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Abstract

The refinement of communication in protocol engineering is studied by analyzing the rela-
tion between a peer-to-peer communication scheme and its service-level counterpart, a charac-
teristic that is well-known in practice but rarely studied in detail. It is shown how an abstract
protocol can be developed towards a concrete implementation by gradually refining the ab-
stract messages and the involved state machines, moving systematically from layer to layer
over the subject application. The characteristics of the refinement are formalized, and an ex-
ample is given showing how the method can be applied in practical protocol development. The
object-oriented language Kannel is introduced as an advanced tool for protocol engineering
providing special support for the refinement technique.

1 Introduction

Protocol engineering is a versatile discipline with the emphasis on systematically developing dis-
tributed communications software of high quality. Having reached a relatively mature status, the
protocol engineering field is supported by several special development environments and description
languages, the most well-known ones being SDL, Estelle, LOTOS, and ASN.1. The description
language employed in this paper is Kannel [GHP94] which is based an on object-oriented, visual,
and state-based view on protocol engineering. Kannel provides application-oriented support for a
number of central aspects in protocol engineering, e.g., for the refinement mechanism which is the
topic of this paper.

Protocol engineering is usually founded upon a modularized software architecture. That is, the
communicating parties are organized as a stack of layers, each having its own special task in the
application. The most well-known example is the standardized OSI reference model of seven layers,
but similar (though usually more economical) architectures are quite common also in networking
and telecommunication applications not strictly following the OSI model.

As in software engineering in general, the hierarchical protocol layers are connected to each
others via their interfaces. An interface captures the services a layer is externally providing to other
layers, making it thus possible to integrate together components that are logically independent in
their internal behavior. In protocol engineering, there typically appear two kind of interfaces: (1)
between the peers of the communicating systems, and (2) between the neighbouring layers within
one system. These two basic interface classes serve different purposes: a peer-to-peer interface
is needed for specifying the logical communication protocol between the end systems, whereas a
layer(n)-to-layer(n — 1) interface makes the services of layer n — 1 available to its upper layer n for
implementing its peer-to-peer protocol.

A communication protocol defines how messages are exchanged between two entities through
a common interface. Notice that there is always a protocol both between two (distributed) peers

*Part of this work has been carried out while visiting the Department of Computer Science, University of Munich,
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of the protocol engineering language Kannel (Academy of Finland), and Object-oriented programming and compiler
construction (Academy of Finland and Deutscher Akademischer Austauschdienst).



and between two adjacent (centralized) layers. There is a close conceptual coupling between these
two: A layer(n)-to-layer(n — 1) protocol can be regarded as an implementation of the peer(n)-to-
peer(n) communication scheme between the end systems. From the protocol-software engineering
point of view, this coupling is most valuable when moving from protocol design into protocol
implementation. A peer-to-peer protocol specifies abstractly how the communication between the
systems shall behave in general, whereas the corresponding service-level protocol defines concretely
how the communication is actually realized. Hence, the step from design into implementation can
be taken in a systematic fashion by concentrating on the mapping from peer-level protocols (and
interfaces) to the corresponding service-level protocols (and interfaces).

In this paper we present a constructive technique of systematically moving from peer-to-peer
communication into layer-to-layer communication. Qur approach is based on refining the abstract
peer(n)-to-peer(n) communication protocol by replacing it with the corresponding more concrete
layer(n)-to-layer(n — 1) service protocols and with the (perhaps still abstract) peer(n — 1)-to-
peer(n — 1) protocol. A similar scheme of protocol refinement is gradually repeated at the lower
layers n — 1, n — 2, ..., until a proper level of precision has been reached. The technique is sup-
ported by the protocol engineering language Kannel that provides dedicated facilities for protocol
implementation in terms of object-oriented inheritance and refinement of communication patterns.

We proceed as follows. The characteristics of protocol refinement are presented in Section 2,
followed by a formal study in Section 3. In Section 4 a constructive approach to protocol refinement
is presented, using Kannel as the demonstrational case language. Finally, conclusions are drawn
in Section b.

2 The notion of protocol refinement
Let us study a typical abstract communication scheme illustrated in Figure 1. Here A and B are

(probably distributed) entities (usually processes) that communicate according to their common
protocol AB to provide the required services to their clients, User_A and User_B.

User A User B

AB

Figure 1: Abstract communication.

In simple applications the communication might be carried out in this straightforward manner,
but in realistic cases the functionality of A and B 1s so complex that some form of modularity is
needed, as illustrated in the refined scheme of Figure 2. Now the protocol AB is realized by making
use of entities C' and D residing at a “lower layer” of functionality. That is, the AB protocol is
implemented by using the services of ' and D following the protocol C'D of their own. From the
viewpoint of message-flow, a message from User_A to User_B does not go directly via 4 and B as
the abstract scheme in Figure 1 suggests, but indirectly along the path A’ — C' — D — B’. Still,
from the client’s point of view, the external functionality of the system is the same irrespective of
the system’s architecture (Figure 1 or Figure 2).

Notice that the scheme in Figure 2 is more detailed than that in Figure 1: (1) The peer-to-peer
protocol AB (at layer n) has been replaced by three new protocols, the service-level protocols A’C
and B'D (between layers n and n — 1) and the peer-to-peer protocol C'D (at layer n — 1); (2)
the entities C' and D have been introduced (at layer n — 1); and (3) the entities A and B (at
layer n) have been replaced by A’ and B’, respectively, since their direct mutual communication
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CD

Figure 2: Communication by refinement of AB.

scheme has been changed into an indirect one. Thus we can regard the scheme in Figure 2 as an
implementation or a refinement of that in Figure 1.

