
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Design and Implementation of FOONET - a
Framework for object-oriented Network Design

Volker G. Fischer

ABCDEFGHIJKLMNO
TUM-I9919

Dezember 99

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-12-I9919-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
1999

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

Design and Implementation of FooNet,a Framework for obje
t-oriented Network DesignVolker Gerd Fis
herInstitut f�ur InformatikLehrstuhl f�ur Re
hnerkommunikationTe
hnis
he Universit�at M�un
hen, Germany
Keywords:Tele
ommuni
ation Network Design, Obje
t-oriented Framework, Obje
t-orientedAnalysis and Design, Extensible Markup Language
Abstra
tThis report presents the design and implementation of FooNet, an obje
t-orientedappli
ation framework for tele
ommuni
ation network design. The
hara
teristi
s ofFooNet in
ontrast to other planning environments are its
onsequent obje
t-orienteddesign and the support of reuse te
hniques on di�erent levels of abstra
tion. FooNet
omes with a library of helpful algorithms used in network design problems. A furtherimportant feature of FooNet is its support of XML for data ex
hange. XML o�ers a newdimension of
ommuni
ation eliminating in
ompatibilities between various appli
ations.

X-CRClassi�
ationB.4.3, C.2.1, D.1.5, D.2.2, I.7.2

Contents
Motivation 11 Tele
ommuni
ation Network Design 31.1 Introdu
tion . 31.2 De
omposition Planning . 41.3 The B-WiN Planning Task Example . 62 Introdu
tion to Obje
t-Oriented Software Design 92.1 Overview . 92.2 Uni�ed Modelling . 102.3 Software Reuse . 113 A Framework for Obje
t-Oriented Network Design (FooNet) 173.1 Overview . 173.2 The Core Design Classes . 183.3 The Extended Design Classes . 243.4 Coding Conventions . 273.5 Network Design using FooNet . 284 Data Ex
hange using XML 314.1 Introdu
tion and Motivation . 314.2 Pro
essing XML Data . 324.3 XML in FooNet . 345 Summary and Outlook 355.1 Summary . 355.2 Outlook . 35List of Figures 36Bibliography 38

ii FOONETA The Uni�ed Modelling Language - UML 43A.1 Overview . 43A.2 Stati
 Class Diagram . 43A.3 Implementation Diagram . 45B Do
ument Type Des
ription 47B.1 Introdu
tion to the Do
ument Type Do
umentation 47B.2 FooNet DTDs . 49C Software Requirements 53Index 55

MotivationNetwork design, the task of planning and managing
ommuni
ation networks,
omprisesa variety of te
hniques and knowledge evolving frommany di�erent �elds of s
ien
e1. Theses
ien
es in
lude optimization, graph theory, fore
asting, simulation and modeling, knowl-edge representation, de
ision theory, �nan
e, ele
tri
al engineering and
omputer s
ien
e.Due to its telephony heritage and the ele
tro-te
hni
al problem part, wide area networkdesign has also a long standing history in the �eld of ele
tri
al engineering (remember forexample the work of Erlang in the early de
ades of this
entury).The relation between
omputer s
ien
e and network planning is at least twofold. First,tele
ommuni
ation network planning was one of the �rst appli
ations for whi
h the
om-putational power (supported by advan
es in mathemati
al optimization) was and still isused. Se
ond, the explosion of
ommuni
ation servi
e demands (the Internet)
auses avital interest of
omputer s
ien
e in tele
ommuni
ation network design.However due to its heritage, software engineering aspe
ts have played only a minor rolein network design. Pra
ti
al engineers have traditionally been fond of imperative pro-gramming languages, su
h as FORTRAN and C. The trend in
omputer
ommuni
ationis towards obje
t-oriented software engineering with its ability to
ope with
omplexityeven for large problem sizes and to reuse software. Some proje
ts have already shownthe power of obje
t-oriented approa
hes in
ommuni
ations, for example in the �eldof network-management (OSI network management) or proto
ol design ([B�o
97℄). Butthe network design task itself la
ks tools supporting the obje
t-oriented programmingparadigm. It seems that espe
ially in tele
ommuni
ation the appli
ation of obje
t-orientedsoftware design is promising. For example, Ja
kson showed in [JGJ97℄ that the reuse oftele
ommuni
ation software by AT&T was between 40% and 92%.In this report, a software tool
alled FooNet2 is presented whi
h is the result of submittingthe tele
ommuni
ation network planning pro
ess to an obje
t-oriented design&analysis(OOA&OOD). FooNet is an appli
ation framework that releases the designer from \rein-venting" the parts of the software design that are
ommon to all network design problems.Obje
t-orientation
an a
hieve this without limiting the generality of the design pro
essitself by making restri
tions that the designer
annot overrule. This report fo
uses onsoftware design, but it is assumed that the reader has at least basi
 knowledge of tele
om-muni
ation network planning as well as obje
t-oriented design prin
iples.A further problem in network design is the la
k of agreed upon standards for data ex
hangebetween appli
ations. Every tool has its own (sometimes even unpublished) interfa
e anddata-format. This problem is not a pe
uliarity of network design, but a more general1In this report the terms \network", \
ommuni
ation network" and \tele
ommuni
ation network" areused synonymously2Framework for the obje
t-oriented Network Design

2 FOONETone that
an be found in many areas of data pro
essing. With the su

ess of Internette
hnologies, the W3C
onsortium has introdu
ed a te
hnology
alled XML that allowsthe ex
hange of almost arbitrary information between di�erent appli
ations. In this report,a data-format
ompliant to XML is introdu
ed. Examples of the abilities of this formatare given. FooNet is designed to produ
e and pro
ess XML
ompliant output.The report is organized as follows: The �rst two
hapters give a short introdu
tion intele
ommuni
ation network planning and re
ent advan
es in obje
t-oriented software de-sign. The third
hapter
ontains the do
umentation of the design and implementation ofFooNet. The fourth
hapter dis
usses the
apabilities of XML as a data ex
hange format.The report
on
ludes with a summary and an outlook to future work.A
knowledgementsI'd like to thank (in alphabeti
al order) Thomas Erleba
h, Manfred Jobmann and Hans-Peter S
hwefel for their helpful
omments and
riti
s.

Chapter 1
Tele
ommuni
ation Network Design
1.1 Introdu
tionIt is a non-trivial task to formulate a network design problem by itself. Due to the fa
tthat a network must satisfy the needs of an enterprise and every enterprise has di�erentrequirements on
ommuni
ation, network design is a
ontext sensitive problem.Generally,
ommuni
ation networks are designed using hierar
hi
al stru
tures. Two dif-ferent types of hierar
hies
an be identi�ed: The topologi
al hierar
hy imposed by thedi�erent network layers (see Figure 1.1) and the logi
al hierar
hy implied by tiers (seeFigure 1.2). ISO-OSI Layers 2 & 3(LLC/IP)

��Virtual Transmission Network(ATM [VPI/VCI℄)
��

VV

Transmission Network(SDH)VVFigure 1.1: Example for a topologi
al Hierar
hyHierar
hi
al network design is a frequently used strategy to
ope with the
omplexity of theproblem. The hierar
hi
al design divides a single network layer into tier-levels by groupingseveral nodes and
onsidering them as one new node of a \higher tier". The B-WiN (seeChapter 1.3) has two tier-levels: The lowest tier
ontains the a

ess- or end-nodes. Ea
hend-node represents a
anoni
al sour
e/destination that sends/re
eives traÆ
 into/fromthe network. The higher tier,
alled ba
kbone-tier,
ontains the ba
kbone nodes. Ea
hend-node is
onne
ted to exa
tly one ba
kbone node. Figure 1.2 shows a star-topologybetween the a

ess-nodes and the ba
kbone-nodes.

4 FOONET

Figure 1.2: B-WiN A

ess Design Example1.2 De
omposition PlanningWhen a

epting the following statements:1. network design as a whole, i.e. overall network design, is too
ompli
ated to besolved in one step2. an obvious \optimum" solution does not exist in general due to multi-
riteria ob-je
tive fun
tions and in
omplete knowledge3. network design is an iterative, user
ontrolled pro
edure4. networks exist within enterprises and must be adjusted to the goals of the enterpriseConsequently, this leads to de
omposition planning (see Figure 1.3) with well de�nedand as mu
h as possible independent subtasks
ombined with alternate optimization, i.e.optimization with re
ourse, and intera
tion with the designer.The de
omposition planning pro
ess must be embedded in the topologi
al hierar
hy ofthe network, e.g. it must be exe
uted for the di�erent topologi
al hierar
hies. The more

1 Tele
ommuni
ation Network Design 5Start
��TraÆ
 Planning
��A

ess Network Planning

��Input Data
77ooooooooooooooooooooooooooooo

33gggggggggggggggggggg

//

++WWWWWWWWWWWWWWWWWWWW

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOO
Mesh Topology Planning

��

[[

Dimensioning & Routing
��

[[

Performan
e Evaluation
��

BC

ED
oo

BC

ED
oo

BC

ED
oo

BC

ED
oo

Materialization and �nal Cost Evaluation
��

BC

ED
oo

EndFigure 1.3: De
omposition Planning (taken from [Fri98℄)hierar
hy levels a designer wants to take into a

ount, the more
omplex the planningproblem be
omes. Only a joint optimization over all layers and tiers safeguards an optimalsolution, but su
h an approa
h usually results in an intra
table
omplexity. Optimality istherefore sa
ri�
ed for tra
tability.The following terminology is used throughout this report:� a fa
ility is an arbitrary network element su
h as a router or an arbitrary servi
esu
h as a leased line. A di�erent set of fa
ilities exists for ea
h topologi
al networklayer. The
osts entailed with a fa
ility divide into:� setup
osts, that arise when introdu
ing a new fa
ility in the design (e.g.buying a new router)� reo

urring
osts, that arise in regular intervals (e.g. leasing rates)� termination
osts, that arise when removing a fa
ility from the design (e.g.when terminating a
ontra
t)� usage-dependent
osts (e.g.
all minutes)� a topology in the
ontext of network design is the physi
al or logi
al layout ofnetwork fa
ilities. Common topologies in
lude star, ring, bus or mesh. A
ommonrepresentation of the network topology is a graph.� a network design1 is the spe
i�
ation of topology and
on�guration forming aprodu
tivity network. To put it in other words, the topology spe
i�es where to put1In
ontrast to the network design task itself here a spe
i�
 network design, i.e. a realization of a

