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AbstractWe prove that weak bisimilarity is decidable in polynomial time be-tween BPA and �nite-state processes, and between normed BPP and�nite-state processes. To the best of our knowledge, these are the�rst polynomial algorithms for weak bisimilarity with in�nite-statesystems.Keywords: concurrency, in�nite-state systems, process algebras, veri�ca-tion, bisimulation1 IntroductionRecently, a lot of attention has been devoted to the study of decidabilityand complexity issues for in�nite-state systems. In our paper we concen-trate on decidability of weak bisimilarity between certain in�nite-state pro-cesses and �nite-state ones. We prove that weak bisimilarity (and also otherbisimulation-like equivalences) is decidable in polynomial time between BPAand �nite-state processes, and between normed BPP and �nite-state ones.BPA processes can be seen as simple sequential programs (due to the binary�Supported by a Research Fellowship granted by the Alexander von Humboldt Foun-dation and by a Post-Doc grant GA �CR No. 201/98/P046.1



sequential composition operator), while BPP model simple parallel systems(due to the binary parallel composition operator). A process is normed i� atevery reachable state it can terminate via a �nite sequence of computationalsteps.The state of the art. BPA and BPP have been studied very intensivelyand many decidability and complexity results about them are known today(especially in the areas of equivalence-testing and model-checking [22, 10]).Here we brie
y mention some of the results which are closely related to thesubject of our paper.The �rst positive result about BPA processes is due to Baeten, Bergstra, andKlop [2]. They proved that strong bisimilarity [23] is decidable for normedBPA processes. A much simpler proof of this has later been given in [15],and there is even a polynomial-time algorithm [12]. The decidability resulthas later been extended to the class of all (not necessarily normed) BPAprocesses in [8], but the best known algorithm is doubly exponential [5].Decidability of strong bisimilarity for BPP processes has been establishedin [7], but the algorithm has non-elementary complexity. However, thereis also a polynomial-time algorithm for the subclass of normed BPP [13].Strong bisimilarity between normed BPA and normed BPP processes is alsodecidable [6]. A more general result [17] says that strong bisimilarity remainsdecidable if we consider parallel compositions of normed BPA and normedBPP processes.As for weak bisimilarity, much less is known. Semidecidability of weak bi-similarity for BPP processes is due to [9]. In [11] it is shown that weakbisimilarity is decidable for those BPA and BPP processes which are `totallynormed' (a process is totally normed if it can terminate at any moment via a�nite sequence of computational steps, but in addition at least one of thosesteps must be `visible', i.e. non-internal). The weak bisimilarity problemfor general BPA and BPP is open; those problems might be decidable, butthey are surely intractable (assuming P 6= NP)|in case of BPP we haveNP-hardness, and in case of BPA even PSPACE -hardness [24].The situation is dramatically di�erent if we consider weak bisimilarity be-tween certain in�nite-state processes and �nite-state ones. This study ismotivated by the fact that the intended behavior of a process is often easyto specify (by a �nite-state system), but a `real' implementation can con-tain components which are in�nite-state (e.g. counters or bu�ers). In [19]it is shown that weak bisimilarity between BPP and �nite-state processes isdecidable. A more general result has recently been obtained in [16], whereit is shown that many bisimulation-like equivalences (including the strongand weak ones) are decidable between PAD and �nite-state processes. The2



PAD class strictly subsumes not only BPA and BPP, but also PA [3] andpushdown processes. The result is obtained by a general reduction to themodel-checking problem for the simple branching-time temporal logic EF.As the model-checking problem for EF is hard (for example, it is known tobe PSPACE -complete for BPP [19] and BPA [4, 20]), the algorithm is notpractically usable.Our contribution. In Section 3.1 we show that weak (and hence alsostrong) bisimilarity is decidable between BPA and �nite-state processes inpolynomial time. The proof can be divided in two parts. First we show theexistence of a �nite bisimulation base, which in some sense generates thegreatest weak bisimulation|all pairs of bisimilar processes can be `gener-ated' from that base. It is interesting that we can design such a base in spiteof the fact that weak bisimilarity is not a congruence w.r.t. sequential com-position, and hence the possibility to derive `new' pieces of information from`old' ones is rather limited (actually, all what we need is the fact that weakbisimilarity is a left congruence). Then we take a su�ciently large relation Gwhich surely subsumes the base and `clean' it. The size of G is cubic in thesize of problem instance, and each step of the cleaning procedure possiblydeletes some of the elements of G. If nothing is deleted, we have found thebase. To be able to perform this cleaning procedure, we have to overcomethe fundamental problem that the set of states which are reachable from agiven BPA state in one ` a)' move (see Section 2) is in�nite. We employ a`symbolic' technique to represent those in�nite sets, taking advantage of thefact that they have a simple (regular) structure which can be encoded by�nite-state automata. Moreover, we can also encode the pairs of processeswhich can be generated from the currently computed approximation of thebase by means of �nite-state automata. This allows to compute the base inpolynomial time, and it is actually all what we need to establish our result.The fact that weak bisimilarity is not a congruence w.r.t. sequential compo-sition is rather unpleasant; each equivalence called `behavioral' should havethis property. In Section 3.1.1 we propose a natural re�nement of weakbisimilarity (called termination-sensitive bisimilarity) which preserves thenice properties of weak bisimilarity, but it also takes into account some ofthe main features of sequencing which are not re
ected by weak bisimila-rity (e.g. the distinction between termination and livelock). Consequently,termination-sensitive bisimilarity is a congruence w.r.t. sequential composi-tion. Moreover, it is also decidable between BPA and �nite-state processesin polynomial time (we use the same method as in case of weak bisimilarity).In Section 3.2 we show that weak bisimilarity between normed BPP and�nite-state processes is also decidable in polynomial time. The basic scheme3



of our proof is similar as in case of BPA. The bisimulation base is simpler(due to the normedness assumption), but there are some `new' complica-tions caused by commutativity of the parallel operator. Moreover, the setof states which are reachable from a given BPP state in one ` a)' move is nolonger regular; however, it can be in some sense represented by a context-freegrammar.In the �nal section we discuss further applicability of our results, and we givean informal comparison with the techniques which have been used for strongbisimilarity in [12, 13].2 De�nitions2.1 Process Rewrite SystemsLet Act = fa; b; c; : : :g be a countably in�nite set of actions. Let Const =fX; Y; Z; : : :g be a countably in�nite set of process constants such that Act \Const = ;. The class of process expressions, denoted E , is de�ned by thefollowing abstract syntax equation:E ::= � j X j EkE j E:EHere X ranges over Const and � is a special constant that denotes the emptyexpression. Intuitively, the `:' operator corresponds to a sequential composi-tion, while the `k' operator models a simple form of parallelism.In the rest of this paper we do not distinguish between expressions related bystructural congruence which is the smallest congruence relation over processexpressions such that the following laws hold:� associativity for `:' and `k'� commutativity for `k'� `�' as a unit for `:' and `k'.A process rewrite system [18] is speci�ed by a �nite set � of rules which areof the form E a! F , where E; F 2 E and a 2 Act . We use Const(�) andAct(�) to denote the sets of process constants and actions which are used inrules of �, respectively (note that Const(�) and Act(�) are �nite).Each process rewrite system � determines a unique transition system wherestates are process expressions over Const(�), Act(�) is the set of labels, andtransitions are determined by � and the following inference rules (remember4



