
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Component-Oriented Redesign of
the CASE-Tool AutoFocus

Klaus Bergner, Franz Huber,
Andreas Rausch, Marc Sihling

������
TUM-I9752

Dezember 1997

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-12-1997-I9752-100/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
1997 MATHEMATISCHES INSTITUT UND
INSTITUT F ÜR INFORMATIK
TECHNISCHE UNIVERSIT̈AT M̈UNCHEN

Typescript: ---

Druck: Mathematisches Institut und
Institut für Informatik der
Technischen Universität München

Component-Oriented Redesign ofthe CASE-Tool AutoFocus�Klaus Bergner, Franz Huber, Andreas Rausch, Marc SihlingInstitut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchenhttp://www4.informatik.tu-muenchen.de15th December 1997AbstractIn this paper, we explore how the componentware paradigm can be used to re-engineerexisting software systems. As a case study, we use the prototype implementation of theCASE tool AutoFocus which has been developed using standard object-oriented designtechniques. Although designed for re-usability with respect to certain criteria, AutoFo-cus did not use a component-based approach yet. The case study concentrates on therepository subsystem, as this part is currently the least \modular" part of AutoFocus.We outline essential concepts of the componentware paradigm, including a methodol-ogy how to carry out a component-based design process, introduce the current state ofAutoFocus, and sketch how we derive a component-based redesign, including a migra-tion strategy from purely object-oriented legacy systems to component-based systems.Keywords: Componentware, Object-Oriented Software Engineering, Design, Redesign,Java, CASE, Repository

�This paper originated in the ForSoft project A1 on \Component-Based Software Engineering", supportedby Siemens ZT, and in the sub-project A6 of the \Sonderforschungsbereich (SFB) 342" supported by the DFG.1

Contents1 Introduction 42 The Project: Redesigning AutoFocus 43 Componentware: Concepts and Methodology 63.1 Essential Characteristics . 63.1.1 Component Type Characteristics 63.1.2 Component Instance Characteristics 73.2 Development with Components . 73.2.1 Connecting Components . 83.2.2 Hierarchical Components . 83.2.3 Adaption of Components . 93.3 Views and Description Techniques . 103.4 Classi�cation of Component Types . 103.5 Component-Oriented Methodology . 113.5.1 Roles in the Development Process 113.5.2 Component-Oriented Development Process 123.5.3 The Reengineering Process . 154 Initial Architecture of AutoFocus 154.1 Overall Architecture . 154.2 Problems with the Initial Design . 165 Migration Strategy: Redesign Steps 175.1 Identi�cation and Transfer of Components 175.1.1 Repository . 175.1.2 Network Communications . 185.1.3 Client Application Core . 195.1.4 Project Browser . 195.1.5 Editors and Viewers . 195.1.6 Documents . 195.2 Addition of Model Layer . 205.3 Addition of Simulation Functionality . 205.4 Addition of Consistency Checking . 206 New, Component-Based Architecture 206.1 Overall Architecture . 216.1.1 System Mechanisms and Herd Components 216.1.2 Layered Framework . 226.1.3 Model-View Architecture . 236.2 Base Concepts: Models and Views . 236.3 Entities, Relationships, and Navigation . 246.4 Persistence and Archiving . 266.5 Versioning of Model Elements . 276.6 Locking and Checkin/Checkout . 286.7 Transactions and Undo/Redo . 306.8 Access for Scripting Languages . 316.9 Distribution Design . 312

7 Conclusion 32References 33

3

1 IntroductionComponentware carries the old dream of assembling software systems like buildings froma set of given components to undreamt brilliancy.In architecture, the customer �rst tells the architect his functional and non-functionalrequirements in an informal way, for example, the number and function of rooms and themoney he or she wants to spend. Then the architect constructs a �rst, rough ground-planand several side-views. If this \prototype" �ts with the customer's visions, the architectspeci�es a more detailed and technical construction plan. This plan describes the di�erentcomponents of the building and their relationships, like walls and windows, and how they�t together. Now the architect puts these components up for tender. At last, the \best"component producer will get the job, place the components to the architect's disposal andintegrate them into the building. Over the whole process the architect's construction planis the communication plattform for all parties working on the building.The componentware software-engineering process should be similar: During analysis, thesoftware architect constructs a rough analysis model and component-based prototyps tofathom and �nally ful�l the customers visions. Then, in an iterative design process he willre�ne the analysis model until the essential components are found. Keep in mind thatthis is not a pure top-down process but rather a constant switch between top-down andbottom-up because the architect has existing and given target components in his mindduring re�nement. The result of the design process is a mostly complete constructionplan for the software system. Now, eventually di�erent component vendors can ship thecomponents. The software architect has to take care of the components quality, checkwhether they ful�l the requirements, and �nally assemble them to build the completesoftware system.The most important points during this process are the separation of the two roles softwarearchitect and component developer and an excellent construction plan.However, today developing a complete new software system is not the normal case. Inmost projects one has more or less to reengineer, integrate and reuse legacy systems orat least special parts of such systems. This necessitates adapting the componentwaresoftware-engineering process described above. There are several kinds of processes andtechniques for component-oriented redesign of legacy systems [DPB96, MLB95].Despite this fact, the redesign process we introduce in this paper is close to the visionof componentware software-engineering we described above. First, we present a closerlook at AutoFocus from the user's view in Section 2. In Section 3 we discuss the basicconcepts and ideas of componentware. The old legacy architecture of AutoFocus is thenpresented in Section 4. The next section contains our migration strategy; the architectureof the old AutoFocus is analyzed and useful, reusable components are worked out.Finally, the new, component-oriented architecture of AutoFocus is developed in Section6 according to our vision of the componentware software-engineering process. A shortconclusion ends the paper.2 The Project: Redesigning AutoFocusAutoFocus is a prototype implementation of a multi-user software engineering tool forthe speci�cation and simulation of distributed systems based on the formal development4

method Focus [BDD+92]. Within this framework, AutoFocus provides graphical de-scription formalisms covering di�erent aspects of distributed systems:� System structure diagrams (SSDs) describe the static structure of a system as anetwork of interconnected components exchanging messages over channels,� State transition diagrams (STDs, or automata) describe the behaviour of systemcomponents, and� Extended Event Traces (EETs, basically a subset of Message Sequence Charts asstandardized in ITU Z.120 [IT93]) specify the dynamic interactions between compo-nents during system runs.For each of these formalisms,AutoFocus provides its own graphical editor (see Figure 1).The conceptual basics ofAutoFocus and its description techniques are described in detailin [HSS96] and [HSSS96].AutoFocus is implemented as a client/server system: It consists of a central serverthat manages the repository with the development documents and provides mechanismsfor client access control and version management. The development documents in therepository are organized according to projects.

Figure 1: Project Browser, STD Editor, and EET Editor of the AutoFocus ClientThe AutoFocus client (see Figure 1) contains a project browser used to navigate throughthe development projects and documents in the repository, and the graphical editorsnecessary to edit the di�erent kinds of diagrams.5

