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Abstract

Sparse grid methods applied to solve partial differential equations allow for a
substantial reduction of numerical effort (to obtain equal error magnitudes)
compared to conventional finite element methods. A short introduction to
this new approach is given. Using a Ritz-Galerkin method on rectangular
sparse grids, stationary Schrodinger equations of dimensionality D > 2 are
solved numerically for a number of generic problems and the results are com-
pared to exact values, perturbative results, and numerical computations of
other authors. For problems with oscillator potentials (harmonic or anhar-
monic), the accuracy of eigenvalues for similar numbers of grid points and
equal order of basis functions is increased by up to two orders of magnitude
with respect to conventional FEM. Good solutions are obtained for singu-
lar potentials (hydrogen atom and hydrogen molecular ion), where the sparse
grid was automatically refined using a local adaptation strategy. Schrodinger
problems of high dimensionality (up to D = 8) become tractable with this al-
gorithm, regardless of symmetries or separabilities of the potential functions,
i.e. similar accuracies are to be expected for arbitrary potentials. As an ex-
ample of a physically significant and intrinsically high-dimensional problem,
eigenstates of a spin boson coupling model were computed.



1 Overview

The aim of this work is to demonstrate the applicability and power of the
sparse grid finite element method [2] for the solution of the stationary Schro-
dinger equation of nonrelativistic quantum mechanics. Section 2 will give
a brief outline of the sparse grid method and its advantages over conven-
tional finite element methods (FEM) currently in use. Some modifications of
regular sparse grid algorithms will be described as they further improve the
performance for Schrodinger problems. For more details on the sparse grid
method, we refer the reader to earlier work [6, 7, §].

The algorithms used to solve this equation and their implementation into a
computer program are subject of section 3. Chapter 4 will display results
of the numerical solution of various Schrodinger problems in comparison to
the values obtained by conventional FEM, by other accurate numerics or,
if possible, by analytical or perturbative methods. We study harmonic and
anharmonic oscillator potentials, singular (Coulombic) problems (namely,
the hydrogen atom and hydrogen molecular ion), and, as an example for an
intrinsically high-dimensional application, a spin-boson coupling system of
Schrodinger equations. The last section summarizes the results and discusses
further possible improvements.



2 The Sparse Grid Finite Element Method

Numerical methods for the solution of partial differential equations are ubiq-
uitous in physics as well as in other sciences. Recently, finite element methods
(FEM) have proved to be flexible, dependable tools for various problems in
such fields as technical mechanics, hydrodynamics, or atomic and molecular
physics. In many cases they are superior to other algorithms with respect to
numerical efficiency.

A new variant of FEM, the sparse grid finite element method, was developed
in 1990 [2]. It allows for massive reduction of the amount of storage needed
to solve a problem with given accuracy. After having proved useful for com-
putations of solutions of Laplace’s and Poisson’s equations and of eigenstates
of Helmholtz's equation (cf. [7], [8]), the sparse grid FEM is applied to the
stationary Schrodinger equation in this work.

2.1 Outline of the Method

The sparse grid FEM uses a non-nodal set of hierarchical basis functions
to approximate the solution to a given problem. The finite elements have
very different support sizes and are arranged in a hierarchical scheme which
induces a tree data structure (cf. [8] and section 2.3.1 below). It was rigor-
ously shown in [7] that for approximations of sufficiently smooth functions
the hierarchical functions with small support volumes become increasingly
unimportant. Precisely these elements, however, constitute the largest num-
ber of basis functions, i.e. the largest subset of the approximation space.

The sparse grid method reduces the dimension of the approximation space
by eliminating all elements with supports smaller than a given value. Thus,
the number of basis points is vastly decreased, especially if the problem is
of high dimensionality. The remaining points form a reqular sparse grid, as
opposed to the conventional full grid (cf. Fig. 1).

2.2 Advantages of Sparse Grids

One might worry that this truncation of the approximation space will result
in a corresponding loss in accuracy of the approximation. However, under
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Figure 1: Full grid (left) and corresponding sparse grid (right).

weak conditions on the solution of the problem it can be shown that this is not
the case. Namely, if a D-dimensional integration domain is discretized with
mesh width &, the conventional (full) grid of a FEM contains O(h™") points,
whereas the sparse grid has only O(h~t(log(h™1))
linear basis functions are chosen (like in this work), the full grid approximates
the solution with O(h~%) accuracy, while with sparse grids accuracy only
decreases by a logarithmic factor to O(h™*(log(h™))P~1). These results are

summarized in table 1.

