T UM

INSTITUT FURINFORMATIK

Learning Probabilistc Real Time Automata From
Multi-Attribute Event Logs

Jana Schmidt Stefan Kramer

TUM-111
Oktober 11

TECHNISCHE UNIVERSITATMUNCHEN

TUM-INFO-10-111-100/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©2011

Druck: Institut f ur Informatik der
Technischen Universit at Munchen

This documents presents the notation and formalisms for probabilistic real time au-
tomata (PRTAs). The full paper can be found in the journal:

Learning Probabilistic Real-Time Automata from Multi-Attribute Event Logs
Intelligent Data Analysis, special issue on Dynamic Networks and Knowledge Discov-
ery. Vol. 17(1), 2013. 10S Press. [5]

Jana Schmidt TU Miinchen

TUm &=2 2

Contents
1 Introduction 4
2 Probabilistic Real Time Automata (PRTA) 4
2.1 Acceptingwordso 6
2.1.1 Definitionofwords 6
2.1.2 Solving the word problem 6
2.2 InductionofaPRTA 7
2.3 Predicting with an automaton 11
3 Conclusion 13

Jana Schmidt TU Miinchen

m ECHNISCHE 3
MONCHEN

Abstract

The growing number of time-labeled datasets in science and industry increases the need
for algorithms that automatically induce process models. Existing methods are capa-
ble of identifying process models that typically only work on single attribute events.
We propose a new model type and its corresponding algorithm to address the prob-
lem of mining multi-attribute events, meaning that each event is described by a vector
of attributes. The model is based on timed automata, includes expressive descriptions
of states and can be used for making predictions. A probabilistic real time automaton
(PRTA) is created, where each state is annotated by a profile of events. To identify
the states of the automaton, similar events are combined by a clustering approach. The
method was implemented and tested on a synthetic, a medical and a biological dataset.
Its prediction accuracy was evaluated on a medical dataset and compared to a combined
logistic regression, which is considered a standard in this application domain. More-
over, the method was experimentally compared to Multi-Output HMMs and Petri nets
learned by standard process mining algorithms. The experimental comparison suggests
that the automaton-based approach performs favorably in several dimensions. Most im-
portantly, we show that meaningful medical and biological process knowledge can be
extracted from such automata.

Jana Schmidt TU Miinchen

Tm .

1 Introduction

Recent years have seen a surge of interest in temporal data in all areas of science and
industry. In the field of molecular biology and medicine, for instance, data sets of time-
labeled observations may provide insights into cellular processes or the progression
of disease. Typical data include the description of stages (or states) as well as their
temporal relation, which has to be captured by suitable models. One possible way of
representing complex temporal phenomena is by timed automata [1], which are finite
state models explicitly modeling time. They can be linked to domain concepts and
help to reason about real time processes. Until now, experts construct such models
by hand, which can be time consuming and error prone. The situation is even more
complicated if the states of the process are described by multiple attributes. In fact,
in such a setting even the definition of a state is unclear. To deal with the problem
of automatic extraction of meaningful, expressive and temporally ordered states, we
propose a new algorithm based on finding real-time automata. Observations consist
of a multi-dimensional attribute vector and a corresponding time point, denoting when
the state was observed. The implicit modeling of time, e.g., by an untimed model like
hidden Markov models (HMMs) would result in a combinatorial explosion of states.
The same is true for modeling multiple state characteristics. We solve this problem
by adding profiles to states that represent all their events and the states’ characteristics.
The annotation of states makes the problem feasible and additionally the resulting model
easier to understand.

This report is organized as follows: First, a formal definition of the model and a
description of the algorithm for learning probabilistic real time automata (section 3) is
presented. Subsequently, the workflow and how the state merging is conducted, will be
discussed. The report closes with an overall conclusion.

