
An Institution for UML 2.0 Static Structures

María Victoria Cengarle1 and Alexander Knapp2

1 Technische Universität München
cengarle@in.tum.de

2 Universität Augsburg
knapp@informatik.uni-augsburg.de

Abstract. This work presents the theory of UML 2.0 static structures (or class
diagrams), that is proven to define an institution.

1 Introduction

The present work is devoted to the language of UML 2.0 static structures. We develop an
abstract syntax and a formal semantics, and prove this definition to be an institution [1].

Preliminaries

A class hierarchy is a partial order C = (C,≤C) with a set of class names C and
a subclass relation ≤C ⊆ C × C. By T(C) we denote the type extension of C by
primitive types and type constructors. T(C) is likewise a class hierarchy (T (C),≤T (C))
with C ⊆ T (C) and ≤C ⊆ ≤T (C).

Given a class hierarchy C = (C,≤C), a C-object domain is a C-indexed family
O = (Oc)c∈C of sets with Oc ⊆ Oc′ if c ≤C c′. Given moreover a type extension T,
the value extension of a C-object domain O = (Oc)c∈C by primitive values and value
constructions, which is denoted by VT

C(O), is a T(C)-object domain (Vc)c∈T (C) such
that Vc = Oc for all c ∈ C.

These definitions can be lifted to categories, where T is a functor from class hierar-
chies to class hierarchies, VT

C is a functor from object domains to object domains, and
VT is a natural transformation. Moreover, class hierarchies, type extensions, object do-
mains, and value extensions can be formalized as a Grothendieck construction [2] and
also as a monad [3]; see the appendices.

2 Syntax

A multiplicity is a pair m ∈ N0 × (N0 ∪ {?}), such that if m = (n1, n2) and n2 6= ?
then n1 < n2. We let M denote the set of multiplicites.3

A CL-signature Σ = (C,P) declares

3 This definition is enough to cover all UML multiplicities. Indeed, a multiplicity n ∈ N0 is
equivalent to n..n, and a multiplicity ? is equivalent to 0..?.

1. a finite class hierarchy C = (C,≤C), and
2. an association declaration P = (R,P) where R is a finite set of role names and
P is a finite set (pw)w∈(R×T (C))++ of relation names indexed over pairs of a role
name and a class name of the extended class hierarchy,4 such that for any class
name c ∈ C, the role names of the associations in which any c′ ≤C c is involved
are all different.5

If pw ∈ P with w = (r1, c1) · · · (rn, cn), we write p(r1 : c1, . . . , rn : cn) ∈ P .
Intuitively, a CL-signature represents a class diagram. Therein, classes with at-

tributes are declared, as well as inheritance and association relations among classes.
Structural features (and also queries) are captured by role names of associations. Dec-
laration of methods has been disregarded, since within class diagrams methods are not
given any meaning.

c
A B C

2

1..*

/pq

17

1..52..3 3..*

vu

p qa b b’

Fig. 1. A simple class diagram

Given a CL-signature Σ = (C,P), the Σ-formulas state the multiplicities asso-
ciated with a relation name. In order to express multiplicities, the selection/partition
operator •, the equijoin/projection operator ∗, role name renaming [_/_] and cardinal-
ity # are used. So for instance the associations declared in Fig. 1 are p(a : A, b : B),
q(b′ : B, c : C) and pq(a : A, c : C), the last one derived from the former two ones.
The derived association and the multiplicities associated with p, q and pq are expressed
by the following formulas:

2 ≤ #a • p ≤ 3
1 ≤ #b • p
3 ≤ #b′ • q
1 ≤ #c • q ≤ 5
pq = (p[b′/b] ∗ q)[u/a, v/c] (1)
#a • pq = 17
#c • pq = 2

In the first formula, the relation p is first partitioned, grouping its pairs according to their
a-value. A set of sets is then obtained, and to all of these sets the cardinality operator

4 The relation names represent the associations of the class diagram. Relations are at least binary,
and by A++ we abbreviate A ·A+.

5 Formally, if p(r1 : c1, . . . , rm : cm) and q(s1 : d1, . . . , sn : dn) are relations in P and
ck = dl ∈ C, then ri 6= sj for any i 6= k and for any j 6= l (1 ≤ i ≤ m, 1 ≤ j ≤ n).

is (extensionally) applied. The values thus obtained must be within the stated bounds.
The second formula is similar, only that the pairs of p are grouped according to their
b-value. The third and fourth formulas are similarly read.

