
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Modeling Work Flows For Building
Context-Aware Applications

Christian Leuxner, Wassiou Sitou, Bernd Spanfelner,
Veronika Thurner, Armin Schneider

ABCDEFGHIJKLMNO
TUM-I0913

Juni 09

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-06-I0913-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2009

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

Modeling Work Flows For Building
Context-Aware Applications∗

Christian Leuxner, Wassiou Sitou, Bernd Spanfelner,

Veronika Thurner† and Armin Schneider‡

Technische Universität München, Departement of Informatics

Boltzmannstr. 3, D-85748 Garching, Germany

{leuxner|sitou|spanfeln}@in.tum.de

† University of Applied Sciences – Munich

Lothstr. 34, D-80335 Munich, Germany

thurner@hm.edu

‡ Klinikum rechts der Isar, MITI Research Group

Trogerstr. 26, D-81675 Munich, Germany

armin.schneider@mitigroup.de

June 19, 2009

∗This research has been supported by the CAWARFlow project (grant BR 887/21-1) sponsored by the
German Research Foundation

Abstract

The consistent specification of reactive, context-aware systems is still a challenging and error-
prone task. One reason for this observation is, that those systems are typically involved in com-
plex user interactions and support multi-variant work flows of humans andother technical sys-
tems. On the one hand, it is necessary to capture all system functions required for each supported
activity of the work flow. On the other hand, interrelations between system functions such as their
order of execution or mutual influences have to be considered as well.

The idea of modeling data and control flows occurring within a software-intensive system and
its environment by means of a common and precise graphical notation has been present for a
couple of years now. Most modeling techniques in practice like,e.g., UML’s Activity Diagrams
merely offer an ‘appealing’ graphical syntax without including a precisemathematical interpre-
tation for the behavioral modules – denotedprocessesin the following – exhibiting these data
and control flows. This causes ambiguous model interpretations, which cannot be readily re-
solved. On the other hand, formally founded description techniques like,e.g., Petri Nets can not
express aspects like communication, which are relevant for the faithful description of the pro-
cesses of the sorts arising in computer science. Methodically relevant concepts such as hierarchy
and refinement are often not supported by such description techniques. The presented modeling
approach incorporates the advantages of both worlds: a graphical representation supporting a
modular, hierarchical description in terms of processes, and a formal semantics accurately re-
flecting the execution of these processes – thus laying the foundation for automatic verification
and tool support.

Furthermore, we sketch an elementary development approach to the model-based design of
system behavior, which uses different views to structure its design and analysis. It starts with
a formal, structured description of a user’s work flows to be supported by the system. This
structure is exploited for the construction of two complementary views: one that characterizes
the relevant usage conditions of the user’s work flow in terms of context, and another view
describing the required system behavior in that context.

i

Contents

1 Introduction 1
1.1 Contribution . 1
1.2 Scope . 2
1.3 Related Approaches . 2
1.4 Outline . 3

2 Preliminaries 4
2.1 Context . 4
2.2 Case Study: Laparoscopic Cholecystectomy 4

3 Describing Processes 6
3.1 Process Interface and Behavior .. . 6
3.2 Composing Processes . 7

4 Modeling Processes 12
4.1 Process Syntax . 12

4.1.1 Elementary Process . 12
4.1.2 Sequential Process Composition . 13
4.1.3 Alternative Process Composition . 14
4.1.4 Parallel Process Composition . 14
4.1.5 Repetitive Process Composition . 15
4.1.6 Process Hierarchies . 16

4.2 Process Semantics . 17
4.2.1 Basic Semantic Concepts . 17
4.2.2 Interpretations . 18

5 Application: Surgery Assistance 24
5.1 Work Flow View . 24
5.2 Contextual View . 25
5.3 Functional View . 26
5.4 Contextual Requirement Chunks . 27

6 Conclusion 28
6.1 Summary & Evaluation . 28
6.2 Outlook . 28

Bibliography 30

ii

1 Introduction

Due to their inherent complexity, the consistent specification of many reactive systems is a chal-
lenging and error-prone task. Building concurrent, multi-functional andcontext-aware systems
complicates the specification and reasoning about those systems even more.One way to manage
this complexity is the usage of formal, structured models for their specification and analysis.
Such models describe the considered system characteristics with mathematicalrigor and enable
a hierarchical decomposition of the system descriptions into smaller parts. Orthogonally to this
hierarchy,viewsstructure the specification according to a few selected aspects of the system.
Both hierarchies and views can be exploited to structure the specification and analysis. A crucial
view we emphasize in this paper focuses on thework flowsto be supported by the system.

The work flows which humans accomplish in their daily business are typical starting points for
the development of reactive systems. Consider a complex work flow like,e.g., a surgery. Such
a work flow can be described by a structured specification whose buildingblocks we denote
processes. Each process models an exemplary, finite part of the overall work flow,in which
surgeons and nurses cooperate in order to achieve a certain objective, e.g., the removal of a
patient’s gallbladder. Such work flows essentially influence how a system supporting these work
flows needs to interact with its environment. A useful description technique for building systems
on basis of work flows must fulfill several requirements. Among other things, it should be able to
accurately reflectbothkinds of processes in auniform fashion:(i) the work flows accomplished
by humans in the real world, and(ii) the data and control flows of the system supporting the
real-world work flows.

Even more important, a useful modeling approach smoothly integrates the resulting system
specifications, such as,e.g., the partially defined processes presented here and the totally de-
fined components of a component-based system design, in order to contribute to a integrated,
consistent specification of the developed system.

1.1 Contribution

We introduce processes as a formal, structured model for the modular description of concurrent,
reactive systems and their environment. The model is formal in that it definesa process as a
mathematical object, which can be analyzed. The model is structured in that it permits the hier-
archical definition of a process, and that hierarchy can be exploited for structuring the analysis.
We formally define the syntax of process descriptions and provide a formal interpretation for
process behavior. Processes form the basic building blocks for describing the data and control
flows within systems and their environment. They are capsules of behavior that can be composed
sequentially, alternatively, and in parallel – arbitrarily nested.

A mathematical semantics for process descriptions not only enables their unambiguous in-

1

2 1. Introduction

terpretation. It also provides the basis for tool support, thus enabling anefficient development
process. Tools can verify requirements on specifications that are too complex to be verified
manually by a person. Moreover, they can support the synthesis of design models from process
specifications, thus avoiding error-prone, manual translations.

Moreover, we propose an elementary, model-based approach to the specification of (partial)
system behavior, which exploits the work flows of users in order to elicit and structure its func-
tional requirements in terms of alabeled transition system(LTS). Our approach structures the
specification of system behavior into three complementary views: Thework flow viewdescribes
the work flows to be supported by the system in terms of a formal, structured model. This model
reflects the execution order and the communication between the work flow parts by means of
control and data flows, resp. The work flow view structures the description and analysis of two
complementary system views, namely thecontextual view– which describes the characteristic,
observable usage conditions of each work flow part in terms ofcontext– and thefunctional view
– that represents the system functionalities supporting each part of the work flow. By this, we in-
troduce a ‘process-oriented’ view for the development of reactive systems, which complements
service-orientedapproaches by concentrating on execution order and communication rather than
on functional dependencies.

1.2 Scope

Our approach addresses the late analysis phase within the development process, in which func-
tional requirements are formalized in terms of a LTS. We assume an informal description of
the exemplary usage scenarios / user work flows to be given,e.g., in terms of Use Cases [1].
We formalize those descriptions by the model described in Sec. 3. These partial work flow de-
scriptions, denotedprocesses, are used to derive the intended system behavior with the aid of two
complementary views. The result is a formal, structured specification of system functions, which
is build up in accordance with the views describing a user’s work flows andits corresponding
usage conditions in terms of context.

1.3 Related Approaches

A variety of description techniques and formalism for describing work flows already exists,
which differ in many aspects such as communication, formal foundations, separation between
control and data flow, process composition, refinement concepts, hierarchical structuring, and so
on. We mention just a few formal approaches which influenced the definitionof our description
technique the most.

The concept of activating and deactivating processes by means of control points goes back
to the control tokens introduced inPetri Nets[2] and variants thereof [3].Activity Diagramsas
used in the Unified Modeling Language [1] constitute an informal descriptiontechnique, which
also supports the specification of control flow in terms of choice, iteration, and concurrency.
Approaches like [4] emerged since their introduction, which formalize the Activity Diagram
semantics in terms of existing formalisms such as Petri Nets or by introducing newformalisms.

1.4. Outline 3

In contrast to the above approaches, we support process communication via interface variables,
since we aim at the construction of reactive systems, for which data flow is fundamental.