Our further plans with AutoFocus are� to remove its current de�ciencies (see Section 4.2),� to provide support for easy extendability with arbitrary description techniques,� to allow di�erent working methods for users, and� to make it a
exible and powerful toolkit for experimentation with new CASE toolconcepts.The design of a generic distributed multi-user CASE toolkit is a very di�cult task. Espe-cially the repository mechanisms|among them support for persistence, versioning, lock-ing, and transactions|must be carefully coordinated and harmonized. The requirementof adaptability to various description techniques and working methods suggests the useof a
exible architecture and requires a well-structured software development approach.Component-oriented techniques, as presented in the next section, claim to ful�ll such highdemands.3 Componentware: Concepts and Methodology3.1 Essential CharacteristicsComponentware can be de�ned as software development with the help of components. Itsgoals are very similar to the goals of object-orientation: Information hiding and decouplingshall lead to well-structured systems consisting of understandable and reusable parts. Incontrast to object-orientation, where the basic concepts have settled to some extent duringthe last years, it tends to be di�cult to �nd a de�nition for component concepts everyoneagrees on|some people consider components to be objects, some other see also monolithiclegacy systems or even design patterns as components. Therefore, we will not provide asharp de�nition in the following. Instead, we give some characteristics that, in our opinion,hold for the essential approaches.Analogously to object-orientation, we distinguish the concept of an instance from theconcept of a type describing the features common to a set of instances. We deliberatelyavoid the object-oriented terms \class" and \object" here in order not to mix up theconcepts, and usually speak of component instances and component types. Note that thedistinction between component instances and types is unnecessary in some approaches, as,for example, with large legacy components, where only one component instance of a kindexists. However, we introduced the type concept to get a clear and uniform framework ofnotions suitable also for approaches with explicit types like Java Beans [Javb].3.1.1 Component Type CharacteristicsSelf-Describing Export and Import Interfaces The concept of an interface is cen-tral to component-orientation. Basically, an interface consists of� a signature part, describing the syntax of a speci�c functionality and, based onthat,� a speci�cation part, describing the component's behaviour in a formal or non-formal manner. 6

An interface thus comprises the syntax and the semantics of a component type.Although each interface must have a signature, we do not require it to specify thesemantical interactions completely by allowing underspeci�cation.Component types can implement resp. export one or more interfaces, and theycan also import interfaces from other component types. Import interfaces specifythe functionality needed to implement the exported services of a component type.Together, import and export interfaces specify the interactions between connectedcomponent instances of a system (cf. Section 3.2.1). The information provided bycomponent type interfaces can be used by tools for visualization, allowing the com-position of component instances in a very comfortable way (cf. Section 3.2).Language-Independent Access An important step towards better reuse of existingprogram code (and a major enhancement compared to object-orientation) is theability of components to communicate with other components programmed in adi�erent language.Standard Interfaces Most components export a couple of standard interfaces for basicfunctionality like persistence or con�guration management. By implementing stan-dard interfaces, components can easily participate in very powerful mechanisms. Inthe context of some componentware approaches or of certain component-orientedsystems, all components must implement a set of common standard interfaces. Nor-mally, this includes at least a standard interface for querying the signature part ofthe component's interfaces, e.g. for visualizing a components interface in a tool.Adaptability Reuse of existing component types requires development techniques foradapting and �tting them. We describe some of the possible adaption techniques inSection 3.2.3.3.1.2 Component Instance CharacteristicsIdentity Each component instance can be adressed via a single identi�er, which is uniquein the considered context.Data State A component hides its contained data from other components: Commu-nication happens only via its interfaces. The data state is usually persistent, butnon-persistent components are also possible.Customizability During the process of system composition, component instances canbe customized for their intended purpose. Although the customization informationis part of the data state of a component, it can usually not be changed by users andis, therefore, persistent over all runs of a system. Note that we distinguish betweencustomization and con�guration: Con�guration is done by end users and can be seenas part of the normal functionality of a component or the entire system.3.2 Development with ComponentsA very important aspect of componentware is the vision of a new way of programming:Development of a system happens mainly via composition of existing, reusable compo-nents.
7

3.2.1 Connecting ComponentsTwo components can be connected if one of them exports an interface that is compatiblewith an interface imported by the other one. An exact de�nition of interface compatibilitydepends on the special componentware approach and the used speci�cation techniques andis therefore omitted here. Connected component instances are visualized as a directedgraph where the edges point from the importing to the exporting component, as shownin Figure 2. Following UML [BRJ97], export interfaces are shown as bubbles.
c1 c2Figure 2: Visualization of Connected Component InstancesThere are two possibilities with respect to changes of the component instance connectiongraph:� The graph structure may be static, meaning that it can only be changed by a systemdeveloper.� The graph structure may be dynamic. In this case, the system itself controls thecreation and deletion of components and the connections between them.Static connection structures are a lot easier to comprehend, mostly because they can beeasily visualized with graph-like diagrams like the one of Figure 2.3.2.2 Hierarchical ComponentsComponents can back up on other components to realize their functionality, thus leadingto the notion of hierarchical components. For a hierarchical component type must bespeci�ed1. on which component instance(s) it relies on,2. how the contained component instances are connected to each other, and3. in which way the resulting functionality is achieved.For example, on the left side of Figure 3 a component instance is re�ned by three othercomponent instances that are connected to each other. In this view it makes sense todistinguish between internal interfaces for communication with the enclosed componentsand external interfaces leading to the outside. Everything between is called the gluecode (shown in grey in the �gure): It connects internal and external interfaces and addsfunctionality and data speci�c to the component.A slightly simpler variation of this schema is shown on the right side of Figure 3: Here,the glue code is concentrated in an own glue component which is then connected to theinternal and external interfaces of the rede�ned component. Thus, the glue code has itsown container and creating a new component can be done only by connecting lower-level8

Glue Code Encapsulated in Inner ComponentGlue Code Assigned to Outer ComponentFigure 3: Di�erent Variants of Hierarchical Componentscomponents. This variation basically results in a conceptually
at component structurein which outer components are only design constructs without own functionality.Most componentware approaches assume that contained components are not visible inthe interface of their enclosing component. However, the glue component variant abovesuggests that this is not strictly necessary: One can also imagine a concept where acomponent's interface contains some subcomponents or even dynamically changing setsof subcomponents [Ber97].3.2.3 Adaption of ComponentsThe success of a component can be de�ned as how often it is reused in various softwaresystems. However, the most di�cult part in the construction of a component is to abstractfrom the requirements of the actual situation and to anticipate its use in other systems.If this is not done carefully, unwanted consequences may arise:� The component may not be reusable because it was tailor-made for a special appli-cation and is, therefore, too speci�c. Usually, developers have to write a couple ofsuch speci�c, yet similar components until they realize that a more general, reusablecomponent can be built or used.� The component is too weak and does not o�er su�cient application or customizationfunctionality.� The component was over-engineered and is too general which means that customiza-tion to actual needs is di�cult and requires a lot of work.The art of component development lies between those extremes. Sadly, developers willoften be confronted with components that can not be customized for their requirements,necessitating the adaption of the component:� Inheritance has proven worthy in object-orientation to enhance the functionalityof a class, and it can in principle be useful also with componentware. However,inheritance leads to a strong coupling between the participating classes and shouldbe used with care. If possible, other, simpler ways of adaption should be chosen.9

� A wrapper component can be used to shield a reused component from the outside.The wrapper component makes use of the functionality of the wrapped componentand o�ers an adapted interface to other components. Wrappers are a special formof hierarchical components (cf. Section 3.2.2).� A component may o�er a special adaption interface that allows other componentsto engage in certain situations. An example for this technique is an interface thatallows another component to register one of its methods as a callback in response toa trigger.� The most general adaption technique is of course to adapt the component's code.However, this requires a thorough understanding of the component's implementationand access to its source code.It is to hope that the presence of well-designed, standardized components for a certainapplication domain will make it possible to avoid adaption and to resort only to cus-tomization.3.3 Views and Description TechniquesThe main problem in large scale systems lies in reducing their inherent complexity to amanageable and understandable size. Abstraction is a proven concept to achieve this;it allows to build di�erent views onto a system each focusing on special characteristicsor structures. We can mainly distinguish two di�erent views on a component, dependingwhether we look at it as a component user or as a component developer (cf. Section 3.5.1):� Each component o�ers at least a blackbox view. It contains export and importinterfaces, but says nothing about a component's concrete implementation. Theblackbox view is, therefore, su�cient for the composition and customization by usersof the component: It allows them to �nd suitable components and to understandtheir purpose, functionality, usage, and restrictions.� The glassbox view reveals all information about the internal structure of the com-ponent. It is necessary for further development and adaption of a component by acomponent developer.Each of these basic views may consist of various documents describing di�erent aspectsof the properties and the behaviour of a certain component type. Possible are, for ex-ample, documents consisting of informal text, graphical techniques like those providedby UML [BRJ97], interface description languages like IDL [COR], or formal speci�cationtechniques.3.4 Classi�cation of Component TypesClassi�cation is helpful for all people involved in the development process to share thesame understanding of components. Imaginable are various kinds of classi�cations whichare not necessarily orthogonal to each other. First, we will present a very common one:Business-Oriented Components model the business-related concepts that are visibleand understandable for the system's users. In the context of a CASE tool like10