The formula (1) renames first a role name of relation p, equijoins the obtained re-
lation with q, and projects away the repeated value. That is, the tuples (x, y) in p and
(y, z) in q are arranged to (x, y, z). Finally the role names are adjusted.6 The two for-
mulas following are read as explained above.7 Notice that the derived multiplicities for
pq are (1, ?) on the A side, which is declared to be 2, and (6, ?) on the C side, which is
declared to be 17. That is, the declared multiplicities do not contradict the derived ones.
Hence, the diagram admits a model.

For a multiplicity constraint the selection/partition operator • can be used, in which
case (n − 1) role names are required if the association is n-ary. Formally, the set of
well-formed formulas induced by a CL-signature is defined as follows. Let Σ = (C,P)
be a CL-signature with C = (C,≤C) and P = (R,P). The set Φ of Σ-formulas is
defined by

T ::= P | T ∗ T | T [R/R] | (T)
Π ::= R+ • T
Φ ::= T = T
| #T = n | n ≤ #T | #T ≤ n
| #Π = n | n ≤ #Π | #Π ≤ n

where n ∈ N. Additionally, some context conditions apply. For instance, there must be
exactly one pair rolename/classname coincidence in left and right operator of an equi-
join/projection ∗. The words in T are called derived relations. A Σ-theory presentation
is a finite set of Σ-formulas.

Let Σ1 = (C1,P1) and Σ2 = (C2,P2) be CL-signatures with Ci = (Ci,≤Ci)
and Pi = (Ri, Pi) (i = 1, 2). A CL-morphism σ : Σ1 → Σ2 is a triple of maps
〈σC , σR, σP 〉 between class names, role names, and predicate names, such that the fol-
lowing conditions hold:

1. a, b ∈ C1 with a ≤C1 b implies σC(a) ≤C2 σC(b),
2. pw ∈ P1 implies σP (p)σ(w) ∈ P2,

6 For greater arities, the second occurrence of the repeated value is removed from the tuple.
For instance, if p has arity 5 and q has arity 7, if the third component of p and the sixth of q
are to be equijoined, then from tuples (x1, x2, x3, x4, x5) and (y1, y2, y3, y4, y5, x3, y7) the
tuple (x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, y7) is constructed for the equijoin/projection result
relation.

7 The selection/partition operator corresponds to the clause GROUP BY of SQL; in combination
with cardinality, it can be expressed using cardinality and the relational algebra operator σϕ
of selection: 2 ≤ #a • p ≤ 3 is equivalent to (∀x ∈ A)(2 ≤ #σa=x(p) ≤ 3) The equi-
join/projection operator can be expressed using the relational algebra operators of selection, πc
of projection, × of Cartesian product, and ρn/o of renaming: pq = (p[b′/b] ∗ q)[u/a, v/c] is
equivalent to ρu/a(ρv/c(πabc(σb=b′(p×q)))). In order to express the multiplicity constraints,
however, we do not need the whole battery of possibilities as offered by the relational algebra,
but just the above operators.

where the extension of σC to T (C) leaves built-in types unchanged,8 σC(w) is the
canonical extension of σC to words in T (C)+, and σ is the canonical extension of σC
and σR to words in (R× T (C))++.

The extension of CL-morphisms to formulas is canonical.
It is easy to show that the composition of CL-morphisms is a CL-morphism, that

composition is associative, and identities are CL-morphisms. Thus, CL-signatures and
CL-morphisms define a category which we denote by CL.

3 Semantics

Given a CL-signature Σ = (C,P) with C = (C,≤C) and P = (R,P), a Σ-interpreta-
tion I consists of a pair (O,A) where O = (Oc)c∈C is a C-object domain and A contains
a relation pI ⊆ Oc1 × . . . × Ocn for each relation name p(r1 : c1, . . . , rn : cn) ∈ P .
The role names induce set valued functions, i.e., if p(r1 : c1, . . . , rn : cn) ∈ P , then the
(n − 1)-ary function rIi (1 ≤ i ≤ n) is defined by rIi (a1, . . . , ai−1, ai+1, . . . , an) =
{a ∈ Oci | (a1, . . . , ai−1, a, ai+1, . . . , an) ∈ pI}.9

Signatures do not declare methods (or operations), thus no change of the state of an
object may take place, and the semantics of a signature needs not define either a notion
of state or a notion of state transition.

