TUM

INSTITUT FUR INFORMATIK

Design and Implementation of FOONET - a
Framework for object-oriented Network Design

Volker G. Fischer

TUM-19919
Dezember 99

TECHNISCHE UNIVERSITAT MUNCHEN

TUM-INFO-12-19919-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©1999

Druck: Institut f ur Informatik der
Technischen Universit at Munchen

Design and Implementation of FooNet,
a Framework for object-oriented Network Design

Volker Gerd Fischer

Institut fur Informatik
Lehrstuhl fiir Rechnerkommunikation
Technische Universitat Miinchen, Germany

Keywords:

Telecommunication Network Design, Object-oriented Framework, Object-oriented
Analysis and Design, Extensible Markup Language

Abstract

This report presents the design and implementation of FooNet, an object-oriented
application framework for telecommunication network design. The characteristics of
FooNet in contrast to other planning environments are its consequent object-oriented
design and the support of reuse techniques on different levels of abstraction. FooNet

comes with a library of helpful algorithms used in network design problems. A further
important feature of FooNet is its support of XML for data exchange. XML offers a new
dimension of communication eliminating incompatibilities between various applications.

X-CRClassification

B.4.3, C.2.1, D.1.5, D.2.2, 1.7.2

Contents

Motivation

1 Telecommunication Network Design

1.1 Introduction L
1.2 Decomposition Planning Lo oL
1.3 The B-WiN Planning Task Example

2 Introduction to Object-Oriented Software Design

21 OVerVIeW L
2.2 Unified Modelling
2.3 Software Reuse
3 A Framework for Object-Oriented Network Design (FooNet)
3.1 OVerview e e e e
3.2 The Core Design Classes
3.3 The Extended Design Classes
3.4 Coding Conventions
3.5 Network Design using FooNet
4 Data Exchange using XML
4.1 Introduction and Motivationo
4.2 Processing XML Data
4.3 XML in FooNet e
5 Summary and Outlook
5.1 SUmmary
5.2 Outlook

List of Figures

Bibliography

10
11

17
18
24
27
28

31
31
32
34

35
35
35

36

38

il

FOONET

A The Unified Modelling Language - UML
Al Overview.o
A.2 Static Class Diagram

A.3 Implementation Diagram

B Document Type Description
B.1 Introduction to the Document Type Documentation
B.2 FooNetDTDs

C Software Requirements

Index

43
............. 43
............. 43
............. 45

47
............. 47
............. 49

53

55

Motivation

Network design, the task of planning and managing communication networks, comprises
a variety of techniques and knowledge evolving from many different fields of science'. These
sciences include optimization, graph theory, forecasting, simulation and modeling, knowl-
edge representation, decision theory, finance, electrical engineering and computer science.
Due to its telephony heritage and the electro-technical problem part, wide area network
design has also a long standing history in the field of electrical engineering (remember for
example the work of Erlang in the early decades of this century).

The relation between computer science and network planning is at least twofold. First,
telecommunication network planning was one of the first applications for which the com-
putational power (supported by advances in mathematical optimization) was and still is
used. Second, the explosion of communication service demands (the Internet) causes a
vital interest of computer science in telecommunication network design.

However due to its heritage, software engineering aspects have played only a minor role
in network design. Practical engineers have traditionally been fond of imperative pro-
gramming languages, such as FORTRAN and C. The trend in computer communication
is towards object-oriented software engineering with its ability to cope with complexity
even for large problem sizes and to reuse software. Some projects have already shown
the power of object-oriented approaches in communications, for example in the field
of network-management (OSI network management) or protocol design ([B6c97]). But
the network design task itself lacks tools supporting the object-oriented programming
paradigm. It seems that especially in telecommunication the application of object-oriented
software design is promising. For example, Jackson showed in [JGJ97] that the reuse of
telecommunication software by AT&T was between 40% and 92%.

In this report, a software tool called FooNet? is presented which is the result of submitting
the telecommunication network planning process to an object-oriented design&analysis
(OOA&OOD). FooNet is an application framework that releases the designer from “rein-
venting” the parts of the software design that are common to all network design problems.
Object-orientation can achieve this without limiting the generality of the design process
itself by making restrictions that the designer cannot overrule. This report focuses on
software design, but it is assumed that the reader has at least basic knowledge of telecom-
munication network planning as well as object-oriented design principles.

A further problem in network design is the lack of agreed upon standards for data exchange
between applications. Every tool has its own (sometimes even unpublished) interface and
data-format. This problem is not a peculiarity of network design, but a more general

'Tn this report the terms “network”, “communication network” and “telecommunication network” are
used synonymously
2Framework for the object-oriented Network Design

FOONET

one that can be found in many areas of data processing. With the success of Internet
technologies, the W3C consortium has introduced a technology called XML that allows
the exchange of almost arbitrary information between different applications. In this report,
a data-format compliant to XML is introduced. Examples of the abilities of this format
are given. FooNet is designed to produce and process XML compliant output.

The report is organized as follows: The first two chapters give a short introduction in
telecommunication network planning and recent advances in object-oriented software de-
sign. The third chapter contains the documentation of the design and implementation of
FooNet. The fourth chapter discusses the capabilities of XML as a data exchange format.
The report concludes with a summary and an outlook to future work.

Acknowledgements

I'd like to thank (in alphabetical order) Thomas Erlebach, Manfred Jobmann and Hans-
Peter Schwefel for their helpful comments and critics.

Chapter 1

Telecommunication Network Design

1.1 Introduction

It is a non-trivial task to formulate a network design problem by itself. Due to the fact
that a network must satisfy the needs of an enterprise and every enterprise has different
requirements on communication, network design is a context sensitive problem.

Generally, communication networks are designed using hierarchical structures. Two dif-
ferent types of hierarchies can be identified: The topological hierarchy imposed by the
different network layers (see Figure 1.1) and the logical hierarchy implied by tiers (see
Figure 1.2).

ISO-OSI Layers 2 & 3
(LLC/IP)

L

Virtual Transmission Network
(ATM [VPI/VCI))

L

Transmission Network
(SDH)

Figure 1.1: Example for a topological Hierarchy

Hierarchical network design is a frequently used strategy to cope with the complexity of the
problem. The hierarchical design divides a single network layer into tier-levels by grouping
several nodes and considering them as one new node of a “higher tier”. The B-WiN (see
Chapter 1.3) has two tier-levels: The lowest tier contains the access- or end-nodes. Each
end-node represents a canonical source/destination that sends/receives traffic into/from
the network. The higher tier, called backbone-tier, contains the backbone nodes. Each
end-node is connected to exactly one backbone node. Figure 1.2 shows a star-topology
between the access-nodes and the backbone-nodes.

FOONET

Figure 1.2: B-WiN Access Design Example

1.2 Decomposition Planning

When accepting the following statements:

1. network design as a whole, i.e. overall network design, is too complicated to be
solved in one step

2. an obvious “optimum” solution does not exist in general due to multi-criteria ob-
jective functions and incomplete knowledge

3. network design is an iterative, user controlled procedure

4. networks exist within enterprises and must be adjusted to the goals of the enterprise

Consequently, this leads to decomposition planning (see Figure 1.3) with well defined
and as much as possible independent subtasks combined with alternate optimization, i.e.
optimization with recourse, and interaction with the designer.

The decomposition planning process must be embedded in the topological hierarchy of
the network, e.g. it must be executed for the different topological hierarchies. The more

1 Telecommunication Network Design

Start I

‘ Traffic Planning

‘ Access Network Planning

F—

F—

L)

Input Data —| Mesh Topology Planning |e\
F—

|_/

—

L)

‘ Dimensioning & Routing

.

| Performance Evaluation

‘Materialization and final Cost Evaluation

End

Figure 1.3: Decomposition Planning (taken from [Fri98])

hierarchy levels a designer wants to take into account, the more complex the planning
problem becomes. Only a joint optimization over all layers and tiers safeguards an optimal
solution, but such an approach usually results in an intractable complexity. Optimality is
therefore sacrificed for tractability.

The following terminology is used throughout this report:

e a facility is an arbitrary network element such as a router or an arbitrary service
such as a leased line. A different set of facilities exists for each topological network
layer. The costs entailed with a facility divide into:

e setup costs, that arise when introducing a new facility in the design (e.g.
buying a new router)

e reoccurring costs, that arise in regular intervals (e.g. leasing rates)

e termination costs, that arise when removing a facility from the design (e.g.
when terminating a contract)

e usage-dependent costs (e.g. call minutes)

e a topology in the context of network design is the physical or logical layout of
network facilities. Common topologies include star, ring, bus or mesh. A common
representation of the network topology is a graph.

e a network design' is the specification of topology and configuration forming a
productivity network. To put it in other words, the topology specifies where to put

'In contrast to the network design task itself here a specific network design, i.e. a realization of a

FOONET

the facilities and how to interconnect them, the configuration specifies which facility
is used for each topological element and how to set it up.

e a requirement or commodity is a communication demand between two nodes,
usually measured in terms of Megabit per second (Mbps).

