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Abstract

We study combinatorial complexity characteristics of a Boolean
function related to a natural number theoretic problem. In particu-
lar we obtain a linear lower bound on the average sensitivity of the
Boolean function deciding whether a given integer is square-free. This
result allows us to derive a quadratic lower bound for the formula size
complexity of testing square-free numbers and a linear lower bound
on the average decision tree depth. We also obtain lower bounds on
the degrees of exact and approximative polynomial representations of
this function.
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1 Introduction

In view of the many applications in modern cryptology Boolean functions
related to number theoretic problems are a natural object to study from the
complexity viewpoint. Recently for such functions several complexity lower
bounds have been obtained for representations like unbounded fan-in Boolean
circuits, decision trees, and real polynomials (see [1, 3, 4, 8, 17, 18]). The two
main ingredients of these papers are harmonic analysis and estimates based
on number theoretic considerations.

In this paper we focus to a purely combinatorial complexity characteristic:
the average sensitivity of Boolean functions. The sensitivity of a function f
on input w is defined as the number of bits such that flipping one of them
will change the value of the function; the sensitivity of f is the maximum of
the sensitivity of f on input w over all strings w of a given length; finally,
the average sensitivity of f is the average (taken with respect to the uniform
distribution) of the sensitivity of f on input w over all w of a given length.
These definitions are made precise below. The sensitivity is of interest be-
cause it can be used to obtain lower bounds for the CREW PRAM complexity
of Boolean functions (see [9, 10, 16, 19]), that is the complexity on a parallel
random access machine with an unlimited number of all-powerful processors,
such that simultaneous reads of a single memory cell by several processors
are permitted, but simultaneous writes are not. The average sensitivity is a
finer characteristic of Boolean functions which has been studied in a number
of papers, see [2, 5, 14].

Our main result consists in a linear lower bound on the average sensitivity
of testing square-free numbers. More precisely, we consider the function g¢
which decides whether a given (n + 1)-bit odd integer is square-free, that is
the function for which

1, if 2o + 1 is square-free,
g(w1, oo Tn) = { 0, if 22 + 1 is square-full, (1)
where x = x; ...z, is the bit representation of z, 0 < x < 2"—1 (if necessary
we add several leading zeros), and prove that for g a linear lower bounds on
the average sensitivity holds. This lower bound is derived by studying the
distribution of odd square-free numbers with a fixed binary digit.



We then apply this estimate to derive new lower bounds on the formula
size, on the average depth of a decision tree and on the degree of certain
polynomial representations for ¢.

The linear bound on the average sensitivity of ¢ also provides an alternative
proof for the statement proved in [3, 4] that g does not belong to the class
ACP. On the other hand, even a stronger result has recently been obtained
in [1].

2 Basic Definitions

Let 8, = {0,1}" denote the n dimensional Boolean cube.

For a binary vector a € B, we denote by a( the vector obtained from a
by flipping its 7th coordinate. Now we introduce the main combinatorial
parameters of Boolean functions f : %, — {0,1} considered in this paper.

The sensitivity of f at input « € B,, is the number
oa(f) =Y |f(a) = F(a)].
i=1

The sensitivity of f is defined as

n

o(f) = max3 |£(z) - £(=)

TEDBy 4 ’
i=

and the average sensitivity of f is

(=2 5 S| - £,

TEBy =1

Clearly, s(f) < o(f) <n for any f.

The average sensitivity of a function f can be equivalently defined as the
sum of the influences of all variables on f, where the influence of z; on f,
denoted I;(f), is the probability that flipping the i-th variable of a random
Boolean input will flip the output. In other words, [;(f) is a measure of how



influential is the variable x; in determining the outcome of f. Precisely we
have

L(f)y=2""3 |f@) - f=)

IE%TL

?

which immediately implies
() = L) 2)

Formulae are defined in the following recursive way: the variables xy, xs,
..., %, and their negations —x;, —xy, ..., x, are formulae; if F}, F, are
formulae, so are F} AFy and FyV F,. The size of a formula F' is the number
of occurrences of variables in it. Notice that a formula can be equivalently
defined as a Boolean circuit whose fan-out of gates is bounded by one.

A decision tree with input variables xi,...,z, is a rooted binary tree in
which each inner node is labeled with a variable and the edges leaving the
node are labeled 0 and 1, respectively. Further each leaf v of the tree is
labeled with some value A(v) € {0,1}.