Given a CL-signature Σ = (C,P) with P = (R,P), given a Σ-interpretation I =
(O,A), the interpretation evaluates derived relations as follows:

1. if p(r1 : c1, . . . , rm : cm) and q(s1 : d1, . . . , sn : dn) with rk = sl, ck = dl and
ri 6= sj for any i 6= k and any j 6= l (1 ≤ i ≤ m, 1 ≤ j ≤ n), then (p ∗ q)(r1 :
c1, . . . , rk : ck, . . . , rm : cm, s1 : d1, . . . , sl−1 : dl−1, sl+1 : dl+1, . . . , sn : dn) is
derived and
(p ∗ q)I = { (o1, . . . , ok, . . . , om, o

′
1, . . . , o

′
l−1, o

′
l+1, . . . , o

′
n) |

(o1, . . . , ok, . . . , om) ∈ pI ∧ (o′1, . . . , o′l−1, ok, o
′
l+1, . . . , om) ∈ qI }

2. in case of renaming, only the associated set valued function is differently denoted
3. if p(r1 : c1, . . . , rm : cm) and {i1, . . . , ik} ⊆ {1, . . . ,m}, then

(ri1 · · · rik • p)I = {{t ∈ pI | πi1(t) = o1 ∧ · · · ∧ πik(t) = ok} |
o1 ∈ Oci1 , . . . , ok ∈ Ocik }

Given moreover a Σ-formula ϕ, then I satisfies ϕ if one of the following conditions
holds:

1. ϕ is T1 = T2 and T I1 = T I2
2. ϕ is #T = n and #T I = n
3. ϕ is n ≤ #T and n ≤ #T I
4. ϕ is #T ≤ n and #T I ≤ n
8 This actually is the case if T is a functor; see the appendices.
9 Role names can be used in more than one association declaration, provided ambiguities are

avoided, i.e., no role name is used more than once in the associations in which one and the
same class name, or any of its subclasses, is involved. Therefore, a role name may induce
more than one set valued function; these functions have different domains because of that
proviso, and thus no confusion may arise from homonymy.

5. ϕ is #Π = n and #S = n for all S ∈ ΠI
6. ϕ is n ≤ #Π and n ≤ #S for all S ∈ ΠI
7. ϕ is #Π ≤ n and #S ≤ n for all S ∈ ΠI

If the interpretation I satisfies the formula ϕ, we write I |= ϕ.10

Given a CL-signature Σ = (C,P) with C = (C,≤C), given Σ-interpretations I =
(O,A) and I ′ = (O′,A′) with O = (Oc)c∈C and O′ = (O′c)c∈C , a Σ-homomorphism
h : I → I ′ is a family of maps (hc)c∈C with hc : Oc → O′c such that (v1, . . . , vn) ∈
pI iff (hc1(v1), . . . , hcn(vn)) ∈ pI

′
for any vi ∈ Oc (i = 1, . . . , n) for any p(r1 :

c1, . . . , rn : cn) ∈ P .
It is not difficult to show the existence of homomorphic identities, that composition

of Σ-homomorphisms is a Σ-homomorphism, and that composition is associative. For
any CL-signature Σ, thus, Σ-interpretations and Σ-homomorphisms define a category
which we denote by I(Σ).

Given CL-signatures Σ1 = (C1,P1) and Σ2 = (C2,P2) with Ci = (Ci,≤Ci)
and Pi = (Ri, Pi) (i = 1, 2), given a CL-morphism σ : Σ1 → Σ2, and given a
Σ2-interpretation I2 = (O2,A2) with O2 = (O2

c)c∈C2 and A2 = {pI2 | p ∈ P2}, the
reduct I2 |σ of I2 along σ is the Σ1-interpretation (O1,A1) with O1 = (O1

σ(c))c∈C1

and A1 = {σP (p)I2 | p ∈ P1}.
Let Σ1 = (C1,P1) and Σ2 = (C2,P2) be CL-signatures with Ci = (Ci,≤Ci)

(i = 1, 2) and Pi = (Ri, Pi) (i = 1, 2), let σ : Σ1 → Σ2 be a CL-morphism.
Let I2 = (O2,A2) and I ′2 = (O′2,A′2) be Σ2-interpretations with O2 = (Oc)c∈C2

O′2 = (O′c)c∈C2 . Let moreover I1 denote I2 |σ and I ′1 denote I ′2 |σ . Given a Σ2-
homomorphism h2 : I2 → I ′2 the reduct h2 |σ of h2 along σ is the Σ1-homomorphism
h1 : I1 → I ′1 defined by h1c(v) = h2σ(c)(v) for any c ∈ C1, for any v ∈ Oc. It is
trivial to check that h1 is, indeed, a Σ1-homomorphism.

Given CL-signatures Σ1 and Σ2, a CL-morphism σ : Σ1 → Σ2 defines a functor
from I(Σ1) to I(Σ2). Indeed, by definition domain and codomain of the reduct of an
homomorphism are the reduct of domain and codomain, respectively, of the homomor-
phism, and it is routine to show that the reduct of a composition of two homomorphisms
is the composition of the reducts of those homomorphisms and that the reduct of an
identity homomorphism is likewise an identity.

