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AbstractSparse grid methods applied to solve partial di�erential equations allow for asubstantial reduction of numerical e�ort (to obtain equal error magnitudes)compared to conventional �nite element methods. A short introduction tothis new approach is given. Using a Ritz-Galerkin method on rectangularsparse grids, stationary Schr�odinger equations of dimensionality D � 2 aresolved numerically for a number of generic problems and the results are com-pared to exact values, perturbative results, and numerical computations ofother authors. For problems with oscillator potentials (harmonic or anhar-monic), the accuracy of eigenvalues for similar numbers of grid points andequal order of basis functions is increased by up to two orders of magnitudewith respect to conventional FEM. Good solutions are obtained for singu-lar potentials (hydrogen atom and hydrogen molecular ion), where the sparsegrid was automatically re�ned using a local adaptation strategy. Schr�odingerproblems of high dimensionality (up to D = 8) become tractable with this al-gorithm, regardless of symmetries or separabilities of the potential functions,i.e. similar accuracies are to be expected for arbitrary potentials. As an ex-ample of a physically signi�cant and intrinsically high-dimensional problem,eigenstates of a spin boson coupling model were computed.
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1 OverviewThe aim of this work is to demonstrate the applicability and power of thesparse grid �nite element method [2] for the solution of the stationary Schr�o-dinger equation of nonrelativistic quantum mechanics. Section 2 will givea brief outline of the sparse grid method and its advantages over conven-tional �nite element methods (FEM) currently in use. Some modi�cations ofregular sparse grid algorithms will be described as they further improve theperformance for Schr�odinger problems. For more details on the sparse gridmethod, we refer the reader to earlier work [6, 7, 8].The algorithms used to solve this equation and their implementation into acomputer program are subject of section 3. Chapter 4 will display resultsof the numerical solution of various Schr�odinger problems in comparison tothe values obtained by conventional FEM, by other accurate numerics or,if possible, by analytical or perturbative methods. We study harmonic andanharmonic oscillator potentials, singular (Coulombic) problems (namely,the hydrogen atom and hydrogen molecular ion), and, as an example for anintrinsically high-dimensional application, a spin-boson coupling system ofSchr�odinger equations. The last section summarizes the results and discussesfurther possible improvements.
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2 The Sparse Grid Finite Element MethodNumerical methods for the solution of partial di�erential equations are ubiq-uitous in physics as well as in other sciences. Recently, �nite element methods(FEM) have proved to be 
exible, dependable tools for various problems insuch �elds as technical mechanics, hydrodynamics, or atomic and molecularphysics. In many cases they are superior to other algorithms with respect tonumerical e�ciency.A new variant of FEM, the sparse grid �nite element method, was developedin 1990 [2]. It allows for massive reduction of the amount of storage neededto solve a problem with given accuracy. After having proved useful for com-putations of solutions of Laplace's and Poisson's equations and of eigenstatesof Helmholtz's equation (cf. [7], [8]), the sparse grid FEM is applied to thestationary Schr�odinger equation in this work.2.1 Outline of the MethodThe sparse grid FEM uses a non-nodal set of hierarchical basis functionsto approximate the solution to a given problem. The �nite elements havevery di�erent support sizes and are arranged in a hierarchical scheme whichinduces a tree data structure (cf. [8] and section 2.3.1 below). It was rigor-ously shown in [7] that for approximations of su�ciently smooth functionsthe hierarchical functions with small support volumes become increasinglyunimportant. Precisely these elements, however, constitute the largest num-ber of basis functions, i.e. the largest subset of the approximation space.The sparse grid method reduces the dimension of the approximation spaceby eliminating all elements with supports smaller than a given value. Thus,the number of basis points is vastly decreased, especially if the problem isof high dimensionality. The remaining points form a regular sparse grid, asopposed to the conventional full grid (cf. Fig. 1).2.2 Advantages of Sparse GridsOne might worry that this truncation of the approximation space will resultin a corresponding loss in accuracy of the approximation. However, under4
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Figure 1: Full grid (left) and corresponding sparse grid (right).weak conditions on the solution of the problem it can be shown that this is notthe case. Namely, if a D-dimensional integration domain is discretized withmesh width h, the conventional (full) grid of a FEM contains O(h�D) points,whereas the sparse grid has only O(h�1(log(h�1))D�1) nodes. If piecewiselinear basis functions are chosen (like in this work), the full grid approximatesthe solution with O(h�2) accuracy, while with sparse grids accuracy onlydecreases by a logarithmic factor to O(h�2(log(h�1))D�1) : These results aresummarized in table 1. full grid sparse grid# of nodes O(h�D) O(h�1(log(h�1))D�1)accuracy of O(h�2) O(h�2(log(h�1))D�1)approximationTable 1: Complexities and approximation accuracies of full and sparse grids.Consequently, for D � 2 sparse grids show much better performance thanfull grids with the same amount of nodes. The advantages become more andmore pronounced as the dimension of the problem increases.
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2.3 Modi�cations to regular Sparse Grid AlgorithmsThe regular sparse grids described so far can be made even more e�cient bylocally modifying their structure. We present two possibilities to reduce thenumerical e�ort needed to approximate functions of non-uniform smoothness.2.3.1 Adaptive Sparse GridsSparse grids can be shaped according to the needs of the speci�c problem.A tree-like data structure (Fig. 2a) enables adaptive sparse grids to developa locally re�ned mesh where the solution requires it (cf. [5], [6]). We denotethe weights of the �nite elements in the approximation of the function u(x)by ~uI , i.e. u(x) 'XI ~uI~vI(x) ; (1)where ~vI(x) are the hierarchical basis functions. We now have a simpleadaptation criterion which we can apply without external control over theadaptation process: if j~uIj !> "S (2)holds, the mesh is re�ned at the grid point with index I. As j~uIj is genericallysmall for small supports (i.e. functions towards the \leaves" of the tree), thisprocess comes to an end when the re�nement has developed su�ciently. Adetail of an adaptive sparse grid around a singularity (Fig. 2b) illustrates thefurther reduction in the number of points compared to a regular sparse grid.2.3.2 Shield GridsAs is obvious from Fig. 3, a hierarchical basis function, especially one witha large support, interacts with a large number of other �nite elements (i.e.the intersection of the supports is not empty). This "non-local" characterof sparse grids may lead to a spreading of local approximation errors overthe domain. One would like to avoid this e�ect, e.g. if the potential has a6
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Figure 2: a) Tree scheme for one-dimensional hierarchical grids. b) Adaptivesparse grid.
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Figure 3: Non-locality in a hierarchical grid: the element with the dashedsupport (�) has non-vanishing overlaps with all the � elements.singularity at some point, from which a large error could a�ect the wholesolution. A sparse grid structure called a shield grid, located around thesingularity, can keep the large errors localized, because all in
uences arecompensated within a short distance. Fig. 4 shows an example of a shieldgrid. Its complexity is still that of a sparse grid.7