that `k' is commutative):(E a! F ) 2 �E a! F E a! E 0E:F a! E 0:F E a! E 0EkF a! E 0kFWe extend the notation E a! F to elements of Act� in an obvious way.Moreover, we say that F is reachable from E if E w! F for some w 2 Act�.The set of initial actions of E, denoted I(E), is de�ned by I(E) = fa 2Act j E a! F for some Fg.The classes of �nite-state, BPA, and BPP systems are subclasses of processrewrite systems obtained by certain restrictions on the form of the expressionswhich can appear on the left-hand and the right-hand side of rules. Tospecify those restrictions, we �rst de�ne the classes of sequential and parallelexpressions, composed of all process expressions which do not contain the `k'and the `:' operator, respectively. Finite-state, BPA, and BPP allow only asingle constant on the left-hand side of rules, and a single constant, sequentialexpression, and parallel expression on the right-hand side, respectively.In the rest of this paper we consider processes as (being associated with)states in transition systems generated by process rewrite systems. A constantX 2 Const(�) is normed i� X w! � for some w 2 Act�. A process is normed,i� all constants of its underlying system � are normed.2.2 Weak BisimilarityThe semantical equivalence we are interested in here is weak bisimilarity[21]. This relation distinguishes between `observable' and `internal' moves(computational steps); the internal moves are modeled by a special actionwhich is denoted `� ' by convention. In the following we assume that allprocess expressions are built over Const(�) where � is some �xed processrewrite system.De�nition 2.1. The extended transition relation ` a)' is de�ned by E a)F i� E ��! E 0 a! E 00 ��! F for some E 0; E 00. Moreover, we also have E �) Efor every state E. A binary relation R over process expressions is a weakbisimulation i� whenever (E; F ) 2 R then for every a 2 Act� if E a! E 0 then there is F a) F 0 s.t. (E 0; F 0) 2 R� if F a! F 0 then there is E a) E 0 s.t. (E 0; F 0) 2 RProcesses E; F are weakly bisimilar, written E � F , i� there is a weakbisimulation relating them. 5



Weak bisimilarity can be approximated by the family of �i relations, whichare de�ned as follows:� E �0 F for every E; F� E �i+1 F i� E �i F and the following conditions hold:{ if E a! E 0 then there is F a) F 0 s.t. E 0 �i F 0{ if F a! F 0 then there is E a) E 0 s.t. E 0 �i F 0It is worth noting that�i is not an equivalence for i � 1, as it is not transitive.It is possible to approximate weak bisimilarity in a di�erent way so that theapproximations are equivalences (see [16]). However, we do not need this forour purposes.Let � be a �nite-state system with n states, f; g 2 Const(�). It is not hardto show that the problem whether f � g is decidable in O(n3) time. We usethis fact in Section 3.2.Sometimes we also consider weak bisimilarity (and its approximations) be-tween processes of di�erent process rewrite systems, say � and �. Formally,� and � can be considered as a single system by taking their disjoint union.3 Weak Bisimilarity with In�nite-State Pro-cesses3.1 BPA ProcessesWe prove that weak bisimilarity is decidable between BPA and �nite-stateprocesses in polynomial time.Let E be a BPA process with the underlying system �, F a �nite-stateprocess with the underlying system � s.t. Const(�) \ Const(�) = ;. Tosimplify our considerations, we assume that E is an element of Const(�); ifit is not the case, i.e. if E is of the form Y � where � 2 Const(�)+, we takea new (fresh) constant X and for every Y a! � 2 � we add to � the ruleX a! ��. Obviously X � E, because the transition systems generated by Xand E are even isomorphic.As for �, we also need one special assumption; for all f; g 2 Const(�), a 2 Acts.t. f 6= g or a 6= � we assume that whenever f a) g, then f a! g 2 �. If those` a!' transitions are missing in �, we can add them safely. This procedure doesnot change � `signi�cantly' in the sense that each state of � remains weakly6



bisimilar to itself after the modi�cation. The number of transitions in � canof course increase, but it does not in
uence our complexity estimations, sincewe always consider the worst case when for all f; g 2 Const(�); a 2 Act thereis a rule f a! g in �. The reason why we do not want to add new transitionsof the form f �! f will become clear in Section 3.1.1.In this section, we use upper-case letters X; Y; : : : to denote elements ofConst(�), and lower-case letters f; g; : : : to denote elements of Const(�).Greek letters �; �; : : : are used to denote the elements of Const(�)�. Thesize of � is denoted by n, and the size of � by m (we measure the complexityof our algorithm in (n;m)).The set Const(�) can be divided into two disjoint subsets of normed andunnormed constants (remember that X 2 Const(�) is normed i� X w! �for some w 2 Act�). The set of all normed constants of � is denoted byNormed(�). In our constructions we also use processes of the form �f ; theyshould be seen as BPA processes with the underlying system � [ �.Our proof can be divided into two parts: �rst we show that the greatest weakbisimulation between processes of � and � is �nitely representable. Thereis a �nite relation of size O(nm2) (called bisimulation base) such that eachpair of weakly bisimilar processes can be generated from that base. It isinteresting that we can design such a relation in spite of the fact that weakbisimilarity is not a congruence w.r.t. sequential composition for unnormedprocesses|to see this, it su�ces to de�neX �! X; Y �! �; Z a! ZNow X � Y , but XZ 6� Y Z. Fortunately, weak bisimilarity is a left-congruence; whenever � � 
, we also have that �� � �
. Another (trivial)algebraic law says that whenever X is unnormed, it holds that �X� � �X.As we shall see, these two properties of weak bisimilarity su�ce for ourpurposes. Then we show that the bisimulation base can be computed inpolynomial time. To do that, we have to overcome the fundamental problemthat the set of states which are reachable from a given BPA process in one ` a)'step is generally in�nite. We employ a `symbolic' technique to represent suchin�nite sets, taking advantage of the fact that they have a simple (regular)structure which can be encoded by �nite-state automata.De�nition 3.1. A relation K is fundamental i� it is a subset of((Normed(�) � Const(�))� Const(�)) [ (Const(�)� Const(�))[ ((f�g [ Const(�))� Const(�))The greatest fundamental relation is denoted by G.7