Moreover, given a Σ2-interpretation I2 and a Σ1-formula ϕ, the satisfaction con-
dition holds, i.e., I2 |= σ(ϕ) iff I2 |σ |= ϕ. It suffices to show T I2 |σ = σ(T)I2 and
ΠI2 |σ = σ(Π)I2 , straightforwardly checked by induction on the structure of T and
Π; the base case where T is p(c1, . . . , cn) verifies the thesis by definition of reduct.

Therefore, signatures, interpretations, reducts, formulas and the satisfaction relation
define an institution [1].

4 Conclusions

This is a usual setting as in order-sorted algebras. The role names induce functions,
which can be safely disregarded here, since they have no influence whatsoever on the
10 This interpretation of associations makes useless the “property string” unique, since by default

an association end represents a set. In the presence of other properties like sequence, ordered
and nonunique, the condition to be fulfilled by the interpretation has to be revised.

concern of this work, namely the institution of classes and in particular the satisfaction
condition. Moreover, the sketched proofs are standard.

The institutional framework should be revised and correspondingly adapted if prop-
erties like nonunique, sequence or ordered can possibly be attached to a role name.

References

1. Goguen, J.A., Burstall, R.M.: Introducing Institutions. In Clarke, E.M., Kozen, D., eds.: Logic
of Programs. Volume 164 of Lecture Notes in Computer Science., Springer (1983) 221–256

2. Grothendieck, A.: Catégories Fibrées et Descente. In: Revêtements Etales et Groupe Fonda-
mental. Volume 224 of Lecture Notes in Mathematics., Springer (1971) 145–194

3. Lane, S.M.: Categories for the Working Mathematician. Springer-Verlag, New York (1998)
4. Tarlecki, A., Burstall, R.M., Goguen, J.A.: Some Fundamental Algebraic Tools for the Se-

mantics of Computation – Part 3: Indexed Categories. Theoretical Computer Science 91(2)
(1991) 239–264

A Grothendieck construction

Let C : Iop → Cat be a functor, where Cat is the category of small categories and
functors, and I is a small category. The associated Grothendieck construction (see [2,4])
is a category G(C) with objects 〈i, x〉 where i is an object in I and x an object in
C(i), and with arrows 〈σ, α〉 : 〈i, x〉 → 〈j, y〉 where σ : i → j is an arrow in C
and α : x → C(σ)(y) an arrow in C(i). Composition of arrows in G(C) is defined by
〈σ, α〉 ◦ 〈σ′, α′〉 = 〈σ ◦ σ′, C(σ)(α′) ◦ α〉.

The functor C : Iop → Cat can also be regarded as a category with objects C(i)
and arrows C(σ) : C(j) → C(i) if i, j are objects in I and σ : i → j an arrow in I .
C : Iop → Cat is called the indexed category over I .

The above syntax for static structures can be formalized as a Grothendieck con-
struction. Class hierarchies are partially ordered sets or posets. Class hierarchies can
thus be regarded as objects of the category Poset, whose arrows are monotone func-
tions. We define an interpretation functor CStr : Posetop → Cat that maps class
names to sets of object identifiers such that the subclass relation is interpreted as the
subset relation. CStr moreover maps monotone functions to the reduct. More pre-
cisely, given a class hierarchy C = (C,≤C) with ≤C ⊆ C × C, CStr(C) is the
category whose objects are C-object domains and whose arrows h : O1 → O2 for
O1 = (O1

c)c∈C and O2 = (O2
c)c∈C consist of individual functions hc : O1

c → O2
c

for each c ∈ C and are called C-homomorphisms; arrow composition and identity ar-
rows are straightforwardly defined. Furthermore, given an arrow σ : C → C′ in Poset
with C′ = (C ′,≤C′), the functor CStr(σ) : CStr(C′) → CStr(C) maps each C′-
object domain O′ = (Oc′)c′∈C′ to the C-object domain O′ |σ = (O′σ(c))c∈C , and maps
each C′-homomorphism h = (hc′)c′∈C′ between C′-object domains O′1 and O′2 to the
C-homomorphism h |σ = (hσ(c))c∈C between C-object domains O′1 |σ and O′2 |σ .

The corresponding Grothendieck construction G(CStr) is a category whose objects
are pairs (C,O) with C a class hierarchy and O a C-object domain, and whose arrows

are 〈σ, h〉 : (C,O) → (C′,O′) with σ : C → C′ an arrow in Poset and h : O →
CStr(σ)(O′) a C-homomorphism.

