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1 IntroductionIn view of the many applications in modern cryptology Boolean functionsrelated to number theoretic problems are a natural object to study from thecomplexity viewpoint. Recently for such functions several complexity lowerbounds have been obtained for representations like unbounded fan-in Booleancircuits, decision trees, and real polynomials (see [1, 3, 4, 8, 17, 18]). The twomain ingredients of these papers are harmonic analysis and estimates basedon number theoretic considerations.In this paper we focus to a purely combinatorial complexity characteristic:the average sensitivity of Boolean functions. The sensitivity of a function fon input w is de�ned as the number of bits such that 
ipping one of themwill change the value of the function; the sensitivity of f is the maximum ofthe sensitivity of f on input w over all strings w of a given length; �nally,the average sensitivity of f is the average (taken with respect to the uniformdistribution) of the sensitivity of f on input w over all w of a given length.These de�nitions are made precise below. The sensitivity is of interest be-cause it can be used to obtain lower bounds for the CREW PRAM complexityof Boolean functions (see [9, 10, 16, 19]), that is the complexity on a parallelrandom access machine with an unlimited number of all-powerful processors,such that simultaneous reads of a single memory cell by several processorsare permitted, but simultaneous writes are not. The average sensitivity is a�ner characteristic of Boolean functions which has been studied in a numberof papers, see [2, 5, 14].Our main result consists in a linear lower bound on the average sensitivityof testing square-free numbers. More precisely, we consider the function gwhich decides whether a given (n + 1)-bit odd integer is square-free, that isthe function for whichg(x1; : : : ; xn) = ( 1; if 2x + 1 is square-free;0; if 2x + 1 is square-full; (1)where x = x1 : : : xn is the bit representation of x, 0 � x � 2n�1 (if necessarywe add several leading zeros), and prove that for g a linear lower bounds onthe average sensitivity holds. This lower bound is derived by studying thedistribution of odd square-free numbers with a �xed binary digit.2



We then apply this estimate to derive new lower bounds on the formulasize, on the average depth of a decision tree and on the degree of certainpolynomial representations for g .The linear bound on the average sensitivity of g also provides an alternativeproof for the statement proved in [3, 4] that g does not belong to the classAC0 . On the other hand, even a stronger result has recently been obtainedin [1].2 Basic De�nitionsLet Bn = f0; 1gn denote the n dimensional Boolean cube.For a binary vector a 2 Bn we denote by a(i) the vector obtained from aby 
ipping its ith coordinate. Now we introduce the main combinatorialparameters of Boolean functions f : Bn ! f0; 1g considered in this paper.The sensitivity of f at input a 2 Bn is the number�a(f) = nXi=1 ���f(a)� f(a(i))��� :The sensitivity of f is de�ned as�(f) = maxx2Bn nXi=1 ���f(x)� f(x(i))��� ;and the average sensitivity of f iss(f) = 2�n Xx2Bn nXi=1 ���f(x)� f(x(i))��� :Clearly, s(f) � �(f) � n for any f .The average sensitivity of a function f can be equivalently de�ned as thesum of the in
uences of all variables on f , where the in
uence of xi on f ,denoted Ii(f), is the probability that 
ipping the i-th variable of a randomBoolean input will 
ip the output. In other words, Ii(f) is a measure of how3