Note that the size of any fundamental relation is O(nm2). One of the fun-damental relations is of special importance:De�nition 3.2. The bisimulation base for � and �, denoted B, is de�nedas follows:B = f(Y f; g) j Y f � g; Y 2 Normed(�)g [ f(X; g) j X � gg[ f(f; g) j f � gg [ f(�; g) j � � ggAs weak bisimilarity is a left congruence w.r.t. sequential composition, wecan `derive' from B new pairs of weakly bisimilar processes by substitution.This derivation procedure can be de�ned for any fundamental relation asfollows:De�nition 3.3. Let K be a fundamental relation. The closure of K, de-noted Cl(K), is the least relationM which satis�es the following conditions:1. K �M2. if (f; g) 2 K and (�; f) 2M , then (�; g) 2 M3. if (f; g) 2 K and (�h; f) 2M , then (�h; g) 2M4. if (Y f; g) 2 K and (�; f) 2M , then (Y �; g) 2M5. if (Y f; g) 2 K and (�h; f) 2M , then (Y �h; g) 2M6. if (�; g) 2M and � contains an unnormed constant, then (��; g),(��h; g) 2M for every � 2 Const(�)� and h 2 Const(�).Note that Cl(K) contains elements of just two forms { (�; g) and (�f; g).The set Cl(K) can be approximated as follows:� Cl(K)0 = K� Cl(K)i+1 consists of those pairs which are either contained in Cl(K)ior can be derived from pairs of Cl(K)i by an immediate application ofone of the rules 2{6 of De�nition 3.3.Clearly Cl(K) = S1i=0Cl(K)i. We use the Cl(K)i family in some inductiveproofs.Although the closure of a fundamental relation can be in�nite, its structureis in some sense regular. This fact is precisely formulated in the followingtheorem: 8



Theorem 3.4. Let K be a fundamental relation. For each g 2 Const(�)there is a �nite-state automaton Ag of size O(nm2) constructible in O(nm2)time s.t. L(Ag) = f� j (�; g) 2 Cl(K)g [ f�f j (�f; g) 2 Cl(K)gProof: We construct a regular grammar of size O(nm2) which generatesthe mentioned language. Let Gg = (N;�; �; g) where� N = ff j f 2 Const(�)g [ fUg� � = Const(�) [ Const(�)� � is de�ned as follows:{ for each (�; h) 2 K we add the rule h! �.{ for each (f; h) 2 K we add the rules h! f , h! f .{ for each (Y f; h) 2 K we add the rules h! Y f; h! Y f .{ for each (X; h) 2 K we add the rule h! X and if X is unnormed,then we also add the rule h! XU .{ for each X 2 Const(�), f 2 Const(�) we add the rules U ! XU ,U ! X, U ! f .The proof that Gg indeed generates the mentioned language is routine. Nowwe translate Gg to Ag (see e.g. [14]). Note that the size of Ag is the same asthe size of Gg; Ag is non-deterministic and can contain �-rules.As an immediate consequence of the previous theorem we obtain that themembership to Cl(K) for any fundamental relation K is easily decidable inpolynomial time. Another property of Cl(K) is speci�ed in the lemma below.Lemma 3.5. Let (�f; g) 2 Cl(K). If (�h; f) 2 Cl(K), then also (��h; g) 2Cl(K). Similarly, if (�; f) 2 Cl(K), then also (��; g) 2 Cl(K).Proof: We just give the proof for the �rst claim (the second one is similar).Let (�f; g) 2 Cl(K)i. By induction on i.� i = 0. Then (�f; g) 2 K and we can immediately apply the rule 3 or 5of De�nition 3.3 (remember that � can be �).� Induction step. Let (�f; g) 2 Cl(K)i+1. There are three possibilities(cf. De�nition 3.3). 9



I. There is r s.t. (�f; r) 2 Cl(K)i, (r; g) 2 K. By induction hypoth-esis we know (��h; r) 2 Cl(K), hence (��h; g) 2 Cl(K) due tothe rule 3 of De�nition 3.3.II. � = Y 
 and there is r s.t. (Y r; g) 2 K, (
f; r) 2 Cl(K)i. Byinduction hypothesis we have (
�h; r) 2 Cl(K), and hence also(Y 
�h; r) 2 Cl(K) by the rule 5 of De�nition 3.3.III. � = 
� where (
; g) 2 Cl(K)i and 
 contains an unnormed con-stant. Then (
��h; g) 2 Cl(K) by the last rule of De�nition 3.3.The importance of the bisimulation base is clari�ed by the following theorem.It says that Cl(B) subsumes the greatest weak bisimulation between processesof � and �.Theorem 3.6. For all �; f; g we have � � g i� (�; g) 2 Cl(B), and �f � gi� (�f; g) 2 Cl(B).Proof: The `if' part is obvious in both cases, as B contains only weaklybisimilar pairs and all the rules of De�nition 3.3 produce pairs which are againweakly bisimilar. The `only if' part can, in both cases, be easily proved byinduction on the length of � (we just give the �rst proof; the second one issimilar).� � = �. Then (�; g) 2 B, hence (�; g) 2 Cl(B).� � = Y �. If Y is unnormed, then Y � g and (Y; g) 2 B. By therule 6 of De�nition 3.3 we obtain (Y �; g) 2 Cl(B). If Y is normed,then Y � w! � for some w 2 Act� and g must be able to match thesequence w by some g w) g0 s.t. � � g0. By substitution we now obtainthat Y g0 � g. Clearly (Y g0; g) 2 B, and (�; g0) 2 Cl(B) by inductionhypothesis. Hence (�; g) 2 Cl(B) due to rule 4 of De�nition 3.3.Now we concentrate on the problem how to construct the bisimulation base.Intuitively, the base is computed by `cleaning' G (the greatest fundamentalrelation) in a polynomial number of `cleaning steps'. Each such step possiblydeletes some pairs of G (if nothing is deleted, we have found B). The nextde�nition speci�es the condition on which a given pair is not deleted in onecleaning step from the currently computed approximation of B.De�nition 3.7. Let K be a fundamental relation. We say that a pair (X; g)of K expands in K i� the following two conditions hold:10



