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Abstract

The complexity of the reachability problem for live and safe free-choice Petri nets
has been open for several years. Several partial results seemed to indicate that the
problem is polynomial. We show that this is unlikely: the problem is NP-complete.

1 Introduction

Free-choice Petri nets were first defined and studied in the early seventies [1, 7]. Today, they
are accepted as the largest class of Petri nets for which relevant analysis problems can be
solved in polynomial time.! A series of papers, starting with [5] and culminating with [10],
has shown that the problem of deciding if a free-choice Petri net is live and bounded can
be solved in O(n - m) time, where n and m are the number of places and transitions of the
net, respectively. In turn, many analysis problems of live and bounded free-choice Petri nets
have also been shown to have polynomial time complexity [4].

Due to this series of results, the reachability problem of live and bounded free-choice Petri
nets, i.e., the problem of deciding if a given marking is reachable from the initial marking,
has also been believed to be polynomial since around 1991. However, despite some very
promising partial results, a proof has remained elusive. In [2] it was shown that when the
Petri net is also cyclic® then the reachability problem can be reduced to solving a system of
n ordinary linear equations with m variables, and is therefore polynomial. Later, [4] proved
that every reachable marking can be reached from the initial marking by an occurrence
sequence of length O(b-m?), where b is the bound of the net, i.e., the maximum number of
tokens that a reachable marking can put in a place. More recently, [11] provided a structural
characterization of the set of reachable markings which seemed to be an important step
towards a polynomial algorithm, and [9] showed how to decide in O((n + m)?) time whether
two given places can be simultaneously marked.

*Partially supported by the Sonderforschungsbereich 342, Teilprojekt A3.
! Although some of the results valid for free-choice Petri nets have been extended to slightly larger classes.
ZA Petri net is cyclic if the initial marking is reachable from any other reachable marking.



We prove in this paper that, contrary to the expectations raised by all these results, the
reachability problem is unlikely to be polynomial. Even the reachability problem for live
and safe free-choice Petri nets (where safe means that no reachable marking puts more than
one token in any place) is NP-complete.

The paper is organised as follows. Section 2 contains basic definitions. Section 3 contains
the NP-completeness proof for live and safe free-choice Petri nets. Section 4 extends the
result to the live and bounded case.

2 Basic definitions

We assume that the reader is familiar with the basic notions and results of the theory of
NP-completeness (see [6] for an introduction).

A net N is a triple (5,7, F), where S and T are two disjoint, finite sets of places and
transitions, and F' C (S xTHU(T x.S) is a flow relation. Places and transitions are generically
called nodes. We identify F' and its characteristic function (S x T)U (T x S) — {0,1}.
Given a node @ of N, *xz = {y | (y,x) € F'} is the preset of @ and «* = {y | (x,y) € F} is
the postset of x. Given a set of nodes X of N, we define *X = {J,cx *r and X* = J,cx 2°.
A triple (S, T, F") is a subnet of N if S’ C S, 7" C T and F' = FN (S xTYU (T"x 5)).
A net (S,T, F) is free-choice if (s,t) € F implies *t x s* C F for every s € S;t € T'?

A marking of N is a mapping M:S — IN. A marking M enables a transition ¢ if M(s) >
F(s,1) for every place s. If t is enabled at M, then it can occur, and its occurrence leads to the
successor marking M’ which is defined for every place s by M'(s) = M(s)+ F(t,s) — F(s,1).
A Petri net or system is a pair (N, My) where N is a connected net and My is a marking of
N.

The expression M, LN M,, where My, M, are markings of N, denotes that M; enables
transition f, and that the marking reached by the occurrence of ¢ is M,. The expression
M =5 M', where ¢ is a sequence o = {1 15...1, of transitions, denotes that there exist
markings My, My, ..., M, such that M HEIN M, b, My... M, Iny M'. Such an ex-
pression 1is called occurrence sequence. We also say that a sequence o of transitions is an
occurrence sequence of (N, My) if there exists a marking M such that My —~ M.