The term “refinement” suggests that the two communication schemes shall be semantically
related: (1) The external behavior with respect to User_A and User_B shall remain the same;
and (2) the abstract peer-to-peer protocol AB shall be retained, that is, the refinement shall
still follow the communication rules captured in protocol AB. Intuitively, this means that even
under the refinement, (1) User_A and User_B shall be able to exchange the same set of message
sequences as originally; and (2) for each message sequence transmitted between A and B, there
must be a corresponding (refined) exchange between A’ and B’. Notice, however, that in addition
to the messages covered by the abstract protocol AB, A’ and B’ typically process a number of
implementation-oriented messages, at least those captured in protocols A’C' and B’D as services
provided by the entities C' and D.

Since the scheme in Figure 2 still applies a peer-to-peer protocol, C'D, the refinement process
can be continued. By iteratively following the same principle, an abstract communication scheme
can be developed into a suitable layered architecture and a proper level of precision. The refinement
process typically continues until a layer providing direct physical communication services has been
encountered (for instance the physical layer in the OSI model).

From a conceptual point of view, the division of protocols into “peer-to-peer” and “layer-to-
layer” ones (e.g., CD vs. A’C'in Figure 2) is rather arbitrary; after all, in both cases the objective is
to specify a communication process between two entities.” Therefore, we may in principle refine any
protocol, not only a “peer-to-peer” one. Moreover, the refinement may introduce more than two
new lower-layer processes which is the case in Figure 2 (C' and D). For instance, the architecture
of Figure 2 could be further developed by refining the “vertical” protocol A’C into a chain of, say,
four new processes.

3 Formal properties of protocol refinement

Let us consider the refining step from Figure 1 to Figure 2 in more detail. What kind of techniques
are possible to revise the abstract communication scheme of Figure 1 into the more concrete setting
of Figure 2 and still retain the behavior externally the same? At least the following solutions are
possible:

1Of course, in practice the division may be significant.



1. The whole system is rewritten by the protocol designer; by informally making sure that the
refined scheme does not introduce any communication mismatches with respect to the clients

User_A and User_B.

2. A formal program refinement strategy is applied, as described e.g. in [Jon80] or in [Bac88]. In
this case the refinement step from Figure 1 to Figure 2 is formally proven correct by showing
that the latter scheme preserves the behavior and total correctness of the former one. Since
the external behavior of a distributed system 1s usually defined as the set of traces, i.e. the
set of externally observable message sequences, the special refinement theory of state-based
data types [Nip89] can be conveniently applied.

3. A protocol conversion methodology can be used. In protocol conversion [Gre86], two different
protocols (usually specified with communicating state machines) are merged together by
automatically producing a special intermediate machine that “translates” the messages sent
by the machine of one protocol into messages accepted by the machine of the other protocol;
in other words, the converter makes the two protocols able to interoperate. For instance,
when moving in our example from Figure 1 to Figure 2, this technique would introduce
a converter both at the connection A’C' and at the connection B’D. For a more detailed
description of different protocol conversion techniques, refer, e.g.; to [Cal89] and [PeL93].

4. One can apply the general concept of software / interface adaptors [YeS94] to glue together
protocols at different layers of the communication architecture. This strategy is rather close
to protocol conversion, especially if the adaptation is based on communicating state machines
for the specification of software protocols. The main difference between these two is that the
software adaptation technique is more general than protocol conversion, due to accepting the
distribution of parameters into several different services, and to being based on advanced
software engineering principles such as object-orientation (e.g., [Tha94]).

The first alternative is hopeless in nontrivial cases since the matching has to be done totally by
human means without any formal support, which sooner or later inevitably leads to a behavioral
contradiction between the abstract and the concrete communication scheme. The formal stepwise
refinement strategy is rather laborous since then the protocol designer has to (a) formally specify
the abstract scheme, (b) formally specify the concrete scheme, and (c) formally prove that the
latter correctly implements the former. Also the state-of-the-art in formal program derivation and
verification is still too immature for being usable in practical applications. Finally, the related
techniques of protocol conversion and software adaptation introduce additional components to the
communication architecture, typically one converter/adaptor for each pair of integrated processes.
This would soon lead to an exhaustive number of components when stepwise devising a complete
layered implementation for a complex communications protocol. Moreover, these techniques need
some additional information for generating the converter/adaptor, such as a service specification
over the client protocols or a description of the synchronized behavior of the integrated components.

Due to such shortcomings with the conventional solutions addressed above, our approach to
protocol refinement is based on object-oriented techniques: incremental modification, subtyping,
and inheritance (more precisely: code reuse). The central idea is to avoid the introduction of new
system components upon protocol refinement, and instead reuse as much of the existing framework
as possible. With regard to our example transition from the abstract scheme in Figure 1 to the
more concrete one in Figure 2, this means the following:

e The process A’ is a modification of the process A. This means that the program code
written for A is reused when producing the code for A’. This applies most notably to the
(communicating) state machine for 4 that is incrementally modified to cope with the new
protocol scheme. Likewise, the process B’ is a modification of the process B.

e The structured layer architecture in Figure 2 and the flat layer in Figure 1 (excluding in
both cases the external clients User_A and User_B) are subtypes of the same virtual layer
and hence compatible.



e The message flow along the path A’ — C' — D — B’ following the protocols A’C', C'D, and
B’D in Figure 2 is a refinement of the flow along the path A — B by the protocol AB in
Figure 1. Likewise, the message flow along the path B — D — C — A’ in Figure 2 is a
refinement of the flow along the path B — A in Figure 1.

The relation of inheritance and refinement has been analyzed, e.g.; in [Cus91]. The notion of
refinement is more formal than the notion of inheritance: For a component C' to be a refinement
of a component D, C' must guarantee the same (correct) behavior whenever substituted for D. In
[WeZ88] such a property of an incremental modification mechanism is called behavioral compati-
bility which is usually not guaranteed by inheritance in object-oriented languages. This is also the
case in Kannel where inheritance satisfies just a weaker property, signature compatibility [WeZ88].
Therefore, (protocol) refinement in Kannel does not mean the same as (protocol) inheritance but
has stricter behavioral properties, as formalized below. However, these two are still related in Kan-
nel in the sense that the flexible inheritance mechanism is applied for expressing and implementing
the disciplined refinement mechanism: Entities subject to refinement are typically in a subtype
relation and/or may share pieces of code. The Kannel approach to refinement is described in more
detail in Section 4.