6 FOONETthe fa
ilities and how to inter
onne
t them, the
on�guration spe
i�es whi
h fa
ilityis used for ea
h topologi
al element and how to set it up.� a requirement or
ommodity is a
ommuni
ation demand between two nodes,usually measured in terms of Megabit per se
ond (Mbps).1.3 The B-WiN Planning Task ExampleTo illustrate the problems arising in network design the (simpli�ed) planning task ofthe Breitband Wissens
haftsnetz (B-WiN) provided by Deuts
hes Fors
hungsnetz Verein(DFN-Verein) is shown in Figure 1.4.Given:�
a. 400 node lo
ations� (measured) traÆ
 busy-hour matrix (IP-traÆ
) (quite asymmetri
!)� tari�s of the Deuts
he Telekom AG� OSPF-routingminimize
ost subje
t to� edge
apa
ities are available in in
remental 2 Mbps steps beginning ata minimum
apa
ity of 34 Mbps� survivability: nodes having �
 Mbps a

ess rate should be two-edge-
onne
ted� hop-limit: h hops� ba
kbone lines should not have more then u% utilizationOutput:� number and lo
ation of ba
kbone nodes� a

ess and ba
kbone topology� line
apa
ities� OSPF routing parametersFigure 1.4: Sample B-WiN Planning TaskIt has been shown (e.g. in [MS81℄) that even subproblems of the network design problemare strongly NP-
omplete2. Another important fa
t is that there exists no generi
 algo-single network, is meant. From the
ontext it should be immediately
lear to whi
h of the two meaningsit is referred2whi
h means that under the assumption P 6= NP this problem is not solvable in an eÆ
ient way

1 Tele
ommuni
ation Network Design 7rithm that
an take into a

ount the various
onstraints imposed on the problem. Evenif formulated as a mathemati
al program there is no eÆ
ient way to solve this problem.Therefore many known algorithms used in network design problems rely on heuristi
s thathave to be adapted by the network planner to meet the requirements of his planning task.

8 FOONET

Chapter 2Introdu
tion to Obje
t-OrientedSoftware Design
2.1 OverviewThis se
tion gives a brief overview of re
ent advan
es in obje
t-oriented software design.It is assumed that the reader has some experien
e with obje
t-orientation, otherwise theauthor would re
ommend [Boo91, Cop92, Sto97℄ for a detailed and appli
ation-orientedintrodu
tion.Some important terms and
on
epts in obje
t-orientation are introdu
ed as follows:� Obje
t-Oriented Analysis (OOA): Obje
t-oriented analysis is a method of an-alyzing that examines the requirements on the software from the perspe
tive of
lasses and obje
ts found in the problem under
onsideration.� Obje
t-Oriented Design (OOD): Obje
t-oriented design is a method of design
ompassing the pro
ess of obje
t-oriented de
omposition and notation (here in thelanguage of UML) for depi
ting both logi
al and physi
al as well as stati
 anddynami
 properties of the problem under design. The most important prin
iples inobje
t-oriented design are abstra
tion, en
apsulation, modularization and hierar
hy.� Obje
t-oriented Programming (OOP): Obje
t-oriented programming is amethod of implementation in whi
h programs are organized as
ooperative
olle
-tions of obje
ts, ea
h of whi
h represents an instan
e of some
lass.� Inheritan
e: Inheritan
e is a hierar
hi
al relation among
lasses, in whi
h one
lass shares the stru
ture or behavior de�ned in one (single inheritan
e) or more(multiple inheritan
e) other
lasses. Inheritan
e de�nes a \is-a" hierar
hy among
lasses in whi
h a sub
lass inherits from one or more generalized super
lasses. Asub
lass typi
ally spe
ializes its super
lass by augmenting or rede�ning the existingstru
ture or behavior.� Polymorphism: Polymorphism is a
on
ept in type theory wherein a name maydenote instan
es of many di�erent
lasses (usually related by some
ommon su-per
lass in C++). Dynami
 Binding is a
onsequen
e of polymorphism, whi
himplies that sending the same message to di�erent obje
ts
ould stimulate di�erentbehavior. Te
hni
ally this is realized by the use of virtual fun
tions.

10 FOONET� Interfa
e: An abstra
t base
lass whi
h provides a set of virtual fun
tions is
alledan interfa
e.� Persisten
e: Persisten
e is the property of an obje
t through whi
h it
an trans
endtime (i.e. the obje
t
ontinues to exist after its
reator
eases to exist) and/or spa
e(i.e. the obje
t's lo
ation moves from the address spa
e in whi
h it was
reated).Persisten
e in FooNet works with
hara
ter streams and relies on two
omplementingmethods: serialize (write obje
t in a stream) and de-serialize (read obje
t from astream).� Class Library: A
lass library is a
olle
tion of reusable
lasses that rely on obje
t-oriented design paradigms su
h as hierar
hy and polymorphism. Usually,
lass li-braries provide support in solving problems belonging to a spe
i�
 problem
ategory.2.2 Uni�ed ModellingThe obje
t-oriented software design paradigm does not di
tate a methodology of how the
lasses and the relationships between them are derived from the system. This part has tobe performed by the designer1 supported by a detailed obje
t-oriented analysis.However, there exist several pro
ess models (for an overview see e.g. [NS99℄) whi
h guidethe designer through this task. The pro
ess model that is used here is the Uni�ed Pro-
ess proposed in [Ja
99℄, whi
h is a use-
ase-driven and in
remental approa
h and
onsistsmainly of the �ve stages illustrated in Figure 2.1.Requirement Spe
i�
ation(Use Cases / Sequen
e Diagrams)
��Analysis(CRC-Cards / Collaboration Diagrams)
��Design(Class Diagrams / A
tivity Diagrams)
��Implementation(Component Diagrams /Collaboration Diagrams)
��Use /Test BC

ED
oo

Figure 2.1: Obje
t-oriented Software Design Pro
essConne
ted with the Uni�ed Pro
ess is UML, the Uni�ed Modelling Language, that sup-ports the pro
ess model by providing a set of easy to read but expressive diagrams. UML is1and is therefore often
onsidered as an art

2 Introdu
tion to Obje
t-Oriented Software Design 11a symboli
 language for spe
ifying,
onstru
ting and do
umenting (the semanti
s of) soft-ware systems. It is standardized by the Obje
t Management Group (OMG) in [OMG97℄and has be
ome the \Esperanto" of obje
t-oriented design. The terms in the bra
kets be-neath ea
h stage of the diagram in Figure 2.1 denote examples of whi
h part of the UMLnotation may be appropriate when working in this stage. However, UML does not di
tatea parti
ular pro
ess, it is more a \blueprint" for software design. A short introdu
tion toUML that is suÆ
ient to understand the diagrams in this report is presented in AppendixA.2.3 Software Reuse2.3.1 MotivationThe implementation of
omplex software systems remains resour
e expensive and errorprone. Already the design of a medium sized
omputer program is a nontrivial task. Mu
hof the
osts stem from the redis
overy and reinvention of
ore
on
epts and
omponents.The
on
ept of software reuse originates from the observation that a software designershould
on
entrate on the pe
uliarities of his/her task instead of solving problems thathave already been solved many times before. Software reuse is
ommonly de�ned as \thesystemati
 development of reusable
omponents and the systemati
 reuse of these
ompo-nents as building blo
ks to
reate new software systems".A reusable
omponent may be
ode, denoted as
ode reuse, but the bigger bene�tsof reuse
ome from a broader and higher-level view of what
an be reused: softwarespe
i�
ations, abstra
tions, design patterns and frameworks. This is
ommonly denotedas design reuse.FooNet provides an appli
ation framework (see Chapter 2.3.3) for network design problemsand as su
h provides design reuse, but builds itself on top of two other reuse te
hniques:� Idioms: Idioms allow
ode reuse by providing higher level datatypes, su
h aslists, queues, and graphs (see e.g. [Cop92℄). The C++ language provides a numberof idioms, whi
h are standardized in the Standard Template Library (STL, [Int97℄).Additionally the idioms provided by the Graph Template Library (GTL, http://www.fmi.uni-passau.de/Graphlet/GTL) are used. In some publi
ations this kindof
ode reuse is denoted as generi
 programming.� Design Patterns: Design Patterns are a (very su

essful) design reuse te
hnique.A short des
ription is given in Chapter 2.3.2.From this perspe
tive, FooNet has a three level reuse hierar
hy: Classes, obje
ts and idiomson the lowest level of abstra
tion, design patterns on a medium level and frameworks onthe highest level.2.3.2 Design PatternsA design pattern [GHJV95℄ des
ribes a (often reo

urring) problem, the
ore of a simpleand elegant solution together with the
ontext in whi
h the solution works, and its
ost