� for each X a! � there is some g a) g0 s.t. (�; g0) 2 Cl(K)� for each g a! g0 there is some X a) � s.t. (�; g0) 2 Cl(K)The expansion of a pair of the form (Y f; g), (f; g), (�; g) in K is de�ned inthe same way|for each ` a!' move of the left component there must be some` a)' move of the right component such that the resulting pair of processesbelongs to Cl(K), and vice versa (note that � �) �). The set of all pairs ofK which expand in K is denoted Exp(K).The notion of expansion is in some sense `compatible' with the de�nition ofweak bisimulation. This intuition is formalized in the following lemma:Lemma 3.8. Let K be a fundamental relation s.t. Exp(K) = K. ThenCl(K) is a weak bisimulation.Proof: We prove that every pair (�; g); (�f; g) of Cl(K)i has the propertythat for each ` a!' move of one component there is a ` a)' move of the othercomponent s.t. the resulting pair of processes belongs to Cl(K) (we considerjust pairs of the form (�f; g); the other case is similar). By induction on i.� i = 0. Then (�f; g) 2 K; as K = Exp(K), the claim follows directlyfrom the de�nitions.� Induction step. Let (�f; g) 2 Cl(K)i+1. There are three possibilities:I. There is an h s.t. (�f; h) 2 Cl(K)i, (h; g) 2 K.Let �f a! 
f (note that � can be empty; in this case we have toconsider moves of the form f a! f 0. It is done in a similar wayas below). As (�f; h) 2 Cl(K)i, we can use induction hypothesisand conclude that there is h a) h0 s.t. (
f; h0) 2 Cl(K). Wedistinguish two cases:1) a = � and h0 = h. Then (
f; h) 2 Cl(K) and as (h; g) 2 K, weobtain (
f; g) 2 Cl(K) due to Lemma 3.5. Hence g can use themove g �) g.2) a 6= � or h 6= h0. Then there is a transition h a! h0 (seethe beginning of this section) and as (h; g) 2 K, by inductionhypothesis we know that there is some g a) g0 s.t. (h0; g0) 2 Cl(K).Hence, (
f; g0) 2 Cl(K) due to Lemma 3.5.Now let g a! g0. As (h; g) 2 K, there is h a) h0 s.t. (h0; g0) 2Cl(K). We distinguish two possibilities again:1) a = � and h0 = h. Then �f can use the move �f �) �f ; we have11



(h; g0) 2 Cl(K) and (�f; h) 2 Cl(K), hence also (�f; g0) 2 Cl(K).2) a 6= � or h 6= h0. Then h a! h0 and as (�f; h) 2 Cl(K)i, thereis �f a) 
f (or �f a) f 0; it is handled in the same way) s.t.(
f; h0) 2 Cl(K). Hence also (
f; g0) 2 Cl(K) by Lemma 3.5.II. � = Y � and there is h s.t. (Y h; g) 2 K, (�f; h) 2 Cl(K)i.Let Y �f a! 
�f . As (Y h; g) 2 K, we can use induction hypoth-esis and conclude that there is g a) g0 s.t. (
h; g0) 2 Cl(K). As(�f; h) 2 Cl(K), we obtain (
�f; g0) 2 Cl(K) by Lemma 3.5.Let g a! g0. As (Y h; g) 2 K, by induction hypothesis we knowthat Y h can match the move g a! g0; there are two possibilities:1) Y h a) 
h s.t. (
h; g0) 2 Cl(K). Then also Y �f a) 
�f .As (�f; h) 2 Cl(K), we immediately have (
�f; g0) 2 Cl(K) asrequired.2) Y h a) h0 s.t. (h0; g0) 2 Cl(K). The transition Y h a) h0 canbe `decomposed' into Y h x) h, h y) h0 where x = a ^ y = � orx = � ^ y = a. If y = � and h0 = h, we are done immediatelybecause then Y � a) � and as (h; g0); (�; h) 2 Cl(K), we also have(�; g0) 2 Cl(K) as needed. If y 6= � or h0 6= h, there is a transitionh y! h0. As (�f; h) 2 Cl(K)i, due to induction hypothesis weknow that there is some �f y) 
f (or �f y) f 0; this is handledin the same way) with (
f; h0) 2 Cl(K). Clearly Y �f a) 
f . As(h0; g0); (
f; h0) 2 Cl(K), we also have (
f; g0) 2 Cl(K).III. � = �
 where � contains an unnormed variable and (�; g) 2Cl(K)i.Let � a! �0. Then �0 = �
 and � a! �. As (�; g) 2 Cl(K)i, thereis g a) g0 s.t. (�; g0) 2 Cl(K) due to the induction hypothesis.Clearly � contains an unnormed constant, hence (�
; g0) 2 Cl(K)by the last rule of De�nition 3.3.Let g a! g0. As (�; g) 2 Cl(K)i, there is � a) � s.t. (�; g0) 2Cl(K) and � contains an unnormed constant. Hence � a) �
 and(�
; g0) 2 Cl(K) due to the last rule of De�nition 3.3.The notion of expansion also allows to approximate B in the following way:B0 = GBi+1 = Exp(Bi)Theorem 3.9. There is a j 2 N, bounded by O(nm2), such that Bj = Bj+1.Moreover, Bj = B. 12



Proof: The Exp (viewed as a function on the complete lattice of fundamen-tal relations) is monotonic, hence the greatest �xed-point exists and must bereached after O(nm2) steps, as the size of G is O(nm2). We prove thatBj = B.`�:' First, let us realize that B = Exp(B) (it follows immediately from Def-inition 3.2, De�nition 3.7, and Theorem 3.6). The inclusion B � Bj can beproved by a simple inductive argument; clearly B � B0, and if B � Bi, wealso have B � Bi+1 by de�nition of the expansion and the fact B = Exp(B).`�:' As Exp(Bj) = Bj, we know that Cl(Bj) is a weak bisimulation due toLemma 3.8. Thus, processes of every pair in Bj are weakly bisimilar.In other words, B can be obtained from G in O(nm2) cleaning steps whichcorrespond to the construction of the expansion. The only thing which re-mains to be shown is that Exp(K) is e�ectively constructible in polynomialtime. To do that, we employ a `symbolic' technique which allows to representin�nite subsets of BPA state-space in an elegant and succinct way.Theorem 3.10. For all X 2 Const(�), a 2 Act(�) there is a �nite-stateautomaton A(X;a) of size O(n2) constructible in O(n2) time s.t. L(A(X;a)) =f� j X a) �gProof: We de�ne a left-linear grammarG(X;a) of sizeO(n2) which generatesthe mentioned language. This grammar can be converted to A(X;a) by astandard algorithm known from automata theory (see e.g. [14]). Note thatthe size of A(X;a) is the same as the size of G(X;a). First, let us realizethat we can compute in O(n2) time the sets M� and Ma consisting of allY 2 Const(�) s.t. Y �) � and Y a) �, respectively. Let G(X;a) = (N;�; �; S)where� N = fY a; Y � j Y 2 Const(�)g [ fSg. Intuitively, the index indicatewhether the action `a' has been already emitted.� � = Const(�)� � is de�ned as follows:{ we add the rule S ! Xa to �, and if X a) � then we also add therule S ! �.{ for every transition Y a! Z1: � � � :Zk of � and every i s.t. 1 � i � kwe test whether Zj �) � for every 0 � j < i. If this is the case, weadd to � the rulesY a ! Zi � � �Zk; Y a ! Z�i Zi+1 � � �Zk13