A marking M’ is reachable from M if there exists an occurrence sequence M —= M’. The
reachable markings of a system (N, My) are the markings reachable from M.

A system (N, My) is free-choice if N is a free-choice net.

A system is live if for every reachable marking M and every transition ¢ there exists a
marking M’ reachable from M which enables t. A system is b-bounded if M(s) < b for every
place s and every reachable marking M, and bounded it it is b-bounded for some number b.
A 1-bounded system is also called safe.

3 Reachability in live and safe free-choice systems

We abbreviate live and safe (bounded) free-choice system to LSFC-system (LBFC-system).
We consider the following problem:

3We follow the terminology of [4]. These nets are also called extended free-choice nets in the literature.



Reachability (in LSFC-systems)
Given: a LSFC-system (N, My), a marking M of N;
To decide: 1s M reachable from M,?

The membership of Reachability in NP follows from the following result of [3]:

Theorem 3.1 Shortest Sequence Theorem
Let (N, My) be a LSFC-system, and let M be a reachable marking. There exists an
occurrence sequence My —— M such that the length of o is at most
n-(n+1)-(n+2)
6

where n is the number of transitions of V. ]

This result immediately leads to a nondeterministic polynomial time algorithm for Reach-
ability: to decide if M is reachable in (N, My), guess a sequence o of the length above, and
check if My = M.

We divide the proof of NP-hardness in two parts. First, we reduce the satisfiability problem
of boolean formulas in conjunctive normal form (CNF-SAT for short) to the following
intermediate problem:

Constrained Reachability

Given: a LSFC-system (N, Mp), two subsets Ty and T; of transitions of IV, a
marking M of N;

To decide: is there an occurrence sequence My —— M such that o contains each
transition of 7., exactly once and each transition of 7> at least once?

In a second step, we reduce Constrained Reachability to Reachability.

3.1 The first reduction

As usual, a literal is a boolean variable or its negation. A clause is a disjunction of literals,
and a boolean formula in conjunctive normal form, called CNF-formula in the sequel, is a
conjunction of clauses. We identify a CNF-formula with the set of clauses that appear in it,
and a clause with its set of literals.

Let ¢ = {C4, ..., } be a CNF-formula over variables 1, . .., z,. Without loss of generality,
we assume that no clause contains both a literal and its negation, and that for every 1 <: < n
there is a clause that contains either z; or z;.

We construct a system (N, M), two subsets Ty and T-; of transitions and a marking M.
The reader may follow the construction on Figure 1, which shows (N, My), Ty, T>; and M
for the formula

p=x1 A (T1Va) AN(T1V7T2)

N is constructed in several steps. We start with the empty net. At each step we add new
places, transitions and arcs to N, or even new subnets. We describe the steps in a rather
informal but hopefully precise way.
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Fig. 1 Net system corresponding to the formula ¢
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Fig. 2 The net Nz;
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Fig. 3 The net NCj;

e For every variable z;, add to N the net Nz; shown in Figure 2;
o for every clause C;, add to NV the net NC'; shown in Figure 3;

o for each variable x; and every clause C}, connect the net Nz; to the net NC; as shown
in Figure 4, according to three possible cases: (1) x; appears in C; but F; does not; (2)
T; appears in C; but z; does not; (3) neither ; nor T; appear in C;*.

e connect the places C'y,...C,, to the places z1,...,z, by means of auxiliary nodes, as
shown in Figure 5;

This concludes the construction of N. My and M are both equal to the marking that
puts one token on the place Start, and no token anywhere else. Finally, we take 75y =
{TCy,...,TC,} and T—y = {Axy,..., Az, }.

Proving that (N, My) is a LSFC-system system is a small exercise, which we leave to the
reader.

