland [13] and
in the paper of Stickel [17].

LAn extended version including program and porting documentation is part of the DBFW distribution.

2. Problem Description and a Possible Solution

This section describes the usual, slightly chaotic, approach to so-called Data-Mining!. We define some
requirements for improving the efficiency of the Data-Mining process and offer a solution meeting these
requirements.

2.1 Data-Mining, classical approach

In our research group, the model elimination style theorem prover SETHEO [12] is being developed. Over
a long period of testing, tens of thousands of SETHEOQ log files have been produced. These files fill several
Gigabytes of disk space. Using these runs, we compare the performance of SETHEO with various sets of
parameter settings. Considering the amount of available log files, we obviously should have been able to
replace many runs of new experiments by data from log files of previous similar runs.

Subjectively selected and extracted data has proven to be difficult to reuse for the scientist extracting the
data. This holds doubly for reusing a colleague s data. So, in the past, almost all experiments had to be
repeated to answer a new question, even if similar runs had already been done.

If you consider that testing a small set of parameters on a problem library like the TPTP [18] means a
sleepless night for up to 100 processors, it is worth recycling the old and useful, but often chaotic and
(previously) difficult to access, data.

Another consideration is an ATP system installed outside the developing group: it is difficult to obtain
feedback and data on the tasks (not) proved. For developers however, this data is important in adapting a
prover to the user “s application domain.

2.2 Requirements

To allow better use of the available data, we postulate the following requirements for the database:

e Extraction of (almost) all possibly relevant data from each log file. Here the creator of the database
format has to select the “relevant” data and provide patterns for its extraction from the log files (see
Section 3.1).

e Storing the data efficiently in terms of required space, time for access, and accessibility of the data.
e Simplicity of

— format,

— query tools (including possible modifications by DBFW users),

— conversion into different database formats.

¢ Ease of automation of database queries and modifications.

IFor a discussion of Data-Mining and Knowledge Discovery in Databases (KDD), see the November 96 issue of CACM. Our
approach is taking place earlier and “mines” the raw (full-text) data in order to extract data-sets for a database.

2.3 Solution 3

2.3 Solution

To meet these requirements, we selected the following key concepts:

e An object-oriented database file format. Each object corresponds to a single line of the database file.
This line stores all object tags. Each tag starts with the tag ID extended into a unique string followed
by the tag value. An example object and its tags?:

_%Formula=SET001-1 _%Env=host sj30 datestamp 950804183600 _%Log=/L0GS/LOGFILE1
e A software-IC approach: a set of filters that can be combined within pipes. One of the filters (the

extractor) will accept a set of log files and automatically extract the corresponding set of objects as a
new database file.

2For easier parsing of an object s line in the database, tag IDs are prefixed by _%.

3. Implementation of the Database Framework

We decided to use the script language Perl for the implementation. Perl is well suited for small text processing
scripts, due to its very powerful regular expression matching on strings. A script language has the additional
advantage of allowing quick changes and modifications. The Perl interpreter is sufficiently fast! for processing
medium sized databases.

The framework consists of these main parts:
e Extractor dbs_gen.p>
e Query-Interface db_cat.p
e Document Generator db_mb.p

There are still other scripts in the framework. They offer some additional functionality not described here, or
present predefined queries as examples. Scripts with the prefix db_ are not database-format specific. Scripts
with the prefix dbs_ contain some specific code for the Setheodb format. Use the option -h to obtain online
help.

3.1 dbs_gen.p: The Extractor

The extractor is a script for automatic, database-format-specific extraction of object tag values from text
files. The input for dbs_gen.p is a list of log files. The output is a list of objects written to stdout, one for
each log file. Command line options are available to define values for individual tags.

Extraction is performed by “patterns” defined in a separate file. For each tag, an associated pattern is
defined to parse the log file with respect to the pattern and to extract the relevant information for the tag.
Patterns are implemented as Perl code blocks. Tags with an empty value are omitted in the data base. The
extracted object for each log file consists of the remaining tags. Example objects and a partial list of tag
IDs are given at the end of Section 3.

dbs_gen.p restarts every $jobsize log files to conserve memory. If you wish to process more than $jobsize
files, you must supply the log file names in a file instead of simply using stdin. $jobsize is currently
defined as 499 in dbs_gen.p.

Usage: dbs_gen.p [OPTIONS] FILE

Options include:

-f <patternfile> load the sepcified pattern file
-t <tag> <value> set default value for objects whose <tag> is not defined
-T <tag> <value> force all tags <tag> to <value>; deletes it on value ’’

Usage example: Generating a database and setting the User tag to specify the owner of the runs to extract
(option -T).

dbs_gen.p -T User ’Peter Jakobi’ < file_of_logfilenames > database

If the -f option is not given, the generator loads its patterns from a file in the same directory and the same
name as itself but with suffix .pat.

We abused the framework on a database file of 80 MB. The answer time of several minutes is acceptable for a database of
this size, especially if queries are first tested on smaller sample databases. The later described scripts dbs_gen.p, db_split.p and
db_cat.p use only a few MB of memory independent of the database size.

2Scripts with the prefix db_ are generic, while scripts with the prefix dbs_ contain some specific code for the Setheodb format.

3.2 db_cat.p: The Query-Interface 5

A log files may also contain so-called embedded tag lines: By default, these lines consist of a single tag starting
in column 1, optionally prefixed by %dbLl or #dbll. Embedded tags are copied directly into the object for
this log file.

Example:
_%Formula=SET001-1
#db _/Formula=SET001-1
%db _#Formula=SET001-1

3.2 db_cat.p: The Query-Interface

The query-interface is the core script of the framework. db_cat.p is used for database maintenance and
querying the database. db_cat.p reads a database from file or stdin and writes a modified database to
stdout. Modifications include the selection and de-selection of objects, changing the contents of selected
objects, and the removal of certain tags for all selected objects. As the shell command for a db_cat.p query
can be fairly complicated, more complex queries should be stored as shell scripts for future use.

Implemented concepts of the relational data model are:
1. Selection - select objects for a new database file
2. Projection - select tags to keep or remove. This affects all selected objects.

Operations on multiple database files, such as Joins, are not implemented. Selections are performed before
the projection.

Usage: db_cat [0PTIONS] FILE

The most important options are:

-d <FILE> write all de-selected objects to FILE
-h online help, format descriptions, etc
-lowmem memory efficient, slower processing

Select database objects - multiple selections are combined by logical And and performed in sequence:

-s <TAGID> <REGEXP> select objects with tags TAGID containing text or
regular expression REGEXP (case insensitive)
-S <PERLEXP> select objects matching PERLEXP

See the UNIX manual page perlre.1 for information on Perl regular expressions. PERLEXPs are arbitrary
Perl expressions, from Perl regular expression statements (REGEXP) to complete blocks. They allow arbi-
trary side effects including the modification of objects.

Project selected objects - may occur at most once:

-P <PERLEXP> project objects using tags matching PERLEXP
(match may include tag value; slow)

Without -s/-S/-P options, db_cat.p behaves similar to grep: The first argument is taken to be a REGEXP.

Usage examples:

o de-select every object with a Formula tag starting with SYN
db_cat.p -S ’!/_)Formula=SYN/’ db

e select formulae starting with SYN, print only Formula tags
db_cat.p -s Formula SYN -P /_)Formula=/ db

o change all tags in all objects with the tag ID “User” to the new ID “Owner”
db_cat.p -S s/_%User=/_%0wner=/ db

e implement the query a And b Or ¢ (a, b, c: PERLEXP)
db_cat.p -S @ db -S b db > db.result
db_cat.p -S ¢ db >> db.result

6 3.3 db_m5.p: The Document Generator

cat db.result # or - removing duplicates:

sort db.result | uniq

e dbs mathqueryl.p - a complex query written in Perl that generates a datafile for further evaluation
using Mathematica [22]. See also 6.2.

