
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Graph Connectivity

Frank Kammer Hanjo T̈aubig

ABCDE
FGHIJ
KLMNO

TUM-I0422
Dezember 04

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-12-I0422-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2004

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

Graph Connectivity

Frank Kammer

Department of Computer Science
Universiẗat Augsburg
D-86135 Augsburg

F.Kammer@informatik.uni-augsburg.de

Hanjo T̈aubig

Department of Computer Science
Technische Univeriẗat München

D-85748 Garching

taeubig@informatik.tu-muenchen.de

Abstract

This work is mainly concerned with the strength of connections between vertices with respect
to the number of vertex- or edge-disjoint paths. As we shall see, this is equivalent to the question
of how many nodes or edges must be removed from a graph to destroy all paths between two
(arbitrary or specified) vertices.

We review algorithms which

• checkk-vertex (k-edge) connectivity,

• compute the vertex (edge) connectivity, and

• compute the maximalk-connected components

of a given graph.
After a few definitions we present some important theorems which summarize fundamental

properties of connectivity and which provide a basis for understanding the algorithms in the sub-
sequent sections. We give an introduction to minimum cuts and their properties, and discuss a
structure for representing all minimum cuts, called cactus. Afterwards, we review connectivity al-
gorithms that are based on network flow techniques. As examples for non-flow-based approaches,
we summarize randomized connectivity algorithms and discuss a very simple algorithm for the
(global) minimum capacity cut problem. The computation of biconnected, strongly connected,
and triconnected components is considered in the penultimate section. The last section gives
references for advanced topics and further reading.

1 Definitions

An undirected graphG = (V, E) is connectedif for each pair of verticesv, w ∈ V there is a path
from v to w. Graphs that are not connected are calleddisconnected. For a given undirected graph
G = (V, E), a connected componentof G is an induced subgraphG′ = (V ′, E ′) that is connected
and maximal (i.e., there is no connected subgraphG′′ = (V ′′, E ′′) with V ′′ ⊃ V ′). Checking whether
a graph is connected and finding all its connected components can be done in timeO(n + m) using
depth-first search (DFS) or breadth-first search (BFS).

1

4

6

2

3

5

1
7

8

9

10

11

(a) A graph. We consider the connectivity between the vertices1 and11.

4

6

2

3

5

1
7

8

9

10

11

(b) 2 vertex-disjoint paths and a
vertex-cutset of size2.

4

6

2

3

5

1
7

8

9

10

11

(c) 3 edge-disjoint paths and an
edge-cutset of size3.

Figure 1: Vertex-/edge-disjoint paths and vertex-/edge-cutsets

A directed graphG = (V, E) is strongly connectedif there is a directed path from every vertex to
every other vertex. Astrongly connected componentof a directed graphG is an induced subgraph that
is strongly connected and maximal. The strongly connected components of a directed graph can be
computed in timeO(n + m) using a modified DFS, see Section 7. A directed graph is calledweakly
connectedif its underlying undirected graph is connected.

For a graphG = (V, E) and a setX ⊆ V or Y ⊆ E, let G−X andG− Y denote the graph that
results from deleting all vertices inX and their incident edges fromG, or from removing all edges
in Y from G, respectively. An undirected graphG = (V, E) is calledk-vertex-connectedif |V | > k
andG − X is connected for everyX ⊂ V with |X| < k. Note that every (non-empty) graph is
0-vertex-connected, and the1-vertex-connected graphs are precisely the connected graphs on at least
two vertices. Furthermore, a graph consisting of a single vertex is connected and0-vertex-connected,
but not1-vertex-connected. Thevertex-connectivityof G is the largest integerk such thatG is k-
vertex-connected. Similarly,G is calledk-edge-connectedif |V | ≥ 2 andG − Y is connected for
everyY ⊆ E with |Y | < k. Theedge-connectivityof G is the largest integerk such thatG is k-edge-
connected. The edge-connectivity of a disconnected graph and of a graph consisting of a single vertex
is 0. We denote the vertex-connectivity of a graphG by κ(G) and the edge-connectivity byλ(G).
Furthermore, we define the local (vertex-)connectivityκG(s, t) for two distinct verticess andt as the
minimum number of vertices which must be removed to destroy all paths froms to t. In the case that
an edge froms to t exists we setκG(s, t) = n − 1 sinceκG cannot exceedn − 2 in the other case1.
Accordingly, we defineλG(s, t) to be the least number of edges to be removed such that no path from
s to t remains. Note, that for undirected graphsκG(s, t) = κG(t, s) andλG(s, t) = λG(t, s), whereas
for directed graphs these functions are, in general, not symmetric.

1If s andt are connected by an edge, it is not possible to disconnects from t by removing only vertices.

2

The notions of vertex-connectivity and edge-connectivity can be adapted to directed graphs by
requiring in the definitions above thatG−X andG− Y , respectively, be strongly connected.

Consider an undirected graphG = (V, E). A subsetC ⊂ V is called avertex-separator(or vertex
cutset) if the number of connected components ofG−C is larger than that ofG. If two verticess andt
are in the same connected component ofG, but in different connected components ofG− C, thenC
is called ans-t-vertex-separator.Edge-separators(edge cutsets) ands-t-edge-separatorsare defined
analogously. The notion ofs-t-separators can be adapted to directed graphs in the natural way: a set
of vertices or edges is ans-t-separator if there is no remaining path froms to t after deleting the set
from the graph.

Let G = (V, E) be an undirected or directed graph. Two (directed or undirected) pathsp1 andp2

from s ∈ V to t ∈ V are calledvertex-disjointif they do not share any vertices excepts andt. They
are callededge-disjointif they do not share any edges.

A flow networkis given by a directed graphG = (V, E), a functionu : E → R assigning non-
negative capacities to the edges, and two distinct verticess, t ∈ V designated as thesourceand the
sink, respectively. A flowf from s to t, or ans-t-flow for short, is a functionf : E → R satisfying
the following constraints:

• Capacity constraints:∀e ∈ E : 0 ≤ f(e) ≤ u(e)

• Balance conditions:∀v ∈ V \ {s, t} :
∑

e∈Γ−(v) f(e) =
∑

e∈Γ+(v) f(e)

Thevalueof the flowf is defined as∑
e∈Γ+(s)

f(e)−
∑

e∈Γ−(s)

f(e) .

whereΓ+(v) denotes the set of edges with originv andΓ−(v) denotes the set of edges pointing atv.
For a given graphG = (V, E), acut is a partition(S, S̄) of V into two non-empty subsetsS andS̄.

A cut (S, S̄) is ans-t-cut, for s, t ∈ V , if s ∈ S andt ∈ S̄. The capacity of a cut(S, S̄) is defined as
the sum of the capacities of the edges with origin inS and destination in̄S. A minimums-t-cut is an
s-t-cut whose capacity is minimum among alls-t-cuts.

Some of the terms we use in this work occur under different names in the literature. In what
follows, we mainly use (alternatives in parentheses): cut-vertex (articulation point, separation ver-
tex), cut-edge (isthmus, bridge), component (connected component), biconnected component (non-
separable component, block). Acut-vertexis a vertex which increases the number of connected
components when it is removed from the graph; the termcut-edgeis defined similarly. Abiconnected
componentis a maximal2-connected subgraph. Ablock of a graphG is a maximal connected sub-
graph ofG containing no cut-vertex, that is, the set of all blocks of a graph consists of its isolated
vertices, its cut-edges, and its maximal biconnected subgraphs. Hence, with our definition, a block is
(slightly) different from a biconnected component.

Theblock-graphB(G) of a graphG consists of one vertex for each block ofG. Two vertices of
the block-graph are adjacent if and only if the corresponding blocks share a common vertex (that is,
a cut-vertex). Thecutpoint-graphC(G) of G consists of one vertex for each cut-vertex ofG, where
vertices are adjacent if and only if the corresponding cut-vertices reside in the same block ofG. For
the block- and the cutpoint-graph ofG the equalitiesB(B(G)) = C(G) andB(C(G)) = C(B(G))
hold [Har63]. Theblock-cutpoint-graphof a graphG is the bipartite graph which consists of the set
of cut-vertices ofG and a set of vertices which represent the blocks ofG. A cut-vertex is adjacent

3

to a block-vertex whenever the cut-vertex belongs to the corresponding block. The block-cutpoint-
graph of a connected graph is a tree [HP66]. The maximalk-vertex-connected (k-edge-connected)
subgraphs are calledk-vertex-components(k-edge-components). A k-edge-component which does
not contain any(k + 1)-components is called acluster[Mat69, Pat71, Mat72, Mat77].

2 Fundamental Theorems

Theorem 2.1.For all non-trivial graphsG it holds that:

κ(G) ≤ λ(G) ≤ δ(G)

Proof. The incident edges of a vertex having minimum degreeδ(G) form an edge separator. Thus we
concludeλ(G) ≤ δ(G).

The vertex-connectivity of any graph onn vertices can be bounded from above by the connectivity
of the complete graphκ(Kn) = n− 1.

Let G = (V, E) be a graph with at least2 vertices and consider a minimal edge separator that
separates a vertex setS from all other vertices̄S = V \ S. In the case that all edges betweenS andS̄
are present inG we getλ(G) = |S| · |S̄| ≥ |V | − 1. Otherwise there exist verticesx ∈ S, y ∈ S̄ such
that{x, y} /∈ E, and the set of all neighbors ofx in S̄ as well as all vertices fromS \ {x} that have
neighbors inS̄ form a vertex separator; the size of that separator is at most the number of edges from
S to S̄, and it separates (at least)x andy.

The following is the graph-theoretic equivalent of a theorem that was published by Karl Menger
in his work on the general curve theory [Men27].

Theorem 2.2 (Menger, 1927).If P andQ are subsets of vertices of an undirected graph, then the
maximum number of vertex-disjoint paths connecting vertices fromP andQ is equal to the minimum
cardinality of any set of vertices intersecting every path from a vertex inP to a vertex inQ.

This theorem is also known as then-Chain orn-Arc Theorem, and it yields as a consequence one
of the most fundamental statements of graph theory:

Corollary 2.3 (Menger’s Theorem). Let s, t be two vertices of an undirected graphG = (V, E). If
s and t are not adjacent, the maximum number of vertex-disjoints-t-paths is equal to the minimum
cardinality of ans-t-vertex-separator.

The analog for the case of edge-cuts is stated in the next theorem.

Theorem 2.4. The maximum number of edge-disjoints-t-paths is equal to the minimum cardinality
of ans-t-edge-separator.

This theorem is most often called the edge version of Menger’s Theorem although it was first ex-
plicitely stated three decades after Menger’s paper in publications due to Ford and Fulkerson [FF56],
Dantzig and Fulkerson [DF56], as well as Elias, Feinstein, and Shannon [EFS56].

A closely related result is the Max-Flow Min-Cut Theorem by Ford and Fulkerson [FF56]).

Theorem 2.5 (Ford and Fulkerson).The value of a maximums-t-flow is equal to the capacity of a
minimums-t-cut.

4

The edge variant of Menger’s Theorem can be seen as a restricted version where all edge capacities
have a unit value.

The following global version of Menger’s Theorem was published by Hassler Whitney [Whi32]
and is sometimes referred to as ‘Whitney’s Theorem’.

Theorem 2.6 (Whitney, 1932).LetG = (V, E) be a non-trivial graph andk a positive integer.G is
k-(vertex-)connected if and only if all pairs of distinct vertices can be connected byk vertex-disjoint
paths.

The difficulty in deriving this theorem is that Menger’s Theorem requires the nodes to be not ad-
jacent. Since this precondition is not present in the edge version of Menger’s Theorem, the following
follows immediately from Theorem 2.4:

Theorem 2.7.LetG = (V, E) be a non-trivial graph andk a positive integer.G is k-edge-connected
if and only if all pairs of distinct vertices can be connected byk edge-disjoint paths.

For a detailed review of the history of Menger’s Theorem we refer to the survey published by
Schrijver [Sch93].

Beineke and Harary discovered a similar theorem for a combined vertex-edge-connectivity [BH67].
They consideredconnectivity pairs(k, l) such that there is some set ofk vertices andl edges whose
removal disconnects the graph, whereas there is no set ofk − 1 vertices andl edges or ofk vertices
andl − 1 edges forming a mixed vertex/edge separator.

Theorem 2.8 (Beineke & Harary, 1967).If (k, l) is a connectivity pair for verticess and t in the
graph G, then there are(k + l) edge-disjoint paths joinings and t, of whichk are mutually non-
intersecting.

The following theorem gives bounds on vertex- and edge-connectivity (see [Har62]).

Theorem 2.9.The maximum (vertex-/edge-) connectivity of some graph onn vertices andm edges is⌊
2m
n

⌋
, if m ≥ n− 1

0 , otherwise.
The minimum (vertex-/edge-) connectivity of some graph onn vertices andm edges is
m−

(
n−1

2

)
, if

(
n−1

2

)
< m ≤

(
n
2

)
0 , otherwise.

A further proposition concerning the edge connectivity in a special case has been given by Char-
trand [Cha66]:

Theorem 2.10. For all graphsG = (V, E) having minimum degreeδ(G) ≥ b|V |/2c, the edge-
connectivity equals the minimum degree of the graph:λ(G) = δ(G)

For more bounds on graph connectivity see [AH73, Bix74, Les74, Bix81, Esf85, ST03].
The following theorems deal with thek-vertex/edge-components of graphs. The rather obvious

facts that two different components of a graph have no vertex in common, and two different blocks
share at most one common vertex, have been generalized by Harary and Kodama [HK64]:

Theorem 2.11.Two distinctk-(vertex-)components have at mostk − 1 vertices in common.

While k-vertex-components might overlap,k-edge-components do not.

5

Theorem 2.12 (Matula, 1968).For any fixed natural numberk ≥ 1 the k-edge-components of a
graph are vertex-disjoint.

Proof. The proof is due to Matula (see [Mat69]). Consider an (overlapping) decompositionG̃ =
G1 ∪ G2 ∪ . . . ∪ Gt of a connected subgraph̃G of G. Let C = (A, Ā) be a minimum edge-cut of̃G
into the disconnected partsA andĀ. To skip the trivial case, assume thatG̃ has at least2 vertices.
For each subgraphGi that contains a certain edgee ∈ C of the min-cut, the cut also contains a cut for
Gi (otherwise the two vertices would be connected inGi \ C andG̃ \ C which would contradict the
assumption thatC is a minimum cut). We conclude that there is aGi such thatλ(G̃) = |C| ≥ λ(Gi),
which directly impliesλ(G̃) ≥ min1≤i≤t{λ(Gi)} and thereby proves the theorem.

