T UM

INSTITUT FUR INFORMATIK

Graph Connectivity

Frank Kammer Hanjo dubig

TUM-10422
Dezember 04

TECHNISCHE UNIVERSITATMUNCHEN

TUM-INFO-12-10422-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©2004

Druck: Institut f ur Informatik der
Technischen Universit at Munchen

1

Graph Connectivity
Frank Kammer Hanjo Taubig

Department of Computer Science Department of Computer Science

Universitat Augsburg Technische Univerdt Minchen
D-86135 Augsburg D-85748 Garching
F.Kammer@informatik.uni-augsburg.de taeubig@informatik.tu-muenchen.de

Abstract

This work is mainly concerned with the strength of connections between vertices with respect
to the number of vertex- or edge-disjoint paths. As we shall see, this is equivalent to the question
of how many nodes or edges must be removed from a graph to destroy all paths between two
(arbitrary or specified) vertices.

We review algorithms which

e checkk-vertex g-edge) connectivity,
e compute the vertex (edge) connectivity, and
e compute the maximat-connected components

of a given graph.

After a few definitions we present some important theorems which summarize fundamental
properties of connectivity and which provide a basis for understanding the algorithms in the sub-
sequent sections. We give an introduction to minimum cuts and their properties, and discuss a
structure for representing all minimum cuts, called cactus. Afterwards, we review connectivity al-
gorithms that are based on network flow techniques. As examples for non-flow-based approaches,
we summarize randomized connectivity algorithms and discuss a very simple algorithm for the
(global) minimum capacity cut problem. The computation of biconnected, strongly connected,
and triconnected components is considered in the penultimate section. The last section gives
references for advanced topics and further reading.

Definitions

An undirected graplts = (V, E) is connectedf for each pair of vertices, w € V there is a path
from v to w. Graphs that are not connected are catletonnected For a given undirected graph

G:

(V, E), aconnected componenf G is an induced subgrapi’ = (V’, E’) that is connected

and maximal (i.e., there is no connected subgm@ph- (V”, E”) with V" 5 V’). Checking whether
a graph is connected and finding all its connected components can be done (timem) using
depth-first search (DFS) or breadth-first search (BFS).

1

(b) 2 vertex-disjoint paths and a (c) 3 edge-disjoint paths and an
vertex-cutset of size. edge-cutset of size.

Figure 1: Vertex-/edge-disjoint paths and vertex-/edge-cutsets

A directed grapitz = (V, E) is strongly connected there is a directed path from every vertex to
every other vertex. Atrongly connected componesfta directed graplky is an induced subgraph that
is strongly connected and maximal. The strongly connected components of a directed graph can be
computed in time)(n + m) using a modified DFS, see Sect[dn 7. A directed graph is caltsakly
connectedf its underlying undirected graph is connected.

ForagraphG = (V,E)andaseX CVorY C E, letG — X andG — Y denote the graph that
results from deleting all vertices ix and their incident edges fro, or from removing all edges
in Y from G, respectively. An undirected gragh = (V, F) is calledk-vertex-connected |V | > k
andG — X is connected for evernX C V with | X| < k. Note that every (non-empty) graph is
0-vertex-connected, and thevertex-connected graphs are precisely the connected graphs on at least
two vertices. Furthermore, a graph consisting of a single vertex is connect@evanigx-connected,
but not 1-vertex-connected. Theertex-connectivitpf G is the largest integet such thatG' is k-
vertex-connected. Similarly7 is calledk-edge-connected |V| > 2 andG — Y is connected for
everyY C F with |Y| < k. Theedge-connectivitgf G is the largest integet such thati is k-edge-
connected. The edge-connectivity of a disconnected graph and of a graph consisting of a single vertex
is 0. We denote the vertex-connectivity of a graphby ~(G) and the edge-connectivity by(G).
Furthermore, we define the local (vertex-)connectixity s, t) for two distinct vertices andt as the
minimum number of vertices which must be removed to destroy all pathsdtom In the case that
an edge fromns to t exists we sekq(s,t) = n — 1 sincex cannot exceed — 2 in the other caﬂa
Accordingly, we define\s(s, t) to be the least number of edges to be removed such that no path from
s to t remains. Note, that for undirected graphgs,t) = kq(t, s) andAq(s, t) = \g(t, s), whereas
for directed graphs these functions are, in general, not symmetric.

LIf s andt are connected by an edge, it is not possible to disconieom ¢ by removing only vertices.

2

The notions of vertex-connectivity and edge-connectivity can be adapted to directed graphs by
requiring in the definitions above that— X andG — Y, respectively, be strongly connected.

Consider an undirected graph= (V, E'). Asubset” C V is called avertex-separatofor vertex
cutsej if the number of connected componentgbf C is larger than that ofr. If two verticess andt
are in the same connected component:pbut in different connected componentstof- ', thenC'
is called ans-t-vertex-separatolEdge-separatoréedge cutsejsands-t-edge-separatorare defined
analogously. The notion oft-separators can be adapted to directed graphs in the natural way: a set
of vertices or edges is ant-separator if there is no remaining path freno ¢ after deleting the set
from the graph.

Let G = (V, E) be an undirected or directed graph. Two (directed or undirected) patrsdp,
froms € Vtot € V are calledvertex-disjointf they do not share any vertices excemndt. They
are callededge-disjoinif they do not share any edges.

A flow networkis given by a directed grapfi = (V,), a functionu : £ — R assigning non-
negative capacities to the edges, and two distinct vertices V' designated as th&urceand the
sink respectively. A flowf from s to ¢, or ans-t-flow for short, is a functiory : £ — R satisfying
the following constraints:

e Capacity constraintste € E: 0 < f(e) < u(e)

e Balance conditionsvv € V' \ {s,t} : > cp—(,) f€) = X ccr+(v) f(€)

Thevalueof the flow f is defined as

S ofle)= D> fle)

ecl't(s) ecl'—(s)

wherel't (v) denotes the set of edges with origimndI'~ (v) denotes the set of edges pointing at

For a given grapli: = (V, E), acutis a partition(S, S) of V into two non-empty subsefsandS.
Acut (S, S) is ans-t-cut, for s, ¢ € V, if s € S andt € S. The capacity of a cutS,) is defined as
the sum of the capacities of the edges with origitgiand destination ir5. A minimums-t-cutis an
s-t-cut whose capacity is minimum among ali-cuts.

Some of the terms we use in this work occur under different names in the literature. In what
follows, we mainly use (alternatives in parentheses): cut-vertex (articulation point, separation ver-
tex), cut-edge (isthmus, bridge), component (connected component), biconnected component (non-
separable component, block). @ut-vertexis a vertex which increases the number of connected
components when it is removed from the graph; the temtredgds defined similarly. Abiconnected
components a maximal2-connected subgraph. Block of a graphG is a maximal connected sub-
graph ofG containing no cut-vertex, that is, the set of all blocks of a graph consists of its isolated
vertices, its cut-edges, and its maximal biconnected subgraphs. Hence, with our definition, a block is
(slightly) different from a biconnected component.

Theblock-graphB(G) of a graphG consists of one vertex for each block@f Two vertices of
the block-graph are adjacent if and only if the corresponding blocks share a common vertex (that is,
a cut-vertex). Theutpoint-graphC(G) of G consists of one vertex for each cut-vertex@fwhere
vertices are adjacent if and only if the corresponding cut-vertices reside in the same blockaf
the block- and the cutpoint-graph 6fthe equalitiesB(B(G)) = C(G) andB(C(G)) = C(B(G))
hold [Har63]. Theblock-cutpoint-graplof a graphG is the bipartite graph which consists of the set
of cut-vertices ofG and a set of vertices which represent the blocké& ofA cut-vertex is adjacent

3

to a block-vertex whenever the cut-vertex belongs to the corresponding block. The block-cutpoint-
graph of a connected graph is a tree [HP66]. The maxinadrtex-connectedifedge-connected)
subgraphs are calleklvertex-component&-edge-componernjts A k-edge-component which does

not contain anyk + 1)-components is called@uster[Mat69,/Pat71l, Mat72, Mat77].

2 Fundamental Theorems
Theorem 2.1. For all non-trivial graphsG it holds that:
K(G) < MG) < 4(G)

Proof. The incident edges of a vertex having minimum degi@e) form an edge separator. Thus we
concludeA(G) < 6(G).

The vertex-connectivity of any graph arvertices can be bounded from above by the connectivity
of the complete graph(K,) =n — 1.

Let G = (V, E) be a graph with at leagt vertices and consider a minimal edge separator that
separates a vertex sgtfrom all other verticess = V' \ S. In the case that all edges betweeandS
are present iii; we get\(G) = |S] - |S| > |V| — 1. Otherwise there exist verticesc S,y € S such
that{z,y} ¢ E, and the set of all neighbors ofin S as well as all vertices fron§' \ {z} that have
neighbors inS form a vertex separator; the size of that separator is at most the number of edges from
Sto S, and it separates (at leastpndy. O

The following is the graph-theoretic equivalent of a theorem that was published by Karl Menger
in his work on the general curve theory [Men27].

Theorem 2.2 (Menger, 1927)If P and) are subsets of vertices of an undirected graph, then the
maximum number of vertex-disjoint paths connecting vertices ffand () is equal to the minimum
cardinality of any set of vertices intersecting every path from a vertéxtima vertex inQ).

This theorem is also known as theChain orn-Arc Theorem, and it yields as a consequence one
of the most fundamental statements of graph theory:

Corollary 2.3 (Menger’s Theorem). Let s, ¢ be two vertices of an undirected gragh= (V, E). If
s andt are not adjacent, the maximum number of vertex-disjeif¥paths is equal to the minimum
cardinality of ans-t-vertex-separator.

The analog for the case of edge-cuts is stated in the next theorem.

Theorem 2.4. The maximum number of edge-disjasnt-paths is equal to the minimum cardinality
of ans-t-edge-separator.

This theorem is most often called the edge version of Menger's Theorem although it was first ex-
plicitely stated three decades after Menger’s paper in publications due to Ford and Fulkerson [FF56],
Dantzig and Fulkerson [DF56], as well as Elias, Feinstein, and Shannon [EFS56].

A closely related result is the Max-Flow Min-Cut Theorem by Ford and Fulkefson [FF56]).

Theorem 2.5 (Ford and Fulkerson). The value of a maximugit-flow is equal to the capacity of a
minimums-¢-cut.

The edge variant of Menger’'s Theorem can be seen as a restricted version where all edge capacities
have a unit value.

The following global version of Menger’'s Theorem was published by Hassler Whitney [Whi32]
and is sometimes referred to as ‘Whitney’s Theorem’.

Theorem 2.6 (Whitney, 1932).LetG = (V, F) be a non-trivial graph and a positive integerG is
k-(vertex-)connected if and only if all pairs of distinct vertices can be connectéd/bytex-disjoint
paths.

The difficulty in deriving this theorem is that Menger’s Theorem requires the nodes to be not ad-
jacent. Since this precondition is not present in the edge version of Menger’s Theorem, the following
follows immediately from Theorefn 3.4:

Theorem 2.7.LetG = (V, E) be a non-trivial graph and: a positive integerG is k-edge-connected
if and only if all pairs of distinct vertices can be connected:tmdge-disjoint paths.

For a detailed review of the history of Menger's Theorem we refer to the survey published by
Schrijver [Sch9B].

Beineke and Harary discovered a similar theorem for a combined vertex-edge-connéctivity [BH67].
They consideredonnectivity pairgk, [) such that there is some set/ofrertices and edges whose
removal disconnects the graph, whereas there is no get-of vertices and edges or of: vertices
and! — 1 edges forming a mixed vertex/edge separator.

Theorem 2.8 (Beineke & Harary, 1967).1f (k,[) is a connectivity pair for vertices andt in the
graph G, then there ardk +) edge-disjoint paths joining and ¢, of whichk are mutually non-
intersecting.

The following theorem gives bounds on vertex- and edge-connectivity/(see [Har62]).

Theorem 2.9. The maximum (vertex-/edge-) connectivity of some graphwartices andn edges is
LQT’”J , ifm>n—-1
0 , otherwise.
The minimum (vertex-/edge-) connectivity of some graph wertices andn edges is
m= () () <m<(3)
0 , otherwise.

A further proposition concerning the edge connectivity in a special case has been given by Char-
trand [Cha6b]:

Theorem 2.10.For all graphsG = (V, E)) having minimum degre&(G) > ||V|/2], the edge-
connectivity equals the minimum degree of the gray(t?) = §(G)

For more bounds on graph connectivity see [AH73, Bix74, Les74, Bix81, Esf85,) STO3].

The following theorems deal with thevertex/edge-components of graphs. The rather obvious
facts that two different components of a graph have no vertex in common, and two different blocks
share at most one common vertex, have been generalized by Harary and Kodama [HK64]:

Theorem 2.11.Two distinctk-(vertex-)components have at mést 1 vertices in common.

While k-vertex-components might overlaipedge-components do not.

5

Theorem 2.12 (Matula, 1968).For any fixed natural numbet > 1 the k-edge-components of a
graph are vertex-disjoint.