The idea of defining process behavior mathematically and structuring processes hierarchically
is inspired by thebusiness process netsintroduced in [5]. However, the specification of behavior
in business process nets is restricted to ‘conventional’ mathematical functions. This appears to
be very limiting when describing complex system behavior, since this approach imposes some
kind of ‘one step per process’ semantics. In addition, we wanted a specification technique that
explicitly captures the notion of control flow for enabling a proper composition of processes – a
concept not supported in business process nets.

An explicit separation of data and control flow enables such a composition by partitioning the
overall system behavior according tocontrol points. More precisely, control points structure a
complex labeled transition system into modular behavioral parts. Indeed, our approach is essen-
tially inspired by Henzinger’scomponents[6] and Schätz’sfunctions[7, 8]. Both approaches
focus on the construction of reactive systems, thereby providing designers withdisjunctiveand
conjunctive compositionof behavioral modules, which cover sequential executions by handing
over activation and parallel executions by exchanging messages. However, in order to cope with
the specification of work flows, some design decisions within the above approaches had to be
reconsidered. As opposed to the strict black-box view of functions, processes support the in-
ternal communication via shared variables which emphasizes their concentration on (system)
executions. In order to reflect their exemplary nature, the processes inour approach arenot input
enabledas opposed to the components in [6] and the functions in [8]. Accordingly,the underly-
ing system model, the definition of behavioral composition, and the corresponding appearance
of processes differ.

1.4 Outline

This paper is organized as follows. In Sec. 2, we introduce the notion of context and present
a medical case study of a minimal-invasive surgery, denoted laparoscopiccholecystectomy. In
Sec. 3, we informally introduce our description technique for modeling data and control flows
by means of the case study mentioned before. In Sec. 4, we formally introduce the syntax and
semantics of processes and process composition, as well as the notion of process hierarchy. In
Sec. 5, by means of a running example, we outline an elementary, process-oriented approach
for designing context-aware systems on basis of user work flows and contextual information. In
Sec. 6, we summarize our work and outline further promising research directions.

2 Preliminaries

In this section, we introduce the notion of context and present a case study which serves as a
running example throughout this paper.

2.1 Context

Informally, thecontextof a system constitutes the sufficiently exact characterization of all infor-
mation in the system environment. An early work considering the role of context in software-
intensive systems is provided by Schilit et. al in [9]. More recent work directs to the systematic
elicitation of context, and the question which context is relevant for a systemunder construction.
This consideration manifests in an explicit model of a system’s context as proposed in [10], in
which context is basically categorized into three dimensions characterizing ausage situation:(i)
theuser, (ii) heractivities, and(iii) theoperational environment.

Eventually, the notion of context is exploited to unburden the user from someof her direct
interactions with the system. More precisely, the system adapts its observablebehavior auto-
matically on basis of context (context adaptation). A formally founded discussion ofadaptive
system behavior– behavior that not only depends on explicit user inputs, but also on the context
of use and the work flows of users as one part of that context – can befound in [11]. Essen-
tially, Broy et al. propose to use the notion of adaptive system behavior always with respect to
a user interacting with the system. Then, depending on her perspective, three kinds of adaptive
system behavior can be distinguished, denotednontransparent adaptive, transparent adaptive,
anddiverted adaptivesystem behavior.

2.2 Case Study: Laparoscopic Cholecystectomy

We already mentioned in the previous section that we illustrate the application of our model-
ing approach using a running example from the medical domain. We describein parts the work
flow of a highly standardized, minimal invasive surgery, denoted aslaparoscopic cholecystec-
tomy (lapCHE)[12], within which a patient’s gallbladder is removed in case of inflammations.
The medical case study demonstrates the approach’s capabilities to model work flows within a
system’s environment.

We shortly sketch the execution of the considered surgery. The lapCHE can roughly be par-
titioned into eight individual phases. For illustrating the modeling capabilities of our approach,
we concentrate on the fifth phase of the surgery in which the gallbladder is dissected.

Cholecystectomy is performed under general anesthesia. Initially, a small needle is in-
serted into the peritoneal cavity for inflating the abdomen with carbon dioxide.This
provides room for easier viewing and for the surgical manipulations to be performed.

4

2.2. Case Study: Laparoscopic Cholecystectomy 5

At the same point, a small incision is made and a thin tube, calledtrocar, is in-
serted (T1) afterwards. Via this first port, the telescope is introduced to visualize
the interior of the abdomen. After a test insertion with a hypodermic needle, three
other trocars are inserted under view of the laparoscopic camera (T2, T3 and T4).

Fig. 2.1: Trocar Points

To get access to the gallbladder, first a retraction device is inserted
in T3. The right liver lobe is elevated. The laparoscopic camera is
changed from trocar T1 to T2, to provide sufficient view of the sur-
gical field. Finally, a grasping forceps is inserted into T4 and the
dissection device in T1. The primary step of the surgical procedure
is to dissect the area which includes the bile duct and the cystic
artery (Calot’s triangle). This is done by blunt dissection with a for-
ceps and cutting current. In case of bleedings, coagulation current
is used. If both structures are clearly visible, each of them is clipped
with three clips, followed by cutting both structures between the
clips with laparoscopic scissors. The following step is dissection of
the gallbladder. In minimally invasive surgery, this is done by touching the areas between gall-
bladder and liver and applying cutting current.

Fig. 2.2: Operating Team Lineup

To remove the dissected gall bladder a sal-
vage bag is inserted into the abdomen, the gall-
bladder packed up into the bag and the bag ex-
tracted together with trocar T1. In case of big
stones, the bag cannot be extracted through the
trocar incision. In that case, the calculi are ex-
tracted extracorporeally out of the salvage bag.
Thus, the content of the bag is adequately re-
duced to pull it out. Finally, the surgical area is
explored again to detect and take care of bleed-
ings. A drainage is inserted through a trocar hole
and all instruments are removed. The trocars are
extracted under visual control and the incisions
are closed by sutures. During the procedure, in
case of bleedings in the operation field, a device
which allows flushing and suction is used. Also
controlling for bleedings after extraction of the
gallbladder is done with this device.

3 Describing Processes

We informally introduce the syntax and semantics of processes in this section,and present our
description technique by giving a work flow specification for a surgical intervention, the lapCHE.

3.1 Process Interface and Behavior

Processes are the building blocks of the approach presented here. Basically, processes are cap-
sules of behavior, defined by their syntactic interface in terms of data and control flow as well
as their semantic interface. The semantic interface describes a process’sbehavior in terms of a
constructive specification,i.e. the behavior is defined in a state-transition manner. The control
flow between the process and its environment is defined in terms of two kinds of control points;
one for accepting control from the process’s environment and one for returning control back to
its environment, thus allowing the process to be activated and deactivated, resp.

dissect

Gallbladder ::
surgeon, nurse

strt stp

i1 :P i2 :F i3 :H i4 :S

l1 :P′ l2 :F′ l3 :H′ l3 :S′

Fig. 3.1: Compound Process ‘dissect Gallbladder’

Fig. 3.1 shows the graphical representation of a compound process describing a work flow
within the surgery mentioned above. Each capsuled behavior is represented by a box, and identi-
fied by a process name (dissect Gallbladder). Optionally, a set of role names indicating the
process’s executing entities may be appended to the process name (surgeon, nurse). Interface
elements such as I/O variables (e.g., i1 :P) and control points (strt, stp) are attached to the
border of each process; the process’s internal structure may be graphically depicted inside the
box, or it may be completely abstracted by only exposing a process name as show in Fig. 3.1.

The processdissect Gallbladder observes different signals via the typed input variables
i1 throughi4, and controls different signals via the corresponding output variablesl1 through
l4. More precisely, the process accesses four surgical instruments via the I/O variables, namely
the pe− forceps P via variablesi1, l1, theseizing− forceps F via variablesi2, l2, the
surgical aspirator H via variablesi3, l3 and thesurgical rinser S via variablesi4, l4.
The input and output signals accessed by a process are indicated by empty and filled triangles at
the process’s border.

To control the activation and deactivation of a process, it can be entered via the control point
strt and exited via the control pointstp. As shown in Fig. 3.1, entry points are indicated by
hollow circles, while exit points are indicated by filled circles.

6

3.2. Composing Processes 7

To that end, we sketched how to define a process’ssyntactic interface, i.e.we specified how a
process can be accessed from the environment. However, we have not yet specified the process’s
I/O behavior, i.e. how the process handles signals received on input variables and produces
signals sent along output variables. We follow a constructive approachin which the behavior of
a process is described in a state-transition manner.