2 Probabilistic Real Time Automata (PRTA)

In this section, we present an algorithm for learning probabilistic real-time automata
(PRTAs) which is, like the currently best method for learning automata [3], based on
state merging in a prefix tree. Our type of automaton models a discrete event system
(DES) [6]. Let dataset D of instances I be given D = {I},...,1I,}, where each instance
I; represents a sequence of timed events: I; = (€},11)(&2,12) ... (&, ;). This event se-
quence, ordered by the time of occurence, is called a history. An event e; is a binary
vector €; = (aj1,. . .,ain) that specifies whether attribute a;; is observed (a;; = 1) in this
event. Because the events e; have a time stamp #; assigned, a timed language model is
created. Each event (€;,t;) can also be described by a conjunction of all attributes that
are present at time #;'. Let |&;| denote the number of attributes equal to one in this event.
Every time-stamp value #; € N represents the time that has elapsed since the previous
event of the instance has occurred. A PRTA is a directed graph with states Q and tran-
sitions 7. Each state g; holds its set of events E; and is — for simplicity of notation —
annotated by a so-called profile f;. The profile shows the mean attribute/feature vector
of all events that are mapped to g;:

! This is similar to an itemset representation.

Jana Schmidt TU Miinchen

m ECHNISCHE 5
MONCHEN

[epe;] {B(eye,), (e, e,),
5(ey,es), 5(eye5)}

[es, €]

{6(es,ey), 5(ez,e5)}
[es]

Figure 1: Event annotation of transitions and states. Each state’s profile consists of the events

that are incorporated in the state. Each transition from state ¢; to ¢; is labeled by the difference

of the events that were observed between states ¢; and ¢;.

. ZeeEie

7=
l |Ei]

)

In other words, a profile is just a summary of these events. Transitions #;; € T of the
PRTA connect two states g; and ¢g; and are annotated with a delay guard to reflect the
observed time intervals between the connected states. A delay guard is defined as an
interval [t),1;] with 71,1, € N, where 7 (t;) defines the minimal (maximal) number of
time steps when this transition can be passed. Additionally, transitions #; ; of the PRTA
are labeled with the set 77, ; that describes the changes of the profiles from state g; to g;.
These changes are expressed in the so-called delta notation: Ty, ; = A(E;, E), where
AE E)=] d(ee) 2

eiEE;e|€E;

and 6(ey,e)) is defined as the difference of the binary vectors ¢} und €;: d(é;,¢€;) =
ex —e;. Thus, the label is the set of differences between the elements of E; and E; and
can be interpreted as the set of change vectors that are necessary to reach g; from g;.
Figure 1 gives an example of how transitions and states incorporate the events and the
corresponding differences. To complete the transition, it has assigned a probability p; ;
of occurrence. The sum of all probabilities of outgoing transitions of a state is equal to
one. In general, automata have a set of start (§) and final states (F') that are a subset of
all states in the automaton (S C QA F C Q). InaPRTA, S = Q and F = Q, because each
state is allowed to be a start or final state. A PRTA is then formally defined as follows:

Definition 1 A PRTAT isa tuple T = (Q,Y.,T,S,F), where
e (is a finite set of states
e Y is a finite set of events to label the transitions
e T is a finite set of transitions
o S = Q is the set of start states
e F' = Q is the set of final states

A state q; € Q is a pair <E,~,f‘,-> where E; is its set of events (E; = {é}. : &, € C;}) ? and f;
is an attribute vector called its profile. ¥ are all events € that are observed in the input
data. A transitiont € T is a tuple {(q,q',T.,9,p) where q,q' € Q are the source and
target states, Ty = A(E;,E;j) and ¢ is a delay guard defined by an interval [ty ,t;] with
t1,t € N. p defines a probability p € |0, 1] that this transition occurs.

2¢; is a cluster of events and will be described in more detail in Section 2.2

Jana Schmidt TU Miinchen

TUm &=2 6

2.1 Accepting words

One task of automata is to decide whether they accept a given word of a language. This
section will describe how this problem can be solved for a PRTA using the A-notation.

2.1.1 Definition of words

LetX = {e,...,e} be an alphabet over binary vectors. Then L C (X,N)™ is a language
over pairs of the alphabet £ and time points of N, and (¢&},;)(€k, 1) ... (ém,n) is a word
with time labels from L. In such languages, a time point #; denotes when its correspond-
ing element ¢; has occurred. Timepoints are given relatively, i.e., each time point reflects
the time that has elapsed since the last event. As an example, consider language

L= {(6_1,4)(6_21,2)(6T8, 1)7 (5273)(576)(5573)7 (597 10)}
Further, let the A-notation for a word w = (€j,t;) ... (ém,,) be given by
A(W) — (5(5176)7t2)(6(527g3)7t3)7 cey (S(Em—lue_;n)atm) (3)

Again, it shows the difference from one event to the next, and the time that has elapsed.
The problem of deciding whether an automaton I" accepts a word w (if w is part of the
language L modeled by I') is transformed into a check if there exists a valid sequence
G=qohT...T, T, of transitions, which comprises the word w in A-notation.