Definition 1. We assume conventionally that the communication between processes is specified
as communicating finite state automata (machines), one for each process. A communicating finite
state automaton A is a b-tuple: A = (S, sg, F', M, 8), where S is a finite set of states, so(€ S) is the
initial state, F/(C S) is the set of final states, M is a finite set of messages, and é is the transition
function: & : S x M — S. The message set M is divided into two subsets: M = M®U M?,
where M denotes the set of input messages (events) and M° denotes the set of output messages.
Ap denotes the finite state automaton associated with the process P. Mp, Mb, and M$ denote
respectively the message set, the input message set, and the output message set of the automaton
associated with the process P.

Since state automata are expressed in Kannel as statecharts [Har87], a transition from a state S
to a state 7" can be associated with an input message i € M? and a sequence of output messages
01,09,...,00;Vi € [1,n] : 0 € M°, standing for the reception of an incoming event and the im-
mediate sending of the outgoing messages: (S, (f0102 - --0,)) = T. Such a situation is interpreted
as introducing intermediate states S; for splitting the multi-message transition into singletons:

(S(S,Z) = 51,6(51,01) = SZ,...,(S(SH,OH) =1T.

Definition 2. Let P and @ be processes associated with a (communicating) finite state automaton.
Then Mpg denotes the set of messages from P to (), and Mp, the set of messages to P from
). These define the communicated message set between P and ), that is, the set of output
messages of the automaton for P (@) that are also input messages of the automaton for @ (P):
MI(;Q = Myp = M!% N Mg. The total communication between P and @) is denoted by My, =

op = Mpg U Mpg. To be able to communicate in both directions, P and ¢ must have the
sets Mpg and M};Q (Mégp and M&P) nonempty. For notational simplicity, we assume that the
communicated message set 1s different for each different pair of target processes: Mgy N Mpy = 0

whenever () # R.

Consider the example scheme in Figure 1. The communication between the processes A and B is
specified by two finite state automata (statecharts), A4 for A and Ap for B. Since the process A
is communicating with its client User_A (denoted U) and with its peer B, the set of messages A
is processing is divided into the following subsets: M4 = (M} UMS) = (M%% UMi%) = (M5, U
M UMSgUMY ). Likewise, Mp = (MEUMS) = (M UMY, ) = (Mg, UML, UMS UML),
where V' denotes User_B. Furthermore, M§p = MEA, and Mg, = MAB.

As usual, we model the behavior of a distributed system as sequences of messages, or traces,
between the processes in the system (see e.g. [Jon89]). Since the functionality of communicating
processes is defined in our approach as finite state automata, we can apply the standard concepts



and techniques of automata theory for specifying and analyzing the trace-behavior of protocols.

Definition 3. Let A = (S, sg, F, M, é) be a communicating finite state automaton. A trace in A,
denoted 74, is a sequence of (input or output) messages associated with a path from the initial
state of A to a final state of .A. That is, a message sequence mims ---my, (Vi € [1,n]:m; € M)
is a trace, if 6(sg,m1) = s1,68(s1, m2) = Sa2,...,8(sp—1, My) = sy, such that s, € F. The language
of A, denoted L 4, is the set of traces in 4.7 If the automaton A is associated with the process P,
we denote by 7p a trace in P and by Lp the language of P.

Definition 4. Let A = (5,50, F, M,§) be a communicating finite state automaton, and let T4
= myms---my, be a trace in A. Let N C M be a set of messages. The projection of T4 with
respect to N, denoted T4 /N, is a subsequence of T4 consisting of just the messages in N. That
is, m;(i € [1,n])is in T4 /N only if m; € N.

The refinement of a protocol between processes P and ) is achieved by refining the messages
exchanged between P and () into more concrete ones, by introducing a new protocol layer to
implement the abstract protocol, and by modifying the communicating automata associated with
P and @) to cope with the new architecture.

To specify this, we give the necessary definitions below. Intuitively, mapping functions are
needed for translation between an abstract message and a more concrete one (usually achieved in
practice by composing a protocol data unit from a service data unit and embedded local control
information, and by decomposing it later on), for splitting a concrete message into several abstract
ones (in practice by segmenting a service data unit into a set of protocol data units), and for joining
several messages into a single one (in practice by concatenating several protocol data units into a
single service data unit).

Definition 5. Let P, ), and R be processes, such that there is a communication protocol between
(the state automata for) P and @ and between (the state automata for) R and Q. P and R
are trace-equivalent with respect to (), if the following conditions hold: (1) Mo = Mpq; (2)

Mpo = Mpg; (3) {Tp/Mpy | Tr € Lp} = {Tr/Mjy | Tr € LR}

This definition stands for the fact that the refinement of one communication protocol shall not
affect the system’s behavior with respect to the other protocols. When considering the situation
in Figures 1 and 2, the processes A and A’ must be trace-equivalent with respect to User_A, and
the processes B and B’ must be trace-equivalent with respect to User_B.

Definition 6. Let Py, P, ..., P,,n > 2, be processes such that P; communicates directly with
Py (i=1,2,...,n— 1) via state automata. Then (P, P> --- P,) is called a configuration.

For instance, (User_A A B User_B) and (AB) are configurations in Figure 1, and (User_.A A’ C
D B’ User_B) and (A’CDB’) are configurations in Figure 2.

Definition 7. Let 7p = myms - - -m,, be a trace, let f : M — N be a function where M and N are
sets of messages, and let S C M. Then the transformation of Tp by f and S, denoted ¢(7p, f, S),
is the trace p1pa - - -pn where p; = f(my) if m; € S, and p; = m; otherwise; i =1,2,...,n.