Figure 4: Two-dimensional shield grid.3 Algorithms and ImplementationA Ritz-Galerkin method on rectangular sparse grids is used for solving sta-tionary Schr�odinger problems of dimensionality D � 2 in cartesian coordi-nates. We consider the (rescaled) Schr�odinger equation��u(~x) + V (~x) u(~x) = Eu(~x) ; ~x 2 
 � [0; 1]D (3)with potential function V (~x) and energy eigenvalue E using natural boundaryconditions u(~x) = 0 on @
 : (4)Eq. (4) is an excellent approximation to reality for any problem with localizedprobability densities and appropriate scaling of the integration domain. Wewill adopt this condition for all problems discussed, taking care that the8



approximation error resulting from (4) does not exceed the numerical errorsof the FEM method.Discretization leads to a generalized algebraic eigenvalue problem of the form(L+ P ) � ~u = E �M ~u ; (5)where the matrix elements are given byLIJ � Z
h~r~vI ; ~r~vJi dDx ;PIJ � Z
 V (~x) ~vI � ~vJ dDx ;MIJ � Z
 ~vI � ~vJ dDx :~vI are piecewise D-linear hierarchical basis functions. ~u is the approximationvector for the solution of (3).(5) is solved by an inverse iteration (Wielandt) method (cf. [13]) that yieldsan improved approximation vector ~u(n) for the eigenvector in every iterationstep (n), n 2 IN0, by solving the linear system�L+ P � �E �M� � ~u(n+1) = �(n) �M ~u(n) : (6)�(n) is a normalization value. ~u(n) converges to the eigenvector whose cor-responding eigenvalue is nearest to a given seed value �E. The eigenvalueitself follows from an eigenvector approximation by a generalized Rayleighquotient: E(n) = ~u(n)T (L+ P ) ~u(n)~u(n)T M ~u(n) : (7)For the solution of each linear system, a preconditioned conjugate gradientmethod is applied, using a multigrid-like approach for sparse grids [5], wherethe iteration uses additional residuals that can easily be computed by lin-ear combination of residuals corresponding to the usual hierarchical basisfunctions.Because of the di�erent support sizes of hierarchical �nite elements, the ma-trices P;M given in (5) are in general not sparse. A part of the improved9