Dfl)

full grid

sparse grid

# of nodes O(h~P)

O(h~!(log(h™1))P7")

accuracy of
O(h™?)

approximation

O(h*(log(h™1))"~")

Table 1: Complexities and approximation accuracies of full and sparse grids.

Consequently, for D > 2 sparse grids show much better performance than
full grids with the same amount of nodes. The advantages become more and

more pronounced as the dimension of the problem increases.

nodes. If piecewise




2.3 Modifications to regular Sparse Grid Algorithms

The regular sparse grids described so far can be made even more efficient by
locally modifying their structure. We present two possibilities to reduce the
numerical effort needed to approximate functions of non-uniform smoothness.

2.3.1 Adaptive Sparse Grids

Sparse grids can be shaped according to the needs of the specific problem.
A tree-like data structure (Fig. 2a) enables adaptive sparse grids to develop
a locally refined mesh where the solution requires it (cf. [5], [6]). We denote
the weights of the finite elements in the approximation of the function u(x)
by lNL[, i.e.

w(w) = > ao(x), (1)

where ©;(x) are the hierarchical basis functions. We now have a simple
adaptation criterion which we can apply without external control over the
adaptation process: if

i > &5 (2)

holds, the mesh is refined at the grid point with index I. As || is generically
small for small supports (i.e. functions towards the “leaves” of the tree), this
process comes to an end when the refinement has developed sufficiently. A
detail of an adaptive sparse grid around a singularity (Fig. 2b) illustrates the
further reduction in the number of points compared to a regular sparse grid.

2.3.2 Shield Grids

As is obvious from Fig. 3, a hierarchical basis function, especially one with
a large support, interacts with a large number of other finite elements (i.e.
the intersection of the supports is not empty). This "non-local” character
of sparse grids may lead to a spreading of local approximation errors over
the domain. One would like to avoid this effect, e.g. if the potential has a
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Figure 2: a) Tree scheme for one-dimensional hierarchical grids. b) Adaptive
sparse grid.
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Figure 3: Non-locality in a hierarchical grid: the element with the dashed
support (x) has non-vanishing overlaps with all the o elements.

singularity at some point, from which a large error could affect the whole
solution. A sparse grid structure called a shield grid, located around the
singularity, can keep the large errors localized, because all influences are
compensated within a short distance. Fig. 4 shows an example of a shield
grid. Its complexity is still that of a sparse grid.
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Figure 4: Two-dimensional shield grid.

3 Algorithms and Implementation

A Ritz-Galerkin method on rectangular sparse grids is used for solving sta-
tionary Schrodinger problems of dimensionality D > 2 in cartesian coordi-
nates. We consider the (rescaled) Schrodinger equation

— Au(@) + V() u(@) = Bu(@) , 7€ Q=1[0,1]° (3)

with potential function V(#) and energy eigenvalue E using natural boundary
conditions

w(@) =0 on 90N . (4)

Eq. (4) is an excellent approximation to reality for any problem with localized
probability densities and appropriate scaling of the integration domain. We
will adopt this condition for all problems discussed, taking care that the
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approximation error resulting from (4) does not exceed the numerical errors
of the FEM method.

Discretization leads to a generalized algebraic eigenvalue problem of the form

(L+P)-i=E-Mi, (5)

where the matrix elements are given by

L, = /(%I,%Jm%,
Q

.
<
I

/V(f) QNJ['INJJdD.T,
Q
M, = /@I-@Jd%.

Q

Uy are piecewise D-linear hierarchical basis functions. 4 is the approximation
vector for the solution of (3).

(5) is solved by an inverse iteration (Wielandt) method (cf. [13]) that yields
an improved approximation vector 4™ for the eigenvector in every iteration
step (n), n € Ny, by solving the linear system

(L+P—E-M)-al"™ = o™ Ma™ (6)

o™ is a normalization value. @™ converges to the eigenvector whose cor-
responding eigenvalue is nearest to a given seed value £. The eigenvalue
itself follows from an eigenvector approximation by a generalized Rayleigh
quotient:

a™T (L + P)a™ -
AT M (7)

For the solution of each linear system, a preconditioned conjugate gradient
method is applied, using a multigrid-like approach for sparse grids [5], where
the iteration uses additional residuals that can easily be computed by lin-
ear combination of residuals corresponding to the usual hierarchical basis
functions.