Although we can see from Theorem 2.1 thatk-vertex/edge-connectivity implies a minimum de-
gree of at leastk, the converse is not true. But in the case of a large minimum degree, there must be a
highly connected subgraph.

Theorem 2.13 (Mader, 1972).Every graph of average degree at least4k has ak-connected sub-
graph.

For a proof see [Mad72].
Several observations regarding the connectivity ofdirectedgraphs have been made. One of them

considers directed spanning trees rooted at a noder, so calledr-branchings:

Theorem 2.14 (Edmonds’ Branching Theorem [Edm73]).In a directed multigraphG = (V, E)
containing a vertexr, the maximum number of pairwise edge-disjointr-branchings is equal toκG(r),
whereκG(r) denotes the minimum, taken over all vertex setsS ⊂ V that containr, of the number of
edges leavingS.

The following theorem due to Lovász [Lov73] states an interrelation of the maximum number of
directed edge-disjoint paths and the in-degreed−(v) and out-degreed+(v) of a vertexv.

Theorem 2.15 (Lov́asz, 1973).Letv ∈ V be a vertex of a graphG = (V, E). If λG(v, w) ≤ λG(w, v)
for all verticesw ∈ V , thend+(v) ≤ d−(v).

As an immediate consequence, this theorem provided a proof for Kotzig’s conjecture:

Theorem 2.16 (Kotzig’s Theorem).For a directed graphG, λG(v, w) equalsλG(w, v) for all v, w ∈
V if and only if the graph is pseudo-symmetric, i.e. the in-degree equals the out-degree for all vertices:
d+(v) = d−(v).

3 Minimum Cuts

For short, in an undirected weighted graph the sum of the weights of the edges with one endpoint in
each of two disjoint vertex setsX andY is denoted byw(X, Y). For directed graphs,w(X, Y) is
defined in nearly the same way, but we only count the weight of edges with their origin inX and their
destination inY . A cut in a weighted graphG = (V, E) is a set of vertices∅ ⊂ S ⊂ V and its weight
is w(S, V \ S). In an unweighted graph, the weight of a cut is the number of edges fromS to V \ S.

6

Definition 3.1. A minimum cutis a cutS such that for all other cutsT ,

w(S, V \ S) ≤ w(T, V \ T).

Observation 3.2.A minimum cut in a connected graphG with edge weights greater than zero induces
a connected subgraph ofG.

An algorithm that computes allminimum cutshas to represent these cuts. A problem is to store
all minimum cuts without using too much space. A suggestion was made in 1976 by Dinitz et al.
[DKL76]. They presented a data structure calledcactusthat represents all minimum cuts of an undi-
rected (weighted) graph. The size of a cactus is linear in the number of vertices of the input graph and
a cactus allows us to compute a cut in a time linear in the size of the cut.

Karzanov and Timofeev outlined in [KT86] a first algorithm to construct a cactus for unweighted,
undirected graphs. Their algorithm consists of two parts. Given an arbitrary input graphG, the first
part finds a sequence of all minimum cuts inG and the second constructs the cactusCG from this
sequence. The algorithm also works on weighted graphs, as long as all weights are positive.

If negative weights are allowed, the problem of finding a minimum cut isNP-hard [Kar72].
Moreover, no generalization for directed graphs is known. An unweighted graph can be reduced to a
weighted graph by assigning weight1 to all edges. In the following, we will therefore consider the
problem of finding minimum cuts only for undirected connected graphs with positive weights.

Consider a networkN defined by the directed graphG = (V, E), a capacity functionuN , a
sources, a sinkt and a flowf . A residual networkRf consists of those edges that can carry ad-
ditional flow, beyond what they already carry underf . ThusRf is defined on the graphGRf

:=(
V,

{
(u, v)

∣∣((u, v) ∈ E ∨ (v, u) ∈ E) ∧ uRf
((u, v)) > 0

})
with the same source s and sink t and

the following capacity function

uRf
((a, b)) :=

c (a, b)− f (a, b) + f (b, a) if (a, b) ∈ E ∧ (b, a) ∈ E

c (a, b)− f (a, b) if (a, b) ∈ E ∧ (b, a) /∈ E
f (b, a) if (a, b) /∈ E ∧ (b, a) ∈ E

Let Rfmax be the residual network ofN andfmax, wherefmax is a maximums-t-flow in N . As a
consequence of Theorem 2.5 on page 4, the maximum flow saturates all minimums-t-cuts and there-
fore each setS ⊆ V \ t is a minimums-t-cut iff s ∈ S and no edges leaveS in Rfmax.

3.1 All-Pairs Minimum Cuts

The problem of computing a minimum cut between all pairs of vertices can, of course, easily be done
by solvingn(n−1)/2 flow problems. As has been shown by Gomory and Hu [GH61], the computation
of n − 1 maximum flow problems is already sufficient to determine the value of a maximum flow /
minimum cut for all pairs of vertices. The result can be represented in theequivalent flow tree, which
is a weighted tree onn vertices, where the minimum weight of any edge on the (unique) path between
two verticess andt equals the maximum flow froms to t. They furthermore showed that there always
exists an equivalent flow tree, where the components that result from removing the minimum weight
edge of thes-t-path represent a minimum cut betweens andt. This tree is called theGomory-Hu cut
tree.

7

Gusfield [Gus90] demonstrated how to do the same computation without node contractions and
without the overhead for avoiding the so called crossing cuts. See also [HO92, KS93, GT01].

If one is only interested in any edge cutset of minimum weight in an undirected weighted graph
(without a specified vertex pair to be disconnected), this can be done using the algorithm of Stoer and
Wagner, see Section 6.1.

3.2 Properties of Minimum Cuts in Undirected Graphs

There are2|V | sets and each of them is possibly a minimum cut, but the number of minimum cuts in
a fixed undirected graph is polynomial in|V |. To see this, we need to discuss some well-known facts
about minimum cuts. These facts also help us to define a data structure calledcactus. A cactus can
represent all minimum cuts, but needs only space linear in|V |.

For short, for a graphG, let in this chapterλG always denote the weight of a minimum cut. If the
considered graphG is clear from the context, the indexG of λG is omitted.

Lemma 3.3. LetS be a minimum cut inG = (V, E). Then, for all∅ 6= T ⊂ S : w(T, S \ T) ≥ λ
2
.

Proof. Assumew(T, S\T) < λ
2
. Sincew (T, V \ S)+w (S \ T, V \ S) = λ, w.l.o.g.w (T, V \ S) ≤

λ
2

(if not, defineT asS\T). Thenw (T, V \ T) = w(T, S\T)+w (T, V \ S) < λ. Contradiction.

Lemma 3.4. LetA 6= B be two minimum cuts such thatT := A ∪B is also a minimum cut. Then

w
(
A, T̄

)
= w

(
B, T̄

)
= w (A \B, B) = w (A, B \ A) =

λ

2
.

Proof. As in the Figure 2, leta = w
(
A, T̄

)
, b = w

(
B, T̄

)
, α = w (A, B \ A) andβ = w (B, A \B).

Thenw
(
A, Ā

)
= a + α = λ, w

(
B, B̄

)
= b + β = λ andw

(
T, T̄

)
= a + b = λ. We also know that

w
(
A \B, B ∪ T̄

)
= a + β ≥ λ andw

(
B \ A, A ∪ T̄

)
= b + α ≥ λ. This system of equations and

inequalities has only one unique solution:a = α = b = β = λ
2

.

T

A B : a
b:

: a
: b

Sum of the weights
of edges that cross

Figure 2: Intersection of two minimum cuts A and B

Definition 3.5. A pair 〈S1, S2〉 is called crossing cut, ifS1, S2 are two minimum cuts and neither
S1 ∩ S2, S1 \ S2, S2 \ S1 nor S̄1 ∩ S̄2 is empty.

Lemma 3.6. Let 〈S1, S2〉 be crossing cuts and letA = S1 ∩ S2, B = S1 \ S2, C = S2 \ S1 and
D = S̄1 ∩ S̄2. Then

a. A, B, C andD are minimum cuts

8

b. w(A, D) = w(B, C) = 0

c. w(A, B) = w(B, D) = w(D, C) = w(C, A) = λ
2
.

Proof. Since we know thatS1 andS2 are minimum cuts, we can conclude

w
(
S1, S̄1

)
= w(A, C) + w(A, D) + w(B, C) + w(B, D) = λ

w
(
S2, S̄2

)
= w(A, B) + w(A, D) + w(B, C) + w(C, D) = λ

and since there is no cut with weight smaller thanλ, we know that

w
(
A, Ā

)
= w(A, B) + w(A, C) + w(A, D) ≥ λ

w
(
B, B̄

)
= w(A, B) + w(B, C) + w(B, D) ≥ λ

w
(
C, C̄

)
= w(A, C) + w(B, C) + w(C, D) ≥ λ

w
(
D, D̄

)
= w(A, D) + w(B, D) + w(C, D) ≥ λ

Summing up twice the middle and the right side of the first two equalities we obtain

2 · w(A, B) + 2 · w(A, C) + 4 · w(A, D) + 4 · w(B, C) + 2 · w(B, D) + 2 · w(C, D) = 4 · λ

and summing up both side of the four inequalities we have

2 · w(A, B) + 2 · w(A, C) + 2 · w(A, D) + 2 · w(B, C) + 2 · w(B, D) + 2 · w(C, D) ≥ 4 · λ

Thereforew(A, D) = w(B, C) = 0. In other words, there are no diagonal edges in Figure 3.
For a better imagination, let us assume that the length of the four inner line segments in the figure

separatingA, B, C andD is proportional to the sum of the weights of all edges crossing this corre-
sponding line segments. Thus the total lengthl of both horizontal or both vertical lines, respectively,
is proportional to the weightλ.

Let us assume the four line segments have different length, in other words, the two lines separating
the setsS1 from S̄1 or S2 from S̄2, respectively, do not cross each other exactly in the midpoint of the
square, then the total length of the separating line segments of one vertex set∆ = A, B, C or D is
shorter thenl. Thusw(∆, ∆̄) < λ. Contradiction.

As a consequence,w(A, B) = w(B, D) = w(D, C) = w(C, A) = λ
2

andw
(
A, Ā

)
= w

(
B, B̄

)
=

w
(
C, C̄

)
= w

(
D, D̄

)
= λ.

� � � � � � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A B

C D

: S1
� �

�

�

�

�

: S2

Figure 3: Crossing cuts〈S1, S2〉 with S1 := A ∪B andS2 := A ∪ C

A crossing cut inG = (V, E) partitions the vertex setV into exactly four parts. A more general
definition is the following, where the vertex set can be divided in three or more parts.

9

Definition 3.7. A circular partitionis a partition ofV into k ≥ 3 disjoint setsV1, V2, . . . , Vk such that

a. w (Vi, Vj) =

{
λ/2 : |i− j| = 1 mod k
0 : otherwise

b. If S is a minimum cut, then

1. S or S̄ is a proper subset of someVi or

2. the circular partition is a refinement of the partition defined by the minimum cutS. In
other words, the minimum cut is the union of some of the sets of the circular partition.

Let V1, V2, . . . , Vk be the disjoint sets of acircular partition, then for all1 ≤ a ≤ b < k, S :=(
∪b

i=aVi

)
is a minimum cut. Of course, the complement ofS containingVk is a minimum cut, too. Let

us define these minimum cuts ascircular partition cuts. Especially eachVi, 1 ≤ i ≤ k, is a minimum
cut (property a. of the last definition).

Consider a minimum cutS such that neitherS nor its complement is contained in a set of the
circular partition. SinceS is connected (Observation 3.2),S or its complement are equal to∪b

i=aVi

for some1 ≤ a < b < k.
Moreover, for all setsVi of a circular partition, there exists no minimum cutS such that〈Vi, S〉 is

a crossing cut (property b. of the last definition).

Definition 3.8. Two different circular partitionsP := {U1, . . . , Uk} and Q := {V1, . . . , Vl} are
compatibleif there is a uniquer ands, 1 ≤ r, s ≤ k, such that for alli 6= r : Ui ⊆ Vs and for all
j 6= s : Vj ⊆ Ur.

ak

ar

ar 1+

a1

ar-1

bl

bs

bs 1+

b1

bs-1

Figure 4: Example graphG = ({a1 . . . ar, b1 . . . bs} , E) shows two compatible partitionsP, Q de-
fined as follows:

P := {{a1}, . . . , {ar−1}, {ar, b1, . . . bl}, {ar+1}, . . . {ak}}

Q := {{b1}, . . . , {bs−1}, {bs, a1, . . . ak}, {bs+1}, . . . {bl}}

Lemma 3.9 ([Fle99]).All different circular partitions are pairwise compatible.

10

Proof. Consider two circular partitionsP andQ in a graphG = (V, E). All sets of the partitions are
minimum cuts. Assume a setS ∈ P is equal to the union of more than one and less than all sets of
Q. Exactly two setsA, B ∈ Q contained inS are connected by at least an edge to the verticesV \ S.
ObtainT from S by replacingA ⊂ S by an element ofQ connected toB and not contained inS.
Then〈S, T 〉 is a crossing cut, contradiction.

Therefore each set ofP or its complement is contained in some set ofQ.
Assume two sets ofP are contained in two different sets ofQ. Since each complement of the

remaining sets ofP cannot be contained in one set ofQ, each remaining set ofP must be contained
in one subset ofQ. Thus,P = Q. Contradiction.

Assume now all sets ofP are contained in one setY of Q. ThenY = V . Again a contradiction.
Since the union of two complements of sets inP is V andQ contains at least three sets, only

one complement can be contained in one set ofQ. Thus, there is exactly one setX of P that is not
contained inY of Q, butX̄ ⊂ Y .

Lemma 3.10. If S1, S2 andS3 are pairwise crossing cuts, then

S1 ∩ S2 ∩ S3 = ∅.