AutoFocus, this amounts to the concepts familiar to distributed systems engineers:Examples are speci�cation documents, document repositories, and single elements ofmodeling techniques like, for example, the states and transitions of a state transitiondiagram.Technical Components are hidden from the user and part of the implementation. Anexample, again taken from the context of a CASE tool, would be the database com-ponent underlying the repository or a component that implements the transactionmanagement.Another classi�cation focuses on the dynamic instantiation and connection structure ofcomponent instances:Herd Components can be created, deleted, and connected under the control of thesystem. Herd components model the application's changing data and representtechnical concepts like the dialogs of a system's GUI.Manager Components form the static architecture of a system and ful�ll the task oforganizing the herd components. An example is a system's dialog manager whichkeeps track of all actual dialogs. Manager components are often singletons.3.5 Component-Oriented Methodology3.5.1 Roles in the Development ProcessOne of the central issues with componentware is the separation of the roles of componentdevelopers and component users. It is a necessary prerequisite for the rise of a market ofspecialized, reusable high-quality components needed to build the large and highly com-plex systems of the future. Other, more mature industry branches know this separationfor a long time, as can, for example, be seen with the building industry [Hin97]. We ex-pect that the following, specialized roles will evolve in the context of component-orientedsoftware development:Component Developer: Components are developed by specialized component vendorsor by in-house reuse centers in big enterprises. The tasks of a component developerare to recognize the common requirements of many customers or users, to constructreusable components from them. If a customer asks for a component, the developero�ers a tender and sells the component.Component Assembler: Usually, complicated components have to be tailored to matchtheir intended usage. The tasks of a component assembler are to �t pre-built stan-dard components and to integrate them into the system to be built. For smallersystems, this role can be taken over by the component developer or the systemarchitect.System Architect: The system architect develops a construction plan and selects ad-equate components, component developers, and component assemblers. Searchingfor components may be done with the help of specialized component repositoriesthat allow query mechnisms for components organized according to classi�cationschemes, or even with the help of human component brokers. During the construc-tion of the system, the system architect supervises and reviews the technical aspectsand monitors the consistency and quality of the results.11

Project Coordinator: Project coordinator, as a seperated person, can usually only befound in very large projects. He supervise the whole construction process especiallywith respect to its schedule and costs. A project coordinator is responsible to thecustomer for meeting the deadline and the cost limit.3.5.2 Component-Oriented Development ProcessPractical experiences show that neither a pure top-down approach nor a pure bottom-upapproach �t very well for software-engineering. Therefore, recent approaches combinethese both approaches: Normally one starts to work top-down and changes later to abottom-up approach. This process is also suitable for component-oriented developmentwhich we will motivate in this section.Top-Down DevelopmentIn the top-down approach, development is mainly requirements-driven. First, thecustomer requirements are analyzed and mapped onto appropriate high-level designcomponents. Then, these high-level components are stepwisely and hierachicalyre�ned until they can be implemented or until suitable existing components arefound (cf. Section 3.2.2).This pure top-down approach involves some drawbacks: First, re�nement is madewith no respect to existing components which makes it a matter of luck to result inmatching components. Even worse: Although the top-down approach is based onthe analysis of customer requirements, it regularly fails to ful�ll the existing require-ments, if the client initially does not know them or can not state them properly.Last, pure top-down development leads to systems that are very brittle with respectto changing customer requests because the whole system architecture is adjusted tothe initially known set of requirements.Bottom-Up DevelopmentIn the bottom-up approach, development builds upon reusable existing components:They are iteratively composed and agglomerated into higher-level components, until,�nally, there exists a top-level component ful�lling the requirements for the intendedsoftware system.However, in most cases a pure bottom-up approach is hardly possible because it doesnot draw into account the user requirements early enough|although the resultingsystem may be built from reusable components according to a standard architecture,there is no guarantee that it corresponds with the customer's wishes.To overcome the de�ciencies of both extremes, we introduce a new approach. On the onehand, it combines top-down and bottom-up development as equivalent parts complement-ing each other. On the other hand, it supports new activities pertaining to componentreuse.Figure 4 shows in an idealized and simpli�ed form our additions to the phases of a typicalwaterfall model|analysis, design, and implementation|to close the gap between top-down and bottom-up development.While requirements analysis, resulting in a business-oriented model, is typically a top-down activity, system implementation is usually bottom-up. Starting from a couple ofclasses, modules and later on components are built.12

In the design process, top-down and bottom-up development coexist in form of high-leveldesign and low-level design. Usually, the designer permanently switches between both toreduce the gap between them, resulting in a complete design.The grey two-way arrows in Figure 4 represent the switching between the typical phases|analysis, design, and implementation. Normally, documents should exist that serve asinterface between two phases, particularly if these phases run iteratively or even in parallel.In a componentware enviroment, the advantages of prototyping are obvious. Prototypingcan be seen as a bottom-up way to identify and verify the requirements of the user orto evalute a key-design. Hence, next to analysis and design, prototype implementation isvery useful. Although these phases eventually run in parallel and in
uence each other,there may not necessarily be a well-de�ned interface document. Figure 4 illustrates thisfact by the hollow-headed two-way arrows.
High LowLevel of Abstraction

Analysis Design Implementation

Requirements
Analysis

Prototype
Implementation

high-level
Design

low-
level Design

Prototype
Implementation

high-level
Design

low-
level Design

System
Implementation

Top-Down Bottom-UpFigure 4: Combining Bottom-Up and Top-Down DevelopmentBesides combining top-down and bottom-up approaches, a component-oriented processshould contain activities for �nding and reusing existing components during the earlyphases of analysis and design, and not just in implementation.Furthermore, not only requirements analysis in
uence the evaluation of suitable existingcomponents, but also the characteristics of existing components can in
uence the userrequirements. A company may, for example, decide to adopt a standard process as sup-ported by a component and thereby change their origin requirements. Or, explorative13

prototyping using existing components may help the customer to �nd and to state re-quirements. Analogous interdependencies can be found during the design phase, wherethe selection and evaluation of components in
uences the system architecture and viceversa.Figure 5 visualizes the additional activities in a component-oriented process: Each phasenot only allows but requires the search for and evaluation of components. As said above,this evaluation in
uences the original phases and vice versa as the hollow-headed two-wayarrows indicate. To support prototyping and the �nal implementation, one has to ordercomponents. After the production and shipment of components by a component vendor,the components will be assembled to a prototype or to the �nal system.Obviously, components can also be developed in-house, but even in this case the separa-tion between the di�erent roles mentioned in Section 3.5.1 are essential to support thecomponent-oriented paradigm. The
ags in the right upper corner of each activity box inFigure 5 illustrate which roles primarily participate in the corresponding activity.
C
o
m
p.

U
s
e
r

C
o
m
p.