(6(€i,€iv1):tiv1) € (L1, i) <> O(€i,€i11) € L Atiy1 € ¢

The first transition must leave state gg that represents wy: w; € Ey. A sequence is valid
if and only if succeeding transitions share states (are adjacent):

¥ T, Tis1 € G : Target(T;) = Source(Ti11) @)

Source(T;) (Target (T;)) names the source (target) state of a transition 7.

2.1.2 Solving the word problem

The language of a PRTA is given by: L, = {w € (£,N)" | goPyQuccepr > 1L}, Where
M is a probability threshold and Qgccepr is the set of all final states. P, describes the

probability for a word w and a state sequence (q1,...,qm):
m
Py, =[1((gi,49i+1,6(€:,€i11), 90 pi)) (5)

l
In the case of a PRTA Q = Qgccepr and p = 0, i.e., there must exists a path leaving from

qo (with a joint probability greater than zero) that ‘consumes’ word w. State g is exactly
the state that represents ¢€1: €] € Ey. For this problem, it is easy to give an algorithm that
terminates after a finite number of steps. Algorithm 1 shows the initialization of the
problem (finding the initial state gg) and then calls the search for a transition sequence.
Algorithm 2 describes this search® and the stopping criterion. If there is no edge with
the required label, the automaton does not accept the word. In contrast, if the ‘last’ edge
is found, the automaton accepts the word and returns the probability of the word.

3|w| gives the length of the word w and wlx] the xth event of word w.

Jana Schmidt TU Miinchen

Tm ,

Algorithm 1 ParseWord (PRTA I', ArrayList w)
qo = findFirstState(PRTA, w[1])
if go is not null then
accept = ParseRemainingWord(gg, w, 1)
else
return 0
end if
return accept

Algorithm 2 ParseRemainingWord (State g, ArrayList w)
T = TransitionsWithGivenDeltaAndTimeLabel(g, 6 (w[1],w|[2]),12)
if T = 0 then
return 0
end if
w=w\w[l]
if |w|==0 then
return 1
end if
return p(t)x ParseRemainingWord (Target(t), w)

2.2 Induction of a PRTA

In the following, we describe how PRTAs can be learned. The top-level algorithm is
shown in Algorithm 3. As input, the algorithm expects a finite set of histories. From the

Algorithm 3 InducePRTA (Histories H, Parameter params)
prefixTree < createPrefixTree(H)
M < calculateDistanceMatrix(pre fixTree)
res <— cluster(M, params)
while res # {} do
C « getNextCluster(res)
prefixTree = mergeStatesInPrefixTree(C)
res < deleteFromResult(C)
end while
computeQualityMeasure(pre fixTree)
return prefixTree

histories, the algorithm first constructs a prefix tree acceptor (PTA). A PTA is a PRTA
in the form of a tree in which exactly one path exists to any state. Each leaf represents
one or more instances from the input set. If input histories have the same prefix, then
they share the path of this prefix, while the suffix has its own path. When a new history
is put in the PTA, there are the following possibilities:

1. No prefix of the history is represented by an existing path in the PTA.
2. There is a path that represents a prefix of the history.
3. There is a path that represents the whole history.