in
uential is the variable xi in determining the outcome of f . Precisely wehave Ii(f) = 2�n Xx2Bn ���f(x)� f(x(i))��� ;which immediately implies s(f) = nXi=1 Ii(f) : (2)Formulae are de�ned in the following recursive way: the variables x1 , x2 ,: : : ; xn and their negations :x1 , :x2 , : : : ;:xn are formulae; if F1 , F2 areformulae, so are F1^F2 and F1_F2 . The size of a formula F is the numberof occurrences of variables in it. Notice that a formula can be equivalentlyde�ned as a Boolean circuit whose fan-out of gates is bounded by one.A decision tree with input variables x1; : : : ; xn is a rooted binary tree inwhich each inner node is labeled with a variable and the edges leaving thenode are labeled 0 and 1, respectively. Further each leaf v of the tree islabeled with some value �(v) 2 f0; 1g.A decision tree T in a natural way de�nes a Boolean function fT . Foran input assignment a the computation proceeds as follows: starting fromthe root, at each visited inner node a certain variable xi is tested. Thecomputation proceeds along the edge labeled ai . De�ne fT (a) = �(v), wherev is the eventually reached leaf.For a decision tree T we say input a 2 Bn exits in depth i (denoted Da(T ) =i), if during the computation of fT (a) exactly i edges are passed.The depth of the tree is D(T ) = maxfDa(T ) ja 2 Bng and its averagedepth is D(T ) = 2�n nXa2BnDa(T ):For a Boolean function f let D(f) and D(f), respectively, denote the mini-mal depth and the minimal average depth, respectively, of any decision treeT with fT = f . Clearly, D(f) � D(f) � n for any f .Further we mention the following de�nitions from [15]: for a Boolean functionf : Bn ! f0; 1g let the real degree of f , denoted by �(f), be the degree4



of the unique multilinear real polynomial P (X1; : : : ; Xn) for whichf(x1; : : : ; xn) = P (x1; : : : ; xn)holds for every (x1; : : : ; xn) 2 Bn . Here multilinearity means, that eachvariable appears with degree at most 1.We also de�ne the real approximate degree of f , denoted by �(f), as thedegree of a multilinear real polynomial P (X1; : : : ; Xn) for whichjf(x1; : : : ; xn)� P (x1; : : : ; xn)j � 1=3holds for every (x1; : : : ; xn) 2 Bn . Certainly, in all our results 1=3 can bereplaced by any constant 
 < 1=2.Clearly, �(f) � �(f) � n for any f .Throughout the paper we identify integers and their bit representations. Inparticular, we write f(x) and x(i) for n-bit integers x, assuming that theseapply to their bit representations.3 Relations between Formula Size, DecisionTree Depth, Polynomial Degree, and Aver-age SensitivityLet f be a Boolean function on n variables, and L(f) denote the numberof occurrences of variables in the minimal-size formula that computes f .Following [13], it is possible to restate Khrapchenko's Theorem, which giveslower bounds on the size of Boolean formulae, as follows. For A � f�1(0)and B � f�1(1), we de�ne the jBj � jAj matrix Q, with quv = 1 if thebinary strings u 2 B and v 2 A di�er in exactly one component; otherwisequv = 0. Then L(f) � 1jAjjBj 0@ Xu2A; v2B quv1A2 :From this version of Khrapchenko's Theorem, we can easily derive a lowerbound on the formula size in terms of the average sensitivity.5



Lemma1. Let f be a Boolean function depending on n variables and let pdenote the probability that f takes the value 1. ThenL(f) � 14p(1� p)s(f)2:Proof. Let A = f�1(0) and B = f�1(1). We obtain the desired lower boundby observing that Xu2A; v2B quv = 2n�1s(f);jAj = 2n(1� p) and jBj = 2n p. utNotice that this bound on the formula size in terms of average sensitivitywas essentially mentioned also in [2, 5].Lemma2. Let f be a Boolean function. ThenD(f) � s(f):Proof. Let a be an input assignment. The inequality Da(T ) � �a(f) holdssince otherwise some untested variable still could decide about the functionvalue. Hence, E[Da(T )] � E[�a(f)] = s(f), where E denotes the expecta-tion with respect to a uniformly distributed random input a. utEssentially the same inequality has been proved in [7] using harmonic analysisof Boolean functions.Finally we mention the following inequalities which are a combination of theidentity (2) with Corollary 2.5 of [15] and a weaker version of Lemma 3.8of [15], respectively.Lemma3. Let f be a Boolean function. Then�(f) � s(f) and �(f) � (s(f)=6)1=2 :
6