EM —

Because of the different support sizes of hierarchical finite elements, the ma-
trices P, M given in (5) are in general not sparse. A part of the improved
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complexity resulting from the reduction of the approximation space would
be lost if all elements of these matrices had to be stored. However, with
the help of algorithms decribed in [7] or [10] this can be avoided. Thus, the
advantages of the sparse grid method can be fully exploited.

To obtain results for Schrodinger problems, the algorithms described were
implemented into a C++ program called SGSS (Sparse Grid Schridinger
Solver). The computations were carried out on Hewlett-Packard workstations
with < 128 MB main storage capacity.
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4 Numerical Results

This chapter will give eigenvalues and eigenfunctions for stationary one-
particle Schrodinger problems as well as a system of Schrodinger equations.
For most of the examples, solutions are known analytically, from perturbative
computations or accurate numerics and can thus be used for evaluation of nu-
merical errors. Every problem was computed regardless of possible reduction
of its dimension by coordinate transformation or separation to demonstrate
the advantages of sparse grids in high-dimensional applications. For a more
detailed discussion of these results see [6].

4.1 Oscillator Potentials

Let us first consider anisotropic harmonic oscillator potentials, resulting in a
Schrodinger equation of the form

— Au(E) + k23 [Bw — 05 u(@) = E-u(@) , Tel0,1]”.  (8)

=1

We chose the anisotropies 3; according to recent conventional FEM work
([14], [15]) to be able to compare them with our method. For the two-
dimensional case, the sparse grid results are about two orders of magnitude
more accurate (with respect to eigenvalues) than the values of these authors
with the same number of points and basis functions of the same order (cf.
Fig. 5). The exact solutions are, of course, known from analytical computa-
tions.

As an example for a excited state eigenfunction, we present a state with
quantum nubers ny = 0,7, = 2 in Fig. 6. It is noteworthy that the accuracy
of the corresponding eigenvalue does not fall behind that of the ground state
value.

[sotropic and anisotropic harmonic oscillators are solved with good accuracy
in up to 5 dimensions. With errors of about 1072 in the eigenvalue, compu-
tations up to D = 8 are possible.
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log(nodes)
Figure 5: Comparison of relative errors in the ground state energy of a two-

dimensional anisotropic harmonic oscillator, plotted vs. the number of nodes
(decadic logarithm on both axes). + signs: [15] (adaptive full grids); v
signs: this work (regular sparse grids). Both computations use first order
finite elements. Also shown are the respective extrapolated values.

Results for anharmonically perturbed two-dimensional oscillators, i.e. for a
potential

D
V(@) =r*(r* +1"), ? =Y (r,—05)% Fel0,1]", (9)
=1
are of the same quality as for the harmonic problems (this can be demon-
strated by using high-order perturbation theory, cf. [6]), thus showing that
properties like separability or symmetries do not play a significant role for
the accuracy of the sparse grid FEM.

The use of adaptive sparse grids instead of regular sparse grids does not seem
to yield overwhelming progress for these kinds of problems. Nevertheless, in
3 dimensions, adaptive grid computations tend to be more accurate than
those on regular grids (see [6]).
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Figure 6: (n; = 0,ny = 2) state of the anisotropic harmonic oscillator; regular
sparse grid (20481 nodes), relative error of the eigenvalue: 6F = —1.28-107°.

4.2 Singular Problems

Reasonable accuracy was also achieved for problems with singular potential
in three dimensions, viz the hydrogen atom and the hydrogen molecular ion.
In these cases, the use of adaptive and/or shield grids is of eminent impor-
tance (cf. sections 2.3.1 and 2.3.2). Again, none of the calculations exploits
inherent symmetries of the problems; similar accuracy is to be expected for
arbitrary potentials.

As an example, we show in Fig. 7 a 3s eigenfunction of the (non-relativistic)
hydrogen atom. The calculation was carried out on a 3D adaptive sparse
grid. The potential that has to be inserted in the Schrédinger equation (3) is
the Coulomb potential, whose strength is characterized by a positive constant
k (proportional to the charge of the atomic core):

V(%) = —Ks r? = z(xl— —0.5)%, (10)
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Figure 7: 3s state of the hydrogen atom; adaptive sparse grid (105619 nodes),
cg=1-10"2% 6E =5.68-10 3.