1.3 The B-WiN Planning Task Example

To illustrate the problems arising in network design the (simplified) planning task of
the Breitband Wissenschaftsnetz (B-WiN) provided by Deutsches Forschungsnetz Verein
(DFN-Verein) is shown in Figure 1.4.

Given:

e ca. 400 node locations

e (measured) traffic busy-hour matrix (IP-traffic) (quite asymmetric!)
e tariffs of the Deutsche Telekom AG

e OSPF-routing

minimize cost subject to

e edge capacities are available in incremental 2 Mbps steps beginning at
a minimum capacity of 34 Mbps

e survivability: nodes having > ¢ Mbps access rate should be two-edge-
connected

e hop-limit: h hops

e backbone lines should not have more then u% utilization
Output:

e number and location of backbone nodes
e access and backbone topology
e line capacities

e OSPF routing parameters

Figure 1.4: Sample B-WiN Planning Task

It has been shown (e.g. in [MS81]) that even subproblems of the network design problem
are strongly N'P-complete?. Another important fact is that there exists no generic algo-

single network, is meant. From the context it should be immediately clear to which of the two meanings

it is referred
2which means that under the assumption P # AP this problem is not solvable in an efficient way

1 Telecommunication Network Design

rithm that can take into account the various constraints imposed on the problem. Even
if formulated as a mathematical program there is no efficient way to solve this problem.
Therefore many known algorithms used in network design problems rely on heuristics that
have to be adapted by the network planner to meet the requirements of his planning task.

FOONET

Chapter 2

Introduction to Object-Oriented
Software Design

2.1 Overview

This section gives a brief overview of recent advances in object-oriented software design.
It is assumed that the reader has some experience with object-orientation, otherwise the
author would recommend [Boo91, Cop92, Sto97| for a detailed and application-oriented
introduction.

Some important terms and concepts in object-orientation are introduced as follows:

e Object-Oriented Analysis (OOA): Object-oriented analysis is a method of an-
alyzing that examines the requirements on the software from the perspective of
classes and objects found in the problem under consideration.

e Object-Oriented Design (OOD): Object-oriented design is a method of design
compassing the process of object-oriented decomposition and notation (here in the
language of UML) for depicting both logical and physical as well as static and
dynamic properties of the problem under design. The most important principles in
object-oriented design are abstraction, encapsulation, modularization and hierarchy.

e Object-oriented Programming (OOP): Object-oriented programming is a
method of implementation in which programs are organized as cooperative collec-
tions of objects, each of which represents an instance of some class.

e Inheritance: Inheritance is a hierarchical relation among classes, in which one
class shares the structure or behavior defined in one (single inheritance) or more
(multiple inheritance) other classes. Inheritance defines a “is-a” hierarchy among
classes in which a subclass inherits from one or more generalized superclasses. A
subclass typically specializes its superclass by augmenting or redefining the existing
structure or behavior.

e Polymorphism: Polymorphism is a concept in type theory wherein a name may
denote instances of many different classes (usually related by some common su-
perclass in C++). Dynamic Binding is a consequence of polymorphism, which
implies that sending the same message to different objects could stimulate different
behavior. Technically this is realized by the use of virtual functions.

10

FOONET

e Interface: An abstract base class which provides a set of virtual functions is called
an interface.

e Persistence: Persistence is the property of an object through which it can transcend
time (i.e. the object continues to exist after its creator ceases to exist) and/or space
(i.e. the object’s location moves from the address space in which it was created).
Persistence in FooNet works with character streams and relies on two complementing
methods: serialize (write object in a stream) and de-serialize (read object from a
stream).

e Class Library: A class library is a collection of reusable classes that rely on object-
oriented design paradigms such as hierarchy and polymorphism. Usually, class li-
braries provide support in solving problems belonging to a specific problem category.

2.2 Unified Modelling

The object-oriented software design paradigm does not dictate a methodology of how the
classes and the relationships between them are derived from the system. This part has to
be performed by the designer! supported by a detailed object-oriented analysis.

However, there exist several process models (for an overview see e.g. [NS99]) which guide
the designer through this task. The process model that is used here is the Unified Pro-
cess proposed in [Jac99], which is a use-case-driven and incremental approach and consists
mainly of the five stages illustrated in Figure 2.1.

Requirement Specification
(Use Cases / Sequence Diagrams)

Analysis
(CRC-Cards / Collaboration Diagrams) \

Design
(Class Diagrams / Activity Diagrams)

Implementation
(Component Diagrams / Collaboration Diagrams)

Use /Test J

Figure 2.1: Object-oriented Software Design Process

Connected with the Unified Process is UML, the Unified Modelling Language, that sup-
ports the process model by providing a set of easy to read but expressive diagrams. UML is

Tand is therefore often considered as an art

2 Introduction to Object-Oriented Software Design

11

a symbolic language for specifying, constructing and documenting (the semantics of) soft-
ware systems. It is standardized by the Object Management Group (OMG) in [OMG97]
and has become the “Esperanto” of object-oriented design. The terms in the brackets be-
neath each stage of the diagram in Figure 2.1 denote examples of which part of the UML
notation may be appropriate when working in this stage. However, UML does not dictate
a particular process, it is more a “blueprint” for software design. A short introduction to
UML that is sufficient to understand the diagrams in this report is presented in Appendix
A.

2.3 Software Reuse

2.3.1 Motivation

The implementation of complex software systems remains resource expensive and error
prone. Already the design of a medium sized computer program is a nontrivial task. Much
of the costs stem from the rediscovery and reinvention of core concepts and components.

The concept of software reuse originates from the observation that a software designer
should concentrate on the peculiarities of his/her task instead of solving problems that
have already been solved many times before. Software reuse is commonly defined as “the
systematic development of reusable components and the systematic reuse of these compo-
nents as building blocks to create new software systems”.

A reusable component may be code, denoted as code reuse, but the bigger benefits
of reuse come from a broader and higher-level view of what can be reused: software
specifications, abstractions, design patterns and frameworks. This is commonly denoted
as design reuse.

FooNet provides an application framework (see Chapter 2.3.3) for network design problems
and as such provides design reuse, but builds itself on top of two other reuse techniques:

e Idioms: Idioms allow code reuse by providing higher level datatypes, such as
lists, queues, and graphs (see e.g. [Cop92]). The C++ language provides a number
of idioms, which are standardized in the Standard Template Library (STL, [Int97]).
Additionally the idioms provided by the Graph Template Library (GTL, http://
www.fmi.uni-passau.de/Graphlet/GTL) are used. In some publications this kind
of code reuse is denoted as generic programming.

e Design Patterns: Design Patterns are a (very successful) design reuse technique.
A short description is given in Chapter 2.3.2.

From this perspective, FooNet has a three level reuse hierarchy: Classes, objects and idioms

on the lowest level of abstraction, design patterns on a medium level and frameworks on
the highest level.

2.3.2 Design Patterns

A design pattern [GHIV95] describes a (often reoccurring) problem, the core of a simple
and elegant solution together with the context in which the solution works, and its cost

12

FOONET

and benefits. Design patterns serve as the micro-architectural elements of frameworks,
but due to their abstractness, they cannot be expressed as classes or lines of code.

The following list gives a short overview of all design patterns? that have been used in
FooNet together with examples of where the design patterns occur:

e Letter-Envelope (also known as Handle-Body or Bridge)
A letter-envelope-pattern decouples an abstraction, denoted as envelope, from its
implementation, denoted as letter. The advantage of this design pattern lies in the
fact that the letter object can vary independent from the envelope which allows a
greater flexibility of usage.

A commonly used example for the letter-envelope design pattern is a reference-
counted class. The node-envelope of FooNet administrates a pointer and a reference-
counter to the node-letter. The actual node-letter object is duplicated only if nec-
essary. This significantly reduces resources.

e Factory
A factory defines an interface for creating an object, but lets subclasses decide which
class to instantiate. Usually a factory provides a method produce() which creates
an object of a known base class. Factories prevent to include user-specific code in
the class design.

FooNet provides a factory pattern for network facilities. To produce a certain kind
of a network facility (for example an IP-router), the user sends a message to that
factory with a set of requirements (for example having at least a throughput of 100
Megabit per second) and the factory returns the cheapest network facility found
(for example a Cisco IP Router having 1000 Megabit per second throughput) which
meets the requirements. The user can add more manufacturers dynamically by deriv-
ing a new sub-factory. The selection process and the vendor-specific data is shadowed
by the design pattern.

e Strategy
A strategy defines a family of algorithms, encapsulates each one, and makes them
interchangeable. Strategies allow to formulate a skeleton of an application which is
independent from a concrete realization.

The (static) routing interface in FooNet is a typical example for a strategy. For ex-
ample, testing the network for overload needs the routing functionality, but whether
routing is performed by an OSPF, PNNI or some other kind of routing algorithm is
irrelevant.

e Visitor
A wisitor represents an operation to be performed on the “elements of an object
structure” (see example below). A visitor allows to define a new operation without
changing the classes of the elements on which the visitor design pattern operates.

The topology of a network layer forms an object structure that consists of topological
(node and edge) elements. FooNet provides a visitor pattern for topological elements.
For example, if a user wants to know the average load on the edges of that layer, he
could derive this functionality from the visitor interface and simply call the visit-
all-edges method.