Proof. Assume that the lemma is not true. As shown in Figure 5, let

a = w
(
S3 \ (S1 ∪ S2) , S1 ∩ S2 ∩ S3

)
b = w ((S2 ∩ S3) \ S1, S2 \ (S1 ∪ S3))

c = w (S1 ∩ S2 ∩ S3, (S1 ∩ S2) \ S3)

d = w ((S1 ∩ S3) \ S2, S1 \ (S2 ∪ S3))

On one handS1 ∩ S2 is a minimum cut (Lemma 3.6.a.) so thatc ≥ λ
2

(Lemma 3.3). On the other
handc+b = c+d = λ

2
(Lemma 3.6.c.). Thereforeb = d = 0 and(S1 ∩ S3)\S2 = (S2 ∩ S3)\S1 = ∅.

If we apply Lemma 3.6.b. toS1 andS2, thenS1 ∩ S2 ∩ S3 andS3 \ (S1 ∪ S2) are not connected.
Contradiction.

S3

� � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

S1 S2

b

c

d

a

Figure 5: Three pairwise crossing cutsS1,S2 andS3

Lemma 3.11. If S1, S2 andT are minimum cuts withS1 ⊂ S2, T 6⊂ S2 and〈S1, T 〉 is a crossing cut,
thenA := (S2 \ S1) \ T , B := S1 \ T , C := S1 ∩ T andD := (S2 \ S1) ∩ T are minimum cuts,
w(A, B) = w(B, C) = w(C, D) = λ

2
andw(A, C) = w(A, D) = w(B, D) = 0.

11

Proof. Since〈S1, T 〉 and therefore〈S2, T 〉 is a crossing cut,

w(A ∪B, C ∪D) =
λ

2
(1), w(B, C) =

λ

2
(2),

w (A, B) + w
(
B, S1 ∪ S2

)
= w

(
B, A ∪ S1 ∪ S2

)
=

λ

2
(3) and

w
(
A, S1 ∪ S2

)
+ w

(
B, S1 ∪ S2

)
= w

(
A ∪B, S1 ∪ S2

)
=

λ

2
(4).

All equalities follow from Lemma 3.6.c.. Moreoverw (A, T \ S2) = 0, w
(
D, S1 ∪ S2

)
= 0 (3.6.b.)

andB, C are minimum cuts. Since (1), (2) and

w(A ∪B, C ∪D) = w(A, C) + w(A, D) + w(B, C) + w(B, D),

we can conclude thatw(A, C) = w(A, D) = w(B, D) = 0.
A consequence of (3) and (4) isw

(
A, S1 ∪ S2

)
= w (A, B). Moreover,w (A, B) ≥ λ

2
(Lemma

3.3) andw
(
A, S1 ∪ S2

)
≤ w

(
A, S1 ∪ S2

)
= λ

2
. Thereforew

(
A, S1 ∪ S2

)
= w(A, B) = λ

2
andA is

a minimum cut.
With a similar argument we can see,w(C, D) = λ

2
and D is a minimum cut. Therefore, the general

case shown in Figure 6(a) can always be transformed into the Figure 6(b).

: S1
� �

�

�

�

�

: S2 : T

� � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A D

B C

(a)

� � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A B C D

(b)

Figure 6: Intersection of three minimum cuts

For short, given some setsS1, . . . , Sk, let

Fα1,...,αk

S1,...Sk
=

k⋂
i=1

{
Si if αi = 1
Si if αi = 0

}
and

F{S1,...,Sk} =

 ⋃
α1,...,αk∈{0,1}k

F α1,...,αk

{S1,...,Sk}

 \ {∅} .

Lemma 3.12. Let 〈S1, S2〉 be a crossing cut andA ∈ F{S1,S2}. ChooseB ∈ F{S1,S2} such that
w (A, B) = λ

2
. For all crossing cuts〈B, T 〉:

w (A, B ∩ T) =
λ

2
or w

(
A, B ∩ T̄

)
=

λ

2

12

Proof. W.l.o.g. A = S1 ∩ S2 (if not, interchangeS1 and S̄1 or S2 and S̄2), B = S1 \ S2 (if not,
interchangeS1 andS2). Let C = S2 \ S1 andD = S̄1 ∩ S̄2. Then(∗) : w(B, C) = 0 (Lemma 3.6.b.).
Consider the following four cases:

T ⊂ (A ∪B) (Figure 7(a)) : w (A, B ∩ T) = λ
2

(Lemma 3.11)

T ∩D 6= ∅ : Because〈S1, T 〉 is a crossing cut,

w (A \ T, A ∩ T) + w (A \ T, B ∩ T) + w (B \ T, A ∩ T) + w (B \ T,B ∩ T)

= w ((A \ T) ∪ (B \ T) , (A ∩ T) ∪ (B ∩ T))

= w (S1 \ T, S1 ∩ T) =
λ

2
.

Together withw(B \ T,B ∩ T) ≥ λ
2

(Lemma 3.3), we can conclude

• w(A \ T,A ∩ T) = 0 and thereforeA ∩ T = ∅ or A \ T = ∅,
• w(A \ T,B ∩ T) = 0 (1) and

• w(A ∩ T, B \ T) = 0 (2).

Note thatw(A, B) = λ
2
. If A ∩ T = ∅, w(A, B ∩ T)

(1)
= 0 andw(A, B \ T) = λ

2
. Otherwise

A \ T = ∅, w(A, B \ T)
(2)
= 0 andw(A, B ∩ T) = λ

2
.

T 6⊂ (A ∪B) and T ∩D = ∅ (3) and (A ∪C) ⊂ T (4) (Figure 7(b)) :

w (A, T ∩B)
(∗)
= w (A ∪ C, T ∩B)

(3),(4)
= w ((A ∪ C) ∩ T, T \ (A ∪ C)) ≥ λ

2
,

since(A ∪ C) is a minimum cut (Lemma 3.3). Using the factw(A, B) = λ
2
, we getw (A, T ∩B) =

λ
2
.

T 6⊂ (A ∪B) and T ∩D = ∅ (5) and (A ∪C) 6⊂ T (Figure 7(c)) :

w (A, T ∩B)
(∗)
= w (A ∪ C, T ∩B)

(5)
= w (A ∪ C, T \ (A ∪ C)) =

λ

2
,

since〈A ∪ C, T 〉 is a crossing cut.

This concludes the proof.

Corollary 3.13. The intersection of a crossing cut partitions the vertices of the input graph into four
minimum cuts. Lemma 3.6.c. guarantees us that for each of the four minimum cutsA there exist
two of the three remaining minimum cutsB, C such thatw (A, B) = w (A, C) = λ

2
. Although setB

or C may be divided in smaller parts by further crossing cuts, there are always exactly two disjoint
minimum cutsX ⊆ B andY ⊆ C with w (A, X) = w (A, Y) = λ

2
.

13

: S1
� �

�

�

�

�

: S2 : T

� � � � � � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A B

C D

(a)

� � � � � � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A B

C D

(b)

� � � � � � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A B

C D

(c)

Figure 7: A minimum cut T and a crossing cut〈S1, S2〉

Proof. Assume the corollary is not true. Let〈S, X1&2〉 be the first crossing cut that divides the set
X1&2 with w (A, X1&2) = λ

2
into the two disjoint setsX1, X2 with w (A, X1) , w (A, X2) ≥ 0. But

then 〈S, B〉 or
〈
S̄, B

〉
is also a crossing cut, which divides B intoB1 andB2 with X1 ⊆ B1 and

X2 ⊆ B2. Thus,w (A, B1) , w (A, B2) ≥ 0. This is a contradiction to Lemma 3.12.

Different crossing cuts interact in a very specific way, as shown in the next theorem.

Theorem 3.14 ([Bix81, DKL76]). In a graphG = (V, E), for each partitionP of V into 4 disjoint
sets due to a crossing cut inG, there exists a circular partition inG that is a refinement ofP .

Proof. Given crossing cut〈S1, S2〉, choose the set

Λ :=
{
S1 ∩ S2, S1 \ S2, S2 \ S1, S1 ∪ S2

}
as a starting point.

As long as there is a crossing cut〈S, T 〉 for someT 6∈ Λ andS ∈ Λ, addT to Λ. This process
terminates since we can only add each setT ∈ P(V) into Λ once. All sets inΛ are minimum cuts.
Definition 3.7.b. is satisfied forΛ.

The disjoint minimum cutsF(Λ) give us a partitioning of the graph. All sets inF(Λ) can be built
by crossing cuts of minimum cuts inΛ. Therefore, each set inF(Λ) has exactly two neighbors, i.e.,
for each setX ∈ F(Λ), there exist exactly two different setsY, Z ∈ F(Λ) such thatw(X, Y) =
w(X, Z) = λ

2
(Corollary 3.13). For all other setsZ ∈ F(Λ), w(X,Z) = 0. SinceG is a connected

graph, all sets inF(Λ) can be ordered, so that Definition 3.7.a. holds. Observe that Definition 3.7.b.
is still true, since splitting the sets inΛ into smaller sets still allows a reconstruction of the sets in
Λ.

Lemma 3.15 ([Bix81, DKL76]). A graphG = (V, E) hasO
((|V |

2

))
many minimum cuts and this

bound is tight. This means that a graph can haveΩ
((|V |

2

))
many minimum cuts.

14

Proof. The upper bound is a consequence of the last theorem. Given a graphG = (V, E), the
following recursive function Z describes the number of minimum cuts inG:

Z (|V |) =

∑k
i=1 (Z (|Vi|)) +

(
k
2

) A circular partition
V1, . . . , Vk exists inG

Z (|S|) + Z (|V − S|) + 1
No circular partition, but a
minimum cutS exists inG

0 otherwise

It is easy to see that this function achieves the maximum in the case where a circular partition

W1, . . . ,W|V | exist. ThereforeZ (|V |) = O
((|V |

2

))
.

The lower bound is achieved by a simple cycle ofn vertices. There areΩ
((

n
2

))
pairs of edges.

Each pair of edges defines another two minimum cutsS and S̄. These two sets are separated by
simply removing the pair of edges.

4 Cactus Representation of All Minimum Cuts

In the following, a description of thecactusis given. First consider a graphG = (V, E) without any
circular partitions. Then due to the absence of all crossing cuts, all minimum cuts ofG are laminar.

A setS of sets is calledlaminar if for every pair of setsS1, S2 ∈ S, eitherS1 andS2 are disjoint
or S1 is contained inS2 or vice versa. Therefore each setT ∈ S contained in someS1, S2, . . . ∈ S
has a unique smallest superset. For clarity, we say that a tree has nodes and leaves, while a graph
has vertices. Each laminar setS can be represented in a tree. Each node represents a set inS; the
leaves represent the sets inS that contain no other sets ofS. The parent of a node representing a setT
represents the smallest superset ofT . This construction ends with a set of trees called forest. Add an
extra noder to the forest and connect all roots of the trees of the forest by an edge to this new noder,
which is now the root of one big tree. Therefore, the nodes of one tree represent all sets ofS, and the
root of the tree represents the entire underlying set, i.e. the union of all elements of allS ∈ S. If this
union hasn elements, then such a tree can have at mostn leaves and therefore at most2n− 1 nodes.

Since all minimum cutsG are laminar, these can be represented by a treeTG defined as follows.
Consider the smaller vertex set of every minimum cut. Denote this set of sets asΛ. If the vertex
sets of a minimum cut are of same size, take one of these sets. Represent each set ofΛ by a single
node. Two nodes corresponding to minimum cutsA andB in G are connected by an edge ifA ⊂ B
and there is no other minimum cutC such thatA ⊂ C ⊂ B. The roots of the forest represent the
minimum cuts inΛ that are contained in no other minimum cut inΛ. Again, connect all roots of the
forest by an edge to a single extra node that we define as root of the tree.

Because removing one edge in the tree separates a subtree from the rest of the tree, let us define the
following mapping: each vertex of the graphG is mapped to the node of the treeTG that corresponds
to the smallest cut containing this vertex. All vertices that are contained in no node ofTG are mapped
to the root ofTG.

For each minimum cutS of G, the vertices ofS are then mapped to some set of nodesX such that
there is an edge and removing this edge separates the nodesX from the rest of the tree. Conversely,
removing one edge fromTG separates the nodes of the tree into two parts such that the set of all
vertices mapped into one part is a minimum cut.

15

If G has no circular partitions, the treeTG is thecactusCG for G. The number of nodes of a cactus
is bounded by2 |V | − 1.

Consider a graphG = (V, E) that has only one circular partitionV1, . . . Vk. The circular partition
cuts can be represented by a circle ofk nodes. For1 ≤ i ≤ k, the vertices of each partVi are
represented by one nodeNi of the circle in such a way that two partsVi andVi+1 are represented by
two adjacent nodes.

Now we make use of the fact that for each minimum cutS that is no circular partition cut, either
S or S̄ is a proper subset of aVi. Therefore, we can construct the treeT(Vi,E) for all minimum cuts
that are a subset ofVi, but now with the restriction that only the vertices ofVi are mapped to this tree.
The root ofT(Vi,E) corresponds exactly to the setVi. Thus we can merge nodeNi of the circle and
the root ofT(Vi,E) for all 1 ≤ i ≤ k. This circle connected with all the trees is the cactusCG for G.
The number of nodes is equal to the sum of all nodes in the treesT(Vi,E) with 1 ≤ i ≤ k. Therefore,
the number of nodes of the cactus is bounded by2 |V | − 1 and again, there is a1− 1 correspondence
between minimum cuts inG and the separation ofCG into two parts.

Now consider a graphG = (V, E) with the circular partitionsP1, . . . , Pz. Take all circular par-
titions as a set of sets. Construct a cactusCG representing the circular partition cuts ofG in the
following way.

The vertices of each setF ∈ FP1∪...∪Pz are mapped to one node and two nodes are connected, if
for their corresponding setsF1 andF2, w (F1, F2) > 0. Then each circular partition creates one circle
in CG. Since all circular partitions are pairwise compatible, the circles are connected by edges that
are not part of any circle. The cactusCG is now a tree-like graph (Figure 8).

After representing the remaining minimum cuts that are not part of a circular partition, we get the
cactusTC for G. As before, the number of nodes of the cactus is bounded by2 |V | − 1.