Fig. 3.2 shows an elementary process typically occurring within a usage scenario of an Auto-
mated Teller Machine (ATM), namely the processvrfy PIN, verifying the personal identifica-
tion number (Pin) entered by a bank customer. Theprocess’s control flowis described via control
pointsstrt, scc, err1, err2 andlck as well as labeled transitions between these control points.
strt constitutes the process’s onlyentry point, whereas all other control points may pass the
control back to the process’s environment. Transitions are influenced by signals observed via in-
put variables and influence signals controlled via output variables. Thus, if (i) control is passed
to control pointstrt, the Pin valuep is received via the user input variablePin (Pin?p), and
(iii) the same Pin valuep is received via the card reader input variableCrd (Crd?p), then(iv)
valueok is sent via the output variableAck (Ack!ok) for acknowledging a correctly entered pin
to the user, and(v) control is transferred to exit pointscc, which passes the control back to the
environment.

strt

scc

err1

err2

lck

Crd?p, Pin?p/
Ack!ok

Crd?p, Pin?p̄/
Ack!bp

Crd?p, Pin?p̄/
Ack!bp

Crd?p, Pin?p/
Ack!ok

Crd?p, Pin?p̄/
Ack!bp

Crd?p, Pin?p/
Ack!ok

Pin Crd

Ack

Fig. 3.2: State-Transition Specification of ATM’s Process ‘vrfy PIN’

3.2 Composing Processes

Although at some point in the development process eachelementaryprocess should have an
internal implementation as depicted in Fig. 3.2, it is not furtherdecomposedinto sub-processes.
On the other hand, to decompose a process into further sub-processes, the concept of acom-
pound processis introduced, which is graphically indicated by a gray box as shown in Fig. 3.1.
Compound processes introduce a hierarchical structure, relating a compound process with its
sub-processes. This hierarchy is especially useful for modeling complex behaviors, since it in-
troduces an additional level of abstraction by allowing to fold/unfold a workflow description.
Thus, it is possible to abstract from irrelevant details and to enhance the readability of large
process descriptions.

Moreover, formally defined hierarchies lead to more consistent processspecifications, since
the sub-process relation imposes additionalsyntactic constraintson the related processes which,
e.g., can be statically checked by a CASE tool. A typical constraint is, that the syntactic interface

8 3. Describing Processes

of a compound process must expose ahierarchical interfaceconcerning its sub-processes as
defined in Sec. 4.1.6. Informally, this relation implies that the compound process is not allowed
to provide any access in terms of I/O variables and control points, which is not supported by its
sub-processes.

We describe how to compose and structure work flows for our running example from the
medical domain, in which we completely model one phase of the lapCHE surgery. A detailed
description of the abstract syntax of process models and the different possibilities for composing
processes is given in Sec. 4.

phase 4

dissect

Gallbladder ::
surgeon, nurse

i1 :P i2 :F i3 :H i4 :S

l1 :P l2 :F l3 :H l4 :S

check

BloodDryness ::
surgeon, nurse

l1 :P l2 :F l3 :H l4 :S

o1 :P o2 :F o3 :H o4 :S

phase 6

Fig. 3.3: Most Abstract Level of Execution of Surgery Phase 5

Fig. 3.3 depicts the most abstract modeling level of the surgery,i.e. all compound pro-
cesses are folded and abstract from their internal structure and implementation (black-box view).
The most abstract view of this surgery phase contains the four compoundprocessesphase 4,
dissect Gallbladder, check BloodDryness, andphase 6, which are allcomposed in se-
quel. The execution order of the depicted processes is expressed as a relation on the processes’s
control points – graphically depicted as arrows from exit points to entry points. E.g., when
phase 4 terminates, it immediately transfers the control to processdissect Gallbladder,
which – after finishing its own execution – transfers control to processcheck BloodDryness,
and so on.

Processes communicate asynchronously oversharedvariables, which are identified via co-
incidence of variable names. Graphically, this data flow is not representedby an explicit
communication link. As depicted in Fig. 3.3, processdissect Gallbladder and process
check BloodDryness communicate via the four shared variablesl1 throughl4.

1

receive

PE− forceps ::
nurse

i1 :P

j1 :P

staunch

Bleedings ::
surgeon, nurse

j1 :P i2 :F i3 :H i4 :S

k1 :P k2 :F k3 :H k4 :S

2
[no bleeding]

[bleeding]

Fig. 3.4: First Phase of Process ‘dissect Gallbladder’ of Fig. 3.3

Fig. 3.4 unfolds the compound processdissect Gallbladder and thus exposes its
internal structure. The diamond and the triangle delimitate aguarded process sequence
consisting of the elementary processreceive PE− forceps and its compound successor
staunch Bleedings, i.e. both processes are only executed in case the condition guarding
their corresponding control relation evaluates to true ([bleeding]); otherwise the control flow
is forwarded along the alternative path guarded by condition[no bleeding] without execut-

3.2. Composing Processes 9

ing the both process. Note thatreceive PE− forceps andstaunch Bleedings communi-
cate over thelocal variablej1, which is not accessible via the syntactic interface of process
dissect Gallbladder. On the other hand, the variablesi1 throughi4 depicted in Fig. 3.4 are
contained withindissect Gallbladder’s interface.

2

hand

PE− forceps ::
nurse

k1 :P

i1 :P

3
[else]

[¬ pe-forceps
inducted]

Fig. 3.5: Second Phase of Process ‘dissect Gallbladder’ of Fig. 3.3

Fig. 3.5 depicts another guarded process calledhand PE− forceps which sequentially fol-
lows the process excerpt depicted in Fig. 3.4 (graphically indicated by the numbered cutting
points). Fig. 3.6 depicts the continuation of processdissect Gallbladder, in which twoal-
ternative process sequencesare depicted, which are guarded by the condition[co] and [cut],
indicating whether thesurgeon demands the application of cutting (cu) or coagulation (co)
current for preparing the patient’s gallbladder. Alternative composition implies thateitherof the
involved processes are executed, butnot both.

3

start

Coagulat. ::
surgeon

i1 :P

m1 :P n :Co

activate

Coagulat. ::
nurse

n :Co

but :Dn

stop

Coagulat. ::
surgeon

m1 :P

m2 :P n :oC

deactivate

Coagulat. ::
nurse

n :oC

but :Up

start

Cutting ::
surgeon

i1 :P

m1 :P n :Cu

activate

Cutting ::
nurse

n :Cu

but :Dn

stop

Cutting ::
surgeon

m1 :P

m2 :P n :uC

deactivate

Cutting ::
nurse

n :uC

but :Up

[co]
1

4
[cut] [gf]

[¬gf]

Fig. 3.6: Third Phase of Process ‘dissect Gallbladder’ of Fig. 3.3

Note that input variablei1 of processstart Coagulation in Fig. 3.6 is connected
with two other I/O variables, namely with the eponymous input variable of super-process
dissect Gallbladder and the output variable of the preceding processhand PE− forceps.
This setting reflects the circumstance that – depending on whether processhand PE− forceps

was executed – thesurgeon receives the pe-forceps at the beginning of process
dissect Gallbladder via input variablei1 or not before thenurse has handed this instru-
ment viahand PE− forceps’s output variablei1. Thus, for modeling processes wedo not
impose the disjointness of output variables. This is in contrast to component-oriented specifi-
cation techniques like FOCUS [13], which impose syntactic restrictions such as disjointness of
output interfaces to ensure that the composition of components results in a component with input
total behavior.

If the gallbladder was successfully released from the liver-bed (condition [gf] in Fig. 3.6)

10 3. Describing Processes

the nurse concurrentlyreceives the seizing-forceps and the pe-forceps from thesurgeon as
depicted in Fig. 3.7. This expresses, that(i) both processesreceive Seizing− Forceps and
receive PE− forceps are simultaneously active, and(i) the exact order of their execution
may be irrelevant. On the other hand, if the gallbladder could not be released (condition[¬gf]
in Fig. 3.6), the control flow is forwarded to the beginning of processdissect Gallbladder

in a guarded iteration. Graphically, concurrent processes are delimited by two parallels split-
ting and merging the corresponding control flow of the concurrently executed processes. Note
that concurrent process composition, just as any other form of composition in the presented ap-
proach, can be arbitrarily nested;cf. Fig. 3.8 in which two sequences of processes are composed
concurrently.

4

receive

Seiz.− Forc. ::
nurse

i2 :F

l2 :F

receive

PE− Forceps ::
nurse

m2 :P

l1 :P

5

Fig. 3.7: Forth Phase of Process ‘dissect Gallbladder’ of Fig. 3.3

Fig. 3.8 through 3.10 depict the refining processes of the compound process
check BloodDryness. However, since no new syntactic constructs are introduced within that
phase of the surgery, we just present the corresponding process model for sake of completeness.