12 FOONETand bene�ts. Design patterns serve as the mi
ro-ar
hite
tural elements of frameworks,but due to their abstra
tness, they
annot be expressed as
lasses or lines of
ode.The following list gives a short overview of all design patterns2 that have been used inFooNet together with examples of where the design patterns o

ur:� Letter-Envelope (also known as Handle-Body or Bridge)A letter-envelope-pattern de
ouples an abstra
tion, denoted as envelope, from itsimplementation, denoted as letter. The advantage of this design pattern lies in thefa
t that the letter obje
t
an vary independent from the envelope whi
h allows agreater
exibility of usage.A
ommonly used example for the letter-envelope design pattern is a referen
e-
ounted
lass. The node-envelope of FooNet administrates a pointer and a referen
e-
ounter to the node-letter. The a
tual node-letter obje
t is dupli
ated only if ne
-essary. This signi�
antly redu
es resour
es.� Fa
toryA fa
tory de�nes an interfa
e for
reating an obje
t, but lets sub
lasses de
ide whi
h
lass to instantiate. Usually a fa
tory provides a method produ
e() whi
h
reatesan obje
t of a known base
lass. Fa
tories prevent to in
lude user-spe
i�

ode inthe
lass design.FooNet provides a fa
tory pattern for network fa
ilities. To produ
e a
ertain kindof a network fa
ility (for example an IP-router), the user sends a message to thatfa
tory with a set of requirements (for example having at least a throughput of 100Megabit per se
ond) and the fa
tory returns the
heapest network fa
ility found(for example a Cis
o IP Router having 1000 Megabit per se
ond throughput) whi
hmeets the requirements. The user
an add more manufa
turers dynami
ally by deriv-ing a new sub-fa
tory. The sele
tion pro
ess and the vendor-spe
i�
 data is shadowedby the design pattern.� StrategyA strategy de�nes a family of algorithms, en
apsulates ea
h one, and makes theminter
hangeable. Strategies allow to formulate a skeleton of an appli
ation whi
h isindependent from a
on
rete realization.The (stati
) routing interfa
e in FooNet is a typi
al example for a strategy. For ex-ample, testing the network for overload needs the routing fun
tionality, but whetherrouting is performed by an OSPF, PNNI or some other kind of routing algorithm isirrelevant.� VisitorA visitor represents an operation to be performed on the \elements of an obje
tstru
ture" (see example below). A visitor allows to de�ne a new operation without
hanging the
lasses of the elements on whi
h the visitor design pattern operates.The topology of a network layer forms an obje
t stru
ture that
onsists of topologi
al(node and edge) elements. FooNet provides a visitor pattern for topologi
al elements.For example, if a user wants to know the average load on the edges of that layer, he
ould derive this fun
tionality from the visitor interfa
e and simply
all the visit-all-edges method.2For a more detailed des
ription and sample implementations please refer to [GHJV95℄

2 Introdu
tion to Obje
t-Oriented Software Design 13� CompositeA
omposite is used to represent part-whole hierar
hies of obje
ts, when di�eren
esbetween
ompositions and individual obje
ts
an be ignored.The logi
al hierar
hy of a network is a typi
al example of a
omposite pattern. Thetwo types of nodes (end-nodes and tier-nodes) form a tree stru
ture, but e.g. when
al
ulating the
osts of a network, there is no di�eren
e between tier-nodes andend-nodes.� Warper (also known as De
orator)A warper dynami
ally atta
hes additional responsibilities and fun
tionalities to anobje
t. It provides a
exible alternative to sub-
lassing.Warpers are frequently used for atta
hing visualizing
apabilities to an obje
t. Sodoes the GraphWin-warper of a layer obje
t in FooNet. The GraphWin-warper
anbe transparently used wherever a layer obje
t is expe
ted, but observes any messagesent to that layer-obje
t and updates its visualization if ne
essary.� BuilderA builder separates the
onstru
tion of a
omplex obje
t from its representation sothat the same
onstru
tion pro
ess
an
reate di�erent representations.The XML-Fa
tory
lass
alls on a builder design-pattern whi
h is provided by theSAX-parser (http://www.jezuk.demon.
o.uk/SAX/). This parser takes an XMLdo
ument (see Chapter 4) and builds a parse tree from whi
h the internal represen-tation is derived.� PrototypeA prototype spe
i�es the kind of obje
t to
reate by using a prototypi
al instan
eand
reates a new obje
t by
opying this prototype.This design pattern is used wherever a pointer to a base
lass has to be
loned.Te
hni
ally, every
lass supporting the prototype pattern provides a method
lone()whi
h guarantees that a perfe
t
opy is made.� Command and ObserverA
ommand en
apsulates a request as an obje
t, thereby parameterizing the
lientsof the
ommand pattern with di�erent requests. An observer de�nes a one-to-manydependen
y between obje
ts so that when one obje
t
hanges state, all its depen-dents are noti�ed and updated automati
ally.Both design patterns are typi
ally used in graphi
al user interfa
es. A menu-barentry
ould be realized as a
ommand. An observer
an guarantee that di�erentviews of a single obje
t are
onsistent. Sin
e both patterns are not used in the baseframework of FooNet, they are not dis
ussed in greater detail.� Virtual Constru
torA virtual
onstru
tor allows to build an obje
t of known abstra
t type but unknown
on
rete type, whi
h is important when de-serializing obje
ts.A builder that sequentially reads an obje
t out of a stream usually knows the basetype of the next expe
ted obje
t, but not its
on
rete type. For example, the XML-Fa
tory knows that the next obje
t has to be of the type \fa
ility", but it does notknow whi
h
on
rete type this fa
ility has, i.e. its sub
lass. The virtual
onstru
torpattern solves this problem.

14 FOONET2.3.3 FrameworksObje
t-oriented appli
ation frameworks are a promising te
hnology for reusing provensoftware designs (design reuse) and implementations (
ode reuse) in order to redu
ethe
osts and improve the quality of software. A framework is de�ned as follows [Joh97,FSJ99℄:A framework is a reusable design of all or part of a system that is represented bya set of abstra
t
lasses and the way their instan
es intera
t. Frameworks aim atsolving a family of similar problems.The purpose of a framework is to provide the skeleton of an appli
ation that
an be
ustomized by an appli
ation developer.Frameworks di�er from
lass libraries by their additional reuse of high-level design, sin
eframeworks do not only de�ne
lasses but also a model for intera
tion between them.A framework is therefore a \semi-
omplete" appli
ation (by the use of inversion of
ontrol3) that
an be spe
ialized to produ
e
ustom appli
ations. Frameworks enhan
emodularity by en
apsulating volatile implementation details behind stable interfa
es. Ex-tensibility is supported by providing expli
it hook methods that allow appli
ations toextend the interfa
e.Examples for widely known frameworks are:� AWT & JavaBeans (http://java.sun.
om)� Qt (http://www.trollte
h.no)� MFC (http://www.mi
rosoft.
om)� Aba
us(http://www.informatik.uni-koeln.de/ls_juenger/proje
ts/aba
us.html)There exist two di�erent kinds of frameworks:� White-box frameworks rely heavily on obje
t-oriented language features like in-heritan
e and dynami
 binding in order to enhan
e extensibility. To use white-boxframeworks, intimate knowledge of their internal stru
ture is needed. FooNet is de-signed to be a white-box framework.� Bla
k-box frameworks support extensibility by de�ning interfa
es for
omponentsthat
an be plugged into the framework via obje
t
omposition. The fun
tionality ofbla
k box frameworks is based on design patterns, su
h as strategy and
ommand.Bla
k-box frameworks are less
exible than white-box ones, but usually easier touse. The Qt-based visualization C qt layer warper in the FooNet extensions is anexample for a bla
k-box framework that provides a graphi
al user interfa
e.Several properties are
ommonly demanded for frameworks:�
ompleteness: the framework should provide all ne
essary fun
tionality.3Sometimes also denoted as the Hollywood prin
iple:\don't
all us, we
all you"

2 Introdu
tion to Obje
t-Oriented Software Design 15� eÆ
ien
y: the framework should provide eÆ
ient implementations of the relevant,time-
riti
al parts.�
exibility (reusability): the framework should be appli
able in more than one
on-text.� ease of use: the user of the framework should only be responsible for the part of theimplementation that is software spe
i�
.� extensibility: the framework should have the ability to grow with future require-ments.� portability: the framework should not be restri
ted to a spe
i�
 hard- or software.

16 FOONET

Chapter 3A Framework for Obje
t-OrientedNetwork Design (FooNet)
FooNet is a result of the up
oming PHD thesis [Fis00℄ that deals with various aspe
ts ofnetwork design problems.3.1 OverviewFooNet is a white-box appli
ation framework that is designed to signi�
antly redu
e thedevelopment e�ort of network design appli
ations. At the moment, its fo
us is at tele
om-muni
ation network design, but it
ould be easily expanded to
ope with other networkdesign problems (su
h as road networks or gas pipelines) as well.The design of FooNet
onsists of two parts:� A
ore framework, whi
h is the result of an obje
t-oriented analysis & design pro
ess.It represents the abstra
tions, interfa
es and intera
tion models of network designproblems.� An extended framework that builds on top of the
ore framework and enri
hes itby providing additional fun
tionality and appli
ations. It is expe
ted to grow veryfast in the future, providing a library of algorithms helpful for tele
ommuni
ationnetwork design.FooNet provides a system of base
lasses from whi
h the appli
ation spe
i�
 sub
lasses
an be derived. All problem independent parts are invisible to the user, so that he
an
on
entrate on the problem-spe
i�
 algorithms and data-stru
tures. As a white-box frame-work, FooNet relies heavily on inheritan
e from base-
lasses and overloading pre-de�nedhook-methods, i.e. the user derives his spe
ializations from a set of appropriately designed(interfa
e)
lasses. Virtual fun
tions provide default implementations that are often use-ful, but
an be overloaded, if required. Sometimes su
h virtual fun
tions do nothing atall, but they allow the user to add some fun
tionality. The task of \inventing" an ap-propriate network algorithm and/or representation
annot be
ompletely taken o� the

18 FOONETdesigner, sin
e this is problem-dependent1. However all other a
tivities in network de-sign (e.g. persisten
e, displaying, editing, fore
asting, loading, performan
e evaluation,sensitivity testing) are managed by the framework.The next paragraphs introdu
e the design of FooNet in greater detail. Referen
es to the
lasses or methods in the implementation are in teletype font. Referen
es to designpatterns are in itali
s font.3.2 The Core Design ClassesThe UML stati

lass diagram of the
ore framework is shown in Figure 3.2. The readeris asked to take a look at this stati

lass diagram regularly, sin
e it helps to
larify themodel of intera
tion between the
lasses.In the following se
tions, the main abstra
tions are introdu
ed, but the details of theimplementation are left to the program do
umentation that is in
luded in the FooNetdistribution2.3.2.1 Network NodesThe
lass C node is an abstra
tion of a network node. A node is a lo
ation (given asC
oordinate) of an arbitrary sour
e or destination of a traÆ
 requirement. A node mayrepresent a single workstation or even a whole
orporation. Network nodes are identi�edby their unique name (the id of the node). Nodes are elements of the network topology(see Chapter 3.2.6).A
ommon strategy of network design algorithms is the grouping of nodes and
onsideringthem as one new node of a \higher tier". This introdu
es a hierar
hy of the nodes, thelogi
al hierar
hy of the network, in whi
h it is possible that one node is a
omponentof more than one higher tier node, but no higher tier node is allowed to be
omponent ofa lower or equal tier node.The nodes on the lowest hierar
hi
al level are denoted as end nodes, all others are
alled
omponent nodes. An example of an a

ess network design is shown in Figure 1.2.Nodes are implemented by C node letter obje
ts using the
omposite design pattern.C node is an envelope a

ording to the letter-envelope design pattern that hides a (refer-en
e
ounted) letter obje
t C node letter.Ea
h node
ontains a C node info obje
t that allows the user to store additional infor-mation by deriving his own information
lass from it.3.2.2 CommoditiesThe
lass C
ommodity represents the
ommuni
ation demands in terms of bits per se
-ond between a set of network nodes, i.e. the traÆ
 matrix. TraÆ
 matri
es are usually1For a detailed dis
ussion of this subje
t see [Fis00℄2There is an extended version of this report available at http://wwwjessen.informatik.tu-muen
hen.de/~fis
herv/foonet that in
ludes the
ode do
umentation