Let C : Iop → Cat be an indexed category with objects C(i) for i an object of I
and arrows C(σ) : C(j) → C(i) for σ : i → j an arrow of I . Let D : Iop → Cat
be another indexed category over the same index category. Let F : C → D be an
indexed functor (i.e., a natural transformation from C to D). Naturality of F means that
D(σ) ◦ Fj = Fi ◦ C(σ) for each σ : i→ j in I (diagrammatically shown in Fig. 2).

I:
i

j
?

σ

Cat: C(i) D(i)

C(j) D(j)

-Fi

6
C(σ)

6
D(σ)

-
Fj

Fig. 2. Naturality diagrams

The indexed functor F induces a flattened functor G(F) from the flattened cate-
gory G(C) to the flattened category G(D) defined, on objects 〈i, x〉, by G(F)(〈i, x〉) =
〈i, Fi(x)〉 and, on arrows 〈σ, α〉 : 〈i, x〉 → 〈j, y〉, by G(F)(〈σ, α〉) = 〈σ, Fi(α)〉 :
〈i, Fi(x)〉 → 〈j, Fj(y)〉.

On the one hand, CStr is an indexed category over Poset and G(CStr) is the cor-
responding flattened category; see [4]. On the other, T : Poset → Poset is a functor
and, moreover, VT

C : CStr(C) → CStr(T(C)) is a functor for any class hierarchy C,
i.e., VT : CStr→ CStr ◦T is a natural transformation. Notice that CStr ◦T is likewise
an indexed category over Poset.

For the category Poset as index, CStr as the indexed category C, CStr ◦ T as the
indexed category D, and VT as the natural transformation F , the compatibility of VT

and T is given by the naturality of VT . Indeed, let C = (C,≤C) and C′ = (C ′,≤C′)
be class hierarchies, i.e., objects in Poset. Let moreover σ : C → C′ be a monotone
function, i.e., an arrow in Poset. Finally, let O′ be an object domain for C′. Thus, on
the one hand, CStr(σ)(O′) is an object domain for C, and, on the other, VT

C′(O′) is an
object domain for T(C′). The functor T and the natural transformation VT satisfy the
following property:

VT
C(CStr(σ)(O′)) = CStr(T(σ))(VT

C′(O′))

or, in words, the extension of the reduct and the reduct of the extension coincide. This
is due to the fact that VT is a natural transformation; see Fig. 2 with C for i, C′ for j,
CStr for C, CStr ◦ T for D, and VT for F .

Informally, the flattened version of the functor VT
C transforms a pair 〈C,O〉 of a class

hierarchy C and a C-object domain into a pair 〈C,VT
C(O)〉 of the same class hierarchy

C and the T(C)-object domain VT
C(O) that extends the C-object domain O according to

the type extension T.

B Monad construction

We assume a monad on Poset consisting of the functor T : Poset → Poset and two
natural transformations η : 1Poset → T, where 1Poset denotes the identity functor on
Poset, and µ : T2 → T, where T2 is the functor T ◦ T from Poset to Poset. That is,
given a class hierarchy (a poset) C,

µC : T(T(C))→ T(C), and
ηC : C→ T(C) since 1Poset(C) = C

are arrows in Poset, i.e., monotone functions between class hierarchies.

Example 1: T is “set”

Let B be a set of basic types. For any class hierarchy C = (C,≤C) in Poset, we
define the class hierarchy B(C) = (B(C),≤B(C)) by B(C) = C] B and ≤B(C) =
≤C ∪ idB .11 For any monotone function σ : C → C′ in Poset with C = (C,≤C) and
C′ = (C ′,≤C′), we define the function B(σ) : B(C) → B(C′) by B(σ)(c) = σ(c) if
c ∈ C and B(σ)(b) = b if b ∈ B. B(σ) obviously is monotone, and thus B defines a
functor from Poset to Poset. We denote by BPoset the category with objects B(C) and
arrows B(σ), where C is an object and σ an arrow in Poset.

For any class hierarchy C = (C,≤C) in BPoset, we define the class hierarchy
T(C) = (T (C),≤T (C)) by T (C) = C ∪ {set(c) : c ∈ C} and ≤T (C) = ≤C ∪
{(set(c1), set(c2)) : c1 ≤C c2}. For any monotone function σ : C → C′ in Poset with
C = (C,≤C) and C′ = (C ′,≤C′), we define the function T(σ) : T(C) → T(C′)
by T(σ)(c) = σ(c) and T(σ)(set(c)) = set(σ(c)) for any c ∈ C, which evidently is
monotone. Therefore, T defines a functor from BPoset to BPoset.