4 Distribution of Square-Free NumbersFirst of all we need a result about the uniformity of distribution of oddsquare-free numbers with a �xed binary digit.Let i be an integer, 1 � i � n and let Ni denote the set of integers x,0 � x � 2n � 1 such that 2x + 1 � 0 (mod 9) and 2x(i) + 1 is square free.Let Mi be the number of elements in Ni .Lemma4. For any i, 1 � i � n, the boundMi = 1�2 2n + O �23n=4�holds.Proof. It is easy to see that 2x+ 1 � 0 (mod 9) is equivalent to the condi-tion x � 4 (mod 9). Let Ti(d) be the number of integers x, 0 � x � 2n�1,such that x � 4 (mod 9) and 2x(i) + 1 � 0 (mod d2): (3)By applying the inclusion-exclusion principle we derive thatMi = X1�d�2(n+1)=2d�1 (mod 2) �(d)Ti(d) ;where �(d) is the M�obius function. We recall that �(1) = 1, �(d) = 0 if dis square-full and �(d) = (�1)�(d) otherwise, where �(d) is the number ofprime divisors of d � 2.It is easy to see that 2x + 1 and 2x(i) + 1 are relatively prime because theydi�er by a power of 2. Therefore Ti(d) = 0 if 3jd.Let us now estimate Ti(d) for d with gcd(6; d) = 1.The 
ipping position splits the bits of x into two parts. Let us denote byt = maxfi� 1; n� ig the length of the longest part. Then it is obvious thatfor any �xing of the ith binary digit and all digits of the shortest part we7



obtain that the system of congruences (3) can be replaced by 2n�t systemsof congruences, each of them of the form2sz + a � 0 (mod 9) and 2sz + b � 0 (mod d2)with 0 � z � 2t � 1, for some integers s, a and b. Since gcd(d; 3) = 1,applying the Chinese Remainder Theorem we see that these congruencesde�ne z uniquely modulo 9d2 . Thus there are 2t=9d2 + O(1) such values ofz in the interval 0 � z � 2t � 1.Putting everything together we obtainTi(d) = 2n�t  2t9d2 + O(1)! = 2n9d2 + O(2n�t):From the inequality t � (n� 1)=2 we conclude thatTi(d) = 2n9d2 + O(2n=2): (4)It is also clear that Ti(d) � 2n=d2: (5)Let K � 1 be an integer. Using (4) for d � K and (5) for d > K , andtaking into account thatXK<d�2(n+1)=2 d�2 < 1Xd=K+1 1d(d� 1) = 1Xd=K+1� 1d� 1 � 1d� = 1=Kwe obtainMi = 2n X1�d�Kgcd(6;d)=1 �(d)9d2 + O0@2n=2 X1�d�K 1 + 2n XK<d�2(n+1)=2 d�21A= 2n X1�d�Kgcd(6;d)=1 �(d)9d2 + O �2n=2K + 2nK�1� :Extending the summation range in the �rst sum to all integers d introducesan additional error of order 2nK�1 . ThereforeMi = 2n Xgcd(6;d)=1 �(d)9d2 + O �2n=2K + 2nK�1� (6)8



for any integer K , 1 � K � 2(n+1)=2 .It is easy to verify thatXgcd(6;d)=1 �(d)d2 = �1� 14��1 �1� 19��1 1Xd=1 �(d)d2 = 32 1Xd=1 �(d)d2 :From Theorem 287 of [11] we deriveXgcd(6;d)=1 �(d)d2 = 9�2 :Selecting K = j2n=4k in (6), we obtain the desired result. ut5 Average Sensitivity of Testing Square-FreeNumbersAt this point we are able to derive our main result, namely a linear lowerbound on the average sensitivity of testing square-free numbers.Theorem5. For the Boolean function g given by (1) the bounds(g) � 1�2n + o(n)holds.Proof. It is easy to see that, for any i, 1 � i � nIi(f) � 2�nMi :Since the average sensitivity is de�ned by the sum of the in
uences of allvariables, applying Lemma 4 we obtain the desired estimate. utWe can now apply this estimate to derive non-trivial lower bounds for boththe formula size and the average decision tree depth of the function (1).9



