
Reachability in Live and Safe Free-Choice PetriNets is NP-completeJavier Esparza�Institut f�ur InformatikTechnische Universit�at M�unchenArcisstr. 21, D-80290 M�unchen, GermanyAbstractThe complexity of the reachability problem for live and safe free-choice Petri netshas been open for several years. Several partial results seemed to indicate that theproblem is polynomial. We show that this is unlikely: the problem is NP-complete.1 IntroductionFree-choice Petri nets were �rst de�ned and studied in the early seventies [1, 7]. Today, theyare accepted as the largest class of Petri nets for which relevant analysis problems can besolved in polynomial time.1 A series of papers, starting with [5] and culminating with [10],has shown that the problem of deciding if a free-choice Petri net is live and bounded canbe solved in O(n �m) time, where n and m are the number of places and transitions of thenet, respectively. In turn, many analysis problems of live and bounded free-choice Petri netshave also been shown to have polynomial time complexity [4].Due to this series of results, the reachability problem of live and bounded free-choice Petrinets, i.e., the problem of deciding if a given marking is reachable from the initial marking,has also been believed to be polynomial since around 1991. However, despite some verypromising partial results, a proof has remained elusive. In [2] it was shown that when thePetri net is also cyclic2 then the reachability problem can be reduced to solving a system ofn ordinary linear equations with m variables, and is therefore polynomial. Later, [4] provedthat every reachable marking can be reached from the initial marking by an occurrencesequence of length O(b �m3), where b is the bound of the net, i.e., the maximum number oftokens that a reachable marking can put in a place. More recently, [11] provided a structuralcharacterization of the set of reachable markings which seemed to be an important steptowards a polynomial algorithm, and [9] showed how to decide in O((n+m)3) time whethertwo given places can be simultaneously marked.�Partially supported by the Sonderforschungsbereich 342, Teilprojekt A3.1Although some of the results valid for free-choice Petri nets have been extended to slightly larger classes.2A Petri net is cyclic if the initial marking is reachable from any other reachable marking.1



We prove in this paper that, contrary to the expectations raised by all these results, thereachability problem is unlikely to be polynomial. Even the reachability problem for liveand safe free-choice Petri nets (where safe means that no reachable marking puts more thanone token in any place) is NP-complete.The paper is organised as follows. Section 2 contains basic de�nitions. Section 3 containsthe NP-completeness proof for live and safe free-choice Petri nets. Section 4 extends theresult to the live and bounded case.2 Basic de�nitionsWe assume that the reader is familiar with the basic notions and results of the theory ofNP-completeness (see [6] for an introduction).A net N is a triple (S; T; F ), where S and T are two disjoint, �nite sets of places andtransitions, and F � (S�T )[(T�S) is a 
ow relation. Places and transitions are genericallycalled nodes. We identify F and its characteristic function (S � T ) [ (T � S)! f0; 1g.Given a node x of N , �x = fy j (y; x) 2 Fg is the preset of x and x� = fy j (x; y) 2 Fg isthe postset of x. Given a set of nodes X of N , we de�ne �X = Sx2X �x and X� = Sx2X x�.A triple (S0; T 0; F 0) is a subnet of N if S0 � S, T 0 � T and F 0 = F \ ((S0 � T 0) [ (T 0� S0)).A net (S; T; F ) is free-choice if (s; t) 2 F implies �t� s� � F for every s 2 S; t 2 T .3A marking of N is a mapping M :S ! IN . A marking M enables a transition t if M(s) �F (s; t) for every place s. If t is enabled atM , then it can occur, and its occurrence leads to thesuccessor markingM 0 which is de�ned for every place s by M 0(s) = M(s)+F (t; s)�F (s; t).A Petri net or system is a pair (N;M0) where N is a connected net and M0 is a marking ofN .The expression M1 t�! M2, where M1, M2 are markings of N , denotes that M1 enablestransition t, and that the marking reached by the occurrence of t is M2. The expressionM ��! M 0, where � is a sequence � = t1 t2 : : : tn of transitions, denotes that there existmarkings M1;M2; : : : ;Mn�1 such that M t1�! M1 t2�! M2 : : :Mn�1 tn�! M 0. Such an ex-pression is called occurrence sequence. We also say that a sequence � of