Jana Schmidt TU Miinchen

TUm &=2 8

In the first case, a new path starting at the root from the prefix tree is inserted in the
PTA. The probabilities of all transitions on the path are set to one, and all delay guards
are set to the current time stamp. In the second case (if the PTA shares a prefix with
the history), all probabilities on the equivalent path are updated corresponding to the
annotated probabilities. Consider a transition from state g; to g; on the prefix path of

the history and assume that g; has k other outgoing transitions. For the transition that is

lq j|+1
= lail+1
|g| denotes the frequency of a state. This ratio actually is the maximum likelihood esti-

mation b;; = P(transition;;|éx,t;). For all remaining outgoing transitions #;(I =1,...,k)

— _lal
lgi[+1"

history does not meet the time constraint of the existing transition, the delay guard ¢/ is
expanded so that it includes the new time constraint: ¢; = [a,b], where a = min(¢y., ¢;)
and b = max(@, ¢;). If the end of the path that represents the shared prefix is reached, a
new path with the remaining events of the history is appended, following the description
of case one. In the third case, all transition probabilities and delay guards are updated as
described for the second case, but no additional path is added to the PTA (this procedure
is also referred to as determinization). After creating the PTA with all input histories,
the goal is to produce a PRTA that is minimal. Minimal means that a minimum number
of states should be derived, but reflecting a maximum of information. This condition
is heuristically motivated by Occam'’s Razor. The parameter that leads to the minimal
model is usually given by the user, in our case, a certain distance threshold between
mergeable states. To obtain a compact model, merges of nodes in the prefix tree are
performed. A merge is an operation where two states g; and g; are combined into one
new state gx. Because homogeneous states shall be identified, clustering is applied. In
general, a merge step is the aggregation of all states belonging to a cluster into one new
state with a new profile. A merge combines all profiles]7, of the states ¢; to be merged
into one single profile fk by their weighted mean:

Y |E| % f; (6)

ZQzECk |E | qi€Cy

covered by the new history, the according probability p’ is updated to where

If the time constraint ¢ of the

of state ¢;, the probability p} is recomputed by p) =

—

fk=

Which states are to be merged is identified via clustering. Therefore, a cluster assign-
ment for each state in the prefix tree must be found.* In general, the input for a cluster
algorithm is a distance matrix (or a distance function and the instances respectively).
However, when constructing an automaton, the input for the clustering is a prefix tree.
During the clustering, each state of the prefix tree is handled as an individual instance.
The attributes of the instance are the values of the state’s histogram (cf. equation 1).
They can be used as a basis for the computation of distances between states. Let us
consider the clustering as a function ¢ (cf. equation 7) that maps each state g to a cluster

identifier k € N. c(q): 0—{1,...,k} (7)

Then it is possible to evaluate each possible clustering ¢;(¢) with some quality function
G (consider, e.g., the silhouette coefficient or an optimal inter/intra cluster distance).

4 In general, the order of PTA construction and clustering is irrelevant, they are just required before the
state merging is started.

Jana Schmidt TU Miinchen

TUm &=2 9

The result of the clustering algorithm is the mapping c¢(¢)* that maximizes the quality
function. ¥
c(q)* = argmax; G(ci(q)) (8)

Note that depending on the application domain, the user can decide which distance
function, clustering algorithm and quality function is best suited. By using the best
function ¢(q)*, the merge procedure creates for each cluster identifier k one new state
in the prefix tree by merging all states g which are mapped to cluster k. Formally, the
inverse function ¢~!(g)* returns for each cluster identifier k the set of states that are
mapped to it. The automaton is created by merging all states g of clusters k one after
the other. To preserve consistency, update operations on transitions have to be per-
formed. If two states g; and ¢g; are to be merged and there are no transitions #; where
te = (> o> Ty, O i) and 1y = (g1, q;, Tr,, 1, pr) With g = g, 9, = g; and ¢} = g (they
do not share a predecessor), change #; to <ql,q;€, 11, 1, p1> (re-link the transition) and
compute the new profile of g; using equation 1. g; can be deleted from the prefix tree.
If there exist two transitions 7 and #; with ¢, = ¢; A\ q; = qj A qx = ¢; (they share the
same start but not end state), the transitions have to be merged additionally. This means
that {qx,q}, Tr,, Ok, Pi) is to be updated to (qk,q}, Tr,, 0/, Pk + pi1). 9, = [a,b], where
a = min(¢y, ¢;) and b = max(¢y, ¢;).°> The updated probability p’ is again calculated

with the counts of the states p’ = % = pr + p;- Note that the labels of the transi-
tions are not updated until the end of the merge procedure. Then, each state holds its
set of events and the labels 77, can be easily computed by calculating the difference

between the two sets E; and E;. Algorithm 4 shows this procedure.