For any class hierarchy C = (C,≤C) in BPoset, we define the following two arrows
in Poset (i.e., monotone functions):

– embedC : C→ T(C)
embedC(c) = c

– flattenC : T(T(C))→ T(C)
flattenC(t) = t if t ∈ C ∪ T (C)
flattenC(t) = set(c) if t 6∈ C ∪ T (C), t = set(set(c))

Let O = (Oc)c∈C be an object domain for C, let its value extension be VT
C(O) =

(O′c)c∈T (C). The C-object domains CStr(embedC)(VT
C(O)) and O coincide since, on

the one hand and by definition, the value extension VT
C associates the set O′c = Oc with

any c ∈ C and, on the other hand, embedC(c) = c for any c ∈ C. For any class name c
in C, we let the value extension VT

C associate with set(c) the singleton O′set(c) = {Oc}
(i.e., the value of set(c) is the singleton whose only element is the set of all values
associated with c).

VT
C(O) is a T(C)-object domain and thus both CStr(flattenC)(VT

C(O)) as well
as VT

T(C)(V
T
C(O)) are T(T(C))-object domains. These two T(T(C))-object domains

11] denotes disjoint union. Equivalently, one may think the basic types to be absent of any class
hierarchy.

are isomorph, as can be easily shown. To illustrate this by means of a simple exam-
ple, let C be {person}, let Operson = {Joe,Mary}, let CStr(flattenC)(VT

C(O)) =
(O′′c)c∈T (T (C)), and let VT

T(C)(V
T
C(O)) = (O′′′c)c∈T (T (C)). Then, T (C) is {person,

set(person)} and O′set(person) = {{Joe,Mary}}. Furthermore, T (T (C)) is {person,
set(person), set(set(person))}, and O′′set(set(person)) = {{Joe,Mary}} whereas
O′′′set(set(person)) = {{{Joe,Mary}}}.

We let a further value extension WT
C associate with set(c) the set ℘(Oc) for any

class name c ∈ C (i.e., the values associated with set(c) are all the subsets ofOc). Then
for the particular case of above with C = {person} and Operson = {Joe,Mary}, WT

C
associates with set(person) the set {∅, {Joe}, {Mary}, {Joe,Mary}}. Moreover,

– CStr(flattenC)(WT
C(O)) associates with set(set(person)) the set

{∅, {Joe}, {Mary}, {Joe,Mary}}

whereas
– WT

T(C)(W
T
C(O)) associates with set(set(person)) the set

{∅, {∅}, {{Joe}}, {{Mary}}, {{Joe,Mary}},
{∅, {Joe}}, {∅, {Mary}}, {∅, {Joe,Mary}},
{{Joe}, {Mary}}, {{Joe}, {Joe,Mary}}, {{Mary}, {Joe,Mary}},
{∅, {Joe}, {Mary}}, {∅, {Joe}, {Joe,Mary}}, {∅, {Mary}, {Joe,Mary}},
{{Joe}, {Mary}, {Joe,Mary}}, {∅, {Joe}, {Mary}, {Joe,Mary}} }

that is, the second one is the powerset of the first one. ¤

Example 2: T is “set star”

Let B be a set of basic types. For any class hierarchy C = (C,≤C) in Poset, we define
the class hierarchy T(C) = (T (C),≤T (C)) by T (C) =

⋃
i∈N Ti where T0 = C ∪ B

and Ti+1 = {set(t) : t ∈ Ti} (i ∈ N), and ≤T (c) =
⋃
i∈N≤Ti with ≤T0 = ≤C ∪ idB

and ≤Ti+1 = {(set(t1), set(t2)) : t1, t2 ∈ Ti ∧ t1 ≤Ti t2} (i ∈ N).12

By abuse of notation, we write T (C) = {setn(c) : c ∈ C ∪B} with set0(c)def= c

and seti+1(c)def=set(seti(c)). It is worth noting that seti(c1) ≤T (C) seti(c2) implies
seti+1(c1) ≤T (C) seti+1(c2).

If σ : C → C′ with C = (C,≤C) and C′ = (C ′,≤C′) is an arrow in Poset,
we define T(σ) : T(C) → T(C′) by T(σ)(set0(c)) = σ(c) and T(σ)(seti+1(c)) =
set(T(σ)(seti(c))) for any c ∈ C∪B. Monotonicity of σ trivially implies monotonicity
of T(σ). Hence, T defines a functor from Poset to Poset.

Notice that T(T(C)) = T(C) for any C. Hence for any class hierarchy C = (C,≤C)
in Poset, the two arrows in Poset (i.e., monotone functions) embedC and flattenC can
be defined as follows:

– embedC : C→ T(C) with embedC(c) = c for any c ∈ C;

12 Similarly as in the previous example, we assume that the basic types are not included in any
class hierarchy. Moreover, the constructor set(·) is likewise nonexistent in any class hierarchy.