P P1 2

3
P

5
P

4
P

6
P

Figure 8: A cactus representing the circular partition cuts of 6 circular partitions

5 Flow-Based Connectivity Algorithms

We distinguish algorithms that checkk-vertex/edge-connectivity of a graphG for a given natural
numberk, and algorithms that compute the vertex/edge-connectivityκ(G) or λ(G) respectively. (A

16

ts s’ s"

a’ a"a

b b’ b"

t’ t"

Figure 9: Construction of the directed graphḠ that is derived from the undirected input graphG to
compute the local vertex-connectivityκG(s, t)

third kind of algorithms computes the maximalk-vertex/edge-connected subgraphs (k-components),
which is the subject of discussion in Section 7.)

Most of the algorithms for computing vertex- or edge-connectivities are based on the computation
of the maximum flow through a derived network. While the flow problem in undirected graphs can be
reduced to a directed flow problem of comparable size [FF62], for the other direction only a reduction
with increased capacities is known [PR75]. There were several algorithms published for the solution
of (general) flow problems, see Table 1.

Better algorithms for the more restricted version of unit capacity networks exist.

Definition 5.1. A network is said to be aunit capacity network(or 0-1 network) if the capacity is1
for all edges. A unit capacity network is oftype 1if it has no parallel edges. It is calledtype 2if for
each vertexv (v 6= s, v 6= t) either the in-degreed−(v) or the out-degreed+(v) is only1.

Lemma 5.2. The following time complexity results for the computation of a maximum flow in unit
capacity networks are known:

1. For unit capacity networks, the computation of the maximum flow can be done (using Dinitz’s
algorithm) inO(m3/2).

2. For unit capacity networks of type 1, the time complexity of Dinitz’s algorithm isO(n2/3m).

3. For unit capacity networks of type 2, the time complexity of Dinitz’s algorithm isO(n1/2m).

For a proof of the lemma see [ET75, Eve79, Kar73].
While the best bound for directed unit capacity flow problems differs only by logarithmic factors

from the best known bound for integer capacities, even better bounds for the case of undirected unit
capacity networks exist:O(min(m, n3/2)

√
m) by Goldberg and Rao [GR99],O(n7/6m2/3) by Karger

and Levine [KL98].

5.1 Vertex-Connectivity Algorithms

The basis of all flow-based connectivity algorithms is a subroutine that computes the local connectiv-
ity between two distinct verticess andt. Even [Eve73, Eve75, Eve79] presented a method for comput-
ing κG(s, t) that is based on the following construction: For the given graphG = (V, E) havingn ver-
tices andm edges we derive a directed graphḠ = (V̄ , Ē) with |V̄ | = 2n and|Ē| = 2m+n by replac-
ing each vertexv ∈ V with two verticesv′, v′′ ∈ V̄ connected by an (internal) edgeev = (v′, v′′) ∈ Ē.
Every edgee = (u, v) ∈ E is replaced by two (external) edgese′ = (u′′, v′), e′′ = (v′′, u′) ∈ Ē, see
Figure 9.

17

1955 Dantzig & Fulkerson [FD55, DF56]
Network simplex method O(n2mU) [Dan51b, Dan51a]

1956 Ford & Fulkerson [FF56, FF57]
Augmenting path / Labeling O(nmU) [FF62]

1969 Edmonds & Karp [EK72]
Shortest augmenting path O(nm2) [Zad72]
Capacity scaling O(m2 log U)

1970 Dinitz [Din70]
Layered network / blocking flow O(n2m)

1973 Dinitz [Din73, Gab85]
Capacity scaling O(nm log U)

1974 Karzanov [Kar74]
Preflow-push / layered network O(n3)

1977 Cherkassky O(n2
√

m) [Che77, Che94]
1978 Malhotra, Kumar, Maheshwari O(n3) [MKM78]
1978 Galil O(n5/3m2/3) [Gal80]
1979 Galil & Naamad / Shiloach O(nm(log n)2) [GN80, Shi78]
1980 Sleater & Tarjan [ST83]

Dynamic trees O(nm log n)
1985 Goldberg [Gol85]

Push-relabel O(n3)
1986 Goldberg & Tarjan [GT88]

Push-relabel O(nm log(n2/m))
1987 Ahuja & Orlin [AO89]

Excess scaling O(nm + n2 log U)
1990 Cheriyan, Hagerup, Mehlhorn [CHM96]

Incremental algorithm O(n3/ log n)
1990 Alon [CH95, Alo90]

Derandomization O(nm + n8/3 log n)
1992 King, Rao, Tarjan [CH95, KRT92]

Online game O(nm + n2+ε)
1993 Phillips & Westbrook [PW98]

Online game O(nm logm/n n + n2 log2+ε n)

1998 Goldberg & Rao [GR98]
Non-unit length function O(min(n2/3,

√
m)m log n2

m
log U)

Table 1: The history of max-flow algorithms
U denotes the largest possible capacity (integer capacities case only)

18

Year Author(s) MaxFlow calls Computeκ Ref.
1974 Even &

Tarjan
(κ + 1)(n− δ − 1) O(κn3/2m)

O(n1/2m2)
[ET75]

1984 Esfahanian
& Hakimi

n − δ − 1 +
κ(2δ−κ−3)/2

O((n−δ +κδ−κ2/2) ·
n2/3m)

[EH84]

1996 Henzinger,
Rao,
Gabow

O(min{κ3 + n, κn}κn) [HRG96]

Table 2: The history of computing the vertex-connectivityκ

Year Author(s) MaxFlow calls Checkk-VC Ref.

1969 Kleitman k(n− δ)−
(

k + 1

2

)
O(k2n3) [Kle69]

1973 Even n− k +

(
k

2

)
O(k3m + knm) [Eve75]

1984 Esfahanian & Hakimi n− k +

(
k − 1

2

)
O(k3m + knm) [EH84]

Table 3: The history of checking vertex-connectivity

κ(s, t) is now computed as the maximum flow in̄G from sources′′ to the targett′ with unit ca-
pacities for all edges2. For a proof of correctness see [Eve79]. For each pairv′, v′′ ∈ V̄ representing
a vertexv ∈ V the internal edge(v′, v′′) is the only edge that emanates fromv′ and the only edge en-
teringv′′, thus the network̄G is of type 2. According to Lemma 5.2 the computation of the maximum
flow resp. the local vertex-connectivity has time complexityO(

√
nm).

A trivial algorithm for computingκ(G) could determine the minimum for the local connectivity
of all pairs of vertices. SinceκG(s, t) = n − 1 for all pairs(s, t) that are directly connected by an
edge, this algorithm would maken(n−1)

2
−m calls to the flow-based subroutine. We will see that we

can do much better.
If we consider a minimum vertex separatorS ⊂ V that separates a ‘left’ vertex subsetL ⊂ V

from a ‘right’ subsetR ⊂ V , we could computeκ(G) by fixing one vertexs in either subsetL or R
and computing the local connectivitiesκG(s, t) for all verticest ∈ V \ {s} one of which must lie on
the other side of the vertex cut. The problem is: how to select a vertexs such thats does not belong
to every minimum vertex separator? Sinceκ(G) ≤ δ(G) (see Theorem 2.1), we could tryδ(G) + 1
vertices fors, one of which must not be part of all minimum vertex cuts. This would result in an
algorithm of complexityO((δ + 1) · n ·

√
nm)) = O(δn3/2m)

Even and Tarjan [ET75] proposed Algorithm 1 that stops computing the local connectivities if the
size of the current minimum cut falls below the number of examined vertices.

The resulting algorithm examines not more thanκ + 1 vertices in the loop for variablei. Each
vertex has at leastδ(G) neighbors, thus at mostO((n − δ − 1)(κ + 1)) calls to the maximum flow
subroutine are carried out. Sinceκ(G) ≤ 2m/n (see Theorem 2.9), the minimum capacity is found
not later than in call2m/n + 1. As a result, the overall time complexity isO(

√
nm2).

Esfahanian and Hakimi [EH84] further improved the algorithm by the following observation:

2Firstly, Even usedc(ev) = 1, c(e′) = c(e′′) =∞ which leads to the same results.

19

Algorithm 1 : Vertex-connectivity computation by Even & Tarjan
Input : An (undirected) graphG = (V, E)

Output : κ(G)

κmin ← n− 1;
i← 1;
while i ≤ κmin do

for j ← i + 1 to n do
if i > κmin then

break ;

else if{vi, vj} /∈ E then
computeκG(vi, vj) using the MaxFlow algorithm;
κmin ← min{κmin, κG(vi, vj)};

return κmin;

Lemma 5.3. If a vertexv belongs to all minimum vertex-separators then there are for each minimum
vertex-cutS two verticesl ∈ LS andr ∈ RS that are adjacent tov.

Proof. Assumev takes part in all minimum vertex-cuts ofG. Consider the partition of the vertex set
V induced by a minimum vertex-cutS with a componentL (the ‘left’ side) of the remaining graph and
the respective ‘right’ sideR. Each side must contain at least one ofv’s neighbors, because otherwisev
would not be necessary to break the graph into parts. Actually each side having more than one vertex
must contain2 neighbors since otherwise replacingv by the only neighbor would be a minimum cut
withoutv, in contrast to the assumption.

These considerations suggest Algorithm 2. The first loop makesn − δ − 1 calls to the MaxFlow
procedure, the second requiresκ(2δ − κ − 3)/2 calls. The overall complexity is thusn − δ − 1 +
κ(2δ − κ− 3)/2 calls of the maximum flow algorithm.

5.2 Edge-Connectivity Algorithms

Similar to the computation of the vertex-connectivity, the calculation of the edge-connectivity is based
on a maximum-flow algorithm that solves the local edge-connectivity problem, i.e. the computation
of λG(s, t). Simply replace all undirected edges by pairs of antiparallel directed edges with capacity1
and compute the maximum flow from the sources to the sinkt. Since the resulting network is of
type 1, the computation is, due to Lemma 5.2, of complexityO(min{m3/2, n2/3m}).

A trivial algorithm for computingλ(G) could simply calculate the minimum of the local edge-
connectivities for all vertex pairs. This algorithm would thus maken(n− 1)/2 calls to the MaxFlow
subroutine. We can easily improve the complexity of the algorithm if we consider only the local
connectivitiesλG(s, t) for a single (fixed) vertexs and all other verticest. Since one of the vertices
t ∈ V \ {s} must be separated froms by an arbitrary minimum edge-cut,λ(G) equals the minimum
of all these values. The number of MaxFlow calls is thereby reduced ton − 1. The overall time
complexity is thusO(nm · min{n2/3, m1/2}) (see also [ET75]). The aforementioned algorithm also
works if the whole vertex set is replaced by a subset that contains two vertices that are separated by

20

Algorithm 2 : Vertex-connectivity computation by Esfahanian & Hakimi
Input : An (undirected) graphG = (V, E)

Output : κ(G)

κmin ← n− 1;
Choosev ∈ V having minimum degree,d(v) = δ(G);
Denote the neighborsN(v) by v1, v2, . . . ,vδ;

foreachnon-neighborw ∈ V \ (N(v) ∪ {v}) do
computeκG(v, w) using the MaxFlow algorithm;
κmin ← min{κmin, κG(v, w)};

i← 1;
while i ≤ κmin do

for j ← i + 1 to δ − 1 do
if i ≥ δ − 2 or i ≥ κmin then

return κmin;

else if{v, w} /∈ E then
computeκG(vi, vj) using the MaxFlow algorithm;
κmin ← min{κmin, κG(vi, vj)};

i← i + 1;
return κmin;

some minimum edge-cut. Consequently, the next algorithms try to reduce the size of this vertex set
(which is called aλ-covering). They utilize the following lemma. LetS be a minimum edge-cut of a
graphG = (V, E) and letL, R ⊂ V be a partition of the vertex set such thatL andR are separated
by S.

Lemma 5.4. If λ(G) < δ(G) then each component ofG− S consists of more thanδ(G) vertices, i.e.
|L| > δ(G) and|R| > δ(G).

Proof. Let the elements ofL be denoted by{l1, l2, . . . , lk} and denote the induced edges byE[L] =

Year Author(s) MaxFlow calls Checkk-EC
Computeλ

1975 Even, Tarjan [ET75]
n− 1 O(nm ·min{n2/3, m1/2})

1984 Esfahanian, Hakimi [EH84]
< n/2 O(λnm)

1987 Matula [Mat87] O(kn2)
O(λn2)

Table 4: The history of edge-connectivity algorithms

21

E(G[L]).

δ(G) · k ≤
k∑

i=1

dG(li)

≤ 2 · |E[L]|+ |S|

≤ 2 · k(k − 1)

2
+ |S|

< k(k − 1) + δ(G)

From δ(G) · (k − 1) < k(k − 1) we conclude|L| = k > 1 and |L| = k > δ(G) (as well as
|R| > δ(G)).

Corollary 5.5. If λ(G) < δ(G) then each component ofG− S contains a vertex that is not incident
to any of the edges inS.

Lemma 5.6. Assume again thatλ(G) < δ(G). If T is a spanning tree ofG then all components
of G − S contain at least one vertex that is not a leaf ofT (i.e. the non-leaf vertices ofT form a
λ-covering).

Proof. Assume the converse, that is all vertices inL are leaves ofT . Thus no edge ofT has both ends
in L, i.e. |L| = |S|. Lemma 5.4 immediately implies thatλ(G) = |S| = |L| > δ(G), a contradiction
to the assumption.

Lemma 5.6 suggests an algorithm that first computes a spanning tree of the given graph, then se-
lects an arbitrary inner vertexv of the tree and computes the local connectivityλ(v, w) to each other
non-leaf vertexw. The minimum of these values together withδ(G) yields exactly the edge con-
nectivity λ(G). This algorithm would profit from a larger number of leaves inT but, unfortunately,
finding a spanning tree with maximum number of leaves isNP-hard. Esfahanian and Hakimi [EH84]

Algorithm 3 : Spanning tree computation by Esfahanian & Hakimi
Input : An (undirected) graphG = (V, E)

Output : Spanning TreeT with a leaf and an inner vertex inL andR, resp.

Choosev ∈ V ;
T ← all edges incident atv;
while |E(T)| < n− 1 do

Select a leafw in T such that for all leavesr in T :
|N(w) ∩ (V − V (T))| ≥ |N(r) ∩ (V − V (T))|;
T ← T ∪G[w ∪ {N(w) ∩ (V − V (T))}]

return T ;

proposed an algorithm for computing a spanning treeT of G such that both,L andR of some min-
imum edge separator contain at least one leaf ofT , and due to Lemma 5.6 at least one inner vertex
(see Algorithm 3). The edge-connectivity of the graph is then computed by Algorithm 4. SinceP is
chosen to be the smaller of both sets, leaves and non-leaves, the algorithm requires at mostn/2 calls
to the computation of a local connectivity, which yields an overall complexity ofO(λmn).