Definition 8. (See Figures 1 and 2). Let (AB) be a configuration, and let M be a message set.
Let S(M) denote the set of all the sequences of messages in M. Let Com(P) denote the set of
processes with which process P has a communication protocol. The configuration (A'CDB’) is a

refinement of (AB) if there exist mapping functions fi (total), fa, f3, fa, g1 (total), g2, g3, and

9413

2This corresponds to the concept of language in automata theory. Therefore it is necessary for our automata to
have final (accepting) states. Notice that while reactive systems usually do not have a fixed final state from where
no progress is possible, even they always have “logical” final states closing a main event loop. Typically a reactive
automaton contains a cycle with the initial state as entry; in that case the initial state must be regarded as a final
state as well.

3For more extensive configurations, the definition is similar but involves a larger number of mapping functions.



Ji: M,ZB — Mic (= Mg y)) )
fa: Mé‘A{ — S8(M¢p) (= S(MJZDC))
f3: S(MJZ_)C) - MLO)B' (=Mpip)
fa:Mpip— Mp, (= MXB)

9 3MJ§A — Mg.p (= Mpp) )

g2 : Mpp — S(Mpe) (= S(MZCD))
93 - S(Mé‘D) - 'M(%A' (= Mj.c)
9a: My — Mup (= Mpg,)

such that the following conditions hold:
L Vm e Mg :m = fa(fs(f2(f1(m))))

2. Vn € Mg, :n = ga(gs(g2(91(n))))

3. Com(A)Y\ {C} = Com(A)\ {B}, and A’ and A are trace-equivalent with respect to every
process P € Com(A)\ {B}

4. Com(B)Y\ {D} = Com(B)\ {A}, and B’ and B are trace-equivalent with respect to every
process P € Com(B)\ {4}

5. {TA’/M,ZAOIC} = {t(Ta 930929041, M,ixB) | T= t(TA/M,ixOBa fis MXB)}
6. {TB’/MJ%O’D} = {t(Ta fso fao f1, MJ%A) | Tr= t(TB/MJZéOAagla MJ%A)}

The definition of refinement captures the fact that the abstract communication pattern shall remain
the same, even when the concrete message path changes. Conditions 1 and 2 above guarantee
that each message in the original protocol and process configuration reaches its destination in the
corresponding format in the refined protocol/configuration even when having different intermediate
representations during the transmission. Conditions 3 and 4 state that the refinement of a protocol
shall not affect the external client-wise behavior of the end processes. Finally, conditions 5 and
6 guarantee that the state automata of the refined processes (A’ and B’ in Figure 2) manifest
the same abstract communication protocol with respect to the original processes (A and B in
Figure 1) even when introducing concrete representations for the messages as well as additional
communication with the new lower-layer processes (C' and D in Figure 2). In other words, the
extended communication must preserve the original traces by the following mapping of messages:

e message m sent from A4 to Ap is represented as fi(m) in Au/;

e message n received from Ap in Ay is represented as ¢3(g2(g1(n))) in Aa;
e message o sent from Ap to Ay is represented as g1(0) in Ap:;

e message p received from Ay in Ap is represented as f3(f2(f1(p))) in Ap:.

Finding the mapping functions f; and g; is, of course, very hard in a general case without any
discipline on the structure of the refinement. That is why the refinement mechanism in Kannel
involves certain syntactic and semantic restrictions to make 1t possible to automatically find the
mapping functions and to verify the refinement conditions, as illustrated in the next section.

4 Object-oriented protocol refinement in Kannel

The refinement concept is realized in Kannel with mechanisms for grouping and subtyping pro-
cesses, combined with constructs for layer refinement and event mapping within state machines.
The latter two mechanisms aim at maximal reuse of existing code. Subtyping and code reuse are
normally distinct mechanisms in Kannel but refinement combines them, yielding a construct that
resembles the traditional concept of inheritance. We illustrate these mechanisms with a Kannel
model of a generic weather reporting system and its disciplined refinement over an alternating bit
transport service.



Overview of the weather reporting system The weather system consists of a set of sensors
connected to a control terminal, which provides information about mean temperature changes and
fault conditions to the user of the system. The control terminal receives temperature reports from
the sensors and computes their average. Should the average change too radically, the terminal will
inform the user of the system about it. Likewise, fault indications from the sensors are reported.
In addition, the user may pose explicit report requests which are immediately answered. Each
sensor contains a computing unit and a timer which is used to control the interval at which the
sensor sends probes. The control terminal and the sensors are abstracted into a WeatherSystem
interface process (see below) which is used as the basis for subtyping. Full details of the example
are included in the appendix.

Brief introduction to Kannel A Kannel program consists of a set of communicating objects.
Kannel divides these objects into two categories—there are local objects that can exploit identity
and create other objects, something that distributable objects cannot do. The distributable Kannel
objects are called processes; they are used to model the combined state and behavior of a protocol.
The communication and creation capabilities of processes are provided with mechanisms such as
channels, ports, messages, routers, transfer syntaxes, and statecharts.

Distributable objects are superior to local objects. They are used to specify the system on
a larger level of granularity, whereas the local objects serve to provide traditional computing
capabilities. Recognizing this, Kannel provides a visual syntax for the distributable parts of the
language. The visual syntax describes both the structure of processes and the multiplicity of their
instances; hence it aims at being simultaneously a static and a dynamic model of the system. This
is In contrast with approaches that use separate models for these aspects.

The intention of Kannel is to describe the communicating system as a whole by including
in the specification all the involved components. This deviates from the traditional approach of
describing only a single communicating (although maybe layered) entity at a time. Indeed, a
Kannel compilation can result in the creation of several such entities. The designer controls this
separation by tagging some associations between processes as separate.

ws:Generic_WS < WeatherSystem

[
¢ : AVG_Controller < Controller sensorxector (SMAX) Sensor
cpu:CPU

SENSOR running
query temp B -----B—u|sender

operatd,_wakeup an
leeperfire

wakeup @

CONTROII

fail

Figure 3: The Generic WS process.