transitions is anoccurrence sequence of (N;M0) if there exists a marking M such that M0 ��!M .A marking M 0 is reachable from M if there exists an occurrence sequence M ��! M 0. Thereachable markings of a system (N;M0) are the markings reachable from M0.A system (N;M0) is free-choice if N is a free-choice net.A system is live if for every reachable marking M and every transition t there exists amarking M 0 reachable from M which enables t. A system is b-bounded if M(s) � b for everyplace s and every reachable marking M , and bounded if it is b-bounded for some number b.A 1-bounded system is also called safe.3 Reachability in live and safe free-choice systemsWe abbreviate live and safe (bounded) free-choice system to LSFC-system (LBFC-system).We consider the following problem:3We follow the terminology of [4]. These nets are also called extended free-choice nets in the literature.2



Reachability (in LSFC-systems)Given: a LSFC-system (N;M0), a marking M of N ;To decide: is M reachable from M0?The membership of Reachability in NP follows from the following result of [3]:Theorem 3.1 Shortest Sequence TheoremLet (N;M0) be a LSFC-system, and let M be a reachable marking. There exists anoccurrence sequence M0 ��!M such that the length of � is at mostn � (n+ 1) � (n+ 2)6where n is the number of transitions of N .This result immediately leads to a nondeterministic polynomial time algorithm for Reach-ability: to decide if M is reachable in (N;M0), guess a sequence � of the length above, andcheck if M0 ��!M .We divide the proof of NP-hardness in two parts. First, we reduce the satis�ability problemof boolean formulas in conjunctive normal form (CNF-SAT for short) to the followingintermediate problem:Constrained ReachabilityGiven: a LSFC-system (N;M0), two subsets T=1 and T�1 of transitions of N , amarking M of N ;To decide: is there an occurrence sequence M0 ��!M such that � contains eachtransition of T=1 exactly once and each transition of T�1 at least once?In a second step, we reduce Constrained Reachability to Reachability.3.1 The �rst reductionAs usual, a literal is a boolean variable or its negation. A clause is a disjunction of literals,and a boolean formula in conjunctive normal form, called CNF-formula in the sequel, is aconjunction of clauses. We identify a CNF-formula with the set of clauses that appear in it,and a clause with its set of literals.Let � = fC1; : : : ; Cmg be a CNF-formula over variables x1; : : : ; xn. Without loss of generality,we assume that no clause contains both a literal and its negation, and that for every 1 � i � nthere is a clause that contains either xi or xi.We construct a system (N;M0), two subsets T�1 and T=1 of transitions and a marking M .The reader may follow the construction on Figure 1, which shows (N;M0), T=1, T�1 and Mfor the formula � = x1 ^ (x1 _ x2) ^ (x1 _ x2)N is constructed in several steps. We start with the empty net. At each step we add newplaces, transitions and arcs to N , or even new subnets. We describe the steps in a ratherinformal but hopefully precise way. 3
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jFig. 3 The net NC j� For every variable xi, add to N the net Nx i shown in Figure 2;� for every clause Cj, add to N the net NC j shown in Figure 3;� for each variable xi and every clause Cj, connect the net Nx i to the net NC j as shownin Figure 4, according to three possible cases: (1) xi appears in Cj but xi does not; (2)xi appears in Cj but xi does not; (3) neither xi nor xi appear in Cj4.� connect the places C1; : : :Cm to the places x1; : : : ; xn by means of auxiliary nodes, asshown in Figure 5;This concludes the construction of N . M0 and M are both equal to the marking thatputs one token on the place Start, and no token anywhere else. Finally, we take T�1 =fTC 1; : : : ;TCmg and T=1 = fAx 1; : : : ;Axng.Proving that (N;M0) is a LSFC-system system is a small exercise, which we leave to thereader.We brie
y explain the intuition behind this construction. Let � be an occurrence sequenceof (N;M0) in which the transitions of T=1 occur exactly once, and the transitions of T�1occur at least once.� The occurrence of the transition Ax i signals that xi is going to be assigned a truthvalue.� The nets Nxi are used to determine the assignment of the variables. Since the transi-tions of the set T=1 occur exactly once in �, for every 1 � i � n either tx i or fx i occursin �, but not both. In this way, � determines a unique truth assignment A� de�nedby: A�(xi) = true if tx i occurs in �, and A�(xi) = false if fx i occurs in �.4Notice that the case that both xi and xi appear in Cj need not been considered due to our assumptionon �. 5