5

hand

Aspirator ::
nurse

i3 :H

p1 :H

induct

Aspirator ::
surgeon

p1 :H

q1 :H

hand

Rinser ::
nurse

i4 :S

p2 :S

induct

Rinser ::
surgeon

p2 :S

q2 :S

6

Fig. 3.8: First Phase of Process ‘check BloodDryness’ of Fig. 3.3

3.2. Composing Processes 11

6
rinse/draw
Liverbed ::
surgeon

q2 :S

r1 :S

request

Coagulat. ::
surgeon

q1 :H

n :Co r2 :H

activate

Coagulat. ::
nurse

n :Co

but :Dn

stop

Coagulat. ::
surgeon

r2 :H

n :oC s1 :H

deactivate

Coagulat. ::
nurse

n :oC

but :Up

6

7

[¬dry]

[dry]

Fig. 3.9: Second Phase of Process ‘check BloodDryness’ of Fig. 3.3

7
rinse/draw
Liverbed ::
surgeon

r1 :S

t1 :S

receive

Aspirator ::
nurse

q1 :H

o3 :H

receive

Rinser ::
nurse

q2 :S

o4 :S

×

Fig. 3.10: Third Phase of Process ‘dissect Gallbladder’ of Fig. 3.3

4 Modeling Processes

In this section we present a formal description technique for the specification of work flows. We
introduce its abstract syntax together with a graphical representation in Sec. 4.1, before giving a
denotational semantics for interpreting process behavior in Sec. 4.2.

4.1 Process Syntax

We use the abstract syntax format to define the ‘appearance’ of our description technique in
terms of a BNF notation. A work flow description is constructed in accordance with the syn-
tactic equations in Fig. 4.1. Non-terminals are enclosed by〈〉; the symbol| separates any two
alternatives. The syntactic domain〈proc〉 denotes a general process.

〈proc〉 ::= empty

| havoc

| 〈procid〉 = 〈eproc〉
| [〈procid〉 =] 〈proc〉 ; 〈proc〉
| [〈procid〉 =] 〈proc〉 ⊕ 〈proc〉
| [〈procid〉 =] 〈proc〉 ‖ 〈proc〉
| [〈procid〉 =] 〈proc〉	〈lpspec〉

Fig. 4.1: Abstract Process Syntax in BNF

The terminal symbolsempty andhavoc represent the absence and any form of work flow,
resp. They are only of theoretical relevance, not for describing real work flows. Each of the
syntactic domains listed above is explained within the next sections.

4.1.1 Elementary Process

The syntactic domain〈eproc〉 in Fig. 4.1 denotes an elementary process,i.e. a process that is
not decomposed into further sub-processes (black-box). Each process is identified by a name∈
〈procid〉 and interacts with its environment via itsinterface. We explicitly differentiate between
the exchange of data and control flow between a process and its environment. Data flow models
processcommunicationwhile control flow models process(de)activation.

DEFINITION 1 (SYNTACTIC INTERFACE) Formally, an interfaceof a process P is a tuple
(I , O, S, E), denoted IntfP, containing interface variables I, O ⊆ Var and control points S, E ⊆
Ctrl. In order to emphasize the direction of the data flow, we distinguish between the set of input
variables I observed by a process, and the set of output variables O controlled by a process.

12

4.1. Process Syntax 13

Analogously, to emphasize the direction of the control flow, we distinguish between the set of
entry points S and exit points E, by which control enters and exits the process, resp. 2

A variable has a name∈ V and atype∈ V → TYPE, whereV is a set of variable identifiers
andTYPEis the set of all types, which in our setting are simple datasets. Analogously, a control
point has a name∈ C, whereC is a set of control point identifiers. Each process holds at least
oneentry pointby which the process may be activated and start executing. By means ofexit
points the process deactivates and returns the control back to its environment; ifno exit point
exists, the process maintains the control forever.

A process is understood as an observable activity executed by one or severalactors, which
might be persons, components, technical systems or combinations thereof.To associate a process
with its executing actors, we use the concept ofroles. A role has a name∈ R, whereR is the set
of role identifiers.E.g., the role of a process is used to indicate on which component the process
is executed. In other words, roles are used to relate logical system architectures with a set of
processes describing their behavior.

To represent the concrete syntax of our description technique, we introduce a graphical nota-
tion as illustrated in Fig. 4.2. A process is represented by a rectangular data/ control flow node
with rounded corners. The data flow interface is indicated by labeled triangles connected to the
process border. Hollow triangles pointing to the process denote input variables (i : L, n : M),
filled triangles pointing to the environment denote output variables (k : L). Similarly, the control
flow interface is described by labeled circles connected to the process border, whereby hollow
and filled circles are used to distinguish between entry (strt) and exit (end) points, resp. A
process is annotated by a name (Proc) and an optional role (Role).

Proc :: Rolestrt end

i : L n : M

k : L

Fig. 4.2: Interface of Elementary Process

4.1.2 Sequential Process Composition

The sequential composition operator; in Fig. 4.1 takes two processes and composes them in
sequel, if at least one of their control point labels coincide. Moreover,if the sequentially com-
posed processes are supposed to communicate oversharedvariables, these variables have to be
consistent. This means that the considered variable names and their corresponding types must
coincide. The exit points of the first process are connected with the coinciding entry points of
the second process. In this sense, control points constitute the ‘glue’ for composing processes,
that determines the order in which the corresponding processes execute.

The graphical notation for composing two processes in sequel is illustratedin Fig. 4.3. Note,
that we connect the control points and shared variables in accordancewith their identifiers. Since
the identifiers of linked control points must coincide, we occasionally omit labels such asloc
of connected control points. Similarly, we occasionally omit to draw an explicitcommunication
link between shared variables (m : N). Such a link is always assumedimplicitly.

14 4. Modeling Processes

Pstrt
loc

i : S

u : V m : N

Q
loc

end

l : T m : N

o : T

Fig. 4.3: Sequential Process Composition

4.1.3 Alternative Process Composition

The choice operator⊕ in Fig. 4.1 takes two processes as operands and alternatively combines
them in accordance with a guard associated to their common entry points. The diamond and
the triangle symbols in Fig. 4.4 illustrate the branching of control flow. We assume that the
control flow isnot splitby the diamond,i.e. the control always flows along at most one outgoing
edge whose guard evaluates to true. If several guards evaluate to true, one of them is chosen
non-deterministically.

When several processes are alternatively composed we assume that those processes do not
depend on each other in the sense of control flow. To ensure this, we donot allow to connect
control points between any of the alternative processes. This leads to alternative processes that
execute in apairwise exclusivefashion. In other words, it is impossible that any two alternative
processes execute simultaneously. In Fig. 4.4, the common entry pointent of each alternative
process are linked to the control flow branch (diamond) while the common exitpoint ext is
linked to the optional merging node (triangle).

Note that the interface variables of alternative processes such asi : T and n : N need not
be disjoint. However, the alternative composition of two processes is defined only if the input
variables of one process and the output variables of the other do not coincide,i.e.

IP ∩OQ = IQ ∩OP = ∅.

P
ent ext

i : T

m : T n : N
[grd]

Q
ent ext

i : T k : T

n : N

[¬grd]

Fig. 4.4: Alternative Processes Composition

The alternative composition can be generalized to more than two processes inthe obvious
manner. In particular, the diamond can be extended to connect several exit points as incoming
edges as depicted in Fig. 4.5.

4.1. Process Syntax 15

p
. . .
q

p

p
. . .

. . .
q

gp1

gpm

gqk

Fig. 4.5: Choice with Several Inputs

4.1.4 Parallel Process Composition

We introduce the parallel composition operator‖ in Fig. 4.1 to express that several processes
executesimultaneously. When entered through their common entry point (fork), the control flow
splits and simultaneously activates the concurrent processes, while a setof optional end points
(join) ‘synchronizes’ their deactivation and returns control to the environment. As in the case of
alternative composition, no control points are related between any of the concurrent processes.
Instead, the entry points of each concurrent process are linked to the control flow fork (opening
parallels) while the exit points may be linked to the optional join (closing parallels).

Interface variables may be shared between concurrent processes.Fig. 4.6 illustrates the graph-
ical notation for composing two processes in parallel, whereby both processes communicate over
the shared variablen : N. The composition can be generalized to more than two processes in the
obvious manner.

Pent ext

i : T

m : T n : N

Qent ext

i : T n : N

v : R

Fig. 4.6: Parallel Process Composition

4.1.5 Repetitive Process Composition

	〈lpspec〉 in Fig. 4.1 represents a repetition operator for processes,i.e. depending on the evalu-
ation of a loop specifierlpspec, the work flow is consecutively executed apossibly indefinite
number of times. The loop specifier determines the number of repetitions. It is specified as a
natural number∈ N ∪∞ or in form of a guard. Fig. 4.7 illustrates the graphical representation
of the repetition operator associated with a process.