– flattenC : T(T(C))→ T(C) with flattenC(t) = t for any t ∈ T(T(C)).

The same as in the previous example, and by definition, CStr(embedC)(VT
C(O)) =

O for any C-object domain O. Moreover, CStr(flattenC)(VT
C(O)) = VT

C(O) since
flattenC : T(T(C))→ T(C) is the identity.

Let O = (Oc)c∈C and VT
C(O) = (O′c)c∈C . We let VT

C define O′set0(c) = Oc and
O′seti+1(c) = ℘(O′seti(c)) for any class name c ∈ C. ¤

The monad, as such, and which by abuse of notation we denote by T, satisfies the
following coherence conditions:

1. µ ◦ Tµ = µ ◦ µT (as natural transformations T3 → T), and
2. µ ◦ Tη = µ ◦ ηT = 1T (as natural transformations T → T; here 1T denotes the

identity transformation from T to T)

where

Tµ : T3 → T2, i.e., (Tµ)C : T(T(T(C)))→ T(T(C)) with (Tµ)C
def= T(µC),

µT : T3 → T2, i.e., (µT)C : T(T(T(C)))→ T(T(C)) with (µT)C
def=µT(C),

Tη : T → T2, i.e., (Tη)C : T(C)→ T(T(C)) with (Tη)C
def= T(ηC),

ηT : T → T2, i.e., (ηT)C : T(C)→ T(T(C)) with (ηT)C
def= ηT(C).

Let C = (C,≤C) be any class hierarchy, let O be a C-object domain. On the one
hand, also T(C) is a class hierarchy and VT

C(O) is a T(C)-object domain. Analogously,
T(T(C)) is a class hierarchy and VT

T(C)(V
T
C(O)) is a T(T(C))-object domain. Thus, the

following pairs

〈C,O〉
〈T(C),VT

C(O)〉
〈T(T(C)),VT

T(C)(V
T
C(O))〉

are objects of G(CStr).
On the other hand, ηC : C→ T(C) and µC : T(T(C))→ T(C) are arrows in Poset.

Assume

〈ηC, idCStr(C)〉 : 〈C,O〉 → 〈T(C),VT
C(O)〉 and

〈µC, idCStr(T(T(C)))〉 : 〈T(T(C)),VT
T(C)(V

T
C(O))〉 → 〈T(C),VT

C(O)〉

are arrows in G(CStr). Since we have paired ηC and µC with identity arrows,

CStr(ηC)(VT
C(O)) = O and

CStr(µC)(VT
C(O)) = VT

T(C)(V
T
C(O)).

In consequence,

CStr(ηC) ◦ VT
C = idCStr(C) (I)

CStr(µC) = VT
T(C), i.e., CStr µ = VT T (II)

In particular, (I) is satisfied when ηC is an embedding, and (II) is satisfied when T is
idempotent and µC the identity. That this not necessarily is the case is shown by the
following example.

Example 1 (contd.): Coherence conditions for “set”

Let C = (C,≤C) be a class hierarchy in BPoset.

1. (a) (µ ◦ Tµ)C = µC ◦ (Tµ)C = µC ◦ T(µC) : T(T(T(C)))→ T(C)
Let c ∈ C. On the one hand,
µC = flattenC : T(T(C))→ T(C)

µC(t) =

{
t if t ∈ C ∪ T (C)
set(c) if t ∈ T (T (C)) \ (C ∪ T (C)), t = set(set(c))

and on the other, for any σ : C→ C′,
T(σ) : T(C)→ T(C′)

T(σ)(t) =

{
σ(t) if t ∈ C
set(σ(c)) if t ∈ T (C) \ C, t = set(c)

Thus
T(µC) : T(T(T(C)))→ T(T(C))

T(µC)(t) =

{
µC(t) if t ∈ T (T (C))
set(µC(t′)) if t ∈ T (T (T (C))) \ T (T (C)), t = set(t′)

=

t if t ∈ C ∪ T (C)
set(c) if t ∈ T (T (C)) \ (C ∪ T (C)), t = set(set(c))
set(set(c)) if t ∈ T (T (T (C))) \ (C ∪ T (C) ∪ T (T (C))),

t = set(set(set(c)))
and therefore,

µC ◦ T(µC) : T(T(T(C)))→ T(C)
set(set(set(c))) 7→ set(c)

set(set(c)) 7→ set(c)
set(c) 7→ set(c)

c 7→ c

(b) (µ ◦ µT)C = µC ◦ (µT)C = µC ◦ µT(C) : T(T(T(C)))→ T(C)
Let c ∈ C. On the one hand,