Proof. The proof is due to Matula (see [Mat69]). Consider an (overlapping) decompoéitien
Gy UG, U ... UG, of a connected subgrah of G. LetC' = (A, A) be a minimum edge-cut o
into the disconnected parts and A. To skip the trivial case, assume tf@thas at leas? vertices.
For each subgrapfi; that contains a certain edge= C' of the min-cut, the cut also contains a cut for
G, (otherwise the two vertices would be connectediin, C' andG' \ C which would contradict the

assumption that’ is a minimum cut). We conclude that there i&’asuch that\(G) = [C] > \(G)),
which directly implies\(G) > min; <;<;{\(G;)} and thereby proves the theorem. O

Although we can see from Theorém 2.1 tthavertex/edge-connectivity implies a minimum de-
gree of at least, the converse is not true. But in the case of a large minimum degree, there must be a
highly connected subgraph.

Theorem 2.13 (Mader, 1972).Every graph of average degree at ledét has ak-connected sub-
graph.

For a proof see [Mad72].
Several observations regarding the connectivitgicgctedgraphs have been made. One of them
considers directed spanning trees rooted at a npsie called--branchings

Theorem 2.14 (Edmonds’ Branching Theorem[[Edm73]).In a directed multigraph? = (V, E)
containing a vertex, the maximum number of pairwise edge-disjeHliranchings is equal ta(r),
wherer(r) denotes the minimum, taken over all vertex $ets V' that containr, of the number of
edges leaving.

The following theorem due to Lész [Lov73] states an interrelation of the maximum number of
directed edge-disjoint paths and the in-degte@) and out-degreé™ (v) of a vertexw.

Theorem 2.15 (Lovasz, 1973) Letv € V be avertex ofagrapty = (V, E). If A\g(v, w) < Ag(w,v)
for all verticesw € V, thend™ (v) < d~(v).

As an immediate consequence, this theorem provided a proof for Kotzig’s conjecture:

Theorem 2.16 (Kotzig's Theorem).For a directed graphz, \g (v, w) equalshq(w, v) for all v, w €
V ifand only if the graph is pseudo-symmetric, i.e. the in-degree equals the out-degree for all vertices:
d*(v) =d (v).

3 Minimum Cuts

For short, in an undirected weighted graph the sum of the weights of the edges with one endpoint in
each of two disjoint vertex set§ andY is denoted by (X,Y"). For directed graphsy(X,Y) is
defined in nearly the same way, but we only count the weight of edges with their origimmd their
destination inY". A cutin a weighted graptr = (V, E) is a set of vertice C S C V and its weight
isw(S,V \ S). Inan unweighted graph, the weight of a cut is the number of edgesSrtm \ S.

6

Definition 3.1. A minimum cutis a cutS such that for all other cutg’,
w(S,V\S) <w(T,V\T).

Observation 3.2. A minimum cut in a connected graphwith edge weights greater than zero induces
a connected subgraph o6f.

An algorithm that computes athinimum cutdas to represent these cuts. A problem is to store
all minimum cuts without using too much space. A suggestion was made in 1976 by Dinitz et al.
[DKL76]. They presented a data structure calbedtusthat represents all minimum cuts of an undi-
rected (weighted) graph. The size of a cactus is linear in the number of vertices of the input graph and
a cactus allows us to compute a cut in a time linear in the size of the cut.

Karzanov and Timofeev outlined in [KT86] a first algorithm to construct a cactus for unweighted,
undirected graphs. Their algorithm consists of two parts. Given an arbitrary input grapb first
part finds a sequence of all minimum cutsGhand the second constructs the caafigsfrom this
sequence. The algorithm also works on weighted graphs, as long as all weights are positive.

If negative weights are allowed, the problem of finding a minimum cut¥/iB-hard [Kar72].
Moreover, no generalization for directed graphs is known. An unweighted graph can be reduced to a
weighted graph by assigning weighto all edges. In the following, we will therefore consider the
problem of finding minimum cuts only for undirected connected graphs with positive weights.

Consider a networkV defined by the directed grapli = (V| F), a capacity function:y, a
sources, a sinkt and a flowf. A residual networkR; consists of those edges that can carry ad-
ditional flow, beyond what they already carry under Thus R; is defined on the grapt'z, :=
(V. {(w,v) [((u,v) € EV (v,u) € E) Aug, ((u,v)) > 0}) with the same source s and sink t and
the following capacity function

c(a,b) — f(a,b) + f (b,a) if (a,b) € EN(ba) € E
ug, ((a,b)) = c(a,b) — f(a,b) if (a,b) € ENA(b,a)¢ E
f(b,a) if (a,b) ¢ EA(bya)€FE

Let Ry, .. be the residual network of and f,,,,., wheref,,,, is a maximums-¢-flow in N. As a
consequence of Theor¢ém .5 on pape 4, the maximum flow saturates all miritoats and there-
fore each ses C V' \ t is a minimums-t-cut iff s € S and no edges leavein Ry, ..

3.1 All-Pairs Minimum Cuts

The problem of computing a minimum cut between all pairs of vertices can, of course, easily be done
by solvingn(n—1)/2 flow problems. As has been shown by Gomory andHu [GH61], the computation
of n — 1 maximum flow problems is already sufficient to determine the value of a maximum flow /
minimum cut for all pairs of vertices. The result can be represented ieghiwalent flow tregwhich

is a weighted tree on vertices, where the minimum weight of any edge on the (unique) path between
two verticess andt equals the maximum flow fromto ¢. They furthermore showed that there always
exists an equivalent flow tree, where the components that result from removing the minimum weight
edge of thes-t-path represent a minimum cut betweeandt. This tree is called th&omory-Hu cut

tree

Gusfield [Gus90] demonstrated how to do the same computation without node contractions and
without the overhead for avoiding the so called crossing cuts. See also [HO92,[KS93, GTO01].

If one is only interested in any edge cutset of minimum weight in an undirected weighted graph
(without a specified vertex pair to be disconnected), this can be done using the algorithm of Stoer and
Wagner, see Secti¢pn 6.1.

3.2 Properties of Minimum Cuts in Undirected Graphs

There are!V! sets and each of them is possibly a minimum cut, but the number of minimum cuts in
a fixed undirected graph is polynomial|ivi|. To see this, we need to discuss some well-known facts
about minimum cuts. These facts also help us to define a data structureczaitad A cactus can
represent all minimum cuts, but needs only space linegr|in

For short, for a graply, let in this chaptep always denote the weight of a minimum cut. If the
considered grapty is clear from the context, the indéx of A is omitted.

Lemma 3.3. Let.S be a minimum cut itz = (V, E). Then, forall) £ 7 C S : w(T,S\T) > 3.

Proof. Assumew(T, S\T) < 3. Sincew (T, V \ S)+w (S\ T,V \ S) = A\, w.lo.g.w (T,V \ S) <
2 (if not, defineT” asS\T). Thenw (T, V \ T') = w(T, S\T)+w (T, V \ S) < A. Contradiction. [J

Lemma 3.4. Let A # B be two minimum cuts such that:= A U B is also a minimum cut. Then

w(A,T) =w (B,T) :w(A\B,B):w(A,B\A):%.

Proof. Asinthe Figuré R, let = w (A, T),b=w (B,T),a = w (A, B\ A)andB = w (B, A\ B).

Thenw (A,A) =a+a=X\w(B,B) =b+3=Xandw (T,T) = a+ b= \. We also know that
w(A\B,BUT) =a+ > andw (B\ A,AUT) —b+a> \. This system of equations and

inequalities has only one unique solutien=a =b= (3 = 2 . O
P Sum of the wetights
/ '.\‘ \ of edges that cross
: .\ 5 —e—r=-a
A ; B TIIC b
\,' L SN /' - —_————

Figure 2: Intersection of two minimum cuts A and B

Definition 3.5. A pair (S, SQ) is called crossing cut, if;, Sy are two minimum cuts and neither
S1 NSy, S1\ Sz, s\ Sp nor S; NS, is empty.

Lemma 3.6. Let (S}, S;) be crossing cuts and let = S; NSy, B = 51\ S, C = S5\ S; and
D = S;NS,. Then

a. A, B, C and D are minimum cuts

b. w(A,D) =w(B,C)=0
c. w(A,B)=w(B,D)=w(D,C)=w(C,A) =42
Proof. Since we know tha$; andS, are minimum cuts, we can conclude
w (S1,51) =w(A,C) +w(A, D) +w(B,C) +w(B,D) = X

w (S2,52) = w(A, B) + w(A, D) +w(B,C) + w(C, D) = A
and since there is no cut with weight smaller thanve know that

w (A, A) = w(A,B) +w(A,C)+w(A, D) >\
w (B, B) = w(A, B) + w(B,C) + w(B,D) > X
w (C,C) =w(A,C)+w(B,C)+w(C,D) >\
w (D, D) =w(A,D) +w(B,D)+w(C,D) > X

Summing up twice the middle and the right side of the first two equalities we obtain
w(A,B)+2-w(A,C)+4-w(A,D)+4-w(B,C)+2-w(B,D)+2-w(C,D)=4-\

and summing up both side of the four inequalities we have
w(A,B)+2-w(A,C)+2-w(A, D)+ 2 -w(B,C)+2-w(B,D)+2-w(C,D)>4-\

Thereforew(A, D) = w(B, C)) = 0. In other words, there are no diagonal edges in Figlre 3.

For a better imagination, let us assume that the length of the four inner line segments in the figure
separatingd, B, C' and D is proportional to the sum of the weights of all edges crossing this corre-
sponding line segments. Thus the total lengtii both horizontal or both vertical lines, respectively,
is proportional to the weight.

Let us assume the four line segments have different length, in other words, the two lines separating
the setsS; from S; or S, from S,, respectively, do not cross each other exactly in the midpoint of the
square, then the total length of the separating line segments of one vertex=set, B, C or D is
shorter therl. Thusw(A, A) <). Contradiction.

As a consequencey(A, B) = w(B, D) = w(D,C) = w(C, A) = 3 andw (A, A) = w (B, B) =

w(C,C) =w (D,D) =\ O

£ S,
B Sz

Figure 3: Crossing cutsS;, So) with S; := AU BandS; := AUC

A crossing cut inG = (V, E) partitions the vertex sét into exactly four parts. A more general
definition is the following, where the vertex set can be divided in three or more parts.

9

Definition 3.7. A circular partitionis a partition ofV into k£ > 3 disjoint sets/;, V4, ..., V} such that

o N2 il =1modk
a-w(VmV})—{ 0 otherwise

b. If S'is a minimum cut, then

1. S or S'is a proper subset of somé or

2. the circular partition is a refinement of the partition defined by the minimuntcun
other words, the minimum cut is the union of some of the sets of the circular partition.

Let Vi, Vs, ..., V} be the disjoint sets of aircular partition, then for alll < a < b < k,5 :=
(Uo_,V;) is a minimum cut. Of course, the complementsafontainingl;, is a minimum cut, too. Let
us define these minimum cuts@scular partition cuts Especially eacly;, 1 < i < k, is a minimum
cut (property a. of the last definition).

Consider a minimum cu$ such that neithef nor its complement is contained in a set of the
circular partition. Sinces is connected (Observati.zg,or its complement are equal t¢_,V;
forsomel <a <b<k.

Moreover, for all set$/; of a circular partition, there exists no minimum ¢usuch thatV;, S) is
a crossing cut (property b. of the last definition).

Definition 3.8. Two different circular partitionsP := {U,..., Uy} and Q = {V4,...,V;} are
compatibleif there is a unique ands, 1 < r, s < k, such that for all; r : U; C V; and for all
j#s:V; CU,.

Figure 4: Example graptd = ({a;...a,,b;...bs}, E) shows two compatible partition8, () de-
fined as follows:

P:={a},... . {ar_1}, {ar, b0, . b} {aria), o {an}}
Q = {{b1}7 BRI {bs—1}7 {b57 az,... ak}, {bs—l—l}, R {bl}}

Lemma 3.9 ([FIe99)). All different circular partitions are pairwise compatible.

10

Proof. Consider two circular partition® and@ in a graphG = (V, E). All sets of the partitions are
minimum cuts. Assume a sst< P is equal to the union of more than one and less than all sets of
(). Exactly two setsA, B € () contained inS are connected by at least an edge to the verlicgss.
ObtainT" from S by replacingA C S by an element of) connected ta3 and not contained iis.
Then(S, T') is a crossing cut, contradiction.

Therefore each set d@f or its complement is contained in some setof

Assume two sets oP are contained in two different sets @f Since each complement of the
remaining sets of’ cannot be contained in one set@f each remaining set d® must be contained
in one subset of). Thus,P = (. Contradiction.

Assume now all sets af are contained in one s&tof (). ThenY = V. Again a contradiction.

Since the union of two complements of setsAns V' and contains at least three sets, only
one complement can be contained in one s&poffhus, there is exactly one s&tof P that is not
contained inY” of Q, but X C Y. O

Lemma 3.10.If S, S, and S3 are pairwise crossing cuts, then
S1 NSy N Sy = 0.

Proof. Assume that the lemma is not true. As shown in Figuire 5, let

a=w(S5\(S1US,),5 NSNS
b=w((SyNS3)\ 51,9 \ (S;US3))
c=w(S1NSyNSs, (S1NSy)\ S3)
d=w((S;NS5)\ 2,5\ (S2US;))

On one hands; N S, is a minimum cut (Lemmi 3/6.a.) so that 3 (Lemmd 3.8). On the other
hande+b = c+d = 3 (Lemmd 3.5.c.). Therefole=d = 0 and(S; N 93)\ Sz = (S5 N S5)\ Sy = 0.