We briefly explain the intuition behind this construction. Let o be an occurrence sequence
of (N, Mp) in which the transitions of 7—; occur exactly once, and the transitions of 75¢
occur at least once.

e The occurrence of the transition Az; signals that z; is going to be assigned a truth
value.

o The nets Nz; are used to determine the assignment of the variables. Since the transi-
tions of the set T—; occur exactly once in o, for every 1 < < n either tz; or fr; occurs
in o, but not both. In this way, ¢ determines a unique truth assignment A, defined
by: A,(x;) = true if tz; occurs in o, and A,(z;) = false if fr; occurs in o.

“Notice that the case that both z; and Z; appear in C; need not been considered due to our assumption

on ¢.



tX; fx; tx; fX; tx; fx;
TCj |21 UC; TCj |21 UC; TCj |21 UC;
G G G
X;inCj Xj notin Cj X nhotin Cj
X; notin C; X;inCj Xi notin Cj

Fig. 4 Connection from Nz; to NC;

o After assigning a value to a variable, o updates the truth values of the clauses. These
values are initially set to false. The connections between each pair of nets Nz;, NC,
are chosen with the following intended meaning: the occurrence of TCy in o sets C}
to true, while the occurrence of UC'; leaves its value unchanged. Therefore, C; is true
under A, if and only if the transition T'C; occurs at least once in o.

So we have the following lemma:

Lemma 3.2

Constrained Reachability is NP-hard.

Proof:

Let (N, My), T> 1, T—y and M be an instance of Constrained Reachability, and let
My 2+ M be an occurrence sequence satisfying the conditions of the problem. Since every
transition of Ty occurs in ¢ at least once, the truth assignment A, makes all clauses true,
which implies that ¢ is satisfiable.

Conversely, let ¢ be a satisfiable formula. We take an assignment which makes ¢ true, and
use it to construct an occurrence sequence My —— M such that every transition of T
occurs at least once in o and every transition of T_; at least once. The sequence o is the
concatenation of sequences oy,...,0,. Each o; starts with the occurrence of one of the
output transitions of the place Start, followed by the corresponding Az; transition and the
transition tx; or fr,, according to the assignment, and ends with the transition Fnd. Due
to the way the nets Nz; and NC; are connected, o contains every transition of 7%, at least
once. |
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Fig. 5 Connection from NC4,..., NC,, to Nxq,...
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Fig. 6 The system (N2, Mg1)
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Fig. 7 The system (N~ M), the transition ¢t=! and the marking M=".

3.2 The second reduction

We show how to reduce Constrained Reachability to Reachability.

Given a LSFC-system (V, My), two subsets 751 and 7-; of transitions and a marking M, we
construct an LSFC-system (N', M/) and a marking M’, such that M is reachable in (N, My)
under the constraints given by Ty and 7= if and only if M’ is reachable in (N', M{).

In order to define (N, Mj) and M’ we need some “building blocks”and a composition oper-
ation. The blocks are shown in Figures 6 and 7.

The following two lemmata are easy to prove, for instance by inspection of the reachability

graph:

Lemma 3.3

Let (N2', M&"), M=" and t2' be as shown in Figure 6. (N2', M&') is a LSFC-system,
and satisfies the following property: there exists an occurrence sequence Mg' - M=!
containing n-times the transition #2! if and only if n > 1. |

Lemma 3.4

Let (N=', M5'), M=" and ¢! be as shown in Figure 7. (N=' M7') is a LSFC-system,
and satisfies the following property: there exists an occurrence sequence M3' —— M=!
containing n-times the transition ¢+=! if and only if n = 1. |

°In fact, a stronger statement holds: M3 2. M=" if and only if ¢=! = ¢t=1.



The composition operation is defined on (isomorphy classes of ) nets in the following way:
let Ny and N3 be two disjoint nets (if they are not disjoint, rename places and transitions
appropriately), and let ¢; and t3 be transitions of Ny and N, respectively. The merge of ¢,
and ¢, is the operation consisting of the following three parts:®

e put N; and N, side by side;
e remove t; and t, together with their incident arcs;

e add a new transition ¢; let the preset (postset) of ¢ be the union of the presets (postsets)
of #; and 5.