This could be improved by Matula [Mat87], who made use of the following lemma.

22

Algorithm 4 : Edge-connectivity computation by Esfahanian & Hakimi
Input : An (undirected) graphG = (V, E)

Output : λ(G)

Construct a spanning treeT using Algorithm 3;
Let P denote the smaller of the two sets, either the leaves or the inner nodes ofT ;
Select a vertexu ∈ P ;
c← min{λG(u, v) : v ∈ P \ {u}};
λ← min(δ(G), c);
return λ;

Lemma 5.7. In caseλ(G) < δ(G), each dominating set ofG is also aλ-covering ofG.

Similar to the case of the spanning tree, the edge-connectivity can now be computed by choos-
ing a dominating setD of G, selecting an arbitrary vertexu ∈ D, and calculating the local edge-
connectivities betweenu and all other vertices inD. The minimum of all values together with the
minimum degreeδ(G) gives the result. While finding a dominating set of minimum cardinality is
NP-hard in general, the connectivity algorithm can be shown to run in timeO(nm) if the dominat-
ing set is chosen according to Algorithm 5.

Algorithm 5 : Dominating set computation by Matula
Input : An (undirected) graphG = (V, E)

Output : A dominating setD

Choosev ∈ V ;
D ← {v};
while V \ (D ∪N(D)) 6= ∅ do

Select a vertexw ∈ V \ (D ∪N(D));
D ← D ∪ {w};

return D;

6 Non-Flow-Based Algorithms

We consider now connectivity algorithms that are not based on network flow techniques.

6.1 The Minimum Cut Algorithm of Stoer and Wagner

In 1994 an algorithm for computing a minimum capacity cut of an edge-weighted graph was published
by Stoer and Wagner [SW97]. It was unusual not only due to the fact that it did not use any maximum
flow technique as a subroutine. Somewhat surprisingly, the algorithm is very simple in contrast to all
other algorithms (flow-based and non-flow-based) that were published so far. In principle, each phase
of the algorithm is very similar to Prim’s minimum spanning tree algorithm and Dijkstra’s shortest

23

Algorithm 6 : Minimum capacity cut computation by Stoer & Wagner
Input : An undirected graphG = (V, E)

Output : A minimum cutCmin corresponding toλ(G)

Choose an arbitrary start vertexa;
Cmin ← undefined;
V ′ ← V ;
while |V ′| > 1 do

A← {a};
while A 6= V ′ do

Add toA the most tightly connected vertex;
Adjust the capacities betweenA and the vertices inV ′ \ A;

C := cut ofV ′ that separates the vertex added last toA from the rest of the graph;
if Cmin = undefinedor w(C) < w(Cmin) then

Cmin ← C;

Merge the two vertices that were added last toA;

return Cmin;

path computation, which leads to an equivalent running time ofO(m+n log n) per phase and overall
time complexity ofO(nm + n2 log n).

After choosing an arbitrary start vertexa, the algorithm maintains a vertex subsetA that is initial-
ized with the start vertex and that grows by repeatedly adding a vertexv /∈ A that has a maximum
sum of weights for its connections to vertices inA. If all vertices have been added toA, the last
two verticess and t are merged into one. While edges betweens and t are simply deleted by the
contraction, all edges froms andt to another vertex are replaced by an edge weighted with the sum
of the old weights. The cut that separates the vertex added last from the rest of the graph is called the
cut-of-the-phase.

Lemma 6.1. The cut-of-the-phase is a minimums-t-cut in the current (modified) graph, wheres and
t are the two vertices added last toA in the phase.

Proof. Consider an arbitrarys-t-cut C for the last two vertices. A vertexv 6= a is calledactiveif v
and its immediate predecessor with respect to the addition toA reside in different parts ofC. Let Av

be the set of vertices that are inA just beforev is added and letw(S, v) for a vertex setS denote the
capacity sum of all edges betweenv and the vertices inS.

The proof shows, by induction on the active vertices, that for each active vertexv the adjacency
to the vertices added before (Av) does not exceed the weight of the cut ofAv ∪ {v} induced byC
(denoted byCv). Thus it is to prove that

w(Av, v) ≤ w(Cv)

For the base case, the inequality is satisfied since both values are equal for the first active vertex.
Assuming now that the proposition is true for all active vertices up to active vertexv, the value for the
next active vertexu can be written as

24

w(Au, u) = w(Av, u) + w(Au \ Av, u)
≤ w(Av, v) + w(Au \ Av, u) (w(Av, u) ≤ w(Av, v))
≤ w(Cv) + w(Au \ Av, u) (by induction assumption)
≤ w(Cu)

The last line follows because all edges betweenAu \ Av andu contribute their weight tow(Cu)
but not tow(Cv).

Sincet is separated byC from its immediate predecessors, it is always an active vertex; thus the
conclusionw(At, t) ≤ w(Ct) completes the proof.

Theorem 6.2.A cut-of-the-phase having minimum weight among all cuts-of-the-phase is a minimum
capacity cut of the original graph.

Proof. For the case where the graph consists of only2 vertices, the proof is trivial. Now assume
|V | > 2. The following two cases can be distinguished:

1. Either the graph has a minimum capacity cut that is also a minimums-t-cut (wheres andt are
the vertices added last in the first phase), then, according to Lemma 6.1, we conclude that this
cut is a minimum capacity cut of the original graph.

2. Otherwise the graph has a minimum cut wheres and t are on the same side. Therefore the
minimum capacity cut is not affected by merging the verticess andt.

Thus, by induction on the number of vertices, the minimum capacity cut of the graph is the cut-of-
the-phase having minimum weight.

6.2 Randomized Algorithms

In 1982, Becker et al. [BDD+82] proposed a probabilistic variant of the Even/Tarjan vertex connec-
tivity algorithm [ET75]. It computes the vertex connectivity of an undirected graphG with error
probability at mostε in expected timeO((− log ε)n3/2m) provided thatm ≤ 1

2
dn2 for some constant

d < 1. This improved the computation ofκ for sparse graphs.
A few years later, Linial, Lovasz and Wigderson provided probabilistic algorithms [LLW86,

LLW88] that were based on a geometric, algebraic and physical interpretation of graph connectiv-
ity. As a generalization of the notion ofs-t-numbering, they showed that a graphG is k-connected if
and only if it has a certain nondegenerate convex embedding inR

k−1, i.e., specifying anyk vertices
of G, the vertices ofG can be represented by points ofRk−1 such that nok are in a hyperplane and
each vertex is in the convex hull of its neighbors, except for thek specified vertices. As a result, they
proposed a Monte-Carlo algorithm running in timeO(n2.5 + nκ2.5) (that errs with probability less
than1/n) and a Las Vegas algorithm with expected runtime ofO(n2.5 + nκ3.5).

A subsequent work of Cheriyan and Reif [CR92] generalized this approach to directed graphs,
which yielded a Monte Carlo algorithm with running timeO((M(n) + nM(k)) · log n) and error
probability< 1/n, and a Las Vegas algorithm with expected timeO((M(n) + nM(k)) · k), where
M(n) denotes the complexity for the multiplication ofn× n matrices.

Henzinger, Rao and Gabow [HRG96] further improved the complexities by giving an algorithm
that computes the vertex connectivity with error probability at most1/2 in (worst-case) timeO(nm)
for digraphs andO(κn2) for undirected graphs. For weighted graphs they proposed a Monte Carlo
algorithm that has error probability1/2 and expected running timeO(nm log(n2/m)).

25

1

1

1

1

3 1

2 34

2 32

A

ED

B

H

C

F

G

(a)

1

1

1

1

3 1

24

2 32

3

b

e

d

a

c

f

s

t

(b)

11

1

3

24

22

1

1

3

A

ED

B C

G
F
H

(c)

11

1

3

24

22

1

1

3

ta

b c

d

e

s

(d)

1

1

3

24

22

1

1

1

A

ED

B

G

C
F
H

(e)

1

1

3

24

22

1

1

1

b t

a

c

d

s

(f)

1

3

24

2

3

1

1

A

ED

G

B
C
F
H

(g)

1

3

24

2

3

1

1

b

a

c

s

t

(h)

2

4

5

1

3

1

A

D

E

B
C
F
G
H

(i)

2

4

5

1

3

1
t s

a

b

(j)

2

7

2A

FGH
D

BCE

(k)

2

7

2

t

a

s

(l)

4

4s t

BCDE
FGHA

(m)

Figure 10: Example for the Stoer/Wagner algorithm. Upper case letters are vertex names, lower case
letters show the order of addition to the setS. The minimum cut{ABDEG} | {CFH} has capacity3
and is found in Part (f) (third phase)

26

7 Basic Algorithms for Components

Super-linear algorithms for the computation of the blocks and the cut-vertices as well as for the
computation of the strongly connected components of a graph were proposed in [Pat71] and [Lei66,
Pur68, Pur70, Mun71], respectively. Later on, linear time algorithms were published by Hopcroft and
Tarjan [HT73b, Tar72].

7.1 Biconnected Components

A problem that arises from the question which nodes of a network always remain connected in case
one arbitrary node drops out is the computation of thebiconnected (or non-separable) componentsof
a graph, also calledblocks.

Let us consider a depth-first search in an undirected and connected graphG = (V, E) where we
label the traversed vertices with consecutive numbers from1 to n = |V | using a pre-order numbering
num. We observe that we inspect two kinds of edges: the ones that lead to unlabeled vertices become
tree edges, and the ones that lead to vertices that were already discovered and labeled in a former step
we callbackward edges.

For each vertexv we keep the smallest label of any vertex that is reachable via arbitrary tree edges
followed by not more than one backward edge, i.e. the smallest number of any vertex that lies on
some cycle withv. Whenever a new vertex is discovered by the DFS, thelow -entry of that vertex is
initialized by its own number.

If we return from a descent to a childw – i.e. from a tree edge(v, w) –, we updatelow [v] by
keeping the minimum of the child’s entrylow [w] and the current valuelow [v]. If we discover a
backward edge(v, w), we updatelow [v] to be the minimum of its old value and the label ofw.

To detect the cut-vertices of the graph we can now utilize the following lemma:

Lemma 7.1. We follow the method described above for computing the values oflow andnumduring
a DFS traversal of the graphG. A vertexv is a cut-vertex if and only if one of the following conditions
holds:

1. if v is the root of the DFS tree and is incident to at least2 DFS tree edges,

2. if v is not the root, but there is a childw of v such thatlow [w] ≥ num[v].

Proof. 1. Assume thatv is the root of the DFS tree.

→ If v is incident to more than one tree edge, the children would be disconnected by remov-
ing vertexv from G.

← If v is a cut-vertex then there are verticesx, y ∈ V that are disconnected by removingv,
i.e.v is on every path connectingx andy. W.l.o.g. assume that the DFS discoversx before
y. y can only be discovered after the descent tox returned tov, thus we conclude thatv
has at least two children in the DFS tree.

2. Assume now thatv is not the root of the DFS tree.

→ If there is a childw of v such thatlow [w] ≥ num[v] this means that there is only one path
connecting this successorw with all ancestors ofv. Thusv is a cut-vertex.

27

F

A B

CD E

G

H

D

G

H

C

B F

A E

A B

CD E

G

H

F

Figure 11: Computation of biconnected components in undirected graphs.
Left: the undirected input graph. Middle: dfs tree with forward (straight) and backward (dashed)
edges. Right: the blocks and articulation nodes of the graph.

← If v is a cut-vertex, there are verticesx, y ∈ V such thatv is on every path connectingx
andy. If all children of v had an indirect connection (via arbitrary tree edges followed
by one backward edge) to any ancestor ofv the remaining graph would be connected.
Therefore one of the children must havelow [w] ≥ num[v].

This concludes the proof.

To find the biconnected components, i.e. the partition of the edges, we put every new edge on
a stack. Whenever the conditionlow [w] ≥ num[v] holds after returning from a recursive call for a
child w of v, the edges on top of stack including edge(v, w) form the next block (and are therefore
removed from the stack).

7.2 Strongly Connected Components

We now consider the computation of the strong components, i.e., the maximal strongly connected
subgraphs in directed graphs. Analogously to the computation of biconnected components in undi-
rected graphs, we use a modified depth-first search that labels the vertices by consecutive numbers
from 1 to n. In case the traversal ends without having discovered all vertices we have to restart the
DFS at a vertex that has not been labeled so far. The result is a spanning forestF .

The edgese = (v, w) that are inspected during the DFS traversal are divided into the following
categories:

1. All edges that lead to unlabeled vertices are calledtree edges(they belong to the trees of the
DFS forest).

2. The edges that point to a vertexw that was already labeled in a former step fall into the following
classes:

(a) If num[w] > num[v] we calle a forward edge.

(b) Otherwise, ifw is an ancestor ofv in the same DFS tree we calle abackward edge.

(c) Otherwisee is called across edge(because it points from one subtree to another).

An example is shown in Figure 12.
Two verticesv, w are in the same strong component if and only if there exist directed paths from

v to w and fromw to v. This induces an equivalence relation as well as a partition of the vertex set

28

2

3 4 5

1

6

7

8

9

10

11

2

3 4 5

1

6

7

8

9

10

11

Figure 12: DFS forest for computing strongly connected components in directed graphs: tree, for-
ward, backward, and cross edges

(in contrast to biconnected components where the edge set is partitioned while vertices may belong
to more than one component).

During the DFS traversal we want to detect the roots of the strong components, i.e. in each
component the vertex with smallest DFS label. As in the case of the biconnected components we
must decide for each descendantw of a vertexv whether there is also a directed path that leads back
from w to v. Now we definelowlink [v] to be the smallest label of any vertex in the same strong
component that can be reached via arbitrarily many tree arcs followed by at most one backward or
cross edge.

Lemma 7.2.A vertexv is the root of a strong component if and only if both of the following conditions
are met:

1. There is no backward edge fromv or one of its descendants to an ancestor ofv.

2. There is no cross edge(v, w) from v or one of its descendants to a vertexw such that the root
of w’s strong component is an ancestor ofv.