V
e
n
d
o
r

Implementation
(Integration)

DesignAnalysis

Search for and Evaluation of Components

SA CASA/CA

CA Component Assembler

SA

CD

System Architect

Component Developer

Order Components

Produce and Ship Components

SA/CA

PC

CD

PC Project CoordinatorFigure 5: Supporting Component Reuse in a Waterfall Model14

3.5.3 The Reengineering ProcessThe methodical considerations in the last section are admissible only for \pure" com-ponent-oriented development. However, our goal in this paper is not to construct anew, component-oriented AutoFocus from scratch, but to redesign the existing, object-oriented tool. Obviously, we need additional techniques for transforming such an existinglegacy application to make it suitable for the approach outlined above. While variousauthors and groups [MLB95, Pro] are concerned with the redesign of existing, procedurallegacy systems, we are not aware of approaches for redesigning object-oriented legacysystems.A big advantage of object-oriented systems is that they are built following a relativelymodern software development paradigm allowing the construction of well-structured sys-tems consisting of reusable classes. However, the objects of these classes are very �ne-grained building blocks with no hierarchical structure. If high-level components consistingof some cooperating objects exist at all, their interfaces are usually not described explicitly.Therefore, our approach for redesigning object-oriented systems consists mainly of twoactivities to identify high-level components within an object-oriented system:� The functionality of the intended system after the redesign can serve as a clue to�nd components in a top-down fashion.� Conversely, the implementation of an existing system can suggest high-level compo-nents in a bottom-up fashion.Whenever one performs the activity search for and evaluation of components of Figure 5,these steps have to be done. All other activities can happen according to the processoutlined in the previous section.4 Initial Architecture of AutoFocus4.1 Overall ArchitectureAs can be seen in Figure 6, AutoFocus uses a typical two-tier client/server architecture.The repository is document-based, mapping development documents to �les in a UNIX�le system. Access and version control is provided by the UNIX revision control systemRCS [Tic85].The complete AutoFocus tool, including both the client application and the serverapplication|of course except the underlying RCS|, is implemented in the Java pro-gramming language.The clients, which comprise a set of graphical editors, an application core, and a projectbrowser, are implemented in Java and are thus executable on any platform supporting theJava runtime environment. An arbitrary number of them can connect to the repositoryto access the documents in the repository.The network communications mechanism between the repository and the clients is work-ing on top of the standard TCP/IP socket library of Java. Neither RMI (Remote MethodInvocation) [SUN97b], the standard mechanism provided by Java 1.1 for implementingdistributed applications, nor CORBA for Java [OH97] are currently used in AutoFocus,15

RCS

1 2 … n

FRED (Focus
Repository Daemon)

Server Threads

Version Control

UNIX File System

Server

Browser

Client 1

Editors

Repository Proxy Repository Proxy

Browser

Client n

Editors

É

LAN / WAN

Figure 6: Architectural View of the Initial AutoFocus Implementationsimply due to the reason that they were not available at the time of the �rst implemen-tation.Within the server, a dedicated thread is running for each connected client process. Besideshandling the access to RCS, the server manages an own list of locked �les. This was doneas an optimization to prevent external calls to RCS for simple operations like checkingfor locked documents.4.2 Problems with the Initial DesignAs outlined in the last section, AutoFocus currently uses a document-based approach tomodeling systems. Each document is completely independent from all other documents;there is no single, structurally consistent model of the developed system that integratesthe di�erent views represented by the documents. Instead, conceptual information andview information is distributed among possibly large number documents. Semanticallymeaningful cross-references between documents are provided only by equality of certainmodel element names inside these documents.The distribution of mixed-up model and view information means that some entities areredundantly represented in di�erent documents. An example are component interfaceports in hierarchical system structure diagrams: They appear both in the external black-16

box view and in the internal glassbox view of a Focus component which are representedby two di�erent documents.The restriction to this working method has serious drawbacks in practical use:� The freedom provided to developers can (and will) lead to many inconsistenciesmaking it di�cult to integrate the documents into a single, consistent system spec-i�cation. Especially in a multi-user environment with many developers workingconcurrently this can be a crucial point. A model-based approach can help here byensuring certain basic consistency properties.� Access to the speci�cation is di�cult because the information is scattered overmany documents. Especially, e�cient queries on the repository are not possiblein a document-based approach.Additionally, the current implementation of AutoFocus' document-based approach isvery ine�cient: It uses RCS-archived �les for storing serialized textual representations ofthe development documents. Complex operations and queries involving many documentsmust, therefore, load and parse all documents �rst. This situation could, however, beameliorated to a certain extent by adding index structures for quicker access. The draw-back is here that even more redundancy would be introduced into the repository, makingthe management of consistency di�cult.For these reasons, we decided to redesign AutoFocus using a model-based repositoryapproach. In this approach, development documents shown in an editor are only viewsonto a central representation of the speci�cation, the so-called speci�cation model. Notethat our usage of the notion \model" con
icts with the usual notion in the area of formalmethods where a model is not a representation of a speci�cation, but a concrete systemful�lling all axioms and constraints of the speci�cation.5 Migration Strategy: Redesign StepsIn the following, we will explain the steps we have performed during the component-oriented redesign of AutoFocus. They follow the process outlined in Sections 3.5 and3.5.3.5.1 Identi�cation and Transfer of ComponentsIn the case of AutoFocus, the identi�cation of components is not very di�cult becausethe system has been designed according to a well-structured construction plan. So, thecomponent candidates can mainly be derived from the current subsystems ofAutoFocus.5.1.1 RepositoryFirst of all, the whole repository subsystem of AutoFocus represents a candidate fora large component. Such a repository component provides, among others, the followingservices to client applications: 17

Persistence Documents can be persistently stored in the repository, available for re-trieval at any time. As mentioned before, this is currently done by streaming docu-ments into RCS-controlled,
at �les inside a special directory in the �le system.Versioning The repository provides services pertaining to version management, that is,storing the complete development lifecycle of documents, not only the actual state.Internally, versioning is provided by RCS, on top of which the repository server runs.Version numbering is done via RCS version numbers.Access Control and Locking In a typical multi-developer environment, access con-
icts to a development document will arise when two or more developers try tomodify the same document simultaneously. AutoFocus' stragtegy to handle suchpotential con
icts is a simple MROW (Multiple Readers, One Writer) strategy. Itis implemented by means of locking mechanisms keeping track of read and writeaccesses to documents.Currently, these services are all provided by the repository server of AutoFocus. How-ever, their di�erent, clearly distinguishable functionality suggests a separation into threedi�erent components.Transaction Management and safe storage |a service that should normally be providedby a repository, too|is currently not available in AutoFocus. It should, however, bepart of a future repository concept.An evaluation of the current repository implementation yields that the present code canhardly be reused in the components of a new repository: It depends strongly on RCS andlacks some of the functionality of a \real" repository. We decided, therefore, to drop thecurrent repository altogether and to focus on this part during the redesign in Section 6.5.1.2 Network CommunicationsAutoFocus is designed and implemented as a distributed system where clients and servertypically run on di�erent, communicating computers. The communication functionalitycan roughly be divided into two functional areas:� Document must be transferred from the repository to the clients and vice versa, and� messages between the server and the clients must be sent that contain, for example,status information about locking and unlocking of documents by other clients.Again, one can see the whole networking functionality of AutoFocus as a large net-working and communication component, perhaps with two sub-components for contentdelivery and signalling, respectively.In the current implementation of AutoFocus, the communication functionality is pro-grammed, as already mentioned above, using the standard Java socket library. Today,more modern mechanisms are available that can be used more or less transparently.We therefore decided to drop the old communication subsystem of AutoFocus altogetherand will replace it by RMI or CORBA for Java.
18

5.1.3 Client Application CoreOn the client side of AutoFocus, a so-called coordinator, implemented as a singletonobject, is responsible for coordinating all actions within the client. It also keeps trackof all local status information, like, for instance, which documents are currently openor edited. The coordinator is a very natural candidate for a component, perhaps withsubcomponents for managing open viewers or communication with the repository.The coordinator of the initial version of AutoFocus was implemented by very tangledand ad-hoc written code without clear interfaces. Therefore, we have decided to drop theold code and to reengineer this component.5.1.4 Project BrowserThe project browser is the main user interface for navigating through the contents of therepository. It can quite naturally be considered a component itself.Considering that the information displayed in the browser is mainly the information avail-able in the client's application core, the browser is basically a view onto the core. Theclient application core can be regarded as the corresponding model in a model-view rela-tionship.As the browser depends strongly on the client application core and its code was alsovery tangled, we decided to reengineer this component also, using a ready-made treeviewcomponent programmed by one of our students.5.1.5 Editors and ViewersCandidates for other very important view components are the editors and viewers ofAutoFocus. They are used to visualize and edit the data in the repository. One can seethem as medium-sized components consisting of several subcomponents. For instance, allkinds of dialogs that provide access to properties of speci�cation elements in documentscan be identi�ed as an additional category of visual view components in AutoFocus.Although the editors and viewers of AutoFocus have many de�ciencies with respectto their user interface, they o�er su�cient functionality for the basic editing tasks. Wedecided, therefore, to keep these components and to improve the user interface as well asthe components functionality.5.1.6 DocumentsFinally, the �ne-grained document objects together with their subordinated objects|likestates and transitions in the case of a state transition diagram|can also be considered ascandidates for components.We did in fact keep the documents during the redesign, but gave them a new role as theviews of the new, model-view-based repository architecture (see Sections 5.2, 6.1.2, and6.1.3).
19