Further examples are given throughout this paper, in the dbs_¢* scripts and as part of the test suite (see
db.test/README).

3.2.1 Multi-line Objects

Normally, objects consist of exactly one line. For easier editing and viewing however, multi-line objects are
partially supported. They are intended as an alternative object representation suitable for editing objects
using standard text editors. Multi-line objects are delimited by a sequence of at least two linefeeds®. Most
of the other framework scripts also support a subset of these switches.

Options:
-h display usage / help text
-m rudimentary multi-line object mode
- object delimeter \n\n+
(-mi/-mo) - -mi / -mo input/output-only multi-line objects
- avoid whitespace-only lines within an object
- *DON’T* split an object by inserting empty lines
- *DON’T* add whitespace to object delimeters!
- use empty lines to separate comments and objects
- multi-line objects are supported by:
db_cat.p, db_ed.p
Example:

db_cat.p -mo . db > db.edit
vi db.edit
db_cat.p -mi . db.edit > db

3.3 db_m5.p: The Document Generator

The generator creates document files from databases. Both document layout and content are stored as
objects in database files, and can be reused later. At the core, db_mb.p is a depth-first macro processor that
allows certain objects to contain Perl code blocks and also to loop within a set of selected objects. A live
example returning interactive HTML forms is available on the DBFW home-page on the WWW [8].

The layout specification is provided as a set of so-called group objects. Group objects are ordinary objects
that use special semantics for some tags when interpreted by the @@grp; grouping command. Important
commands, variables and database object tags are shown below in Figures 3.1 - 3.3.

db_mb.p’s expressiveness is derived from its three key features:

1. Depth-First Macro Expansion

Evaluation of the input database starts at the specified object (defaulting to the object matching the
regular expression /_%Description=Main/ in the Perl array @db) by expanding the _%Data tag: Any
embedded commands are recursively expanded * and the resulting text replaces the command string.
If a complex command contains a “*” its input is expanded first before applying the command itself.
The macro expansion can be requested explicitely by calling &expand().

3db_fix.p -W “validates” a multi-line database, assuming that all empty lines are object delimeters.

4Expansion takes place in the order shown in Figure 3.1: At first, all occurring @@nop 's are expanded, ... until at last,
all occurring group objects are expanded. During each expansion, any embedded commands in the returned string are either
recursively expanded or stripped, if further expansion is disallowed. Thus, commands usually should not be used to compute
names or data of other commands.

3.3 db_m5.p: The Document Generator 7

Commands:

@@Q@nop; nop (protects empty lines in input text, ...)
@Q//; line comment

@@Q\n; newline

Q@Qcode; run rest of attribute as Perl code
@Qinc*$VARIABLE; expand variable contents in output
QQinc*#ATTRIBUTE; expand attribute contents in output
@Qperl*$VARIABLE; run variable contents as Perl code

QQperl*#ATTRIBUTE; run attribute contents as Perl code

QQobj*#SELECTION; include results of the selected object
QQgrp*#SELECTION; start a new group using the selected group object,
optionally processing a set of objects

Figure 3.1: db_m5.p commands

The most important group object local variables:

%object attributes of the active object

Y%group attributes of the active group object

%data all attributes on the path to the current object
%groupdata all attributes of group objects on the path

$grpre variables containing accumulated text

$rc variable containing accumulated text (local to &expand())

Figure 3.2: db_mb.p variables

Some commands may additionally define a new LaTeX-like environment which leads us to the second
key feature.

2. Grouping

Each group object is invoked by a @@grp; command. The group object defines a new dynamic envi-
ronment and optionally loops through a set of objects, applying the group ’s _%Data and _)PreProc /
_kPostProc tags to the data of each object %object.

3. Embedded Code

Commands can explicitely refer to Perl code blocks and include their results into the accumulated out-
put. In addition, the group objects defining the document structure can optionally run Perl statements
to modify their output. Perl code blocks are evaluated within the current group s environment and
have access to various data about the visited objects. See the online help for a detailed list of variables.

See the online help text and the examples for more information on predefined variables and functions.

Usage: dbmb5.p [OPTIONS] FILE

Attributes (tags) of group objects:

File expands to output filename (°;X’ to append to X)

LoopSelect expands to SEL; loops over SELected objects

LoopSort expands to a Perl sorting order

Error expands to a Perl code block printing the error message $msg

$grprc contains the text for output
LoopPreProc expanded before loop

PreProc expanded before expanding Data of the current object
Data text content to expand, possibly containing commands
PostProc expanded after processing Data of the current object

LoopPostProc post-processing after finishing the loop

Figure 3.3: db_mb.p tags

8 3.3 db_m5.p: The Document Generator

Invoking db_mb.p:
e explicit calling: dbmb.p -m db.test/m5.demo
e implicit calling using #!db.m5.p as first line of an executable database file.
e with a wrapper like the cgi example dbs_mbcgi.p.
In addition, db-m5.p may be invoked automatically by adding a new MIME-type to your httpd.

The following example sets up a small interactive query interface on the World Wide Web. It is also included
in both the distribution and the DBFW home page.

The first object is the root object for this document. The PreProc tag explicitely reads the example
Setheodb database into the Perl array @DB_public. Combined with using only non-recursive commands
on @QDB _public, the script cannot compromise the security of the local host. Thus secure processing of
foreign database files is possible. The Data tag simply prints a WWW form and calls the second object to
include the names of the user-selected formulae.

1 # example inputs: _)Formula=NUM or simply NUM

2

3 _%Description=cgi

4 _%PreProc=0Qcode; open(fhlocal, ’/home/setheo/DATABASE/bin/db.test/db.mo’);
5 @DB_public=<fhlocal>; close fhlocal;

6 $pat=$db_cgi::args{’SEARCH’}; $pat=&m5_screenregexp($pat);
7 $pat=".7 if (!($pat));

8 _%Data=<HTML>

9 @@nop;

10 <BODY>

11 eenop;

12 <FORM METHOD="GET" ACTION="Q@inc$act;">

13 Select objects with (restricted) REGEXP:

14 <INPUT NAME="search" VALUE="Q@inc$pat;" SIZE=50>

15 <INPUT TYPE="submit" VALUE=" Search "> <INPUT TYPE="reset" VALUE=" Reset ">
16 </FORM><p>

17 @@nop;
18 List of Formula tags of objects matching QQ@inc$pat; in database:
19

20 o@grpx#Description, ’Looplb$’,DB;
21 <p>

22 @@nop;

23 </BODY></HTML>

The second object is a simple loop that returns the Formula name of each data object selected by the
LoopSelect tag. As the currently active object is available in the %object hash, inclusion of the variable
$object{Formula} is sufficient to return the value of the active object’s Formula tag. The final “nop”
command simply protects the linefeed after the HTML list element tag. Otherwise, this linefeed might be
misinterpreted by Perl to mean the end of the current object (see Section 3.2.1).