Algorithm 4 CreateTransitionLabels (¢;, g;)

for each ¢, € E; do
for each e¢; € E;j do
add O (ex, e;) to labels of transition #(g;,q;)
end for
end for

One additional property of PRTAs is that a label §; € Ty, is only present on exactly
one outgoing transition of a state g;. Given that the underlying distance based clus-
tering optimizes the inter and intra cluster distance, respectively, it can be shown that
A8 : 5 ¢ Ty, N\ &, € Ty,,. The proof works by contradiction: consider the case where
there exist three states go = ({x1,x2}, f0), ¢1 = ({1}, /1) and g2 = {({y>}, f»), with the
transitions ¢; = (qo,q1,90;, 91, p1) and t = {(qo,q2,0;,$2, p2), i.e. two transitions, each
holding label §;. Moreover, let §; be defined as d(x;,y;), y1 ¢ E> and y, ¢ E|. Let us
further assume, without loss of generality, that &; consists of three consecutive blocks,
e.g., O = (+1+1—1-1000). Let k be the first position of the 0-block at the end.
Following the assumption that §; exists on both transitions, we can specify constraints
for x, and y,. First, X1; 1= Xy, and Y1; =2, for all j < k, because there is only one
possibility for y; —x; to be equal to -1 (and 1) in a binary setting. Second, y,; := Xy,
for j > k, because otherwise &, is not 0. Additionally, there must exists at least one

3 In other words, we conduct the least general generalization on the time intervals to be merged.

Jana Schmidt TU Miinchen

TUm &=2 10

X1, # x2; to ensure that y, # y;. Otherwise, y; and y; are equal and thus clustered to-
gether, so 1, cannot exist. With these constraints: (1) x1; = x2j, y1; = y2; (i <k), (2)
y2,; i=Xx2,; (i > k) and (3) y; # y> the distance d(x1,y) reveals to be equal to d(x2,2),
because the distance for parts i < kis 0 (2) and the remaining distances are equal (1). As
y1 and y, must reside in different clusters, the clustering then returns a solution where
pairs of objects with the same distance are clustered together once, and not a second
time. This is inconsistent and also shows that the inter and intra cluster distance in this
clustering cannot be optimal. This leads to the conclusion that for all suitable distance
based clusterings there is no §; that occurs on more than one outgoing transition of one
state go. Finally, this conclusion even allows to check each learned automaton whether
the intra cluster distances are above a threshold to ensure that each d; occurs only once.
The delay guard generalization is motivated by the use of positive instances only. Re-
member that all input instances shall be accepted by the automaton, indicating that they
are positive. Furthermore, we assume that when no continuous timeframe is present in
the data, it is not because it does not exist, but because of lack of data.® However, the
profiles of the states g; and g; have to be updated with their weighted mean. Transition #;
is deleted. The same operations have to be applied on all outgoing transitions of states g;
and g;. After all merges are conducted, a quality measure of the clustering is computed.
Like in every clustering problem, the proportion of inter- and intra-cluster distances is
of interest. The silhouette coefficient (SC) [4] evaluates this proportion independent of
the number of resulting clusters and is a measure for the homogeneity of the states of the
automaton. The SC of a state g; representing a cluster C is calculated in the following

way: — blo) ~alo)
SCe= X - ta(o) blo)]

ocC

a(o) is the distance to the own cluster center, while b(0) denotes the distance to the
second next cluster center. The SC for the automaton is computed by averaging the SC
for each state. It always holds that —1 < SC < 1. Good results are expected above an
SC of 0.5. However, a high SC does not necessarily reflect the best clustering, since
SCc =1 for all |C| =1 or |C| = X where X is the number of all instances. Generally,
SCc increases with smaller clusters, because SC- = 1 for all states C that consist of one
example only.

The clustering method can be different for each use case. We decided to cluster with a
divisive hierarchical cluster algorithm because it enables us to define a distance thresh-
old that has to be fulfilled by the clustering. Furthermore, correlations between states
can be investigated, and upper and lower distance thresholds can be set according to
domain-specific constraints. In contrast, it will not be possible to tell a priori how many
states are to be expected. This is why k-means like clustering methods are not appro-
priate in our scenario. Diana [4] is a divisive hierarchical clustering algorithm which
computes a final dendrogram that shows how ‘related’ the states are.” With this den-
drogram and a specific distance constraint, the user can create a suitable clustering. The

)

This assumption can be made in the medical application domain presented below. Here data is not
recorded in regular time steps but whenever people go to the physician. So, there are gaps in the data
recording process, which are taken into account by the above assumption.