2For a more detailed description and sample implementations please refer to [GHJV95]

2 Introduction to Object-Oriented Software Design

13

Composite
A composite is used to represent part-whole hierarchies of objects, when differences
between compositions and individual objects can be ignored.

The logical hierarchy of a network is a typical example of a composite pattern. The
two types of nodes (end-nodes and tier-nodes) form a tree structure, but e.g. when
calculating the costs of a network, there is no difference between tier-nodes and
end-nodes.

Warper (also known as Decorator)
A warper dynamically attaches additional responsibilities and functionalities to an
object. It provides a flexible alternative to sub-classing.

Warpers are frequently used for attaching visualizing capabilities to an object. So
does the GraphWin-warper of a layer object in FooNet. The GraphWin-warper can
be transparently used wherever a layer object is expected, but observes any message
sent to that layer-object and updates its visualization if necessary.

Builder
A builder separates the construction of a complex object from its representation so
that the same construction process can create different representations.

The XML-Factory class calls on a builder design-pattern which is provided by the
SAX-parser (http://www.jezuk.demon.co.uk/SAX/). This parser takes an XML
document (see Chapter 4) and builds a parse tree from which the internal represen-
tation is derived.

Prototype
A prototype specifies the kind of object to create by using a prototypical instance
and creates a new object by copying this prototype.

This design pattern is used wherever a pointer to a base class has to be cloned.
Technically, every class supporting the prototype pattern provides a method clone ()
which guarantees that a perfect copy is made.

Command and Observer

A command encapsulates a request as an object, thereby parameterizing the clients
of the command pattern with different requests. An observer defines a one-to-many
dependency between objects so that when one object changes state, all its depen-
dents are notified and updated automatically.

Both design patterns are typically used in graphical user interfaces. A menu-bar
entry could be realized as a command. An observer can guarantee that different
views of a single object are consistent. Since both patterns are not used in the base
framework of FooNet, they are not discussed in greater detail.

Virtual Constructor
A wvirtual constructor allows to build an object of known abstract type but unknown
concrete type, which is important when de-serializing objects.

A builder that sequentially reads an object out of a stream usually knows the base
type of the next expected object, but not its concrete type. For example, the XML-
Factory knows that the next object has to be of the type “facility”, but it does not
know which concrete type this facility has, i.e. its subclass. The virtual constructor
pattern solves this problem.

14

FOONET

2.3.3 Frameworks

Object-oriented application frameworks are a promising technology for reusing proven
software designs (design reuse) and implementations (code reuse) in order to reduce
the costs and improve the quality of software. A framework is defined as follows [Joh97,
FSJ99):

A framework is a reusable design of all or part of a system that is represented by
a set of abstract classes and the way their instances interact. Frameworks aim at
solving a family of similar problems.

The purpose of a framework is to provide the skeleton of an application that can be
customized by an application developer.

Frameworks differ from class libraries by their additional reuse of high-level design, since
frameworks do not only define classes but also a model for interaction between them.
A framework is therefore a “semi-complete” application (by the use of inversion of
control?) that can be specialized to produce custom applications. Frameworks enhance
modularity by encapsulating volatile implementation details behind stable interfaces. Ex-
tensibility is supported by providing explicit hook methods that allow applications to
extend the interface.

Examples for widely known frameworks are:

AWT & JavaBeans (http://java.sun.com)

Qt (http://www.trolltech.no)

MFC (http://www.microsoft.com)

Abacus
(http://www.informatik.uni-koeln.de/1ls_juenger/projects/abacus.html)

There exist two different kinds of frameworks:

e White-box frameworks rely heavily on object-oriented language features like in-
heritance and dynamic binding in order to enhance extensibility. To use white-box
frameworks, intimate knowledge of their internal structure is needed. FooNet is de-
signed to be a white-box framework.

e Black-box frameworks support extensibility by defining interfaces for components
that can be plugged into the framework via object composition. The functionality of
black box frameworks is based on design patterns, such as strategy and command.
Black-box frameworks are less flexible than white-box ones, but usually easier to
use. The Qt-based visualization C_qt_layer_warper in the FooNet extensions is an
example for a black-box framework that provides a graphical user interface.

Several properties are commonly demanded for frameworks:

e completeness: the framework should provide all necessary functionality.

3Sometimes also denoted as the Hollywood principle:“don’t call us, we call you”

2 Introduction to Object-Oriented Software Design

15

e efficiency: the framework should provide efficient implementations of the relevant,
time-critical parts.

e flexibility (reusability): the framework should be applicable in more than one con-
text.

e case of use: the user of the framework should only be responsible for the part of the
implementation that is software specific.

e extensibility: the framework should have the ability to grow with future require-
ments.

e portability: the framework should not be restricted to a specific hard- or software.

16

FOONET

Chapter 3

A Framework for Object-Oriented
Network Design (FooNet)

FooNet is a result of the upcoming PHD thesis [Fis00] that deals with various aspects of
network design problems.

3.1 Overview

FooNet is a white-box application framework that is designed to significantly reduce the
development effort of network design applications. At the moment, its focus is at telecom-
munication network design, but it could be easily expanded to cope with other network
design problems (such as road networks or gas pipelines) as well.

The design of FooNet consists of two parts:

e A core framework, which is the result of an object-oriented analysis & design process.
It represents the abstractions, interfaces and interaction models of network design
problems.

e An extended framework that builds on top of the core framework and enriches it
by providing additional functionality and applications. It is expected to grow very
fast in the future, providing a library of algorithms helpful for telecommunication
network design.

FooNet provides a system of base classes from which the application specific subclasses
can be derived. All problem independent parts are invisible to the user, so that he can
concentrate on the problem-specific algorithms and data-structures. As a white-box frame-
work, FooNet relies heavily on inheritance from base-classes and overloading pre-defined
hook-methods, i.e. the user derives his specializations from a set of appropriately designed
(interface) classes. Virtual functions provide default implementations that are often use-
ful, but can be overloaded, if required. Sometimes such virtual functions do nothing at
all, but they allow the user to add some functionality. The task of “inventing” an ap-
propriate network algorithm and/or representation cannot be completely taken off the

18

FOONET

designer, since this is problem-dependent!'. However all other activities in network de-
sign (e.g. persistence, displaying, editing, forecasting, loading, performance evaluation,
sensitivity testing) are managed by the framework.

The next paragraphs introduce the design of FooNet in greater detail. References to the
classes or methods in the implementation are in teletype font. References to design
patterns are in italics font.

3.2 The Core Design Classes

The UML static class diagram of the core framework is shown in Figure 3.2. The reader
is asked to take a look at this static class diagram regularly, since it helps to clarify the
model of interaction between the classes.

In the following sections, the main abstractions are introduced, but the details of the
implementation are left to the program documentation that is included in the FooNet
distribution?.

3.2.1 Network Nodes

The class C_node is an abstraction of a network node. A node is a location (given as
C_coordinate) of an arbitrary source or destination of a traffic requirement. A node may
represent a single workstation or even a whole corporation. Network nodes are identified
by their unique name (the id of the node). Nodes are elements of the network topology
(see Chapter 3.2.6).

A common strategy of network design algorithms is the grouping of nodes and considering
them as one new node of a “higher tier”. This introduces a hierarchy of the nodes, the
logical hierarchy of the network, in which it is possible that one node is a component
of more than one higher tier node, but no higher tier node is allowed to be component of
a lower or equal tier node.

The nodes on the lowest hierarchical level are denoted as end nodes, all others are called
component nodes. An example of an access network design is shown in Figure 1.2.

Nodes are implemented by C_node_letter objects using the composite design pattern.
C_node is an envelope according to the letter-envelope design pattern that hides a (refer-
ence counted) letter object C_node_letter.

Each node contains a C_node_info object that allows the user to store additional infor-
mation by deriving his own information class from it.