Note that we understand a work flow as somethinguniquewhich occurs at most once – like
an execution trace of an automaton. However, for convenience we omit to describe each (part of
the) work flow by a unique process. Consequently, we use the repetition operator as a shorthand
for specifying a possibly infinite number of sequentially composed processes.

16 4. Modeling Processes

P
ent ent

i : L n : M

k : L

[lpspec]

Fig. 4.7: Repetitive Process Composition

4.1.6 Process Hierarchies

We structure processes hierarchically and exploit this hierarchy for structuring the analysis of
complex work flow descriptions. For the interface of a hierarchically structured process, certain
syntactic constraints must hold which we formally define in the following. In order to relate the
interface of a hierarchically structured process with the interfaces of its sub-processes, we first
introduce the notion of aunion interface.

DEFINITION 2 (UNION INTERFACE) Given a set of processes with syntactic interfaces
Intfi = (I i , Oi , Si , Ei) for i = 1, . . . , n with n ∈ N. We construct theirunion interface
(I∗, O∗, S∗, E∗) by unifying all constituents (variables, control points) contained in Intfi element
wise, i.e.

I∗ =

n⋃

i=1

I i ∧ O∗ =

n⋃

i=1

Oi ∧ S∗ =

n⋃

i=1

Si ∧ E∗ =

n⋃

i=1

Ei

We denote the union interface
n⋃

i=1

Intfi
def
= (I∗, O∗, S∗, E∗). 2

However, to construct the interfaceIntfH of a hierarchically structured processH, we are
interested in exactly those variables and control points ofH’s sub-process interfaces, which are
not ‘bound’ by coincidence of names. The notion of ahierarchal interfaceformalizes this idea.

DEFINITION 3 (HIERARCHICAL INTERFACE) Given a union interface
⋃n

i=1 Intfi constructed
from interfaces(I i , Oi , Si , Ei) for i, j = 1, . . . , n with n∈ N. We call an interface(I , O, S, E) a
hierarchical interface, iff

I = I∗ \ {I i ∩Oj}, O = O∗ \ {I i ∩Oj}

S= S∗ \ {Si ∩ Ej}, E = E∗ \ {Si ∩ Ej}

We denote the hierarchical interface
n⊎

i=1

Intfi = (I,O,S,E). 2

Fig. 4.8 illustrates the hierarchical interface of a compound processcompProc, which is con-
structed from the interfaces of its two sub-processessubProc1 andsubProc2. We omitted the
type declarations of variables for clarity. Note that the common control pointloc and the shared
variablel are not part ofcompProc’s hierarchical interface – both have beenhiddenfrom the
environment as defined in Def. 3.

4.2. Process Semantics 17

compProc

ent ext

i1 i2

o1 o2 o3

subProc1
ent loc

i1 i2

o1 l

subProc2
loc

ext

l i2

o1 o2 o3

Fig. 4.8: Hierarchical Interface ofcompProc

4.2 Process Semantics

To that end, we introduced the syntactic aspects of process specifications without defining how
to describe itsbehaviorand its interpretation in terms of mathematical objects like sets, func-
tions, relations, etc. We use the concept of alabeled transition system(LTS) in order to specify
the behavior of a process. Moreover, we give a formal, mathematical interpretation for process
behavior based on the set ofobservationsinduced by such a LTS.

4.2.1 Basic Semantic Concepts

Along the lines of [6, 7, 8], we use well-known concepts for interpreting processes in terms
of states, observations, andbehaviors. We use these concepts to declare the meaning of(i)
an elementary process,(ii) sequential composition,(iii) alternative composition,(iv) parallel
composition, and(v) repetitive composition of processes.

State A states ∈ Var→ Val maps variables to their current values, whereasVar = L ∪ I ∪ O
with local variablesL, input variablesI and output variablesO.

Observation An observation is either a triple(a, 〈t〉, b) consisting of a finite sequence〈t〉 of
states corresponding to an execution starting at control pointa and ending at control point
b, changing variables according to〈t〉; or it is a pair(a, 〈t〉) consisting of a finite sequence
〈t〉 of states, corresponding to apartial execution, starting at control pointa.

Behavior The behavior of a process is the setObsof all its observations,i.e.we consider finite
behavior only.

4.2.2 Interpretations

System Model

We use processes to specify concurrent and distributed discrete event systems as found in soft-
ware intensive systems and their operational environment. We reason about the behavior of a
processP by considering the observations induced byP’s automaton (LTS). This automaton
communicates with its environment via its interface. In contrast to a component, the behavior of

18 4. Modeling Processes

a process needs not be totally defined. For a partial specification, it is possible to have a behavior
of the environment where no behavior of the process is defined by the specification. By this,
process behavior is inherently defined in an assumption/guarantee style: incase the environment
violates this assumption and produces illegal inputs, the reaction of the process isundefined, i.e.
the process exhibits the empty set of outputs (input disabled). In contrast,a deactivated process
does not constrain any variables whatsoever. This interpretation reflects theexemplarynature
of a process: a component is composed from partial process specifications until a totally de-
fined component specification emerges, which defines a reaction to everypossible input of the
environment.

With this in mind, we describe how to interpret the behavior of an elementary process and the
different forms of process composition, whereby composition is nothing else than structuring
the resulting automaton into modular behavioral descriptions (sub-processes).

Throughout this section, we illustrate all concepts by means of a prominent example of a
reactive system: the Automated Teller Machine, ATM.

Elementary Process

The ‘structural’ aspects of a process are defined by its syntactic interface(I , O, S, E) containing
a set of interface variables⊆ I ∪ O, with Var = I ∪ O∪ L, and a set of interface control points
⊆ S∪E. The corresponding process behavior is specified in terms of a labeled transition system.
Transitions are influenced by local and input variables and influence local and output variables.
A single transition can be understood as the most basic form of a process.Fig. 4.9 depicts such
an elementary process for verifying the Pin provided to an ATM – coveringthe case in which
a bad Pin is entered once. When entered through its entry pointent ∈ S, processP reads the
current values of its input variablesI = {Crd, Pin}. ThenP changes the variable state by writing
a new value to its controlled variablesO = {Ack}. When reaching its exit pointerr ∈ E, the
process terminates and passes the control to its environment.

P
ent err

Crd Pin

Ack

Crd?p, Pin?p̄/

Ack!bp

Fig. 4.9: Behavior of Elementary Process

P’s behavior is specified via a labeled transition froment to err. We use the notation de-
scribed in [14] for labeling transitions, whereby? and ! denote theaccessandmodificationof
variables∈ Var. The transition has a label consisting ofCrd?p, Pin?p̄/Ack!bp. The pre-part of
the label (before the/) states that, whenever messagep is received via variableCrd and the
differing messagēp is received via variablePin, then the transition isenabled. If no transition is
enabled for a given input, the behavior ofP is undefinedin the sense of our system model. The
post-part of the label states that, whenever the transition is executed, in thenext state,i.e. strictly
causal[15], valuebp is written toAck. Fig. 4.9 shows that the transition is depicted by an arrow
linking the corresponding control pointsent anderr.

4.2. Process Semantics 19

We interpret each transition label as the logical conjunction of its pre- and post-part,i.e.
Crd?p ∧ Pin?p̄ ∧ Ack!bp for the transition label in Fig. 4.9. This constitutes anatomic step,
i.e. a non-interruptible pair of states(σ, ρ), whereby observationσ andρ are called thesource
and thesinkof the step, resp. The stepw is successiveto the stepu if the sink ofu is equal to the
source ofw.

We use a primed version of variables and states to argue about the current and the next state
within such a step,i.e. we use variablesv ∈ Var for values ofv prior to the execution of the
transition, and variablesv′ for values ofv after its execution. Priming of states yields a mapping
of equally valued primed variables,i.e. for a givenσ ∈ Var→ Val, σ′ is defined by∀ v ∈ Var :
σ(v) = σ′(v′). A step is not allowed to constrain primed input variables and unprimed output
variables. By this, we disallow a process to constrain its future inputs and read its own outputs,
resp.

For a states ∈ Var → Val with Var∗ ⊆ Var we use the notations c©Var∗ for restrictions
(s c©Var∗)(v) = s(v) for all v ∈ Var∗, i.e.valuations of variables6∈ Var∗ are ignored.

We extend this restriction to sequences of states through element wise application. For se-
quences〈s〉 and 〈t〉 we use the notation〈s〉 ◦ 〈t〉 to describe their concatenation. Formally,

〈s1, . . . , sn〉 ◦ 〈t1, . . . , tm〉
def
= 〈s1, . . . , sn, t1, . . . , tm〉.