1 _%Description=Looplb

2 _%LoopSelect=’/0@Qinc$pat;/’,’’, DB_public’
3 _Data= @Qinc$object{Formula};

4 @@nop;

In order to invoke db_m&.p with these 0 objects from the http daemon, a small wrapper is sufficient:

#!/usr/local/dist/bin/perl

$0="/(["\/1+)$/; $script=81;
$path = "/home/setheo/DATABASE/bin/db.doc/html";
$binpath= "/home/setheo/DATABASE/bin";
$act = "http:/cgi-bin/user-cgi/jakobi/$script";
system("cd $path ;
$binpath/db_m5.p -m -s Description cgi -e ’\$act=\"$act\"’ mbdemo.txt");
exit 0;

OO0~ T W -

3.4 Other scripts 9

The output of asking for all formulae of TPTP domain SYN in the example database, as seen by the Lynz
browser:

Select objects with (restricted) REGEXP:

* SYN127-1
SYN128-1
SYN129-1
SYN130-1

1
2
3
4
5
6 List of Formula tags of objects matching SYN in database:
7
8
9
1
1 SYN132-1

* % X ¥

0
1

Another example is dbmb.p -m db.test/mb.demo: A db_ms.p database file splitting a Setheodb database
into a set of HTML files.

db_mb.p is a powerful extraction tool, however it is suitable only for fairly small databases, as it is inefficient
in both space and time. If you want to trade setup time for larger throughput, have a look at COHTML [5]
or PHP [15].

3.4 Other scripts

This sections offers a short overview of the more interesting of the remaining scripts and example queries.
Invoke the scripts with option -h or have a look at the comments in the source for further information.

o db_ed.p - reads a database completely into memory and allows interactive editing of selected objects in
multi-line mode. An example is given in section 3.5.3.

e db_fir.p - database cleanup and testing.

Multi-line databases are supported by simply changing Perl’s input record separator. As a result,
adding a blank to an empty line can already accidentally glue two objects together: An usage example
that prints a warning for every possible instance of this “feature”: db_fix.p -w mdb

e dbs_form.p - an example of formatting a Setheodb database for human-only readable output.

e db_split.p - splits a database of single-line objects into many database files. The name of the database
for each object is computed by a user-supplied Perl expression. When using the -lowmem option, stdin
cannot be used for input of more than $jobsize objects. An example is given in section 3.5.3 and in
the test suite db_test/README.

e dbs_q* - some predefined queries for the Setheodb format.

3.5 Example: Setheodb - a Database Format for SETHEO Runs
3.5.1 Application/Background: The Model Elimination Prover SETHEO

Model Elimination, as described by Loveland [13], can be seen as a special kind of Tableau Calculus (see the
book of Smullyan [16]) that works directly with the clausal form of a formula. Furthermore, the duplication
of partial proofs used repeatedly in the tableau can be prevented using some kind of factorization (lemma
generation) [11]. In general, Model Elimination is a goal oriented top down procedure.

The output of SETHEO is a PROLOG list (in a file with the suffix .tree) describing the proof tree with
references to the clauses involved in the inferences. The most important statistical information, like success,
number of inferences, proof depth and proof time, can be extracted from the log file.

Above, we have described the output of SETHEQ in such an extended way to demonstrate a generic view
of the output of theorem provers. If the user wants to adapt DBFW to his own theorem prover, only some

10 3.5 Example: Setheodb - a Database Format for SETHEO Runs

patterns of the extractor have to be adapted, but the generated information and the tags used will nearly

be the same. So only a few changes in the framework are necessary.

3.5.2 SETHEQO Data Files

This section shows example files for the TPTP file MSC006-1.1op. The commands used for this example

are:

e inwasm -foldup -cons MSC006-1 # preprocessing/compiling with constraints

e sam -cons —-dr MSC006-1 # proving with constraints and iterative deepening

1. Lop Formula MSC006-1.1lop (Input)

1 B e
2 # File : MSCO006=NonObv-1 : TPTP v1.2.0. Released v1.0.0.

3 # Domain : Miscellaneous

4 # Problem : A "non-obvious" problem

5 # Version

6 # English : Suppose there are two relations, P and Q. P is transitive,

7 # and Q is both transitive and symmetric.

8 # Suppose further the "squareness" of P and Q: any two things
9 # are related either in the P manner or the (Q manner. Prove

10 # that either P is total or Q is total.

11

12 # Refs : Pelletier F.J., and Rudnicki P. (1986), Non-Obviousness,

13 # In Wos L. (Ed.), Association for Automated Reasoning

14 # Newsletter (6), Association for Automated Reasoning, Argonne,
15 % I1, 4-5.

16 # Source : [Pelletier & Rudnicki, 1986]

17 # Names : nonob.lop [SETHEO]

18

19 # Status : unsatisfiable

20 # Syntax : Number of clauses : 6 (1 non-Horn; 2 unit; 5 RR)
21 # Number of literals : 12 (0 equality)

22 # Maximal clause size 3

23 # Number of predicates : 2 (0 propositional; 2-2 arity)
24 % Number of functors 4 (4 constant; 0-0 arity)

25 % Number of variables : 10 (0 singleton)

26 % Maximal term depth : 1

27

28 # Comments : Rudnicki says "I think that what you call the non-obvious

29 & problem from our write-up with Jeff should be attributed

30 # to J. \Lo\’{s} (in LaTeX)." and "J. \Lo\’{s} 1is in LaTeX,

31 # and it is the name of my Polish prof that told me that.

32 % English approximation of his name can be typed as J. Los.".
33 # : tptp2X: -fsetheo:sign MSC006-1.p

34 e e
35 # p_transitivity, hypothesis.

36 p(X, 2) <-

37 pX, V),

38 p(Y, 2).

39

40 # g_transitivity, hypothesis.
41 q(X, 2) <-

42 X, v,

43 q(Y, 2).

44

45 # q_symmetry, hypothesis.
46 q(Y, X) <-

47 a(x, Y).

48

49 # all_related, hypothesis.
50 p(X, Y);

51 q(X, Y) <- .

3.5 Example: Setheodb - a Database Format for SETHEO Runs

53 # p_is_not_total, hypothesis.
54 <- p(a, b).

56 # prove_g_is_total, conjecture.

57 <- q(c, d).

2. stdout/stderr Output of inwasm

1 inwasm V4.0 [wasm-less] Copyright TU Munich (June 96)
2 command line: /home/setheo/bin.solaris/inwasm -cons -foldup MSC006-1
3 codegen: 116 [19997] labels, 0 colls [343 accesses]

4 Assembler optimization: 67 labels read, 25 labels output
5 MSC006-1.hex generated in 0.04 seconds

6 Parsing input-file.

7 Preprocessing: Generating weak-unification.

8 Preprocessing: purity

9 Message: Deleted clauses : None.

10 Message: Making sortarray.

11 Preprocessing: orbranch reordering

12 Preprocessing: inserting tautology constraints

13 Message: 5 tautology-constraints generated.

14 Preprocessing: inserting subsumption constraints

15 Message: 2 subsumption-constraints generated.
16 Preprocessing: removing redundant constraints

17 Message: 5 constraints deleted.

18 Preprocessing: fanning

19 Preprocessing: inserting reduction steps

20 Preprocessing: inserting symmetry constraints

21 Message: 2 symmetry-constraints generated.

22 Preprocessing: removing redundant constraints

23 Message: 4 constraints deleted.

24 Preprocessing: subgoal reordering

25 Codegeneration.

3. sam .log File MSC006-1.1og

1 SAM V3.3 Copyright TU Munich (December 22, 1995)

2

3 Options : -cons -dr MSC006-1

4

5 using antilemma-constraints

6 using regularity-constraints

7 using tautology-constraints

8 using subsumption-constraints

9

10 Start proving...

11

12 -d: 2 time < 0.01 sec inferences = 9 fails = 7
13 -d: 3 time < 0.01 sec inferences = 30 fails = 23
14 -d: 4 time = 0.02 sec inferences = 100 fails = 79
15 -d: 5 time = 0.04 sec inferences = 365 fails = 201
16 -d: 6 time = 0.12 sec inferences = 1465 fails = 1244
17 -d: 7 time = 0.33 sec inferences = 5505 fails = 4916
18

19 sxxkkkkk SUCCESS #kkskskkkkkokkk

20

21 Number of inferences in proof : 20

22 - E/R/F/L : 17/ 2/ 1/ 0
23 Intermediate free variables : 5

24 Intermediate inferences : 26

25 Intermediate open subgoals : 6

26 Generated antilemmata : 46

27 Number of unifications : 7474

28 - E/R/F/L 3452/ 2665/ 1357/ 0
29 Number of generated constraints : 3877

30 - anl/reg/ts : 99/ 1612/ 2166

12 3.5 Example: Setheodb - a Database Format for SETHEO Runs

-
)
A

LAY

o BEoc =

user scripts,
editor, ...