Theorem6. For the Boolean function g given by (1) the boundL(g) � 132(�2 � 8)n2 + o(n2) ;holds.Proof. Let p be the probability that g takes the value 1. By applying thesame elementary considerations we used in the proof of Lemma 4, it is easyto show that p = 8��2 +o(1). Combining Theorem 5 with Lemma 1 we thenderive the desired statement. utUsing Lemma 2 one proves:Theorem7. For the Boolean function g given by (1) the boundD(g) � 1�2n + o(n)holds.Finally, from Lemma 3 we see:Theorem8. For the Boolean function g given by (1) the bounds�(g) � 1�2n + o(n) and �(g) � 161=2�n1=2 + o(n1=2)hold.It is interesting to note that for representations of g as a polynomial overthe �eld GF (2) instead of over the reals the best known lower bound on thedegree is of order 
(logn) (see [17]).Finally, it is worth mentioning that since the average sensitivity of Booleanfunctions of the class AC0 does not exceed (logn)O(1) (as it is shown in [14]),Theorem 5 provides an alternative proof for the statement proved in [3, 4]that g does not belong to AC0 . This result has recently been improvedin [1], where it is shown that for any prime p, testing square-free numbers as10
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[7] Y. Brandman, A. Orlitsky and J. Hennessy, `A spectral lower boundtechnique for the size of decision trees and two-level AND/OR cir-cuits', IEEE Transactions on Computers, 39 (1990), 282{287.[8] D. Coppersmith and I. E. Shparlinski, `On polynomial approxima-tion of the discrete logarithm and the Di�e{Hellman mapping', J.Cryptology (to appear).[9] M. Dietzfelbinger, M. Kuty lowski and R. Reischuk, `Feasible time-optimal algorithms for Boolean functions on exclusive-write parallelrandom access machine', SIAM J. Comp., 25 (1996), 1196{1230.[10] F. E. Fich, `The complexity of computation on the parallel randomaccess machine', Handbook of Theoretical Comp. Sci., Vol. A, Elsevier,Amsterdam (1990), 757{804.[11] G. H. Hardy and E. M. Wright, An introduction to the number theory ,Oxford Univ. Press, Oxford, 1965.[12] D. R. Heath-Brown, `The least square-free number in an arithmeticprogression', J. Reine Angew. Math., 332 (1982), 204{220.[13] E. Koutsoupias, `Improvements on Khrapchenko's theorem', Theor.Comp. Sci., 116 (1993), 399{403.[14] N. Linial, Y. Mansour and N. Nisan, `Constant depth circuits, Fouriertransform, and learnability', Journal of the ACM , 40 (1993), 607-620.[15] N. Nisan and M. Szegedy, `On the degree of Boolean functions as realpolynomials', Comp. Compl., 4 (1994), 301{313.[16] I. Parberry and P. Yuan Yan, `Improved upper and lower time boundsfor parallel random access machines without simultaneous writes',SIAM J. Comp., 20 (1991), 88{99.[17] I. E. Shparlinski, `On polynomial representations of Boolean functionsrelated to some number theoretic problems', Electronic Colloq. onComp. Compl., http://www.eccc.uni-trier.de/eccc/, TR98-054,1998, 1{13. 12



[18] I. E. Shparlinski, Number theoretic methods in cryptography: Com-plexity lower bounds, Birkh�auser, 1999.[19] I. Wegener, The complexity of Boolean functions, Wiley-Teubner Se-ries in Comp. Sci., Stuttgart (1987).

13