If we apply Lemm6.b. t®; and.S,, thenS; NSy N S3 andSs \ (S U Sy) are not connected.
Contradiction. O

Figure 5: Three pairwise crossing cutsS; and.Ss

Lemma 3.11.1f S, S, andT are minimum cuts witts; C S, T' ¢ S, and (S, T') is a crossing cut,
thenA = (S, \S1)\ 7T, B =5, \T,C =S, NTandD := (S, \ S;) N T are minimum cuts,
w(A, B) = w(B,C) = w(C,D) =4 andw(A, C) = w(A, D) = w(B, D) = 0.

11

Proof. Since(S;,T’) and therefordS,, T') is a crossing cut,

w(AUB,CUD) = ;(> (BC)—;\()
w(AB)+w(BSUS) =uw (B AUSUS,) = 3 (3)and
(AS:[USQ)"—UJ(BSlUSQ)—W(AUBSl 5)22(4)

All equalities follow from Lemm6.c.. Moreover (A, T\ S;) = 0, w (D, S US;) =0 .b.)
and B, C are minimum cuts. Since (1), (2) and

w(AUB,CUD) =w(A,C)+w(A,D)+wB,C)+w(B,D),
we can conclude that(A, C') = w(A, D) = w(B, D) = 0.
A consequence of (3) and (4)is(A, S; U S,) = w (A, B). Moreover,w (4, B) > 3 (Lemma
) andw (A, 5, US;) < w (A, S US,) = 3. Thereforew (4,51 US:) = w(4, B) = 3 andA is
a minimum cut.

With a similar argument we can see(C, D) = 4 and D is a minimum cut. Therefore, the general
case shown in Figufe 6{a) can always be transformed into the Figufe 6(b). O

(1.8 B3:8 [O:T

(@) (b)

Figure 6: Intersection of three minimum cuts

For short, given some sefy, . . ., S, let

S, ifa; =1
(02 EITRILC 7 "R ! '
]:sl,...Sk - Q{ E if o = 0 } and

FiS1,nSi} = (U f{gi::gi}) \ {0}
QA yeeny ake{o,l}k

Lemma 3.12. Let (54, S») be a crossing cut andl € Fig, s,;. ChooseB € Fig, 5,3 such that

w (A, B) = 4. For all crossing cutg B, T'):

w(A BNT) = orw (A BAT) =

12

Proof. W..o.g. A = S; N S, (if not, interchange_Sl agd S, or Sy andS,), B = S; \ S, (if not,
interchanges; andS). LetC = S, \ Sy andD = S, N S,. Then(x) : w(B,C) = 0 (Lemmd 3.5.b.).
Consider the following four cases:

T C (AUB) (Figure[7@@)) : w(A,BNT) = 3 (Lemmg 3.1]1)

TND #(: BecauseS;,T) is a crossing cut,
w(A\T,ANT)+w(A\T,BNT)+w(B\T,ANT)+w(B\T,BNT)

=w((A\T)U(B\T),(AnT)U(BNT))
:wwﬂﬂ&ﬂﬂ:%.
Together withw(B\ T,BNT) > 3 (Lemm), we can conclude
w(A\T,ANT)=0andthereforeANT =0 or A\ T =0,
w(A\T,BNT)=0(1) and

wANT,B\T) =0 (2).
Note thatw(A, B) = 3. If ANT =0, w(A,B ﬂT))0 andw(A, B\ T) = 2. Otherwise
A\NT =0, w(A, B\T) Oandw(A BNT)=
T¢Z (AuB)andTND =0 (3) and (AUC) C T (4) (Figure[7(b)) :
wATAB) L wAue,TnB) Y w(AUC) AT, T\ (AUC)) > g

since(A U C) is aminimum cut (Lemmla 33). Using the factA, B) = 3, we getw (A, 7'N B) =

T¢g (AuB)andTND =0 (5) and(AUC)Q_‘T(Figure):

(ATOB) (AUC’TOB) w(AUC, T\ (AUCQ)) =

since(AU C,T) is a crossing cut.

This concludes the proof. H

Corollary 3.13. The intersection of a crossing cut partitions the vertices of the input graph into four
minimum cuts. Lemnia 3.6.c. guarantees us that for each of the four minimurd tuése exist

two of the three remaining minimum cus C' such thatw (4, B) = w (4, C) = 3. Although set3

or C' may be divided in smaller parts by further crossing cuts, there are always exactly two disjoint
minimum cutsX C BandY C Cwithw (4, X) =w (4,Y) =3

13

Figure 7: A minimum cut T and a crossing Gut;, Ss)

Proof. Assume the corollary is not true. Léf, X;4-) be the first crossing cut that divides the set
Xigo With w (A, Xg0) = g into the two disjoint sets\;, X, with w (A, X;),w (A, X3) > 0. But
then (S, B) or (S, B) is also a crossing cut, which divides B inf$ and B, with X; C B; and
X, C By. Thus,w (A, By) ,w (A, By) > 0. This is a contradiction to Lemnfia 3]12. O

Different crossing cuts interact in a very specific way, as shown in the next theorem.

Theorem 3.14 ([Bix81/ DKL76]). In a graphG = (V, E), for each partitionP of V" into 4 disjoint
sets due to a crossing cut (&, there exists a circular partition id- that is a refinement aP.

Proof. Given crossing cutS;, S»), choose the set
A= {Sl N SQ, Sl \ SQ, 82 \ Sl, Sl U 52}

as a starting point.

As long as there is a crossing oift, 7'y for someT ¢ A andS € A, addT to A. This process
terminates since we can only add eachBet P(1/) into A once. All sets inA are minimum cuts.
Definition[3.7.b. is satisfied fak.

The disjoint minimum cuts(A) give us a partitioning of the graph. All sets(A) can be built
by crossing cuts of minimum cuts if. Therefore, each set ifi(A) has exactly two neighbors, i.e.,
for each setX € F(A), there exist exactly two different set§ Z € F(A) such thatw(X,Y) =
w(X,Z) =13 (Corollary). For all other sets € F(A), w(X, Z) = 0. SinceG is a connected
graph, all sets i (A) can be ordered, so that Definitipbn[3.7.a. holds. Observe that Defihitipn 3.7.b.
is still true, since splitting the sets ifh into smaller sets still allows a reconstruction of the sets in
A. O

Lemma 3.15 ([Bix81,DKL78]). A graphG = (V, E) has© (('Z')) many minimum cuts and this

bound is tight. This means that a graph can h&/é('?')) many minimum cuts.

14

Proof. The upper bound is a consequence of the last theorem. Given a @raph(V, E), the
following recursive function Z describes the number of minimum cuts:in

(. .-
k . k A circular partition
i (Z (Vi) + () Vi,...,V; exists inG

Z(|V]) = No circular partition, but a

Z(S)+2(V=5])+1 minimum cutS exists inG

0 otherwise

It is easy to see that this function achieves the maximum in the case where a circular partition
Wi,..., Wy exist. ThereforeZ (|V|) = O <(“2/‘)>

The lower bound is achieved by a simple cyclenofertices. There ar@ ((})) pairs of edges.
Each pair of edges defines another two minimum ¢und S. These two sets are separated by
simply removing the pair of edges.]

4 Cactus Representation of All Minimum Cuts

In the following, a description of theactusis given. First consider a gragh = (V, E') without any
circular partitions. Then due to the absence of all crossing cuts, all minimum otitaue laminar.

A setS of sets is calledaminar if for every pair of setsS;, S, € S, eitherS; and.S, are disjoint
or .S; is contained inS; or vice versa. Therefore each §étc S contained in somé;,S,,... € S
has a unique smallest superset. For clarity, we say that a tree has nodes and leaves, while a graph
has vertices. Each laminar s€tcan be represented in a tree. Each node represents asetha
leaves represent the setsSrihat contain no other sets 8f The parent of a node representing aket
represents the smallest superset’ofThis construction ends with a set of trees called forest. Add an
extra node- to the forest and connect all roots of the trees of the forest by an edge to this new, node
which is now the root of one big tree. Therefore, the nodes of one tree represent allSetsdfthe
root of the tree represents the entire underlying set, i.e. the union of all element$'at &l If this
union has: elements, then such a tree can have at mdsaves and therefore at mast — 1 nodes.

Since all minimum cutg- are laminar, these can be represented by afredefined as follows.
Consider the smaller vertex set of every minimum cut. Denote this set of sdts Hgthe vertex
sets of a minimum cut are of same size, take one of these sets. Represent eachlsetadingle
node. Two nodes corresponding to minimum cdtand B in G are connected by an edgeAfC B
and there is no other minimum cat such thatd ¢ C' C B. The roots of the forest represent the
minimum cuts inA that are contained in no other minimum cutAin Again, connect all roots of the
forest by an edge to a single extra node that we define as root of the tree.

Because removing one edge in the tree separates a subtree from the rest of the tree, let us define the
following mapping: each vertex of the graphis mapped to the node of the trég that corresponds
to the smallest cut containing this vertex. All vertices that are contained in no ndg@easé mapped
to the root oflg.

For each minimum cu$ of GG, the vertices ob' are then mapped to some set of nodesuch that
there is an edge and removing this edge separates the Aoftem the rest of the tree. Conversely,
removing one edge frort; separates the nodes of the tree into two parts such that the set of all
vertices mapped into one part is a minimum cut.

15

If G has no circular partitions, the tré&g is thecactusC, for G. The number of nodes of a cactus
is bounded by |V| — 1.

Consider a grapl = (V,) that has only one circular partitidri, . . . V.. The circular partition
cuts can be represented by a circlekohodes. Forl < i < k, the vertices of each palf are
represented by one nod€ of the circle in such a way that two paftsandV;,, are represented by
two adjacent nodes.

Now we make use of the fact that for each minimum gubat is no circular partition cut, either
S or S is a proper subset of §. Therefore, we can construct the trég,) for all minimum cuts
that are a subset 6f, but now with the restriction that only the verticeslgfare mapped to this tree.
The root ofT(y;) corresponds exactly to the sét Thus we can merge nodg; of the circle and
the root of 7|y, g) for all 1 <7 < k. This circle connected with all the trees is the cactisfor G.

The number of nodes is equal to the sum of all nodes in the Tiges) with 1 < i < k. Therefore,
the number of nodes of the cactus is bounded fy| — 1 and again, there isbh— 1 correspondence
between minimum cuts i&' and the separation @f into two parts.

Now consider a graptiy = (V, E) with the circular partitions?,, ..., P,. Take all circular par-
titions as a set of sets. Construct a cadfigsrepresenting the circular partition cuts G6fin the
following way.

The vertices of each sét € Fp,,up, are mapped to one node and two nodes are connected, if
for their corresponding sef§ and F», w (F1, F») > 0. Then each circular partition creates one circle
in C. Since all circular partitions are pairwise compatible, the circles are connected by edges that
are not part of any circle. The cactds; is now a tree-like graph (Figufe 8).

After representing the remaining minimum cuts that are not part of a circular partition, we get the
cactusl¢ for G. As before, the number of nodes of the cactus is bounded by — 1.

Figure 8: A cactus representing the circular partition cuts of 6 circular partitions

5 Flow-Based Connectivity Algorithms

We distinguish algorithms that cheékvertex/edge-connectivity of a gragh for a given natural
numberk, and algorithms that compute the vertex/edge-connectiity) or \(G) respectively. (A

16

Figure 9: Construction of the directed gra@hthat is derived from the undirected input gra@ho
compute the local vertex-connectivity; (s, t)

third kind of algorithms computes the maxinkalertex/edge-connected subgraphsomponents),
which is the subject of discussion in Sectign 7.)

Most of the algorithms for computing vertex- or edge-connectivities are based on the computation
of the maximum flow through a derived network. While the flow problem in undirected graphs can be
reduced to a directed flow problem of comparable size [FF62], for the other direction only a reduction
with increased capacities is known [PR75]. There were several algorithms published for the solution
of (general) flow problems, see Table 1.

Better algorithms for the more restricted version of unit capacity networks exist.

Definition 5.1. A network is said to be anit capacity networkor 0-1 networK if the capacity isl
for all edges. A unit capacity network is tfpe 1if it has no parallel edges. It is calletype 2if for
each vertex (v # s, v # t) either the in-degre€~ (v) or the out-degre@™ (v) is only1.

Lemma 5.2. The following time complexity results for the computation of a maximum flow in unit
capacity networks are known:

1. For unit capacity networks, the computation of the maximum flow can be done (using Dinitz’s
algorithm) inO(m?/?).

2. For unit capacity networks of type 1, the time complexity of Dinitz's algorith®(ig/>m).
3. For unit capacity networks of type 2, the time complexity of Dinitz's algorith@(is'/?m).

For a proof of the lemma sele [ET/75, Eve79, Kar73].

While the best bound for directed unit capacity flow problems differs only by logarithmic factors
from the best known bound for integer capacities, even better bounds for the case of undirected unit
capacity networks exist9(min(m, n3/?),/m) by Goldberg and Rad [GRO9R (n"/*m?/?) by Karger
and Levine[[KL98].