3.2.2 Commodities

The class C_commodity represents the communication demands in terms of bits per sec-
ond between a set of network nodes, i.e. the traffic matrix. Traffic matrices are usually

!For a detailed discussion of this subject see [Fis00]
2There is an extended version of this report available at http://wwwjessen.informatik.
tu-muenchen.de/"fischerv/foonet that includes the code documentation

weidei(adesped TN (1°¢ oInd1]

Foonet 1.0
UML Package Diagram

Network Design

Design Algorithms

NDA

Backbone_NDA |- ‘I' --

Access_NDA I

—

Multi_

Layer_NDA |

Forecasting I

Constraint

NDP Top_Hierarchy I

oo |

Commodity I

Routing

—

Layer |

Topology |

Utilities

Date I

—

—

XML
Factory

—

Period |

pstream |

Facilities

Soft_Constraint

Performace Evaluation

O

—

Facility_Factory |

—

Facility_Client

Facility |

Cost I

—

Network
Generator

—

Commaodity
Generator

—

Network
Simulator

—

Sensitivity
Tester

(19N0O,) USISa(T JI0M)ON POIUALI)-120[q() I0J JIOMOWRI] | &

61

weldel(J sse[) 9100 TN/ 21¥eIS g'¢ 2In31

«interface»

ND_Algorithm

«|

interface»
Forecast

«interface»

«interface»

«inteNace»

MultitierNs|_NDA

«interface»

Singlelayer_NDA Multilayer_NDA

L
A Ta A
1 1
U [T

|
|
|
|
Accesstier_NDA | |
|
|
|
|

F————=—=—=-=-=-=-=---

«interface»
Network_Simulator

«interface»
Commodity_Generator

«interface»
Sensitivity_Tester

«interface»
Network_Generator

«ipterfaoe»
Traffic_Generator

+ 4 Builder Virtual Prototype |- -
| I | constructor |
X 1 L
| «utility» ! «utility» «utility» === 7" 1
31 XML_Factory | ~ = pstream shared_ptr [<

Top_Hierarchy ND_Problem |
Visitor Warper I — — — — - - - e e e e e e e —
Design Pattern B| Design Pattern B| ‘ ’ } { {H
aeracer — | [Warped_Layer : ' Foonet 1.0 Core Design
Topology_Visitor ped_—ay Mapping | g
. Layer | *" 1|.n
_________] i — e e e m— m o e e = = = = =
Topology «interface» «interface» |
Visitor) Routing Constraint [Edge_Facility_Attributes | Node_Facility_Attributes |
routing scheme | | [| !
i Lo
Top_Info Routing_Info «interiace» < >
C! P 9] Soft_Constraint | | I Fagiir;ti(tmaclggctor '”tegzcset
L. I — -
consistsof » psletter *] | | [F /i\ i
1 0 { . CF 1 «interfapg» cost
Lo Node letter Node Node_Info | Requirement | |_Gener|c actory ! Facility |—oO
=] | Commodity
A N Adriend _ | | | JaN
A o _._TZ---Z-—< 3 Abstract Factory : - L —1 —
i | I| Design Pattern [Single_Facility Evolving_Facility |
i ! Letter-Envelope «interface» I 1
ITler_Node ! : ! End_Node ! Letter-Envelop Sreriaces o | | lﬁ L }
A ! . I I [1
—————— + - - -------{Composite ili ili
Somposie em : | ! Node_Facility ! ! Edge_Faclility !

0¢

LANOOA

3 A Framework for Object-Oriented Network Design (FooNet)

21

asymmetric. A single commodity is identified (C_commodity: :t_index) by a pair of net-
work nodes, the source and the destination. The class C_commodity provides methods for
the computation of the traffic demands on each tier level.

3.2.3 Facilities & Cost

The class C_facility is an interface that represents all (edge® and node) facilities of a
network, whereby a facility is a component belonging to a single network layer (see Section
3.2.5). Each facility has a reliability and a capacity.

The most important attribute common to all facilities is the cost interface that allows to
calculate the expenses necessary during their lifetimes. These costs are stored in a C_cost
object and calculated according to the discounted cash flow (DCF) formula® using the
setup-, reoccurring- and termination (respectively upgrade) costs. The cost interface is
intended to cope with usage-dependent costs in the next software release.

The specializations of C_facility include single facilities, C_single_facility, on the
one hand and evolutionary facilities, C_evol_facility, on the other hand. Single facilities
divide into edge, C_edge_facility, and node, C_.node_facility, facilities. Evolutionary
facilities represent a series of succeeding single facilities over time®. Series of facilities are
non-overlapping, i.e. at all times, exactly one single facility is present.

3.2.4 Facility Factory & Facility Client

The class C_facilityclient represents all available facilities of a single network layer.
Internally it stores a list of C_facilityfactory classes. Instances of C_facilityfactory
subclasses may represent a single vendor, product-line, public carrier service etc. To obtain
a list of appropriate facilities the user must specify the characteristics by (node or edge)
attributes, which are based on C_ef_attribute for edge-facilities and C_nf_attribute
for node-facilities, respectively. C_facilityclient is a realization of the factory design
pattern.

C_facilityclient enables the designer to handle different facility factories, but it burdens
him with the task of choosing a facility out of a list of appropriate ones, since one facility
may have cheaper setup costs while the other has cheaper reoccurring costs.

Sometimes vendors offer special "upgrade-fees” when switching from one facil-
ity to another. This can be modeled by over-riding the upgrade-cost method
(C_facilityfactory: :upgrade()). If no appropriate facility is found, an empty object
is returned.

An instantiation of a facility factory is given by the class C_generic_factory which
implements an economy of scale facility factory (see again [Fis00]) with the economy of
scale parameter® a. Additionally a list of discrete values for the available capacities can be
specified. When producing a facility, the cheapest facility that meets the given attributes
is returned.

3This may also include transport services offered by public carriers

4For a more detailed introduction in this subject see [Fis00]

SFor example, the facility f; is known to be replaced by facility f» at planning time A
6also called power-law

22

FOONET

3.2.5 Network Layer and Topological Hierarchy

The class C_layer is a collection of all information associated with a single network layer,
e.g. SDH, ATM or IP. A layer object contains information about the available facilities
(in a C_facilityclient object), the used routing-algorithm (in a C_routing object) and
its topology (in a C_topology object).

The network layers are organized according to the topological hierarchy of the network
(C_topological_hierarchy). The mapping between peer layers can be supported by a
mapping object (C_mapping)’. It provides routing functionality between peer layers and
allows for example to query which facilities of a lower layer (e.g. a SDH-path) are used
by a facility on a higher layer (e.g. a ATM-VP) and vice versa.

Additional functionality can be attached to a layer by the class C_warped_layer which is
an instantiation of the warper design pattern.

3.2.6 Topology

The class C_topology represents the topology of a single network layer, i.e. the layout
of its nodes and edges. C_topology is implemented by a parameterized C_graph object.
Every topological element, i.e. all nodes and edges, contains a C_topology_-info object.
Each topological node-element is associated with a C_node object and each topological
edge-element is associated with two C_node objects, the source and destination node.

C_topology-info is a base class for (node and edge) information associated with every
topological element. It contains a facility (C_facility) object, a routing information
(C_routing info) object, and a variable to store the current load in terms of bits per
second. It is designed to be overloaded if additional information is required.

C_topology_visitor represents an abstract interface of a visitor design pattern for topo-
logical elements. For example a C_topology_visitor object is used to calculate the costs
of the topology by visiting all topological elements and summing up the associated facility
costs.

3.2.7 Routing

The class C_routing is an interface for a static routing (respectively loading) algorithm
(see e.g. [Cah98]). The main functionality is in the C_routing::load() method, which
loads a commodity on the topology according to the routing algorithm by setting the
load variable in each topological element.

To support all possible routing algorithms, each topological element stores a
C_routing_info object, which should be overloaded to support the needs of the rout-
ing algorithm. In its basic implementation C_routing_info contains no information.

3.2.8 Network Design Problems, Forecast & Constraints

The class C_ndp represents both, a network design problem and its solution. It serves as
the parameter to the network design algorithms (C_nda).

"For a detailed introduction to this subject see [Auc99]

3 A Framework for Object-Oriented Network Design (FooNet)

23

A C_ndp object stores

e a topological hierarchy (C_topological hierarchy) object that is subject to the
planning

a commodity (C_commodity) object representing the load that the highest network
layer has to carry at the time of the planning

the planning period (C_period)

a forecasting algorithm (C_forecast)

a set of constraints (C_constraint)

a set of soft constraints (C_soft_constraint)

The method C_ndp: :objective () calculates the objective function of the current state of
the network design (which is given by the topological hierarchy object). The functionality
provided by the base class calculates the objective function by summing up the cost of
all used facilities over the planning period plus the (weighted) penalties from all soft
constraints.

The class C_forecast is an interface class for forecasting algorithms, that calculates an
expected commodity at any time in the future given a commodity at the present time.

The class C_constraint is an interface for constraints. A constraint takes a network
design problem (in the method C_constraint::is_fulfilled()) and decides whether
constraint is fulfilled or not.

The class C_soft_constraint is an interface for soft constraints. A soft constraint takes a
network design problem (in C_soft_constraint: :penalty()) and returns a penalty (i.e. a
non-negative number) if the associated condition is not fulfilled, otherwise it returns zero.
Usually the penalty grows with the "distance” to the condition that should be fulfilled.
The penalties of soft constraints contribute to the objective function of the object.

3.2.9 Network Design Algorithms

C_nda is an interface for network design algorithms. There is a wide range of possibili-
ties how to design communication networks that depend heavily on the given facilities,
protocols, network layers and many more.

Therefore the class hierarchy derived from C_nda implements well known strategies for
network design (realized by the strategy design pattern) without placing restrictions on
new design ideas.

Following strategies are supported:

e C_singlelayer_nda is an interface for a single layer design algorithm.
e C_accesstier_nda is an interface for designing access networks within a layer.

e C_multitier_sl nda is an interface for a single layer design algorithm consisting
of at least one access design algorithm (C_accesstier _nda) and a backbone design
algorithm (C_singlelayer_nda).

e C_multilayer_nda is a design algorithm for planning more than one layer at a time
by (recursively) propagating the highest layer commodity from the top to the bottom
layer and solving each layer by a single layer algorithm.