This is equivalent with the decision whetherlowlink [v] = num[v].

Proof. → Assume conversely that the condition holds butu is the root ofv’s strong component
with u 6= v. There must exist a directed path fromv to u. The first edge of this path that points
to a vertexw that is not a descendant ofv in the DFS tree is a back or a cross edge. This implies
lowlink [v] ≤ num[w] < num[v], since the highest numbered common ancestor ofv andw is
also in this strong component.

← If v is the root of some strong component in the actual spanning forest, we may conclude that
lowlink [v] = num[v]. Assuming the opposite (i.e.lowlink [v] < num[v]), some proper
ancestor ofv would belong to the same strong component. Thusv would not be the root of the
SCC.

This concludes the proof.

If we put all discovered vertices on a stack during the DFS traversal (similar to the stack of edges
in the computation of the biconnected components) the lemma allows us to ‘cut out’ the strongly
connected components of the graph.

It is apparent that the above algorithms share their similarity due to the fact that they are based on
the detection of cycles in the graph. If arbitrary instead of simple cycles (for biconnected components)
are considered, this approach yields a similar third algorithm that computes the bridge- (or2-edge-)
connected components (published by Tarjan [Tar74]).

29

7.3 Triconnectivity

First results on graph triconnectivity were provided by Mac Lane [ML37] and Tutte [Tut61, Tut66].
In the sixties, Hopcroft and Tarjan published a linear time algorithm for dividing a graph into its
triconnected components that was based on depth-first search [HT72, HT73a, HT74]. Miller and Ra-
machandran [MR92] provided another algorithm based on a method for finding open ear decomposi-
tions together with an efficient parallel implementation. It turned out that the early Hopcroft/Tarjan
algorithm was incorrect, which was then modified by Gutwenger and Mutzel [GM01]. They modified
the faulty parts to yield a correct linear time implementation of SPQR-trees. We now briefly review
their algorithm.

Definition 7.3. Let G = (V, E) be a biconnected (multi-) graph. Two verticesa, b ∈ V are called a
separation pairof G if the induced subgraph on the verticesV \ {a, b} is not connected.

The pair(a, b) partitions the edges ofG into equivalence classesE1, . . . , Ek (separation classes),
s.t. two edges belong to the same class exactly if both lie on some pathp that contains neithera nor b
as an inner vertex, i.e. if it containsa or b it is an end vertex ofp. The pair(a, b) is a separation pair if
there are at least two separation classes, except for the following special cases: there are exactly two
separation classes, and one of them consists of a single edge, or if there are exactly three separation
classes that all consist of a single edge. The graphG is triconnected if it contains no separation pair.

Definition 7.4. Let (a, b) be a separation pair of a biconnected multigraphG and let the separation
classesE1..k be divided into two groupsE ′ =

⋃l
i=1 Ei andE ′′ =

⋃k
i=l+1 Ei, s.t. each group contains

at least two edges. The two graphsG′ = (V (E ′∪e), E ′∪e) andG′′ = (V (E ′′∪e), E ′′∪e) that result
from dividing the graph according to the partition[E ′, E ′′] and adding the newvirtual edgee = (a, b)
to each part are calledsplit graphsof G (and they are again biconnected). If the split operation is
applied recursively to the split graphs, this yields the (not necessarily unique)split componentsof G.

Every edge inE is contained in exactly one, and each virtual edge in exactly two split components.

Lemma 7.5. Let G = (V, E) be a biconnected multigraph with|E| ≥ 3. Then the total number of
edges contained in all split components is bounded by3|E| − 6.

Proof. Induction on the number of edges ofG: If |E| = 3, G cannot be split and the lemma is true.
Assume now, the lemma is true for graphs having at mostm− 1 edges. If the graph hasm edges, the
lemma is obviously true ifG cannot be split. OtherwiseG can be split into two graphs havingk + 1
andm− k + 1 edges with2 ≤ k ≤ m− 2. By the assumption, the total number of edges is bounded
by 3(k + 1)− 6 + 3(m− k + 1)− 6 = 3m− 6. Thus, by induction on the number of edges, the proof
is complete.

There are split components of three types: triple bonds (three edges between two vertices), trian-
gles (cycles of length3), and triconnected simple graphs. We now introduce the reverse of the split
operation: themerge graphof two graphsG1 = (V1, E1) andG2 = (V2, E2), both containing the
same virtual edgee, is defined asG = (V1 ∪ V2, (E1 ∪ E2) \ {e}). Thetriconnected componentsof
a graph are obtained from its split components by merging the triple bonds as much as possible to
multiple bonds and by merging the triangles as much as possible to form polygons. Mac Lane [ML37]
showed that, regardless of the (possibly not unique) splitting and merging, we get the same tricon-
nected components.

30

Lemma 7.6. The triconnected components of a (multi)graph are unique.

We now turn to the definition of SPQR-trees, which were initially defined for planar [DBT89],
later also for general graphs [DBT96]. Asplit pair of a biconnected graphG is either a separation
pair or a pair of adjacent vertices. Asplit componentof a split pair{u, v} is either an(u, v)-edge
or an inclusion-maximal subgraph ofG, were{u, v} is not a split pair. A split pair{u, v} of G is
called amaximal split pairwith respect to a split pair{s, t} of G if for any other split pair{u′, v′},
the verticesu, v, s, andt are in the same split component.

Definition 7.7. Let e = (s, t) be an edge ofG. TheSPQR-treeT of G with respect to thisreference
edgeis a rooted ordered tree constructed from four different types of nodes (S,P,Q,R), each containing
an associated biconnected multigraph (called theskeleton). T is recursively defined as follows:

(Q) Trivial Case: If G consists of exactly two parallels-t-edges, thenT is a single Q-node with
skeletonG.

(P) Parallel Case: If the split pair{s, t} has more than two split componentsG1..k, the root ofT is a
P-node with a skeleton consisting ofk parallel s-t-edgese1..k with e1 = e.

(S) Series Case:If the split pair{s, t} has exactly two split components, one of them ise; the other is
denoted byG′. If G′ has cut-verticesc1..k−1(k ≥ 2) that partitionG into blocksG1..k (ordered
from s to t), the root ofT is an S-node, whose skeleton is the cycle consisting of the edgese0..k,
wheree0 = e andei = (ci−1, ci) with i = 1..k, c0 = s andck = t.

(R) Rigid Case: In all other cases let{s1, t1}, .., {sk, tk} be the maximal split pairs ofG with respect
to {s, t}. Further let Gi for i = 1, .., k denote the union of all split components of{si, ti}
except the one containinge. The root ofT is an R-node, where the skeleton is created fromG
by replacing each subgraphGi with the edgeei = (si, ti).

For the non-trivial cases, the childrenµ1..k of the node are the roots of the SPQR-trees ofGi ∪ ei with
respect toei. The vertices incident with each edgeei are thepolesof the nodeµi, the virtual edge of
nodeµi is the edgeei of the node’s skeleton. The SPQR-treeT is completed by adding a Q-node as
the parent of the node, and thus the new root (that represents the reference edgee).

Each edge inG corresponds with a Q-node ofT , and each edgeei in the skeleton of a node
corresponds with its childµi. T can be rooted at an arbitrary Q-node, which results in an SPQR-tree
with respect to its corresponding edge.

Theorem 7.8.LetG be a biconnected multigraph with SPQR-treeT .

1. The skeleton graphs ofT are the triconnected components ofG. P-nodes correspond to bonds,
S-nodes to polygons, and R-nodes to triconnected simple graphs.

2. There is an edge between two nodesµ, ν ∈ T if and only if the two corresponding triconnected
components share a common virtual edge.

3. The size ofT , including all skeleton graphs, is linear in the size ofG.

31

For a sketch of the proof, see [GM01].
We consider now the computation of SPQR-trees for a biconnected multigraphG (without self-

loops) and a reference edgeer. We assume a labeling of the vertices by unique indices from1 to |V |.
As a preprocessing step, all edges are reordered (using bucket sort), first according to the incident
vertex with the lower index, and then according to the incident vertex with higher index, such that
multiple edges between the same pair of vertices are arranged successively. In a second step, all such
bundles of multiple edges are replaced by a new virtual edge. In this way a set of multiple bonds
C1, .., Ck is created together with a simple graphG′.

In the second step, the split componentsCk+1, .., Cm of G′ are computed using a dfs-based algo-
rithm. In this context, we need the following definition:

Definition 7.9. A palm treeP is a directed multigraph that consists of a set oftree arcsv → w and
a set offrondsv ↪→ w, such that the tree arcs form a directed spanning tree ofP (that is the root has
no incoming edges, all other vertices have exactly one parent), and ifv ↪→ w is a frond, then there is
a directed path fromw to v.

Suppose now,P is a palm tree for the underlying simple biconnected graphG′ = (V, E ′) (with
vertices labeled1, .., |V |). The computation of the separation pairs relies on the definition of the
following variables:

lowpt1(v) = min
(
{v} ∪ {w|v ∗→↪→ w}

)
lowpt2(v) = min

(
{v} ∪

(
{w|v ∗→↪→ w} \ {lowpt1(v)}

))
These are the two vertices with minimum label, that are reachable fromv by traversing an arbitrary
number (including zero) of tree arcs followed by exactly one frond ofP (or v itself, if no such option
exists).

Let Adj(v) denote the ordered adjacency list of vertexv, and letD(v) be the set of descendants
of v (that is the set of vertices that are reachable via zero or more directed tree arcs). Hopcroft and
Tarjan [HT73a] showed a simple method for computing anacceptable adjacency structure, that is, an
order of the adjacency lists, which meets the following conditions:

1. The root ofP is the vertex labeled with1.

2. If w1, .., wn are the children of vertexv in P according to the ordering in Adj(v), thenwi =
v + |D(wi+1 ∪ .. ∪D(wn)|+ 1,

3. The edges in Adj(v) are in ascending order according to lowpt1(w) for tree edgesv → w, and
w for frondsv ↪→ w, respectively.

Let w1, .., wn be the children ofv with lowpt1(wi)) = u ordered according to Adj(v), and let
i0 be the index such that lowpt2(wi) < v for 1 ≤ i ≤ i0 and lowpt2(wj) ≥ v for i0 < j ≤ n.
Every frondv ↪→ w ∈ E ′ resides betweenv → wi0 andv → wi0+1 in Adj(v).

An adequate rearrangement of the adjacency structure can be done in linear time if a bucket sort with
3|V |+ 2 buckets is applied to the following sorting function (confer [HT73a, GM01]), that maps the
edges to numbers from1 to 3|V |+ 2:

φ(e) =

3lowpt1(w) if e = v → w and lowpt2(w) < v

3w + 1 if e = v ↪→ w

3lowpt1(w) + 2 if e = v → w and lowpt2(w) ≥ v

32

If we perform a depth-first search onG′ according to the ordering of the edges in the adjacency
list, then this partitionsG′ into a set of paths, each consisting of zero or more tree arcs followed by a
frond, and each path ending at the vertex with lowest possible label. We say that a vertexun is afirst
descendantof u0 if there is a directed pathu0 → · · · → un and each edgeui → ui+1 is the first in
Adj(ui).

Lemma 7.10. Let P be a palm tree of a biconnected graphG = (V, E) that satisfies the above
conditions. Two verticesa, b ∈ V with a < b form a separation pair{a, b} if and only if one of the
following conditions is true:

Type-1 CaseThere are distinct verticesr, s ∈ V \ {a, b} such thatb→ r is a tree edge, lowpt1(r) =
a, lowpt2(r) ≥ b, ands is not a descendant ofr.

Type-2 CaseThere is a vertexr ∈ V \ b such thata→ r
∗→ b, b is a first descendant ofr (i.e.,a, r, b

lie on a generated path),a 6= 1, every frondx ↪→ y with r ≤ x < b satisfiesa ≤ y, and every
frondx ↪→ y with a < y < b andb→ w

∗→ x has lowpt1(w) ≥ a.

Multiple Edge Case (a, b) is a multiple edge ofG andG contains at least four edges.

For a proof, see [HT73a].
We omit the rather technical details for finding the split componentsCk+1, .., Cm. The main

loop of the algorithm computes the triconnected components from the split componentsC1, .., Cm by
merging two bonds or two polygons that share a common virtual edge (as long as they exist). The
resulting time complexity isO(|V | + |E|). For a detailed description of the algorithm we refer the
interested reader to the original papers [HT72, HT73a, HT74, GM01].

8 Advanced Topics

In this section, we briefly discuss some further results related to the topic of this chapter.

Strong and biconnected components For the computation of strongly connected components,
there is another linear-time algorithm that was suggested by R. Kosaraju in 1978 (unpublished,
see [AHU83, p. 229]) and that was published by Sharir [Sha81].

An algorithm for computing the strongly connected components using a non-dfs traversal (a mix-
ture of dfs and bfs) of the graph was presented by Jiang [Jia93]. This algorithm reduces the number
of disk operations in the case where a large graph does not entirely fit into the main memory. Two
space-saving versions of Tarjan’s strong components algorithm (for the case of graphs that are sparse
or have many single-node components) were given by Nuutila and Soisalon-Soininen [NSS94].

One-pass algorithms for biconnected and strong components that do not compute auxiliary quan-
tities based on the dfs tree (e.g.,low values) were proposed by Gabow [Gab00].

Average connectivity Only recently, Beineke, Oellermann, and Pippert [BOP02] considered the
concept of average connectivity. This measure is defined as the average, over all pairs of vertices
a, b ∈ V , of the maximum number of vertex-disjoint paths betweena andb, that is, the average local
vertex-connectivity. While the conventional notion of connectivity is rather a description of a worst
case scenario, the average connectivity might be a better description of the global properties of a

33

graph, with applications in network vulnerability and reliability. Sharp bounds for this measure in
terms of the average degree were shown by Dankelmann and Oellermann [DO03]. Later on, Henning
and Oellermann considered the average connectivity of directed graphs and provided sharp bounds
for orientations of graphs [HO04].

Dynamic Connectivity Problems Quite a number of publications consider connectivity problems
in a dynamical setting, that is, in graphs that are changed by vertex and/or edge insertions and dele-
tions. The special case where only insertions are allowed is called semi-dynamic, partially-dynamic,
or incremental. Since there is a vast number of different variants, we provide only the references for
further reading: [Rei87, LPvLO90, GI91, Fre91, KTDBC91, WT92, DBT96, HK97, HLP97, DW98,
HF98, DN00, HdLT01].