5.1 Vertex-Connectivity Algorithms

The basis of all flow-based connectivity algorithms is a subroutine that computes the local connectiv-
ity between two distinct verticesandt. Even [Eve73, Eve75, Eve79] presented a method for comput-
ing k¢ (s, t) that is based on the following construction: For the given gi@ph (V, E') havingn ver-

tices andn edges we derive a directed gra@gh= (V, E) with |V| = 2n and|E| = 2m+n by replac-

ing each vertex € V with two verticess’, v” € V connected by an (internal) edge= (v',v") € E.

Every edge: = (u,v) € E is replaced by two (external) edges= (uv”,v'),e"” = (v",u) € E, see

Figure] 9.

17

1955 Dantzig & Fulkerson [FD55, DF56]
Network simplex method O(n*mU) [Dan51b/Dan51a]

1956 Ford & Fulkerson [FE56, FES7]
Augmenting path / Labeling O(nmU) [EE62]

1969 Edmonds & Karp [EK72]
Shortest augmenting path O(nm?) [Zad72]
Capacity scaling O(m?*logU)

1970 Dinitz [DIn70]

Layered network / blocking flow O(n?m)

1973 Dinitz [Din73/ Gab85]
Capacity scaling O(nmlogU)

1974 Karzanov [Kar74]
Preflow-push / layered network O(n?)

1977 Cherkassky O(n*y/m) [Che77| Che94]

1978 Malhotra, Kumar, Maheshwari O(n?) [MKM78]

1978 Galil O(n®/3m?/3) [Gal80]

1979 Galil & Naamad / Shiloach O(nm(logn)?) [GN8Q,[Shi78]

1980 Sleater & Tarjan [ST83]
Dynamic trees O(nmlogn)

1985 Goldberg [Gol85]
Push-relabel O(n?)

1986 Goldberg & Tarjan [GT88]
Push-relabel O(nmlog(n*/m))

1987 Ahuja & Orlin [AO89]
Excess scaling O(nm + n*logU)

1990 Cheriyan, Hagerup, Mehlhorn [CHM96]
Incremental algorithm O(n?/logn)

1990 Alon [CH95[Alo90]
Derandomization O(nm + n®3logn)

1992 King, Rao, Tarjan [CH95, KRT92]
Online game O(nm + n*t°)

1993 Phillips & Westbrook [PW98]
Online game O(nmlog,,, n + n?log>™ n)

1998 Goldberg & Rao [GR98]

Non-unit length function

O(min(n??, \/m)mlog %2 logU)

Table 1: The history of max-flow algorithms

U denotes the largest possible capacity (integer capacities case only)

18

Year Author(s) MaxFlow calls Compute Ref.

1974 Even & (k+1)(n—0-1) O(kn3*m) [ET75]
Tarjan O(n'/?m?)

1984 Esfahanian n — 6 — 1+ O((n—0+xd—r*/2)- [EH84]
& Hakimi k(20 —Kk—3)/2 n23m)

1996 Henzinger, O(min{x* +n,xkn}trn) [HRGIE]
Rao,
Gabow

Table 2: The history of computing the vertex-connectivity

Year Author(s) MaxFlow calls ChedkVC Ref.
. k+1
1969 Kleitman k(n — 8) — (;) O(*n®) [Kle69]
k
1973 Even n—k+ (2) O(k*m + knm) [Eve75]

-1

1984 Esfahanian & Hakimi n — &k + (k 5

) O(k*m + knm) [EH84]

Table 3: The history of checking vertex-connectivity

k(s,t) is now computed as the maximum flow @ from sources” to the target’ with unit ca-
pacities for all edg@ For a proof of correctness see [Eve79]. For eachyait’ € V representing
avertexv € V the internal edgév’, v”) is the only edge that emanates frefrand the only edge en-
teringv”, thus the networks is of type 2. According to Lem@z the computation of the maximum
flow resp. the local vertex-connectivity has time complex/nm).

A trivial algorithm for computings(G) could determine the minimum for the local connectivity
of all pairs of vertices. Sinceq(s,t) = n — 1 for all pairs(s,t) that are directly connected by an
edge, this algorithm would malﬂé’;;l) — m calls to the flow-based subroutine. We will see that we
can do much better.

If we consider a minimum vertex separatorC V that separates a ‘left’ vertex subgetC V
from a ‘right’ subset? C V, we could compute(G) by fixing one vertexs in either subseL or R
and computing the local connectivitieg (s, t) for all verticest € V' \ {s} one of which must lie on
the other side of the vertex cut. The problem is: how to select a vesexh thats does not belong
to every minimum vertex separator? Sindg€y) < 6(G) (see Theorerp 2/1), we could tyG) + 1
vertices fors, one of which must not be part of all minimum vertex cuts. This would result in an
algorithm of complexityO((§ + 1) - n - /nm)) = O(6n*?*m)

Even and Tarjan [ET75] proposed Algoritim 1 that stops computing the local connectivities if the
size of the current minimum cut falls below the number of examined vertices.

The resulting algorithm examines not more than- 1 vertices in the loop for variablé Each
vertex has at least(G) neighbors, thus at mo€2((n — § — 1)(x + 1)) calls to the maximum flow
subroutine are carried out. SingéG) < 2m/n (see Theorerh 2.9), the minimum capacity is found
not later than in calkm/n + 1. As a result, the overall time complexity @(/nm?).

Esfahanian and Hakimi[EH84] further improved the algorithm by the following observation:

2Firstly, Even used(e,) = 1, c¢(e’) = c(e”) = oo which leads to the same resullts.

19

Algorithm 1: Vertex-connectivity computation by Even & Tarjan
Input : An (undirected) grapli = (V, E)
Output: k(G)

Rmin < N — 11
1+ 1;
while i < g, dO
for j «— i+ 1tondo
if © > Kmin then
‘ break ;
else if{v;,v;} ¢ E then
computersg(v;, v;) using the MaxFlow algorithm;
L Kmin < Min{Kmin, £a(vi, v;) 1

return Kpin;

Lemma 5.3. If a vertexv belongs to all minimum vertex-separators then there are for each minimum
vertex-cutS two verticed € Lg andr € Rg that are adjacent te.

Proof. Assumeyv takes part in all minimum vertex-cuts 6f. Consider the partition of the vertex set

V induced by a minimum vertex-cgtwith a componentL (the ‘left’ side) of the remaining graph and

the respective ‘right’ sidé&. Each side must contain at least one’'sfneighbors, because otherwise

would not be necessary to break the graph into parts. Actually each side having more than one vertex
must contair neighbors since otherwise replacindpy the only neighbor would be a minimum cut
without v, in contrast to the assumption. O

These considerations suggest Algorithm 2. The first loop makes — 1 calls to the MaxFlow
procedure, the second requine@d — x — 3)/2 calls. The overall complexity is thus — 6 — 1 +
k(20 — k — 3)/2 calls of the maximum flow algorithm.

5.2 Edge-Connectivity Algorithms

Similar to the computation of the vertex-connectivity, the calculation of the edge-connectivity is based
on a maximum-flow algorithm that solves the local edge-connectivity problem, i.e. the computation
of A¢(s,t). Simply replace all undirected edges by pairs of antiparallel directed edges with capacity
and compute the maximum flow from the sourcto the sinkt. Since the resulting network is of
type 1, the computation is, due to Lemnal5.2, of comple&itynin{m?/?, n*3m}).

A trivial algorithm for computing\(G) could simply calculate the minimum of the local edge-
connectivities for all vertex pairs. This algorithm would thus make — 1)/2 calls to the MaxFlow
subroutine. We can easily improve the complexity of the algorithm if we consider only the local
connectivities\;(s, t) for a single (fixed) vertex and all other vertices. Since one of the vertices
t € V'\ {s} must be separated frosby an arbitrary minimum edge-cut(G) equals the minimum
of all these values. The number of MaxFlow calls is thereby reduced-tol. The overall time
complexity is thusO(nm - min{n??3 m'/?}) (see also[[ET75]). The aforementioned algorithm also
works if the whole vertex set is replaced by a subset that contains two vertices that are separated by

20

Algorithm 2 : Vertex-connectivity computation by Esfahanian & Hakimi
Input : An (undirected) grapli = (V, E)
Output: k(G)

Rmin < N — 11
Choosev € V having minimum degreel(v) = 6(G);
Denote the neighbor¥ (v) by vy, vs, ..., vs;

foreach non-neighborv € V' \ (N(v) U {v}) do
computex (v, w) using the MaxFlow algorithm;
L Rmin < min{ﬁmim "‘JG(Uv w)};
1+ 1;
while i < g, dO
for j«—i+1tod—1do
ifi>680—20r7i> Ky, then
‘ return Kopin;
else if{v,w} ¢ E then
computex (v;, v;) using the MaxFlow algorithm;
L Fomin “— MID{Kmin, ke (vi, v;) };

| t+—14+1;
return Koy,

some minimum edge-cut. Consequently, the next algorithms try to reduce the size of this vertex set
(which is called a\-covering. They utilize the following lemma. Le$ be a minimum edge-cut of a
graphG = (V, E) and letL, R C V be a partition of the vertex set such thatind R are separated

by S.

Lemma5.4.If \(G) < §(G) then each component 6f — S consists of more tha#(G) vertices, i.e.
|L| > §(G) and|R| > o(G).

Proof. Let the elements of be denoted by, s, ..., [} and denote the induced edgesbBy.| =

Year Author(s) MaxFlow calls ChedkEC
Compute
1975 Even, Tarjan [ET75]
n—1 O(nm - min{n?/3 m'/2})
1984 Esfahanian, Hakimi[EH84]
<n/2 O(Anm)
1987 Matula[[Mat8[7] O(kn?)
O(\n?)

Table 4: The history of edge-connectivity algorithms

21

0(G) -k < D dal)
2 |E[L]| + 15

k(k—1
2.%+|S|

< k(k—1)+(G)

<
<

Fromo(G) - (k — 1) < k(k — 1) we concludelL| = k£ > 1 and|L| = k& > 4(G) (as well as
|R| > 0(G)). O

Corollary 5.5. If A\(G) < §(G) then each component 6f — S contains a vertex that is not incident
to any of the edges ifl.

Lemma 5.6. Assume again thax(G) < §(G). If T is a spanning tree ofr then all components
of G — S contain at least one vertex that is not a leafiof(i.e. the non-leaf vertices af form a
A-covering).

Proof. Assume the converse, that is all verticed.iare leaves of . Thus no edge df’ has both ends
in L, i.e.|L| = |S|. Lemmd 5.4 immediately implies thatG) = |S| = |L| > §(G), a contradiction
to the assumption. O

Lemmd 5.6 suggests an algorithm that first computes a spanning tree of the given graph, then se-
lects an arbitrary inner vertexof the tree and computes the local connectivity, w) to each other
non-leaf vertexw. The minimum of these values together witf) yields exactly the edge con-
nectivity \(G). This algorithm would profit from a larger number of leavedimut, unfortunately,
finding a spanning tree with maximum number of leave§8-hard. Esfahanian and Hakimi [EH84]

Algorithm 3: Spanning tree computation by Esfahanian & Hakimi
Input : An (undirected) grapli: = (V, E)
Output: Spanning Tred with a leaf and an inner vertex ih and R, resp.

Choosev € V;
T « all edges incident at;
while |E(T)| <n —1do
Select a leafv in T such that for all leavesin T
L (N(w) N (V =V(T)| = IN(r)n (V = V(T))];
T —TUGwU{Nw)n(V —=V(T))}]
return 7T,

proposed an algorithm for computing a spanning ffesf G such that both/. and R of some min-
imum edge separator contain at least one leaf ,cind due to Lemmja 5.6 at least one inner vertex
(see Algorithij B). The edge-connectivity of the graph is then computed by Algdrithm 4. Biisce
chosen to be the smaller of both sets, leaves and non-leaves, the algorithm requires@roaks
to the computation of a local connectivity, which yields an overall complexit Qfmn).

This could be improved by Matula [MatB87], who made use of the following lemma.

22

Algorithm 4 : Edge-connectivity computation by Esfahanian & Hakimi
Input : An (undirected) grapli = (V, E)
Output: A\(G)

Construct a spanning tréeusing Algorithn 3;

Let P denote the smaller of the two sets, either the leaves or the inner nodes of
Select a vertex € P;

¢ — min{\g(u,v) :v € P\ {u}t};

A «— min(§(G), ¢);

return \;

Lemma5.7. In case\(G) < §(G), each dominating set @F is also a\-covering ofG.

Similar to the case of the spanning tree, the edge-connectivity can now be computed by choos-
ing a dominating seD of G, selecting an arbitrary vertex € D, and calculating the local edge-
connectivities between and all other vertices i. The minimum of all values together with the
minimum degreej(G) gives the result. While finding a dominating set of minimum cardinality is
N'P-hard in general, the connectivity algorithm can be shown to run in @fen) if the dominat-
ing set is chosen according to Algoritkirn 5.

Algorithm 5 : Dominating set computation by Matula
Input : An (undirected) grapli: = (V, E)
Output: A dominating setD

Choosev € V;
D — {v};
while V'\ (DU N(D)) # () do
L Selectavertexo € V' \ (DU N(D));
D — D uU{w};

return D;

6 Non-Flow-Based Algorithms

We consider now connectivity algorithms that are not based on network flow techniques.