A decision tree T in a natural way defines a Boolean function f;. For
an input assignment a the computation proceeds as follows: starting from
the root, at each visited inner node a certain variable z; is tested. The
computation proceeds along the edge labeled a;. Define fr(a) = A(v), where
v is the eventually reached leaf.

For a decision tree T we say input a € B, exits in depth ¢ (denoted D, (1) =
i), if during the computation of f(a) exactly i edges are passed.

The depth of the tree is D(T) = max{D,(T) |a € B, } and its average
depth is
D(T)=2"" Z D, (T).
aE‘Bn

For a Boolean function f let D(f) and D(f), respectively, denote the mini-
mal depth and the minimal average depth, respectively, of any decision tree

T with fp = f. Clearly, D(f) < D(f) <n for any f.

Further we mention the following definitions from [15]: for a Boolean function
98, — {0,1} let the real degree of f, denoted by A(f), be the degree



of the unique multilinear real polynomial P(Xy,...,X,) for which

[z, .. xn) = Play, ..., xy)

holds for every (xi,...,z,) € %B,. Here multilinearity means, that each
variable appears with degree at most 1.

We also define the real approximate degree of f, denoted by d(f), as the
degree of a multilinear real polynomial P(Xj,...,X,) for which

|f(a1, .. an) — Play, ..., a0) <1/3

holds for every (zi,...,x,) € B,. Certainly, in all our results 1/3 can be
replaced by any constant v < 1/2.

Clearly, d(f) < A(f) < n for any f.

Throughout the paper we identify integers and their bit representations. In
particular, we write f(z) and 2 for n-bit integers x, assuming that these
apply to their bit representations.

3 Relations between Formula Size, Decision
Tree Depth, Polynomial Degree, and Aver-
age Sensitivity

Let f be a Boolean function on n variables, and L(f) denote the number
of occurrences of variables in the minimal-size formula that computes f.
Following [13], it is possible to restate Khrapchenko’s Theorem, which gives
lower bounds on the size of Boolean formulae, as follows. For A C f~(0)
and B C f71(1), we define the |B| x |A| matrix @, with ¢, = 1 if the
binary strings v € B and v € A differ in exactly one component; otherwise

Quv = 0. Then )
1
L — w |-

u€A, vEB

From this version of Khrapchenko’s Theorem, we can easily derive a lower
bound on the formula size in terms of the average sensitivity.



Lemmal. Let f be a Boolean function depending on n variables and let p
denote the probability that f takes the value 1. Then
1

4p(1 - p)s(f)2'

L(f) >

Proof. Let A= f~1(0) and B = f~'(1). We obtain the desired lower bound

by observing that
Z Quv — 2n_15(f)7
u€A, vEB

|A| =2"(1 —p) and |B| =2"p. O

Notice that this bound on the formula size in terms of average sensitivity
was essentially mentioned also in [2, 5].

Lemma 2. Let f be a Boolean function. Then
D(f) = s(f).

Proof. Let a be an input assignment. The inequality Dy (7T") > o,(f) holds
since otherwise some untested variable still could decide about the function
value. Hence, E[D,(T)] > E[o,(f)] = s(f), where E denotes the expecta-
tion with respect to a uniformly distributed random input a. O

Essentially the same inequality has been proved in [7] using harmonic analysis
of Boolean functions.

Finally we mention the following inequalities which are a combination of the
identity (2) with Corollary 2.5 of [15] and a weaker version of Lemma 3.8
of [15], respectively.

Lemma3. Let f be a Boolean function. Then

A(f)=s(f)  and  3(f) = (s(f)/6)".



4 Distribution of Square-Free Numbers

First of all we need a result about the uniformity of distribution of odd
square-free numbers with a fixed binary digit.

Let ¢ be an integer, 1 < ¢ < n and let N; denote the set of integers x,
0<z<2"—1suchthat 20 +1=0 (mod 9) and 2z + 1 is square free.
Let M; be the number of elements in N;.

Lemmad4. For any i, 1 <1t <n, the bound
Mi=L1omi0 (2°7/4)
7 7_(_2
holds.