"Preliminary experiments with a variety of other clustering algorithms like K-medoids [4], DBScan [2],
EM, and Farthest First did not produce any usable results.

Jana Schmidt TU Miinchen

MUNCHEN

Data from three timepoints with corresponding events

e,=(A3, Ad) @—[% e,= (A2, A5, A6)
&= (A3, A4) @ L4 @ e,= (AL A3, A5, A6)

Induced PRTA and the histogram of state Il annotating the state

A(Ey,Ey) =
{6(e11 eZ)l 6(ell ea): 5(ell e4) }

[1,6):1.0
@A(Es E,)=

{8(es, &), 8les, e3), Sles, e4) } T A1 A2 A3 A4 A5 A6

[2,2):1.0

Figure 2: Example creation of a PRTA

dendrogram is cut according to the distance constraint, and all objects that are still con-
nected form a cluster. Nevertheless, one critical point for any clustering is to choose an
appropriate distance measure. As this is domain-dependent, it will be discussed in the
section on experimental results.

In Figure 2, a merge step during the construction of a PRTA is illustrated. We see here
that the states are annotated with a profile and that transitions consist of all observed
possibilities to end in a state, a path probability and a delay guard. The upper part of
the figure displays three sample histories in a prefix tree before the merging starts. For
simplicity, the root of the prefix tree is not shown. The number in the states indicates to
which cluster the states belong to. Two of them are in cluster one, three are in cluster
two and only one state in cluster three. On all transitions only one event that leads from
the left to the right state and the delay guard is displayed. A delay guard of [1,1] means
that the event followed exactly one time step after the first event. The annotation of A2,
AS, A6 on the transitions means that these attributes were observed after this state. The
lower part of the figure shows the automaton after the merging step (without the root).
The transitions and delay guards are updated following the rules. The number behind
the colon reflects the probability of this path. In this case, they are always equal to one
because there exists no splitting transition.

2.3 Predicting with an automaton

In this section, we explain how such an automaton can be used to make predictions.
With a PRTA, we cannot only map processes that are reflected in the data but also
make predictions about how the next state of an instance will be. Of course, it is also
possible to predict series of subsequent states. The task of the prediction for a new
instance can be formalized as follows: Given an instance x denoted by its feature vector
fo=(f1,f2,---, f), we want to identify the profile f* = (f5, f5,..., f) it will develop

Jana Schmidt TU Miinchen

TUm &=2 12

after [time steps. A prediction for an instance is done by first identifying the state in
the PRTA that is most similar to the given event distribution of the instance. This is the
start state g4, for the prediction:

start = argmingd(fx, fi) (10)
Distance function d will be introduced in a subsequent section. Given an arbitrary state
g, letqy,...,q; denote the states with incoming transitions from ¢, and py, ..., py be the

probabilities on those transitions. Moreover, let [t1 1,¢12] to [t 1,% 2] denote the delay
guards for the transitions. Then the predicted profile given [time steps starting with
state ¢ is defined as:

) = Y pixfot

Lo >

Y. pix fqil— 1)

ti2<l

The next state is predicted according to the transition probabilities and their delay
guards. The first summand represents the case where state ¢ is not left, because it
consumes all the ‘remaining’ time. Thus, no other following state is considered for the
prediction. The second summand represents the case where the state has to be left. In
the latter case, this means that the predicted profile of the next state is used. If g does
not have any outgoing transition, then f*(gq,d) = f,, i.e. the profile on the state itself.
To obtain a prediction for the test instance, we apply f* to gyq. Note that we make
the assumption that the automaton stays maximally long in a state, i.e., the transition
is made as late as possible. Moreover, to leave a state, the delay guard has to meet
the time constraint /: [> [t 1,fk72]- Then, the remaining time [’ for the next steps is
reduced by the maximum of the delay guard I’ =/ —1;,. These constraints lead to a
definite prediction of the profile: There is only one possible solution for the prediction.
Another assumption would be that a transition is made as early as possible. Again, one
definite prediction is achieved. However, an arbitrary time consumption of each state
could be desired as well. In this case, the prediction would be dependent on all (valid)
possible time consumptions of each state. Accordingly, the prediction is the averaged
profile of all resulting predictions. Using the later approach may result in an exponential
number of possible results and a highly blurred predicted profile. That is why a definite
prediction was chosen in this paper. However, the choice of a prediction constraint is
likely to be highly domain-dependent. By calculating joint profiles, we can predict the
change of attributes depending only on the instance’s attribute setting. However, if one
is interested in the development of a certain state, the automaton gives probabilities for
future states. This is a main advantage of the automaton, because many comparable
algorithms only give one prediction. Consider a system that has alternatives for each
state (e.g., medical therapy options and outcomes or biochemical pathways), meaning
that a certain percentage of instances will take either the one or the other path. So, a
distribution of resulting states is the desired output. The automaton aims at modeling
such alternatives and their corresponding probabilities.

Jana Schmidt TU Miinchen

TUm &=2 13

3 Conclusion

In this paper, we proposed a new method for learning process models in the form of
probabilistic real-time automata (PRTA) for multi-attribute event logs. To learn such
models, a prefix tree is created, in which states are merged when similar enough. State
merging is employed because it is currently the best method for learning finite automata
in grammatical inference [3]. In order to identify states to be merged, a divisive hi-
erarchical clustering method is used. The algorithm was evaluated on synthetic data,
for which the true underlying process was known. Moreover, it was tested on real data
from a medical and a biological application domain to examine the resulting structure.
The experiments showed that the automaton can be related to domain knowledge. To
compare the ability of structure identification, standard process mining algorithms [7, 8]
were applied on the same synthetic data set. However, they were not able to reveal the
correct structure of the underlying process, because of the additional constraints they
have to fulfill. Finally, to evaluate the predictive power of the PRTA, the distance of
the predicted profiles to the profiles of the true next states was computed. The predic-
tions of the PRTA were compared to the predictions of a combined logistic regression
approach, which is considered a standard in this application domain. Additionally, a
Multi-Output HMM was trained and tested for its predictive power. The results sug-
gest that the automaton-based prediction performs favorably compared to both logistic
regression and Multi-Output HMMs.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183-235, 1994.

[2] D. Arlia and M. Coppola. Experiments in parallel clustering with DBSCAN. In
Euro-Par ’01: Proceedings of the 7th International Euro-Par Conference Manch-
ester on Parallel Processing, pages 326-331. Springer-Verlag, 2001.

[3] C.delaHiguera. A bibliographical study of grammatical inference. Pattern Recog-
nition, 38(9):1332-1348, September 2005.

[4] J. Kalbfleisch. Probability and Statistical Inference: Vol. 2: Statistical Inference.
Springer, 1985.

[5] J. Schmidt, A. Ghorbani, A. Hapfelmeier, and S. Kramer. Learning probabilistic real
time automata from multi attribute event logs. Intelligent Data Analysis - Special
Issue, 7(1), 2013.

[6] S.E. Verwer, M. M. de Weerdt, and C. Witteveen. Identifying an automaton model
for timed data. In Y. Saeys, E. Tsiporkova, B. D. Baets, and Y. van de Peer, edi-
tors, Proceedings of the Annual Machine Learning Conference of Belgium and the
Netherlands (Benelearn), pages 57-64, 2006.

Jana Schmidt TU Miinchen

TUm &=2 14

[7] L. Wen, J. Wang, and J. Sun. Detecting implicit dependencies between tasks from
event logs. In X. Zhou, J. Li, H. Shen, M. Kitsuregawa, and Y. Zhang, editors, Fron-
tiers of WWW Research and Development - APWeb 2006, volume 3841 of Lecture
Notes in Computer Science, pages 591-603. Springer, 2006.

[8] L. Wen, J. Wang, and J. Sun. Mining invisible tasks from event logs. In G. Dong,
X. Lin, W. Wang, Y. Yang, and J. Yu, editors, Advances in Data and Web Manage-
ment, volume 4505 of Lecture Notes in Computer Science, pages 358—365. Springer,
2007.

Jana Schmidt TU Miinchen

