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1 Introduction

In this paper we present an approach for translating semiformal specification in formal ones. This
approach was applied on the case study during the project DENTUM between Denso Deutschland
GmbH and the chair for Software & Systems Engineering at Technische Universität München (see
[2]). The goal of this project was to define a methodology for the model-based development of
automotive systems. This methodology was evaluated by developing an Adaptive Cruise Control
(ACC) system with Pre-Crash Safety (PCS) functionality.

This document explains an extension part of the methodology as well as the corresponding part of
the case study in detail to teach the reader the details of the work that has been done.

The starting point of these approach is a semiformal requirement specification the according to the
ideas presented in [3] (see also Section 2).

On base of these requirements we specify the corresponding message sequence charts (MSCs, see [4,
5]) and translate them to a formal specification in Focus [1], a framework for formal specifications
and development of interactive systems. If some missing requirements are found, they are added
to the final version of the requirement specification. If some inconsistencies in the requirements
are found, the corresponding requirements are corrected in the final version of the requirement
specification. In the requirement specification we focus on two parts of it – logical interface and
formulated requirements.

Given a system, represented in Focus, one can verify its properties by translating the specification
to a Higher-Order Logic and subsequently using the theorem prover Isabelle/HOL or the point of
disagreement will be found. The translation can be done according to the approach “Focus on
Isabelle” [7]. Moreover, using this approach one can validate the refinement relation between two
given systems, as well as make automatic correctness proofs of syntactic interfaces for specified sys-
tem components. Having a Focus specification, we can schematically translate it to a specification
in Hight-Order Logic and verify properties of the specified system.

To remove the technical details which belongs to the requirement specification from Denso Deutsch-
land GmbH we have to replace here the real values by constants.

2 Semiformal Specification

Based on an initial set of requirements, the informal specification1 is structured and subsequently
specified with the help of pre-defined text patterns. Furthermore, the logical interface of the system
as well as the main system states are identified. For this purpose we use a simplified versions of an
approach presented in [2, 3], which we extended according to the needs of the overall development
approach.

An informal specification consists of a set of words, which can be distinguished into two categories:

� Content words: these are system-specific words or phrases, e.g. “system is initialized” or
“Off-button is pressed”. The set of all content words forms the logical interface of the system,
which can be understood as some kind of (domain specific, system-dependent) glossary that
must be defined in addition.

� Relation words (keywords): these are domain-independent words (e.g. “if”, “then”, “else”).
These words form relationships between the content words.

1The presented methodology focuses only on functional requirements, including timing aspects.
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A semiformal specification consists of a number of requirements described using the following
textual patterns:2

WHILE 〈Some state〉
IF 〈Some event occurs or some state changes〉
THEN 〈Some event occurs or some state changes〉

An event describes a point in time, in which the system observes or does something; the duration of
the event is not important, e.g., “driver presses a button”. A state describes a system or component
state within some time period, e.g., “a button is pressed”. Strictly speaking, all states of a state
space are disjunct, but in some cases it is more efficient to use a state hierarchy that must be
described separately. For example, if we assume two disjoint states, “system is active” and “system
is inactive”, the first of them might have three more-specific substates: “system is in initialization
state”, “system performs some action A” and “system performs some action B”

The semiformal specification can be given in a simple tabular form with the following columns:

� ID: the unique requirement identifier.

� Description: the semiformal description of the requirement.

� Original Description: sentences from the informal specification, which were reformulated to
the semiformal requirement.

� MSC (optional, only in case the MSC representation is used): name of MSC to which the
semiformal requirement belongs.

� Remarks (optional): some remarks to the requirement.

� Alternative Description (optional): alternative formulation of the semiformal description of
the requirement. This is needed if a team of development engineers cooperates for building
this specification trying find the most appropriate formulation of specification.

Using such a simple tabular description to structure the information from the informal specification,
we can find out quite fast, which information is missing. Furthermore, we identify possible syn-
onyms that must be unified before proceeding to a formal specification. Analysis of the semiformal
specification document should also yield sentences, which need to be reformulated or extended.

3 MSC Specifications

In this section we present the MSC specification which is based on the semiformal specification
developed within the chair for Software & Systems Engineering during the project DENTUM.
Some case study details are omitted here, we present only the final state of the specifications.

We use here a standard MSC notation, but for readability add also a color marking: blue hexagon
denote the modes of ACC an PCS,

Using the MSCs we extend the standard notation by the following syntax:

� Blue hexagons denote states (modes of ACC an PCS) and correspond to local (state) variables
in Focus.

2In some cases either the WHILE-part or the IF-part can be omitted.
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� Green hexagons denote “substates” to represent local variables variables and correspond to
local (state) variables in Focus.

� Light blue rectangles denotes some operations and correspond to state changes in Focus.

All the requirements that are added to the specification on the MSCs level are marked by red
rectangles to show which kind of missed requirements can be find out using this approach.

3.1 Modes

The ACC and the PCS have according to the semiformal requirement specification only two modes
– active and inactive. This must be true also for the MSC and the Focus specifications.

The MSCs ACC : Modes and PCS : Modes are two state diagrams to represented the state transi-
tions in general. They follows to the logical interface description in the requirements document.

ACC_Inactive

ACC_Active

cmd SYSTEM/ACC:Modes

PCS_Inactive

PCS_Active

cmd SYSTEM/PCS:Modes

3.2 System workflow

msc SYSTEM/
ACC_PCS

ACC_System

PCS_System

msc SYSTEM/PCS_System

PCS

ConditionsPCS

msc SYSTEM/ACC_System

ACC

LOOP

ConditionsACC

LOOP LOOP

LOOP

The MSCs ACC PCS , ACC System and PCS System describe the system workflow, where the
MSCs ACC and search Acceleration describe the workflow of the ACC part of the system. These
MSCs do not correspond to some particular requirements, but follow from them implicit – they
corresponds to the logical interface description in the requirements document. There are many
ways to decompose the system workflow, we choose one of them.
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msc SYSTEM/ ACC

Start

Follow_up

Terminates

                                                   driver_presses_on_button

[ACC_Active] 

Search_Acceleration

Constant_Speed

control == follow_up                                  control == constant_speed                                            

msc SYSTEM/ACC.Search_Acceleration

ACC.Search

ACC.Acceleration

3.3 ConditionsACC

The MSC ConditionsACC is based on the requirement ACC startable:

WHILE vehicle speed is higher than CONSTminaccspeed1km/h and lower than CONSTmaxaccspeedkm/h
THEN acc is startable

The natural language expression “vehicle speed” is represented in the MSC specification by a
variable (signal) vspeed of type N. Please note, that the signal vspeed is send every time unit.