6.1 The Minimum Cut Algorithm of Stoer and Wagner

In 1994 an algorithm for computing a minimum capacity cut of an edge-weighted graph was published
by Stoer and Wagner [SW97]. It was unusual not only due to the fact that it did not use any maximum
flow technique as a subroutine. Somewhat surprisingly, the algorithm is very simple in contrast to all
other algorithms (flow-based and non-flow-based) that were published so far. In principle, each phase
of the algorithm is very similar to Prim’s minimum spanning tree algorithm and Dijkstra’s shortest

23

Algorithm 6 : Minimum capacity cut computation by Stoer & Wagner
Input : An undirected graplir = (V, E)
Output: A minimum cutC.;, corresponding to\(G)

Choose an arbitrary start vertex

Chin < undefined;

V'V,
while |V’| > 1 do

A —{a};
while A # V' do
Add to A the most tightly connected vertex;
L Adjust the capacities betweehand the vertices ifv” \ A;

C := cut of V' that separates the vertex added last tvtom the rest of the graph;
if Cuin = undefineddr w(C') < w(Chin) then
L C11rnin — Ca
| Merge the two vertices that were added lastito
return Chin;

path computation, which leads to an equivalent running tim@ (@f. + n log n) per phase and overall
time complexity ofO(nm + n?logn).
After choosing an arbitrary start vertexthe algorithm maintains a vertex subgethat is initial-
ized with the start vertex and that grows by repeatedly adding a vertex4 that has a maximum
sum of weights for its connections to verticesAn If all vertices have been added # the last
two verticess andt are merged into one. While edges betweesndt are simply deleted by the
contraction, all edges fromandt to another vertex are replaced by an edge weighted with the sum
of the old weights. The cut that separates the vertex added last from the rest of the graph is called the
cut-of-the-phase

Lemma 6.1. The cut-of-the-phase is a minimunat-cut in the current (modified) graph, wheseand
t are the two vertices added last #bin the phase.

Proof. Consider an arbitrary-t-cut C' for the last two vertices. A vertex # a is calledactiveif v
and its immediate predecessor with respect to the additiehreside in different parts af'. Let A,
be the set of vertices that are ihjust beforev is added and let(.S, v) for a vertex sefS denote the
capacity sum of all edges betweeand the vertices i1%.

The proof shows, by induction on the active vertices, that for each active wettexadjacency
to the vertices added befordl() does not exceed the weight of the cut4f U {v} induced byC
(denoted by,). Thus it is to prove that

w(Ay,v) <w(Cy)

For the base case, the inequality is satisfied since both values are equal for the first active vertex.
Assuming now that the proposition is true for all active vertices up to active vertee value for the
next active vertex, can be written as

24

w(Ay, w) w(Ay, u) + w(A, \ Ay, u)
(A,

< w(Ay,v) +w(A,\ Ay, u) (w(Ay,u) < w(A,,v))
< w(Cy) +w(A, \ Ay,u) (by induction assumption)
< w(C,)
The last line follows because all edges betwelen, A, andwu contribute their weight tav(C,,)
but not tow(C,).
Sincet is separated by’ from its immediate predecessgrit is always an active vertex; thus the
conclusionw(A;, t) < w(C;) completes the proof. O

Theorem 6.2. A cut-of-the-phase having minimum weight among all cuts-of-the-phase is a minimum
capacity cut of the original graph.

Proof. For the case where the graph consists of ahlyertices, the proof is trivial. Now assume
|V| > 2. The following two cases can be distinguished:

1. Either the graph has a minimum capacity cut that is also a minimitkeut (wheres andt are
the vertices added last in the first phase), then, according to L¢mina 6.1, we conclude that this
cut is a minimum capacity cut of the original graph.

2. Otherwise the graph has a minimum cut wher@ndt are on the same side. Therefore the
minimum capacity cut is not affected by merging the verticasdt.

Thus, by induction on the number of vertices, the minimum capacity cut of the graph is the cut-of-
the-phase having minimum weight. O]

6.2 Randomized Algorithms

In 1982, Becker et all [BDD82] proposed a probabilistic variant of the Even/Tarjan vertex connec-
tivity algorithm [ET75]. It computes the vertex connectivity of an undirected gr@phith error
probability at most in expected time&((— log £)n*?m) provided thatn < idn? for some constant

d < 1. This improved the computation affor sparse graphs.

A few years later, Linial, Lovasz and Wigderson provided probabilistic algorithms [LLW86,
LLW88] that were based on a geometric, algebraic and physical interpretation of graph connectiv-
ity. As a generalization of the notion eft-numbering, they showed that a gra@hs k-connected if
and only if it has a certain nondegenerate convex embeddiigih, i.e., specifying any: vertices
of G, the vertices of7 can be represented by pointsiRf~! such that nd: are in a hyperplane and
each vertex is in the convex hull of its neighbors, except folktspecified vertices. As a result, they
proposed a Monte-Carlo algorithm running in tir®&n?> + nx>) (that errs with probability less
than1/n) and a Las Vegas algorithm with expected runtiméh>> + nx35).

A subsequent work of Cheriyan and Reif [CR92] generalized this approach to directed graphs,
which yielded a Monte Carlo algorithm with running tind® (M (n) + nM(k)) - logn) and error
probability < 1/n, and a Las Vegas algorithm with expected tidg M (n) + nM(k)) - k), where
M (n) denotes the complexity for the multiplicationofx n matrices.

Henzinger, Rao and Gabow [HRG96] further improved the complexities by giving an algorithm
that computes the vertex connectivity with error probability at mgstin (worst-case) tim& (nm,)
for digraphs and?(xn?) for undirected graphs. For weighted graphs they proposed a Monte Carlo
algorithm that has error probability/2 and expected running tin®(nm log(n?/m)).

25

Dei e
H o o — @)

Figure 10: Example for the Stoer/Wagner algorithm. Upper case letters are vertex names, lower case
letters show the order of addition to the setThe minimum cu{ ABDEG?} | {C'F H} has capacity
and is found in Paft (f) (third phase)

26

7 Basic Algorithms for Components

Super-linear algorithms for the computation of the blocks and the cut-vertices as well as for the

computation of the strongly connected components of a graph were proposed in [Pat71] and [Lei66,
Pur68| Pur70, Mun71], respectively. Later on, linear time algorithms were published by Hopcroft and

Tarjan [HT73b| Tar72].

7.1 Biconnected Components

A problem that arises from the question which nodes of a network always remain connected in case
one arbitrary node drops out is the computation ofitttennected (or non-separable) componesfts
a graph, also calledlocks

Let us consider a depth-first search in an undirected and connected(@raptl, F') where we
label the traversed vertices with consecutive numbers freom = |V/| using a pre-order numbering
num. We observe that we inspect two kinds of edges: the ones that lead to unlabeled vertices become
tree edgesand the ones that lead to vertices that were already discovered and labeled in a former step
we callbackward edges

For each vertex we keep the smallest label of any vertex that is reachable via arbitrary tree edges
followed by not more than one backward edge, i.e. the smallest number of any vertex that lies on
some cycle withv. Whenever a new vertex is discovered by the DFS|dhe-entry of that vertex is
initialized by its own number.

If we return from a descent to a chitd — i.e. from a tree edgév, w) —, we updatdow [v] by
keeping the minimum of the child’s enttgw [w] and the current valuéow [v]. If we discover a
backward edgév, w), we updatdow [v] to be the minimum of its old value and the label.of

To detect the cut-vertices of the graph we can now utilize the following lemma:

Lemma 7.1. We follow the method described above for computing the valueszodandnumduring
a DFS traversal of the grap&y'. A vertexv is a cut-vertex if and only if one of the following conditions
holds:

1. ifv is the root of the DFS tree and is incident to at le2f)FS tree edges,
2. if v is not the root, but there is a child of v such thatow [w] > num[v].
Proof. 1. Assume that is the root of the DFS tree.

— If v is incident to more than one tree edge, the children would be disconnected by remov-
ing vertexv from G.

— If v is a cut-vertex then there are verticeg € V that are disconnected by removing
l.e.v is on every path connectingandy. W.l.0.g. assume that the DFS discovetsefore
y. y can only be discovered after the descent t@turned tov, thus we conclude that
has at least two children in the DFS tree.

2. Assume now that is not the root of the DFS tree.

— If there is a childw of v such thatow [w] > num[v| this means that there is only one path
connecting this successarwith all ancestors ob. Thusw is a cut-vertex.

27

Figure 11: Computation of biconnected components in undirected graphs.
Left: the undirected input graph. Middle: dfs tree with forward (straight) and backward (dashed)
edges. Right: the blocks and articulation nodes of the graph.

— If v is a cut-vertex, there are verticesy € V such that is on every path connecting
andy. If all children of v had an indirect connection (via arbitrary tree edges followed
by one backward edge) to any ancestorwdhe remaining graph would be connected.
Therefore one of the children must hdeev [w] > numv].

This concludes the proof. O

To find the biconnected components, i.e. the partition of the edges, we put every new edge on
a stack. Whenever the conditidow [w] > numlv] holds after returning from a recursive call for a
child w of v, the edges on top of stack including edgew) form the next block (and are therefore
removed from the stack).

7.2 Strongly Connected Components

We now consider the computation of the strong components, i.e., the maximal strongly connected
subgraphs in directed graphs. Analogously to the computation of biconnected components in undi-
rected graphs, we use a modified depth-first search that labels the vertices by consecutive numbers
from 1 to n. In case the traversal ends without having discovered all vertices we have to restart the
DFS at a vertex that has not been labeled so far. The result is a spanning-forest

The edgeg = (v, w) that are inspected during the DFS traversal are divided into the following
categories:

1. All edges that lead to unlabeled vertices are caited edgegthey belong to the trees of the
DFS forest).

2. The edges that point to a vertexhat was already labeled in a former step fall into the following
classes:
(@) If numiw| > num[v] we calle aforward edge
(b) Otherwise, ifw is an ancestor of in the same DFS tree we call backward edge
(c) Otherwisee is called across edgé€because it points from one subtree to another).
An example is shown in Figufe [L2.

Two verticesv, w are in the same strong component if and only if there exist directed paths from
v to w and fromw to v. This induces an equivalence relation as well as a partition of the vertex set

28

Figure 12: DFS forest for computing strongly connected components in directed graphs: tree, for-
ward, backward, and cross edges

(in contrast to biconnected components where the edge set is partitioned while vertices may belong
to more than one component).

During the DFS traversal we want to detect the roots of the strong components, i.e. in each
component the vertex with smallest DFS label. As in the case of the biconnected components we
must decide for each descendansdf a vertexv whether there is also a directed path that leads back
from w to v. Now we defindowlink [v] to be the smallest label of any vertex in the same strong
component that can be reached via arbitrarily many tree arcs followed by at most one backward or
cross edge.

Lemma 7.2. A vertexv is the root of a strong component if and only if both of the following conditions
are met:

1. There is no backward edge franor one of its descendants to an ancestoun.of

2. There is no cross edde, w) fromv or one of its descendants to a vertexsuch that the root
of w’s strong component is an ancestorwof

This is equivalent with the decision whethewlink [v] = num[v].

Proof. — Assume conversely that the condition holds bus the root ofv’s strong component
with u # v. There must exist a directed path franto . The first edge of this path that points
to a vertexw that is not a descendantofn the DFS tree is a back or a cross edge. This implies
lowlink [v] < numjw] < numv], since the highest numbered common ancestorasfdw is
also in this strong component.

— If v is the root of some strong component in the actual spanning forest, we may conclude that
lowlink [v] = num[v]. Assuming the opposite (i.éowlink [v] < numv]), some proper
ancestor ob would belong to the same strong component. Thusuld not be the root of the
SCC.

This concludes the proof. m

If we put all discovered vertices on a stack during the DFS traversal (similar to the stack of edges
in the computation of the biconnected components) the lemma allows us to ‘cut out’ the strongly
connected components of the graph.

It is apparent that the above algorithms share their similarity due to the fact that they are based on
the detection of cycles in the graph. If arbitrary instead of simple cycles (for biconnected components)
are considered, this approach yields a similar third algorithm that computes the bridgesdge-)
connected components (published by Tarjan [Tar74]).

29

7.3 Triconnectivity

First results on graph triconnectivity were provided by Mac Lane [ML37] and Tutte [Tut61, Tut66].

In the sixties, Hopcroft and Tarjan published a linear time algorithm for dividing a graph into its
triconnected components that was based on depth-first search![HT72,/HT73a, HT74]. Miller and Ra-
machandran [MR92] provided another algorithm based on a method for finding open ear decomposi-
tions together with an efficient parallel implementation. It turned out that the early Hopcroft/Tarjan
algorithm was incorrect, which was then modified by Gutwenger and Mutzel [GMO1]. They modified
the faulty parts to yield a correct linear time implementation of SPQR-trees. We now briefly review
their algorithm.

Definition 7.3. LetG = (V, E) be a biconnected (multi-) graph. Two verticed € V are called a
separation paiof G if the induced subgraph on the verticés\ {a, b} is not connected.