5.2 Addition of Model LayerAs explained in Section 4.2, the initial version of AutoFocus did not know the separationof model elements and their corresponding views. Instead, documents played both roles:They contained the model information and were also responsible for the presentation ofthis information on the screen.To achieve a seamless migration to the new, component-oriented and model-based designas introduced in Section 6, we decided to add a model layer to AutoFocus. Our strategyhere is to generate the model layer on demand from the current document views. Thatwill, of course, only result in a unique model if the documents ful�ll certain consistencycriteria (cf. next section).The intermediate step of generating the model from the views was mainly done because itsaved us a lot of time during the preparation of the practical software engineering coursein which the simulation component was developed (cf. next section). Later on, we willrevert the dependency between models and views: The views will then be based on andgenerated from their model elements, as explained in Section 6.1.3.5.3 Addition of Simulation FunctionalityThe last addition to AutoFocus was a simulation environment that allows to trace theexecution of a speci�ed system [Sim]. Its main component is the simulation generatorwhich takes a speci�cation and generates an executable simulation which itself can beconsidered a component. This executable corresponds with a multimedia component tovisualize the impacts to the outside world (e.g. controlling of street lights, etc.)5.4 Addition of Consistency CheckingPrototypical support for consistency checks is also already integrated into AutoFocus.The work in that area was focused on the design of a language for the expression ofconsistency checks, for which an interpreter was built. The connection to the modelelements is yet very ad-hoc and does not follow the generic architecture described inSection 6.8. However, we think that the existing interpreter can be used as a componentin the new design.6 New, Component-Based ArchitectureThe next sections cover the new, component-based architecture of AutoFocus, withthe focus set to the repository functionality lying at the heart of the tool. We �rstpresent the overall architecture of the system and describe the design principles andstructuring schemas for the involved components. Section 6.2 covers base concepts likethe representation of model and view elements, and Sections 6.5 until 6.8 cover the mainfeatures of the system|like versioning, persistence, and locking|and their realization.The following, last subsection describes how the resulting business-oriented design can bemapped to a distributed hardware. 20

6.1 Overall ArchitectureAs said in Section 2, the main goal of the redesign is to make AutoFocus a
exible toolkitfor experimentation with di�erent meta-models, working methods, and new CASE toolconcepts in general. Therefore, extensibility and
exibility with respect to the followingissues is required:� Meta-modelers and methodologists are o�ered a rich and comfortable frameworkwith base mechanisms for all kinds of meta-models and working methods. Newmeta-models and description techniques can be easily integrated.� The tool can be easily extended with new mechanisms and functionality, and thearchitecture is modular enough to allow changing, modifying, and re-combining thesubsystems of the implementation.We tackle these requirements by structuring the system according to three dimensions, asshown in Figure 7:1. We distinguish the representation of the meta-model from the part of the systemresponsible for the mechanisms (see Section 6.1.1),2. we group all interfaces and classes into three layers as will be shown in Section 6.1.2,and3. we use a modern Model-View architecture distinguishing model components fromtheir corresponding views (see Section 6.1.3).

Herd Components Manager Components

Model

View

Implementation Framework

Conceptual Framework

Meta Model Classes

Figure 7: Design Dimensions of the New AutoFocus Architecture6.1.1 System Mechanisms and Herd ComponentsThe herd component part of the system consists mainly of interfaces and classes formodeling and representing the description techniques of various modeling languages. Atruntime, each modeling construct of type ModelElement|like, for example, a graphicallyrepresented state or transition| is a herd component managed by the system's managers.21

The mechanism part consists of various manager components that provide the more ad-vanced functionality of the system. Managers are typically singleton components|thereis only one manager of a kind in a system. An example for a manager is the VersionMan-ager. It is responsible, among others, for creating new version numbers and for returningthe actual version of a certain ModelElement.New managers can be added easily if they are orthogonal to existing mechanisms. Oth-erwise, the resulting interactions and overall mechanisms must of course be carefully de-signed. An example for a non-trivial dependence between two mechanisms can be foundbetween versioning and locking: One can not create a new version branch from a docu-ment locked exclusively by someone else, so versioning depends on locking and we needto coordinate their managers following a global strategy.6.1.2 Layered FrameworkWe do not use di�erent languages or representations for the meta-model and the meta-meta-model in our approach. Instead, both models are expressed in a single, layeredframework consisting of Java interfaces and classes. This allows a seamless transfer ofcommon classes used for all or many meta-models into the framework by abstracting outcommon concepts of meta-models.Another goal was to �nd an open solution where the framework is independent from aspecial implementation and can be accessed from other languages remotely. This led usto an architecture with three layers:Conceptual Framework This layer contains only Java interfaces. It models the baseconcepts and can be considered as a meta-meta-model because all concrete meta-model and manager classes must implement its interfaces. The conceptual frameworkcontains only abstract concepts independent from a concrete implementation. Be-sides that, using only interfaces makes it easy to allow remote access via RMI orCORBA remote interfaces [SUN97b, OH97].Example interfaces contained in the conceptual framework are ModelElement, fromwhich all meta-model classes must be derived, Lockable, which must be implementedby all meta-model classes that can be locked for access by a user, and LockManager.Implementation Framework This layer consists of abstract Java classes providingstandard implementations for some of the abstract concepts of the conceptual frame-work. Usually, new meta-model classes and new managers will build on the standardimplementations of this layer.An example class contained in the implementation framework is Document o�er-ing the functionality needed by \document-level" modeling constructs which can belocked and edited by users as a whole and may have multiple versions.Meta-Model Classes This layer captures the concepts of a certain modeling languageby means of ordinary Java classes and provides concrete implementations of corre-sponding managers for the system's mechanisms.Example classes in the context of state transition diagrams are the meta-modelclasses TransitionModel or StateModel.Although structuring the framework into three layers provides for easy extendability, evo-lution of the framework is in general no easy task: If the basic concepts in the conceptual22

framework change, not only all implementations in the implementation framework andthe meta-model classes must be adapted, but also all existing, concerned meta-modelinstances.6.1.3 Model-View ArchitectureAnother structuring dimension mirrors our decision to base AutoFocus on a model-view architecture. It is a slightly adapted variant of the well-known model-view-controllerarchitecture, but with the controller integrated in the view (many modern architecturesfollow this approach [Mic96, Java]). Views exist for most of the meta-model elements andmanager components of the system. There may of course be more than one view for asingle model.6.2 Base Concepts: Models and ViewsAll meta-model elements must be derived from the interface ModelElement. Model ele-ments are observed by a number of view elements derived from the interface ViewElement.The views observe their corresponding model following the so-called Observer pattern[GHJV95].Examples for concrete view elements are graphical representations of document-levelmodel elements and basic graphical elements like lines or ellipses that correspond tomodel elements like transitions or states.Analogous base classes can be found in the mechanism part: All managers must be derivedfrom the interface Manager, while the corresponding views must be derived from theinterface Viewer.An example for a concrete manager and its pertaining viewer is the lock manager whichcould be visualized by a window showing a list of locked document-level model elementstogether with the locking users.Components and interfaces:ModelElement: Interface for all herd model elements, must be implemented by all meta-model elements.ViewElement: Interface for all views onto model elements. A view can register itself at itscorresponding model element following the Observer pattern [GHJV95].Manager: Interface for all manager components.Viewer: Interface for all views onto manager components. Registration of a viewer at itscorresponding manager also follows the Observer pattern.Figure 8 shows the interfaces for the model-view-mechanism. Interfaces are shown as boxeswith rounded corners. Note that, although Observer can be taken from Java's standardframework, Observable can not be taken from there, because it is a class, and we want tohave only interfaces in the conceptual framework.
23