From the natural language expression “acc is startable” follows, that we need to argue about an
information, whether the ACC is startable or not. The most natural representation for this in-
formation is a boolean variable – we call it acc startable. Now we can see, that the semiformal
specification does not contain any explicit information, whether the ACC will be startable or not
if the vehicle speed is lower than CONSTminaccspeed1km/h or higher than CONSTmaxaccspeedkm/h,
but the original meaning of the requirement ACC startable is that the ACC is startable only if
the vehicle speed is higher than CONSTminaccspeed1km/h and lower than CONSTmaxaccspeedkm/h.
Thus, we need to add a new requirement to the semiformal specification:
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WHILE vehicle speed is lower than CONSTminaccspeed1km/h and higher than CONSTmaxaccspeedkm/h
THEN acc is non-startable

The logical variable acc startable can be defined as follows:

(vspeed > CONSTminaccspeed1)&&(vspeed < CONSTmaxaccspeed)

Sensors ACC_Comp

vspeed : Nat

msc SYSTEM/ ConditionsACC

acc_startable := 
(vspeed > CONSTminaccspeed1) 

&& (vspeed < CONSTmxaccspeed)

3.4 ConditionsPCS

The MSC ConditionsPCS is based on the requirement PCS Active-Condition:

WHILE vehicle speed is higher than CONSTminaccspeed3km/h
THEN pcs is active

The natural language expression “pcs is active” represents one of the states (modes) of the PCS:
PCS Active. We can see, that the semiformal specification does not contain any explicit informa-
tion, whether the PCS will be active or inactive if the vehicle speed is lower than CONSTminaccspeed3

km/h, but the original meaning of the requirement PCS Active-Condition is that the PCS is active
only if the vehicle speed is higher than CONSTminaccspeed3 km/h. Thus, we need to add a new
requirement to the semiformal specification, and the MSC is extended by this information.

Sensors

msc SYSTEM/ ConditionsPCS
PCS_Comp

vspeed : Nat

PCS_Active

ALT

PCS_Inactive

vspeed > 
CONSTminaccspeed3

vspeed 
CONSTminaccspeed3
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WHILE vehicle speed is lower than CONSTminaccspeed3km/h
THEN pcs is inactive

3.5 ACC.Start

The MSC ACC .Start is based on the requirement ACC stars by driver interaction

WHILE acc is startable
IF driver-presses-on-button
THEN acc starts

Here we do not have the information what happens, if the ACC is non-startable. We need to add
a new requirement to the semiformal specification, and the MSC is extended by this information:

WHILE acc is non-startable
IF driver-presses-on-button
THEN acc does not start

The requirement ACC stars by driver interaction only was added to the final version of the semi-
formal specification by the same reason:

IF driver-doesn’t-press-on-button
THEN acc doesn not start

This requirement is represented by the second ALT-part of the MSC ACC.Start.

ACC_Comp

driver_presses_on_button

Panel

msc SYSTEM/ACC.Start

ACC_Inactive

ALT

ACC_Active

ACC_Inactive

acc_startable == True

acc_startable == False

ALT

driver_does_not_press_on_button

ACC_Inactive
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The expressions “driver-presses-on-button”, “driver-doesn’t-press-on-button” are specified by the
corresponding events driver presses on button and driver does not press on button.

Please note, that according to the logical interface:

� either the event “driver presses on button” or the event “driver does not press on button”
can happen,

� either the event “acc starts” or the event “acc doesn not start” can happen.

3.6 ACC.Acceleration

The MSC ACC .Acceleration is based on the requirement ACC overruled by driver acceleration:

WHILE acc is active
IF driver-presses-acceleration-pedal
THEN acc MUST NOT brake

To represent the information “acc MUST NOT brake” we will use the variable susp of type Bool. Its
value will influence on the system behavior, described by the MSCs Follow up and Constant Speed,
in the blocks3 AdjustVehicleSpeed2TargetSpeed and ControlDistance (current distance)

And again we need to add the requirement, which describes the opposite situation:

WHILE acc is active
IF driver-releases-acceleration-pedal
THEN acc CAN brake

The expressions “driver-presses-acceleration-pedal” and “driver-releases-acceleration-pedal” are rep-
resented in the MSC specification by the events acc pedal pressed and acc pedal released respec-
tively.

ACC_Comp

msc SYSTEM/ ACC.Acceleration

ACC_pedal

ALT

ACC_Active

acc_pedal_pressed

acc_pedal_released

PCS_Comp

susp := False

susp := True

3Please note, that these blocks are underspecified – the corresponding requirements are missed.
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3.7 ACC.Search

The MSC ACC .Search is based on the requirements Follow-Up-Control Condition and Constant-
Speed-Control Condition which are alternative, together with initializing requirements Initial Following-
Distance and Initial Target-Speed :

WHILE acc is active
IF target vehicle is detected
THEN acc is in follow-up-control

WHILE acc is active AND no target vehicle is detected
THEN acc is in constant-speed-control

WHILE acc is active
IF acc starts follow-up-control
THEN acc sets following distance to “middle”

WHILE acc is active
IF acc starts constant-speed-control
THEN acc sets target speed to vehicle speed

The natural language expressions “target vehicle is detected” and “no target vehicle is detected” are
represented by the signals target vehicle is detected and no target vehicle is detected respectively.
Please note, that every time unit either the signal target vehicle is detected or the signal
no target vehicle is detected is send. This information follows from the logical interface descrip-
tion.