Extractor |dbs_gen.p | ‘

db cat.p |‘\£_(2) l 1 /

Query-interface = |db_split.p|
v \ D atabase splitting
\
N predefined

/ queries,...

Figure 3.4: The software-IC compatibility map

31 Number of fails : 6560
32 - unification : 2078
33 - depth bound : 1366
34 - constraints H 3116
35 - anl/reg/ts : 99/ 485/ 2532
36 Number of folding operations : 492
37 - one level : 81
38 - root : 115
39 Instructions executed : 24466
40 Abstract machine time (seconds) : 0.53
41 Overall time (seconds) : 0.58

4. .tree File MSC006-1.tree’

1 L

2 ["query__,[0 , ext__(0.1,5.1) 1 ,[

3 [query__ 1,

4 [“p(a,b),[1, ext__(5.2,1.1) 1 ,[

5 [pCa,b) 1,

6 [*p(a,d),[2, ext__(1.2,1.1) 1 ,[

7 [pta,d) 1,

8 ["p(a,c),[3, ext__(1.2,4.1) 1 ,[

9 [p(a,e) 1,

10 [q(a,c),[4 , ext__(4.2,3.2) 1 ,[

11 ["q(a,c) 1,

12 [q(c,a),[5 , ext__(3.1,2.2) 1 ,[
13 ["q(c,a) 1,

14 [“q(a,d),[6 , ext__(2.3,4.2) 1 ,[
15 [qCa,d) 1,

16 [p(a,d), [7, red__(4.1,2) 1111,
17 [q(c,d),[8 , ext__(2.1,6.2) 1 ,[
18 ["qCc,d) 111111111,
19 ["pc,d),[9 , ext__(1.3,4.1) 1 ,[

20 [plc,d) 1,

21 [q(c,d),[10 , ext__(4.2,6.2) 1 ,[
22 ["q(c,d> 1111111,

23 [p(d,b),[11 , ext__(1.3,1.1) 1 ,[

24 [pd,b) 1,

25 ["p(d,c),[12, ext__(1.2,4.1) 1 ,[

3.5 Example: Setheodb - a Database Format for SETHEO Runs 13

26 [p(d,c) 1,

27 [q(d,c),[13 , ext__(4.2,3.2) 1 ,[

28 ["q(d,c) 1,

29 [q(c,d),[14 , ext__(3.1,6.2) 1 ,[

30 ["qCc,d) 1111111,

31 [“p(c,b),[156 , ext__(1.3,4.1) 1 ,[

32 [pCc,b) 1,

33 [q(c,b),[16 , ext__(4.2,3.2) 1 ,[

34 [“qCc,b) 1,

35 [q(b,c),[17 , ext__(3.1,2.3) 1 ,[

36 [“q(b,c) 1,

37 ["q(d,b),[18 , ext__(2.2,4.2) 1 ,[

38 [q(d,b) 1,

39 [p(d,b), [19 , red__(4.1,11) 11 1 1,
40 [q(d,c), [20, fac__(2.1,13)11 111111111111
41 1

3.5.3 DBFW at Work: Software-IC Compatibility Map

The “execution” graph in Figure 3.4 shows most possible filter combinations for the framework. Filters may
be connected by a pair of directional arrows that go through an intermediate database file. The numbers at
the arrows denote the number of new database files generated by a filter®.

An example for combining the filters:

cd db.test/log

1. find . -name *.log* -print | dbs_gen.p > dbl
2. db_cat.p -s Formula SYN dbl -d db2 > db3
3. db_ed.p -i db3 db4d

s Formula SYN127

x
4. wc db4
5. db_split.p -1 -i ’s/".*_j)Formula=(\S+).*$/$1/’ db4d | wc

Here we assume that log files have the suffix .log. The first line generates a database file db! for the given
log files. The next line splits this database into db2 and db3. The later database file contains the objects
of the TPTP domain SYN. The third line interactively edits (db_ed.p) all objects for formula SYN127 and
writes the changed database back to db4. Using a standard UNIX command, line 4 returns the number
of objects in db4. The number of lines is identical to the number of objects, as the database generated
above contains exactly one object per line, no comments, and no empty lines. The final line splits db4 into
individual databases for each formula and lists the names of the different formulae, which are again counted
by the UNIX command we. Note that several objects can occur for a single formula and that no unique
object ID has been defined within Setheodb.

This example demonstrates some of the scripts and their interaction with each other using database files
as a common data format. The integration of the framework into the standard UNIX environment is also
covered. The example is included in the distribution.

3.5.4 Tag Description

The Setheodb format provides tags to describe
e the environment, date and owner %User of the run,
e the command line parameters and other data on the SETHEQ subprograms (inwasm, wasm, sam),
e the name of the proven formula, and

e the proof itself.

5Whitespace before closing square brackets has been compressed.
6For the moment, there are no filters implemented that require multiple input files. However, the UNIX commands sort and
comm can be used for testing multiple database files on common objects.

14 3.5 Example: Setheodb - a Database Format for SETHEO Runs

TAGID CONTENT

_%Formula= formula name (TPTP-style name)
%Env= host, datestamp of the log file, ...
%Comment= comment

% User= owner of the log file

_%Errors= list of detected error strings
_%IVersion= inwasm (parser) version

_%IPar= inwasm parameter

%WVersion= wasm (compiler) version

_%WPar= wasm parameter

%S Version= sam (inference machine) version
_%SPar= sam parameter

% Time= runtime (cpu-relative)

YoInf= inferences (all and sorted by types)

% Unif= unifications

% Fail= fails

_%IterDepth= greatest depth (in the proof tree) visited (-d)
YlterInf= greatest number of inferences made (-i)
_%lterLocInf= combination bound, local inferences (-loci)
% TVersion= TPTP version

_%FormState= state (if TPTP)

% FormCl= number of clauses

“Y%FormLit= number of literals

_%Result= result (if tag defined: exactly

one of TIMEFAIL—TOTALFAIL—BOUNDFAIL—SUCCESS—ERROR,
otherwise sam has had trouble or was not called)
“YoLog= name of the object “s log file

Figure 3.5: List of standard tags of the Setheodb format

Additional tags may be defined as necessary for each object (maintenance, version control, semi-private
information for the user, ...). Tag IDs are extended into strings matching a REGEXP (_}%\S+=) that by
definition may not occur within tag values. Figure 3.5 shows the current list of tags for the Setheodb-format.
Tags may also be omitted”.

Example for an object:

_%Formula=COL013-1 _%Result=ERROR _YSVersion= _}Env= sj22, 30. Februar 95

Feel free to add new tags to this list. The database scripts are mostly independent of the tag IDs used.
Unique object ID tags are not used at the moment.

The database file consists of comments (lines starting with ’#’ in column 1), empty lines and objects. Objects
are structured into attributes or tags: _%<ID>=<VALUE>. Each tag can contain arbitrary text (except text
matching the Perl REGEXP _%\S+=). To allow use of simple regular expressions in queries, please use the
tags within your objects in the order given above®.

See db_cat.p -h setheo and the patterns in dbs_setheodb.pat for further information.