observes

*

1

Manager Components

ModelElement Manager

Herd Components

Viewer

Model

View ViewElement

Observable

ObserverFigure 8: Model-View Architecture in the Conceptual Framework6.3 Entities, Relationships, and NavigationWhile the �xed connection structures of the singleton manager components are easy tohandle, this is not true for the changing graph structure of meta-model instances. There-fore, we have to provide adequate support for navigation in this area. We do this byintroducing two sub-interfaces from ModelElement, namely Entity and Relationship, withthe usual semantics: Entities can be connected via bidirectionally navigatable relation-ships.Connection structures like this are usually modeled by introducing methods like En-tity::getRelationships, Relationship::getLeft, and Relationship::getRight. Special relation-ships, like, for example, Aggregation would be derived from Relationship, and they wouldconnect special entities of types Whole and Part, with methods like Aggregation::getWhole,Aggregation::getPart, Whole::getAggregationsToParts, and Part::getAggregationsToWhole.However, this has some disadvantages:� The functionality for navigation is not contained in a single interface, but scatteredover some interfaces (e.g. over Aggregation, Whole, and Part). Changes in theimplementation of a relationship usually require changes to all implementations ofthese classes.� If one wants to extend a meta-model with specialized functionality for navigation,like, for example, a method returning only Relationship instances satisfying certaincriteria, new entity interfaces with additional methods must be introduced. Thisleads to a plethora of di�erent entity concepts that di�er only with respect to navi-gation.� Entities participating in two di�erent relationships of the same type can not bemodeled adequately, as can be seen in the following example: The type Boiler isaggregated along two di�erent dimensions. According to the spatial aggregationhierarchy, a boiler is part of a certain room of a building, and according to the func-tional aggregation hierarchy, it is part of the whole central heating. However, Boilercan only implement Part once, forcing one to introduce two new, specialized Aggre-gation relationships like, for example, SpatialAggregation and FunctionalAggregation,along with the types SpatialWhole, SpatialPart, FunctionalWhole, and FunctionalPart.Again, this leads to a plethora of di�erent meta-model concepts.� Adding a new relationship to an archived entity supposed to be immutable (cf. Sec-tion 6.4) would change the result of its Entity::getRelationships method (analogouslyfor the method Whole::getAggregationsToParts and similar methods).24

Because of these disadvantages we decouple the information about connected relationshipsfrom entities and strip entity types of any functionality for navigation. Instead, we use so-called navigation manager components to return the relationships connected to a certainentity. This leads to the following pattern of interfaces for the Aggregation relationship:Aggregation represents a single, bidirectional aggregation link. It is derived from thegeneric interface Relationship and contains the methods getWhole and getPart for ac-cessing the two partners of the aggregation. Besides that, relationship interfaces mayalso contain special constraint and check methods and even complex, application-dependent functionality introduced by the meta-modeler.Whole/Part are bare interfaces without any methods. They provide type-safe access tothe connected entities.AggregationManager is a specialized navigation manager derived from the generic in-terface RelationshipManager. It provides at least the methods getAggregationsToParts(Whole) and getAggregationsToWhole(Part) for returning all connected aggre-gations for a certain entity. More advanced functionality, for example, methodslike getPartsFor(Whole), getTransitivePartsFor(Whole), or getRootFor(Part) are alsopossible. Missing functionality can be easily added by deriving new, specialized nav-igation managers from AggregationManager.Note that di�erent navigation manager instances for di�erent aggregations (like forthe spatial and functional hierarchies in the example above) can coexist withoutproblems.The resulting architecture can be seen in Figure 9. It omits only the model/view archi-tecture dimension and shows only the model part. Interfaces are shown as boxes withrounded corners, while abstract classes are shown as slanted boxes, following the notationin [Fla96]. We do not provide a special navigation architecture for the view part becauseit can be built using standard GUI implementation techniques outside the scope of thispaper.
Entity Relationship

Hierarchy

AggregationPartWhole

Son

RelationshipManager

HierarchyManager

AggregationManager

.

Manager ComponentsHerd Components

CFW

IFW

MMC

ModelElement Manager

Father

AggregationImpl1

AggregationImpl1

AggregationManagerImpl2

AggregationManagerImpl1

Figure 9: Relationship Architecture for Model PartApart from Aggregation, we provide also some other specialized relationships we think are25

useful in every meta-model: Hierarchy models tree-like structures (for example Aggregationrelationships), Re�nement models simple implementation relationships, and Compatibilitymodels mutual exchangability of two meta-model elements.Hierarchy/Father/Son: Hierarchy is derived from Relationship and models directed, hierar-chical relationships. It contains functionality for navigating to the connected Fatherand Son entities.Aggregation/Whole/Part: Aggregation is derived from Hierarchy (accordingly, Whole andPart are derived from Father and Son), and handled analogously.Re�nement/Abstract/Concrete: Re�nement is derived from Relationship and handled anal-ogously to Hierarchy/Father/Son, only that re�nement is a m:n-relationship. Com-plex re�nements where proofs or other complex data are involved can be modeledby subclasses.Compatibility/Compatible: Compatibility is derived from Relationship and handled analo-gously.Each of these specialized relationships is managed by its special navigation manager.6.4 Persistence and ArchivingOur archiving concept comprises two separate areas, namely, the archive with old, im-mutable versions of model elements, and the shared workspace with the actual, \live"model elements that are worked on by one or more users. View elements are also storedpersistently because one has to keep, for example, the geometry information pertaining toeach view. New versions of model elements are created only on user archiving requests,not on every user edit action.Relationships between entities in the archive can not be changed or removed. How-ever, this is in principle possible for relationships between workspace model elements andarchived model elements, as well as for relationships between workspace model elementsand workspace model elements. The conditions under which new relationships can beintroduced depend on each meta-model; we have, therefore, decided not to provide addi-tional support for them in our framework architecture.We have not introduced a delta mechanism for storage space e�ciency into our designbecause we think that would be a premature optimization at this time: All versions ofmodel elements are considered as full, persistent objects. Persistence is handled transpar-ently by a persistent object system like PJama [Lab] or the CORBA persistence service[COR, OHE97]. We have not yet decided which persistence mechanism to use, as thisrequires extensive evaluation.However, we have provided a specialized manager component responsible for managingall archived model and view elements.Components and interfaces:ArchiveManager: This manager keeps write locks (cf. Section 6.6) to model elements andthus prevents users from changing them. It is also responsible for answering globalqueries to the archive, like, for example \Return all actual model element versionsas of February, 1st." in cooperation with the version manager (cf. next section).26

6.5 Versioning of Model ElementsOur version concept allows sequential and branching versions for each versioned entity,as visualized in �gure 10. Whenever two branches are folded into one version, theirconsistency must be checked by some means to prevent inconsistencies in the resultingversion.
archive workspace

e1

e2

version progression

e3

relationships

Figure 10: Versioning ConceptWhenever a user wants to archive the current state of an active workspace model element,new sequential versions of all transitively reachable, not yet archived model elements inthe workspace are generated, too. The elements in the workspace are not in
uenced bysuch an action, however. Figure 11 shows this behavior; in this example, the black andthe grey model elements in the workspace were modi�ed compared to their last archiveversions, whereas the white model element was not changed (the relationships themselves,visualized by the two-way solid arrows, were also not changed). An archiving request forthe black model element leads to the situation on the right, where the modi�ed greyelement is archived, too.
e1

workspacearchive

e2

e3

e1

workspacearchive

e2

e3Figure 11: Archiving of a New Model Element VersionWhenever a user wants to create a new variant|that is, a branch|of an existing work-space model element, a new archived version of the model element must be created.Branches of archived versions can be created without creating a new version. Figure 12shows both possibilities; the black model elements are branched.We consider a the choice of a concrete version numbering scheme a presentation optionnot relevant for system design. A possibility is, for example, to use the version numberingscheme used by RCS [Tic85]. 27