{ for every transition Y �! Z1: � � � :Zk of � and every i s.t. 1 � i � kwe do the following:� we test whether Zj �) � for every 0 � j < i. If this is thecase, we add to � the rulesY a ! Zai Zi+1 � � �Zk; Y � ! Z�i Zi+1 � � �Zk; Y � !Zi � � �Zk� we test whether there is a t < i such that Zt a) � and Zj �) �for every 0 � j < i, j 6= t. If this is the case, we add to � therules Y a ! Z�i Zi+1 � � �Zk; Y a ! Zi � � �ZkThe fact that G(X;a) generates the mentioned language is intuitively clearand a formal proof of that is easy. The size of G(X;a) is O(n2), as � containsO(n) basic transitions of length O(n).The crucial part of our algorithm (the `cleaning procedure') is presented inthe proof of the next theorem. Our complexity analysis is based on thefollowing facts: Let A = (Q;�; �; q0; F ) be a non-deterministic automatonwith �-rules, and let t be the total number of states and transitions of A.� The problem whether a given w 2 �� belongs to L(A) is decidable inO(jwj � t) time.� The problem whether L(A) = ; is decidable in O(t) time.Theorem 3.11. Let K be a fundamental relation. The relation Exp(K) canbe e�ectively constructed in O(n4m5) time.Proof: First we construct the automata Ag of Theorem 3.4 for every g 2Const(�). This takes O(nm3) time. Then we construct the automata A(X;a)of Theorem 3.10 for all X; a. This takes O(n4) time. Furthermore, we alsocompute the set of all pairs of the form (f; g); (�; g) which belong to Cl(K).It can be done in O(m2) time. Now we show that for each pair of K we candecide in O(n3m3) time whether this pair expands in K.The pairs of the form (f; g) and (�; g) are easy to handle; there are at mostm states f 0 s.t. f a! f 0, and at most m states g0 with g a) g0, hence weneed to check only O(m2) pairs to verify the �rst (and consequently alsothe second) condition of De�nition 3.7. Each such pair can be checked inconstant time, because the set of all pairs (f; g); (�; g) which belong to Cl(K)has been already computed at the beginning.14



Now let us consider a pair of the form (Y; g). First we need to verify thatfor each Y a! � there is some g a) h s.t. (�; h) 2 Cl(K). This requiresO(nm) tests whether � 2 L(Ah). As the length of � is O(n) and the size ofAh is O(nm2), each such test can be done in O(n2m2) time, hence we needO(n3m3) time in total. As for the second condition of De�nition 3.7, we needto �nd out whether for each g a! h there is some X a) � s.t. (�; h) 2 Cl(K).To do that, we simply test the emptiness of L(A(X;a)) \ L(Ah). The size ofthe product automaton is O(n3m2) and we need to perform only O(m) suchtests, hence the time O(n3m3) su�ces.Pairs of the form (Y f; g) are handled in a similar way; the �rst condition ofDe�nition 3.7 is again no problem, as we are interested only in the ` a!' movesof the left component. Now let g a! g0. An existence of a `good' a) move ofY f can be veri�ed by testing whether one of the following conditions holds:� L(A(Y;a)) � ffg \ L(Ag0) is nonempty.� Y a) � and there is some f �) f 0 s.t. (f 0; g0) 2 Cl(K).� Y �) � and there is some f a) f 0 s.t. (f 0; g0) 2 Cl(K).All those conditions can be checked in O(n3m3) time (the required analysishas been in fact done above).As K contains O(nm2) pairs, the total time which is needed to computeExp(K) is O(n4m5).As the BPA process E (introduced at the beginning of this section) is anelement of Const(�), we have that E � F i� (E; F ) 2 B. To compute B,we have to perform the computation of the expansion O(nm2) times (seeTheorem 3.9). This gives us the following main theorem:Theorem 3.12. Weak bisimilarity is decidable between BPA and �nite-stateprocesses in O(n5m7) time.3.1.1 Termination-Sensitive BisimilarityAs we already mentioned in the previous section, weak bisimilarity is not acongruence w.r.t. sequential composition. This is a major drawback, as anyequivalence which is to be considered as `behavioral' should have this prop-erty. We propose a solution to this problem by designing a natural re�nementof weak bisimilarity called termination-sensitive bisimilarity. This relationrespects some of the main features of sequencing which are `overlooked' by15



weak bisimilarity; consequently, it is a congruence w.r.t. sequential com-position. We also show that termination-sensitive bisimilarity is decidablebetween BPA and �nite-state processes in polynomial time by adapting themethod of the previous section.In our opinion, any `reasonable' model of sequential behaviors should be ableto express (and distinguish) the following `basic phenomenons' of sequencing:� successful termination of the process which is currently being executed.The system can then continue to execute the next process in the queue.� unsuccessful termination of the executed process (deadlock). This mod-els a severe error which causes the whole system to `get stuck'.� entering an in�nite internal loop (livelock).The di�erence between successful and unsuccessful termination is certainlysigni�cant. The need to distinguish between termination and livelock hasalso been recognized in practice; major examples come e.g. from the theoryof operating systems.BPA processes are a very natural model of recursive sequential behaviors.Successful termination is modeled by reaching `�'. There is also a `hidden'syntactical tool to model deadlock|note that by de�nition of BPA systemsthere can be X 2 Const(�) s.t. � does not contain any rule of the formX a!� (let us call such constants unde�ned). A state X� models the situationwhen the executed process reaches a deadlock|there is no transition (nocomputational step) from X�, the process is `stuck'. It is easy to see thatwe can safely assume that � contains at most one unde�ned constant (theother ones can be simply renamed to X), which is denoted � by convention[3]. Note that � is unnormed by de�nition. States of the form �� are calleddeadlocked.In case of �nite-state systems, we can distinguish between successful andunsuccessful termination in a similar way. Deadlock is modeled by a dis-tinguished unde�ned constant �, and the other unde�ned constants modelsuccessful termination.Note that � � � by de�nition of weak bisimilarity. As `�' represents a suc-cessful termination, this is de�nitely not what we want. Before we de�nethe promised relation of termination-sensitive bisimilarity, we need to clar-ify what is meant by livelock; intuitively, it is the situation when a processenters an in�nite internal loop. In other words, it can do `� ' forever with-out a possibility to do anything else or to terminate (either successfully orunsuccessfully). 16