The pair(a, b) partitions the edges @F into equivalence classéds, . . ., E;, (separation classés
s.t. two edges belong to the same class exactly if both lie on some padhcontains neither norb
as an inner vertex, i.e. if it contaimsor b it is an end vertex ofp. The pair(a, b) is a separation pair if
there are at least two separation classes, except for the following special cases: there are exactly two
separation classes, and one of them consists of a single edge, or if there are exactly three separation
classes that all consist of a single edge. The g@phtriconnected if it contains no separation pair.

Definition 7.4. Let (a,b) be a separation pair of a biconnected multigraghand let the separation
classesF; ;. be divided into two groupg’ = U§:1 E;andE" = Uf:m E;, s.t. each group contains
at least two edges. The two grapis= (V(E'Ue), E'Ue) andG” = (V(E"Ue), E” Ue) that result
from dividing the graph according to the partitigh’, £”] and adding the newirtual edgee = (a, b)

to each part are calledplit graphsof G' (and they are again biconnected). If the split operation is
applied recursively to the split graphs, this yields the (not necessarily unggpliexomponentsf G.

Every edge int is contained in exactly one, and each virtual edge in exactly two split components.

Lemma 7.5. LetG = (V, E) be a biconnected multigraph witliy| > 3. Then the total number of
edges contained in all split components is bounded|By — 6.

Proof. Induction on the number of edges@f If |E| = 3, G cannot be split and the lemma is true.
Assume now, the lemma is true for graphs having at most 1 edges. If the graph has edges, the
lemma is obviously true iz cannot be split. Otherwis@ can be split into two graphs havirig+ 1
andm — k + 1 edges with2 < k < m — 2. By the assumption, the total number of edges is bounded
by3(k+1)—6+3(m—k+1)—6 =3m—6. Thus, by induction on the number of edges, the proof
is complete. O

There are split components of three types: triple bonds (three edges between two vertices), trian-
gles (cycles of lengtB), and triconnected simple graphs. We now introduce the reverse of the split
operation: themerge graphof two graphsG, = (V4, E,) andG, = (14, E»), both containing the
same virtual edge, is defined ag7 = (V; U Vs, (B U Es) \ {e}). Thetriconnected components
a graph are obtained from its split components by merging the triple bonds as much as possible to
multiple bonds and by merging the triangles as much as possible to form polygons. Mac Lané [ML37]
showed that, regardless of the (possibly not unique) splitting and merging, we get the same tricon-
nected components.

30

Lemma 7.6. The triconnected components of a (multi)graph are unique.

We now turn to the definition of SPQR-trees, which were initially defined for planar [DBT89],
later also for general graphs [DBT96]. #plit pair of a biconnected grap&y' is either a separation
pair or a pair of adjacent vertices. gplit componenof a split pair{u, v} is either an(u, v)-edge
or an inclusion-maximal subgraph 6f, were{u, v} is not a split pair. A split pai{u, v} of G is
called amaximal split pairwith respect to a split paifs,t} of G if for any other split paif{«’, v'},
the vertices, v, s, andt are in the same split component.

Definition 7.7. Lete = (s,t) be an edge ofi. TheSPQR-treeZ of G with respect to thiseference
edgeis a rooted ordered tree constructed from four different types of nodes (S,P,Q,R), each containing
an associated biconnected multigraph (called $skeleton. 7'is recursively defined as follows:

(Q) Trivial Case: If GG consists of exactly two parallel-t-edges, therfis a single Q-node with
skeletonG.

(P) Parallel Case: If the split pair{s, ¢} has more than two split componeidis ,, the root of7is a
P-node with a skeleton consisting/oparallel s-t-edgese; ., with e; = e.

(S) Series Caself the split pair{s, ¢t} has exactly two split components, one of them ike other is
denoted by'. If G’ has cut-vertices; ;1 (k > 2) that partition G into blocksG_ . (ordered
from s to t), the root of7is an S-node, whose skeleton is the cycle consisting of the edges
whereey = e ande; = (¢;_1, ¢;) withi = 1.k, ¢g = s and¢;, = t.

(R) Rigid Case: In all other cases lefs, t1}, .., { sk, tx } be the maximal split pairs @F with respect
to {s,t}. Further letG; for i = 1,..,k denote the union of all split components{af, ¢;}
except the one containing The root of7is an R-node, where the skeleton is created f@m
by replacing each subgrapfi; with the edge; = (s;, ;).

For the non-trivial cases, the children_, of the node are the roots of the SPQR-tree& gt e; with
respect tce;. The vertices incident with each edgeare thepolesof the nodeu;, the virtual edge of
nodey; is the edge:; of the node’s skeleton. The SPQR-tEis completed by adding a Q-node as
the parent of the node, and thus the new root (that represents the reference edge

Each edge inG corresponds with a Q-node Gf, and each edge; in the skeleton of a node
corresponds with its chilg;. 7 can be rooted at an arbitrary Q-node, which results in an SPQR-tree
with respect to its corresponding edge.

Theorem 7.8. Let G be a biconnected multigraph with SPQR-tfEe

1. The skeleton graphs @fare the triconnected components@f P-nodes correspond to bonds,
S-nodes to polygons, and R-nodes to triconnected simple graphs.

2. There is an edge between two nodes € 7 if and only if the two corresponding triconnected
components share a common virtual edge.

3. The size of , including all skeleton graphs, is linear in the size(af

31

For a sketch of the proof, see [GMO01].

We consider now the computation of SPQR-trees for a biconnected multigigpithout self-
loops) and a reference edge We assume a labeling of the vertices by unique indices froon1/|.
As a preprocessing step, all edges are reordered (using bucket sort), first according to the incident
vertex with the lower index, and then according to the incident vertex with higher index, such that
multiple edges between the same pair of vertices are arranged successively. In a second step, all such
bundles of multiple edges are replaced by a new virtual edge. In this way a set of multiple bonds
4, .., Cy is created together with a simple gra@gh

In the second step, the split componefiis, .., C,, of G’ are computed using a dfs-based algo-
rithm. In this context, we need the following definition:

Definition 7.9. A palm treeP is a directed multigraph that consists of a setttde arcay — w and
a set offrondsv — w, such that the tree arcs form a directed spanning tre® @that is the root has
no incoming edges, all other vertices have exactly one parent), and-ifw is a frond, then there is
a directed path fromw to v.

Suppose nowp is a palm tree for the underlying simple biconnected gréph- (V, £’) (with
vertices labeled, .., |V|). The computation of the separation pairs relies on the definition of the
following variables:

lowptl(v) = min ({v} U{w|v S w})
lowpt2(v) = min ({v} U ({w|v S wh {Iowptl(v)}>>

These are the two vertices with minimum label, that are reachablefrbyntraversing an arbitrary
number (including zero) of tree arcs followed by exactly one fronf ¢br v itself, if no such option
exists).

Let Adj(v) denote the ordered adjacency list of vertexand letD(v) be the set of descendants
of v (that is the set of vertices that are reachable via zero or more directed tree arcs). Hopcroft and
Tarjan [HT73a] showed a simple method for computingaaceptable adjacency structymbat is, an
order of the adjacency lists, which meets the following conditions:

1. The root ofP is the vertex labeled with.

2. If wy,..,w, are the children of vertex in P according to the ordering in Adj), thenw,; =
v+ |D(wiy1 U ..U D(wy,)| + 1,

3. The edges in Adjp) are in ascending order according to lowgpt] for tree edges — w, and
w for frondsv — w, respectively.

Let wy, .., w, be the children ob with lowptl(w;)) = u ordered according to Adj), and let
io be the index such that lowpi2;) < v for 1 < i <4, and lowptZw;) > v for i, < j < n.
Every frondv — w € E’ resides between — w;, andv — w;, 11 in Adj(v).

An adequate rearrangement of the adjacency structure can be done in linear time if a bucket sort with
3|V| + 2 buckets is applied to the following sorting function (confer [HT'73a, GM01]), that maps the
edges to numbers fromto 3|V| + 2:
3lowptl(w) if e =v — w and lowpt2w) < v
ple) =< 3w+1 ife=v—w
lowptl(w) + 2 if e = v — w and lowptZw) > v

32

If we perform a depth-first search @i according to the ordering of the edges in the adjacency
list, then this partitions’ into a set of paths, each consisting of zero or more tree arcs followed by a
frond, and each path ending at the vertex with lowest possible label. We say that ayegefirst
descendantf w, if there is a directed pathy — --- — u,, and each edge; — u,,; is the first in
Adj (u;).

Lemma 7.10. Let P be a palm tree of a biconnected gragh = (V, £) that satisfies the above
conditions. Two vertices, b € V with a < b form a separation paifa, b} if and only if one of the
following conditions is true:

Type-1 Case There are distinct vertices s € '\ {a, b} such that — r is a tree edge, lowptl) =
a, lowpt2r) > b, ands is not a descendant of

Type-2 Case There is a vertex € '\ b such thats — r = b, b is a first descendant of(i.e.,a, r, b
lie on a generated pathy, # 1, every frondr — y withr < z < b satisfiesu < y, and every
frondz — ywitha < y < bandb — w = 2 has lowptlw) > a.

Multiple Edge Case (a, b) is a multiple edge ofr and G contains at least four edges.

For a proof, see [HT73a].

We omit the rather technical details for finding the split componéits,, .., C,,. The main
loop of the algorithm computes the triconnected components from the split compofients’,, by
merging two bonds or two polygons that share a common virtual edge (as long as they exist). The
resulting time complexity i€)(|V| + |E|). For a detailed description of the algorithm we refer the
interested reader to the original papers [HT72, HT73a, HT74, GMO1].

8 Advanced Topics

In this section, we briefly discuss some further results related to the topic of this chapter.

Strong and biconnected components For the computation of strongly connected components,
there is another linear-time algorithm that was suggested by R. Kosaraju in 1978 (unpublished,
see[AHUS83, p. 229]) and that was published by Sharir [Sha81].

An algorithm for computing the strongly connected components using a non-dfs traversal (a mix-
ture of dfs and bfs) of the graph was presented by Jiang [Jia93]. This algorithm reduces the number
of disk operations in the case where a large graph does not entirely fit into the main memory. Two
space-saving versions of Tarjan’s strong components algorithm (for the case of graphs that are sparse
or have many single-node components) were given by Nuutila and Soisalon-Soininen [NSS94].

One-pass algorithms for biconnected and strong components that do not compute auxiliary quan-
tities based on the dfs tree (e.lpw values) were proposed by Gabadw [GabO00].

Average connectivity Only recently, Beineke, Oellermann, and Pippert [BOP02] considered the
concept of average connectivity. This measure is defined as the average, over all pairs of vertices
a,b € V, of the maximum number of vertex-disjoint paths betweemdb, that is, the average local
vertex-connectivity. While the conventional notion of connectivity is rather a description of a worst
case scenario, the average connectivity might be a better description of the global properties of a

33

graph, with applications in network vulnerability and reliability. Sharp bounds for this measure in
terms of the average degree were shown by Dankelmann and Oelleimann [DOO03]. Later on, Henning
and Oellermann considered the average connectivity of directed graphs and provided sharp bounds
for orientations of graph$ [HO04].

Dynamic Connectivity Problems Quite a number of publications consider connectivity problems

in a dynamical setting, that is, in graphs that are changed by vertex and/or edge insertions and dele-
tions. The special case where only insertions are allowed is called semi-dynamic, partially-dynamic,
or incremental. Since there is a vast number of different variants, we provide only the references for
further reading:[[Rei87, LPvLO90, GI91, Fre91, KTDBCB1, WT92, DBT96, HK97, HLLP97, DW98,
HF98,[DNO0O/ HALTOL].

Directed graphs As already mentioned, the local connectivity in directed graphs is not symmetric,
which is the reason why many algorithms for undirected connectivity problems do not translate to the
directed case. An algorithm for computing the local vertex connectivity in digraphs was proposed
by Frisch [Fri67]. Algorithms that compute the edge-connectivity in digraphs were published by
Schnorr[Sch79], by Esfahanian and Hakimi [EH84], and by Mansour and Schieber[MS89]. Even and
Tarjan [ET75] showed modifications of their algorithms for checking vertex- and edge-connectivity
in directed graphs too. Another problem of interest is the computation of edge-disjoint branchings,
which is discussed in several publications [Edm73, EH76, Cus83,/TL83, Whi87].

Other measures There are some further definitions that might be of interest. Matula [Mat69] de-
fines acohesiveness functidor each element of a graph (vertices and edges) to be the maximum
edge-connectivity of any subgraph containing that element. Akiyama et al. {8BElefine theon-
nectivity contributioror cohesivenessf a vertexv in a graphG as the difference(G) — x(G — v).

Connectivity problems that aim at dividing the graph into more than two components by removing
vertices or edges are considered in conjunction with the following ternséiréddderof an undirected
graph is a set of vertices whose removal results in at least three components, see for eéxample [CT99].
The /-connectivityof a graph is the minimum number of vertices that must be deleted to produce
a graph with at least components or with fewer thahvertices, see [Oel87b, Oel&7a]. A similar
definition exists for the deletion of edges, namely thib order edge connectivityconfer [Gol80,
Gol81].

Acknowledgments The authors thank Ulrik Brandes, Thomas Erlebach, Frank Schilder, as well
as the anonymous reviewer for critical assessment of this work and valuable suggestions. We thank
Professor Ortrud Oellermann for her support.