4.1 A high-level specification of WeatherSystem

Channels and process interfaces On the top level, the weather system consists of processes
User and WeatherSystemthat are connected by the channel CONTROL. The processes communicate
by sending messages, that is, local objects whose types are specified within the channel. Kan-
nel channels may be segmented into sets of unidirectional messages with views as shown in the
definition of CONTROL below:

channel CONTROL is



view Requests is query : event end Requests;
view Results is
report : real;
faulty : integer
end Results
end CONTROL

For example, message query always travels from the user to the weather system, never vice versa
(the flow directions for the views are stated within process type definitions). Thus, a channel
defines one service interface for a process. The combined set of these interfaces combined with a
protocol assertion forms the type of a (branch) process:

process interface WeatherSystem is
service : CONTROL(in Requests, out Results);
protocol SENSOR separate

end

Local classes in Kannel use interfaces (collections of method signatures) as the basis for subtyping
and for the dynamic binding of method calls. In a similar fashion, processes use process interfaces
to specify their externally visible properties. The interface for WeatherSystem states that it is
prepared to process any incoming message within the Requests view and that it may generate any
message within the Results view?. However, the specification of the legal temporal orderings of
these messages is left unspecified: rather, they are specified with a statechart within the concrete
(leaf) processes that are subtypes of WeatherSystem.

Kannel requires that each subtype exhibits the equivalent set of traces on its service interfaces.
There are two reasons for dropping the state automata from the interface specification: First, there
may exist several structurally differing automata that exhibit equivalent behavior; and second, the
automaton generally has to access internal details of the process in order to handle events and
these details should not belong to the interface. Instead of an automaton, the interface may
specify a protocol assertion (see below) that abstracts the kind of service it internally provides.
The assertions are also crucial for process refinement, as we shall see: any (protocol) association
to be refined must be specified with a protocol assertion.

The process structure in Kannel is given statically, and since instance identities and creation
are not applicable to them (due to the strong distribution semantics that Kannel imposes on
processes) the idea of process subtyping with interfaces may seem unnecessary. However, during
system 1nitialization and in the restricted context of routers the subtyping may be exploited,
opening interesting possibilities such as the dynamic selection of process stacks.

Grouping of processes Kannel processes fall into two categories: leaf processes are used to
express the actual behavior of a protocol element. They contain a statechart that declares the
legal temporal orderings of events together with (private) methods and attributes that are used in
computation. It is worth pointing out that a leaf process in itself does not implement a protocol—a
protocol is a mutual agreement between two or more communicating parties and thus necessarily
involves several entities. This leads us to branch processes that are used exactly for this purpose: to
group together entities that form a protocol. Only branch processes may aggregate other processes.
Figure 3 shows the branch process Generic_WS as an architectural description of WeatherSystem.
The channels for communication are represented in Kannel as associations (depicted as a line; sep-
arate associations are depicted as a dotted line), here CONTROL, SENSOR (separate), and ALARM.
Generic_WS groups together a Controller process together with several Sensor processes. Each
Sensor in turn is a branch process containing a Timer and a CPU process. In addition to grouping,
the branch processes can perform initialization of their (local) component processes by invoking
their methods—this is the only context in Kannel where processes may interact with method calls;
thus there 1s quite a strong form of aggregation between a branch process and its components.

*Each service interface is assigned a port identifier (e.g., service) that is used within associations and within
the statechart.



Type relations for leaf processes A process interface for a leaf process enumerates a set of
service interfaces that the leaf is prepared to serve. Kannel requires that the visible behavior of
the concrete subtypes be equivalent. For example, when a Controller receives a query message
(see Figure 3), it will respond with a report: this behavior is required to remain the same for all
its concrete subtypes (in the example just AVG_Controller), as stated in Definition 8 of Section 3.
Of course, this is not full behavioral compatibility, since the actual content of the messages is not
required to be the same. It appears that full behavioral compatibility is often too restrictive, since
one usually wants to model a slight semantic change while preserving substitutability (consider,
for example, a Log_controller process that records sensor reports within persistent storage).

Type relations for branch processes The previous discussion on behavior also applies to
branches—except that in this case the services are not implemented by the branch itself but rather
by some component therein. In addition to service interfaces, a branch process may also have a
protocol assertion that indirectly states the protocol implemented by the component processes.
The assertion identifies an association within a subtype of the interface containing the association;
for example, the SENSOR assertion within the interface for WeatherSystem must appear (in one
way or another, see 4.2) within every concrete subtype.

Protocol assertions are not just labels; they carry significant semantic weight by imposing the
requirement that the endpoints of the association identified by the assertion become part of the
service interface of the branch for the purposes of type checking. Of course, the endpoints are not
visible to the clients of the branch—rather, the behavior exhibited at the endpoints becomes part
of the branches’ type and must be the same for every subtype. This is a subtle way to integrate the
behavior of the most important component processes into the type definition. Protocol assertions
are reminiscent to the concept of structural conformity in [HaG96]; however, they are more flexible
by allowing the designer to leave out the components that are “uninteresting” with regard to layer
behavior (e.g., endpoints of the ALARM association within Sensor).

The protocol assertion must also state (with the keyword separate) whether the subparts
using the protocol are located within separate address spaces, e.g., in different machines. This is
required in order for the subtypes to be meaningfully substitutable—were 1t not so, the Kannel
compiler would not always be able to partition the processes deterministically in a context where
process interface attributes are used.

The structure of Generic WS Figure 3 illustrates the Generic_WS process. Since it is a branch
process, there is no controlling statechart. Three component processes (AVG_Controller, CPU and
Timer) are leaf processes and thus have a controlling statechart®. As an example, we describe the
structure of the CPU statechart—see the appendix for full details.