De�nition 3.13. A process E is livelocked i� every state F which is reach-able from E satis�es I(F ) = f�g.Note that it is easily decidable in quadratic time whether a given BPA processis livelocked; in case of �nite-state systems we only need linear time.De�nition 3.14. A binary relationR over process expressions is a termination-sensitive bisimulation i� whenever (E; F ) 2 R then the following conditionshold:� E is deadlocked i� F is deadlocked� E is livelocked i� F is livelocked� if E a! E 0, then there is F a) F 0 s.t. (E 0; F 0) 2 R� if F a! F 0, then there is E a) E 0 s.t. (E 0; F 0) 2 RProcesses E; F are termination-sensitive bisimilar, written E ' F , i� thereis a termination-sensitive bisimulation relating them.The family of 'i approximations is de�ned in the same way as in case ofweak bisimilarity; the only di�erence is that '0 relates exactly those pro-cesses which satisfy the �rst two requirements of De�nition 3.14. Now it isstraightforward to prove the following theorem:Theorem 3.15. Termination-sensitive bisimilarity is a congruence w.r.t.sequential composition.The technique which has been used in the previous section also works fortermination-sensitive bisimilarity.Theorem 3.16. Termination-sensitive bisimilarity is decidable between BPAand �nite-state processes in O(n5m7) time.Proof: First, all assumptions about � and � which were mentioned at thebeginning of Section 3.1 are also safe w.r.t. termination-sensitive bisimilarity;note that it would not be true if we also assumed an existence of a � -loopf �! f for every f 2 Const(�). This explains why the assumptions about �are formulated so carefully. The only thing which has to be modi�ed is thenotion of fundamental relation; it is de�ned in the same way, but in additionwe require that processes of every pair which is contained in a fundamentalrelation K are related by '0. It can be easily shown that processes of pairscontained in Cl(K) are then also related by '0. In other words, we do nothave to take care about the �rst two requirements of De�nition 3.14 in ourconstructions anymore; everything works without a single change.17



The previous proof indicates that the `method' of Section 3.1 can be adaptedto other bisimulation-like equivalences. See the �nal section for further com-ments.3.2 Normed BPP ProcessesIn this section we prove that weak bisimilarity is decidable in polynomial timebetween normed BPP and �nite-state processes. The basic structure of ourproof is similar to the one for BPA; however, some of the arguments becomemore subtle because of commutativity of the parallel operator. Moreover, theset of states which are reachable from a given BPP state in one ` a)' move isno longer regular. As we shall see, it can, in some sense, be represented bya context-free grammar (in our algorithm we use the facts that emptiness ofa CF language is decidable in polynomial time, and that CF languages areclosed under intersection with regular languages).Let E be a BPP process and F a �nite-state process with the underlyingsystems � and �, respectively. We can assume w.l.o.g. that E 2 Const(�).Elements of Const(�) are denoted by X; Y; Z; : : :, elements of Const(�) byf; g; h; : : : The set of all parallel expressions over Const(�) (i.e. the set of allpotentially reachable states of �) is denoted by Const(�)
 and its elementsby Greek letters �; �; : : : The size of � is denoted by n, and the size of � bym.In our constructions we represent certain subsets of Const(�)
 by �nite au-tomata and CF grammars. The problem is that elements of Const(�)
 areconsidered modulo commutativity; however, �nite automata and CF gram-mars of course distinguish between di�erent `permutations' of the same word.As the classes of regular and CF languages are not closed under permutation,this problem is important (to see that the mentioned closure properties fail,consider the grammar S ! abcS j abc. The `permutation' of L(S) consists ofexactly those words in which a; b; c appear equally many times). As we wantto clarify the distinction between � and its possible `linear representations',we de�ne for each � the set Lin(�) as follows:Lin(X1k � � � kXk) = fXp(1) � � �Xp(k) j p is a permutation of the set f1; � � � ; kggFor example, Lin(XkY kZ) = fXY Z; XZY; Y XZ; Y ZX; ZXY; ZY Xg. Wealso assume that for each � there is some (unique) element of Lin(�) calledcanonical form of � (it is not important how the canonical form is chosen;we need it just to make some constructions deterministic).We also need one special assumption on �|for each f 2 Const(�) there issome f w! f 0 s.t. f 0 � �. If E � f , then each state which is reachable from f18



must have this property due to the normedness of � (if this condition is notsatis�ed, we can conclude E 6� f). Those elements of Const(�) which arenot reachable from f can safely be deleted. An immediate consequence ofthis assumption is the fact that whenever f1k � � � kfk � g, then there is an hs.t. f2k � � � kfk � h (remember that `k' is commutative). To see this, realizethat f1k � � � kfk v! f 01kf2k � � � kfk for some v 2 Act� s.t. f 01 � �. Hence thereis g v) h s.t. f 01kf2k � � � kfk � h. Clearly f 01kf2k � � � kfk � f2k � � � kfk.De�nition 3.17. A relation K is fundamental i� it is a subset of(Const(�) [ f�g) � Const(�)The greatest fundamental relation is denoted by G. The bisimulation basefor � and �, denoted B, is de�ned as follows:B = f(X; f) j X � fg [ f(�; f) j � � fgDe�nition 3.18. Let K be a fundamental relation. The closure of K, de-noted Cl(K), is the least relation M which satis�es1. K �M2. if (X; g) 2 K, (�; h) 2 M , and f � gkh, then (�kX; f) 2M3. if (�; g) 2 K, (�; h) 2 M , and f � gkh, then (�; f) 2MThe family of Cl(K)i approximations is de�ned in the same way as in theprevious section.Lemma 3.19. Let (�; f) 2 Cl(K), (�; g) 2 Cl(K), fkg � h. Then (�k�; h) 2Cl(K).Proof: Let (�; f) 2 Cl(K)i. By induction on i.� i = 0. Then (�; f) 2 K and we can immediately apply the rule 2 or 3of De�nition 3.18.� Induction step. Let (�; f) 2 Cl(K)i+1. There are two possibilities.I. � = Xk
 and there are r; s s.t. (X; r) 2 K, (
; s) 2 Cl(K)i,and rks � f . Clearly rkskg � h, hence also skg � t for somet. By induction hypothesis we have (
k�; t) 2 Cl(K). Now(Xk
k�; h) 2 Cl(K) due to the second rule of De�nition 3.18(note that rkt � h). 19



II. (�; r) 2 Cl(K)i and there is some s s.t. (�; s) 2 K and rks � f . Asrkskg � h, there is some t s.t. rkg � t. By induction hypothesiswe obtain (�k�; t) 2 Cl(K), and hence (�k�; h) 2 Cl(K) due tothe third rule of De�nition 3.18.Again, the closure of the bisimulation base is the greatest weak bisimulationbetween processes of � and �.Theorem 3.20. Let � 2 Const(�)
, f 2 Const(�). We have that � � fi� (�; f) 2 Cl(B).Proof: The `if' part is obvious. The `only if' part can be proved by induc-tion on length(�).� � = �. Then (�; f) 2 B.� � = Xk�. As � is normed and Xk� � f , there are w; v 2 Act� s.t.Xk� w! �, Xk� v! X. The process f must be able to match thesequences w; v by entering weakly bisimilar states|there are g; h 2Const(�) s.t. � � g, X � h, and consequently also f � gkh (herewe need the fact that weak bisimilarity is a congruence w.r.t. the par-allel operator). Clearly (X; h) 2 B and (�; g) 2 Cl(B) by inductionhypothesis, hence (Xk�; f) 2 Cl(B) by De�nition 3.18.The closure of any fundamental relation can in some sense be represented bya �nite-state automaton, as stated in the next theorem. In its constructionwe assume that the set f(fkg; h) j fkg � hg has already been computed;as weak bisimilarity is decidable in cubic time for �nite-state processes (seeSection 2.2) and the size of fkg is O(m2), we need O(m6) time to checkwhether fkg � h. As there are O(m3) pairs of this form, the total neededtime is O(m9). As we shall see, the complexity of our algorithm whichdecides weak bisimilarity between normed BPP and �nite-state processes isO(n12m9) even if we were given this set for free. Hence we do not try toimprove the O(m9) bound (although it seems to be possible).Theorem 3.21. Let K be a fundamental relation. For each g 2 Const(�)there is a �nite-state automaton Ag of size O(nm) constructible in O(nm)time s.t. the following conditions hold:� whenever Ag accepts an element of Lin(�), then (�; g) 2 Cl(K)� if (�; g) 2 Cl(K), then Ag accepts at least one element of Lin(�)20



