TUM

INSTITUT FUR INFORMATIK

Detecting Geometric Infeasibility

Achim Schweikard

TUM-I19626
Juni 1996

TECHNISCHE UNIVERSITAT MUNCHEN



TUM- INFO-06-1996-19626-350/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©1996 MATHEMATISCHES INSTITUT UND
INSTITUT FUR INFORMATIK
TECHNISCHE UNIVERSITAT MUNCHEN

Typescript: ---

Druck: Mathematisches Institut und
Institut fur Informatik der
Technischen Universitdat Munchen



Detecting Geometric Infeasibility

Achim Schweikard

Informatik,
Technische Universitat Munchen
D-80290 Munchen

schweika@informatik.tu-muenchen.de

June 27, 1996

Abstract

An exact and practical method for translational motion planning
with many degrees of freedom is derived. It is shown that certain
D—dimensional arrangements of hyperplanes can be searched in the
following way: only a single connected component is traversed during
the search, and the arrangement is searched as an arrangement of sur-
face patches rather than full hyperplanes. This reduction in search ef-
fort allows for polynomial time bounds in appropriate cases. Heuristic
and randomized planners cannot return an information about infea-
sibility of planning problems. Experiments with an implementation
of the new methods suggest that translational infeasibility can be de-
tected in practical cases.

Keywords: geometric reasoning, assembly planning, motion plan-
ning, complete algorithms, arrangement computation in D dimen-
sions.

CR-Classification: 1.2 Artificial Intelligence, 1.2.9 Robotics, 1.2.10
Vision and Scene Understanding, J.6 Computer-Aided Engineering

Introduction

It is conjectured that few basic principles suffice to represent human abilities
in geometric reasoning and motion planning. However, human reasoning is



Figure 1: Detecting whether a part can be removed from other parts. Parts
P and @) are movable, the container is fixed

capable not only of finding a solution to a given motion planning problem
rapidly, but also of quickly recognizing that no feasible solution exists. Intu-
itively, recognizing infeasibility seems more difficult than finding one motion,
if one exists. To detect infeasibility, a proof is required.

Heuristic and approximate motion planning methods are often suffi-
ciently fast to solve practical problems, despite several results showing NP-
completeness for large classes of problem instances. Typically, heuristic plan-
ners search an approximate decomposition or a graph of random nodes until
a motion has been found, or a preset running time limit has been reached.

We are interested in practical methods which will not only report feasible
motions, but are equally capable of reporting an exact information about
infeasibility.

In this context we will address the following problem:

e Given an assembly of polygonal or polyhedral parts, decide whether
one or more parts can be removed from the remaining set of parts by
an arbitrary sequence of translations.

Note that this includes arbitrary lock-and-key configurations, where sev-
eral groups of parts must move simultaneously into distinct directions, and/or
change direction during motion. The number of translations in such a se-
quence is not limited.

Example: Parts P and () in fig. 1 are movable, the container is fixed.
The goal is to decide whether or not part P is removable, after an appropriate
series of translational motions of both P and Q.



Bolt

477

Tb/%
//
Lock Eé
/Mtainer

=

Figure 2: To test whether or not the bolt is removable, intermediate place-
ments of the lock must be searched.

To explain why P is not removable, one would enumerate certain criti-
cal intermediate placements of both P and (), and test for removability in
each such placement. The main problem with reproducing such an intu-
itive approach in an algorithm is the decision about which of the possible
intermediate placements are indeed critical.

In the second example (figure 2), intermediate positions of lock must be
tested to decide that the bolt is not removable. There are comparatively
few critical placements of the lock. In contrast, the complete enumeration of
all distinct relative placements of vertices and bounding planes of parts will
quickly become impossible even for simple cases.

We are thus interested in methods for reducing the set of potential relative
placements of parts, while retaining completeness. To obtain a practical
method, it is necessary to recognize the essential contacts between parts.
But notice that we would detect infeasibility in error, if the set of essential
contacts thus chosen was too small.

Our methods are based on comparatively simple principles for analyz-
ing D—dimensional arrangements of hyperplanes. This analysis finds and
enumerates critical placements without computing the entire arrangement.



1 Related Work

To find a plan for assembling an industrial product from its components, it
is useful to compute a disassembly motion, i.e. a motion for separating or
removing parts from a given assembly.

Natarajan [11] derives lower bounds on the number of simultaneous trans-
lations necessary for separating objects.

Agarwal, de Berg, Halperin and Sharir [1] consider sequences of transla-
tions for separating polyhedra. In [1] the set of allowed motion directions is
assumed to be given in advance.

Kavraki [7] shows that the problem considered here is NP-complete even
for a very restricted class of planar objects.

In [13] we describe an algorithm for computing a subassembly S of a
given assembly, such that S is removable by a single translation, if such a
subassembly exists. The output consists of S and an appropriate removal
direction d. Interestingly this computation is possible in polynomial time,
even though the number of removable subassemblies is exponential in general.
The algorithm in [13] will thus compute a valid subassembly and a removal
direction if there is such a subassembly, but does not enumerate all possible
subassemblies.

In [14] we describe techniques for analyzing arrangements defined by ra-
diation beams in radiosurgery. These techniques are based on searching
so-called minimal and maximal cells in three dimensions and are related to
the methods developed here. Specifically, we find a constraint set consisting
of constraints for minimal and maximal cells only, allowing for reducing the
original constraint set in such a way that it becomes solvable in practice.
The minimal and maximal cells do not form a connected component, and for
the application in [14] it is sufficient to search the minimal and maximal cells
after computing the entire arrangement.