The CPU consists of a single hierarchical, concurrent state running (departing from the tra-
ditional notation of [Har87], concurrent states are shown with shaded background) that has two
submachines: a sleeper that communicates with the timer process to obtain periodic alarms and
a sender that synchronizes with the state sleeper.firein order to send a probe to the controller.
Kannel statecharts do not support message broadcasting, but have a few useful additional features
such as the internal nil message that has an infinitely low priority and is fired whenever there are
no other available messages to process (for example, the sleeper.start state uses a nil transition
to request the initial wakeup message from the timer).

process Generic_ WS < WeatherSystem is
¢ : AVG_Controller;
sensors : vector (SMAX) Sensor;

assoc
SENSOR: c.peer and separate sensors.all.peer;
c.up and service

end Generic. WS

5The Timer process is part of the standard library and its structure is thus omitted.
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The condenced textual definition for Generic_WS shown above lists its components and their asso-
ciations over process ports (e.g., c.peer). The subtype relation is specified with a < symbol. Note
the required assertion label SENSOR before the association between the sensors and the controller.

ws:AltBit WS refine Generic. WS.SENSORIin SocketAltBit. ALTBIT

\
¢ : AVG_Controller < Controller sensorszector (SMAX) Sensor
cpu:CPU

running
sender t:Timer
wakeup an

eeper.firs

wakeup @
wakeup

SERVICE

ALARM

CONTROI

H b : Protocol

DATA m DATA

ALTBIT

18
(@)
~

ACK

Figure 4: The refined A1tBit WS process.

4.2 The refinement of Generic_WS

Now we have our framework ready for the refinement of the SENSOR association over an alternating
bit transport service layer. The mechanisms we are going to present are based on the observations
(see Section 3) that (a) the behavior of the processes to be refined does not change at all on service
interfaces except for the one being refined and that (b) the actual structure of the statecharts within
the original and refined processes does not really matter if the language of the processes (the set
of accepted traces) remains the same. The former point is important since we want to capture
the refinements within the Kannel type system in a flexible manner. The latter point arose as the
result of investigating mechanisms for reusing the synchronization behavior of a process (sometimes
called the “inheritance anomaly” problem).

Figure 4 illustrates the result of refining the Generic_WS process with respect to protocol
SENSOR within an alternating bit transfer service (cf. the corresponding abstraction in Figure 2).
We omit its description in order to keep the presentation compact; see the appendix for details.
However, two things are worth pointing out. First, note the use of history information (depicted
with a capital H in the upper right hand corner of the process) within the statechart for Protocol
to capture the fact that the processing of a DATA message always ends up in the same substate
where it was received. Second, note having idle as a final state (depicted in Figure 4 with an
additional circle) to mark the logical endpoint of a message delivery®. We proceed by presenting

8In other statecharts the implicit final state rule of Kannel is applied. The rule says that every state without
any (outgoing) transitions is implicitly considered final.
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the textual form of the mechanisms and by discussing their semantics and effects on code reuse.

4.2.1 Branch process refinement

Refinement can only be done based on a protocol assertion that identifies an association within
a branch process. Thus, the assertion enables stepwise extension of a process’ components. The
structure of the refined A1tBit_WS process is shown below:

process AltBit_ WS
refine Generic. WS.SENSOR
in SocketAltBit. ALTBIT
is
transport : SocketAltBit
assoc
transport.upl and c.peer;
transport.up2 and sensors.all.peer

end AltBit_ WS

The subtyping section of the refined process is replaced with a refine clause that names two protocol
assertions, the original and its replacement. Note that both assertions are on peer level—we thus
establish a binding between two adjacent layers of which the latter is less abstract than the former.
In addition, the (concrete) process to be refined is also specified. The effects of the mechanism are
as follows:

e The A1tBit_WS process becomes a subtype of the process interface to which the SENSOR
assertion belongs (and for which Generic_WS must be a subtype).

e The associations and other code (private methods and routers) are reused as is within the
A1tBit WS process except for the association to be refined.

e The leaf processes residing at the endpoints of the refined association become undefined and
must be superimposed into A1tBit_WS as explained in Section 4.2.2.

e Any branch processes between the leaf processes are locally redeclared with a new service in-
terface for the refined association. In our example, the Sensor process gets locally redeclared
within A1tBit_WS; its old peer:SENSOR interface changes into peer:SERVICE.

Note that the transformed association endpoints remain unassociated and must be explicitly given.
In the above code fragment a new process component transport is plugged into the now unasso-
ciated ports. This also resolves any potential ambiguity about the refining process component (in
general, there might be more than a single SocketAltBit component).

As mentioned in the very beginning of this section, the refinement resembles inheritance in the
sense that it combines code reuse with subtyping. However, here reuse has semantics that differ
from the “simple textual copy” semantics used in the reuse mechanism for local Kannel classes:
it results in a set of (compiler-generated) new types for the branch processes that are part of the
refined association.

WeatherSystem

/\

Generic_WS AltBit_WS

Figure 5: Subtypes of WeatherSystem.

The resulting type relations are shown in Figure 5. Note that A1tBit_WS is not a subtype of
Generic_WS but rather a subtype of its interface—this is in harmony with the whole Kannel type
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system which 1s based on the idea that all type relations are abstract and should not be confused
with code reuse (for which there is a separate mechanism).

The leaf processes at the endpoints of the refined association remain to be respecified. Here the
situation is more complex, since their statecharts are populated with receptions and transmissions
of messages that are part of the abstract protocol.

4.2.2 Leaf process refinement

The types of the original leaf processes and their refinements do not remain compatible, since one
service interface gets changed in the processes. However, there still exists significant similarity that
we wish to exploit. A further consideration is that both process definitions must coexist within
the source code. Generally, this can be tackled with scoping or renaming. We have chosen the
former approach, since renaming tends to be messy and since coming up with meaningful names
for the entities is a major burden in itself. The refined processes CPU and AVG_Controller are
shown below:

process CPU in AltBit_ WS map
sl : peer ! dreq(temp.create(unit, t.read));
82 : peer ! dreq(fail.create(unit))

is action
running

end CPU;

process AVG_Controller in AltBit_ WS map
temp,fail in dind

is action
AVG_Controller

end

The subtyping section of the refined process is replaced with a superimposition clause in (@) map
(b), where (a) names the refined branch process into which the refined type is to be superimposed
and (b) provides a transformation mapping for all messages travelling in the abstract association
which is being refined.