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Fig. 4 Connection from Nx i to NC j� After assigning a value to a variable, � updates the truth values of the clauses. Thesevalues are initially set to false. The connections between each pair of nets Nx i;NC jare chosen with the following intended meaning: the occurrence of TC 1 in � sets Cjto true, while the occurrence of UC j leaves its value unchanged. Therefore, Cj is trueunder A� if and only if the transition TC j occurs at least once in �.So we have the following lemma:Lemma 3.2Constrained Reachability is NP-hard.Proof:Let (N;M0), T� 1, T=1 and M be an instance of Constrained Reachability, and letM0 ��!M be an occurrence sequence satisfying the conditions of the problem. Since everytransition of T�1 occurs in � at least once, the truth assignment A� makes all clauses true,which implies that � is satis�able.Conversely, let � be a satis�able formula. We take an assignment which makes � true, anduse it to construct an occurrence sequence M0 ��! M such that every transition of T�1occurs at least once in � and every transition of T=1 at least once. The sequence � is theconcatenation of sequences �1; : : : ; �n. Each �i starts with the occurrence of one of theoutput transitions of the place Start, followed by the corresponding Ax i transition and thetransition txi or fx i, according to the assignment, and ends with the transition End. Dueto the way the nets Nx i and NC j are connected, � contains every transition of T�1 at leastonce. 6
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=1Fig. 7 The system (N=1;M=10 ), the transition t=1 and the marking M=1.3.2 The second reductionWe show how to reduce Constrained Reachability to Reachability.Given a LSFC-system (N;M0), two subsets T�1 and T=1 of transitions and a markingM , weconstruct an LSFC-system (N 0;M 00) and a markingM 0, such that M is reachable in (N;M0)under the constraints given by T�1 and T=1 if and only if M 0 is reachable in (N 0;M 00).In order to de�ne (N 0;M 00) and M 0 we need some \building blocks"and a composition oper-ation. The blocks are shown in Figures 6 and 7.The following two lemmata are easy to prove, for instance by inspection of the reachabilitygraph:Lemma 3.3Let (N�1;M�10 ), M�1 and t�1 be as shown in Figure 6. (N�1;M�10 ) is a LSFC-system,and satis�es the following property: there exists an occurrence sequence M�10 ��! M�1containing n-times the transition t�1 if and only if n � 1.Lemma 3.4Let (N=1;M=10 ), M=1 and t=1 be as shown in Figure 7. (N=1;M=10 ) is a LSFC-system,and satis�es the following property: there exists an occurrence sequence M=10 ��! M=1containing n-times the transition t=1 if and only if n = 1.55In fact, a stronger statement holds: M=10 ��!M=1 if and only if �=1 = t=1.8



The composition operation is de�ned on (isomorphy classes of) nets in the following way:let N1 and N2 be two disjoint nets (if they are not disjoint, rename places and transitionsappropriately), and let t1 and t2 be transitions of N1 and N2, respectively. The merge of t1and t2 is the operation consisting of the following three parts:6� put N1 and N2 side by side;� remove t1 and t2 together with their incident arcs;� add a new transition t; let the preset (postset) of t be the union of the presets (postsets)of t1 and t2.Let N be the net obtained after performing this operation. The set of places of N is thedisjoint union of the places of N1 and N2. Therefore, a marking of N is characterised by itsprojections onto these two sets of places. We denote by (M1;M2) the marking that projectsonto markings M1 of N1 and M2 of N2.The composition operation is extended to systems as follows: the system obtained after themerge of transitions t1 and t2 of the systems (N1;M1) and (N2;M2) is (N; (M1;M2)), whereN is the net de�ned above.We are now ready to construct the system (N 0;M 00). Take (N;M0), and merge iterativelyeach transition of T�1 with the transition t�1 of a fresh copy of (N�1;M�10 ). Then, mergeiteratively each transition of T=1 with the transition t=1 of a fresh copy of (N=1;M=10 ).The system (N 0;M 0) (and with it the markingM 0) is constructed analogously: just substituteM 0 for M 00, M�1 for M�10 , and M=1 for M=10 .At this point, the reader