To represent the information “acc is in follow-up-control” and “acc is in constant-speed-control”
we use a variable, let call it control. This variable can have only two values, according to the two
control modes of the ACC: follow up and constant speed (we define the corresponding data type
ControlType).

We also need to introduce a new variable, let call it tspeed, to safe an information about the target
speed.

We add the initializing requirements acc sets following distance to “middle” and acc sets target-
speed to current-speed in the MSC by the corresponding hexagons immediately after the hexagons
describing the substate from “constant speed” to “follow up” and from “follow up” to “constant
speed” respectively.
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ACC_Comp

target_vehicle is_detected

msc SYSTEM/ ACC.Search

ACC_Active

ALT

Sensors

vspeed

no_target_vehicle is_detected

control == ConstantSpeed

ALT control == FollowUp

ALT control == ConstantSpeed

control == FollowUp

control := FollowUp

control := FollowUp

control := ConstantSpeed

distance := Middle

tspeed := vspeed

control := ConstantSpeed

3.8 ACC.Follow up

The MSC ACC.Follow up is based on the requirements Follow-Up-Control Behaviour, Changing
Following-Distance (long ⇒ middle), Changing Following-Distance (middle ⇒ short) and Changing
Following-Distance (short ⇒ long).

WHILE acc is active AND acc is in follow-up-control
THEN acc controls following distance to target vehicle

WHILE acc is in follow-up-control AND following-distance is “long”
IF driver-presses-change-distance-button
THEN acc sets following distance to “middle”

WHILE acc is in follow-up-control AND following-distance is “middle”
IF driver-presses-change-distance-button
THEN acc sets following distance to “short”

WHILE acc is in follow-up-control AND following-distance is “short”
IF driver-presses-change-distance-button
THEN acc sets following distance to “long”
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ACC_CompTarget_Vehicle

current_distance

msc SYSTEM/ ACC.Follow_up

ACC_Active

II

dist_button

ControlDistance (current_distance, susp)

ALT

Panel

distance == Long

distance == Middle

distance == Short

control == FollowUp

distance := Middle

distance := Short

distance := Long

The expression “acc controls following distance to target vehicle” is underspecified in the semiformal
specification. Thus, we will underspecify it also on the MSC diagram – we will represent it by the
the MSC-block ControlDistance. As an input for this block the following distance to target vehicle
will be taken – we represent it by the current distance signal.

To represent the information “acc sets following distance to middle”, “acc sets following distance
to short” and “acc sets following distance to long” we introduce a variable, which will be of the
data type DistanceType. Let call this variable distance.

The “change distance” requirements are alternative in the semiformal specification and they must
be considered as concurrent to the Follow-Up-Control Behaviour requirement.

3.9 ACC.Constant Speed

The MSC ACC.Constant Speed is based on the requirements Constant-Speed-Control Behavior,
Incrementing Target-Speed and Decrementing Target-Speed.

WHILE acc is in constant-speed-control
THEN adjust vehicle speed to target speed

WHILE acc is in constant-speed-control
IF driver-increases-target-speed
THEN acc increases target speed with +CONSTchangespeedkm/h
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WHILE acc is in constant-speed-control
IF driver-decreases-target-speed
THEN acc decreases target speed with -CONSTchangespeedkm/h

The expression “adjust vehicle speed to target speed” is underspecified in the semiformal specifi-
cation. Thus, we will underspecify it also on the MSC diagram – we will represent it by the the
MSC-block AdjustVehicleSpeed2RTargetSpeed. As an input for this block the target speed and the
current vehicle speed will be taken.

The requirements Incrementing Target-Speed and Decrementing Target-Speed are alternative. They
both must be considered as concurrent to the requirement Constant-Speed-Control Behavior. The
information “driver-increases-target-speed” and “driver-decreases-target-speed” will be represented
by the signals increase speed and decrease speed, which can’t be send simultaneously (at the same
time unit).

The comments “target speed cannot be increased to more than CONSTaccrangemaxkm/h” and “tar-
get speed cannot be decreased to less than CONSTaccrangeminkm/h” from the semiformal specifi-
cation must be added to this specification explicitly, as requirements. Optimized version of the
requirements Incrementing Target-Speed and Decrementing Target-Speed :

WHILE acc is in constant-speed-control AND vehicle speed is lower or equal than CONSTaccrangemaxkm/h

IF driver-increases-target-speed
THEN acc increases target speed with +CONSTchangespeedkm/h

WHILE acc is in constant-speed-control AND vehicle speed is higher than CONSTaccrangemaxkm/h

IF driver-increases-target-speed
THEN target speed remains unchanged

WHILE acc is in constant-speed-control AND vehicle speed is higher or equal than CONSTaccrangeminkm/h

IF driver-decreases-target-speed
THEN acc decreases target-speed with -CONSTchangespeedkm/h

WHILE acc is in constant-speed-control AND vehicle speed is lower than CONSTaccrangeminkm/h

IF driver-decreases-target-speed
THEN target speed remains unchanged

13



ACC_CompSensors

vspeed

msc SYSTEM/ ACC.Constant_Speed

II

increase_speed

AdjustVehicleSpeed2TargetSpeed(vspeed, tspeed, susp)

ALT

Panel

decrease_speed

ALT tspeed 
CONSTaccrangemax

control == ConstantSpeed

tspeed > 
CONSTaccrangemax

ALT tspeed 
CONSTaccrangemin

tspeed < 
CONSTaccrangemin

tspeed := tspeed + CONSTchangespeed

tspeed := tspeed

tspeed := tspeed

tspeed := tspeed - CONSTchangespeed

3.10 ACC.Terminates

The MSC ACC .Terminates is based on the requirements ACC terminates by low speed, ACC ter-
minates by driver pressing button, ACC terminates by driver brake pedal, and PCS-Brake suspends
ACC.

We delete from this requirements the while-part WHILE acc is active, because the result will be
acc inactiv – it does’t matter, in which state it was before.