DEFINITION 4 Thebehavior of an elementary processis the set containing all observations
(a, 〈t〉, b) and (a, 〈s〉) with entry point a, exit point b, and〈s〉 being any prefix of the finite
sequence〈t〉 of successive steps. The behavior of a process P isprefix-closedto ensure that an
observation can be operationally generated in a stepwise manner:

(a, 〈t〉, b) ∈ ObsP⇒ (a, 〈t〉) ∈ ObsP⇒ (a, 〈s〉) ∈ ObsP

2

Consequently, the behavior of processP in Fig. 4.9 is the set consisting of all observations(i)
(ent, 〈(σ, ρ)〉, err), (ii) (ent, 〈(σ, ρ)〉), and(iii) (ent, 〈〉), such thatσ(Crd) = p, σ(Pin) 6= p,
andρ′(Ack′) = bp.

Sequential Composition

We interpret thesequential composition P; Q in an end-to-start mannerw.r.t. control flow, i.e.
after processP terminates via one of its exit points, the controlimmediatelytransfers to the
coinciding entry point and activates processQ.

DEFINITION 5 The sequential composition of two processes P and Q results in a compound
process P; Q

(i) whose hierarchical interface is
⊎

i=P,Q Intfi , and

(ii) exhibits the behavior of either process, with the restriction that Q is not activated before P,
i.e.∃b, such that

(a, 〈s◦ t〉, c) ∈ ObsP; Q⇔ (a, 〈s〉 c©VarP, b) ∈ ObsP ∧ (b, 〈t〉 c©VarQ, c) ∈ ObsQ;

(a, 〈s◦ t〉) ∈ ObsP; Q⇔ (a, 〈s〉 c©VarP, b) ∈ ObsP ∧ (b, 〈t〉 c©VarQ) ∈ ObsQ;

(a, 〈s〉) ∈ ObsP; Q⇔ (a, 〈s〉 c©VarP) ∈ ObsP.

20 4. Modeling Processes

In other words, the sequential composition acts concatenatively on traces. Note that〈s〉 and〈t〉
denote sequences of successive steps. Consequently, the last state in〈s〉 and the first state in〈t〉
coincide. 2

If processP within the sequential compositionP ; Q does not terminate,Q is never
activated. Fig. 4.10 depicts the sequential composition of processP and Q – representing
a negative Pin evaluation of the ATM followed by a positive one – resulting in the com-
pound processP ; Q. The behavior ofP ; Q is the set consisting of all observations(i)
(ent, 〈(σ, ρ), (ρ, φ)〉, scc), (ii) (ent, 〈(σ, ρ), (ρ, φ)〉), (iii) (ent, 〈(σ, ρ)〉), and (iv) (ent, 〈〉),
such thatσ(Crd) = p, σ(Pin) 6= p, ρ′(Ack′) = bp, ρ(Crd) = ρ(Pin) = p, φ′(Ack′) = ok.

Note that the control pointerr does not occur within any of the above observations,i.e. it is
hiddenby the sequential composition.P andQ are allowed to communicate over shared variables.
If those variables should also be hidden from the process environment,variable hidingcan be
used as described next.

P
ent

err

Crd Pin

Ack

Q

err
scc

Crd Pin

Ack

Crd?p, Pin?p̄/

Ack!bp

Crd?p, Pin?p/

Ack!ok

Fig. 4.10: Behavior of Sequential Processes

Variable Hiding

Hiding an interface variable of a process renders the variable inaccessible from the outside. By
hiding a variablev of a processP we obtain a process described byP\v, that accesses the same
control points asP and uses the input and output variables ofP excluding v:

VarP\v = VarP \ {v}.

Moreover,P \v exhibits the same behavior asP, i.e.

(a, 〈t〉 c©VarP\{v}, b) ∈ ObsP\v⇔ (a, 〈t〉, b) ∈ ObsP,

and

(a, 〈t〉 c©VarP\{v}) ∈ ObsP\v⇔ (a, 〈t〉) ∈ ObsP.

Alternative Composition

By alternativelycomposing two processesP andQ, we express thateither P or Qis executed,
butnot both. Hence, we interpret the alternative compositionP⊕Q as an ‘exclusive or’ relation
between processes. More precisely, when control resides in their common entry pointa, either
processP or Q is activated depending on theguarding conditionsof a, but not both. A guard
is simply a predicate∈ S→ B over the process’s state spaceS ⊆ Var → Val, i.e. a’s guards
evaluateP⊕ Q’s observed variables and either activateP or Q. In case several guards evaluate
to true, one process is activated non-deterministically.

4.2. Process Semantics 21

DEFINITION 6 Thealternative compositionof two processes P and Q results in a compound
process P⊕Q

(i) whose hierarchical interface is
⊎

i=P,Q Intfi , and

(ii) exhibits either the behavior of process P or Q, i.e.

(a, 〈t〉, b) ∈ ObsP⊕Q⇔ (a, 〈t〉 c©VarP, b) ∈ ObsP ∨ (a, 〈t〉 c©VarQ, b) ∈ ObsQ;

(a, 〈t〉) ∈ ObsP⊕Q⇔ (a, 〈t〉 c©VarP) ∈ ObsP ∨ (a, 〈t〉 c©VarQ) ∈ ObsQ.

In other words, the alternative composition acts disjunctively on traces. 2

Fig. 4.11 depicts the alternative composition of processesP andQ from above – representing
the alternative execution of a positive and negative Pin evaluation of the ATM – resulting in the
compound processP⊕ Q. Its behavior contains all observations(i) (ent, 〈(σP, ρP)〉, err), (ii)
(ent, 〈(σP, ρP)〉), (iii) (ent, 〈(σQ, ρQ)〉, scc), (iv) (ent, 〈(σQ, ρQ)〉), and(v) (ent, 〈〉), such that
σP(Crd) = p, σP(Pin) 6= p, ρ′P(Ack

′) = bp, σQ(Crd) = σQ(Pin) = p, andρ′Q(Ack
′) = ok.

P
ent

err

Crd Pin

Ack
[grdP]

Crd?p, Pin?p̄/

Ack!bp

Q
ent

scc

Crd Pin

Ack

[grdQ]
Crd?p, Pin?p/

Ack!ok

Fig. 4.11: Behavior of Alternative Processes

Note that alternative processes do not need to have a common exit point, and that the guards
of alternative processes areinherentlycontained in the observations in Def. 6.E.g., the guards
of processP⊕ Q’s common entry pointent are defined by the corresponding pre-parts of the
transition labels withent as starting point,e.g.,

grdP
def
= (σP(Crd) = p ∧ σP(Pin) 6= p).

For methodical reasons, we allow to annotate the diamond with guards[grdi] with i ∈ {P, Q}
in the graphical representation, even though they actually denote the pre-part of the transition
label leaving the related entry pointent.

Parallel Composition

By composing two processesP andQ in parallel, we express thatboth P and Qexecute simulta-
neously. When entered through their common entry pointa, the control flow is split so that both
processesP andQ exhibit their joint behavior.

22 4. Modeling Processes

DEFINITION 7 The parallel composition of two processes P and Q results in a compound
process P‖ Q

(i) whose hierarchical interface is
⊎

i=P,Q Intfi , and

(ii) exhibits the combined behavior of each process, i.e.

(a, 〈t〉, b) ∈ ObsP‖Q⇔ (a, 〈t〉 c©VarP, b) ∈ ObsP ∧ (a, 〈t〉 c©VarQ, b) ∈ ObsQ;

(a, 〈t〉) ∈ ObsP‖Q⇔ (a, 〈t〉 c©VarP) ∈ ObsP ∧ (a, 〈t〉 c©VarQ).

In other words, the parallel composition acts conjunctively on traces. In particular, each step of
P corresponds to a concurrent step of Q. 2

To terminate the compound processP ‖ Q, bothP andQ need to terminate via their common
exit point. Note that the parallel composition isstrict in the sense that undefined behavior of one
process ‘knocks out’ defined behavior of the other process. This is motivated from a methodical
point of view, since we can not rely on undefined behavior. More precisely, unless we require
P andQ to have disjoint output variables, the parallel composition may lead to conflictingval-
uations of output variables and the introduction of additional undefined behavior. Moreover, if
eitherP or Q receives illegal inputs, the behavior ofP ‖ Q is undefined.

R
ent scc

Msg

Out

Msg?w/

Out!Wait

Q
ent scc

Crd Pin

Ack

Crd?p, Pin?p/

Ack!ok

Fig. 4.12: Behavior of Parallel Composition

Fig. 4.12 depicts the parallel composition of processQ from above and another processR –
representing an output to the ATM’s user interface – resulting in the compound processR ‖ Q. Its
behavior contains all observations(i) (ent, 〈(σ, ρ)〉, scc), (ii) (ent, 〈(σ, ρ)〉), and(iii) (ent, 〈〉),
such thatσ(Msg) = w, σ(Crd) = p, σ(Pin) = p, ρ′(Out′) = Wait, ρ′(Ack′) = ok.