workspacearchive

e1 e1

workspacearchive

e2e2

Figure 12: Branching of Model Element VersionsNote that we did not introduce a snapshot concept for whole systems: If a user wantsto store the current state of all model elements together, the meta-model must provide asystem model element referencing all needed model elements in the model.Another point we want to stress is that usually not all model elements are versioned.However, all non-versioned element must be encapsulated in and handled by versionedmodel elements, and there may be no relationships to them from model elements outsideof this encapsulating model element. Additionally, relationships between versioned modelelements are usually also versioned, especially if they carry application information. Thisleads to a two-leveled structure with document-level model elements that can be versionedand locked by users (cf. next section), and low-level model elements contained in thedocument-level elements.View elements are, like low-level elements, not versioned themselves; their version followsthe version of their viewed model element.Components and interfaces:Versioned Interface for herd model elements, must be implemented by all versionedmodel elements. Contains functionality for storing and accessing version informationof a single model element, and for navigation to the predecessors and successors inthe version history.VersionManager Manager component, responsible for implementing a version number-ing scheme, for realizing complex queries on the version history (e.g. \Return allactual workspace model element versions for a certain model element."), and for per-forming complex changes on the version structure (e.g. archiving all model elementsthat are reachable from a certain model element in the workspace).6.6 Locking and Checkin/CheckoutAs explained in Section 2, on of the main goals of the AutoFocus redesign is to al-low experimentation with di�erent working methods. We distinguish the following mainvariants: 28

Shared Whiteboard Some users may simultaneously have the right to edit a singlemodel element, and they see all modi�cations in real-time. If con
icts arise, theyare resolved according to some strategy. If, for example, two users attempt to draga graphically represented element to di�erent locations on the screen at the sametime, only the action started �rst will succeed.Exclusive Whiteboard At each time, only one user has the right to modify a singlemodel element, but all users see the modi�cations in real-time. Elements owned bya user must be accordingly marked to indicate that they can not be worked on byother users willing to edit them.Checkin/Checkout At each time, only one user has the right to edit a single modelelement, and no other user can see his or her modi�cations. Elements that arechecked out by a user must be accordingly marked to indicate that they can neitherbe edited nor seen by other users.We de�ne three kinds of access modes that correspond to these working methods:Read Access corresponds to the checkin/checkout working method. It indicates that auser reads a certain model element (`reading' means in this context that the user hasopened an editor with a representation of the model element). Multiple simultaneoususers with read access to a single element are possible.Write Access corresponds to the exclusive whiteboard working method. A user withwrite access has the exclusive right to modify a model element. Although onlyone simultaneous user with write access to a single element is possible , there mayadditionally exist many users with read access.Exclusive Access corresponds to the checkin/checkout working method. A user withexclusive access has the right to modify and read a model element. As the nameindicates, there must not be other users with access to a model element that isaccessed by a user with exclusive access.Access modes are not a technical concept, but must be visualized to the user. A possible,straigtforward implementation will use the technical concept of locking. In the following,we present a simple concept for lock management, where read, write, and exclusive accessis realized by read, write, and exclusive locks, respectively. The �nal implementation maynot necessarily be based on this locking concept, but may resort to a built-in lockingmechanism of the used persistence platform (cf. Section 6.4).As with versioning, not all model elements must be necessarily lockable. However, all non-lockable low-level elements must be encapsulated in and handled by lockable document-level model elements, and there should be no relationships to them from model elementsoutside of this encapsulating document-level element.The lock granularity must be de�ned by the meta-modeler. Apart from the implicitpropagation to encapsulated low-level elements of a document-level element, the meta-modeler can choose to propagate the lock to other model elements. An example arises inthe context of AutoFocus' hierarchical state diagrams: Here, the meta-modeler couldimplement a locking strategy where a lock set on a sinlge state locks also all subordinatedsub-states and their transitions recursively. Locks can not be set on single attributes ofmodel elements; if a meta-modeler wants to have very �ne-grained locking control, he orshe has to choose adequately �ne-grained meta-modeling concepts.29

As with versioning, view elements are not locked themselves; their locks follow the locksof their viewed model element.Locks can be used to implement the separation between archive and workspace elementsby allowing the ArchiveManager to achieve write locks to the archived model elementversions that it never returns.Components and interfaces:Lockable: Interface for herd model elements, must be implemented by all lockable modelelements. Contains functionality for setting and accessing information about eachof the locks of a single model element.Lock: Interface for the three kinds of locks. Allows access to information about� the kind of the lock (read/write/exclusive),� the user who owns the lock, and� the time at which the lock was created.Lockmanager: Manager component, responsible for complex queries concerning locks (e.g.\Which state transition documents has user Quargl open for reading?"), and forlocking whole hierarchies or transitive closures of model elements with the help ofnavigation managers.6.7 Transactions and Undo/RedoUsers can control a CASE tool in various ways: There will usually be interaction viamenus, dialogs, mouse actions in graphical editors, or even via automation facilities likescripting languages (cf. next section). All of these interactions can be captured using theconcept of commands as introduced in [GHJV95]. Apart from providing a single, powerfulabstraction for all kinds of user interaction, commands o�er support for undoable andredoable actions.In the context of a multi-user tool, where many users access a set of shared resources, wealso need a facility for coordinating the user commands. This can be done most easily byencapsulating each critical command sequence in a transaction. The choice of transactiongranularity and generally the implementation of the single command transactions is notpart of our architecture; it must be designed according to the intended working methodby meta-modelers and methodologists extending our framework. The shared whiteboardworking method would, for example, lead to very �ne-grained transactions on the level ofsingle mouse actions.We do not intend to program support for transactions by ourselves because components forthis purpose are already available: The persistence mechanism PJama [Lab] or CORBA'stransaction service [COR, OHE97] are possible alternatives here. We have not yet decidedwhich alternative to choose, as this requires extensive evaluation.Components and interfaces:Command: Interface for all kinds of actions that can be performed by the users. Containsfunctionality for execution, undo and redo.Transaction: Derived from Interface for commands accessing shared resources. Containsfunctionality for commit and rollback, as required by the underlying transactionmechanism. 30

6.8 Access for Scripting LanguagesA CASE tool like AutoFocus should be very con�gurable. One possibility to improvecon�gurability is support for various scripting languages, like, for example, a simple lan-guage based on predicate logic for formulating consistency conditions [HSE97] on models.Scripting language interpreters need access to certain methods of model elements, butmust not access other methods. An example is the meta-model type State. Its methodisFinalState should be callable in a consistency check, whereas the method deleteObservers(disconnecting the views from the model element) should not be callable. Therefore, weneed a generic mechanism for �ne-grained access control to model elements methods.We provide the interface Scriptable for this purpose: It contains methods for characterizingsome of the methods of a meta-model interface as callable from a scripting mechanism.The actual invocation of callable meta-model element methods can be done via Java'sre
ection facility [SUN97a] or CORBA's dynamic invocation facility [OH97].Components and interfaces:Scriptable: This interface contains at least the method mayExecute(String) that checkswhether a certain method of a model element may be dynamically invocated by ascripting language interpreter.ScriptManager: This interface contains functionality for the dynamic invocation of a modelelement's method. If the method must not be called by the corresponding scriptinglanguage, the script manager returns an exception.ScriptInterpreter: This interface contains functionality for parsing and interpreting a scriptlanguage. For executing methods on model elements, it relies on the correspondingscript manager.Specialized, derived interfaces must be provided for specialized scripting languages. Ex-amples for the language of consistency checks are the interfaces Checkable, CheckManager,and CheckInterpreter.6.9 Distribution DesignDistribution design is concerned with the partitioning of the data and functionality of asystem on a network of physically or logically distributed computation nodes.Our intended, typical target architecture is a powerful central server with some Java-capable clients. For this con�guration, the easiest and most
exible solution is to centralizeas much data and functionality on the server, leaving only the graphical user interfacedata and functionality on the distributed clients. This has the following reasons:� Speci�cation model information can not easily be assigned to a single client. Espe-cially in the shared whiteboard working method, many users must access the sameelements. Centralizing all information on the server keeps the communication pat-terns simple. It also avoids the necessarity for object migration of model elementsfrom one node to another.� The single elements of the speci�cation model are strongly interconnected. If someof them would live on the clients, this would result in many remote references and31