3.5.5 A Few Lines of the Database
In this example, we will generate a database from the files db.doc/exzample.log, db.doc/examplel.log’:
echo example.log ; echo examplel.log) | dbs_gen.p | db_cat.p -mo .

The -mo switch of db_cat adds a line-feed after each tag to allow easier editing of database files using standard
text editors. Normally all tags of an object would be concatenated into a single line. The final dot of the

7A missing tag in itself may be information: An object without %Result is generated for invalid log files, anything from a
core-dump-used-as-a-log-file to abnormally aborted SETHEO-runs.

8This order should be identical to the one used for the extractor patterns defined in dbs_setheodb.pat.

9These example log files are cut down SETHEO logs, modified to give a human readable hostname that is suitable for
publication. They also demonstrate the setting of additional tags from within log files (DUMMY-TAG). The example files are
contained in the distribution of DBFW [8].

3.5 Example: Setheodb - a Database Format for SETHEO Runs 15

db_cat.p command is necessary: it is a trivial REGEXP selecting all objects in the database. The command
above prints these two (multi-line) objects:

1 _%Formula=SET001-2

2 _%Env=This_run’s_hostname 960705140514
3 _%User=jakobi

4 _%CountLop=1

5 _hIVersion=3.2

6 _%IPar=-cons -linksubs

7 _%Log=example.log

8 _DUMMY-TAG=DUMMY-VALUE

9

10 _%Formula=SET001-3

11 _%Env=This_run’s_hostname 960705140438
12 _hUser=jakobi

13 _%CountLop=1

14 _%IVersion=3.2

15 _%IPar=-cons -linksubs

16 _hLog=examplel.log

17 _%DUMMY-TAG=DUMMY-VALUE

4. Porting and Maintenance

This sections offers information and hints to future users of the framework.

Porting of the non-Setheodb scripts should require changing only some executable paths, most notably the
path of Perl 5 binary (look for /home or /usr strings in the scripts). The framework has been tested on
HP-UX, Linux and Solaris 2.

4.1 Copyright, Warranty

The framework is (C) TU Miinchen. It is provided under the terms of the GNU General Public License, a
copy is provided in the distribution db.doc/LICENSE. For the copyright of the WWW-Server demo based

on the network security scanner Satan, please see file db.www/copyright.html. Additional release notes can
be found in db.doc/README.

This means - among other things - that there is no warranty on the product and that we will accept no
liabilities.
However, consider this:

¢ You backup your database files regularly (don "t you!?).

e You can use the text editor of your choice to access the data in the database files.

e You can use standard UNIX tools like grep to access your database.

e With a few lines of Perl, you can convert your database into any format you desire, for example. an
input format for a newly bought relational database. Similarly, you can use db_m5.p to preprocess the
export format of an RDBMS.

4.2 Support / How to Get

Though there is no formal support. The authors are interested in improving the framework and in coordi-
nating efforts of users to port, improve or integrate the the framework in other packages. Please send an
eMail to one of the authors or to setheo@informatik.tu-muenchen.de. Thank you.

ILF: For further information on ILF contact dahn@mathematik.hu-berlin.de.

SETHEO homepage:

e http://wuwjessen.informatik.tu-muenchen.de/ setheo/
e ftp://ftp.informatik.tu-muenchen.de/local/lehrstuhl/jessen/Automated Reasoning/SETHEQ/

Framework homepage:

e http://wwwjessen.informatik.tu-muenchen.de/ setheo/database framework/
e ftp://ftp.informatik.tu-muenchen.de/local/lehrstuhl/jessen/Automated Reasoning/
SETHED/database/

4.3 Files and Documents

The files to install can be found in directory . (or bin). Copy all files and links to a directory and add it to
your $PATH variable. The sub-directories are optional.

An overview of the files, directories and naming conventions follows in the Figures 4.1 and 4.2.

4.4 Requirements 17

File/Dir Description
db.doc/ various documents and readme files, including Setheodb-specific documents
in German:

e admin.tzt (adding new objects and maintaining the Setheodb
database),

o db.ger.html plus examples (a short introduction talk from early in
1996, see HTML source of the talk for additional notes; provided as
is).

This directory also contains the input data for most of the ex-
amples included in this paper.

db.test/ a small test suite for basic functionality tests - read and run the README
file.

db.tool/ support programs like countlop. These tools are not part of the framework
itself.

db.www/ a WWW interface example (unsupported; call html.pl from within the
directory)

db_* framework scripts and data files, format independent

dbs_* Setheodb-specific scripts and data files (mostly intended as examples ;
dbs_g* - some query examples)

dbi_* 1L F-specific scripts and data files

db*_*.frm format description (for display by db_cat.p)

db*_*.pat extraction pattern for specific formats (for db_gen.p, suitably symlinked or
explicitely requested)

db*_*.tpl new entry template (for db_ed.p,

suitably symlinked or explicitely requested)

Figure 4.1: Files in the installation directory tree

Script/Packages Description

db_cat.p query-interface, also a Perl package

db_cgi.p cgi support functions, to be used as a Perl package

db_ed.p allows editing selected objects

db_fiz.p cleanup of database files, object delimeters, etc

dbs_form.p prints the objects of a Setheodb database in a more structured way

db_gen.p automated extractor script (for Setheodb symlink to db_gen.p)

db_mb.p automated document generation using a description contained in a
database, also a Perl package (cgi wrapper: dbs-mbcgi.p)

db_split.p splits a database into several database files according to a Perl expression

Figure 4.2: Scripts and Perl packages

4.4 Requirements

e a UNIX-like enviroment

e Perl5. Perl5.001m or higher is required for correct globbing in the WWW-example. After replac-
ing quotemeta, namespace commands and REGEXP-look-ahead-constructs (“(?7X...)”), the scripts
should also run under Perl/.036. The scripts are tested under Solaris 2, HpUX and Linux. The scripts
do not require UNIX specifics, so the framework itself should be able to run under a DOS port of Perl
with few modifications. It may be necessary to disable the low memory hacks in some scripts that uses
the exec call to split the processing of large databases in palatable chunks.

Please mail your modifications to the authors! Thank you.

4.5 Porting

Most of the dbs-* / db.www scripts are offered as example, as they are useful only in Setheodb context.
Porting of the db_* scripts should only require changing of some executable paths, most notably the Perl
binary (look for /home or /usr strings).

18 4.6 Designing a Database Format

Some scripts contain code to cope with large database files, sometimes using an internal variable $jobsize
for defining the size of the chunk to operate on (usually 500 objects) . db_mb.p is requires a port of Perl
with extremly stable memory handling.

4.6 Designing a Database Format

Designing a new format is a straight forward process: write a list of tag IDs with their semantics and tell
your users about this list. The list can be easily extended: simply add some new tags to some existing
objects.

In case you want to implement an automatic extractor/conversion script, you should invest some time
in designing your format. Tag IDs should be expressive, and the object structure should allow for easy
conversion to or from other formats. If other users or scripts use your databases, your format should allow
for easy processing of the information. Be certain to catch all relevant information in your database, especially
if the original log files and other data are available only temporarily.

If you need relational operations like Joins, you should consider the use of the framework as an intermediate
data-extraction step before storing the data into a final database.

To generate a new format, a user has to create (and edit) several resource files:
e a template file for creating the tags (suffix .ipl, optional, supported by db_ed.p)
e a file containing extraction patterns (suffix .pat, required for automatic extraction, used by db_gen.p)
e a format description (suffix .frm, optional, used by the online help facility of db_cat.p)

db_ed.p and db_gen.p load the resource file requested by the -f switch or autoload a resource files by chang-
ing the suffix of their invocation name. So Setheodb’s dbs_gen.p is simply a symbolic link to db_gen.p that
configures the extractor for the Setheodb format. If you want to use the extractor, modifying the extrac-
tion patterns in a copy of dbs_gen.pat is going to be your main task in adapting the framework to a new
environment,.