Proof: We design a regular grammar of size O(nm) s.t. L(Gg) has thementioned properties. Let Gg = (N;�; �; S) where� N = Const(�) [ fSg� � = Const(�)� � is de�ned as follows:{ for each (X; f) 2 K we add the rule S ! Xf .{ for each (�; f) 2 K we add the rule S ! f .{ for all f; r; s 2 Const(�), X 2 Const(�) s.t. (X; r) 2 K, f � rkswe add the rule s! Xf .{ for all f; r; s 2 Const(�) s.t. (�; r) 2 K, f � rks we add the rules! f .{ we add the rule g ! �.The �rst claim follows from an observation that whenever we have � 2 Lin(�)s.t. �f is a sentence of Gg, then (�; f) 2 Cl(K). This can be easily provedby induction on the length of the derivation of �f . For the second part, itsu�ces to prove that if (�; f) 2 Cl(K)i, then there is � 2 Lin(�) s.t. �f isa sentence of Gg. It can be done by a straightforward induction on i.It is important to realize that if (�; g) 2 Cl(K), then Ag does not necessarilyaccept all elements of Lin(�). For example, if K = f(X; f); (Y; r); (Z; h)g,Const(�) = ff; g; h; r; sg with fkr � s, skh � g, and fkh 6� p for anyp 2 Const(�), then Ag accepts the string XY Z but not the string XZY .Generally, Ag cannot be `repaired' to accept all elements of Lin(�) (see thebeginning of this section). However, there is actually no need to do that,because Ag has the following nice property:Lemma 3.22. Let K be a fundamental relation s.t. B � K. If � � g, thenAg accepts all elements of Lin(�).Proof: Let Gg be the grammar of the previous proof. First we prove thatfor all s; r; f 2 Const(�), 
 2 Const(�)
 s.t. 
 � r, skr � f there is aderivation s!� 
f in Gg for every 
 2 Lin(
). By induction on length(
).� 
 = �. As � � r, the pair (�; r) belongs to B. Hence s! f by de�nitionof Gg. 21



� Let length(
) = i + 1 and let X� 2 Lin(
). Then 
 is of the formXk� where � 2 Lin(�). As Xk� � r and � is normed, there areu; v 2 Const(�) s.t. X � u, � � v, and ukv � r. Hence we also haveskukv � f , thus sku � t for some t 2 Const(�). As X � u, the pair(X; u) belongs to B. Clearly s! Xt by de�nition of Gg. As � � v andvkt � f , we can use the induction hypothesis and conclude t !� �f .Hence s!� X�f as required.Now let � � g. As � is normed, there is some r 2 Const(�) s.t. � � r.Hence (�; r) 2 B and S ! r by de�nition of Gg. Clearly rkg � g and due tothe above proved property we have r !� �g for every � 2 Lin(�). As g ! �is a rule of Gg, we obtain S ! r !� �g ! �.The set of states which are reachable from a given X 2 Const(�) in one ` a)'move is no longer regular. The next theorem says that this set can, in somesense, be represented by a CF grammar.Theorem 3.23. For all X 2 Const(�), a 2 Act(�) there is a context-freegrammar G(X;a) in 3-GNF of size O(n4) constructible in O(n4) time s.t. thefollowing two conditions hold:� if G(X;a) generates an element of Lin(�), then X a) �� if X a) �, then G(X;a) generates at least one element of Lin(�)Proof: Let G(X;a) = (N;�; �; Xa) where� N = fY a; Y � j Y 2 Const(�)g [ fSg� � = Const(�)� � is de�ned as follows:{ the rule S ! Xa is added to �.{ for each transition Y a! Z1k � � � kZk of � we add the ruleY a ! Z�1 � � �Z�k(if k = 0, we add the rule Y a ! �).{ for each transition Y �! Z1k � � � kZk of � we add the ruleY � ! Z�1 � � �Z�k(if k = 0, we add Y � ! �). Moreover, if k � 1 then for each1 � i � k we also add the ruleY a ! Z�1 � � �Zai � � �Z�k22



{ for each Y 2 Const(�) we add the ruleY � ! Y .The fact that G(X;a) satis�es the above mentioned conditions follows directlyfrom its construction. Note that the size of G(X;a) is O(n2) at the moment.Now we transform G(X;a) to 3-GNF by a standard procedure of automatatheory (see [14]). It can be done in O(n4) time and the size of resultinggrammar is O(n4).The notion of expansion is de�ned in a di�erent way (when compared to theone of the previous section).De�nition 3.24. Let K be a fundamental relation. We say that a pair(X; f) 2 K expands in K i� the following two conditions hold:� for each X a! � there is some f a) g s.t. � 2 L(Ag), where � is thecanonical form of �.� for each f a! g the language L(Ag) \ L(G(X;a)) is non-empty.A pair (�; f) 2 K expands in K i� I(f) = f�g and for each f �! g we havethat � 2 L(Ag). The set of all pairs of K which expand in K is denoted byExp(K).Theorem 3.25. Let K be a fundamental relation. The set Exp(K) can becomputed in O(n11m8) time.Proof: First we compute the automata Ag of Theorem 3.21 for all g 2Const(�). This takes O(nm2) time. Then we compute the grammars G(X;a)of Theorem 3.23 for all X 2 Const(�), a 2 Act . This takes O(n6) time.Now we show that it is decidable in O(n10m7) time whether a pair (X; f) ofK expands in K.The �rst condition of De�nition 3.24 can be checked in O(n3m2) time, asthere are O(n) transitions X a! �, O(m) states g s.t. f a) g, and for eachsuch pair (�; g) we verify whether � 2 L(Ag) where � is the canonical formof �; this membership test can be done in O(n2m) time, as the size of � isO(n) and the size of Ag is O(nm).The second condition of De�nition 3.24 is more expensive. To test the empti-ness of L(Ag)\L(G(X;a)), we �rst construct a pushdown automaton P whichrecognizes this language. P has O(m) control states and its total size isO(n5m). Furthermore, each rule pX a! q� of P has the property that23