complexity resulting from the reduction of the approximation space wouldbe lost if all elements of these matrices had to be stored. However, withthe help of algorithms decribed in [7] or [10] this can be avoided. Thus, theadvantages of the sparse grid method can be fully exploited.To obtain results for Schr�odinger problems, the algorithms described wereimplemented into a C++ program called SGSS (Sparse Grid Schr�odingerSolver). The computations were carried out on Hewlett-Packard workstationswith � 128 MB main storage capacity.
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4 Numerical ResultsThis chapter will give eigenvalues and eigenfunctions for stationary one-particle Schr�odinger problems as well as a system of Schr�odinger equations.For most of the examples, solutions are known analytically, from perturbativecomputations or accurate numerics and can thus be used for evaluation of nu-merical errors. Every problem was computed regardless of possible reductionof its dimension by coordinate transformation or separation to demonstratethe advantages of sparse grids in high-dimensional applications. For a moredetailed discussion of these results see [6].4.1 Oscillator PotentialsLet us �rst consider anisotropic harmonic oscillator potentials, resulting in aSchr�odinger equation of the form��u(~x) + �2 DXi=1 h�2i (xi � 0:5)2i u(~x) = E � u(~x) ; ~x 2 [0; 1]D : (8)We chose the anisotropies �i according to recent conventional FEM work([14], [15]) to be able to compare them with our method. For the two-dimensional case, the sparse grid results are about two orders of magnitudemore accurate (with respect to eigenvalues) than the values of these authorswith the same number of points and basis functions of the same order (cf.Fig. 5). The exact solutions are, of course, known from analytical computa-tions.As an example for a excited state eigenfunction, we present a state withquantum nubers n1 = 0; n2 = 2 in Fig. 6. It is noteworthy that the accuracyof the corresponding eigenvalue does not fall behind that of the ground statevalue.Isotropic and anisotropic harmonic oscillators are solved with good accuracyin up to 5 dimensions. With errors of about 10�2 in the eigenvalue, compu-tations up to D = 8 are possible. 11



Figure 5: Comparison of relative errors in the ground state energy of a two-dimensional anisotropic harmonic oscillator, plotted vs. the number of nodes(decadic logarithm on both axes). + signs: [15] (adaptive full grids); 5signs: this work (regular sparse grids). Both computations use �rst order�nite elements. Also shown are the respective extrapolated values.Results for anharmonically perturbed two-dimensional oscillators, i.e. for apotential V (~x) = �2(r2 + r4); r2 � DXi=1(xi � 0:5)2; ~x 2 [0; 1]D ; (9)are of the same quality as for the harmonic problems (this can be demon-strated by using high-order perturbation theory, cf. [6]), thus showing thatproperties like separability or symmetries do not play a signi�cant role forthe accuracy of the sparse grid FEM.The use of adaptive sparse grids instead of regular sparse grids does not seemto yield overwhelming progress for these kinds of problems. Nevertheless, in3 dimensions, adaptive grid computations tend to be more accurate thanthose on regular grids (see [6]). 12



Figure 6: (n1 = 0; n2 = 2) state of the anisotropic harmonic oscillator; regularsparse grid (20481 nodes), relative error of the eigenvalue: �E = �1:28 �10�6.4.2 Singular ProblemsReasonable accuracy was also achieved for problems with singular potentialin three dimensions, viz the hydrogen atom and the hydrogen molecular ion.In these cases, the use of adaptive and/or shield grids is of eminent impor-tance (cf. sections 2.3.1 and 2.3.2). Again, none of the calculations exploitsinherent symmetries of the problems; similar accuracy is to be expected forarbitrary potentials.As an example, we show in Fig. 7 a 3s eigenfunction of the (non-relativistic)hydrogen atom. The calculation was carried out on a 3D adaptive sparsegrid. The potential that has to be inserted in the Schr�odinger equation (3) isthe Coulomb potential, whose strength is characterized by a positive constant� (proportional to the charge of the atomic core):V (~x) = ��1r ; r2 � 3Xi=1(xi � 0:5)2 ; (10)13



Figure 7: 3s state of the hydrogen atom; adaptive sparse grid (105619 nodes),"S = 1 � 10�2, �E = 5:68 � 10�3.We also calculated ground states and excited states of a hydrogen molecularion (H+2 ) in Born-Oppenheimer approximation. The potential consists of twoCoulomb singularities within a distance j ~d j of 2 a.u.1 of each other:V (~x) = � � 1j~r � ~dj � 1j~r + ~dj! ; r2 � DXi=1(xi � 0:5)2; ~x 2 [0; 1]D : (11)1atomic units are common in atomic and molecular physics; the unit of length is Bohr'sradius aB ' 0:0529 nm 14



Figure 8: Perspective view of the nodes of an adaptive sparse grid for theproblem of the H+2 ion (22239 points).