is possibly willing to accept the truth of the following lemmawithout further discussion. If this is not the case, a (rather tedious) proof is given in theAppendix.Lemma 3.5Let (N;M0), T�1, T=1, and M be an instance of Constrained reachability, and let(N 0;M 00) and M 0 be as described above. (N 0;M 00) is a LSFC-system, and M can bereached in (N;M0) satisfying the constraints given by T�1 and T=1 iff M 0 is reachable in(N 0;M 00).We can now easily prove NP-hardness, and, using the result at the beginning of the section,NP-completeness of Reachability:Theorem 3.6Reachability is NP-complete.Proof:Membership in NP was shown at the beginning of this section. NP-hardness follows imme-diately from Lemma 3.2, which reduces CNF-SAT to Constrained Reachability, andLemma 3.5, which reduces Constrained Reachability to Reachability.6We give an informal de�nition, which we consider to be precise enough for our purposes. A more formalde�nition would just be more di�cult to read. 9



4 Reachability in live and bounded free-choice sys-temsWe show that the reachability problem of LBFC systems, not necessarily safe, is still NP-complete. Clearly, the problem is NP-hard, and so it su�ces to prove membership in NP. In[4], Desel and the author prove a generalisation of the Shortest Sequence Theorem (Theorem3.1) to b-bounded systems: if M is reachable from M0, then there exists an occurrencesequence M0 ��!M such that the length of � is at mostb � n � (n+ 1) � (n+ 2)6where n is the number of transitions of N .It follows from this generalisation that the reachability problem of live and b-bounded free-choice systems belongs to NP for every b � 1. However, it does not follow that the reach-ability problem for LBFC-systems belongs to NP: the reason is that a live and boundedsystem encoded into a binary string of length n can be O(2n)-bounded. In order to provemembership in NP for this problem, we use the following result, due to Lee, Kodama andKumagai [11]:Theorem 4.1Let (N;M0) be a LBFC-system, and let M be a marking of N . M is reachable from M0iff the following conditions hold:(1) The equation M =M0 +N �X has an integer solution, and(2) Every trap of the subnet of N generated by the transitions of the support of X ismarked at M0.Now, we have the following nondeterministic polynomial time algorithm:1. Guess a subset T of transitions of N .2. Check that every trap of the subnet generated by T is marked at M0 (a polynomialalgorithm for this problem can be found in [12, 4]).3. Guess a solution of M = M0 +N �X where X has support T (it is well known that asolution exists iff a solution of polynomial size exists, see for instance [8]).It should be remarked that the proof of Theorem 4.1 given in [11] is very complicated, andnot well understood by many people. Therefore, the result should be used with a bit of carebefore a more transparent proof is found. 10



5 ConclusionsWe have determined the exact complexity of reachability in live and safe and live andbounded free-choice systems, a problem which had been open for several years. Contraryto the expectations, reachability turns out to be NP-complete. The NP-hardness proof is arather straightforward reduction from the satis�ability problem for boolean formulas in con-junctive normal form. We now believe that the problem was open for such a long time notbecause of its di�culty, but because the researchers interested in it (including the author)directed their e�orts in the wrong direction. On the other hand, these e�orts have producedmany of the nice results on reachability in free-choice systems mentioned in the introduction.AcknowledgementsI have discussed this problem with J�org Desel many times, and I thank him very speciallyfor sharing his insights with me. Many thanks also to Andrei Kovalyov, who renewed myinterest in the problem during a recent visit to Munich funded by a DAAD grant. Finally, Ithank Eike Best for very helpful discussions.References[1] F. Commoner. Deadlocks in Petri Nets. Technical Report CA-7206-2311, Applied DataResearch, Inc., Wake�eld, Massachusetts, 1972.[2] J. Desel and J. Esparza. Reachability in Cyclic Extended free Choice Systems. Theo-retical Computer Science, 114:93{118, 1993.[3] J. Desel and J. Esparza. Shortest Paths in Reachability Graphs. Journal of Computerand System Sciences, 51(2):314{323, 1995.[4] J. Desel and J. Esparza. Free-choice Petri Nets, volume 40 of Cambridge Tracts inTheoretical Computer Science. Cambridge University Press, 1995.