IF vehicle speed becomes lower than CONSTminaccspeed2km/h
THEN acc terminates

IF driver-presses-off-button
THEN acc terminates

IF driver operates brake pedal
THEN acc terminates

14



IF pcs-executes-brake
THEN acc terminates

ACC_Comp

vspeed

Sensor

msc SYSTEM/ ACC.Terminates

ALT

ACC_Inactive

driver_presses_off_button

Panel

ACC_Inactive

ACC_Inactive

Brake_pedal

brake_pedal_pressed          

pcs_brake          

ACC_Inactive

PCS_Comp

vspeed < 
CONSTminaccspeed2

The natural language expression “acc terminates” represents the information that the ACC comes
to the state (mode) ACC Inactive.

The expressions “driver-presses-off-button”, “driver operates brake pedal” and “pcs-executes-brake”
are specified by the corresponding events driver presses off button, brake pedal pressed and pcs brake.
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3.11 PCS

The MSC PCS is based on the requirements PCS warning, PCS brake, PCS seat belt, PCS brake-
end, and PCS-Brake overrules Driver-Acceleration:

WHILE pcs is active
IF collision-time is smaller than limit
THEN pcs warns-driver-about-small-collision-time

WHILE pcs is active
IF collision-time becomes smaller than limit
THEN pcs-executes-break

WHILE pcs is active
IF collision-time becomes smaller than limit
THEN pcs rewinds-seatbelt

WHILE pcs-executes-brake
IF collision-time becomes larger than limit OR vehicle stops
THEN pcs ends-pcs-brake-control-execution AND pcs releases-seatbelt

WHILE pcs-brake-control-is-executed
IF driver brakes
THEN pcs-brake-control-execution-continues

To represent the information “collision-time is smaller than limit” we introduce a variable collision time
as well as a parameter collision time limit. The natural language expression “collision-time becomes
smaller than limit” means, that at the previous moment (at the previous time unit) it was no brake
execution.

The expression “pcs-executes-break” was discussed in Section 3.10.

The expression “pcs warns-driver-about-small-collision-time” is specified by the event
small collision time warning.

The natural language expression “’vehicle stops” is equal to the expression “vehicle speed is equal
0km/h” and we represent it by vspeed == 0.

Doing the MSC specification we found out that the following information is lost in semiformal
specification:

� The following items are lost in the logical interface:

� pcs-brake-control-is-executed,

� pcs-brake-control-execution-continues,

� pcs-executes-brake,

� driver accelerates.
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� The following actions must denote the same: “pcs-brake-control-is-executed”, “pcs-brake-
control-execution-continues”, “pcs-executes-brake”.

These information was added to the logical interface description in the final version of the require-
ment specification.

PCS_Comp
msc SYSTEM/ PCS

Panel

PCS_Active

small_collision_time_warning

ALT

collision_time < collision_time_limit 

Rewinds_Seatbelt

pcs_brake  := True

Sensors

                                                                                             collision_time

                                                                                       vspeed

II

ACC_Comp

                                pcs_brake

pcs_brake == True

collision_time ≥ collision_time_limit  vspeed = 0 

Releases_Seatbelt

pcs_brake := False

collision_time < collision_time_limit 

pcs_brake == False

                                      pcs_stops_brake

Brake_pedal

            brake_pedal_pressed

pcs_brake == True

pcs_brake := True
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4 FOCUS Specifications

4.1 Short Introduction to FOCUS

A distributed system in Focus is represented by its components4. Components that are connected
by communication lines called channels, can interact or work independently of each other. The
channels in Focus are asynchronous communication links without delays. They are directed, re-
liable, and order preserving. Via these channels components exchange information in terms of
messages of specified types. The formal meaning of a Focus specification is a relation between
the communication histories for the external input and output channels. The specifications can
be structured into a number of formulas each characterizing a different kind of property, the most
prominent classes of them are safety and liveness properties. Focus supports a variety of spec-
ification styles which describe system components by logical formulas or by diagrams and tables
representing logical formulas. For a detailed description of Isabelle/HOL see [6] and [8].

4.1.1 Concept of Streams

The central concept in Focus are streams, that represent communication histories of directed
channels. Streams in Focus are functions mapping the indexes in their domains to their messages.
For any set of messages M , M ω denotes the set of all streams, M∞ and M ∗ denote the sets of all
infinite and all finite streams respectively. M ω denotes the set of all timed streams, M∞ and M ∗

denote the sets of all infinite and all finite timed streams respectively. A timed stream is represented
by a sequence of messages and time ticks, the messages are also listed in their order of transmission.
The ticks model a discrete notion of time.

The timed domain is the most important one for representation of distributed systems with real-
time requirements. Specifications of embedded systems must be timed, because by representing a
real-time system as an untimed specification a number of properties of the system are loosed (e.g.
the causality property) that are not only very important for the system, but also help us to make
proofs easier. The definition in Isabelle/HOL of the Focus stream types is given below. Another
ways of streams formalizations as well as the related work for the approach “Focus on Isabelle”
are discussed in [7].

To simplify the specification of the real-time systems we introduce an additional Focus operator
ti(s,n) that yields the list of messages that are in the timed stream s between the ticks n − 1 and
n (at the nth time unit).

The predicate ts holds for a timed stream s, iff s is time-synchronous in the sense that exactly one
message is transmitted in each time interval.

The Focus operator msgn(s), which holds for a timed stream s, if this stream contains at every
time unit at most n messages.

4 A component in Focus means a “logical component” and not a physical one.
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4.1.2 Specifications

Focus specifications can be elementary or composite. Any elementary Focus specification has the
following syntax:

Name (Parameter Declarations) Frame Labels

in Input Declarations

out Output Declarations

Body

Name is the name of the specification; Frame Labels lists a number of frame labels, e.g. untimed,
timed or time-synchronous, that correspond to the stream types in the specification (see Sect.
4.1.1); Parameter Declarations lists a number of parameters (optional); Input Declarations and
Output Declarations list the declarations of input and output channels respectively. Body charac-
terizes the relation between the input and output streams, and can be a number of formulas, or a
table, or diagram or a combination of them. For any elementary timed parameterized specification
S we define its semantics, written 〚S〛, to be the formula:

iS ∈ I∞S ∧ pS ∈ PS ∧ oS ∈ O∞
S ∧ BS (1)

where iS and oS denote lists of input and output channel identifiers, IS and OS denote their
corresponding types, pS denotes the list of parameters and PS denotes their types, BS is a formula
in predicate logic that describes the body of the specification S .