If you really need to use different $pattagstart and $patdatastart? for various formats, you can define

these variables differently for each format in an if-elsif-cascade depending on its basename.

4.6.1 The Extractor

db_gen.p uses extraction patterns (Perl code blocks) to extract the values of object attributes from the
specified text files. The Perl code blocks implement your heuristics to extract the information you want.
This may include side-effects for other patterns like truncating the input data to scan, etc. All extraction
patterns are always run, even if the return value will be overridden by command line arguments later on.

See dbs_gen.p and dbs_gen.pat for examples.
Pseudocode of the extactor main loop generating the object:

e The current line of input is the name(s) of the input file(s) for parsing - read the file(s) into $1log and
$olog.

o Gather embedded tags into %logtags. Embedded tags can be overridden by option T.

e Gather command line arguments (defaults and overrides) and embedded tags in the hahses %override
and %defaults.

e Run all extraction patterns, possibly using the corresponding values from %override or %defaults.
Delete corresponding entries in the hashes joverride and %defaults.

'In part, this was made necessary by the fact that Perl leaks memory when doing many evals. This occurs for versions from
Perl 4 ranging upto at least 5.001m.
2These variables are used to extend the tag ID into a unique string. They are defined in db_cat.p and db_gen.p.

4.7 Database Maintenance 19

e Add remaining entries of %override and %defaults to the object.

When writing the extraction patterns, you should be careful to allow and watch for binary data such as core
dumps that got somehow included into the set of input files to extract... The main loop currently restricts
all tags to less than 128 characters, marking all binary characters as ’?’.

To add a new set of extractor patterns in a file called YourFormat.pat, simply add a symlink with the same
basename YourFormat.p to db_gen.p. The extractor automatically looks for its configuration in the file with
its invocation name and a suffix of .pat. Alternatively, you can use the —f option to explicitely request a
specific pattern file.

4.6.2 The Query-Interface as a Package

db_cat.p can be used as a package to process a database that has been read into a Perl array. The interface
consists of the @db_cat: : db array containing the input database. The array @db_cat: :db and @db_cat: :del
(optional) are the output databases. $db_cat::project and @db_cat::pattern contain the patterns for
Projection and Selection. If you wish to change the patterns, you have to reset undefine $db_cat: :main
first: The patterns are compiled into a dynamically defined subroutine, to reduce memory leakage during
numerous eval calls.

For more information, see the
e variable definition section at the beginning of db_cat.p (package flags, etc.).
e usage example at the end of db_cat.p. A larger example is the script for interactive editing, db_ed.p.

Other packages within the framework are the document generator db_mé.p and db_cgi.p, which contains some
support functions for cgi usage on the WWW. See the source of these scripts for more information.

4.6.3 Testing

The file db.test/README documents and implements a small testsuite.

4.7 Database Maintenance

Maintenance heavily depends on your use of the framework. If you simply use a modified extractor to
obtain and massage the data for your database, maintenance is restricted to keep the extractor talking to
the database in a language the database accepts.

If you don "t need the full relational model and the object metapher of the framework is sufficient, you can
use the framework “s database files for permanent storage, using db_cat.p or your texteditor to access your
objects.

Adding objects is easy: cat dbnew >> db.
Removing objects is only slightly more complex:

db_cat.p -s Formula SET db > dbnew
mv db dbold
mv dbnew db

This eliminates all objects with an attribute -%Formula containing the string “set” (case does not matter
for option -s).

The challenge is what we like to call “aging” your objects. For Setheodb this means the regular removing
of objects from old SETHEO versions. The file db.doc/admin.tat offers a commented maintenance session
in German. Assigning object owners may help to identify obsolete objects. Enlightening your users to
use embedded tags to better document their objects-to-be in the log files for the extractor may also help
(intentions for this SETHEOQ run, etc). Maintenance in our case proves to be mostly a problem of defining
and applying a processing policy for the contents of the database.

20 4.8 Finally: Bugs

4.8 Finally: Bugs

Certainly. None known for the framework itself, excepting the number of changes per month per script,
which is still quite high.

A word of warning about the multi-line object mode: The mode relies on the objects being separated by
whitespace containing at least two linefeeds without any characters inbetween. It is very easy to accidentally
glue several objects together when editing the database manually. Do not rely on this “feature” to put
several text paragraphs into a tag - use some special character to distinguish the paragraph break from an
empty line and object delimeter®. db_fiz.p tries to fix any “empty” lines by removing all blanks and tabs.
db_ed.p interprets arbitrary whitespace lines in objects returned from the editor as object delimeters. GNU
cat’s —A option can be used in conjunction with grep to display lines containig questionable whitespace.

3db_cat.p also replaces the sequence @@\n by a linefeed in reading or writing an object.

5. Available Database Formats and Patterns

This section describes all available extractor patterns and database formats. Information on ILF-variants of
the patterns and formats can be found in Section 6.3. See Section 3.5 for the Setheodb format.

For now, the database patterns are independent of each other and do not try to translate prover specific
output into a generic format.

5.1 Otter: dbx_otter.*

The Otter extractor patterns are based on version 3.0.4 (August 1995). The following description of Otter[14]
is quoted from the version 3 online manual:

Otter (Organized Techniques for Theorem-proving and Effective Research) is a resolution-style
theorem-proving program for first-order logic with equality. Otter includes the inference rules
binary resolution, hyperresolution, UR-resolution, and binary paramodulation. Some of its other
abilities and features are conversion from first-order formulas to clauses, forward and back sub-
sumption, factoring, weighting, answer literals, term ordering, forward and back demodulation,
evaluable functions and predicates, and Knuth-Bendix completion. Otter is coded in C, is free,
and is portable to many different kinds of computer.

The example below uses tba_gg.in as input, which can be found in the Otter testsuite.

otter < tba_gg.in > tba_gg.out 2>&1
echo "tba_gg.out" | db_gen.p -f dbx_otter.pat

_%Formula=tba_gg

_%Env=root on kefk, Sun Mar 9 14:12:48 1997
_%Version=0tter 3.0.4, August 1995
_#Par=PAR1

_%Time=0 (0 hr, O min, O sec wallclock)
_%Length=8

_hLevel=6

_4Cl_Stats=18 379 165

_%Result=SUCCESS

OO WN -

5.2 Discount: dbz_discount.*

The Discount patterns are based on version 2.1L, as maintained by Stephan Schulz. He describes Discount|7]
as follows:

TAGID CONTENT

_%Formula= formula name

J%Env= host, datestamp of the log file, ...
%Comment= comment

_Y%Errors= list of detected error strings

% Version= version

Y% Par= parameter

% Time= runtime

Y%Length= length of proof

_%Cl_Stats= various statistics

_Y%Result= result (if tag defined: exactly SUCCESS

Figure 5.1: List of standard tags of the Otter format

22 5.2 Discount: dbz_discount.*

TAGID CONTENT

Y%Formula= formula name

_%Env= host, datestamp of the log file, ...
%Comment= comment

_Y%Errors= list of detected error strings

% Version= version

Y%Par= parameter

%Time= runtime

_%Length= proof steps (discount facts)
%Cl_Stats= various statistics

“YoResult= result (if tag defined: exactly SUCCESS)

Figure 5.2: List of standard tags of the Discount format

The Discount system is a distributed equational theorem prover based on the teamwork method
for knowledge-based distribution. It uses an extended version of unfailing Knuth-Bendix com-
pletion that is able to deal with arbitrarily quantified goals. Discount features many different
control strategies that cooperate using the teamwork approach. Competition between multiple
strategies, combined with reactive planning, results in an adaptation of the whole system to given
problems, and thus in a very high degree of independence from user interaction.