:pop1aoad a1e swiyiIo8[e usIsep JI0M}au SUIMO[[0] YT,

 I0MPN T

ugiso

‘ssa1801d UT YI0M 9T} OQLIISIP

pue SuoIsua)Xa a[qerreae oy sisyy syderdered jxou oy [, "suoryeordde pue suyjrosye [nj
-9sn Jo Areiqip ® Aq USISOp 9109 9} SPUIXS NIOMIWRIJ 19A7004 9Y} Jo 1ed puosss oy,

weldei(] SSe[) PopudIxs] TN/ 219RIS ¢°¢ 2In31

Mentour
AMentor
Branch_Exchange

«interface»
ND_Algorithm

—

I
«interface»

Singlelayer_NDA

1
«interface»
Accesstier_NDA

T

{Mentor]| [Center_Of Mass |

Add/Drop

«interface»
Forecast

T

Extrapolation

Mentorll |
{

[Fuzzy_Clustering

Constraint_MST |

Holt_Winters |
{

[Prim_Dijkstra_Tree

[weighted_Least_sgares |

Kruitoff |

Observer
Command

QT_Warped_Layer

Warped_Layer

Top_Hierarchy

ND_Problem

| Graphwin_Warped_Layer

LEDA [Topology |
Adapter - >)

«interface»
Coordinates

A

[Geo_Coérdinates | | Euind_Colordinates |

ATM_Commodity

Layer ? «interface»
«interface» Constraint
Routing
routing scheme __ » /\
Top_Info Routing_Info
} - «interface»
> OSPF_Routing Soft_Constraint
- o, " /\
OSPF_Routing_Info Commodity

———— Reliability

SOSSe[) USISO(] POPUIXH 9YL €°¢

"JONJ00,] JO 9SeI[aI I0[PW IXoU I}

ur pajuowardwit 9 M (T°¢ 2InST] 99S) UOTIBNTRAY SDURWLIOJISJ JUau0dwOd AJOYM BT,

sooelIaju] [eUOINppyY O01°C'S

Ve

LANOOA

3 A Framework for Object-Oriented Network Design (FooNet)

25

e Add/Drop [Ker93]: access design algorithm
(C_add,C_drop)

e Center of Mass [Ker93]: access design algorithm
(C_center_of mass)

e Prim-Dijkstra Tree [Ker93]: access design algorithm
(C_prim_dijkstra)

e Fuzzy Clustering [Lan99]: access design algorithm
(C_fuzzy_clustering)

e Branch Exchange [GKT77]: single layer design algorithm
(C_branch_exchange)

e Concave Branch Elimination [GK77]: single layer design algorithm
(C_concave branch elimination)

e Mentor [KKG89]: single layer design algorithm
(C_mentor)

e MentorII [Cah98]: single layer design algorithm with OSPF routing
(C_mentorII)

e MenTour [Cah98]: reliable single layer design algorithm
(C_mentour)

e AMentor [Cah98]: reliable single layer design algorithm
(C_amentor)

e IncreMentor [Cah98]: incremental single layer design algorithm
(C_incrementor)

The following forecasting algorithms are provided:

e Extrapolation: A simple extrapolation based upon various model functions
(C_extrapolation)

e The Kruitoff Algorithm, taken from [ITU92]
(C_kruitoff)

e Weighted Least Squares [ITU92]
(C_least_squares)

e Holt-Winters Method [Har89|
(C_holt_winters)

The following constraints are provided:

e connectivity, returns true if the network is connected
(C_connectivity constraint)

e 2-node connectivity, returns true if the network is 2-node connected
(C_2node_connectivity_constraint)

e 2-edge connectivity testing, returns true if the network is 2-edge connected
(C_2edge_connectivity_constraint)

26

FOONET

The following soft-constraints are provided:

e overload, calculates the amount of traffic that cannot be transported by the network
(C_overload sconstraint)

e reliability, calculates the probability of the network to become disconnected [Ker93]
(C_reliability sconstraint)

3.3.2 Routing

The following routing algorithms are provided:

e Open Shortest Path First (OSPFv2) Routing [RFC98]
(C_ospf_routing, C_ospf_routing_info)

3.3.3 Commodity

e ATM-Commodity: Commodities are calculated from ATM parameters using the
Effective Bandwidth formula from [Lin94]
(C_atm_commodity)

3.3.4 Helper Applications

e LEDA-Adapter: LEDA (Library of Efficient Datatypes and Algorithms) is a well-
known class library that offers a set of useful graph algorithms. FooNet provides
a helper application which transforms a C_topology object into a parameterized
LEDA GRAPH object and vice versa.

(leda_to_fng(), fng to_leda())

e GraphWin-Visualizer: LEDA comes with a graphical user-interface for graphs. Using
the warper design pattern, a simple visualization is provided by specializing the
C_warped_layer class. An example of this can be seen in Figure 1.2.
(C_graphwin_warped_layer)

e QT-Visualizer: This is a more elaborate version of a visualizer. It is designed after
the model-viewer-control paradigm that bases on the observer and command design
pattern. It allows to display arbitrary information in graphs.

(C_qt_warped_layer)

3 A Framework for Object-Oriented Network Design (FooNet)

3.4 Coding Conventions

3.4.1 Namespace

To avoid any collisions with existing names FooNet defines its own namespace FN.

3.4.2 Persistence

Each base class defines a streaming operator (operator<< and operator>>) method that
calls the private virtual method serialize. By overloading the serialize () methods it
is possible for a class to define its own persisting information, that have to conform the
XML conventions. De-serialization is implemented using the wvirtual constructor design
pattern.

3.4.3 Cloning Objects

Each base class provides a function ::clone() that has to be overloaded by each subclass
and has to create an exact copy of the object. This approach is identical with the prototype
design pattern.

3.4.4 Heap Objects

All dynamically created objects are managed by a reference counted shared_pointer<>-
template that guarantees to destroy the object when the last pointer to the object is
destroyed.

28

FOONET

3.5 Network Design using FooNet

The design principles that are realized by FooNet are more than a simple implementation
of a set of base classes for network design problems. The following non-trivial functionality
is entailed with FooNet:

e The design relies on a set of well known and well understood design patterns. The
internal implementations profit from this fact, but also the software designer who
uses FooNet. Examples for design patterns that may be used by the software designer
are:

the wvisitor design pattern for topological elements

the factory design pattern for facility creation

the warper design pattern for adding functionality to network layers

the strategy design pattern for the creation of new network design algorithms

the prototype design pattern for transparently cloning objects
e the virtual constructor and builder design pattern for persistence

e All important functionality is implemented in virtual base classes, i.e. interfaces.
The interfaces provided by FooNet are:

e Cnode_info - extends a network node by additional information

e C_topology_info - extends a topological element by additional information

e C_coordinate - allows the use of arbitrary coordinate systems

e C_routing - allows the software designer to realize arbitrary routing which is
used whenever routing functionality is required

e C_routing info - extends each topological information by the necessary rout-
ing information

e C_facility, C_node_facility, C_edge_facility & C_evol _facility - inter-
faces for families of facilities

e C_facilityclient - interface for selecting facilities having certain attributes

e C_constraint & C_soft_constraint- interface for arbitrary (soft) constraints

e C_nda - interface for arbitrary network design algorithms (including the inter-
faces of the derived classes)

The software designer can use the default functionality given by each interface, but
no restrictions are imposed on him. He can always overrule them by deriving his
own class that realizes the desired functionality. For example, the objective function
of a network design problem and the selection & upgrade of facilities are useful
candidates that can and should be overloaded by the software designer.

e The design of the persistence guarantees that each piece of information is stored
only once. This is similar to the “normal forms” of relational database systems.

e The cost structure realized by FooNet bases on a well known and widely accepted
theory of finance, the discounted costs. FooNet is the first tool that explicitly takes
this notion into account. The support for evolving facilities C_evol_facility is a
direct consequence.

3 A Framework for Object-Oriented Network Design (FooNet)

29

e The extended design provides a repository of well-known algorithms used in network
design. These algorithms may be helpful for solving a concrete design problem.

e Last but not least, FooNet is designed to offer the highest possible degree of code
reuse. However, only the future will show how good this design is in practical use.

30

FOONET

Chapter 4

Data Exchange using XML

4.1 Introduction and Motivation

The Extensible Markup Language (XML) [XML98] is a proposed recommendation from
the WWW-Consortium (http://www.w3c.org) for a file format to support the distri-
bution of electronic documents. XML is a subset of the SGML (Standard Generalized
Markup Language) and data is processed in human readable form. The outstanding fea-
ture of XML is the fact that unlike other formats it contains also information about
how to process the data, i.e. the data describes its own format. Like HTML, XML is a
markup language, which relies on the concept of rule-specifying tags and the use of a
tag-processing application that knows how to deal with the tags. In contrast to HTML,
XML is a meta markup language which allows to define application-specific markup-tags.
A software module, called XML processor, is used to read an XML document and to
provide access to its content and structure.