Directed graphs As already mentioned, the local connectivity in directed graphs is not symmetric,
which is the reason why many algorithms for undirected connectivity problems do not translate to the
directed case. An algorithm for computing the local vertex connectivity in digraphs was proposed
by Frisch [Fri67]. Algorithms that compute the edge-connectivity in digraphs were published by
Schnorr [Sch79], by Esfahanian and Hakimi [EH84], and by Mansour and Schieber [MS89]. Even and
Tarjan [ET75] showed modifications of their algorithms for checking vertex- and edge-connectivity
in directed graphs too. Another problem of interest is the computation of edge-disjoint branchings,
which is discussed in several publications [Edm73, FH76, Gus83, TL83, Whi87].

Other measures There are some further definitions that might be of interest. Matula [Mat69] de-
fines acohesiveness functionfor each element of a graph (vertices and edges) to be the maximum
edge-connectivity of any subgraph containing that element. Akiyama et al. [ABE+81] define thecon-
nectivity contributionor cohesivenessof a vertexv in a graphG as the differenceκ(G)− κ(G− v).

Connectivity problems that aim at dividing the graph into more than two components by removing
vertices or edges are considered in conjunction with the following terms: Ashredderof an undirected
graph is a set of vertices whose removal results in at least three components, see for example [CT99].
The `-connectivityof a graph is the minimum number of vertices that must be deleted to produce
a graph with at least̀ components or with fewer thaǹvertices, see [Oel87b, Oel87a]. A similar
definition exists for the deletion of edges, namely thei-th order edge connectivity, confer [Gol80,
Gol81].

Acknowledgments The authors thank Ulrik Brandes, Thomas Erlebach, Frank Schilder, as well
as the anonymous reviewer for critical assessment of this work and valuable suggestions. We thank
Professor Ortrud Oellermann for her support.

34

References

[ABE+81] Jin Akiyama, Francis T. Boesch, Hiroshi Era, Frank Harary, and Ralph Tindell. The
cohesiveness of a point of a graph.Networks, 11(1):65–68, 1981. 34

[AH73] Ashok T. Amin and S. Louis Hakimi. Graphs with given connectivity and indepen-
dence number or networks with given measures of vulnerability and survivability.IEEE
Transactions on Circuit Theory, 20(1):2–10, 1973. 5

[AHU83] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman.Data Structures and Algo-
rithms. Addison-Wesley, 1983. 33

[Alo90] Noga Alon. Generating pseudo-random permutations and maximum flow algorithms.
Information Processing Letters, 35(4):201–204, 1990. 18

[AO89] Ravindra K. Ahuja and James B. Orlin. A fast and simple algorithm for the maximum
flow problem.Operations Research, 37(5):748–759, September/October 1989. 18

[BDD+82] M. Becker, W. Degenhardt, Jürgen Doenhardt, Stefan Hertel, G. Kaninke, W. Keber,
Kurt Mehlhorn, Stefan N̈aher, Hans Rohnert, and Thomas Winter. A probabilistic algo-
rithm for vertex connectivity of graphs.Information Processing Letters, 15(3):135–136,
October 1982. 25

[BH67] Lowell W. Beineke and Frank Harary. The connectivity function of a graph.Mathe-
matika, 14:197–202, 1967. 5

[Bix74] Robert E. Bixby. The minimum number of edges and vertices in a graph with edge con-
nectivityn andm n-bonds.Bulletin of the American Mathematical Society, 80(4):700–
704, 1974. 5

[Bix81] Robert E. Bixby. The minimum number of edges and vertices in a graph with edge
connectivityn andm n-bonds.Networks, 5:253–298, 1981. 5, 14

[BOP02] Lowell W. Beineke, Ortrud R. Oellermann, and Raymond E. Pippert. The average
connectivity of a graph.Discrete Mathematics, 252(1):31–45, May 2002. 33

[CH95] Joseph Cheriyan and Torben Hagerup. A randomized maximum-flow algorithm.SIAM
Journal on Computing, 24(2):203–226, 1995. 18

[Cha66] Gary Chartrand. A graph-theoretic approach to a communications problem.SIAM
Journal on Applied Mathematics, 14(5):778–781, July 1966. 5

[Che77] Boris V. Cherkassky. An algorithm for constructing a maximal flow through a network
requiringO(n2√p) operations.Mathematical Methods for Solving Economic Problems,
7:117–126, 1977. (In Russian). 18

[Che94] Boris V. Cherkassky. A fast algorithm for constructing a maximum flow through a
network. InSelected Topics in Discrete Mathematics: Proceedings of the Moscow Dis-
crete Mathematics Seminar, 1972-1990, volume 158 ofAmerican Mathematical Society
Translations – Series 2, pages 23–30. AMS, 1994. 18

35

[CHM96] Joseph Cheriyan, Torben Hagerup, and Kurt Mehlhorn. Ano(n3)-time maximum-flow
algorithm.SIAM Journal on Computing, 25(6):144–1170, December 1996. 18

[CR92] Joseph Cheriyan and John H. Reif. Directeds-t numberings, rubber bands, and testing
digraphk-vertex connectivity. InProceedings of the 3rd Annual ACM–SIAM Sympo-
sium on Discrete Algorithms (SODA’92), pages 335–344, January 1992. 25

[CT99] Joseph Cheriyan and Ramakrishna Thurimella. Fast algorithms fork-shredders and
k-node connectivity augmentation.Journal of Algorithms, 33:15–50, 1999. 34

[Dan51a] George B. Dantzig. Application of the simplex method to a transportation problem.
In Tjalling C. Koopmans, editor,Activity Analysis of Production and Allocation, vol-
ume 13 ofCowles Commission for Research in Economics, pages 359–373. Wiley,
1951. 18

[Dan51b] George B. Dantzig. Maximization of a linear function of variables subject to linear
inequalities. In Tjalling C. Koopmans, editor,Activity Analysis of Production and Allo-
cation, volume 13 ofCowles Commission for Research in Economics, pages 339–347.
Wiley, 1951. 18

[DBT89] Guiseppe Di Battista and Roberto Tamassia. Incremental planarity testing. InPro-
ceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’89), pages 436–441, October/November 1989. 31

[DBT96] Guiseppe Di Battista and Roberto Tamassia. On-line maintenance of triconnected com-
ponents with SPQR-trees.Algorithmica, 15:302–318, 1996. 31, 34

[DF56] George B. Dantzig and Delbert R. Fulkerson. On the max-flow min-cut theorem of
networks. InLinear Inequalities and Related Systems, volume 38 ofAnnals of Mathe-
matics Studies, pages 215–221. Princeton University Press, 1956. 4, 18

[Din70] Yefim Dinitz. Algorithm for solution of a problem of maximum flow in a network with
power estimation.Soviet Mathematics-Doklady, 11(5):1277–1280, 1970. 18

[Din73] Yefim Dinitz. Bitwise residual decreasing method and transportation type problems. In
A. A. Fridman, editor,Studies in Discrete Mathematics, pages 46–57. Nauka, 1973. (In
Russian). 18

[DKL76] Yefim Dinitz, Alexander V. Karzanov, and M. V. Lomonosov. On the structure of the
system of minimum edge cuts in a graph. In A. A. Fridman, editor,In Studies in Discrete
Optimization, pages 290–306. Nauka, 1976. 7, 14

[DN00] Yefim Dinitz and Ronit Nossenson. Incremental maintenance of the5-edge-connectivity
classes of a graph. InProceedings of the 7th Scandinavian Workshop on Algorithm
Theory (SWAT’00), volume 1851 ofLecture Notes in Mathematics, pages 272–285.
Springer-Verlag, July 2000. 34

[DO03] Peter Dankelmann and Ortrud R. Oellermann. Bounds on the average connectivity of a
graph.Discrete Applied Mathematics, 129:305–318, August 2003. 34

36

[DW98] Yefim Dinitz and Jeffery Westbrook. Maintaining the classes of 4-edge-connectivity in
a graph on-line.Algorithmica, 20(3):242–276, March 1998. 34

[Edm73] Jack Edmonds. Edge-disjoint branchings. In Randall Rustin, editor,Courant Computer
Science Symposium 9: Combinatorial Algorithms (1972), pages 91–96. Algorithmics
Press, 1973. 6, 34

[EFS56] Peter Elias, Amiel Feinstein, and Claude E. Shannon. A note on the maximum flow
through a network.IRE Transactions on Information Theory, 2(4):117–119, December
1956. 4

[EH84] Abdol-Hossein Esfahanian and S. Louis Hakimi. On computing the connectivities of
graphs and digraphs.Networks, 14(2):355–366, 1984. 19, 21, 22, 34

[EK72] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic effi-
ciency for network flow problems.Journal of the ACM, 19(2):248–264, April 1972.
18

[Esf85] Abdol-Hossein Esfahanian. Lower-bounds on the connectivities of a graph.Journal of
Graph Theory, 9(4):503–511, 1985. 5

[ET75] Shimon Even and Robert E. Tarjan. Network flow and testing graph connectivity.SIAM
Journal on Computing, 4(4):507–518, December 1975. 17, 19, 20, 21, 25, 34

[Eve73] Shimon Even.Algorithmic Combinatorics. Macmillan, 1973. 17

[Eve75] Shimon Even. An algorithm for determining whether the connectivity of a graph is at
leastk. SIAM Journal on Computing, 4(3):393–396, September 1975. 17, 19

[Eve79] Shimon Even.Graph Algorithms. Computer Science Press, 1979. 17, 19

[FD55] Delbert R. Fulkerson and George B. Dantzig. Computation of maximal flows in net-
works. Naval Research Logistics Quarterly, 2:277–283, 1955. 18

[FF56] Lester R. Ford, Jr. and Delbert R. Fulkerson. Maximal flow through a network.Cana-
dian Journal of Mathematics, 8:399–404, 1956. 4, 18

[FF57] Lester R. Ford, Jr. and Delbert R. Fulkerson. A simple algorithm for finding maxi-
mal network flows and an application to the Hitchcock problem.Canadian Journal of
Mathematics, 9:210–218, 1957. 18

[FF62] Lester R. Ford, Jr. and Delbert R. Fulkerson.Flows in Networks. Princeton University
Press, 1962. 17, 18

[FH76] Delbert R. Fulkerson and G. C. Harding. On edge-disjoint branchings.Networks,
6(2):97–104, 1976. 34

[Fle99] Lisa Fleischer. Building chain and cactus representations of all minimum cuts from
Hao-Orlin in the same asymptotic run time.Journal of Algorithms, 33(1):51–72, Octo-
ber 1999. 10

37

[Fre91] Greg N. Frederickson. Ambivalent data structures for dynamic2-edge-connectivity and
k smallest spanning trees. InProceedings of the 32nd Annual IEEE Symposium on
Foundations of Computer Science (FOCS’91), pages 632–641, October 1991. 34

[Fri67] Ivan T. Frisch. An algorithm for vertex-pair connectivity.International Journal of
Control, 6(6):579–593, 1967. 34

[Gab85] Harold N. Gabow. Scaling algorithms for network problems.Journal of Computer and
System Sciences, 31(2):148–168, 1985. 18

[Gab00] Harold N. Gabow. Path-based depth-first search for strong and biconnected compo-
nents.Information Processing Letters, 74:107–114, 2000. 33

[Gal80] Zvi Galil. AnO(V 5/3E2/3) algorithm for the maximal flow problem.Acta Informatica,
14:221–242, 1980. 18

[GH61] Ralph E. Gomory and T.C. Hu. Multi-terminal network flows.Journal of SIAM,
9(4):551–570, December 1961. 7

[GI91] Zvi Galil and Giuseppe F. Italiano. Fully dynamic algorithms for edge connectivity
problems. InProceedings of the 23rd Annual ACM Symposium on the Theory of Com-
puting (STOC’91), pages 317–327, May 1991. 34

[GM01] Carsten Gutwenger and Petra Mutzel. A linear time implementation of SPQR-trees. In
Proceedings of the 8th International Symposium on Graph Drawing (GD’00), volume
1984 ofLecture Notes in Computer Science, pages 70–90, January 2001. 30, 32, 33

[GN80] Zvi Galil and Amnon Naamad. AnO(EV log2 V) algorithm for the maximal flow
problem.Journal of Computer and System Sciences, 21(2):203–217, October 1980. 18

[Gol80] Donald L. Goldsmith. On the second order edge connectivity of a graph.Congressus
Numerantium, 29:479–484, 1980. 34

[Gol81] Donald L. Goldsmith. On then-th order edge-connectivity of a graph.Congressus
Numerantium, 32:375–381, 1981. 34

[Gol85] Andrew V. Goldberg. A new max-flow algorithm. Technical Memo MIT/LCS/TM-291,
MIT Laboratory for Computer Science, November 1985. 18

[GR98] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier.Journal
of the ACM, 45(5):783–797, 1998. 18

[GR99] Andrew V. Goldberg and Satish Rao. Flows in undirected unit capacity networks.SIAM
Journal on Discrete Mathematics, 12(1):1–5, 1999. 17

[GT88] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-flow
problem.Journal of the ACM, 35(4):921–940, 1988. 18

[GT01] Andrew V. Goldberg and Kostas Tsioutsiouliklis. Cut tree algorithms: An experimental
study.Journal of Algorithms, 38(1):51–83, 2001. 8

38

[Gus83] Dan Gusfield. Connectivity and edge-disjoint spanning trees.Information Processing
Letters, 16(2):87–89, 1983. 34

[Gus90] Dan Gusfield. Very simple methods for all pairs network flow analysis.SIAM Journal
on Computing, 19(1):143–155, 1990. 8

[Har62] Frank Harary. The maximum connectivity of a graph.Proceedings of the National
Academy of Science of the United States of America, 48(7):1142–1146, July 1962. 5

[Har63] Frank Harary. A characterization of block-graphs.Canadian Mathematical Bulletin,
6(1):1–6, January 1963. 3

[HdLT01] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic determin-
istic fully-dynamic algorithms for connectivity, minimum spanning tree,2-edge, and
biconnectivity.Journal of the ACM, 48(4):723–760, 2001. 34