3AFrameworkforObje
t-OrientedNetworkDesign(FooNet)
19

Foonet 1.0
UML Package Diagram

Design Algorithms

NDA

Backbone_NDA
Access_NDA

Multi_Layer_NDA

Forecasting

Utilities

Period

Date

Performace Evaluation

Network
Generator

Network
Simulator

Commodity
Generator

Sensitivity
Tester

Facilities

Facility

Facility_Client

Facility_Factory

Cost

Network Design

Layer

Topology

Node

Routing

Top_Hierarchy

Commodity

NDP

Constraint
Soft_Constraint

XML
Factory

pstreamFigure3.1:UMLPa
kageDiagram

20
FOONET

Foonet 1.0 Core Design

Graph

T_node
T_edge

«bind»
(Top_Info,Top_Info)

Node_letter Node

its letter

Tier_Node End_Node

consists of

Node_Info

«interface»
Coordinates

Composite
Design Pattern

Letter-Envelope
Design Pattern

Commodity

Topology

*

«interface»
Routing

Top_Info Routing_Info

«interface»
Topology_Visitor

Visitor
Design Pattern

Topology
Visitor

Layer

Top_Hierarchy

Warped_Layer

routing scheme

Warper
Design Pattern

1..n

1..n

*

ND_Problem

«interface»
Constraint

«interface»
Soft_Constraint

1..n

1..n

Requirement

«friend»

Mapping

«interface»
ND_Algorithm

«interface»
Accesstier_NDA

«interface»
Multitier_sl_NDA

«interface»
Multilayer_NDA

«interface»
Singlelayer_NDA

Strategy
Design Patterns

1

1..n1..n

«interface»
Forecast

«interface»
Network_Generator

«interface»
Network_Simulator

«interface»
Commodity_Generator

«interface»
Sensitivity_Tester

«interface»
Traffic_Generator

«utility»
XML_FactoryTime

Period

«interface»
Facility

«interface»
Facility_Factory

Facility_Client

Node_Facility Edge_Faclility

Edge_Facility_Attributes Node_Facility_Attributes

1..n

Single_Facility Evolving_Facility

1..n

Abstract Factory
Design Pattern

cost

«interface»
Cost

Generic Factory1

«utility»
shared_ptr

T

Prototype

«utility»
pstream

Virtual
constructor

Builder

Figure3.2:Stati
UMLCoreClassDiagram

3 A Framework for Obje
t-Oriented Network Design (FooNet) 21asymmetri
. A single
ommodity is identi�ed (C
ommodity::t index) by a pair of net-work nodes, the sour
e and the destination. The
lass C
ommodity provides methods forthe
omputation of the traÆ
 demands on ea
h tier level.3.2.3 Fa
ilities & CostThe
lass C fa
ility is an interfa
e that represents all (edge3 and node) fa
ilities of anetwork, whereby a fa
ility is a
omponent belonging to a single network layer (see Se
tion3.2.5). Ea
h fa
ility has a reliability and a
apa
ity.The most important attribute
ommon to all fa
ilities is the
ost interfa
e that allows to
al
ulate the expenses ne
essary during their lifetimes. These
osts are stored in a C
ostobje
t and
al
ulated a

ording to the dis
ounted
ash
ow (DCF) formula4 using thesetup-, reo

urring- and termination (respe
tively upgrade)
osts. The
ost interfa
e isintended to
ope with usage-dependent
osts in the next software release.The spe
ializations of C fa
ility in
lude single fa
ilities, C single fa
ility, on theone hand and evolutionary fa
ilities, C evol fa
ility, on the other hand. Single fa
ilitiesdivide into edge, C edge fa
ility, and node, C node fa
ility, fa
ilities. Evolutionaryfa
ilities represent a series of su

eeding single fa
ilities over time5. Series of fa
ilities arenon-overlapping, i.e. at all times, exa
tly one single fa
ility is present.3.2.4 Fa
ility Fa
tory & Fa
ility ClientThe
lass C fa
ility
lient represents all available fa
ilities of a single network layer.Internally it stores a list of C fa
ilityfa
tory
lasses. Instan
es of C fa
ilityfa
torysub
lasses may represent a single vendor, produ
t-line, publi

arrier servi
e et
. To obtaina list of appropriate fa
ilities the user must spe
ify the
hara
teristi
s by (node or edge)attributes, whi
h are based on C ef attribute for edge-fa
ilities and C nf attributefor node-fa
ilities, respe
tively. C fa
ility
lient is a realization of the fa
tory designpattern.C fa
ility
lient enables the designer to handle di�erent fa
ility fa
tories, but it burdenshim with the task of
hoosing a fa
ility out of a list of appropriate ones, sin
e one fa
ilitymay have
heaper setup
osts while the other has
heaper reo

urring
osts.Sometimes vendors o�er spe
ial "upgrade-fees" when swit
hing from one fa
il-ity to another. This
an be modeled by over-riding the upgrade-
ost method(C fa
ilityfa
tory::upgrade()). If no appropriate fa
ility is found, an empty obje
tis returned.An instantiation of a fa
ility fa
tory is given by the
lass C generi
 fa
tory whi
himplements an e
onomy of s
ale fa
ility fa
tory (see again [Fis00℄) with the e
onomy ofs
ale parameter6 a. Additionally a list of dis
rete values for the available
apa
ities
an bespe
i�ed. When produ
ing a fa
ility, the
heapest fa
ility that meets the given attributesis returned.3This may also in
lude transport servi
es o�ered by publi

arriers4For a more detailed introdu
tion in this subje
t see [Fis00℄5For example, the fa
ility f1 is known to be repla
ed by fa
ility f2 at planning time �6also
alled power-law

22 FOONET3.2.5 Network Layer and Topologi
al Hierar
hyThe
lass C layer is a
olle
tion of all information asso
iated with a single network layer,e.g. SDH, ATM or IP. A layer obje
t
ontains information about the available fa
ilities(in a C fa
ility
lient obje
t), the used routing-algorithm (in a C routing obje
t) andits topology (in a C topology obje
t).The network layers are organized a

ording to the topologi
al hierar
hy of the network(C topologi
al hierar
hy). The mapping between peer layers
an be supported by amapping obje
t (C mapping)7. It provides routing fun
tionality between peer layers andallows for example to query whi
h fa
ilities of a lower layer (e.g. a SDH-path) are usedby a fa
ility on a higher layer (e.g. a ATM-VP) and vi
e versa.Additional fun
tionality
an be atta
hed to a layer by the
lass C warped layer whi
h isan instantiation of the warper design pattern.3.2.6 TopologyThe
lass C topology represents the topology of a single network layer, i.e. the layoutof its nodes and edges. C topology is implemented by a parameterized C graph obje
t.Every topologi
al element, i.e. all nodes and edges,
ontains a C topology info obje
t.Ea
h topologi
al node-element is asso
iated with a C node obje
t and ea
h topologi
aledge-element is asso
iated with two C node obje
ts, the sour
e and destination node.C topology info is a base
lass for (node and edge) information asso
iated with everytopologi
al element. It
ontains a fa
ility (C fa
ility) obje
t, a routing information(C routing info) obje
t, and a variable to store the
urrent load in terms of bits perse
ond. It is designed to be overloaded if additional information is required.C topology visitor represents an abstra
t interfa
e of a visitor design pattern for topo-logi
al elements. For example a C topology visitor obje
t is used to
al
ulate the
ostsof the topology by visiting all topologi
al elements and summing up the asso
iated fa
ility
osts.3.2.7 RoutingThe
lass C routing is an interfa
e for a stati
 routing (respe
tively loading) algorithm(see e.g. [Cah98℄). The main fun
tionality is in the C routing::load() method, whi
hloads a
ommodity on the topology a

ording to the routing algorithm by setting theload variable in ea
h topologi
al element.To support all possible routing algorithms, ea
h topologi
al element stores aC routing info obje
t, whi
h should be overloaded to support the needs of the rout-ing algorithm. In its basi
 implementation C routing info
ontains no information.3.2.8 Network Design Problems, Fore
ast & ConstraintsThe
lass C ndp represents both, a network design problem and its solution. It serves asthe parameter to the network design algorithms (C nda).7For a detailed introdu
tion to this subje
t see [Au
99℄