The advantages of XML are:

e Searching information in the data is comparatively easy and efficient, by simply
parsing the description-bearing tags. Even complex relationships like trees or graphs
and inheritance® can be included.

e Extensibility is supported, while maintaining the legibility of the code by self-
describing tags.

e the GUI is not embedded by the data. Thus changing the display does not influence
the data.

e “Extensible Stylesheet Language Templates” allow to convert XML data in almost
any format without the necessity to write additional programs.

e XML processors are available as free software (see e.g. http://www.jclark.com/
xml/xt.html).

e As soon as the standardization of [SOX99] is finished, XML can solve the problems
of exchanging object-oriented datatypes between different application, which is still
an unsolved problem.

XML is supported by XEmacs, Netscape 5.0, Internet Explorer 5.0.

lwork in progress by the W3C

32

FOONET

4.2 Processing XML Data

The file that describes the syntax of a well-formed document (i.e. the tag-names and
their hierarchical relationships) is called Document Type Definition (DTD). A DTD
contains the meta information that is necessary to check whether a given XML document
is syntactically correct. To put it in a more formal way, the DTD describes the (context-
free) grammar of an XML document. Typically DTDs are stored in separate documents.
A short introduction to the DTD can be found in Appendix B.1.

To access or display the relevant information included in an XML-document, additional
information is necessary. The Extensible Stylesheet Language (XSL) [XSL99b] will
define a set of formatting and processing instructions that allow the conversion of XML
documents. The transformation part, Extensible Stylesheet Language Templates, is
already standardized in [XSL99a] and contains rules for patterns that are matched against
elements in the source tree of the document and templates that construct a portion of the
resulting output. During this transformation the data can be modified (e.g. reordered)
and processed (e.g. accumulated).

<?xml version="1.0" encoding="UTF-8" standalone="no"7>
<!DOCTYPE node SYSTEM "Node_DB.dtd" [
1>

<FN_NODE_DB number="323">

<FN_NODE id="b-win-gw.rrz.uni-koeln.de" type="E" childs="0" tier="0">
<FN_COORD type="geo" x="50.9272" y="6.9213"></FN_COORD>
<FN_NODE_INF0></FN_NODE_INFO>
<FN_NODE_CHILDREN></FN_NODE_CHILDREN>

</FN_NODE>

<FN_NODE id="bam-berlin" type="E" childs="0" tier="0">
<FN_COORD type="geo" x="52.4479" y="13.2994"></FN_COORD>
<FN_NODE_INF0></FN_NODE_INFO>
<FN_NODE_CHILDREN></FN_NODE_CHILDREN>

</FN_NODE>

<FN_NODE id="bast.koelnl" type="E" childs="0" tier="0">
<FN_COORD type="geo" x="50.9522" y="7.17136"></FN_COORD>
<FN_NODE_INFO></FN_NODE_INFO>
<FN_NODE_CHILDREN></FN_NODE_CHILDREN>

</FN_NODE>

</FN_NODE_DB>

Figure 4.1: Fraction of a Node Database

The following (very simple) example demonstrates how this works. In Figure 4.1, a frag-
ment of an XML-document (compliant to the DTD in Appendix B.2.1) that contains a set
of nodes is shown. If a user wants to access all node-ids together with their coordinates,
he can use the XLST script shown in Figure 4.2 that provides this functionality. Figure
4.3 presents the result of the transformation.

As a conclusion, XML seems to be a very promising approach for data exchange between
different tools and applications in the context of network design.

4 Data Exchange using XML

33

<xsl:stylesheet
version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<HTML><HEAD>
<TITLE> FOONET Processing Output </TITLE>
</HEAD><BODY>

<xsl:apply-templates />

</BODY></HTML>
</xsl:template>

<xsl:template match="FN_NODE">

<xsl:value-of select="@id" />
<xsl:text>: </xsl:text>
<xsl:apply-templates />

</xsl:template>

<xsl:template match="FN_COORD">

<xsl:value-of select="@x"/>
<xsl:text> </xsl:text>
<xsl:value-of select="Q@y"/>

</xsl:template>

</xsl:stylesheet>

Figure 4.2: XSL-Transformation

<HTML><HEAD>
<TITLE> FOONET Processing Output </TITLE>
</HEAD><BODY>

b-win-gw.rrz.uni-koeln.de: 50.9272 6.9213
bam-berlin: 52.4479 13.2994
bast.koelnl: 50.9522 7.17136

</BODY></HTML>

Figure 4.3: Transformation Result

34

FOONET

4.3 XML in FooNet

FooNet produces and processes XML compliant data, i.e. all streaming operators (see
Chapter 3.4.2) work with XML documents. The Document Type Descriptions of the in-
and output data are listed in Appendix B.2.

The following XSLTs that provide mainly filtering functionality are already used or at
least in a development stage:

e HTML-Conversion: For all FooNet DTDs there are XSLTs that display the data
contained in the document in HTML format.

e GNU-Plot-Conversion: This XSLT transforms the output of a C_Layer to a GNU-
Plot compatible input file.

e GML-Conversion: GML is a wide-spread data format for (parameterized) graphs
[Him96]. This XSLT transforms a C_Layer output into a GML-document.

e VRML-Conversion: Similar to the previous two points this XSLT transforms a
C_layer output into a VRML document that can be viewed by any WEB-browser
supporting VRML?2.

The development of traffic measurement tools that produce XML-compliant data is a
further step in this direction. Such measurements could for example easily be converted
into a C_commodity compliant output.

2Virtual Reality Modelling Language, a standard from the W3C

Chapter 5

Summary and Outlook

5.1 Summary

In this report, FooNet, an object-oriented application framework for telecommunication
network design, is presented. The characteristics of FooNet in contrast to other planning
environments are its consequent object-oriented design and the support of reuse techniques
on different levels of abstraction. FooNet comes with a set of algorithms used in network
planning and this library is expected to grow in the future. Additionally, the capabilities
of XML as a data exchange format between various applications are discussed.

5.2 Outlook

The author is aware of the fact that the present version of FooNet is not nearly covering
all facets of network design problems. It lacks a lot of features that are useful or even
necessary for some problems.

The following work is intended to be done in the near future:

e Include support for usage dependent costs.

e Finish the interfaces and provide default implementations for the network perfor-
mance analysis part.

e Include extensions for planning mobile networks.
e Increase the number of network design strategies derived from C_nda.
e Increase the number of algorithms and utilities in the extended framework.

e The XML part of FooNet bases exclusively on proposed standards of the W3C.
However the DTDs of XML lack a support of object-oriented datatypes. The W3C
is currently working on a “Schema for object-oriented XML” [SOX99] that will solve
this problem. A soon as this specification is available as a proposed standard, it will
be supported by FooNet.

36

FOONET

List of Figures

1.1
1.2
1.3
1.4

2.1

3.1
3.2
3.3

4.1
4.2
4.3

Example for a topological Hierarchy 3
B-WiN Access Design Example 4
Decomposition Planning (taken from [Fri98]) 5
Sample B-WiN Planning Task 6
Object-oriented Software Design Process 10
UML Package Diagram 19
Static UML Core Class Diagram 20
Static UML Extended Class Diagram 24
Fraction of a Node Database 32
XSL-Transformation 33
Transformation Result 33

A.1 UML Notation Guide 44

38

FOONET

Bibliography

[Auc99]

[B6c97]

[Boo91]

[Cah98]

[Cop92]

[Fis00]

[Friog]

[FSJ99]

[GHIVO5]

[GKT7]

[Har89]

[Him96]

Ben Auch. Design und prototypische Implementierung einer integrierten Platt-
form zur Planung von hierarchischen Netzen. Master’s thesis, Technische Uni-
versitat Miinchen, Institut fiir Informatik, 1999.

Stefan Bocking. Objektorientierte Netzwerkprotokolle - Grundlagen, Entwurf
und Implementierung. Addison Wesley Longman Publishing Company, 1997.

Grady Booch. Object oriented Design with Applications. The Ben-
jamin/Cummings Publishing Company, 1991.

Robert S. Cahn. Wide Area Network Design - Concepts and Tools for Opti-
mization. Morgan Kaufmann Publishers Inc., 1998. The Morgan Kaufmann
Series in Networking.

James O. Coplien. Advances C++ Styles and Idioms. Addison Wesley Pub-
lishing Company, 1992.

Volker Gerd Fischer. Evolutionary Design of Corporate Networks under Uncer-
tainty. PhD thesis, Technische Universitdt Miinchen, Institut fiir Informatik,
2000. work in progress.

Jochen Frings. Eine kurze Einfithrung in die Netzplanung. Technical report,
Technische Universitat Miinchen, 1998. Lehrstuhl fiir Kommunikationsnetze.

M. E. Fayad, D. C. Schmidt, and R. E. Johnson. Building Application Frame-
works : Object-Oriented Foundations of Framework Design. Horizon Publishers
& Distributors Inc., 1999.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns : Elements of Reusable Object-Oriented Software. Addison Wesley
Publishing Company, 1995.

Mario Gerla and Leonard Kleinrock. On the topological Design of Distributed
Computer Networks. IEEE Transactions on Communications, COM-25(1):48~
60, January 1977.

Andrew C. Harvey. Forecasting, structural time series models and the Kalman
filter. Cambridge University Press, 1989.