Figure 9: Excited (1�u) state of the H+2 ion; adaptive sparse grid (54433nodes), � = 25, �E = 8:15 � 10�4: 15



Fig. 8 shows a typical adaptive sparse grid generated by the program SGSSfor this problem. As expected, nodes are highly concentrated around the twosingularities.We give an excited (1�u) state in Fig. 9. Note that this section of the functiondoes not include the singularities, which is why no "spikes" are visible. Theaccuracies obtained in the case of singular potentials are not as high as foroscillator-like potentials. There is, however, no example for a 3D calculationusing piecewise multilinear elements for singular potentials with an accuracyas high as a few 10�4. Also, there is no obstacle in principle to implementhigher order �nite elements into the sparse grid algorithm (this has alreadybeen done for bicubic functions in [11]).4.3 Spin Boson CouplingNew calculations show that the sparse grid FEM is also able to solve systemsof Schr�odinger equations very e�ciently. A simple spin boson coupling model(cf. [16]) with the HamiltonianH   �! =  Hosc(�(+)i ; E(+)) gg Hosc(�(�)i ; E(�)) !  �! (12)describes the coupling of a two state system (e.g. electron spin) to D con-tinuous degrees of freedom (harmonic oscillators), i.e.  and � are functionsof ~x � (x1; : : : ; xD). This constitutes a simple model for various systems andphenomena, e.g. electronically excited molecules, vibronic coupling, Jahn-Teller e�ect etc. The centers of the oscillators are displaced from the originalong the xi-axis by the values ��i and along the energy axis by E�. Thus,Hosc(��i ; E�) � Pi np2i + (xi � ��i )2o + E�.This problem is not solvable by analytical techniques; conventional numeri-cal calculations rarely go beyond D = 5. SGSS could compute ground stateeigenvalues for D up to 8. These calculations were carried out on worksta-tions and without grid adaptation, which would have yielded further gain ine�ectiveness. Fig. 10 shows the components  and � of the eigenvector forthe aforementioned ground state in 8 dimensions. In Fig. 11 we present ahigher eigenstate of the 2-dimensional problem, with a considerable shift E�on the energy axis. 16
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Figure 10: Ground state functions of the 8-dim. spin boson coupling problemwith arbitrarily chosen �+ = ��� = (0:1; 0:05; 0:033; 0:066; 0:01; 0; 0:05; 0),E� = 0. Regular sparse grid (31745 nodes).
 �

Figure 11: An excited state of the 2-dim. spin boson coupling problem.E+ � E� ' 0:1E, �+ = ��� = (0:1; 0:05). Regular sparse grid (20481nodes) 17



5 Summary, ConclusionsSparse grid methods are able to solve stationary Schr�odinger equations withsmooth potential functions with far greater accuracy than conventional FEM.The use of adaptive sparse grids allows for automatical re�nement of the gridwhere smaller mesh widths are needed, e.g. around a singularity of the so-lution. Recent computations on systems of Schr�odinger equations show thatthis method is probably the �rst that allows for highly accurate computationsof almost arbitrary problems in more than 6 dimensions. Applications in var-ious �elds of physics (e.g. molecular quantum physics, solid state physics orhydrodynamics [12]) are numerous.Future work should concentrate on the implementation of higher order basisfunctions and new di�erential terms into the equation. As time-dependentproblems are have already been treated with sparse grids [8], it is alsostraightforward to modify the algorithm in order to solve the time-dependentSchr�odinger equation. Modeling scattering events or the dynamics of molec-ular reactions appear to be promising �elds of application for this method.The latter kind of problem requires including multi-particle terms into theequation or, if applied to a large number of degrees of freedom, implemen-tation of approximations like Hartree-Fock. Although these modi�cationsmight demand more programming skill than in conventional programs, theyshould not pose an unsolvable problem.Since accuracy is expected to rise dramatically once higher order sparse gridelements are applied, we are con�dent to state that for Schr�odinger problems,implementation of sparse grid methods with �nite element functions of higherorder will likely lead to extremely powerful tools.
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