To define the semantics of a timed specification in Isabelle/HOL we introduce first tree predicates, in-

Stream, outStream, and locStream over infinite timed streams. The predicate inStream/outStream/locStream is
true, if the channel identifier corresponds to an input/output/local stream. Now we can define the
semantics of an elementary timed specification with the input channels i1, . . . , in and the output
channels o1, . . . , om (and with parameters p1, . . . , pk ) in Isabelle/HOL in the same way as it is
defined in Focus:

n∧

1

inStream(ij ) ∧
m∧

1

outStream(oj ) ∧ body (2)

where the Isabelle/HOL predicate body describes here the relation (with k extra parameters) be-
tween the input and output streams and is equal modulo syntax to BS that is conjunction of all
propositions in the body of the specification S ). The order of the parameters in the relation must
be the following one: number of channels in the sheaf, input streams, specification parameters,
output streams. For the proofs of the properties we need only the predicate body. Therefore, only
this part will be denoted later as semantic of the specification. The conjunction of the predicates
inStream/outStream/locStream will be defined in Isabelle/HOL separately5, because this part will be
used only to show that the correctness of syntactic interface.

5 The signature of the corresponding predicate will be equal to the signature of the predicate body.
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4.1.3 Data types

In this section we present the user defined Focus data types to model the system in a formal
way.

First of all we need to define the sets of ACC and PCS states respectively. These sets must
correspond to the sets of modes defined by MSCs ACC:Modes and PCS:Modes, thus, we need only
to list these modes and:

ACCState = {ACC Inactive,ACC Active}
PCSState = {PCS Inactive,PCS Active}

We also need to define a data type to describe two kinds of control by ACC (according to the switch
in the flow at the MSC ACC ): follow up, control a constant speed. Let call it ControlType:

ControlType = {FollowUp,ConstantSpeed}

Th represent the three kinds of the distances to following up (a long, a middle and a short distance)
we define the data type DistanceType:

DistanceType = {Long ,Middle,Short}

The data type ChangeSpeed describes two commands/kinds of changing speed: increasing speed
according to some acceleration/ speed difference value and decreasing speed according to some
deceleration / speed difference value:

ChangeSpeed = {Increase,Decrease}

To describe the state of pedals and belts we will use respectively the data types Pedal and Belt :

Pedal = {Pressed ,Released}
Belt = {Rewind ,Release}
The data type Event ist needed to model simple signals that just indicate some event, the corre-
sponding channel for a stream with the Event-type will be named by the concrete event we need
to represent. The data type Warn is defined in a similar way.

Event = {event}
Warn = {Warning}

4.2 Designer Decisions

In this section we discuss the translation problems that can’t be resolved schematically, because
some refinement steps or designer decisions are needed.

It must be impossible to give two contradictory orders, therefore we need some constraint, which
makes sure that the signals increase speed and decrease speed can’t be send simultaneously (at the
same time unit). We have two possibilities to solve it:

� Model them by two different channels and add the assumption, that the corresponding streams
are disjoint.
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� Model them by a single channel add the assumption, that the corresponding stream can have
every time unit at most one message.

We choose the second way to model these signals.

The head (main) MSC ACC PCS represents a general system behavior and is described by parallel
combinations of two MSCs, ACC System and PCS System, each of them is again a parallel com-
binations – of MSCs in loop. Thus, four MSCs (ConditionsACC, ACC, PCS and ConditionsPCS )
act parallel, where the main actions are described by ACC and PCS, whether ConditionsACC and
ConditionsPCS describe only computation of local/state variables. The result of the computations
in them depens only on the current speed, any previous values of the variables etc. are ignored.
Thus, we have three possibilities:

� All these parts will be represented by a single Focus component (namely System, acc startable
and psc state will be represented by local/state variables.

� These parts will be represented by two compoments: ACC (combination of ConditionsACC
and ACC ) and PCS (combination of ConditionsPCS and PCS ), acc startable and psc state
will be represented by local/state variables.

� Every part will be represented by a single Focus component, the component System will be
composite one. The components ConditionsACC and ConditionsPCS will be weak causal, the
components ACC and PCS will be strong causal (with delay equal to one time unit).

The first solution will give us a very unreadable specification and contradicts all the ideas of the
modular representation. The both other solutions are appropriate but lead to different models. We
present here both variants to show the main idea difference between them: the second variant is
more appropriate for the small component and systems, the third variant is more appropriate for
the large component and systems. This case study is rather small, therefore the second variant is
optimal, but the third one is appropriate as well.

We can prove that the system modelled according to the third variant (see Section 4.3) is a refine-
ment of the system modelled according to the second variant (see Section 4.4) and also a refinement
of the system that can be modelled according to the first variant (because the system modelled
according to the second variant is a refinement of the system that can be modelled according to
the first variant).

We have two possibilities to represent a mode:

� by a local variable; this solution implies that by a readable model every change of the variable
according to the corresponding input values will have influence only on the next time unit
according to the strong causality property; this variant is more appropriate, if the current
mode depents on the previous mode;

� by an abbreviation represented by the key words let or where ; this solution implies that every
change of the corresponding input values can have influence also at the same time unit; this
variant is more appropriate, if the current mode depends only on the current input values and
does not depent on the previous mode;

The current ACC mode depends also from the previous one, therefore we need to model it in
Focus by a local variable. The current PCS mode depends only on the input values, therefore we
represent it by an abbreviation of the calculations over these values.
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According to the MSC ACC.Search every time unit either the signal target vechicle is detected or
the signal target vechicle is NOT detected must be send. We represent both of them by a single
time-synchronous stream vechicleDetected of the type Bool, , where the value of message at every
time unit t will be defined as follows: true corresponds to the signal target vechicle is detected, false
corresponds to the signal target vechicle is NOT detected.