Michael Himsolt. GML: A portable Graph File Format. Technical report,
Universitat Passau, 1996.

40

FOONET

[Int97]

[1TU92]

[Jac99]

[JGJOT]

[Joh97]

[Ker93]

[KKG89]

[Lan99]

[Lin94]

[MS81]

[NS99]

[0es97]

[OMG97]

[RFCO8]

[SOX99]

[St097]

[XMLOS]

International Standards Organization. ISO/IEC Final Draft International
Standard 14882 - Programming Language C++, 11 1997.

International Telecommunication Union. Forcasting International Traffic,
1992. E.506 (rev.1).

Ivar Jacobsen. Applying UML in The Unified Process. Technical report,
Rational Software Inc., 1999. www.rational.com.

Ivar Jacobsen, Martin Griss, and Patrik Jonsson. Software Reuse : Architecture
Process and Organization for Business. ACM Press, 1997.

Ralph E. Johnson. Frameworks = Components + Patterns - How frameworks
compare to other object-oriented reuse techniques. Communications of the
ACM, 40(10):39-42, October 1997.

Aaron Kershenbaum. Telecommunications Network Design Algorithms.
McGraw-Hill, 1993.

A. Kershenbaum, P. Kermani, and G. Grover. Mentor: An Algorithm for Mesh
Network Topological Optimization and Routing. Technical Report RC 14764
7/14/89, IBM Research Division, T.J. Watson Research Center, 1989.

Daniel Lang. Plazierung von Backboneknoten mit Fuzzy-Clustering. Master’s
thesis, Technische Universitat Miinchen, 1999. Institut fiir Informatik.

Karl Lindberger. Dimensioning and Design Methods for Integrated ATM Net-
works. International Teletraffic Conference, 14:897-906, 1994.

Andranik Mirzaian and Kenneth Steiglitz. A Note on the complexity of the Sta-
Star Concentrator Problem. IEEFE Transactions on Communications, COM-
29(10):1549-1552, October 1981.

Jorg Noack and Bruno Schienmann. Objektorientierte Vorgehensmodelle im
Vergleich. Informatik-Spektrum, (22):166-180, 1999.

Bernd Oesterreich. Objekt-Orientierte Softwareentwicklung mit der Unified
Modelling Language. Oldenbourg Verlag, 2. edition, 1997.

OMG - Object Management Group. UML Notation Guide - Version 1.1,
September 1997.

OSPF Version 2. Technical report, Internet Engineering Task Force - Network
Working Group, April 1998. RFC 2328.

W3C Discussion Paper. Schema for Object-Oriented XML 2.0, 7 1999.

Bjarne Stoustrup. The C++ Prorgamming Language. Addison-Wesley Pub-
lishing, 3rd. edition, 1997.

W3C Recommendation. Fztensible Markup Language (XML) 1.0, 10 1998.
REC-xml-19980210.

BIBLIOGRAPHY

41

[XSL99a]

[XSLI9b]

W3C Recommendation. XSL Transformations (XSLT) Version 1.0, 8 1999.
REC-xslt-19991116.

W3C Working Draft. FEztensible Stylesheet Language (XSL) Specifiaction, 4
1999.

42

FOONET

Appendix A

The Unified Modelling Language -
UML

A.1 Overview

UML, the Unified Modelling Language, is a diagram-oriented language for analyzing and
designing object-oriented systems. UML notation comprises several types of diagrams:

e Use Case Diagrams

Class Diagrams

Sequence Diagrams

Collaboration Diagrams

State-chart Diagrams

Activity Diagrams

e Implementation Diagrams

This report uses two types of diagrams - static class diagrams and implementation di-
agrams - and only these are described in the following section to the necessary level of
detail. The interested reader may refer to [Oes97] for a detailed introduction.

A.2 Static Class Diagram

Static class diagrams show the static structure and relations of the abstractions (i.e.
classes) of the software design. Class diagrams can be used to show the attributes and
operations of a class and the constraints for the way objects collaborate. The UML no-
tation of a static class diagram consists of a set of nodes and edges. The nodes have the
form of rectangles and the size and relative position does not matter. An overview of the
used symbols is shown in Figure A.1.

Classes are symbolized by rectangles that have three compartments with the following
properties: the first compartment contains the name and stereotype of the class, the

44

FOONET

second its attributes, and the third the operations. For convenience, the second and third
compartment can be hidden in a diagram. If a class is abstract, its name is displayed in
emphasized letters. UML supports also parameterized classes (i.e. template classes),
whose parameter is specified in a dashed rectangle on the upper right.

A — B A'is a" B [sub-class]

A P B A "uses" many B [Aggregation]

A - 1 B A "has a" B (exactly one) [Composition]

A L ______ > B A"is related to" B [Association]

1.

A — n> B A '"uses" atleastoneanduptonB
(via reference)

A | A~ B A "knows of" the class B

int
A —O A offers an interface "int"

package
a package containing sub-packages
sub-package

a note (or comment) from the developer

1
3 C C is a template with parameter T
«interface» D is an abstract base class and realizes the
stereotype <<interface>>

Figure A.1: UML Notation Guide

Stereotypes, denoted by matched double brackets (also called guillements) <>, are used
to extend a construct at modeling time. Generally stereotypes represent usage distinctions.
Examples are the stereotype <interface>>, which denotes a pure abstract base class, or
the stereotype <bind>>, which instantiates a template with a parameter.

Notes and comments are supplied by a rectangle with its upper right corner folded down.
Although newer versions of UML support design patterns by additional annotations in
the class, here they are included as comments.

The associations between classes are shown by various types of lines between the classes.
An association can have a cardinality which is expressed by the number (or range) at the
end of the line. If the association has a name it is written on the top of the connecting
line.

A The Unified Modelling Language - UML

45

The following types of associations are used:

e Composition - means that an object of class A “owns” (“has-a” relationship) an
object of class B, i.e. class A is responsible for its associated objects of class B, and if
an object of class A is destroyed, all owned objects of class B are also destroyed. The
graphical symbol is a line with a filled diamond on the side of class A. To express
that the association is of a referenced type, the side of the associated class B has an
arrow.

e Aggregation - is a weaker form of composition (“uses-a” relationship). It means
that an object of class A has a (temporary) acquisition of an object of class B without
ownership and responsibility for its lifetime. To express that the aggregation is of a
referenced type, the side of the aggregated class B has an arrow.

e Association - If the modeller wants to express an association that is not specified
in detail, he can use a dashed line between the associated diagram elements.

e (Public) Inheritance - (“is-a” relationship) is indicated with a triangle pointing
up to the class from which the other is derived.

e Interface - (“knows of a” relationship) expresses that the objects of a class A know
the interface of class B. Technically this implies that the class A cannot be compiled
without importing the class B. The graphical notation is a line with a circle at the
end pointing to class B.

Sometimes more than one class support a certain kind of interface. This can be
indicated with a (dangling) line that has a small circle at the end of the line.

A.3 Implementation Diagram

A component diagram (which belongs to the class of implementation diagrams) is used to
break down a larger software system into logical grouping of smaller systems. It can also
show the dependencies of classes and their dependencies within a component. It serves as
an orientation where to find which functionality.

Packages are used to group a set of classes having a common purpose. They are displayed
by large rectangles with the name of the purpose (i.e. the name of the package) in a small
rectangle on top of the upper-left corner. Classes belonging to the package are visualized
by smaller rectangles grouped within. Packages can be nested.

46

FOONET

Appendix B

Document Type Description

B.1 Introduction to the Document Type Documen-
tation

The syntax of a (well-formed) XML document is structured by tags that can be projected
into a tree structure. Each element in this tree consists of a start tag, a body and an
end tag as well as a set of attributes associated with that element. Syntactically, a tag is
anything between “<” and “>”. Tags are case sensitive. End tags are marked by a leading
“/”. The following construction is an example for a valid tag:

<string length="17"> This is a string </string>

Sometimes it makes sense to have an empty tag simply by putting the slash at the end
of the tag “<EMPTY_TAG/>". Empty elements usually have a number of attributes to give
them usefulness. The actual names of tag-elements are arbitrary, i.e. can be chosen by
the document designer (usually guided by their meaning and therefore often denoted as
“semantic tags”). All documents begin with a “root of document” entity, all other entities
are optional.

The Document Type Definition (DTD) defines the syntax of the XML-document. It con-
tains meta information about valid elements, valid attribute names and values, and in-
formation how elements can nest in each other. One can think of a DTD as defining the
overall structure and syntax (i.e. the grammar) of the document. Typically DTDs are
stored in separate documents.