34

References

[ABE*81]

[AH73]

[AHUS3]

[Al090]

[AO89]

[BDD*82]

[BH67]

[Bix74]

[Bix81]

[BOP02]

[CHO5]

[Cha66]

[Che77]

[Che94]

Jin Akiyama, Francis T. Boesch, Hiroshi Era, Frank Harary, and Ralph Tindell. The
cohesiveness of a point of a grap¥etworks 11(1):65-68, 1981 34

Ashok T. Amin and S. Louis Hakimi. Graphs with given connectivity and indepen-
dence number or networks with given measures of vulnerability and survivatE§E
Transactions on Circuit Theor20(1):2-10, 1973[|5

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. UllmarData Structures and Algo-
rithms. Addison-Wesley, 1983 33

Noga Alon. Generating pseudo-random permutations and maximum flow algorithms.
Information Processing Letter85(4):201-204, 1990. 18

Ravindra K. Ahuja and James B. Orlin. A fast and simple algorithm for the maximum
flow problem.Operations Researci37(5):748-759, September/October 1989] 18

M. Becker, W. Degenhardtiilgen Doenhardt, Stefan Hertel, G. Kaninke, W. Keber,
Kurt Mehlhorn, Stefan dher, Hans Rohnert, and Thomas Winter. A probabilistic algo-
rithm for vertex connectivity of graph#&formation Processing Letter&5(3):135-136,
October 1982[25

Lowell W. Beineke and Frank Harary. The connectivity function of a grajdiathe-
matikg 14:197-202, 1967[|5

Robert E. Bixby. The minimum number of edges and vertices in a graph with edge con-
nectivity n andm n-bonds.Bulletin of the American Mathematical Socigdp(4):700—
704,1974.[b

Robert E. Bixby. The minimum number of edges and vertices in a graph with edge
connectivityn andm n-bonds.Networks 5:253-298, 1981[|5, 14

Lowell W. Beineke, Ortrud R. Oellermann, and Raymond E. Pippert. The average
connectivity of a graphDiscrete Mathematic252(1):31-45, May 2002 B3

Joseph Cheriyan and Torben Hagerup. A randomized maximum-flow algofiAxivl
Journal on Computing24(2):203-226, 1995, 118

Gary Chartrand. A graph-theoretic approach to a communications prolS&aM
Journal on Applied Mathematic44(5):778-781, July 1964.] 5

Boris V. Cherkassky. An algorithm for constructing a maximal flow through a network
requiringO(n?,/p) operationsMathematical Methods for Solving Economic Problems
7:117-126, 1977. (In Russian). |18

Boris V. Cherkassky. A fast algorithm for constructing a maximum flow through a
network. InSelected Topics in Discrete Mathematics: Proceedings of the Moscow Dis-
crete Mathematics Seminar, 1972-1996lume 158 oAmerican Mathematical Society
Translations — Series, dages 23-30. AMS, 1994.]18

35

[CHMO96]

[CR92]

[CT99]

[Dan51a]

[Dan51b]

[DBT89]

[DBTO6]

[DF56]

[Din70]

[Din73]

[DKL76]

[DNOO]

[DOO03]

Joseph Cheriyan, Torben Hagerup, and Kurt Mehlhorno@u)-time maximum-flow
algorithm. SIAM Journal on Computing5(6):144-1170, December 1996.] 18

Joseph Cheriyan and John H. Reif. Directechumberings, rubber bands, and testing
digraphk-vertex connectivity. IrProceedings of the 3rd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA'9)ages 335-344, January 1992 25

Joseph Cheriyan and Ramakrishna Thurimella. Fast algorithn¥s-gbredders and
k-node connectivity augmentatiodournal of Algorithms33:15-50, 1999 34

George B. Dantzig. Application of the simplex method to a transportation problem.
In Tjalling C. Koopmans, editorActivity Analysis of Production and Allocatiprol-

ume 13 ofCowles Commission for Research in Economages 359-373. Wiley,
1951.[18

George B. Dantzig. Maximization of a linear function of variables subject to linear
inequalities. In Tjalling C. Koopmans, edit&ctivity Analysis of Production and Allo-
cation volume 13 ofCowles Commission for Research in Econonpegyes 339-347.
Wiley, 1951.[18

Guiseppe Di Battista and Roberto Tamassia. Incremental planarity testinBroin
ceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science
(FOCS'89) pages 436-441, October/November 1989] 31

Guiseppe Di Battista and Roberto Tamassia. On-line maintenance of triconnected com-
ponents with SPQR-treeslgorithmicg 15:302-318, 1996] B[, B4

George B. Dantzig and Delbert R. Fulkerson. On the max-flow min-cut theorem of
networks. InLinear Inequalities and Related Systemslume 38 ofAnnals of Mathe-
matics Studiegpages 215-221. Princeton University Press, 1956. 14, 18

Yefim Dinitz. Algorithm for solution of a problem of maximum flow in a network with
power estimationSoviet Mathematics-Doklad$1(5):1277-1280, 1977. 18

Yefim Dinitz. Bitwise residual decreasing method and transportation type problems. In
A. A. Fridman, editorStudies in Discrete Mathematigsages 46-57. Nauka, 1973. (In

Russian).[18

Yefim Dinitz, Alexander V. Karzanov, and M. V. Lomonosov. On the structure of the
system of minimum edge cuts in a graph. In A. A. Fridman, editogtudies in Discrete
Optimization pages 290-306. Nauka, 1976.[7] 14

Yefim Dinitz and Ronit Nossenson. Incremental maintenance Gkdgge-connectivity
classes of a graph. IRroceedings of the 7th Scandinavian Workshop on Algorithm
Theory (SWAT’0Q)volume 1851 ofLecture Notes in Mathematicpages 272-285.
Springer-Verlag, July 2000. B4

Peter Dankelmann and Ortrud R. Oellermann. Bounds on the average connectivity of a
graph.Discrete Applied Mathematic429:305-318, August 2003. |34

36

[DW9S8]

[Edm73]

[EFS56]

[EH84]

[EK72]

[Esf85]

[ET75]

[EveT73]
[EveT75]

[EveT79]
[FD55]

[FF56]

[FF57]

[FF62]

[FH76]

[Fle9g]

Yefim Dinitz and Jeffery Westbrook. Maintaining the classes of 4-edge-connectivity in
a graph on-lineAlgorithmica 20(3):242-276, March 1998. 34

Jack Edmonds. Edge-disjoint branchings. In Randall Rustin, eGiorant Computer
Science Symposium 9: Combinatorial Algorithms (19p2pges 91-96. Algorithmics
Press, 1973[]6, 34

Peter Elias, Amiel Feinstein, and Claude E. Shannon. A note on the maximum flow
through a networkIRE Transactions on Information Theq3(4):117-119, December
1956.[4

Abdol-Hossein Esfahanian and S. Louis Hakimi. On computing the connectivities of
graphs and digraph®letworks 14(2):355-366, 1984 19, J1,|22) 34

Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic effi-
ciency for network flow problemsJournal of the ACM19(2):248-264, April 1972.
[18

Abdol-Hossein Esfahanian. Lower-bounds on the connectivities of a glapmal of
Graph Theory9(4):503-511, 1985[|5

Shimon Even and Robert E. Tarjan. Network flow and testing graph connec8iAti
Journal on Computing4(4):507-518, December 1975.] [7] [19,[20]21[2p, 34

Shimon EvenAlgorithmic CombinatoricsMacmillan, 1973.[17

Shimon Even. An algorithm for determining whether the connectivity of a graph is at
leastk. SIAM Journal on Computingt(3):393-396, September 1975.] L7, 19

Shimon EvenGraph Algorithms Computer Science Press, 1979, [17, 19

Delbert R. Fulkerson and George B. Dantzig. Computation of maximal flows in net-
works. Naval Research Logistics Quarter.277-283, 1955[18

Lester R. Ford, Jr. and Delbert R. Fulkerson. Maximal flow through a netvzaka-
dian Journal of Mathemati¢$8:399-404, 1956[|4, 18

Lester R. Ford, Jr. and Delbert R. Fulkerson. A simple algorithm for finding maxi-
mal network flows and an application to the Hitchcock problé€anadian Journal of
Mathematics9:210-218, 1957[18

Lester R. Ford, Jr. and Delbert R. Fulkers&fows in Networks Princeton University
Press, 1962[17,18

Delbert R. Fulkerson and G. C. Harding. On edge-disjoint branchingstworks
6(2):97-104, 1976] 34

Lisa Fleischer. Building chain and cactus representations of all minimum cuts from
Hao-Orlin in the same asymptotic run tim#&ournal of Algorithms33(1):51-72, Octo-
ber 1999.[10

37

[Fre9l]

[Fri67]

[Gab85]

[Gab00]

[Gal80]

[GH61]

[G191]

[GMO1]

[GN8O]

[GoI80]

[Gol81]

[Gol85]

[GR98]

[GR99]

[GT88]

[GTO1]

Greg N. Frederickson. Ambivalent data structures for dynaremge-connectivity and
k smallest spanning trees. Rroceedings of the 32nd Annual IEEE Symposium on
Foundations of Computer Science (FOCS;3d9ges 632—641, October 1991.] 34

Ivan T. Frisch. An algorithm for vertex-pair connectivitynternational Journal of
Control, 6(6):579-593, 1967 34

Harold N. Gabow. Scaling algorithms for network probledasirnal of Computer and
System Science31(2):148-168, 1985, 118

Harold N. Gabow. Path-based depth-first search for strong and biconnected compo-
nents.Information Processing Letterg4:107-114, 2000 33

Zvi Galil. An O(V°/3 E2/3) algorithm for the maximal flow problenfcta Informatica
14:221-242,1980[18

Ralph E. Gomory and T.C. Hu. Multi-terminal network flowslournal of SIAM
9(4):551-570, December 196[L] 7

Zvi Galil and Giuseppe F. Italiano. Fully dynamic algorithms for edge connectivity
problems. InProceedings of the 23rd Annual ACM Symposium on the Theory of Com-
puting (STOC'91)pages 317-327, May 199134

Carsten Gutwenger and Petra Mutzel. A linear time implementation of SPQR-trees. In
Proceedings of the 8th International Symposium on Graph Drawing (GD@dyme
1984 ofLecture Notes in Computer Scienpages 70-90, January 2001.] [30,[32, 33

Zvi Galil and Amnon Naamad. A®(EV log? V) algorithm for the maximal flow
problem.Journal of Computer and System Scien@d$2):203-217, October 1980.]18

Donald L. Goldsmith. On the second order edge connectivity of a gr@phgressus
Numerantium29:479-484, 1980[34

Donald L. Goldsmith. On the-th order edge-connectivity of a graplCongressus
Numerantium32:375-381, 1981[34

Andrew V. Goldberg. A new max-flow algorithm. Technical Memo MIT/LCS/TM-291,
MIT Laboratory for Computer Science, November 1985] 18

Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition baloemal
of the ACM 45(5):783-797, 1998. 118

Andrew V. Goldberg and Satish Rao. Flows in undirected unit capacity netwiivkisi
Journal on Discrete Mathematic$2(1):1-5, 1999 17

Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-flow
problem.Journal of the ACM35(4):921-940, 1988, 18

Andrew V. Goldberg and Kostas Tsioutsiouliklis. Cut tree algorithms: An experimental
study. Journal of Algorithms38(1):51-83, 2001[|8

38

[Gus83]

[Gus90]

[Har62]

[Har63]

[HALTO1]

[HF98]

[HK64]

[HK97]

[HLP97]

[HO92]

[HO04]

[HP66]

[HRGO6]

[HT72]

Dan Gusfield. Connectivity and edge-disjoint spanning tregsrmation Processing
Letters 16(2):87—-89, 1983[34

Dan Gusfield. Very simple methods for all pairs network flow analy&i&aM Journal
on Computing19(1):143-155, 1990].| 8

Frank Harary. The maximum connectivity of a grapProceedings of the National
Academy of Science of the United States of Amedi8ér):1142-1146, July 1962, 5

Frank Harary. A characterization of block-graplanadian Mathematical Bulletjn
6(1):1-6, January 1963.] 3

Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic determin-
istic fully-dynamic algorithms for connectivity, minimum spanning tréeedge, and
biconnectivity. Journal of the ACM48(4):723-760, 2001 B4

Monika R. Henzinger and Michael L. Fredman. Lower bounds for fully dynamic con-
nectivity problems in graphsAlgorithmica 22(3):351-362, 1998, B4

Frank Harary and Yukihiro Kodama. On the genus ofraconnected graphFunda-
menta Mathematica®4:7-13, 1964/[15

Monika R. Henzinger and Valerie King. Fully dynamic 2-edge connectivity algorithm in
polylogarithmic time per operation. SRC Technical Note 1997-0044a, Digital Equipment
Corporation, Systems Research Center, Palo Alto, California, June £997. 34

Monika R. Henzinger and Johannes A. La PeutCertificates and fast algorithms for
biconnectivity in fully-dynamic graphs. SRC Technical Note 1997-021, Digital Equip-
ment Corporation, Systems Research Center, Palo Alto, California, September 1997.
34

Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum cut in
a graph. InProceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA'92) pages 165-174, January 1992. 8

Michael A. Henning and Ortrud R. Oellermann. The average connectivity of a digraph.
Discrete Applied Mathematic440:143-153, May 2004. B4

Frank Harary and Geert Prins. The block-cutpoint-tree of a giapblicationes Math-
ematicae Debreceri3:103-107, 1966 | 4

Monika R. Henzinger, Satish Rao, and Harold N. Gabow. Computing vertex connec-
tivity: New bounds from old techniques. IRroceedings of the 37th Annual IEEE
Symposium on Foundations of Computer Science (FOCS@§es 462—471, October

1996. [T9[2F

John E. Hopcroft and Robert E. Tarjan. Finding the triconnected components of a graph.
Technical Report TR 72-140, CS Dept., Cornell University, Ithaca, N.Y., August 1972.