3 A Framework for Obje
t-Oriented Network Design (FooNet) 23A C ndp obje
t stores� a topologi
al hierar
hy (C topologi
al hierar
hy) obje
t that is subje
t to theplanning� a
ommodity (C
ommodity) obje
t representing the load that the highest networklayer has to
arry at the time of the planning� the planning period (C period)� a fore
asting algorithm (C fore
ast)� a set of
onstraints (C
onstraint)� a set of soft
onstraints (C soft
onstraint)The method C ndp::obje
tive()
al
ulates the obje
tive fun
tion of the
urrent state ofthe network design (whi
h is given by the topologi
al hierar
hy obje
t). The fun
tionalityprovided by the base
lass
al
ulates the obje
tive fun
tion by summing up the
ost ofall used fa
ilities over the planning period plus the (weighted) penalties from all soft
onstraints.The
lass C fore
ast is an interfa
e
lass for fore
asting algorithms, that
al
ulates anexpe
ted
ommodity at any time in the future given a
ommodity at the present time.The
lass C
onstraint is an interfa
e for
onstraints. A
onstraint takes a networkdesign problem (in the method C
onstraint::is fulfilled()) and de
ides whether
onstraint is ful�lled or not.The
lass C soft
onstraint is an interfa
e for soft
onstraints. A soft
onstraint takes anetwork design problem (in C soft
onstraint::penalty()) and returns a penalty (i.e. anon-negative number) if the asso
iated
ondition is not ful�lled, otherwise it returns zero.Usually the penalty grows with the "distan
e" to the
ondition that should be ful�lled.The penalties of soft
onstraints
ontribute to the obje
tive fun
tion of the obje
t.3.2.9 Network Design AlgorithmsC nda is an interfa
e for network design algorithms. There is a wide range of possibili-ties how to design
ommuni
ation networks that depend heavily on the given fa
ilities,proto
ols, network layers and many more.Therefore the
lass hierar
hy derived from C nda implements well known strategies fornetwork design (realized by the strategy design pattern) without pla
ing restri
tions onnew design ideas.Following strategies are supported:� C singlelayer nda is an interfa
e for a single layer design algorithm.� C a

esstier nda is an interfa
e for designing a

ess networks within a layer.� C multitier sl nda is an interfa
e for a single layer design algorithm
onsistingof at least one a

ess design algorithm (C a

esstier nda) and a ba
kbone designalgorithm (C singlelayer nda).� C multilayer nda is a design algorithm for planning more than one layer at a timeby (re
ursively) propagating the highest layer
ommodity from the top to the bottomlayer and solving ea
h layer by a single layer algorithm.

24
FOONET

3.2.10AdditionalInterfa
es
Thewhole
omponentPerforman
eEvaluation(seeFigure3.1)willbeimplementedin
thenextmajorreleaseofFooNet.
3.3TheExtendedDesignClasses

Node«interface»
Coordinates

Commodity

Topology

«interface»
Routing

Top_Info Routing_Info

Layer

Top_HierarchyWarped_Layer

routing scheme

ND_Problem

«interface»
Constraint

OSPF_Routing_Info

OSPF_Routing

Graphwin_Warped_Layer

Connectivity

ATM_CommodityGeo_Coordinates Euklid_Coordinates

QT_Warped_Layer

Reliability

«interface»
Soft_Constraint

LEDA
Adapter

«interface»
ND_Algorithm

«interface»
Accesstier_NDA

«interface»
Singlelayer_NDA

«interface»
Forecast

Add/DropCenter_Of_MassMentour

MentorII Constraint_MSTAMentor

Prim_Dijkstra_TreeBranch_Exchange KruitoffWeighted_Least_sqares

Extrapolation

Holt_WintersFuzzy_Clustering

Mentor

Observer
Command

Figure3.3:Stati
UMLExtendedClassDiagram
These
ondpartoftheFooNetframeworkextendsthe
oredesignbyalibraryofuse-
fulalgorithmsandappli
ations.Thenextparagraphsliststheavailableextensionsand
des
ribetheworkinprogress.
3.3.1NetworkDesign
Thefollowingnetworkdesignalgorithmsareprovided:

3 A Framework for Obje
t-Oriented Network Design (FooNet) 25� Add/Drop [Ker93℄: a

ess design algorithm(C add,C drop)� Center of Mass [Ker93℄: a

ess design algorithm(C
enter of mass)� Prim-Dijkstra Tree [Ker93℄: a

ess design algorithm(C prim dijkstra)� Fuzzy Clustering [Lan99℄: a

ess design algorithm(C fuzzy
lustering)� Bran
h Ex
hange [GK77℄: single layer design algorithm(C bran
h ex
hange)� Con
ave Bran
h Elimination [GK77℄: single layer design algorithm(C
on
ave bran
h elimination)� Mentor [KKG89℄: single layer design algorithm(C mentor)� MentorII [Cah98℄: single layer design algorithm with OSPF routing(C mentorII)� MenTour [Cah98℄: reliable single layer design algorithm(C mentour)� AMentor [Cah98℄: reliable single layer design algorithm(C amentor)� In
reMentor [Cah98℄: in
remental single layer design algorithm(C in
rementor)The following fore
asting algorithms are provided:� Extrapolation: A simple extrapolation based upon various model fun
tions(C extrapolation)� The Kruito� Algorithm, taken from [ITU92℄(C kruitoff)� Weighted Least Squares [ITU92℄(C least squares)� Holt-Winters Method [Har89℄(C holt winters)The following
onstraints are provided:�
onne
tivity, returns true if the network is
onne
ted(C
onne
tivity
onstraint)� 2-node
onne
tivity, returns true if the network is 2-node
onne
ted(C 2node
onne
tivity
onstraint)� 2-edge
onne
tivity testing, returns true if the network is 2-edge
onne
ted(C 2edge
onne
tivity
onstraint)

26 FOONETThe following soft-
onstraints are provided:� overload,
al
ulates the amount of traÆ
 that
annot be transported by the network(C overload s
onstraint)� reliability,
al
ulates the probability of the network to be
ome dis
onne
ted [Ker93℄(C reliability s
onstraint)3.3.2 RoutingThe following routing algorithms are provided:� Open Shortest Path First (OSPFv2) Routing [RFC98℄(C ospf routing, C ospf routing info)3.3.3 Commodity� ATM-Commodity: Commodities are
al
ulated from ATM parameters using theE�e
tive Bandwidth formula from [Lin94℄(C atm
ommodity)3.3.4 Helper Appli
ations� LEDA-Adapter: LEDA (Library of EÆ
ient Datatypes and Algorithms) is a well-known
lass library that o�ers a set of useful graph algorithms. FooNet providesa helper appli
ation whi
h transforms a C topology obje
t into a parameterizedLEDA GRAPH obje
t and vi
e versa.(leda to fng(), fng to leda())� GraphWin-Visualizer: LEDA
omes with a graphi
al user-interfa
e for graphs. Usingthe warper design pattern, a simple visualization is provided by spe
ializing theC warped layer
lass. An example of this
an be seen in Figure 1.2.(C graphwin warped layer)� QT-Visualizer: This is a more elaborate version of a visualizer. It is designed afterthe model-viewer-
ontrol paradigm that bases on the observer and
ommand designpattern. It allows to display arbitrary information in graphs.(C qt warped layer)

3 A Framework for Obje
t-Oriented Network Design (FooNet) 273.4 Coding Conventions3.4.1 Namespa
eTo avoid any
ollisions with existing names FooNet de�nes its own namespa
e FN.3.4.2 Persisten
eEa
h base
lass de�nes a streaming operator (operator<< and operator>>) method that
alls the private virtual method serialize. By overloading the serialize() methods itis possible for a
lass to de�ne its own persisting information, that have to
onform theXML
onventions. De-serialization is implemented using the virtual
onstru
tor designpattern.3.4.3 Cloning Obje
tsEa
h base
lass provides a fun
tion ::
lone() that has to be overloaded by ea
h sub
lassand has to
reate an exa
t
opy of the obje
t. This approa
h is identi
al with the prototypedesign pattern.3.4.4 Heap Obje
tsAll dynami
ally
reated obje
ts are managed by a referen
e
ounted shared pointer<>-template that guarantees to destroy the obje
t when the last pointer to the obje
t isdestroyed.

28 FOONET3.5 Network Design using FooNetThe design prin
iples that are realized by FooNet are more than a simple implementationof a set of base
lasses for network design problems. The following non-trivial fun
tionalityis entailed with FooNet:� The design relies on a set of well known and well understood design patterns. Theinternal implementations pro�t from this fa
t, but also the software designer whouses FooNet. Examples for design patterns that may be used by the software designerare:� the visitor design pattern for topologi
al elements� the fa
tory design pattern for fa
ility
reation� the warper design pattern for adding fun
tionality to network layers� the strategy design pattern for the
reation of new network design algorithms� the prototype design pattern for transparently
loning obje
ts� the virtual
onstru
tor and builder design pattern for persisten
e� All important fun
tionality is implemented in virtual base
lasses, i.e. interfa
es.The interfa
es provided by FooNet are:� C node info - extends a network node by additional information� C topology info - extends a topologi
al element by additional information� C
oordinate - allows the use of arbitrary
oordinate systems� C routing - allows the software designer to realize arbitrary routing whi
h isused whenever routing fun
tionality is required� C routing info - extends ea
h topologi
al information by the ne
essary rout-ing information� C fa
ility, C node fa
ility, C edge fa
ility & C evol fa
ility - inter-fa
es for families of fa
ilities� C fa
ility
lient - interfa
e for sele
ting fa
ilities having
ertain attributes� C
onstraint & C soft
onstraint- interfa
e for arbitrary (soft)
onstraints� C nda - interfa
e for arbitrary network design algorithms (in
luding the inter-fa
es of the derived
lasses)The software designer
an use the default fun
tionality given by ea
h interfa
e, butno restri
tions are imposed on him. He
an always overrule them by deriving hisown
lass that realizes the desired fun
tionality. For example, the obje
tive fun
tionof a network design problem and the sele
tion & upgrade of fa
ilities are useful
andidates that
an and should be overloaded by the software designer.� The design of the persisten
e guarantees that ea
h pie
e of information is storedonly on
e. This is similar to the \normal forms" of relational database systems.� The
ost stru
ture realized by FooNet bases on a well known and widely a

eptedtheory of �nan
e, the dis
ounted
osts. FooNet is the �rst tool that expli
itly takesthis notion into a

ount. The support for evolving fa
ilities C evol fa
ility is adire
t
onsequen
e.

3 A Framework for Obje
t-Oriented Network Design (FooNet) 29� The extended design provides a repository of well-known algorithms used in networkdesign. These algorithms may be helpful for solving a
on
rete design problem.� Last but not least, FooNet is designed to o�er the highest possible degree of
odereuse. However, only the future will show how good this design is in pra
ti
al use.