length(�) � 2, because G(X;a) is in 3-GNF. Now we transform this automa-ton to an equivalent CF grammar by a well-known procedure described e.g.in [14]. The size of the resulting grammar is O(n5m3), and its emptinesscan be thus checked in O(n10m6) time (cf. [14]). This construction has tobe performed O(m) times, hence we need O(n10m7) time in total.Pairs of the form (�; f) are handled in a similar (but less expensive) way. AsK contains O(nm) pairs, the computation of Exp(K) takes O(n11m8) time.It remains to show that Exp really does what we need.Theorem 3.26. Let K be a fundamental relation s.t. Exp(K) = K. ThenCl(K) is a weak bisimulation.Proof: Let (�; f) 2 Cl(K)i. We prove that for each � a! � there is somef a) g s.t. (�; g) 2 Cl(K) and vice versa. By induction on i.� i = 0. Then (�; f) 2 K, and we can distinguish the following twopossibilities:1. � = XLet X a! �. By De�nition 3.24 there is f a) g s.t. � 2 L(Ag) forsome � 2 Lin(�). Hence (�; g) 2 Cl(K) due to the �rst part ofTheorem 3.4.Let f a! g. By De�nition 3.24 there is some string w 2 L(Ag) \L(G(X;a)). Let w 2 Lin(�). We have X a) � due to the �rst partof Theorem 3.23, and (�; g) 2 Cl(K) due to Theorem 3.4.2. � = �Let f a! g. Then a = � and � 2 L(Ag) by De�nition 3.24. Hence(�; g) 2 Cl(K) due to Theorem 3.4.� Induction step. Let (�; f) 2 Cl(K)i+1. There are two possibilities.I. � = Xk
 and there are r; s s.t. (X; r) 2 K, (
; s) 2 Cl(K)i, andrks � f .Let Xk� a! �. The action `a' can be emitted either by X or by�. We distinguish the two cases.1) Xk
 a! �k
. As (X; r) 2 K and X a! �, there is some r a) r0s.t. (�; r0) 2 Cl(K). As rks � f and r a) r0, there is some f a) gs.t. r0ks � g. To sum up, we have (�; r0) 2 Cl(K), (
; s) 2 Cl(K),r0ks � g, hence (�k
; g) 2 Cl(K) due to Lemma 3.19.24



2) Xk
 a! Xk�. As (
; s) 2 Cl(K)i and 
 a! �, there is s a) s0s.t. (�; s0) 2 Cl(K). As rks � f and s a) s0, there is f a) g s.t.(rks0) � g. Due to Lemma 3.19 we obtain (Xk�; g) 2 Cl(K).Let f a! g. As rks � f , there are r x) r0, s y) s0 where x = a^y =� or x = � ^ y = a s.t. r0ks0 � g. As (X; r) 2 K, (
; s) 2 Cl(K)i,there are X x) �, 
 y) � s.t. (�; r0); (�; s0) 2 Cl(K). ClearlyXk
 a) �k� and (�k�; g) 2 Cl(K) due to Lemma 3.19.II. (�; r) 2 Cl(K)i and there is some s s.t. (�; s) 2 K and rks � f .The proof can be completed along the same lines as above.Now we can approximate (and compute) the bisimulation base in the sameway as in the previous section.Theorem 3.27. There is a j 2 N, bounded by O(nm), such that Bj = Bj+1.Moreover, Bj = B.Proof: `�:' It su�ces to show that Exp(B) = B (cf. the proof of Theo-rem 3.9). Let (�; f) 2 B. Then � � f , and � = X for some X 2 Const(�)or � = �. We show that (X; f) expands in B (a proof for the pair (�; f) issimilar).Let X a! �. As X � f , there is f a) g s.t. � � g. Let � be the canonicalform of �. Due to Lemma 3.22 we have � 2 L(Ag).Let f a! g. As X � f , there is X a) � s.t. � � g. Due to Theorem 3.23 thereis � 2 Lin(�) s.t. � 2 L(G(X;a)). Moreover, � 2 L(Ag) due to Lemma 3.22.Hence, L(Ag) \ L(G(X;a)) is nonempty.`�:' It follows directly from Theorem 3.26.We �nish this section with the following (main) theorem:Theorem 3.28. Weak bisimilarity between normed BPP and �nite-state pro-cesses is decidable in O(n12m9) time.Proof: By Theorem 3.27 the computation of the expansion of Theorem 3.25(which costs O(n11m8) time) has to be done O(nm) times.4 ConclusionsWe have proved that weak bisimilarity is decidable between BPA and �nite-state processes in O(n5m7) time, and between normed BPP and �nite-stateprocesses in O(n12m9) time. Although the degrees are rather high, it does25



not necessarily mean that our algorithms are ine�cient; the complexity ofthe worst case is not a reliable measure of practical usability. It followsfrom the employed techniques that the algorithms are easy to implementand might be thus evaluated in existing software tools. There are manypossibilities how to improve their performance, and we argue that furtherdevelopment based on practical experience should bring highly satisfactoryresults. The algorithms might be especially useful is those situations whenthe intended behavior of a process is easy to specify (by a �nite-state system),but its actual implementation contains components which are in�nite-state(e.g. counters or bu�ers).The technique of bisimulation bases has also been used in [12, 13]. However,those bases are di�erent from ours; the way how they generate `new' bisimilarpairs of processes is more complicated, and additional algebraic properties ofstrong bisimilarity are exhausted. The main di�culty of those proofs is toshow that the membership to the `closure' of the de�ned bases is decidable inpolynomial time. Our bases are simple, and the main point of the proofs isthe `symbolic' representation of in�nite subsets of BPA and BPP state-space.We would also like to mention that our proofs can be easily adapted to otherbisimulation-like equivalences, where the notion of `bisimulation-like' equiv-alence is the one of [16]. A concrete example is termination-sensitive bisimi-larity of Section 3.1.1. Intuitively, almost every bisimulation-like equivalencehas the algebraic properties which are needed for the construction of the bi-simulation base, and the `symbolic' technique for state-space representationcan also be adapted. See [16] for details.References[1] Proceedings of MFCS'98 Workshop on Concurrency, FIMU-RS-98-06.Faculty of Informatics MU, Brno, 1998.[2] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimula-tion equivalence for processes generating context-free languages. Journalof the Association for Computing Machinery, 40:653{682, 1993.[3] J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 18 in Cam-bridge Tracts in Theoretical Computer Science. Cambridge UniversityPress, 1990.[4] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of push-down automata: application to model checking. In Proceedings of CON-CUR'97, volume 1243 of LNCS, pages 135{150. Springer-Verlag, 1997.26
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