We also calculated ground states and excited states of a hydrogen molecular
ion (Hy") in Born-Oppenheimer approximation. The potential consists of two
Coulomb singularities within a distance |d | of 2 a.u.! of each other:

V(a:m(— ! ) 2 =3 (w057 Fel0.1”. (11)

7—d| |7+

Latomic units are common in atomic and molecular physics; the unit of length is Bohr’s
radius ag ~ 0.0529 nm
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Figure 8: Perspective view of the nodes of an adaptive sparse grid for the
problem of the H; ion (22239 points).
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Figure 9: Excited (10,) state of the H) ion; adaptive sparse grid (54433
nodes), kK = 25, 0F = 8.15-10~%.
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Fig. 8 shows a typical adaptive sparse grid generated by the program SGSS
for this problem. As expected, nodes are highly concentrated around the two
singularities.

We give an excited (1o,) state in Fig. 9. Note that this section of the function
does not include the singularities, which is why no ”spikes” are visible. The
accuracies obtained in the case of singular potentials are not as high as for
oscillator-like potentials. There is, however, no example for a 3D calculation
using piecewise multilinear elements for singular potentials with an accuracy
as high as a few 107%. Also, there is no obstacle in principle to implement
higher order finite elements into the sparse grid algorithm (this has already
been done for bicubic functions in [11]).

4.3 Spin Boson Coupling

New calculations show that the sparse grid FEM is also able to solve systems
of Schrodinger equations very efficiently. A simple spin boson coupling model
(cf. [16]) with the Hamiltonian

H (Z) _ ( Hosc(KE;),E“)) HOSC(KE%,E“) ) (g) (12)

describes the coupling of a two state system (e.g. electron spin) to D con-
tinuous degrees of freedom (harmonic oscillators), i.e. 1 and ¢ are functions
of = (xy,...,xp). This constitutes a simple model for various systems and
phenomena, e.g. electronically excited molecules, vibronic coupling, Jahn-
Teller effect etc. The centers of the oscillators are displaced from the origin
along the x;-axis by the values £ and along the energy axis by E*. Thus,
H,. (K, E*) =Y, {pf + (z; — nf)z} + E*.

This problem is not solvable by analytical techniques; conventional numeri-
cal calculations rarely go beyond D = 5. SGSS could compute ground state
eigenvalues for D up to 8. These calculations were carried out on worksta-
tions and without grid adaptation, which would have yielded further gain in
effectiveness. Fig. 10 shows the components ¥ and ¢ of the eigenvector for
the aforementioned ground state in 8 dimensions. In Fig. 11 we present a
higher eigenstate of the 2-dimensional problem, with a considerable shift F*
on the energy axis.
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Figure 10: Ground state functions of the 8-dim. spin boson coupling problem
with arbitrarily chosen k* = —x~ = (0.1, 0.05,0.033,0.066, 0.01, 0, 0.05, 0),
E* = 0. Regular sparse grid (31745 nodes).

Figure 11: An excited state of the 2-dim. spin boson coupling problem.
Et — E~ ~ 0.1FE, kt = —k~ = (0.1,0.05). Regular sparse grid (20481
nodes)
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5 Summary, Conclusions

Sparse grid methods are able to solve stationary Schrodinger equations with
smooth potential functions with far greater accuracy than conventional FEM.
The use of adaptive sparse grids allows for automatical refinement of the grid
where smaller mesh widths are needed, e.g. around a singularity of the so-
lution. Recent computations on systems of Schrodinger equations show that
this method is probably the first that allows for highly accurate computations
of almost arbitrary problems in more than 6 dimensions. Applications in var-
ious fields of physics (e.g. molecular quantum physics, solid state physics or
hydrodynamics [12]) are numerous.

Future work should concentrate on the implementation of higher order basis
functions and new differential terms into the equation. As time-dependent
problems are have already been treated with sparse grids [8], it is also
straightforward to modify the algorithm in order to solve the time-dependent
Schrodinger equation. Modeling scattering events or the dynamics of molec-
ular reactions appear to be promising fields of application for this method.
The latter kind of problem requires including multi-particle terms into the
equation or, if applied to a large number of degrees of freedom, implemen-
tation of approximations like Hartree-Fock. Although these modifications
might demand more programming skill than in conventional programs, they
should not pose an unsolvable problem.

Since accuracy is expected to rise dramatically once higher order sparse grid
elements are applied, we are confident to state that for Schrodinger problems,
implementation of sparse grid methods with finite element functions of higher
order will likely lead to extremely powerful tools.
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