30 FOONET

Chapter 4Data Ex
hange using XML
4.1 Introdu
tion and MotivationThe Extensible Markup Language (XML) [XML98℄ is a proposed re
ommendation fromthe WWW-Consortium (http://www.w3
.org) for a �le format to support the distri-bution of ele
troni
 do
uments. XML is a subset of the SGML (Standard GeneralizedMarkup Language) and data is pro
essed in human readable form. The outstanding fea-ture of XML is the fa
t that unlike other formats it
ontains also information abouthow to pro
ess the data, i.e. the data des
ribes its own format. Like HTML, XML is amarkup language, whi
h relies on the
on
ept of rule-spe
ifying tags and the use of atag-pro
essing appli
ation that knows how to deal with the tags. In
ontrast to HTML,XML is a meta markup language whi
h allows to de�ne appli
ation-spe
i�
 markup-tags.A software module,
alled XML pro
essor, is used to read an XML do
ument and toprovide a

ess to its
ontent and stru
ture.The advantages of XML are:� Sear
hing information in the data is
omparatively easy and eÆ
ient, by simplyparsing the des
ription-bearing tags. Even
omplex relationships like trees or graphsand inheritan
e1
an be in
luded.� Extensibility is supported, while maintaining the legibility of the
ode by self-des
ribing tags.� the GUI is not embedded by the data. Thus
hanging the display does not in
uen
ethe data.� \Extensible Stylesheet Language Templates" allow to
onvert XML data in almostany format without the ne
essity to write additional programs.� XML pro
essors are available as free software (see e.g. http://www.j
lark.
om/xml/xt.html).� As soon as the standardization of [SOX99℄ is �nished, XML
an solve the problemsof ex
hanging obje
t-oriented datatypes between di�erent appli
ation, whi
h is stillan unsolved problem.XML is supported by XEma
s, Nets
ape 5.0, Internet Explorer 5.0.1work in progress by the W3C

32 FOONET4.2 Pro
essing XML DataThe �le that des
ribes the syntax of a well-formed do
ument (i.e. the tag-names andtheir hierar
hi
al relationships) is
alled Do
ument Type De�nition (DTD). A DTD
ontains the meta information that is ne
essary to
he
k whether a given XML do
umentis synta
ti
ally
orre
t. To put it in a more formal way, the DTD des
ribes the (
ontext-free) grammar of an XML do
ument. Typi
ally DTDs are stored in separate do
uments.A short introdu
tion to the DTD
an be found in Appendix B.1.To a

ess or display the relevant information in
luded in an XML-do
ument, additionalinformation is ne
essary. The Extensible Stylesheet Language (XSL) [XSL99b℄ willde�ne a set of formatting and pro
essing instru
tions that allow the
onversion of XMLdo
uments. The transformation part, Extensible Stylesheet Language Templates, isalready standardized in [XSL99a℄ and
ontains rules for patterns that are mat
hed againstelements in the sour
e tree of the do
ument and templates that
onstru
t a portion of theresulting output. During this transformation the data
an be modi�ed (e.g. reordered)and pro
essed (e.g. a

umulated).<?xml version="1.0" en
oding="UTF-8" standalone="no"?><!DOCTYPE node SYSTEM "Node_DB.dtd" [℄><FN_NODE_DB number="323"><FN_NODE id="b-win-gw.rrz.uni-koeln.de" type="E"
hilds="0" tier="0"><FN_COORD type="geo" x="50.9272" y="6.9213"></FN_COORD><FN_NODE_INFO></FN_NODE_INFO><FN_NODE_CHILDREN></FN_NODE_CHILDREN></FN_NODE><FN_NODE id="bam-berlin" type="E"
hilds="0" tier="0"><FN_COORD type="geo" x="52.4479" y="13.2994"></FN_COORD><FN_NODE_INFO></FN_NODE_INFO><FN_NODE_CHILDREN></FN_NODE_CHILDREN></FN_NODE><FN_NODE id="bast.koeln1" type="E"
hilds="0" tier="0"><FN_COORD type="geo" x="50.9522" y="7.17136"></FN_COORD><FN_NODE_INFO></FN_NODE_INFO><FN_NODE_CHILDREN></FN_NODE_CHILDREN></FN_NODE>...</FN_NODE_DB> Figure 4.1: Fra
tion of a Node DatabaseThe following (very simple) example demonstrates how this works. In Figure 4.1, a frag-ment of an XML-do
ument (
ompliant to the DTD in Appendix B.2.1) that
ontains a setof nodes is shown. If a user wants to a

ess all node-ids together with their
oordinates,he
an use the XLST s
ript shown in Figure 4.2 that provides this fun
tionality. Figure4.3 presents the result of the transformation.As a
on
lusion, XML seems to be a very promising approa
h for data ex
hange betweendi�erent tools and appli
ations in the
ontext of network design.

4 Data Ex
hange using XML 33<xsl:stylesheetversion="1.0"xmlns:xsl="http://www.w3.org/1999/XSL/Transform"><xsl:template mat
h="/"><HTML><HEAD><TITLE> FOONET Pro
essing Output </TITLE></HEAD><BODY><xsl:apply-templates /></BODY></HTML></xsl:template><xsl:template mat
h="FN_NODE"><xsl:value-of sele
t="�id" /><xsl:text>: </xsl:text><xsl:apply-templates /></xsl:template><xsl:template mat
h="FN_COORD"><xsl:value-of sele
t="�x"/><xsl:text> </xsl:text><xsl:value-of sele
t="�y"/></xsl:template></xsl:stylesheet> Figure 4.2: XSL-Transformation<HTML><HEAD><TITLE> FOONET Pro
essing Output </TITLE></HEAD><BODY>b-win-gw.rrz.uni-koeln.de: 50.9272 6.9213bam-berlin: 52.4479 13.2994bast.koeln1: 50.9522 7.17136...</BODY></HTML> Figure 4.3: Transformation Result

34 FOONET4.3 XML in FooNetFooNet produ
es and pro
esses XML
ompliant data, i.e. all streaming operators (seeChapter 3.4.2) work with XML do
uments. The Do
ument Type Des
riptions of the in-and output data are listed in Appendix B.2.The following XSLTs that provide mainly �ltering fun
tionality are already used or atleast in a development stage:� HTML-Conversion: For all FooNet DTDs there are XSLTs that display the data
ontained in the do
ument in HTML format.� GNU-Plot-Conversion: This XSLT transforms the output of a C Layer to a GNU-Plot
ompatible input �le.� GML-Conversion: GML is a wide-spread data format for (parameterized) graphs[Him96℄. This XSLT transforms a C Layer output into a GML-do
ument.� VRML-Conversion: Similar to the previous two points this XSLT transforms aC layer output into a VRML do
ument that
an be viewed by any WEB-browsersupporting VRML2.The development of traÆ
 measurement tools that produ
e XML-
ompliant data is afurther step in this dire
tion. Su
h measurements
ould for example easily be
onvertedinto a C
ommodity
ompliant output.

2Virtual Reality Modelling Language, a standard from the W3C

Chapter 5Summary and Outlook
5.1 SummaryIn this report, FooNet, an obje
t-oriented appli
ation framework for tele
ommuni
ationnetwork design, is presented. The
hara
teristi
s of FooNet in
ontrast to other planningenvironments are its
onsequent obje
t-oriented design and the support of reuse te
hniqueson di�erent levels of abstra
tion. FooNet
omes with a set of algorithms used in networkplanning and this library is expe
ted to grow in the future. Additionally, the
apabilitiesof XML as a data ex
hange format between various appli
ations are dis
ussed.5.2 OutlookThe author is aware of the fa
t that the present version of FooNet is not nearly
overingall fa
ets of network design problems. It la
ks a lot of features that are useful or evenne
essary for some problems.The following work is intended to be done in the near future:� In
lude support for usage dependent
osts.� Finish the interfa
es and provide default implementations for the network perfor-man
e analysis part.� In
lude extensions for planning mobile networks.� In
rease the number of network design strategies derived from C nda.� In
rease the number of algorithms and utilities in the extended framework.� The XML part of FooNet bases ex
lusively on proposed standards of the W3C.However the DTDs of XML la
k a support of obje
t-oriented datatypes. The W3Cis
urrently working on a \S
hema for obje
t-oriented XML" [SOX99℄ that will solvethis problem. A soon as this spe
i�
ation is available as a proposed standard, it willbe supported by FooNet.

36 FOONET

List of Figures1.1 Example for a topologi
al Hierar
hy . 31.2 B-WiN A

ess Design Example . 41.3 De
omposition Planning (taken from [Fri98℄) 51.4 Sample B-WiN Planning Task . 62.1 Obje
t-oriented Software Design Pro
ess 103.1 UML Pa
kage Diagram . 193.2 Stati
 UML Core Class Diagram . 203.3 Stati
 UML Extended Class Diagram . 244.1 Fra
tion of a Node Database . 324.2 XSL-Transformation . 334.3 Transformation Result . 33A.1 UML Notation Guide . 44

38 FOONET

Bibliography[Au
99℄ Ben Au
h. Design und prototypis
he Implementierung einer integrierten Platt-form zur Planung von hierar
his
hen Netzen. Master's thesis, Te
hnis
he Uni-versit�at M�un
hen, Institut f�ur Informatik, 1999.[B�o
97℄ Stefan B�o
king. Objektorientierte Netzwerkprotokolle - Grundlagen, Entwurfund Implementierung. Addison Wesley Longman Publishing Company, 1997.[Boo91℄ Grady Boo
h. Obje
t oriented Design with Appli
ations. The Ben-jamin/Cummings Publishing Company, 1991.[Cah98℄ Robert S. Cahn. Wide Area Network Design - Con
epts and Tools for Opti-mization. Morgan Kaufmann Publishers In
., 1998. The Morgan KaufmannSeries in Networking.[Cop92℄ James O. Coplien. Advan
es C++ Styles and Idioms. Addison Wesley Pub-lishing Company, 1992.[Fis00℄ Volker Gerd Fis
her. Evolutionary Design of Corporate Networks under Un
er-tainty. PhD thesis, Te
hnis
he Universit�at M�un
hen, Institut f�ur Informatik,2000. work in progress.[Fri98℄ Jo
hen Frings. Eine kurze Einf�uhrung in die Netzplanung. Te
hni
al report,Te
hnis
he Universit�at M�un
hen, 1998. Lehrstuhl f�ur Kommunikationsnetze.[FSJ99℄ M. E. Fayad, D. C. S
hmidt, and R. E. Johnson. Building Appli
ation Frame-works : Obje
t-Oriented Foundations of Framework Design. Horizon Publishers& Distributors In
., 1999.[GHJV95℄ Eri
h Gamma, Ri
hard Helm, Ralph Johnson, and John Vlissides. DesignPatterns : Elements of Reusable Obje
t-Oriented Software. Addison WesleyPublishing Company, 1995.[GK77℄ Mario Gerla and Leonard Kleinro
k. On the topologi
al Design of DistributedComputer Networks. IEEE Transa
tions on Communi
ations, COM-25(1):48{60, January 1977.[Har89℄ Andrew C. Harvey. Fore
asting, stru
tural time series models and the Kalman�lter. Cambridge University Press, 1989.[Him96℄ Mi
hael Himsolt. GML: A portable Graph File Format. Te
hni
al report,Universit�at Passau, 1996.