The transformation mapping The statecharts in Kannel are granularized on the level of
message receptions: one reception may result in several transmissions (depending on the transition
action). This is a convenient notation for specifying the behavior since one does not have to clutter
the state space with states which immediately fire by transmitting a message.

In the context of transformation mappings this extra convenience has a price: the designer must
give explicit labels for all message transmissions into the abstract peer association; these labels
are then used within the mapping to provide the refined transmission statement. For example, the
message transmissions into the SENSOR association within the CPU process are wrapped as dreq
messages into the SERVICE association within the refinement; the original CPU definition contains
the labels s1 and s2 (see the appendix) referred to in the mapping.

For message receptions the situation is simpler, since they can use the originating state as a
natural label. In our example the receptions within AVG_Controller are all wrapped into dind
messages—this is a degenerate case, since there is only a single state. In the general case, however,
the receptions of, say, message M may be refined into distinct messages N1 and N2 depending on the
current state. The mechanism extends to situations like this by using the originating state name
as the mapping label.

The reception mapping must specify the exact entity into which the abstract message 1s trans-
formed in order to enable the Kannel compiler to instrument the receptions with the necessary
disambiguations. For example, since both temp and fail messages are received within a dind
message, the compiler must instrument the refined AVG_Controller process with a dynamic type
check which determines the exact type’.

7All Kannel objects carry run-time type information.
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4.2.3 Reuse of leaf processes

As we have seen, the distinction between subtyping and code reuse extends quite naturally in
Kannel from local classes to processes. With processes, subtyping considers the language induced
by their state automata (see Section 3).

Since the language has no forced relation with any given automaton (a given language may be
accepted by several structurally different automata), subprocesses of a given interface may use any
means whatsoever to implement the language. This is reflected in the reuse mechanism which is
quite liberal, allowing practically any modifications to a reused state machine. This is in contrast
with approaches that use inheritance to reuse a given state automaton and hence have to force
severe restrictions on the set of allowed modifications (e.g., [HaG96, CHB92]). The Kannel leaf
process reuse mechanism comes in two flavors which are augmented with special syntax:

e The standard liberal code reuse mechanism that can be used for arbitrary leaf processes.

e The disciplined superimposition mechanism (Section 4.2.2) that is used solely in the context
of refinement.

4.3 Discussion

Ensuring the preservation of behavior The notion of branch processes allows one to have
type relations between refinements, which is useful in practice. However, a more fundamental issue
concerns the amount of checking a compiler can do when confronted with the refinement mecha-
nisms. The statechart model augmented with the notion of final states allows us to speak about
the language of a process, and subsequently we have more freedom in modifying the statecharts.
The transformation mapping provides the compiler a rough estimate of the total functions f; and
g3 (and, symmetrically, ¢g; and f3); see Definition 8 in Section 3. The remaining two mappings are
defined implicitly by the constraints set upon refinement. They do require, however, that the com-
piler can perform (some fairly unsophisticated) statechart slicing in order to reveal the mappings
from the message flow.

Varying-height protocol stacks The refinement mechanism enables interesting variations
within the peer branches of a process interface. Since refinement effectively increases the number
of subcomponents contained within parent by one, the peer branches may represent protocol stacks
of differing “heights” and still be type-compatible. This is illustrated in Figure 5 where the left
subtype has height 1 and the right subtype has height 2.

Further work The presented formalism works nicely in a context where the leaf processes resid-
ing at the endpoints of the abstract association are concrete. If they are replaced with interfaces,
the situation gets more complex, since several structurally differing statecharts may now exist
within the eventual leaves. Our current solution to this is to require that superimpositions be
provided for all the concrete subtypes of a leaf interface, but alternative solutions, such as selective
pruning of the type tree at the point of refinement are worth considering. A related problem arises
in a situation where one or more branch processes that are part of the abstract association are
represented by a process interface. Clearly the requirement that all final leaves within subtypes
must then be superimposed is too stringent one.

The possibility to refine several abstract associations with differing protocol assertions needs
more consideration. Currently, only a single association may be refined at a time.

5 Conclusions
We have presented a systematic methodology for developing communications software by stepwise

refinement of protocols. The characteristics of the problem of protocol refinement have been
analyzed and other potential solutions have been outlined. As a practical approach to protocol
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refinement, we have shown how the mechanism can be expressed and implemented using the object-
oriented protocol engineering language Kannel.

With regard to other suggested approaches;, the main novelty of ours is being constructive
rather than theoretical. Unlike the approaches of program refinement [Bac88], data type refine-
ment [Nip89], protocol conversion [PeL.93], and top-down protocol specification refinement [LiM88],
whose main objective is to employ formal specifications to formally prove the correctness of system
evolution, we have developed a programming language by which a protocol designer can express
the system evolution on a proper level of preciseness. The task of verifying the central formal
properties of refinement is laid on the Kannel system, not on the designer. Of course, this kind
of “automatic verification” done by the Kannel compiler is less complete than a formal proof but
still powerful enough to capture the most fundamental errors.

Another language-based approach to stepwise refinement of communicating systems is pre-
sented in [SLR95]. As Kannel, the RL language makes it possible to gradually evolve distributed
systems by incrementally modifying the system’s architecture, its state-behavior, and the types of
communicated messages. The refinements are validated with an analysis over the derived message
types and the state space of the underlying state automata. The main difference to Kannel is
that RL does not rely on object-oriented features, whereas these are the key factor in Kannel for
achieving the mechanism of refinement.