in complicated reference structures between the clients. If all data is held on theserver, all references between model elements can be implemented by server-localJava references.� Queries and global operations that need the whole speci�cation model can be exe-cuted e�ciently on a central server.� Data security and access control is easy with a central server.While centralizing the speci�cation model on the server makes no di�culties, there is aproblem with the view components: As we allow working methods|for example, in theshared whiteboard approach|where many users have access to the same view information,not only the model elements, but also the view components live on the server. Thisimplies that there exist other, \second-level" views on the client that draw the screenrepresentation and react on user actions. In this architecture, �rst-level server viewsobserve their corresponding model elements, while the second-level client views observetheir corresponding �rst-level server view.The main disadvantage of the proposed distribution architecture is that the load on thenetwork connections between the clients and the server is high: Each user interactionusually requires some calls to server components. However, we think that a �rst imple-mentation should not contain premature optimizations that would complicate the overallarchitecture. If they turn out to be necessary in certain areas, such optimizations can beadded later on.A possible extension would be to add other servers for special tasks to this architecture.This makes sense, for example, for functionality like automated proof support via modelcheckers or theorem provers: These tools are usually large, not very portable legacycomponents that need fast computing servers to perform adequately. Wrapping theirfunctionality in a remote interface would allow to connect them be used from AutoFo-cus or other tools.The technical realization of the distributed communication can be done via a distributedprogramming mechanism. We have evaluated RMI [SUN97b] for that purpose [BRS]extensively and will evaluate also CORBA for Java [OH97]: Both approaches seem suitablefor inclusion as communication management components into our system.7 ConclusionIn this paper, we have outlined a methodology for component-oriented software develop-ment. The methodology was in turn applied to a complex development problem, namely,the redesign of the distributed multi-user CASE tool AutoFocus.Currently, only parts of the redesign are realized:� The client-side browser and application core were reengineered and connected to theold, RCS-based repository.� The functionality for simulation was added in a practical software engineering courseduring summer terms 1997 [Sim]. As part of the preparation of this course, thespeci�cation model for the existing development techniques was added. However, itis not yet connected fully to the views, as explained in Section 5.2.32

� A prototype of the consistency checking mechanism was implemented [Ein97].Although the current version of AutoFocus provides a working environment that issu�cient for small projects, most of the work for the redesign remains yet to do. Thispertains not only to the actual coding, but also to the elaboration of the proposed design:Existing base techniques and components|especially for transaction management, per-sistence, and distributed communication|must be evaluated, interface signatures mustbe de�ned, and a prototype must be built to show the viability of the approach.Similar considerations apply to the componentware concepts and the methodology in-troduced in Section 3: They must be re�ned and developed further, for example withrespect to existing, technical componentware approaches like Java Beans [Javb], CORBA[COR], or COM/DCOM [Bro95], and adequate process models, description techniques,formalisms, management techniques, and ultimately tools must be found and constructed.AcknowledgementsWe thank Bernd Deifel, Sascha Molterer, and Alexander Vilbig for interesting discussionsand comments on earlier versions of this report.References[BDD+92] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T.F. Gritzner, and R. Weber.The design of distributed systems - an introduction to FOCUS. TechnicalReport TUM-I9203, Technische Universit�at M�unchen, Institut f�ur Informatik,Januar 1992.[Ber97] Klaus Bergner. Spezi�kation gro�er Objektge
echte mit Komponentendiagram-men. CS Press, 1997.[BRJ97] G. Booch, J. Rumbaugh, and I. Jacobson. Uni�ed Modeling Language, Version1.0. Rational Software Corporation, URL: http:/www.rational.com, 2800San Tomas Expressway, Santa Clara, CA 95051-0951 (USA), 1997.[Bro95] Kraig Brockschmidt. Inside OLE2. Microsoft Press, 2nd edition, 1995.[BRS] Klaus Bergner, Andreas Rausch, and Marc Sihling. Casting an abstract designinto the framework of Java RMI.[COR] Object Management Group CORBA. OMG website, http://www.omg.org.[DPB96] Wolfgang Keller Dr. Peter Br�ossler. Von monolithen zu komponenten - wegezu objektorientierten software-architekturen. In Heinrich C. Mayr, editor,Beherrschung von Informationssystemen : Tagungsband der Informatik '96,�Osterreichische Computer-Gesellschaft : Schriftenreihe. R.Oldenbourg , Wien,1996.[Ein97] G. Einert. Dokument�ubergreifende Konsistenzpr�ufungen f�ur das WerkzeugAutoFocus, 1997. Fortgeschrittenenpraktikum.[Fla96] D. Flanagan. Java 1.1 in a Nutshell. O'Reilly & Associates, Inc., 2 edition,1996. 33

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elementsof Reusable Object-Oriented Software. Addison-Wesley, 1995.[Hin97] Dietrich Hinz. Die neue HOAI. Forum Verlag Herkert GmbH, Merching, 1997.[HSE97] F. Huber, B. Sch�atz, and G. Einert. Consistent graphical speci�cation ofdistributed systems. In FME'97, Lecture Notes in Computer Science. Springer,1997.[HSS96] Franz Huber, Bernhard Sch�atz, and Katharina Spies. AutoFocus - EinWerkzeugkonzept zur Beschreibung verteilter Systeme . In Ulrich Herzog Hol-ger Hermanns, editor, Formale Beschreibungstechniken f�ur verteilte Systeme,pages 165{174. Universit�at Erlangen-N�urnberg, 1996. Erschienen in: Arbeits-bereichte des Insituts f�ur mathematische Maschinen und Datenverarbeitung,Bd.29, Nr. 9.[HSSS96] Franz Huber, Bernhard Sch�atz, Alexander Schmidt, and Katharina Spies.AutoFocus - A Tool for Distributed Systems Speci�cation . In Joachim Par-row Bengt Jonsson, editor, Proceedings FTRTFT'96 - Formal Techniques inReal-Time and Fault-Tolerant Systems, pages 467{470. LNCS 1135, SpringerVerlag, 1996.[IT93] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC).ITU-TS, Geneva, September 1993.[Java] JavaSoft. Java Foundation Classes website, http://java.sun.com/products/jfc/.[Javb] JavaSoft. JavaBeans website, http://java.sun.com/beans/.[Lab] Sun Microsystems Laboratories. PJama Release 0.3.4 (for JDK 1.1.4), http://www.sunlabs.com/research/forest/opj.main.html.[Mic96] Microsoft Corporation, Redmont, WA (USA). Visual C++ 4.0 and MicrosoftFoundation Class Library Manuals, 1996.[MLB95] Michael Stonebraker Michael L. Brodie. Migrating Legacy Systems. MorganKaufmann Publishers Inc., 1995.[OH97] Robert Orfali and Dan Harkey. Client/Server Programming with Java andCORBA. John Wiley & Sons, 1997.[OHE97] Robert Orfali, Dan Harkey, and Jeri Edwards. Instant CORBA. John Wiley& Sons, 1997.[Pro] Renaissance Project. Renaissance website, http://www.comp.lancs.ac.uk/projects/renaissance/.[Sim] SimCenter Project Team. SimCenter website, http://autofocus.informatik.tu-muenchen.de/stp97/.[SUN97a] SUN Microsystems. The JDK 1.1.2 Documentation, http://java.sun.com/products/jdk/1.1/docs, 1997.[SUN97b] SUN Microsystems. RMI { Remote Method Invocation, http://java.sun.com/products/jdk/1.1/docs/guide/rmi, 1997.[Tic85] Walter F. Tichy. RCS { A system for version control. Software { Practice andExperience, 15(7), July 1985. 34