Discount-2.1L branched off the main Discount line after version 2.0 and concentrated on imple-
menting learning strategies suitable for the use in sequential mode. It is maintained by Stephan
Schulz, <schulz@informatik.tu-muenchen.de>. Important features of Discount-2.1L are occa-
sionally ported back to the main Discount line (now version 3.0).

Example:

input file dsc_B00001_1

discount dsc_B00001_1 > dsc_B0O0001_1.log

mextract -n -n2 -s 2> dsc_B00001_1.mextract_statistics
echo "dsc_B00001_1.log" | db_gen.p -f dbx_discount.pat

The above command sequence generates the following object:

_%Formula=dsc_B00001_1

_%0rdering=XKBO inverse : 1 > multiply : 1 > a : 1

_%#Time=0.025 s / 0.000 s (real)

_%Length=16 written; (read: 356 / first extraction: 16)

_%Cl_Stats=13 Regeln 1 Gleichungen 74 kritische Paare 0 kritische Ziele
186 Reduktionen

_%Result=SUCCESS

N O TR W =

6. Other Applications

The file db.doc/db.ger.html contains a short talk (in German) on the framework, including the www interface
and the Mathematica example. The HTML code of the talk contains additional notes to the “slides”.

6.1 A Partial WWW Interface

A simple WWW interface demonstration is provided in the directory db.www. The script html.pl starts a
small, personal Perl www server based on Satan (the network security scanner) and can be used with any
browser. The server provides a restricted interface to some of the framework s scripts. The example is
unsupported and provided as-is.

Due to some queries” memory requirements, it is useful to start a new server / browser pair for each user
on the host (s)he is using, with this user "s priviledges.

The demonstration offers only a subset of all possible execution paths through the framework for Setheodb
database files: for example, db_cat.p is called at most once.

More information is available in

o db.www, see also file db.www/copyright.html

o db.doc/form.ps

o db.doc/result.ps
Bugs: The Perl version must be at least 5.001m for successful globbing of USER-relative filenames.
Submitting the form in Figure 6.1 corresponds to these commands:

db_cat.p -s Formula SET /home/setheo/DATABASE/DB/db.setheo |
dbs_mathqueryl.p

6.1.1 Another WWW-Interface

The framework is also suitable for use as a low-cost (read no-cost) database within a cgi-bin script for normal
UNIX-based websites. See the section on the document generator and the example cgi wrapper dbs-m&cgi.p
and database db.test/m5.demo.

6.2 Complex Queries and Graphical Post-Processing

More complex queries can be written in Perl using the query interface as a Perl package. For example, a
data file returned by such a query can be read by Mathematica to generate a graphical answer (Figure 6.2).
The script dbs-mathqueryl.p in combination with the Mathematica notebook (db.doc/math.gfrl.mb) is an
example for a fairly complex query returning a graphic display as answer.

Bugs: The notebook is a first attempt at graphical postprocessing using Mathematica. It is usable and
can serve as a rough guide, however it “s no polished template for your applications. It is also a part of the
German talk in db.doc/db.ger.html.

More information is available in
o dbs_mathqueryl.p
e db.doc/math.gfr1.mb

24 6.3 Integrated Logical Functions (ILF)

File Edit View Go Bookmarks Options Directory Window Helpl

£
Predefined Queries and Examples

Please mail new examples to add (include calling example). See below for documentation.

1. Input database: 1 database from _file =

|_§_~setheo/DATABASE/DB/db .setheo

2. Select objects:
_| Strip comments

Return 1 all _|| selected object(s)?

Apply these selections in sequence (Regexp—Patterns).

Tagl: I_{_Fomu = Valuel:l_g_gET
Tag2: | ValueZ:I_g_
Tag3: | Value3:|_§_
3. Perform example queries: 5_gmathqueryl:Complex_query_example -

Value of runtime for objects (in seconds}): IIq S e

4. _IFormat result for display.
5. Output to file: I/ tmp/DE_RESULT

Filename + suffix .err is used for stderr of the query run.

Submit | Clear |

-0l . ==]

Figure 6.1: A request to the server

e db.doc/math.gfrl.ma.real.ps

Figure 6.2 shows the results of certain SETHEQ runs depending on run time and TPTP problem domain.
It is the result of applying the Mathematica notebook to the datafile returned by the form above. For the
graphic shown here, you have to select all relevant runs from the database, for example by changing the
contents of the field valuel to “.”.

6.3 Integrated Logical Functions (ILF)

We are currently integrating the framework into ILF (Integrated Logical Functions [6]), a front-end for several
automated theorem provers. The framework is used within ILF to collect statistics on the success of the
provers and their tactics. Beginning with SETHEQ, we are adapting DBFW to cooperate with other provers
integrated in ILF, such as DISCOUNT [2], KoMeT [4], OTTER [14] and SPASS [20].

6.3.1 Application/Background: ILF

We wanted to use the database tools to get some information about the relevant use of SETHEOQ in ”real“
contexts, as they occur while supporting mathematicians proving theorems or computer scientists verifying
communication protocols. Therefore we integrated it into the system ILF [6] developed at the Humboldt-
University at Berlin. ILF'is a system that integrates automated theorem provers, proof tactics for interactive

6.3 Integrated Logical Functions (ILF) 25

Depth-Folded-Runs by Reinhold

1200

Cccur ences

{1100

Figure 6.2: Graphical processing of query results using Mathematica

deductive systems and models within a graphical user interface.

Research in the field of theorem proving in many groups in several countries has created a lot of sophisticated
tools including

e automated theorem provers for various logical calculi,
e rewrite systems,

e proof tactics,

e model finders and

e domain specific methods.

ILF is a tool that can be configured in many ways to Integrate all these Logical Functions. The common
feature of these tools that is used for this integration is that they all can be used to modify a knowledge
base.

ILF is applied on two different levels. It yields methods of testing the power of tools to support logically
correct arguments in a specific field. Several ways to combine these tools in proof tactics can be tested
rapidly. When a collection of useful proof tactics has been obtained, it can be encapsulated as a set of "rules
of inference“ in a new interactive or automated deductive system. It is also possible to extend an existing
system in this way. This new, more powerful system can be tailored to meet exactly the needs of an end
user, making available just those procedures that his kind of problems demand.

Perhaps the most challenging feature of ILF is its modularity. The power of ILF can be easily extended
by integrating further systems and developing libraries of domain specific proof tactics. In fact, for an
experienced PROLOG programmer, it is a matter of a few days to integrate a new system that has been
developed somewhere else independently.

Within the DFG-Schwerpunkt ”Deduktion” of the Deutsche Forschungsgemeinschaft the prover SETHEO
was made available to ILF together with other automated provers.

ILF can be configured as a ProofPad to assist a user without special knowledge in automated theorem proving
in editing elementary proofs, making the best possible use of the power of automated theorem provers.

26 6.3 Integrated Logical Functions (ILF)

Using ILF, there were solved problems in the domain of lattice ordered fields, communication protocols, and
processor verification, using the support of SETHEQ. The system is used not only by its creators, but also
students (of mathematics) used it for their diploma thesis [21].

Within ILF, the context is quite different to that of the TPTP. The files are present only temporarily, so the
data base has to be updated immediately. The filenames have no semantics, and comments contain at most
a pointer to the goal and the names of the used axioms. Other information on predicates, formula length
and number etc. have to be derived directly from analyzing the PROLOG formulae.