Proof. 1t is easy to see that 2x+1 =0 (mod 9) is equivalent to the condi-
tion z =4 (mod 9). Let T;(d) be the number of integers z, 0 < z < 2"—1,
such that

r=4 (mod)9) and 2¢9 +1=0 (mod d?). (3)
By applying the inclusion-exclusion principle we derive that

M= > wd)Ti(d),

1<d<a(nt1)/2

d=1 (mod 2)

where p(d) is the Mobius function. We recall that p(1) =1, pu(d) =0 if d
is square-full and ju(d) = (—=1)"¥ otherwise, where v(d) is the number of
prime divisors of d > 2.

It is easy to see that 2z + 1 and 2z() + 1 are relatively prime because they
differ by a power of 2. Therefore T;(d) = 0 if 3|d.

Let us now estimate 7;(d) for d with ged(6,d) = 1.

The flipping position splits the bits of x into two parts. Let us denote by
t = max{i — 1,n — i} the length of the longest part. Then it is obvious that
for any fixing of the 7th binary digit and all digits of the shortest part we



obtain that the system of congruences (3) can be replaced by 2" ' systems
of congruences, each of them of the form

2°24+a=0 (mod)9) and 2°24+b=0 (mod d?)

with 0 < z < 2! — 1, for some integers s, a and b. Since ged(d,3) = 1,
applying the Chinese Remainder Theorem we see that these congruences
define z uniquely modulo 9d*. Thus there are 2/9d* + O(1) such values of
2 in the interval 0 < 2 < 2t — 1.

Putting everything together we obtain

2 2"
T(d) =2"" | — 1)) =— 2n=hy.
(@ =2 (2 +0) = o + 0
From the inequality ¢ > (n — 1)/2 we conclude that
2n
] — n/2
Ld) = o+ O@'P). ()
It is also clear that
Ty(d) < 2"/d*. (5)

Let K > 1 be an integer. Using (4) for d < K and (5) for d > K, and
taking into account that

— 1 > 1 1
> AT Y o= Y (———>:1/K
K<d§2("+1)/2 d=K+1 d(d - ]‘) d=K+1 d - ]- d
we obtain
d
M; = 2" “(2)+O M2 N 142m Y d?
azw 9 1<K K <daonrnr2
(d) 2 -1
= 2" =L 4O (2"AK + 2" K.
ged(6,d)=1

Extending the summation range in the first sum to all integers d introduces
an additional error of order 2K ~!. Therefore

M=2" Y md) Lo (2K +2"K 1) (6)

ged(6,d)=1 9d?



for any integer K, 1 < K < 2(n+1)/2,

It is easy to verify that

5 (o)) () - tE

ged(6,d)=1

From Theorem 287 of [11] we derive

ged(6,d)=1

Selecting K = {2”/4J in (6), we obtain the desired result. O

5 Average Sensitivity of Testing Square-Free
Numbers

At this point we are able to derive our main result, namely a linear lower
bound on the average sensitivity of testing square-free numbers.

Theorem 5. For the Boolean function g given by (1) the bound
1
s(g) > " + o(n)
holds.
Proof. 1t is easy to see that, for any 7, 1 <7 <mn

L(f)>2"M;.

Since the average sensitivity is defined by the sum of the influences of all
variables, applying Lemma 4 we obtain the desired estimate. O

We can now apply this estimate to derive non-trivial lower bounds for both
the formula size and the average decision tree depth of the function (1).



Theorem 6. For the Boolean function g given by (1) the bound

holds.

Proof. Let p be the probability that ¢ takes the value 1. By applying the
same elementary considerations we used in the proof of Lemma 4, it is easy
to show that p = 8m 2+ 0(1). Combining Theorem 5 with Lemma 1 we then
derive the desired statement. O

Using Lemma 2 one proves:

Theorem 7. For the Boolean function g given by (1) the bound
— 1
Dlg) = —n+o(n)

holds.

Finally, from Lemma 3 we see:

Theorem 8. For the Boolean function g given by (1) the bounds

1
Alg) > =n+o(n)  and  d(g) > n'’% 4 o(n'/?)

T 61/271

hold.

It is interesting to note that for representations of ¢ as a polynomial over
the field GF'(2) instead of over the reals the best known lower bound on the
degree is of order Q(logn) (see [17]).