Repetitive Composition

By composing a processesP repetitively, we express thatP is executedsequentiallya possibly
indefinite number of times. This number is either determined by a constant or a guarding con-
dition of P’s entry point. Consequently, repetitive composition is just a shorthand forrepeatedly
applying sequential composition. Hence we do not give an explicit behavioral interpretation,
since composition can be arbitrarily nested anyhow.

4.2. Process Semantics 23

Note that in our approach a process describes exemplary behavior which is typically finite.
This is reflected in the corresponding definitions of process behavior, inwhich all observations
denote finite sequences of variable valuations. By introducing the repetitionoperator	µ, we
extend this view in the sense that a work flow may be described by a processP 	µ, which
induces a possibly infinite behavior. However, the behavior of each sub-process ofP 	µ is finite
andstrictly causal[15]. As well-known, unique fixed points for strictly causal behaviors always
exist.

5 Application: Surgery Assistance

This section outlines a model-based approach for the formal, structured specification of system
behavior on basis of user work flows and context information. We illustratethe application of
our modeling approach using the lapCHE case study. The approach structures the development
along the lines of three views, which capture all aspects necessary for the design of the system’s
behavior. We describe in parts thework flow, contextual, andfunctional viewof a model specify-
ing a context-awareSurgery Assistance System(SAS). The SAS assists an operating team during
the surgical intervention.

In a nutshell, the SAS ‘observes’ an ongoing lapCHE by means of sensors installed within the
operating room (OR),e.g., sensors for currently used instruments, table position, room lights,
etc. Additionally, it accesses a data model of the lapCHE comprising its work flow and context
view. On basis of both information, ittracksthe actual surgery progress and adapts its behavior
accordingly,e.g., by providing the estimated remaining surgery duration, recommending the
instruments needed for the next surgery step, or indicating critical surgery situations by means
of an early warning system.

The model of the lapCHE case study serves as a running example throughout this section
and illustrates how a concrete work flow, contextual and functional view of an actual system
looks like. Fig. 5.1 illustrates the involved system views which are presented inthe following
three sections. In Sec. 5.4, we relate our approach to a requirements engineering methodology
[10] with a similar purpose, namely the integrated elaboration of functional requirements (cf.
functional view) and contextual information (cf. work flowandcontextual view).

5.1 Work Flow View

In our approach, processes form the building blocks for specifying data and control flows in the
environment (work flow view) and within the system (functional view). Ourapproach starts with
the specification of (abstract) user work flows in terms of processes. Ex. 8 gives an example for a
work flow view, whereby the used description technique has been described previously in Sec. 4.
Although not presented in the work flow view depicted in Fig. 5.1, work flow behavior can also
be modeled in terms of labeled transition systems. However, in our running example we abstract
from the exact behavior of user work flows and only provide a name, a role, and an interface for
each process describing the work flow parts of the lapCHE.

EXAMPLE 8 Thework flow viewin Fig. 5.1 contains three processes describing an extract of
the lapCHE surgery. The depicted work flow represents a scenario, in which thesurgeon (role)
in a first step cuts the patient’s navel – indicated by theprocessnamedcut navel. After the
surgeon has finished this activity, he hands the scalpel (variableScl′) to anurse in process

24

5.2. Contextual View 25

Work Flow View
- -

cut navel ::
surgeon

Scl

Scl′

rcv scalpel ::
nurse

Scl′

hand clip ::
nurse

Clp

chk needle ::
nurse

Ndl

Contextual View
- -

lights = on

tablepos = b

instr = scalp

lights = on

tablepos = b

instr = ∅

lights = on

tablepos = b

instr = ∅

lights = on

tablepos = b

instr = ∅

Functional View

Ins Lt

Cmd

Ins?sc, Lt?on/

Cmd!←−scA

Ins Lt

Cmd

Ins?−, Lt?on/

Cmd!{−→cp,−→ne}B

Ins Cmd

Ins?− /

Cmd!−→neC

Ins Cmd

Ins?− /

Cmd!−→cpD

Fig. 5.1: Integrated System Views of LapCHE Extract

rcv scalpel. Subsequently, thenurse either hands the clip to the surgeon (hand clip) or
alternatively checks the needle (chk needle). 2

5.2 Contextual View

Thecontextual viewdescribes for each process contained in the work flow view, how this pro-
cess can be characterized by context information observable within the system environment. As
indicated in the contextual view in Fig. 5.1, several processes may exhibit the same context val-
ues. The context is represented in terms of a Data Type Definition (DTD). In case of the context
in Fig. 5.1 denotedlights, basic data types likeBool are sufficient to express that the lights in
the OR are switchedon or off. Other context information require more complex types: consider
thedurationof a process, that is specified by an interval ranging over the natural numbersN to
express that,e.g., processcut navel takes between 30 and 60 seconds to execute. If operations

26 5. Application: Surgery Assistance

over these data types are required, one can also consider to introduce analgebraic specification
[16] for each context type.

In case of the lapCHE’s contextual view, we use eight context informationwith simple data
types such asBool, enumerations and (intervals over)N. Each context information corresponds
to one sensor installed within the OR. The context determines the nominal valuesof the sensor
within each process of the lapCHE’s work flow view and statistically bases ona survey of approx.
200 surgeries with patients of different gender, age, and medical records.

EXAMPLE 9 The associated context of processcut navel in Fig. 5.1 is interpreted as fol-
lows: When cutting the patient’s navel, we suppose that (i) thelights in the OR areon, (ii)
thetableposition of the operating table isbalanced, and (iii) thesurgeon’s currently used
instrument is ascalpel. 2

We use these nominal context values to determine the (de)activation and the triggering condi-
tions of each process’s LTS contained in the functional view. The fundamental notion of the first
two views is the following: given a context-aware system that gets as input(i) the work flow of
the user in terms of awork flow view, (ii) the nominal context values of each process in the work
flow view in terms of acontextual view, and(iii) thecurrent contextinformation measured by an
appropriate set of sensors. Then, the system is able tomatchthe nominal against the currently
measured context values, and – on basis of this information – is able totrack the current position
within a user work flow like the lapCHE surgery.

5.3 Functional View

The work flow and the contextual view enable a system like the SAS to track theactual position
within the user’s work flow. On the other hand, thefunctional viewdescribes which functionality
the system provides for each of the user’s activities contained in the workflow. In other words, if
the system successfully tracks the user’s current activity,e.g., by recognizing that the surgeon is
currently cutting the patient’s navel, the functional view determines how the system should react
to thatsituationin the most appropriate way,e.g., by activating a certain system function needed
in that situation. The system behavior required in each part of the user’swork flow is specified
in the same description technique as the work flow itself,i.e. in terms of a LTS. Note, that we
abstracted from this behavior in the work flow view in Fig. 5.1. The hierarchical decomposition
given by the work flow view imposes the basic structure of this LTS in terms of processes.

EXAMPLE 10 ProcessB in Fig. 5.1 specifies that the system recommends the nurse to keep
the clips and the needle on hand after the surgeon finished cutting the patient’snavel. When
activated through its entry point, no instrument is used (Ins?−) and the lights are on (Lt?on),
then the process displays the surgery clips (cp) and the needle (ne) as the next instruments to
hand over (−→.) on the monitor within the OR (Cmd!{−→cp,−→ne}), and terminates via its exit point.2

Note that the context information defined in the contextual view can be used toformulate the
triggering conditions for the LTS in the functional view. In particular, we use context values
to (de)activate a system function.E.g., processB in Fig. 5.1 is activated exclusively on basis

5.4. Contextual Requirement Chunks 27

of contextual information (instrument, room lights). In this connection, we also speak of
context-triggeredprocesses / transitions. The possibility to group together states within modules
can also be found in other description techniques like Statecharts [17], where such hierarchical
states, denotedmodes, are used to express alternative, sequential behavior. Thus, processes and
their context-triggered (de)activation are a convenient form to specifyreconfigurable behavior
occurring,e.g., in context-aware systems like the SAS.

5.4 Contextual Requirement Chunks

Since the specification of the functional view contains all information relevant for the functional
design of the system, the contextual and work flow view are only relevant from a methodical
point of view. They structure the construction and analysis of the desiredsystem behavior.