[HF98] Monika R. Henzinger and Michael L. Fredman. Lower bounds for fully dynamic con-
nectivity problems in graphs.Algorithmica, 22(3):351–362, 1998. 34

[HK64] Frank Harary and Yukihiro Kodama. On the genus of ann-connected graph.Funda-
menta Mathematicae, 54:7–13, 1964. 5

[HK97] Monika R. Henzinger and Valerie King. Fully dynamic 2-edge connectivity algorithm in
polylogarithmic time per operation. SRC Technical Note 1997-004a, Digital Equipment
Corporation, Systems Research Center, Palo Alto, California, June 1997. 34

[HLP97] Monika R. Henzinger and Johannes A. La Poutré. Certificates and fast algorithms for
biconnectivity in fully-dynamic graphs. SRC Technical Note 1997-021, Digital Equip-
ment Corporation, Systems Research Center, Palo Alto, California, September 1997.
34

[HO92] Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum cut in
a graph. InProceedings of the 3rd Annual ACM–SIAM Symposium on Discrete Algo-
rithms (SODA’92), pages 165–174, January 1992. 8

[HO04] Michael A. Henning and Ortrud R. Oellermann. The average connectivity of a digraph.
Discrete Applied Mathematics, 140:143–153, May 2004. 34

[HP66] Frank Harary and Geert Prins. The block-cutpoint-tree of a graph.Publicationes Math-
ematicae Debrecen, 13:103–107, 1966. 4

[HRG96] Monika R. Henzinger, Satish Rao, and Harold N. Gabow. Computing vertex connec-
tivity: New bounds from old techniques. InProceedings of the 37th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’96), pages 462–471, October
1996. 19, 25

[HT72] John E. Hopcroft and Robert E. Tarjan. Finding the triconnected components of a graph.
Technical Report TR 72-140, CS Dept., Cornell University, Ithaca, N.Y., August 1972.
30, 33

39

[HT73a] John E. Hopcroft and Robert E. Tarjan. Dividing a graph into triconnected components.
SIAM Journal on Computing, 2(3):135–158, September 1973. 30, 32, 33

[HT73b] John E. Hopcroft and Robert E. Tarjan. Efficient algorithms for graph manipulation.
Communications of the ACM, 16(6):372–378, June 1973. 27

[HT74] John E. Hopcroft and Robert E. Tarjan. Dividing a graph into triconnected components.
Technical Report TR 74-197, CS Dept., Cornell University, Ithaca, N.Y., February 1974.
30, 33

[Jia93] Bin Jiang. I/O- and CPU-optimal recognition of strongly connected components.In-
formation Processing Letters, 45(3):111–115, March 1993. 33

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller
and James W. Thatcher, editors,Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972. 7

[Kar73] Alexander V. Karzanov. On finding maximum flows in networks with special struc-
ture and some applications. InMatematicheskie Voprosy Upravleniya Proizvodstvom,
volume 5, pages 66–70. Moscow State University Press, 1973. (In Russian). 17

[Kar74] Alexander V. Karzanov. Determining the maximal flow in a network by the method of
preflows.Soviet Mathematics-Doklady, 15(2):434–437, 1974. 18

[KL98] David R. Karger and Matthew S. Levine. Finding maximum flows in undirected graphs
seems easier than bipartite matching. InProceedings of the 30th Annual ACM Sympo-
sium on the Theory of Computing (STOC’98), pages 69–78, May 1998. 17

[Kle69] Daniel J. Kleitman. Methods for investigating connectivity of large graphs.IEEE Trans-
actions on Circuit Theory, 16(2):232–233, May 1969. 19

[KRT92] Valerie King, Satish Rao, and Robert E. Tarjan. A faster deterministic maximum flow
algorithm. InProceedings of the 3rd Annual ACM–SIAM Symposium on Discrete Algo-
rithms (SODA’92), pages 157–164, January 1992. 18

[KS93] David R. Karger and Clifford Stein. AñO(n2) algorithm for minimum cuts. InPro-
ceedings of the 25th Annual ACM Symposium on the Theory of Computing (STOC’93),
pages 757–765, May 1993. 8

[KT86] Alexander V. Karzanov and Eugeniy A. Timofeev. Efficient algorithm for finding all
minimal edge cuts of a nonoriented graph.Cybernetics, 22(2):156–162, 1986. 7

[KTDBC91] Arkady Kanevsky, Roberto Tamassia, Guiseppe Di Battista, and Jianer Chen. On-line
maintenance of the four-connected components of a graph. InProceedings of the 32nd
Annual IEEE Symposium on Foundations of Computer Science (FOCS’91), pages 793–
801, October 1991. 34

[Lei66] L. Ya. Leifman. An efficient algorithm for partitioning an oriented graph into bicompo-
nents.Cybernetics, 2(5):15–18, 1966. 27

40

[Les74] Linda Lesniak. Results on the edge-connectivity of graphs.Discrete Mathematics,
8:351–354, 1974. 5

[LLW86] Nathan Linial, Ĺaszĺo Lovász, and Avi Wigderson. A physical interpretation of graph
connectivity and its algorithmic applications. InProceedings of the 27th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’86), pages 39–48, October
1986. 25

[LLW88] Nathan Linial, Ĺaszĺo Lovász, and Avi Wigderson. Rubber bands, convex embeddings
and graph connectivity.Combinatorica, 8(1):91–102, 1988. 25

[Lov73] Lászĺo Lovász. Connectivity in digraphs.Journal of Combinatorial Theory Series B,
15(2):174–177, August 1973. 6

[LPvLO90] Johannes A. La Poutré, Jan van Leeuwen, and Mark H. Overmars. Maintenance of2-
and3-connected components of graphs, Part I:2- and3-edge-connected components.
Technical Report RUU-CS-90-26, Dept. of Computer Science, Utrecht University, July
1990. 34

[Mad72] Wolfgang Mader. Ecken vom Gradn in minimalen n-fach zusammenḧangenden
Graphen.Archiv der Mathematik, 23:219–224, 1972. 6

[Mat69] David W. Matula. The cohesive strength of graphs. InThe Many Facets of Graph
Theory, Proc., volume 110 ofLecture Notes in Mathematics, pages 215–221. Springer-
Verlag, 1969. 4, 6, 34

[Mat72] David W. Matula. k-components, clusters, and slicings in graphs.SIAM Journal on
Applied Mathematics, 22(3):459–480, May 1972. 4

[Mat77] David W. Matula. Graph theoretic techniques for cluster analysis algorithms. In
J. Van Ryzin, editor,Classification and clustering, pages 95–129. Academic Press,
1977. 4

[Mat87] David W. Matula. Determining edge connectivity inO(nm). In Proceedings of the
28th Annual IEEE Symposium on Foundations of Computer Science (FOCS’87), pages
249–251, October 1987. 21, 22

[Men27] Karl Menger. Zur allgemeinen Kurventheorie.Fundamenta Mathematicae, 10:96–115,
1927. 4

[MKM78] Vishv M. Malhotra, M. Pramodh Kumar, and S. N. Maheshwari. AnO(|V |3) algorithm
for finding maximum flows in networks.Information Processing Letters, 7(6):277–278,
October 1978. 18

[ML37] Saunders Mac Lane. A structural characterization of planar combinatorial graphs.Duke
Mathematical Journal, 3:460–472, 1937. 30

[MR92] Gary L. Miller and Vijaya Ramachandran. A new graph triconnectivity algorithm and
its parallelization.Combinatorica, 12(1):53–76, 1992. 30

41

[MS89] Yishay Mansour and Baruch Schieber. Finding the edge connectivity of directed graphs.
Journal of Algorithms, 10(1):76–85, March 1989. 34

[Mun71] Ian Munro. Efficient determination of the transitive closure of a directed graph.Infor-
mation Processing Letters, 1(2):56–58, 1971. 27

[NSS94] Esko Nuutila and Eljas Soisalon-Soininen. On finding the strongly connected compo-
nents in a directed graph.Information Processing Letters, 49(1):9–14, January 1994.
33

[Oel87a] Ortrud R. Oellermann. A note on the`-connectivity function of a graph.Congressus
Numerantium, 60:181–188, December 1987. 34

[Oel87b] Ortrud R. Oellermann. On thel-connectivity of a graph.Graphs and Combinatorics,
3:285–291, 1987. 34

[Pat71] Keith Paton. An algorithm for the blocks and cutnodes of a graph.Communications of
the ACM, 14(7):468–475, July 1971. 4, 27

[PR75] Jean-Claude Picard and H. D. Ratliff. Minimum cuts and related problems.Networks,
5(4):357–370, 1975. 17

[Pur68] Paul W. Purdom, Jr. A transitive closure algorithm. Computer Sciences Technical
Report #33, University of Wisconsin, July 1968. 27

[Pur70] Paul W. Purdom, Jr. A transitive closure algorithm.BIT, 10:76–94, 1970. 27

[PW98] Steven Phillips and Jeffery Westbrook. On-line load balancing and network flow.Algo-
rithmica, 21(3):245–261, 1998. 18

[Rei87] John H. Reif. A topological approach to dynamic graph connectivity.Information
Processing Letters, 25(1):65–70, 1987. 34

[Sch79] Claus P. Schnorr. Bottlenecks and edge connectivity in unsymmetrical networks.SIAM
Journal on Computing, 8(2):265–274, May 1979. 34

[Sch93] Alexander Schrijver. Paths and flows—a historical survey.CWI Quarterly, 6(3):169–
183, September 1993. 5

[Sha81] Micha Sharir. A strong-connectivity algorithm and its applications in data flow analysis.
Computers & Mathematics with Applications, 7(1):67–72, 1981. 33

[Shi78] Yossi Shiloach. AnO(n · I log2 I) maximum-flow algorithm. Technical Report STAN-
CS-78-702, Computer Science Department, Stanford University, December 1978. 18

[ST83] Daniel D. Sleater and Robert E. Tarjan. A data structure for dynamic trees.Journal of
Computer and System Sciences, 26(3):362–391, June 1983. 18

[ST03] Mohit Singh and Amitabha Tripathi. Order of a graph with given vertex and edge
connectivity and minimum degree.Electronic Notes in Discrete Mathematics, 15, 2003.
5

42

[SW97] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm.Journal of the ACM,
44(4):585–591, 1997. 23

[Tar72] Robert E. Tarjan. Depth-first search and linear graph algorithms.SIAM Journal on
Computing, 1(2):146–160, June 1972. 27

[Tar74] Robert E. Tarjan. A note on finding the bridges of a graph.Information Processing
Letters, 2(6):160–161, 1974. 29

[TL83] Po Tong and Eugene L. Lawler. A faster algorithm for finding edge-disjoint branchings.
Information Processing Letters, 17(2):73–76, August 1983. 34

[Tut61] William T. Tutte. A theory of 3-connected graphs.Indagationes Mathematicae, 23:441–
455, 1961. 30

[Tut66] William T. Tutte. Connectivity in graphs. Number 15 in Mathematical Expositions.
University of Toronto Press, 1966. 30

[Whi32] Hassler Whitney. Congruent graphs and the connectivity of graphs.American Journal
of Mathematics, 54:150–168, 1932. 5

[Whi87] R. W. Whitty. Vertex-disjoint paths and edge-disjoint branchings in directed graphs.
Journal of Graph Theory, 11(3):349–358, 1987. 34

[WT92] Jeffery Westbrook and Robert E. Tarjan. Maintaining bridge-connected and biconnected
components on-line.Algorithmica, 7:433–464, 1992. 34

[Zad72] Norman Zadeh. Theoretical efficiency of the Edmonds-Karp algorithm for computing
maximal flows.Journal of the ACM, 19(1):184–192, 1972. 18

43

Index
adjacency structure

acceptable, 32
algorithm

Dijkstra’s, 23
flow-based, 16–23
maximum flow, 18
non-flow-based, 23–25
Prim’s, 23
randomized, 25
Stoer-Wagner, 23

articulation point, 3

BFS, 1
block,see alsocomponent, biconnected
block-cutpoint-graph, 3
block-graph, 3
branching

edge-disjoint, 6, 34
breadth-first search,seeBFS
bridge, 3

cactus, 7, 15–16
cluster, 4
component

k-edge-component, 4, 5
k-vertex-component, 4
biconnected, 3, 27–28
bridge-connected, 29
connected, 1, 3
non-separable, 3
strongly connected, 2, 28–29
triconnected, 30–33
weakly connected, 2

connectivity, 1
dynamic, 34
edge-, 2
local, 2
vertex-, 2

connectivity pair, 5
cut, 3, 6

s-t-, 3
all pairs minimum, 7
crossing, 8

minimum, 7
minimums-t-, 3

cut tree, 7
cut-edge, 3
cut-vertex, 3
cutpoint-graph, 3
cutset,seeseparator

degree
average, 6
in-, 6
minimum, 4, 5
out-, 6

depth-first search,seeDFS
descendant

first, 33
DFS, 1, 27, 30
dominating set, 23

flow, 3
flow network, 3

type 1, 17
type 2, 17

flow tree, 7
frond, 32

Gomory-Hu Tree, 7

isthmus, 3

λ-covering, 21
laminar set, 15

open ear decomposition, 30

palm tree, 32
path

edge-disjoint, 3
vertex-disjoint, 3

reference edge, 31
residual network, 7

separation classes, 30
separation pair, 30

44

separation vertex, 3
separator

edge, 3
vertex, 3
vertex/edge, 5

skeleton, 31
spanning tree, 22

directed, 6
split component, 31
split pair, 31

maximal, 31
SPQR-tree, 31

Theorem
n-Arc, 4
n-Chain, 4
Edmonds’ Branching, 6
Ford-Fulkerson, 4
Kotzig’s, 6
Max-Flow Min-Cut, 4
Menger’s, 4
Whitney’s, 5

45

	Definitions
	Fundamental Theorems
	Minimum Cuts
	All-Pairs Minimum Cuts
	Properties of Minimum Cuts in Undirected Graphs

	Cactus Representation of All Minimum Cuts
	Flow-Based Connectivity Algorithms
	Vertex-Connectivity Algorithms
	Edge-Connectivity Algorithms

	Non-Flow-Based Algorithms
	The Minimum Cut Algorithm of Stoer and Wagner
	Randomized Algorithms

	Basic Algorithms for Components
	Biconnected Components
	Strongly Connected Components
	Triconnectivity

	Advanced Topics
	References
	Index