[5] J. Esparza and M. Silva. A Polynomial-Time Algorithm to Prove Liveness of BoundedFree Choice Nets. Theoretical Computer Science, 102:185{205, 1992.[6] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to theTheory of NP-completeness. Freeman, 1979.[7] M. H. T. Hack. Analysis of Production Schemata by Petri Nets. M.s. thesis, Cambridge,Mass.: MIT, Dept. Electronical Engineering, 1972.[8] J. E. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Com-putation. Addison-Wesley, 1979.[9] A. Kovalyov und J. Esparza: A polynomial algorithm to compute the concurrencyrelation of free-choice Signal Transition Graphs. Proceedings of WODES '96, Institutionof Electrical Engineers, 1{6, 1996. 11



[10] D.-I. Lee, S. Kumagai, and S. Kodama. Handles and reachability analysis of free choicenets. In G. De Michelis and M. Diaz, editors, Proceedings of the 16th InternationalConference on Application and Theory of Petri-Nets, volume 935 of Lecture Notes inComputer Science, pages 298{315. Springer-Verlag, 1995.[11] P. Starke. Analyse von Petri-Netz-Modellen. Teubner, 1990.6 Appendix: proof of Lemma 3.5The following lemma is an easy consequence of the de�nition of the merge operation:Lemma 6.1Let N be the net obtained after the merge of transitions t1 and t2 of the nets N1 andN2. (L1; L2) ��! (L01; L02) is an occurrence sequence of N iff there exist two occurrencesequences L1 �11 t1 �21 t1:::t1�n1��������������! L01 and L2 �12 t2 �22 t2:::t2�n2��������������! L02of N1 and N2, respectively, such that � = � 1t� 2t : : : t�n, and � i is an arbitrary interleavingof �1i and �2i .We have:Lemma 6.2Let (N1;M1) and (N2;M2) be LSFC-systems, and let t1 and t2 be transitions of N1 andN2, respectively.(1) The system (N;M) obtained after the merge of t1 and t2 is live and safe.(2) If N1; N2 are free-choice nets, (�t1)� = ft1g in N1 and (�t2)� = ft2g in N2, then N isalso free-choice.Proof:(1) It follows from Lemma 6.1 that (L1; L2) is a reachable marking of (N;M) iff L1 andL2 are reachable markings of (N1;M1) and (N2;M2). Since (N1;M1) and (N2;M2) are safe,(N;M) is safe.For the liveness part, let (L1; L2) be an arbitrary reachable marking of (N;M), and let u bean arbitrary transition of N . Consider two cases:� u = t (i.e., u is the merge of t1 and t2).Since (N1;M1) and (N2;M2) are live, there exist occurrence sequences L1 �1 t1�! L01 andL2 �2 t2�! L02. Let � be an arbitrary interleaving of �1 and �2. Then (L1; L2) � t�! (L01; L02)is an occurrence sequence of N . 12



� u 6= t. Assume without loss of generality that u belongs to N1. Since (N1;M1) and(N2;M2) are live, there exist occurrence sequencesL1 �11 t1 �21 t1:::t1 �n1 u��������������! L01 and L2 �12 t2 �22 t2:::t2 �n2��������������! L02Let � i be be an arbitrary interleaving of �i1 and �i2. Then(L1; L2) �1 t �2 t:::t �n u�����������! (L01; L02)is an occurrence sequence of N .(2) Follows immediately from the de�nitions.Lemma 3.5 (Restated)Let (N;M0), T�1, T=1, and M be an instance of Constrained reachability, and let(N 0;M 00) and M 0 as described above. (N 0;M 00) is a LSFC-system, and M can be reachedin (N;M0) satisfying the constraints given by T�1 and T=1 iff M 0 is reachable in (N 0;M 00).Proof:(N 0;M 00) is live and bounded by Lemma 6.2(1). It is free-choice because the transitions ofthe sets T�1 and T=1 and the transitions t�1 and t=1 satisfy the conditions of Lemma 6.2(2).Assume that M0 ��!M for some sequence � such that each transition of T=1 occurs exactlyonce in �, and each transition t 2 T�1 occurs �(t) � 1 times in �. By Lemma 3.3, foreach transition t 2 T�1 there exists an occurrence sequence M�10 ���! M�1 which containsthe transition t� exactly �(t) times. By Lemma 3.4, there exists an occurrence sequenceM=10 �=�!M=1 which contains the transition t= exactly once. By repeatedly applying Lemma6.1 we obtain from these sequences an occurrence sequence of (N 0;M 00) leading to M 0.Conversely, assume that there exists an occurrence sequence M0 ��! M 0 in (N 0;M 00). Foreach t 2 T= (t 2 T�), let �t be the projection of � on the transitions of the fresh copy ofN= (N�) corresponding to t. By Lemma 6.1 we have M=0 �t�! M= (M�0 �t�! M�). ByLemma 3.4 (Lemma 3.3), �t contains the transition t=1 exactly once (the transition t�1 morethan once). Then, the projection of � on the transitions of N yields an occurrence sequencesatisfying the constraints given by T�1 and T=1.
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