40 FOONET[Int97℄ International Standards Organization. ISO/IEC Final Draft InternationalStandard 14882 - Programming Language C++, 11 1997.[ITU92℄ International Tele
ommuni
ation Union. For
asting International TraÆ
,1992. E.506 (rev.1).[Ja
99℄ Ivar Ja
obsen. Applying UML in The Uni�ed Pro
ess. Te
hni
al report,Rational Software In
., 1999. www.rational.
om.[JGJ97℄ Ivar Ja
obsen, Martin Griss, and Patrik Jonsson. Software Reuse : Ar
hite
turePro
ess and Organization for Business. ACM Press, 1997.[Joh97℄ Ralph E. Johnson. Frameworks = Components + Patterns - How frameworks
ompare to other obje
t-oriented reuse te
hniques. Communi
ations of theACM, 40(10):39{42, O
tober 1997.[Ker93℄ Aaron Kershenbaum. Tele
ommuni
ations Network Design Algorithms.M
Graw-Hill, 1993.[KKG89℄ A. Kershenbaum, P. Kermani, and G. Grover. Mentor: An Algorithm for MeshNetwork Topologi
al Optimization and Routing. Te
hni
al Report RC 147647/14/89, IBM Resear
h Division, T.J. Watson Resear
h Center, 1989.[Lan99℄ Daniel Lang. Plazierung von Ba
kboneknoten mit Fuzzy-Clustering. Master'sthesis, Te
hnis
he Universit�at M�un
hen, 1999. Institut f�ur Informatik.[Lin94℄ Karl Lindberger. Dimensioning and Design Methods for Integrated ATM Net-works. International TeletraÆ
 Conferen
e, 14:897{906, 1994.[MS81℄ Andranik Mirzaian and Kenneth Steiglitz. A Note on the
omplexity of the Sta-Star Con
entrator Problem. IEEE Transa
tions on Communi
ations, COM-29(10):1549{1552, O
tober 1981.[NS99℄ J�org Noa
k and Bruno S
hienmann. Objektorientierte Vorgehensmodelle imVerglei
h. Informatik-Spektrum, (22):166{180, 1999.[Oes97℄ Bernd Oesterrei
h. Objekt-Orientierte Softwareentwi
klung mit der Uni�edModelling Language. Oldenbourg Verlag, 2. edition, 1997.[OMG97℄ OMG - Obje
t Management Group. UML Notation Guide - Version 1.1,September 1997.[RFC98℄ OSPF Version 2. Te
hni
al report, Internet Engineering Task For
e - NetworkWorking Group, April 1998. RFC 2328.[SOX99℄ W3C Dis
ussion Paper. S
hema for Obje
t-Oriented XML 2.0, 7 1999.[Sto97℄ Bjarne Stoustrup. The C++ Prorgamming Language. Addison-Wesley Pub-lishing, 3rd. edition, 1997.[XML98℄ W3C Re
ommendation. Extensible Markup Language (XML) 1.0, 10 1998.REC-xml-19980210.

BIBLIOGRAPHY 41[XSL99a℄ W3C Re
ommendation. XSL Transformations (XSLT) Version 1.0, 8 1999.REC-xslt-19991116.[XSL99b℄ W3C Working Draft. Extensible Stylesheet Language (XSL) Spe
i�a
tion, 41999.

42 FOONET

Appendix AThe Uni�ed Modelling Language -UML
A.1 OverviewUML, the Uni�ed Modelling Language, is a diagram-oriented language for analyzing anddesigning obje
t-oriented systems. UML notation
omprises several types of diagrams:� Use Case Diagrams� Class Diagrams� Sequen
e Diagrams� Collaboration Diagrams� State-
hart Diagrams� A
tivity Diagrams� Implementation DiagramsThis report uses two types of diagrams - stati

lass diagrams and implementation di-agrams - and only these are des
ribed in the following se
tion to the ne
essary level ofdetail. The interested reader may refer to [Oes97℄ for a detailed introdu
tion.A.2 Stati
 Class DiagramStati

lass diagrams show the stati
 stru
ture and relations of the abstra
tions (i.e.
lasses) of the software design. Class diagrams
an be used to show the attributes andoperations of a
lass and the
onstraints for the way obje
ts
ollaborate. The UML no-tation of a stati

lass diagram
onsists of a set of nodes and edges. The nodes have theform of re
tangles and the size and relative position does not matter. An overview of theused symbols is shown in Figure A.1.Classes are symbolized by re
tangles that have three
ompartments with the followingproperties: the �rst
ompartment
ontains the name and stereotype of the
lass, the

44 FOONETse
ond its attributes, and the third the operations. For
onvenien
e, the se
ond and third
ompartment
an be hidden in a diagram. If a
lass is abstra
t, its name is displayed inemphasized letters. UML supports also parameterized
lasses (i.e. template
lasses),whose parameter is spe
i�ed in a dashed re
tangle on the upper right.
A B

A

A

A

B

B

B

1

*

A "is a" B [sub-class]

A "uses" many B [Aggregation]

A "has a" B (exactly one) [Composition]

A "is related to" B [Association]

A B A "uses" at least one and up to n B
(via reference)

1..n

A B A "knows of" the class B

A A offers an interface "int"

int

package

sub-package

a package containing sub-packages

Note a note (or comment) from the developer

C
T

«interface»
D

C is a template with parameter T

D is an abstract base class and realizes the
stereotype <<interface>>Figure A.1: UML Notation GuideStereotypes, denoted by mat
hed double bra
kets (also
alled guillements)��, are usedto extend a
onstru
t at modeling time. Generally stereotypes represent usage distin
tions.Examples are the stereotype �interfa
e�, whi
h denotes a pure abstra
t base
lass, orthe stereotype �bind�, whi
h instantiates a template with a parameter.Notes and
omments are supplied by a re
tangle with its upper right
orner folded down.Although newer versions of UML support design patterns by additional annotations inthe
lass, here they are in
luded as
omments.The asso
iations between
lasses are shown by various types of lines between the
lasses.An asso
iation
an have a
ardinality whi
h is expressed by the number (or range) at theend of the line. If the asso
iation has a name it is written on the top of the
onne
tingline.

A The Uni�ed Modelling Language - UML 45The following types of asso
iations are used:� Composition - means that an obje
t of
lass A \owns" (\has-a" relationship) anobje
t of
lass B, i.e.
lass A is responsible for its asso
iated obje
ts of
lass B, and ifan obje
t of
lass A is destroyed, all owned obje
ts of
lass B are also destroyed. Thegraphi
al symbol is a line with a �lled diamond on the side of
lass A. To expressthat the asso
iation is of a referen
ed type, the side of the asso
iated
lass B has anarrow.� Aggregation - is a weaker form of
omposition (\uses-a" relationship). It meansthat an obje
t of
lass A has a (temporary) a
quisition of an obje
t of
lass B withoutownership and responsibility for its lifetime. To express that the aggregation is of areferen
ed type, the side of the aggregated
lass B has an arrow.� Asso
iation - If the modeller wants to express an asso
iation that is not spe
i�edin detail, he
an use a dashed line between the asso
iated diagram elements.� (Publi
) Inheritan
e - (\is-a" relationship) is indi
ated with a triangle pointingup to the
lass from whi
h the other is derived.� Interfa
e - (\knows of a" relationship) expresses that the obje
ts of a
lass A knowthe interfa
e of
lass B. Te
hni
ally this implies that the
lass A
annot be
ompiledwithout importing the
lass B. The graphi
al notation is a line with a
ir
le at theend pointing to
lass B.Sometimes more than one
lass support a
ertain kind of interfa
e. This
an beindi
ated with a (dangling) line that has a small
ir
le at the end of the line.A.3 Implementation DiagramA
omponent diagram (whi
h belongs to the
lass of implementation diagrams) is used tobreak down a larger software system into logi
al grouping of smaller systems. It
an alsoshow the dependen
ies of
lasses and their dependen
ies within a
omponent. It serves asan orientation where to �nd whi
h fun
tionality.Pa
kages are used to group a set of
lasses having a
ommon purpose. They are displayedby large re
tangles with the name of the purpose (i.e. the name of the pa
kage) in a smallre
tangle on top of the upper-left
orner. Classes belonging to the pa
kage are visualizedby smaller re
tangles grouped within. Pa
kages
an be nested.