Let N be the net obtained after performing this operation. The set of places of N is the
disjoint union of the places of Ny and N,. Therefore, a marking of N is characterised by its
projections onto these two sets of places. We denote by (M;, My) the marking that projects
onto markings M; of N7 and M; of Nj.

The composition operation is extended to systems as follows: the system obtained after the
merge of transitions #; and ? of the systems (N1, M) and (Nz, My) is (N, (My, Ms)), where
N is the net defined above.

We are now ready to construct the system (N', M{). Take (N, My), and merge iteratively
each transition of 75%; with the transition ¢2! of a fresh copy of (N=!, MOZI). Then, merge
iteratively each transition of 7_; with the transition ¢=' of a fresh copy of (N=!', M7").
The system (N', M") (and with it the marking M') is constructed analogously: just substitute
M for M}, M2" for M&"', and M=" for M.

At this point, the reader is possibly willing to accept the truth of the following lemma
without further discussion. If this is not the case, a (rather tedious) proof is given in the
Appendix.

Lemma 3.5

Let (N, My), Ts1, T=1, and M be an instance of Constrained reachability, and let
(N', M}) and M’ be as described above. (N', M/}) is a LSFC-system, and M can be

reached in (IV, My) satisfying the constraints given by 75 and T, iff M’ is reachable in
(N, M) .

We can now easily prove NP-hardness, and, using the result at the beginning of the section,
NP-completeness of Reachability:
Theorem 3.6

Reachability is NP-complete.

Proof:

Membership in NP was shown at the beginning of this section. NP-hardness follows imme-
diately from Lemma 3.2, which reduces CNF-SAT to Constrained Reachability, and
Lemma 3.5, which reduces Constrained Reachability to Reachability. [ |

5We give an informal definition, which we consider to be precise enough for our purposes. A more formal
definition would just be more difficult to read.



4 Reachability in live and bounded free-choice sys-
tems

We show that the reachability problem of LBFC systems, not necessarily safe, is still NP-
complete. Clearly, the problem is NP-hard, and so it suffices to prove membership in NP. In
[4], Desel and the author prove a generalisation of the Shortest Sequence Theorem (Theorem
3.1) to b-bounded systems: if M is reachable from My, then there exists an occurrence
sequence My —— M such that the length of & is at most

n-(n+1)-(n+2)
6

b

where n is the number of transitions of V.

It follows from this generalisation that the reachability problem of live and 6-bounded free-
choice systems belongs to NP for every b > 1. However, it does not follow that the reach-
ability problem for LBFC-systems belongs to NP: the reason is that a live and bounded
system encoded into a binary string of length n can be O(2")-bounded. In order to prove
membership in NP for this problem, we use the following result, due to Lee, Kodama and
Kumagai [11]:

Theorem 4.1

Let (N, Mp) be a LBFC-system, and let M be a marking of N. M is reachable from M,
iff the following conditions hold:

(1) The equation M = My + N - X has an integer solution, and

(2) Every trap of the subnet of N generated by the transitions of the support of X is
marked at M. [

Now, we have the following nondeterministic polynomial time algorithm:

1. Guess a subset T of transitions of V.

2. Check that every trap of the subnet generated by T' is marked at M, (a polynomial
algorithm for this problem can be found in [12, 4]).

3. Guess a solution of M = My + N - X where X has support T (it is well known that a
solution exists iff a solution of polynomial size exists, see for instance [8]).

It should be remarked that the proof of Theorem 4.1 given in [11] is very complicated, and

not well understood by many people. Therefore, the result should be used with a bit of care
before a more transparent proof is found.