µT(C) = flattenT(C) : T(T(T(C)))→ T(T(C))
set(set(set(c))) 7→ set(set(c))

set(set(c)) 7→ set(set(c))
set(c) 7→ set(c)

c 7→ c

and on the other,
µC = flattenC : T(T(C))→ T(C)

set(set(c)) 7→ set(c)
set(c) 7→ set(c)

c 7→ c

Therefore,
µC ◦ µT(C) : T(T(T(C)))→ T(C)

set(set(set(c))) 7→ set(c)
set(set(c)) 7→ set(c)

set(c) 7→ set(c)
c 7→ c

That is, the first coherence condition holds.
2. (a) (µ ◦ Tη)C = µC ◦ (Tη)C = µC ◦ T(ηC) : T(C)→ T(C)

Let c ∈ C. On the one hand,
T(ηC) = T(embedC) : T(C)→ T(T(C))

set(c) 7→ set(c)
c 7→ c

and on the other,
µC = flattenC : T(T(C))→ T(C)

set(set(c)) 7→ set(c)
set(c) 7→ set(c)

c 7→ c
Therefore,

µC ◦ T(ηC) : T(C)→ T(C)
set(c) 7→ set(c)

c 7→ c
thus µC ◦ T(ηC) is the identity on T(C).

(b) (µ ◦ ηT)C = µC ◦ (ηT)C = µC ◦ ηT(C)
Let c ∈ C. On the one hand,

ηT(C) = embedT(C) : T(C)→ T(T(C))
set(c) 7→ set(c)

c 7→ c
and on the other,

µC = flattenC : T(T(C))→ T(C)
set(set(c)) 7→ set(c)

set(c) 7→ set(c)
c 7→ c

Therefore,
µC ◦ ηT(C) : T(C)→ T(C)

set(c) 7→ set(c)
c 7→ c

thus also µC ◦ ηT(C) is the identity on T(C).
That is, the second coherence condition likewise holds.

Consequently, T defines a monad.
By definition, CStr(embedC)(VT

C(O)) = O, that is, condition (I) holds for T.
On the contrary, CStr(flattenC)(VT

C(O)) and VT
T(C)(V

T
C(O)), both object domains for

T(T(C)), are not equal but only isomorph. That is, condition (II) does not hold for this
choice of T. ¤

Example 2 (contd.): Coherence conditions for “set star”

Let C = (C,≤C) be a class hierarchy in Poset.
1. (a) (µ ◦ Tµ)C = µC ◦ (Tµ)C = µC ◦ T(µC) : T(T(T(C)))→ T(C)

Let c ∈ C. On the one hand,
µC = flattenC : T(T(C))→ T(C)

t 7→ t
and on the other,

T(µC) : T(T(T(C)))→ T(T(C))
t 7→ t

Therefore,
µC ◦ T(µC) : T(T(T(C)))→ T(C)

t 7→ t
(b) (µ ◦ µT)C = µC ◦ (µT)C = µC ◦ µT(C) : T(T(T(C)))→ T(C)

Let c ∈ C. On the one hand,
µT(C) = flattenT(C) : T(T(T(C)))→ T(T(C))

t 7→ t
and on the other,

µC = flattenC : T(T(C))→ T(C)
t 7→ t

Therefore,
µC ◦ µT(C) : T(T(T(C)))→ T(C)

t 7→ t
That is, the first coherence condition holds.

2. (a) (µ ◦ Tη)C = µC ◦ (Tη)C = µC ◦ T(ηC) : T(C)→ T(C)
Let c ∈ C. On the one hand,

T(ηC) = T(embedC) : T(C)→ T(T(C))
t 7→ t

and on the other,
µC = flattenC : T(T(C))→ T(C)

t 7→ t
Therefore,

µC ◦ T(ηC) : T(C)→ T(C)
t 7→ t

thus µC ◦ T(ηC) is the identity on T(C).
(b) (µ ◦ ηT)C = µC ◦ (ηT)C = µC ◦ ηT(C)

Let c ∈ C. On the one hand,
ηT(C) = embedT(C) : T(C)→ T(T(C))

t 7→ t
and on the other,

µC = flattenC : T(T(C))→ T(C)
t 7→ t

Therefore,
µC ◦ ηT(C) : T(C)→ T(C)

t 7→ t
thus also µC ◦ ηT(C) is the identity on T(C).

That is, the second coherence condition likewise holds.

Consequently, T defines a monad.
By definition, CStr(embedC)(VT

C(O)) = O, that is, condition (I) holds for T. More-
over, the T(T(C))-object domains CStr(flattenC)(VT

C(O)) and VT
T(C)(V

T
C(O)) coincide

and are equal to VT
C(O). That is, also condition (II) holds for this choice of T. ¤