The same situation is with the signals acc pedal pressed and acc pedal released (see MSC ACC.Acce-
leration) – these signals will be represented by a single time-synchronous stream accPedal of the
type Bool, where the value of message at every time unit t will be defined as follows: true corre-
sponds to the signal acc pedal pressed, false corresponds to the signal acc pedal released.

Underspecified functions and predicates
We need to find out which functions and predicates are underspecified and decide whether we can
let them underspecified on this phase. According to the semiformal specifications we have two
underspecified functions:
ControlDistance and
AdjustVehicleSpeed2TargetSpeed .
We do not add concrete specification for these functions here.

Parameters
In most cases we need to decide what to use in our system specification: parameterized represen-
tation of system/components or global constants.

For the presented case study we chose the first variant and specify the PCS subsystem (and
the whole system as well) using one parameter that represents a collision time limit (denoted
by collision time limit signal in MSCs): CTLimit of type N.

Local variables
We also need to collect the set of local variables that we will need in our specifications. Let represent
this collection by Table 1 to have an overview which local variable comes from which MSC as well
as to which Focus component this variable must belong. For completeness we go through the
whole list of MSCs, presenting in the table also such of them that do not imply any new variable.

At the end we need to define the initial values of our local variables. Let choose the following
definitions:

� control = ConstantSpeed ,

� distance = Middle,

� pcsBrake = false,

� tspeed = 0.

To model the system in more readable way, we add to the ACC component a number of output
channels that indicate the current values of the corresponding local variables. The general inteface of
the component ACC and PCS (the relations between MSC signals and the Focus streams\channels)
is presentey by Table 2.

The system architecture will be represented by the following Focus specification System.
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MSC MSC Local Variable/Mode Focus Local Variable Focus component

ACC:Modes (Mode) acc state ∈ ACCState ACC

PCS:Modes (Mode) – –

ACC PCS

ACC System

PCS System

ConditionsACC acc startable – –

ACC control control ∈ ControlType ACC

ACC.Start acc startable – –

ACC.Search Acceleration

ACC.Search control control ∈ ControlType ACC

ACC.Acceleration susp susp ∈ Bool ACC

ACC.Follow up control control ∈ ControlType ACC

distance distance ∈ DistanceType ACC

ACC.Constant Speed control control ∈ ControlType ACC

tspeed tspeed ∈ N ACC

ACC.Terminates

ConditionsPCS

PSC pcs brake pcs brake ∈ Bool PCS

Table 1: Local Variables
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MSC signal (or local variable) Focus channel From To

curent distance curent distance Environment ACC System

increase speed, decrease speed changeS Environment ACC System

driver presses on button onButton Environment ACC System

driver presses off button offButton Environment ACC System

dist button distButton Environment ACC System

acc pedal pressed, acc pedal released accPedal Environment ACC System

brake pedal pressed brakePedal Environment ACC System

PCS System

vspeed Environment ACC System

PCS System

collision time ctime Environment PCS System

pcs brake pscBrake PCS System ACC System

control (local variable) aControl ACC System Environment

(Mode of ACC) aState ACC System Environment

tspeed (local variable) aTspeed ACC System Environment

distance (local variable) aDistance ACC System Environment

Rewinds Seatbelt, Releases Seatbelt seatbelt PCS System Environment

small collision time warning smallCT PCS System Environment

Table 2: MSC signals vs. Focus streams channels
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System(const CTLimit ∈ N) glass-box

ACC_System

               vspeed: N

current_distance: N

vechicleDetected: Bool

onButton: Event

offButton: Event

brakePedal: Pedal

distButton: Event

accPedal: Pedal

changeS: ChangeSpeed

aControl: ControlType

aState: ACCState

aTspeed: N

aDistance: DistanceType

PCS_System
(CTLimit N)

ctime: N

seatbelt: Belt

smallCT: Warn

                                  pcsBrake: Bool

4.3 Specification of the System: 1. Model

Each of the compoments ACC System and PCS System is represented by a composition of two
components: the correspondig Focus specifications are given below. Thus, we have here one
decomposition layer more: ACC System is a composition of ConditionsACC and ACC components,
and PCS System is a composition of ConditionsPCS and PCS components. The components
ConditionsACC, ACC ConditionsPCS and PCS are elementary ones, where ConditionsACC and
ConditionsPCS are weak-causal, and ACC PCS are strong causal.

In this model we have to define two more (local) channels that are presented in the 1. model by
abbreviations of the computations over the corresponding input values: acc startable : Bool and
pcs state : PCSState.

ACC System glass-box

ACC

ConditionsACC acc_startable: Bool

                                             vspeed: N

current_distance: N

vechicleDetected: Bool

onButton: Event

offButton: Event

brakePedal: Pedal

distButton: Event

accPedal: Pedal

changeS: ChangeSpeed

aControl: ControlType

aState: ACCState

aTspeed: N

aDistance: DistanceType

pcsBrake: Bool
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PCS System(const CTLimit ∈ N) glass-box