Being object-oriented in general, Kannel shares some features with general-purpose object-
oriented programming languages, such as Eiffel [Mey92] and Sather [SOM93]. The key difference
to these is that Kannel is a special-purpose language with a number of central facilities tuned
especially towards protocol engineering. For instance, the refinement mechanism presented in this
paper is not intended for applications of arbitrary kind but just for the development of distributed
systems with a communication protocol in the core. By focusing refinement on one (“peer”) side
of a process interface at a time, our approach shares some ideas with dividing the interface of a
class into two distinct categories, a client interface and a specialization interface [Lam93].

From the applications’ point of view, Kannel is closely related to the formal language family of
telecommunications, in particular to the object-oriented variant of SDL, SDL-92 (OSDL) [Fee092].
With respect to the theme of this paper, these two languages differ in that Kannel considers
incremental refinement as a semantic mechanism of special kind, whereas a similar effect has to be
simulated in SDL-92 using conventional inheritance and virtuals without formal support.

The basic implementation of Kannel is complete, and the refinement features described in this
paper are currently under implementation.
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Source code for the

const SMAX ::= 5;
const TIMEOUT ::= 10;

class Temperature is
unit, val : integer
end Temperature;

channel CONTROL is
view Requests is query :
view Results is
report : real;
faulty : integer
end Results
end CONTROL;

event end;

channel SENSOR is
temp : Temperature;
fail : integer

end SENSOR;

process interface Controller is

peer : SENSOR (in);

up : CONTROL (in Requests, out Results)
end;

process AVG_controller < Controller is
const THRESHOLD := 2;
buf : list [Temperature];
old : real;
average (list [Temperature])
sum::= 0;
iter : list_iter[Temperature];
iter.reset(arg);
loop iter.done.until;
sum:= sum - iter.next
end loop;
return sum / buflength
end average
final arcs
temp —> {
buf.add(temp);
if buflength = SMAX then

res::= average(buf);

: real is

if (old—res).abs > THRESHOLD then

up ! report.create(res)
end if;
old:= res; buf.clear
end if }
query —> { up ! report.create(old) }
fail —> { up ! fail }
end AVG_controller;

process CPU ports

peer : SENSOR (out);

clock : ALARM (in Notices, out Settings)
is

initialize(u,t:integer) is

weather system specification

unit:= u; delta:= d end,;
unit, delta : integer;
t : SensorlO
action
and state running is
state sender is
state operate arcs

wakeup and sleeper.fire —> {

if t.ok then
sl: peer ! temp(unit, t.read)
else
82: peer ! fail(unit)
end if;
go wait }

end;
state wait arcs wakeup —> { go operate } end,;
end sender;
state sleeper is
state start arcs
nil —> { clock ! set(delta); go wait } end,;
state wait arcs
wakeup —> { clock ! set(delta / 2);
state fire arcs
wakeup —> { clock ! set(delta / 2); go wait } end
end sleeper
end
end CPU;

go fire } end;

process Sensor ports
peer : SENSOR (out)
is
initialize(integer) is cpu.initialize(arg, TIMEOUT) end;
t : Timer;
cpu : CPU
assoc
cpu.peer and peer;
cpu.clock and t.service
end Sensor;

process interface WeatherSystem is
service : CONTROL(in Requests, out Results);
protocol SENSOR separate

end;

process Generic_WS < WeatherSystem is
¢ : AVG_controller;
vector (SMAX) Sensor;
main[sensors| is
1::=0;
loop (i < SMAX).while;
sensors(i).initialize(i); inc(i)
end
end
assoc
SENSOR: c.peer and separate sensors.all.peer;

Sensors

c.up and service

end Generic_WS;

17



process interface AltBitLayer is
interface UserData > Temperature,integer upl, up2 : SERVICE (in requests, out results)
is end; protocol ALTBIT separate

end AltBitLayer;
process AltBit_ WS

refine Generic. WS.SENSOR in process SocketAltBit < AltBitLayer is
Socket AltBit. ALTBIT a,b : Protocol
is assoc
transport : Socket AltBit ALTBIT: a.peer and separate(Socket) b.peer;
assoc a.up and upl;
transport.upl and c.peer; b.up and up2
transport.up2 and sensors.all.peer end SocketAltBit;

end AltBit_WS;
class Packet is

process CPU in AltBit_ WS map contents : UserData;
sl : peer ! dreq(temp.create(unit, t.read)); seq : boolean
82 : peer ! dreq(fail.create(unit)) end Packet;
is action
running channel ALTBIT is
end CPU; DATA : Packet;
ACK : boolean
process AVG_controller in AltBit_ WS map end ALTBIT;
temp,fail in dind
is action process Protocol ports
AV G_controller up : SERVICE (in requests, out results);
end; peer : ALTBIT (in out)
is
process System is todo : list [DataReq];
u : User; next::= false; —— next bit to send
ws : WeatherSystem; received::= true —— most recent bit received
action
process User ports init idle traced; —— history & initial state
control: CONTROL(out Requests; in Results)  final state idle arcs
is arcs dreq —> { todo.add(Dreq); peer ! DATA(dreq,next); go busy }
userinput —> { control ! query.create } end idle;
report —> { state busy arcs
stdout.print("Temperature: %d\n", report) } dreq —> { todo.add(Dreq) }
faulty —> { ACK —> { if ACK = next then
stdout.print("Error in unit %d\n", faulty) } todo.remove_first;
end User; next:= not next;
if todo.empty then
main(vector string) is go idle
if arg(0) = "test" then else
ws:= new Generic_ WS peer ! DATA(todo.first, next)
else end if
ws:= new AltBit_ WS else —— retransmit
end if peer ! DATA(todo.first, next)
end main end if }
assoc end busy
u.control and ws.service arcs
end System,; ACK —> {} —— ignored
DATA —> { if DATA.seq <> received then
channel SERVICE is received:= DATA seq;
view requests is dreq : UserData end; up ! Dind(DATA. contents)
view results is dind : UserData end end if}
end SERVICE; peer ! ACK(received) }

end Protocol
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