10



5 Conclusions

We have determined the exact complexity of reachability in live and safe and live and
bounded free-choice systems, a problem which had been open for several years. Contrary
to the expectations, reachability turns out to be NP-complete. The NP-hardness proof is a
rather straightforward reduction from the satisfiability problem for boolean formulas in con-
junctive normal form. We now believe that the problem was open for such a long time not
because of its difficulty, but because the researchers interested in it (including the author)
directed their efforts in the wrong direction. On the other hand, these efforts have produced
many of the nice results on reachability in free-choice systems mentioned in the introduction.
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6 Appendix: proof of Lemma 3.5
The following lemma is an easy consequence of the definition of the merge operation:

Lemma 6.1

Let N be the net obtained after the merge of transitions ¢; and ¢, of the nets N; and
Ny. (L, Ly) == (L}, L}) is an occurrence sequence of N iff there exist two occurrence

sequences
0’% tl 0’% tl...tlcr{l 0’% t2 0’% t2...t20';7’

Ll Lll and L2 L/2
of N; and N,, respectively, such that o = 7'¢7%¢...¢7", and 7¢ is an arbitrary interleaving
of o} and o?. |
We have:

Lemma 6.2

Let (Ny, My) and (Ns, M) be LSFC-systems, and let ¢; and #3 be transitions of N; and
N, respectively.

(1) The system (N, M) obtained after the merge of #; and ¢; is live and safe.
(2) If Ny, Ny are free-choice nets, (*t1)* = {t1} in Ny and (*¢2)* = {f2} in N, then N is

also free-choice.

Proof:

(1) It follows from Lemma 6.1 that (Ly, Ly) is a reachable marking of (N, M) iff L; and
Ly are reachable markings of (N7, M7) and (Ns, M3). Since (N1, My) and (N2, My) are safe,
(N, M) is safe.

For the liveness part, let (L1, L2) be an arbitrary reachable marking of (N, M), and let u be
an arbitrary transition of N. Consider two cases:

o u =1 (i.e., u is the merge of #; and t3).
Since (N1, My) and (N, M) are live, there exist occurrence sequences L4 ol L} and
Tt

Lo 72l L. Let 7 be an arbitrary interleaving of oy and 3. Then (L1, Ls) — (L}, L))
is an occurrence sequence of N.

12



e u # 1. Assume without loss of generality that u belongs to Ny. Since (Ny, M) and
(N3, M) are live, there exist occurrence sequences

1 2 1 2
oyt oyt d1 o] u o5ty 05 ta.. 42 0%

Ll Lll and L2 L/2

Let 7' be be an arbitrary interleaving of o¢ and o.. Then

PR L)
(le LQ) - (Lllv Ll2)

is an occurrence sequence of N.

(2) Follows immediately from the definitions. [ |

Lemma 3.5  (Restated)

Let (N, My), Ts1, T=1, and M be an instance of Constrained reachability, and let
(N, M{) and M’ as described above. (N', M/) is a LSFC-system, and M can be reached
in (V, Mo) satisfying the constraints given by Ty and 7=, iff M’ is reachable in (N', M{).

Proof:

(N', M{) is live and bounded by Lemma 6.2(1). It is free-choice because the transitions of
the sets 751 and 7-; and the transitions ¢>; and ¢ satisfy the conditions of Lemma 6.2(2).

Assume that My —— M for some sequence o such that each transition of 7—; occurs exactly
once in o, and each transition ¢ € T5; occurs o(¢) > 1 times in 0. By Lemma 3.3, for

.. . >1 o2 . .
each transition ¢ € T, there exists an occurrence sequence Mg = MZ' which contains
the transition {2 exactly o(t) times. By Lemma 3.4, there exists an occurrence sequence

Mt =, M=! which contains the transition t= exactly once. By repeatedly applying Lemma
6.1 we obtain from these sequences an occurrence sequence of (N', M/) leading to M’.

Conversely, assume that there exists an occurrence sequence My —— M’ in (N', M}). For
each t € T= (t € T?Z), let o, be the projection of o on the transitions of the fresh copy of
N= (N2) corresponding to t. By Lemma 6.1 we have Mz 2% M= (Mg 25 M2). By

Lemma 3.4 (Lemma 3.3), 0; contains the transition = exactly once (the transition {Z! more
than once). Then, the projection of o on the transitions of N yields an occurrence sequence

satisfying the constraints given by 7%y and T.;. |
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