30,33

39

[HT73a]

[HT73b]

[HT74]

[Jia93]

[Kar72]

[Kar73]

[Kar74]

[KL98]

[Kle69]

[KRT92]

[KS93]

[KT86]

[KTDBC91]

[Lei66]

John E. Hopcroft and Robert E. Tarjan. Dividing a graph into triconnected components.
SIAM Journal on Computing(3):135-158, September 1973.] B0},[33, 33

John E. Hopcroft and Robert E. Tarjan. Efficient algorithms for graph manipulation.
Communications of the ACM6(6):372—-378, June 1978. |27

John E. Hopcroft and Robert E. Tarjan. Dividing a graph into triconnected components.
Technical Report TR 74-197, CS Dept., Cornell University, Ithaca, N.Y., February 1974.

30,33

Bin Jiang. I/0O- and CPU-optimal recognition of strongly connected componknts.
formation Processing Letterd5(3):111-115, March 1993. 33

Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller
and James W. Thatcher, edito@ymplexity of Computer Computatiomages 85-103.
Plenum Press, 1972.] 7

Alexander V. Karzanov. On finding maximum flows in networks with special struc-
ture and some applications. Matematicheskie Voprosy Upravleniya Proizvodstyom
volume 5, pages 66—70. Moscow State University Press, 1973. (In Russign). 17

Alexander V. Karzanov. Determining the maximal flow in a network by the method of
preflows. Soviet Mathematics-Doklad$5(2):434-437, 1974 18

David R. Karger and Matthew S. Levine. Finding maximum flows in undirected graphs
seems easier than bipartite matching Phoceedings of the 30th Annual ACM Sympo-
sium on the Theory of Computing (STOC’'983ges 69-78, May 1998. [17

Daniel J. Kleitman. Methods for investigating connectivity of large grafiSE Trans-
actions on Circuit Theoryl6(2):232-233, May 1969. 19

Valerie King, Satish Rao, and Robert E. Tarjan. A faster deterministic maximum flow
algorithm. InProceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA'92) pages 157-164, January 1992 18

David R. Karger and Clifford Stein. A®(n?) algorithm for minimum cuts. IPro-
ceedings of the 25th Annual ACM Symposium on the Theory of Computing (STOC’93)
pages 757-765, May 1998] 8

Alexander V. Karzanov and Eugeniy A. Timofeev. Efficient algorithm for finding all
minimal edge cuts of a nonoriented gra@ybernetics22(2):156-162, 1986 | 7

Arkady Kanevsky, Roberto Tamassia, Guiseppe Di Battista, and Jianer Chen. On-line
maintenance of the four-connected components of a grapProlreedings of the 32nd
Annual IEEE Symposium on Foundations of Computer Science (FOCS&jBs 793—

801, October 1991[34

L. Ya. Leifman. An efficient algorithm for partitioning an oriented graph into bicompo-
nents.Cybernetics2(5):15-18, 1966[27

40

[Les74]

[LLW86]

[LLW8S]

[Lov73]

[LPVLO90]

[Mad72]

[Mat69]

[Mat72]

[Mat77]

[Mat87]

[Men27]

[MKM78]

[ML37]

[MR92]

Linda Lesniak. Results on the edge-connectivity of gragdscrete Mathematics
8:351-354, 1974[|5

Nathan Linial, Laszb Lovasz, and Avi Wigderson. A physical interpretation of graph
connectivity and its algorithmic applications. Rroceedings of the 27th Annual IEEE
Symposium on Foundations of Computer Science (FOCS{#@&)es 39-48, October
1986. [2b

Nathan Linial, Laszb Lovasz, and Avi Wigderson. Rubber bands, convex embeddings
and graph connectivityCombinatorica 8(1):91-102, 1988[25

Laszb Lovasz. Connectivity in digraphslournal of Combinatorial Theory Series B
15(2):174-177, August 1973 6

Johannes A. La Po@y Jan van Leeuwen, and Mark H. Overmars. Maintenan@e of
and3-connected components of graphs, Pa#*-land 3-edge-connected components.
Technical Report RUU-CS-90-26, Dept. of Computer Science, Utrecht University, July
1990. [34

Wolfgang Mader. Ecken vom Grad in minimalen n-fach zusammerdngenden
Graphen Archiv der Mathematik23:219-224, 1972[| 6

David W. Matula. The cohesive strength of graphs. The Many Facets of Graph
Theory, Proc.volume 110 ol ecture Notes in Mathematicgages 215—-221. Springer-

Verlag, 1969.[#, 16, 34

David W. Matula. k-components, clusters, and slicings in grap®&AM Journal on
Applied Mathematic22(3):459-480, May 1977.] 4

David W. Matula. Graph theoretic techniques for cluster analysis algorithms. In
J. Van Ryzin, editorClassification and clusteringpages 95-129. Academic Press,
1977.[4

David W. Matula. Determining edge connectivity @nm). In Proceedings of the
28th Annual IEEE Symposium on Foundations of Computer Science (FOC8/€s
249-251, October 1987. 1,122

Karl Menger. Zur allgemeinen Kurventheorteindamenta Mathematica20:96-115,
1927.[4

Vishv M. Malhotra, M. Pramodh Kumar, and S. N. Maheshwari. @V|) algorithm
for finding maximum flows in networkdnformation Processing Letterg(6):277-278,
October 197818

Saunders Mac Lane. A structural characterization of planar combinatorial gfapks.
Mathematical Journal3:460-472, 1937[30

Gary L. Miller and Vijaya Ramachandran. A new graph triconnectivity algorithm and
its parallelization.Combinatorica12(1):53-76, 1992[30

41

[MS89]

[Mun71]

[NSS94]

[Oel873a]

[Oel87b]

[Pat71]

[PR75]

[Pur68]

[Pur70]
[PW98]

[Rei87]

[Sch79]

[Scho3]

[Sha81]

[Shi78]

[ST83]

[STO3]

Yishay Mansour and Baruch Schieber. Finding the edge connectivity of directed graphs.
Journal of Algorithms10(1):76-85, March 1989. B4

lan Munro. Efficient determination of the transitive closure of a directed gribbu-
mation Processing Letterd(2):56-58, 1971[27

Esko Nuutila and Eljas Soisalon-Soininen. On finding the strongly connected compo-
nents in a directed grapHnformation Processing Letterd9(1):9-14, January 1994.
33

Ortrud R. Oellermann. A note on theonnectivity function of a graphCongressus
Numerantium60:181-188, December 198[7.] 34

Ortrud R. Oellermann. On thieconnectivity of a graphGraphs and Combinatori¢s
3:285-291, 1987[34

Keith Paton. An algorithm for the blocks and cutnodes of a gr@pmmunications of
the ACM 14(7):468-475, July 1971] @,]27

Jean-Claude Picard and H. D. Ratliff. Minimum cuts and related probletsvorks
5(4):357-370, 1975[17

Paul W. Purdom, Jr. A transitive closure algorithm. Computer Sciences Technical
Report #33, University of Wisconsin, July 1968.] 27

Paul W. Purdom, Jr. A transitive closure algoritHBfT, 10:76-94, 1970[27

Steven Phillips and Jeffery Westbrook. On-line load balancing and network&lgex
rithmica, 21(3):245-261, 1998, 18

John H. Reif. A topological approach to dynamic graph connectivilajormation
Processing Letter25(1):65-70, 1987 34

Claus P. Schnorr. Bottlenecks and edge connectivity in unsymmetrical netStohks.
Journal on Computing8(2):265-274, May 1979, B4

Alexander Schrijver. Paths and flows—a historical sur@/| Quarterly 6(3):169—
183, September 1993, 5

Micha Sharir. A strong-connectivity algorithm and its applications in data flow analysis.
Computers & Mathematics with Applicatigng1):67-72, 1981 33

Yossi Shiloach. A (n - I log? I) maximum-flow algorithm. Technical Report STAN-
CS-78-702, Computer Science Department, Stanford University, December[1978. 18

Daniel D. Sleater and Robert E. Tarjan. A data structure for dynamic tieamal of
Computer and System Scienc26(3):362—-391, June 1988. |18

Mohit Singh and Amitabha Tripathi. Order of a graph with given vertex and edge
connectivity and minimum degreElectronic Notes in Discrete Mathematjds, 2003.

42

[SWI7] Mechthild Stoer and Frank Wagner. A simple min-cut algoritdournal of the ACM
44(4):585-591, 1997 23

[Tar72] Robert E. Tarjan. Depth-first search and linear graph algorith&8M Journal on
Computing 1(2):146-160, June 1972.7|127

[Tar74] Robert E. Tarjan. A note on finding the bridges of a graptiormation Processing
Letters 2(6):160-161, 1974 29

[TL83] Po Tong and Eugene L. Lawler. A faster algorithm for finding edge-disjoint branchings.
Information Processing Letterd7(2):73-76, August 1983. B4

[Tut6l] William T. Tutte. A theory of 3-connected graplsdagationes Mathematicag3:441—
455, 1961.[30

[Tut66] William T. Tutte. Connectivity in graphs Number 15 in Mathematical Expositions.
University of Toronto Press, 1966. |30

[Whi32] Hassler Whitney. Congruent graphs and the connectivity of grafmerican Journal
of Mathematics54:150-168, 1932[|5

[Whi87] R. W. Whitty. Vertex-disjoint paths and edge-disjoint branchings in directed graphs.
Journal of Graph Theoryl11(3):349-358, 1987 B4

[WT92] Jeffery Westbrook and Robert E. Tarjan. Maintaining bridge-connected and biconnected
components on-lineAlgorithmica 7:433-464, 1992[34

[Zad72] Norman Zadeh. Theoretical efficiency of the Edmonds-Karp algorithm for computing
maximal flows.Journal of the ACM19(1):184-192, 1972 18

43

Index

adjacency structure minimum,[7
acceptabld, 32 minimum s-¢-,[3
algorithm cut tree[¥
Dijkstra’s,[23 cut-edge], B
flow-based] 1j§—23 cut-vertex[B
maximum flow] 18 cutpoint-graph, 3
non-flow-based, 283-25 cutset,seeseparator
Prim’s,[23
randomized;, 25 degree
Stoer-Wagnef, 23 average, 6
articulation point} B in-,[g
minimum,[4]5
BFS,[1 out-,[6
block, see alsacomponent, biconnected depth-first searclseeDFS
block-cutpoint-graptj,|3 descendant
block-graph| B first,[33
branching DFS[1][27[3D
edge-disjoint, g, 34 dominating sef, 23
breadth-first searclseeBFS
bridge[3 flow, [3
flow network[3
cactus| [, 79-16 type 1/ 1Y
cluster[4 type 2[1Y
component flow tree[7
k-edge-componerjt] A} 5 frond,[32
k-vertex-componenf, 4
biconnected,|3, 27-28 Gomory-Hu Tree, 7
bridge-connected, 29 .
connected,|1,|3 €2 isthmus[
non-separabl¢] 3 A-covering[21
strongly connected] 2, P8H29 laminar set] 15
triconnected, 30—33
weakly connected,| 2 open ear decompositidn, |30
connectivit
dyn am?::D@ palm tree| 3P
edge-[P path

edge-disjoint, B

i?ei?é;(gi@ vertex-disjoint][B
connectivity pairf reference edgg, B1
cut,3[6 residual network, 7

s-t-,[3

all pairs minimum| 7 separation classgs,|30

crossing| B separation paif, 30

44

separation vertex] 3
separator
edge[B
vertex, 3
vertex/edge, |5
skeleton| 3L
spanning treg, 22
directed[6
split component, 31
split pair,[31
maximal[31

SPQR-tre€, 31

Theorem
n-Arc, 4
n-Chain[4
Edmonds’ Branching,|6
Ford-Fulkersor, 4
Kotzig's,[§
Max-Flow Min-Cut,[4
Menger's[4
Whitney’s[5

	Definitions
	Fundamental Theorems
	Minimum Cuts
	All-Pairs Minimum Cuts
	Properties of Minimum Cuts in Undirected Graphs

	Cactus Representation of All Minimum Cuts
	Flow-Based Connectivity Algorithms
	Vertex-Connectivity Algorithms
	Edge-Connectivity Algorithms

	Non-Flow-Based Algorithms
	The Minimum Cut Algorithm of Stoer and Wagner
	Randomized Algorithms

	Basic Algorithms for Components
	Biconnected Components
	Strongly Connected Components
	Triconnectivity

	Advanced Topics
	References
	Index