Here, the syntax of a DTD is demonstrated with the help of the following example:

<!DOCTYPE FOONET [
<!-— ENTITIES HERE -->
<'ENTITY \% LRK \’Lehrstuhl für Rechnerkommunikation\’>

<!-- ELEMENTS HERE -->

O ~NO Ok WN -

48

FOONET

9 <!ELEMENT FN_NODE_DB (FN_NODE+, #PCDATA)>
10 <!'ATTLIST FN_NODE_DB

11 date CDATA #IMPLIED

12 creator CDATA #REQUIRED

13 id ID #REQUIRED >

14

15 <!ELEMENT FN_LAYER "SDH" | "ETHERNET" | "ATM" | "IP" >
16

17 <!'ELEMENT FN_NODE EMPTY>

18 1>

This document makes use of the following DTD features:

e Root Tag
The line 1 of the DTD defines the root element of the DTD, i.e. in this example
all documents conforming to this DTD must be encompassed by “<FOONET>” and
“</FOONET>".

e Comments
Comments can be placed using the following syntax “<!-- COMMENT -->".

e Entities
Entities are aliases for more complex functions. For example, the entity “€LRK;” de-
fined in line 5 represents the term “Lehrstuhl für Rechnerkommunikation”
in the document. Entities can reduce the file size and they prevent error-prone re-
peating.

¢ Elements
An element defines a tag and the syntactically correct usage of that tag. For example,
line 9 defines the tag “<FN_NODE_DB>” and demands that this element must contain
at least one element (denoted by “+”) of the type “<FN_NODE>” followed by arbitrary
character data (“#PCDATA”) in its body. The rules for building the body of the
element are similar to regular expressions. Line 15 defines that the body of the tag
“<FN_LAYER>” may contain one of the terms “SDH”, “ETHERNET”, “ATM” or “IP”.
Line 17 defines an element with an empty body, i.e. “<FN_NODE/>”.

e Attributes
Attributes allow to associate an element with additional parameters. For example,
the rule beginning at line 10 allows the element “<FN_NODE_DB>” to have an attribute
“date” and requires the attributes “creator” and “id”. A valid realization could
be for example “<FN_NODE_DB creator="VOLKER" id="SDH'">".

The following types of attributes are defined:

e CDATA - any value

e ID - unique identifier within the XML document

e IDREF - reference to an element with a specific ID

e IDREFS - sequence of IDREFs

e XPOINTER - a relative path through the XML tree (e.g. a child or parent)

The DTD can be included in the XML document by inserting it after the processing
instructions:

B Document Type Description

49

<?xml version = "1.0" encoding=’’UFT-8’’ standalone="yes"?>

<!DOCTYPE ROOT [
<!-- HERE COMES THE DTD -->
1>

<RO0T>
<!-- HERE COMES THE BODY --—>
</R0O0OT>

or it could be included by referencing a file:

<?xml version="1.0" encoding="UTF-8" standalone="no"7>
<!DOCTYPE FOONET SYSTEM "FOONET.dtd" [

1>

<FOONET>

<!-- HERE COMES THE BODY -->

</FOONET>

B.2 FooNet DTDs

The following paragraphs present the document type descriptions of the in- and output of
FooNet. Please note that this becomes obsolete as soon as the object-oriented schemata
are standardized.

B.2.1 Node Database

<!--Copyright 1999 V. Fischer -->
<!-- Network Node DTD -->

<!ELEMENT FN_NODE_DB (FN_NODE)*>

<!ATTLIST FN_NODE_DB creator CDATA #IMPLIED
date CDATA #IMPLIED
number CDATA #REQUIRED >

<!ELEMENT FN_NODE (FN_COORD , FN_NODE_INFQ , FN_NODE_CHILDREN)>

<!ATTLIST FN_NODE id ID #REQUIRED
type CDATA #REQUIRED
childs CDATA #REQUIRED
tier CDATA #REQUIRED >

<!ELEMENT FN_COORD (#PCDATA)>

<!ATTLIST FN_COORD type CDATA #REQUIRED
X CDATA #REQUIRED
y CDATA #REQUIRED>

FOONET

<!ELEMENT FN_NODE_INFO (#PCDATA)>
<!ELEMENT FN_NODE_CHILDREN (FN_NODE_ID)x*>

<!ELEMENT FN_NODE_ID EMPTY>
<V'ATTLIST FN_NODE_ID id ID #REQUIRED >

B.2.2 Facilities

<!--Copyright 1999 V. Fischer -->
<!-- Network Facility DTD -->

<!ELEMENT FN_FAC (FN_COST | (FN_PERIOD , FN_FAC* , #PCDATA?))>

<!ATTLIST FN_FAC type ("N"|"E"|"EVOL") #REQUIRED
layer CDATA #REQUIRED
cap CDATA #REQUIRED
vendor CDATA #REQUIRED
id CDATA #REQUIRED >

<!ELEMENT FN_COST (FN_PERIOD , #PCDATA?)>

<!ATTLIST FN_COST setup CDATA #REQUIRED
term CDATA #REQUIRED
reoc CDATA #REQUIRED >

<!ELEMENT FN_PERIOD EMPTY>

<!ATTLIST FN_PERIOD d CDATA #REQUIRED
h CDATA #REQUIRED
m CDATA #REQUIRED
s CDATA #REQUIRED >
B.2.3 Layer

<!--Copyright 1999 V. Fischer -->
<!-- Network Layer -—>

<!ELEMENT FN_LAYER (FN_F_CLIENT, FN_ROUTING, FN_TOPOLOGY)>
<!ATTLIST FN_LAYER id ID #REQUIRED>

<!ELEMENT FN_CLIENT (#PCDATA)>
<!ATTLIST FN_CLIENT name CDATA #REQUIRED>

<!ELEMENT FN_ROUTING (#PCDATA)>
<!ATTLIST FN_ROUTING name CDATA #REQUIRED>

B Document Type Description 51

<!ELEMENT FN_TOPOLOGY (FN_TNODE+ , FN_TEDGE*) >
<!ATTLIST FN_TOPOLOGY nodes CDATA #REQUIRED
edges CDATA #REQUIRED >

<!ELEMENT FN_TNODE (FN_TOP_INFQ , #PCDATA) >
<!'ATTLIST FN_TNODE id IDREF #REQUIRED >

<!ELEMENT FN_TEDGE (FN_TOP_INFO , #PCDATA) >
<!ATTLIST FN_TEDGE source IDREF #REQUIRED
dest IDREF #REQUIRED >

<!ELEMENT FN_TOP_INFO ((FN_FAC | FN_NULL), (FN_ROUTING_INFO | FN_NULL) , #PCDATA) >
<V'ATTLIST FN_TOP_INFO 1load CDATA 0’ >

<!-- NULL-Pointer -->

<!ELEMENT FN_NULL EMPTY >

B.2.4 Commodity

<!--Copyright 1999 V. Fischer -->
<!-- Network Commodity DTD -->

<!ELEMENT FN_COMMODITY (FN_NODE_ID#* , FN_TM*) >
<V'ATTLIST FN_COMMODITY nr_nodes=CDATA #REQUIRED
author =CDATA #IMPLIED >

<!ELEMENT FN_NODE_ID EMPTY>
<!ATTLIST FN_NODE_ID id IDREF #REQUIRED >

<!ELEMENT FN_TM (#PCDATA , FN_T)*>
<V'ATTLIST FN_TM id IDREF #REQUIRED >

<!ELEMENT FN_T EMPTY>

52

FOONET

Appendix C

Software Requirements

FooNet is developed under LINUX 2.2.7 using the GNU C++ Compiler Suite gce-2.95.2
(http://wuw.cygnus.org). The core design should work with any standard compliant
C++ compiler that supports namespaces, exceptions and templates.

Software requirements for the core framework are:

o STL [Int97]
e GTL (http://www.fmi.uni-passau.de/Graphlet/GTL)
e SAX (http://www.jezuk.demon.co.uk/SAX/)

Software requirements for the extention framework are:

e LEDA (http://www.mpi-sb.mpg.de/LEDA/)
e Qt 2.0 (http://wuw.trolltech.no)

Index

Aggregation, 41
Association, 40

Backbone-Node, 3
Builder, 13

Class, 39

Class Library, 10
Command, 13
Commodity, 18
Component Node, 18
Composite, 13
Composition, 41
Constraint, 23

Cost, 21

DCF, 21

De-serialize, 10

Decomposition Planning, 4
Design Pattern, 11

Discounted Cash Flow, 21
Document Type Definition, 32, 43
DTD, 32, 43

Dynamic Binding, 9

End Node, 3, 18
Evolutionary Facility, 21

Facility, 5, 21
Factory, 12
Forecast, 23
Framework, 14

Generic Programming, 11

Hierarchy
logical, 3
topological, 3

Idiom, 11

Inheritance, 9, 41
Interface, 10, 41
Inversion of Control, 14

Layer, 22

Letter-Envelope, 12
Mbps, 6

Network Design
overall, 4

Network Design Problem, 22

Network Node, 18

Objective, 23
Observer, 13
OO0A, 9
00D, 9
OOP, 9

Package, 41
Persistence, 10
Polymorphism, 9
Prototype, 13

Reuse, 11
Code, 11
Design, 11

Routing, 22

Serialize, 10

Soft Constraint, 23
Software Reuse, 11
Stereotype, 40
Strategy, 12

Tier, 3, 18
Topological Hierarchy, 22

Topology, 22
Traffic Matrix, 18

UML, 10
Unified Process, 10

Virtual Constructor, 13
Virtual Functions, 9
Visitor, 12

Warper, 13

XLST, 32
XSL, 32