Similar to the proposed model-based approach, [10] introduces an informal approach for the
integrated elicitation of a system’s functional requirements and usage context. This approach
results in a concise, text-based table containing the relevant contextual information characteriz-
ing a usage situation together with the associated functional requirements. The rows within this
table are denotedContextual Requirement Chunks(CRCs). Such a chunk is a tuple

CRC∈ Req× Sit× Sce

consisting of a functional requirementReq, a context instanceSit characterizing the usage situ-
ation, and an illustrating scenarioSce. By means of CRCs, functional requirements are related
to the context in which they are valid. Basically, a CRC expresses the following: ‘If a certain
usage situationSit is present,thenthe associated requirementReqis valid, which is illustrated
by scenarioSce’.

The experience gathered since the introduction of CRCs in [10] and its application in sev-
eral case studies motivated the model-based approach presented here.Actually, it can be under-
stood as the formalization of this idea. Due to its formal semantics in terms of labeledtransition
systems, the model-based approach facilitates the specification ofhistory-dependentbehavior,
which can be encoded in the LTS. Moreover, interesting properties suchas conformancew.r.t.
a reference model, consistency and completeness of the involved system specifications can be
verified. By this, the model-based approach enables an efficient development process with (au-
tomatic) support for verification.

6 Conclusion

We conclude this paper with a short summary. Furthermore, we discuss ourongoing work, and
outline further promising research directions.

6.1 Summary & Evaluation

We formally defined a class of entities calledprocesses. The intended use of processes is to pro-
vide a formal, structured model for describing the control and data flows occurring in software-
intensive systems and their environment. The model is formal in that it definesa process as a
mathematical object, which can be analyzed. The model is structured in that it permits the hi-
erarchical definition of a process. This hierarchy can be exploited forstructuring the analysis.
Processes constitute the basic building blocks for describing data and control flows, that can
be composed sequentially, alternatively, and in parallel – arbitrarily nested. The mathematical
semantics of a process is given by its interface and its set of observations.

We evaluated the practicalness of our description technique in terms of a case study from the
medical domain, in which we specified the work flow of a minimal invasive surgery, denoted
laparoscopic cholecystectomy (lapCHE) [12]. The surgery is a highly standardized work flow
in which the patient’s gallbladder is removed under general anesthesia. The overall process de-
scribing the lapCHE contains about 270 elementary sub-processes whichare structured into four
hierarchy levels with eight hierarchical processes on the most abstractlevel.

6.2 Outlook

Process-Based Development The work presented in this paper only constitutes the first
steps towards a process-based, integrated development approach for the design of reactive sys-
tems, which is outlined in the following.

(i) Starting with the formalization of exemplary user work flows and the associatedfunctional
requirements in terms of structured labeled transition systems, denoted processes, we specify
the interaction between the system and its environment.

(ii) Due to the underlying formalism, these specifications can be automatically checked for
interesting properties such as,e.g., conformance, consistency and completeness.

(iii) On basis of these specifications and a predefined mapping of processesto software com-
ponents viaroles, we synthesize component behavior. More precisely, we synthesize a totally
defined component specification for each role within the process specification, such that each of
these component LTSs respects the behavioral restrictions imposed by theunderlying process
specification.

28

6.2. Outlook 29

To put it in a nutshell, we transform a complex process LTS into a behavioral equivalent /
refined set of component LTSs, which can then be implemented independently. Fig. 6.1 illus-
trates the fundamental idea behind the process-based development of software system, whereby
solid and dotted lines represent data and control flow, resp. We composepartial process behavior
until the behavior of each component in the logical architecture is completely defined. In this
light, componentA depicted in Fig. 6.1 implements the behavior of process(P ; Q) 	, whereas
componentB implements the behavior of process(R⊕ S) 	.

A

P :: As a

i

o m

Q :: Aa
s

i m

o

B

R :: Bb b

o

i

S :: Bb b

o

i

? ?

Fig. 6.1: Process-Based Development of Component Architectures

To enable an integrated development process, it is necessary to establishan implementation re-
lation between the specifications created during the different stages of system development. Our
current work addresses the definition of such an implementation relation which relates concrete
and abstract processes as well as partially defined processes and totally defined components,
resp. Obviously, simple implementation relations based on trace inclusion are inappropriate for
partial specifications, since they do not reflect the reduction of undefined behavior required for
the refinement [18]. Moreover, to effectively use such an implementation relation in a sound
development process, (automatic) support for its verification is necessary.

Tool Support We are currently integrating our process-based approach into an existing
CASE tool. AutoFOCUS1 is a tool for the component-based development of reactive systems. It
supports the graphical description of the system using different integrated diagram types.

Our current work includes the extension of this tool by a perspective dealing with the process-
based specification of the system and its environment. This perspective should offer three differ-
ent views. In theProject Explorerview, processes are hierarchically structured. In theProcess
Structure Diagramview, syntactic interfaces are defined. TheState Transition Diagramview de-
scribes the behavior of each process in terms of a LTS. The existing simulation and verification
environments of AutoFOCUS should be adapted to cope with the presented process semantics.
An additional synthesizing functionality should automatically construct(i) an AutoFOCUSSys-
tem Structure Diagramby combining the syntactic process interfaces to component interface
via roles, and(ii) a State Transition Diagramfor each component by composing the underlying
process LTSs with coinciding roles. Then, this component LTS can be verified for completeness.

1http : //af3.in.tum.de/

Bibliography

[1] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Modeling Language User Guide.
Addison-Wesley Reading Mass, 1999.

[2] Wolfgang Reisig.Petri nets: an introduction. Springer-Verlag New York, Inc., New York,
NY, USA, 1985.

[3] Khodakaram Salimifard and Mike Wright. Petri net-based modelling of workflow systems:
An overview.European Journal of Operational Research, 134(3):664 – 676, 2001.

[4] H. Eshuis.Semantics and Verification of UML Activity Diagrams for Workflow Modelling.
PhD thesis, Univ. of Twente, November 2002.

[5] V. Thurner. A Formally Founded Description Technique for Business Processes. In
B. Krämer, N. Uchihira, P. Croll, and S. Russo, editors,Software Engineering for Parallel
and Distributed Systems, PDSE98, pages 254 – 261. IEEE Computer Society, 1998.

[6] Thomas A. Henzinger. Masaccio: A formal model for embedded components. InTCS
’00: Proceedings of the International Conference IFIP on TheoreticalComputer Science,
Exploring New Frontiers of Theoretical Informatics, pages 549–563, London, UK, 2000.
Springer-Verlag.

[7] Bernhard Schätz. Building components from functions.Electr. Notes Theor. Comput. Sci.,
160:321–334, 2006.

[8] Bernhard Schätz. Modular functional descriptions. InProceedings of the International
Workshop on Formal Aspects of Component Software (FACS 2007), 2007.

[9] B. Schilit, N. Adams, and R. Want. Context-aware computing applications.In IEEE Work-
shop on Mobile Computing Systems and Applications, Santa Cruz, CA, US, 1994.

[10] Wassiou Sitou and Bernd Spanfelner. Towards Requirements Engineering for Context
Adaptive Systems. In31st Annual International Computer Software and Applications
Conference (COMPSAC 2007), volume 2, pages 593–600, Beijing, China, July 2007. IEEE
Computer Society.

[11] M. Broy, C. Leuxner, W. Sitou, B. Spanfelner, and S. Winter. Formalizing the notion
of adaptive system behavior. InSAC ’09: Proceedings of the 2009 ACM symposium on
Applied Computing, pages 1029–1033, New York, NY, USA, 2009. ACM.

[12] H. Feussner, A. Ungeheuer, L. Lehr, and JR. Siewert. Technique of laparoscopic cholecys-
tectomy.Langenbecks Arch Chir., 376(6):367–74, 1991.

30

Bibliography

[13] M. Broy and K. Stølen.Specification and Development of Interactive Systems: Focus on
Streams, Interfaces, and Refinement. Springer, 2001.

[14] Franz Huber, Bernhard Schätz, and Geralf Einert. Consistent Graphical Specification of
Distributed Systems. In John Fitzgerald, Cliff B. Jones, and Peter Lucas,editors,FME
’97: 4th International Symposium of Formal Methods Europe, LectureNotes in Computer
Science 1313, pages 122 – 141. Springer, 1997.

[15] M. Broy. Engineering Theories of Software Intensive Systems, chapter Service-oriented
Systems Engineering: Specification and Design of Services and LayeredArchitectures -
The JANUS Approach, pages 47 – 81. Springer Verlag, July 2005.

[16] Martin Wirsing. Algebraic specification languages: An overview. InCOMPASS/ADT,
pages 81–115, 1994.

[17] David Harel. Statecharts: A visual formalism for complex systems.Sci. Comput. Program.,
8(3):231–274, 1987.

[18] Michael von der Beeck. Behaviour specifications: Equivalenceand refinement. In H. Giese
and S. Phillippi, editors,Visuelle Verhaltensmodellierung verteilter und nebenläufiger
Software- Systeme, 2000.

31