Interesting information will be here of another kind as in TPTP. For example, we want to know how many
axioms were really used in the proof, which domain the problems belongs to, how many problems the prover
was able to prove using which resources and so on.

6.3.2 Porting Log

e The document generator immediately stressed a buggy port of Perl 5 into core dumps. Furthermore,
strange core dumps occured in shell scripts, which we traced down to a crippled /bin/sh version. Perl
was subsequently upgraded to a stable 5.003 port, and we replaced the troublesome Bourne shell by
calls to bash (or alternatively: ksh).

e The Setheodb database format was slightly changed for ILF (see dbi_ilf-setheo. *).

— Provers may attempt several different strategies in parallel for proof job, that is for each proof
sought by ILF:

*x ID tag added: _4ID=ILF.PROVER.USER.DATESTAMP (#N), where N is the node number in case
there are several objects for a single proof job. Example:

_%ID=ILF.SETHEO. jakobi.970215050255#1

% ST_ID (a.k.a. Success Task): This tag has either the value SELF or the value of the ID tag
of the first node returning a proof. Some tags of the success task object are appended to all
other objects of the current job (prefix ST.).

Note that the node number is depending on machine load! Note also that the distribution
of proof tasks to machines should be randomized in order to be able to obtain meaningful
statistics for large databases.

— Some tags such as USER and ENV have been removed.

— Standardized tags for all provers within ILF: ID, Result, in addition to any embedded tags
provided by ILF itself.

e dbi_mod.p performs prover-independent database postprocessing.

— Generation of ST_ tags for jobs with parallel prover instances.
— Appending selected objects to user-defined databases.

— Support for prover development: The user may automatically mail user-selected objects to the
prover developers.

The user options can be set in the automatically created resource file $USERILFHOME/.dbfwre, which
also documents these features.

Example object for a single node from a parallel proof job using SETHEO (slightly shortened):

1 _%ID=ILF.SETHEO. jakobi.970314161005#5

2 _%ST_ID=ILF.SETHEQ. jakobi.970314161005#4
3 _4Formula=ilf.9

4 _%IVersion=3.3.1

5 _%IPar=-cons

6.3 Integrated Logical Functions (ILF) 27

6 _%SVersion=3.3

7 _%SPar=-cons -batch -cputime 120 -cons -wdr -singledelay 2 -forcegr ...

8 _#FormC1=119

9 _%FormLit=309

10 _/FormLength=7

11 _#FormPred=16 allowedOp/1 contd/3 equal/2 function_like/3 gmyeq/2 gr/2 h/1 ...
12 _4#ST_IPar=-cons _%ST_SPar=-cons -batch -cputime 120 -cons -wdr -dynsgreord 5 ...

The integration of DBFW into ILF is completed, with SETHEQ as the first supported prover.

6.3.3 How to Add Support for A New Prover

Create a new or modify existing extractor patterns for the new prover. Then, add the following lines to the
wrapper of the prover in question:

PROVER - directory name for the prover, e.g. setheo

BASENAME - basename for all files of the active ILF job
JOBNR - number of the ILF job (reserved)

MAXTASK - number of task running in parallel (1..N)

SUCCESSTASK - number of task returning the first proof,

optional (one of 1..MAXTASK)

$database_script="$ENV{USERILFHOME}/dedsys/$PROVER/database.p";
$database_script="$ENV{ILFHOME}/dedsys/$PROVER/database.p"
if not -x $database_script;
0 system "$database_script $BASENAME $JOBNR $MAXTASK $SUCCESSTASK
1 # > /dev/null 2>&1";

== QO 00O ULk Wk -

Finally, adapt a copy database.p, the prover specific database wrapper. It sets the environment for db_gen.p
and calls dbi_mod.p to postprocess the generated database.

7. Summary

The database framework implementation described in this paper is suitable for medium sized datasets that
can be seen as a collection of objects. The relational operations Selection and Projection are available. Join,
however, is not.

The framework provides tools to extract objects from text files, to modify collections of objects, to generate
documents or reports from a set of objects, and to convert objects to different formats.

The conversion of DBFW database files to specific text formats is easy. Thus it is possible to use the
framework as a front-end for arbitrary database systems, to extract objects from text files. The intermediate
DBFW database can be converted and exported later on to a full-blown relational database system, such
as transbase or postgres. Similarly, the framework can be used to post-process objects from other database
systems for access via the World Wide Web.

The framework is a useful tool for supporting development, testing and application specific tuning of au-
tomated theorem provers. The success of SETHEO at the CADE-13 system competition [19] shows the
promise of a tool that allows more efficient tuning and testing of a prover against an extensive library of
proof tasks such as the TPTP[18] library.

The framework is available under GNU GPL on the World Wide Web|8].

8. References

[1] Denzinger J., Pitz W.: Das DISCOUNT-System: Benutzerhandbuch. University of Kaiserslautern, SEKI
Working Paper SWP-92-16.

[2] Avenhaus J., Denzinger J., Fuchs M.: Discount: A System for Distributed Equational Deduction. Pro-
ceedings 6. RTA, pp. 397-402, Springer, 1995.

[3] Beth E. W.: The Foundations Of Mathematics. North-Holland, 1969.

[4] Bibel W., Briining S., Egly U., Rath T.: KoMeT. Proceedings of CADE-12, Springer, 1994.
[] COHTML: nttp://gladiole.isbe.ch:8080

[6]

Dahn B. I., Gehne J., Honigmann Th., Wolf A.: Integration of Automated and Interactive Theorem
Proving in ILF. Proceedings of CADE-14, Springer, 1997 (to appear).

[7] Denzinger J., Kronburg M., Schulz S.: Discount - A Distributed and Learning Equational Prover. Journal
of Automated Reasoning, 1997 (to appear).

[8] DBFW: http://wuwjessen. informatik.tu-muenchen.de/"setheo/database_framework/
[9] Fitting M. C.: First order logic and automated theorem proving. Springer, 1990.

[10] Ibens O., Schumann J.: SETHEO User Manual. Technical Report, Technische Universitdt Miinchen,
Institut fiir Informatik, 1997 (in preparation).

[11] Letz R., Mayr K., Goller Ch.: Controlled Integration of the Cut Rule into Connection Tableau Calculi.
Journal of Automated Reasoning, 4 (1994).

[12] Letz R., Schumann J., Bayerl S., Bibel W.: SETHEO: A High-Performance Theorem Prover. Journal
of Automated Reasoning, 8 (1992).

] Loveland D. W.: Automated Theorem Proving: a Logical Basis. North-Holland, 1978.
] McCune W.: Otter 2.0. Proceedings of the 10th CADE, pp. 663-664, Springer, Berlin, 1990.
] PHP: nttp://www.vex.net/php
6] Smullyan R. M.: First-Order Logic. Springer, 1968.
] Stickel M. E.: A Prolog Technology Theorem Prover. New generation computing 2 (1984).
]

Suttner C. B., Sutcliffe G., Yemenis T.: The TPTP Problem Library. Proceedings of CADE-12, Springer,
1994.

[19] Sutcliffe G., Suttner C. B.: Special Issue: The CADE-13 ATP System Competition. Journal of Auto-
mated Reasoning (18), 1997.

[20] Weidenbach C., Gaede B., Rock G.: SPASS & FLOTTER. Proceedings of CADE-13, Springer, 1996.

[21] Wolf, A.; Kmoch, A.: Einsatz eines automatischen Theorembeweisers in einer taktikgesteuerten Be-
weisumgebung fir die Hardware-Verifikation — Fallstudie (in German). Technical Report, Technische
Universitdt Miinchen, Institut fur Informatik, 1997 (in preparation).

[22] Wolfram S.: Mathematica: A System for Doing Mathematics by Computers. Addison-Wesley, 1988.