46 FOONET

Appendix BDo
ument Type Des
ription
B.1 Introdu
tion to the Do
ument Type Do
umen-tationThe syntax of a (well-formed) XML do
ument is stru
tured by tags that
an be proje
tedinto a tree stru
ture. Ea
h element in this tree
onsists of a start tag, a body and anend tag as well as a set of attributes asso
iated with that element. Synta
ti
ally, a tag isanything between \<" and \>". Tags are
ase sensitive. End tags are marked by a leading\/". The following
onstru
tion is an example for a valid tag:<string length="17"> This is a string </string>Sometimes it makes sense to have an empty tag simply by putting the slash at the endof the tag \<EMPTY_TAG/>". Empty elements usually have a number of attributes to givethem usefulness. The a
tual names of tag-elements are arbitrary, i.e.
an be
hosen bythe do
ument designer (usually guided by their meaning and therefore often denoted as\semanti
 tags"). All do
uments begin with a \root of do
ument" entity, all other entitiesare optional.The Do
ument Type De�nition (DTD) de�nes the syntax of the XML-do
ument. It
on-tains meta information about valid elements, valid attribute names and values, and in-formation how elements
an nest in ea
h other. One
an think of a DTD as de�ning theoverall stru
ture and syntax (i.e. the grammar) of the do
ument. Typi
ally DTDs arestored in separate do
uments.Here, the syntax of a DTD is demonstrated with the help of the following example:1 <!DOCTYPE FOONET [23 <!-- ENTITIES HERE -->45 <!ENTITY \% LRK \'Lehrstuhl für Re
hnerkommunikation\'>67 <!-- ELEMENTS HERE -->8

48 FOONET9 <!ELEMENT FN_NODE_DB (FN_NODE+, #PCDATA)>10 <!ATTLIST FN_NODE_DB11 date CDATA #IMPLIED12
reator CDATA #REQUIRED13 id ID #REQUIRED >1415 <!ELEMENT FN_LAYER "SDH" | "ETHERNET" | "ATM" | "IP" >1617 <!ELEMENT FN_NODE EMPTY>18 ℄>This do
ument makes use of the following DTD features:� Root TagThe line 1 of the DTD de�nes the root element of the DTD, i.e. in this exampleall do
uments
onforming to this DTD must be en
ompassed by \<FOONET>" and\</FOONET>".� CommentsComments
an be pla
ed using the following syntax \<!-- COMMENT -->".� EntitiesEntities are aliases for more
omplex fun
tions. For example, the entity \&LRK;" de-�ned in line 5 represents the term \Lehrstuhl für Re
hnerkommunikation"in the do
ument. Entities
an redu
e the �le size and they prevent error-prone re-peating.� ElementsAn element de�nes a tag and the synta
ti
ally
orre
t usage of that tag. For example,line 9 de�nes the tag \<FN_NODE_DB>" and demands that this element must
ontainat least one element (denoted by \+") of the type \<FN_NODE>" followed by arbitrary
hara
ter data (\#PCDATA") in its body. The rules for building the body of theelement are similar to regular expressions. Line 15 de�nes that the body of the tag\<FN_LAYER>" may
ontain one of the terms \SDH", \ETHERNET", \ATM" or \IP".Line 17 de�nes an element with an empty body, i.e. \<FN_NODE/>".� AttributesAttributes allow to asso
iate an element with additional parameters. For example,the rule beginning at line 10 allows the element \<FN_NODE_DB>" to have an attribute\date" and requires the attributes \
reator" and \id". A valid realization
ouldbe for example \<FN_NODE_DB
reator="VOLKER" id="SDH">".The following types of attributes are de�ned:� CDATA - any value� ID - unique identi�er within the XML do
ument� IDREF - referen
e to an element with a spe
i�
 ID� IDREFS - sequen
e of IDREFs� XPOINTER - a relative path through the XML tree (e.g. a
hild or parent)The DTD
an be in
luded in the XML do
ument by inserting it after the pro
essinginstru
tions:

B Do
ument Type Des
ription 49<?xml version = "1.0" en
oding=''UFT-8'' standalone="yes"?><!DOCTYPE ROOT [<!-- HERE COMES THE DTD -->℄><ROOT><!-- HERE COMES THE BODY --></ROOT>or it
ould be in
luded by referen
ing a �le:<?xml version="1.0" en
oding="UTF-8" standalone="no"?><!DOCTYPE FOONET SYSTEM "FOONET.dtd" [℄><FOONET><!-- HERE COMES THE BODY --></FOONET>B.2 FooNet DTDsThe following paragraphs present the do
ument type des
riptions of the in- and output ofFooNet. Please note that this be
omes obsolete as soon as the obje
t-oriented s
hemataare standardized.B.2.1 Node Database<!--Copyright 1999 V. Fis
her --><!-- Network Node DTD --><!ELEMENT FN_NODE_DB (FN_NODE)*><!ATTLIST FN_NODE_DB
reator CDATA #IMPLIEDdate CDATA #IMPLIEDnumber CDATA #REQUIRED ><!ELEMENT FN_NODE (FN_COORD , FN_NODE_INFO , FN_NODE_CHILDREN)><!ATTLIST FN_NODE id ID #REQUIREDtype CDATA #REQUIRED
hilds CDATA #REQUIREDtier CDATA #REQUIRED ><!ELEMENT FN_COORD (#PCDATA)><!ATTLIST FN_COORD type CDATA #REQUIREDx CDATA #REQUIREDy CDATA #REQUIRED>

50 FOONET<!ELEMENT FN_NODE_INFO (#PCDATA)><!ELEMENT FN_NODE_CHILDREN (FN_NODE_ID)*><!ELEMENT FN_NODE_ID EMPTY><!ATTLIST FN_NODE_ID id ID #REQUIRED >B.2.2 Fa
ilities<!--Copyright 1999 V. Fis
her --><!-- Network Fa
ility DTD --><!ELEMENT FN_FAC (FN_COST | (FN_PERIOD , FN_FAC* , #PCDATA?))><!ATTLIST FN_FAC type ("N"|"E"|"EVOL") #REQUIREDlayer CDATA #REQUIRED
ap CDATA #REQUIREDvendor CDATA #REQUIREDid CDATA #REQUIRED ><!ELEMENT FN_COST (FN_PERIOD , #PCDATA?)><!ATTLIST FN_COST setup CDATA #REQUIREDterm CDATA #REQUIREDreo
 CDATA #REQUIRED ><!ELEMENT FN_PERIOD EMPTY><!ATTLIST FN_PERIOD d CDATA #REQUIREDh CDATA #REQUIREDm CDATA #REQUIREDs CDATA #REQUIRED >B.2.3 Layer<!--Copyright 1999 V. Fis
her --><!-- Network Layer --><!ELEMENT FN_LAYER (FN_F_CLIENT, FN_ROUTING, FN_TOPOLOGY)><!ATTLIST FN_LAYER id ID #REQUIRED><!ELEMENT FN_CLIENT (#PCDATA)><!ATTLIST FN_CLIENT name CDATA #REQUIRED><!ELEMENT FN_ROUTING (#PCDATA)><!ATTLIST FN_ROUTING name CDATA #REQUIRED>

B Do
ument Type Des
ription 51<!ELEMENT FN_TOPOLOGY (FN_TNODE+ , FN_TEDGE*) ><!ATTLIST FN_TOPOLOGY nodes CDATA #REQUIREDedges CDATA #REQUIRED ><!ELEMENT FN_TNODE (FN_TOP_INFO , #PCDATA) ><!ATTLIST FN_TNODE id IDREF #REQUIRED ><!ELEMENT FN_TEDGE (FN_TOP_INFO , #PCDATA) ><!ATTLIST FN_TEDGE sour
e IDREF #REQUIREDdest IDREF #REQUIRED ><!ELEMENT FN_TOP_INFO ((FN_FAC | FN_NULL), (FN_ROUTING_INFO | FN_NULL) , #PCDATA) ><!ATTLIST FN_TOP_INFO load CDATA '0' ><!-- NULL-Pointer --><!ELEMENT FN_NULL EMPTY >B.2.4 Commodity<!--Copyright 1999 V. Fis
her --><!-- Network Commodity DTD --><!ELEMENT FN_COMMODITY (FN_NODE_ID* , FN_TM*) ><!ATTLIST FN_COMMODITY nr_nodes=CDATA #REQUIREDauthor =CDATA #IMPLIED ><!ELEMENT FN_NODE_ID EMPTY><!ATTLIST FN_NODE_ID id IDREF #REQUIRED ><!ELEMENT FN_TM (#PCDATA , FN_T)*><!ATTLIST FN_TM id IDREF #REQUIRED ><!ELEMENT FN_T EMPTY>

52 FOONET

Appendix CSoftware RequirementsFooNet is developed under LINUX 2.2.7 using the GNU C++ Compiler Suite g

-2.95.2(http://www.
ygnus.org). The
ore design should work with any standard
ompliantC++
ompiler that supports namespa
es, ex
eptions and templates.Software requirements for the
ore framework are:� STL [Int97℄� GTL (http://www.fmi.uni-passau.de/Graphlet/GTL)� SAX (http://www.jezuk.demon.
o.uk/SAX/)Software requirements for the extention framework are:� LEDA (http://www.mpi-sb.mpg.de/LEDA/)� Qt 2.0 (http://www.trollte
h.no)

54 FOONET

IndexAggregation, 41Asso
iation, 40Ba
kbone-Node, 3Builder, 13Class, 39Class Library, 10Command, 13Commodity, 18Component Node, 18Composite, 13Composition, 41Constraint, 23Cost, 21DCF, 21De-serialize, 10De
omposition Planning, 4Design Pattern, 11Dis
ounted Cash Flow, 21Do
ument Type De�nition, 32, 43DTD, 32, 43Dynami
 Binding, 9End Node, 3, 18Evolutionary Fa
ility, 21Fa
ility, 5, 21Fa
tory, 12Fore
ast, 23Framework, 14Generi
 Programming, 11Hierar
hylogi
al, 3topologi
al, 3Idiom, 11Inheritan
e, 9, 41Interfa
e, 10, 41Inversion of Control, 14Layer, 22

Letter-Envelope, 12Mbps, 6Network Designoverall, 4Network Design Problem, 22Network Node, 18Obje
tive, 23Observer, 13OOA, 9OOD, 9OOP, 9Pa
kage, 41Persisten
e, 10Polymorphism, 9Prototype, 13Reuse, 11Code, 11Design, 11Routing, 22Serialize, 10Soft Constraint, 23Software Reuse, 11Stereotype, 40Strategy, 12Tier, 3, 18Topologi
al Hierar
hy, 22Topology, 22TraÆ
 Matrix, 18UML, 10Uni�ed Pro
ess, 10Virtual Constru
tor, 13Virtual Fun
tions, 9Visitor, 12Warper, 13XLST, 32XSL, 32