Finally, it is worth mentioning that since the average sensitivity of Boolean
functions of the class AC® does not exceed (logn)°®) (as it is shown in [14]),
Theorem 5 provides an alternative proof for the statement proved in [3, 4]
that ¢ does not belong to AC°. This result has recently been improved
in [1], where it is shown that for any prime p, testing square-free numbers as

10



well as primality testing and testing co-primality of two given integers cannot
be computed by AC[p] circuits, that is, AC" circuits enhanced by Mo,
gates.

Apparently the result of Lemma 4 can be improved by means of some more
sophisticated sieve methods (see for instance [12]). However this will not
improve our main results. On the other hand, we believe that one can prove
the following asymptotic formula for the average sensitivity of testing square-
free numbers.

Open Question 9. Prove that

stg) = 5 (1= ) n+on)

T2

for the function g given by (1).

References

[1] E. Allender, M. Saks and I. E. Shparlinski, ‘A lower bound for primal-
ity’, Proc. IEEE Conf. on Comp. Compl., IEEE, 1999 (to appear).

[2] A. Bernasconi, B. Codenotti and J. Simon, ‘On the Fourier analysis
of Boolean functions’, Preprint (1996), 1-24.

[3] A. Bernasconi, C. Damm and I. E. Shparlinski, ‘Circuit and decision
tree complexity of some number theoretic problems’, Tech. Report
98-21, Dept. of Math. and Comp. Sci., Univ. of Trier, 1998, 1-17.

[4] A. Bernasconi and I. E. Shparlinski, ‘Circuit complexity of testing
square-free numbers’, Proc. Intern. Symp. on Theor. Aspects of Comp.
Sci., Springer-Verlag, Berlin, 1999 (to appear).

[5] R. B. Boppana, ‘The average sensitivity of bounded-depth circuits’,
Inform. Proc. Letters, 63 (1997), 257-261.

[6] R. B. Boppana and M. Sipser, ‘The complexity of finite functions’,
Handbook of Theoretical Comp. Sci., Vol. A, Elsevier, Amsterdam
(1990), 757-804.

11



7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Y. Brandman, A. Orlitsky and J. Hennessy, ‘A spectral lower bound
technique for the size of decision trees and two-level AND/OR cir-
cuits’, IEEE Transactions on Computers, 39 (1990), 282-287.

D. Coppersmith and I. E. Shparlinski, ‘On polynomial approxima-
tion of the discrete logarithm and the Diffie-Hellman mapping’, J.
Cryptology (to appear).

M. Dietzfelbinger, M. Kutylowski and R. Reischuk, ‘Feasible time-
optimal algorithms for Boolean functions on exclusive-write parallel
random access machine’, STAM J. Comp., 25 (1996), 1196-1230.

F. E. Fich, ‘The complexity of computation on the parallel random
access machine’, Handbook of Theoretical Comp. Sci., Vol. A, Elsevier,
Amsterdam (1990), 757-804.

G. H. Hardy and E. M. Wright, An introduction to the number theory,
Oxford Univ. Press, Oxford, 1965.

D. R. Heath-Brown, ‘The least square-free number in an arithmetic
progression’, J. Reine Angew. Math., 332 (1982), 204-220.

E. Koutsoupias, ‘Improvements on Khrapchenko’s theorem’, Theor.
Comp. Sci., 116 (1993), 399-403.

N. Linial, Y. Mansour and N. Nisan, ‘Constant depth circuits, Fourier
transform, and learnability’, Journal of the ACM, 40 (1993), 607-620.

N. Nisan and M. Szegedy, ‘On the degree of Boolean functions as real
polynomials’, Comp. Compl., 4 (1994), 301-313.

[. Parberry and P. Yuan Yan, ‘Improved upper and lower time bounds
for parallel random access machines without simultaneous writes’,

SIAM J. Comp., 20 (1991), 88-99.

[. E. Shparlinski, ‘On polynomial representations of Boolean functions
related to some number theoretic problems’, FElectronic Colloq. on
Comp. Compl., http://www.eccc.uni-trier.de/eccc/, TR98-054,
1998, 1-13.

12



(18] I. E. Shparlinski, Number theoretic methods in cryptography: Com-
plexity lower bounds, Birkhauser, 1999.

[19] 1. Wegener, The complezity of Boolean functions, Wiley-Teubner Se-
ries in Comp. Sci., Stuttgart (1987).

13