ConditionsPCS

                                                vspeed: N

brakePedal: Pedal

PCS
(CTLimit N)

psc_state: PCSState

ctime: N

seatbelt: Belt

smallCT: Warn

pcsBrake: Bool

ConditionsACC timed

in vspeed : N

out acc startable : Bool

asm ts(vspeed)

gar
∀ t ∈ N :

ti(acc startable, t) = 〈ft.ti(vspeed , t) > 45) ∧ (ft.ti(vspeed , t) < 110)〉

ConditionsPCS timed

in vspeed : N

out pcs state : PCSState

asm ts(vspeed)

gar
∀ t ∈ N :

ti(pcs state, t) = if ft.ti(vspeed , t) > 30 then 〈PCSActive〉 else 〈PSCInactive〉 fi
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ACC timed

in
vspeed , curent distance : N; acc startable, vechicleDetected : Bool;
onButton, offButton, distButton : Event ;
accPedal , brakePedal : Pedal ; changeS : ChangeSpeed

out aState : ACCState; aControl : ControlType; aTspeed , aDistance : N

local acc state ∈ ACCState; susp ∈ Bool;
control ∈ ControlType; distace ∈ DistanceType; tspeed ∈ N

init acc state = ACCInactive; susp = false;
control = ConstantSpeed ; distance = Middle; tspeed = 0

asm ts(vspeed) ∧ ts(vechicleDetected) ∧ ts(curent distance) ∧ ts(acc startable)
msg1(onButton) ∧ msg1(offButton) ∧ msg1(brakePedal) ∧ msg1(accPedal) ∧ msg1(changeS)

gar ∀ t ∈ N :
ti(aState, t) = 〈acc state〉 ∧ ti(aControl , t) = 〈control〉 ∧ ti(aTspeed , t) = 〈tspeed〉 ∧ ti(aDistance, t) = 〈distance〉

acc state = ACCInactive →
ti(onButton, t) �= 〈〉 →

(ti(acc startable, t) = 〈true〉 ∧ acc state ′ = ACCActive)
∨ (ti(acc startable, t) = 〈false〉 ∧ acc state ′ = ACCInactive)

∧
ti(onButton, t) = 〈〉 → acc state ′ = ACCInactive

(ft.ti(vspeed , t) < 40 ∨ ti(offButton, t) �= 〈〉 ∨
ti(brakePedal , t) = 〈Pressed〉 ∨ ti(pcsBrake, t) = 〈true〉)
→ acc state ′ = ACCInactive

(acc state = ACCActive →
(ti(accPedal , t) = 〈Pressed〉 → susp′ = true) ∨ (ti(pcsBrake, t) = 〈true〉 → susp′ = true)∨
(ti(accPedal , t) = 〈Released〉 → susp′ = false) ∨ (ti(pcsBrake, t) = 〈false〉 → susp′ = false)

acc state = ACCActive →
ft.ti(vechicleDetected , t) = true ∧

((control = FollowUp ∧ control ′ = FollowUp) ∨
(control = ConstantSpeed ∧ control ′ = FollowUp ∧ distace ′ = Middle))

∨
ft.ti(vechicleDetected , t) = false ∧

((control = ConstantSpeed ∧ control ′ = ConstantSpeed) ∨
(control = FollowUp ∧ control ′ = ConstantSpeed ∧ tspeed ′ = ft.ti(vspeed , t)))

acc state = ACCActive ∧ control = FollowUp →
ControlDistance(ft.ti(curent distance, t), susp)∧
ti(distButton, t) �= 〈〉 →

(distance = Long ∧ distance ′ = Middle) ∨
(distance = Middle ∧ distance ′ = Short) ∨
(distance = Short ∧ distance ′ = Long)

control = ConstantSpeed →
AdjustVehicleSpeed2TargetSpeed(ft.ti(vspeed , t), tspeed , susp)
∧
((ti(changeS , t) = 〈Increase〉 →

tspeed ≤ 95 ∧ tspeed ′ = tspeed + 5 ∨ tspeed > 95 ∧ tspeed ′ = tspeed) ∨
(ti(changeS , t) = 〈Decrease〉 →

tspeed ≥ 95 ∧ tspeed ′ = tspeed − 5 ∨ tspeed < 55 ∧ tspeed ′ = tspeed) ∨
ti(changeS , t) = 〈〉)
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PCS(const CTLimit ∈ N) timed

in vspeed , ctime : N; pcs state : PCSState; brakePedal : Pedal

out smallCT : Warn; pcsBrake : Bool; seatbelt : Belt

local lbrake ∈ Bool;

init lbrake = false;

asm ts(ctime) ∧ ts(vspeed) ∧ msg1(brakePedal);

gar ∀ t ∈ N :
ti(pcs state, t) = 〈PCSActive〉 →

ft.ti(ctime, t) < CTLimit → ti(smallCT , t + 1) = 〈Warning〉
∧
lbrake = false ∧ ft.ti(ctime, t) < CTLimit →

ti(seatbelt , t + 1) = 〈Rewind〉 ∧ lbrake ′ = true ∧ ti(pcsBrake, t + 1) = 〈true〉
∧
brake = true ∧ (ft.ti(ctime, t) ≥ CTLimit ∨ ti(vspeed , t) = 0) →

ti(seatbelt , t + 1) = 〈Release〉 ∧ lbrake ′ = false ∧ ti(pcsBrake, t + 1) = 〈false〉
∧
lbrake = true ∧ ti(brakePedal , t) = 〈Pressed〉 → lbrake ′ = true

4.4 Specification of the System: 2. Modell

Each of the compoments ACC System (combination of ConditionsACC and ACC ) and PCS System
(combination of ConditionsPCS and PCS ) is defined by an elementary component, there is no more
decomposition layers.

PCS(const CTLimit ∈ N) timed

in vspeed , ctime : N; pcs state : PCSState; brakePedal : Pedal

out smallCT : Warn; pcsBrake : Bool; seatbelt : Belt

local lbrake ∈ Bool;

init lbrake = false;

asm ts(ctime) ∧ ts(vspeed) ∧ msg1(brakePedal);

gar ∀ t ∈ N :
pcs state = PCSActive →

ft.ti(ctime, t) < CTLimit → ti(smallCT , t + 1) = 〈Warning〉
∧
lbrake = false ∧ ft.ti(ctime, t) < CTLimit →

ti(seatbelt , t + 1) = 〈Rewind〉 ∧ lbrake ′ = true ∧ ti(pcsBrake, t + 1) = 〈true〉
∧
brake = true ∧ (ft.ti(ctime, t) ≥ CTLimit ∨ ti(vspeed , t) = 0) →

ti(seatbelt , t + 1) = 〈Release〉 ∧ lbrake ′ = false ∧ ti(pcsBrake, t + 1) = 〈false〉
∧
lbrake = true ∧ ti(brakePedal , t) = 〈Pressed〉 → lbrake ′ = true

where pcs state = if ft.ti(vspeed , t) > 30 then PCSActive else PSCInactive fi
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ACC timed

in
vspeed , curent distance : N; vechicleDetected : Bool; onButton, offButton, distButton : Event ;
accPedal , brakePedal : Pedal ; changeS : ChangeSpeed

out aState : ACCState; aControl : ControlType; aTspeed , aDistance : N

local acc state ∈ ACCState; susp ∈ Bool;
control ∈ ControlType; distace ∈ DistanceType; tspeed ∈ N

init acc state = ACCInactive; susp = false;
control = ConstantSpeed ; distance = Middle; tspeed = 0

asm ts(vspeed) ∧ ts(vechicleDetected) ∧ ts(curent distance)
msg1(onButton) ∧ msg1(offButton) ∧ msg1(brakePedal) ∧ msg1(accPedal) ∧ msg1(changeS)

gar ∀ t ∈ N :
ti(aState, t) = 〈acc state〉 ∧ ti(aControl , t) = 〈control〉 ∧ ti(aTspeed , t) = 〈tspeed〉 ∧ ti(aDistance, t) = 〈distance〉

acc state = ACCInactive →
ti(onButton, t) �= 〈〉 →

(acc startable ∧ acc state ′ = ACCActive) ∨ (¬acc startable ∧ acc state ′ = ACCInactive)
∧
ti(onButton, t) = 〈〉 → acc state ′ = ACCInactive

(ft.ti(vspeed , t) < 40 ∨ ti(offButton, t) �= 〈〉 ∨
ti(brakePedal , t) = 〈Pressed〉 ∨ ti(pcsBrake, t) = 〈true〉)
→ acc state ′ = ACCInactive

(acc state = ACCActive →
(ti(accPedal , t) = 〈Pressed〉 → susp′ = true) ∨ (ti(pcsBrake, t) = 〈true〉 → susp′ = true)∨
(ti(accPedal , t) = 〈Released〉 → susp′ = false) ∨ (ti(pcsBrake, t) = 〈false〉 → susp′ = false)

acc state = ACCActive →
ft.ti(vechicleDetected , t) = true ∧

((control = FollowUp ∧ control ′ = FollowUp) ∨
(control = ConstantSpeed ∧ control ′ = FollowUp ∧ distace ′ = Middle))

∨
ft.ti(vechicleDetected , t) = false ∧

((control = ConstantSpeed ∧ control ′ = ConstantSpeed) ∨
(control = FollowUp ∧ control ′ = ConstantSpeed ∧ tspeed ′ = ft.ti(vspeed , t)))

acc state = ACCActive ∧ control = FollowUp →
ControlDistance(ft.ti(curent distance, t), susp)∧
ti(distButton, t) �= 〈〉 →

(distance = Long ∧ distance ′ = Middle) ∨
(distance = Middle ∧ distance ′ = Short) ∨
(distance = Short ∧ distance ′ = Long)

control = ConstantSpeed →
AdjustVehicleSpeed2TargetSpeed(ft.ti(vspeed , t), tspeed , susp)
∧
((ti(changeS , t) = 〈Increase〉 →

tspeed ≤ 95 ∧ tspeed ′ = tspeed + 5 ∨ tspeed > 95 ∧ tspeed ′ = tspeed) ∨
(ti(changeS , t) = 〈Decrease〉 →

tspeed ≥ 95 ∧ tspeed ′ = tspeed − 5 ∨ tspeed < 55 ∧ tspeed ′ = tspeed) ∨
ti(changeS , t) = 〈〉)

where acc startable = (ft.ti(vspeed , t) > 45) ∧ (ft.ti(vspeed , t) < 110)
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5 Summary

This paper presents an approach for translating semiformal specification in formal ones. For a
semiformal representation two approaches were taken: an approach from A. Fleischmann [3] and
a message sequence charts representation. A semiformal specification represented by one of these
approaches can be translated to a formal specification in Focus, a a framework for formal specifi-
cations and development of interactive systems.

This approach was applied on the case study during the project DENTUM between Denso Deutsch-
land GmbH and the chair for Software & Systems Engineering at Technische Universität München
(see [2]). The goal of this project was to define a methodology for the model-based development of
automotive systems. This methodology was evaluated by developing an Adaptive Cruise Control
(ACC) system with Pre-Crash Safety (PCS) functionality.
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A Meaning of the used variables and streams: Summary table

Semiformal Specification MSC Focus

vehicle speed vspeed: N vspeed : N
∞

target speed tspeed: N tspeed : N
∞

acc is startable acc startable: Bool acc startable : Bool∞

driver-presses-on-button driver presses on button : Event onButton : Event ∞

driver-does-not-press-on-button driver does not press on button: Event onButton : Event ∞

driver-presses-off-button driver presses off button: Event offButton : Event ∞

driver operates brake pedal brake pedal pressed : Event brakePedal : Pedal ∞

pcs-executes-brake pcs brake: Event pcs brake : Bool∞

driver-presses-acceleration-pedal acc pedal pressed : Event accPedal : Pedal ∞

driver-releases-acceleration-pedal acc pedal released : Event accPedal : Pedal ∞

MUST NOT brake, CAN brake susp: Bool susp : Bool

target vehicle is detected target vehicle is detected : Event vehicleDetected : Bool∞

no target vehicle is detected no target vehicle is detected :Event vehicleDetected : Bool∞

acc is in follow-up-control control: ControlType control : ControlType

acc is in constant-speed-control control: ControlType control : ControlType

following distance to target vehicle current distance: N current distance : N
∞

acc sets following distance to “middle” distance: DistanceType distance : DistanceType

acc sets following distance to “short” distance: DistanceType distance : DistanceType

acc sets following distance to “long” distance: DistanceType distance : DistanceType

driver-increases-target-speed increase speed: Event changeS : changeSpeed ∞

driver-decreases-target-speed increase speed: Event changeS : changeSpeed ∞
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