Guibas and Halperin et al. [4] describe methods for partitioning three-
dimensional assemblies under infinitesimal motions. The algorithm in [4]
allows for computing one allowed infinitesimal motion in polynomial time,
and combines basic methods in [13] and [14]. An infinitesimal motion may
not give a valid motion for removing parts, since parts may still collide during
the motions extending the computed infinitesimal motion. The number of
distinct infinitesimal motions is exponential, so that a valid partitioning may
not be found even if such a partitioning exists. However, the techniques in [4]



include rotations.

Wilson et al. [15] describe variants and improvements of the basic tech-
niques in [13].

The basic techniques in [13] are not used here, since these techniques
inherently require that all moving parts follow the same motion path.

Instead, the analysis of 3-dimensional arrangements given by pairwise
Minkowski-differences of parts is used to guide the search of a D—dimensional
arrangement.

The next section gives an informal description of the basic principles in
this context. The main idea of the present approach is described in sec-
tion 3. Indeed, there is a remarkably simple way to compute certain multi-
dimensional arrangements as arrangements of surface patches, while avoid-
ing the computation of the entire underlying arrangement of hyperplanes.
However, this is only possible for a particular class of arrangements. The
arrangements to be considered here all belong to this class. Section 4 de-
rives an algorithm from these principles. Section 5 gives the analysis of the
mentioned reductions. Interestingly, output-sensitive improvements over di-
rect methods can be obtained for the most effective reductions. Section 6
describes experimental results obtained with an implementation. The exper-
iments suggest that it is possible to decide about infeasibility in a complete
way. The experimental evaluation compares the derived methods to approxi-
mate and randomized motion planners. It is shown that the above principles
lead to an exact motion planning algorithm of surprising performance in
experiments.

2 Basic Concepts

Let Py,..., P, be an assembly of three-dimensional parts. Thus P,..., P
are non-intersecting polyhedra in given spatial placement.

We allow for all parts to translate in space independently. The position of
each part is given by three parameters. A space EP of dimension D describes
all simultaneous placements of all parts. Here D = 3k. A point in this
space is called forbidden, if two or more parts intersect in the corresponding
placement.

We consider pairwise Minkowski-differences (C'—obstacles, [9]) for each
pair of parts F;, P;. The C'—obstacle for P, and P; is a three-dimensional



region, defined by C(P;, P;) = {p; — pi | pi € P;,p; € P;}.

The C'—obstacles determine a set of halfspaces Hi, ..., H, in EP, such
that the forbidden regions are bounded by the corresponding hyperplanes in
the following sense.

H,,..., H, determine an arrangement Ap of halfspaces in E”, and parti-
tion EP into cells. A cell is a maximal connected region not containing any
points on any of the hyperplanes bounding Hy, ..., H;. Cells are thus open
D—dimensional sets. Cells are regular, i.e. for each cell ¢ either all or no
points in ¢ are forbidden. The partitioning given by Hy,..., Hy also defines
cells of dimension less than D. Lower dimensional cells are regular as well.

The specific method for obtaining the equations for Hiy,..., H is not
important in this context, but will be considered in some more detail below.
The origin in E® represents the initial placement of all parts, and is not
forbidden.

Notice that Ap contains unbounded cells. An unbounded cell is a cell
entirely containing a ray in its interior. A valid removal motion for one or
more parts is a sequence of non-forbidden cells connecting the origin to one
of the unbounded cells.

A direct way to obtain an answer to the problem stated above is the
following: We compute a graph representation of the arrangement Ap ([2]).
Graph nodes for unbounded cells are labelled. Searching this graph will give
an exact solution to the above problem.

However, this direct method cannot be used in practice. The reason is
that the graph representation of Ap has an exponential number of nodes, and
it is not possible to store this graph even for a small number of polyhedra
each with few faces.

To see whether parts are removable, it suffices to search a single connected
component of the arrangement, namely the component containing the origin.
It is obvious that searching only a single connected component will often
reduce storage requirements to some extent, but this reduction is insufficient
in practice. However, this simple idea provides a basis for a more effective
reduction of the storage requirements and search effort, described in the next
section.



Figure 3: Door cell c. All points in both R, Ry are visible from points in c.

R R

Q 7

Start Goal

Figure 4. Deciding whether a part can be removed from other parts. Part )
is constrained to move in the vertical direction only

3 Floorgraphs

Constraints for pairs of parts. For two parts P, and P;, the bound-
ing planes of C(F;, P;) define an arrangement of planes A(F;, P;) in three-
dimensional space.

We partition the complement of C(F;, P;) into convex regions. Each
convex region thus obtained is given as the intersection of halfspaces. Let
HY,...,HY be the halfspaces stemming from P, and P;. These halfspaces
are given as inequalities in the three parameters x,y and z.

Let R; and R, be two adjacent convex regions in the partitioning of the
exterior of C'(P;, P;). Then there is a two-dimensional cell ¢ in the (three-
dimensional) arrangement A(P;, P;) such that all points in R; are visible from
any point in ¢, and all points in Ry are visible from any point in ¢ (fig. 3). ¢
is a planar patch in A(P;, P;). We call ¢ a passage or door cell.

A floorgraph is defined in the following way. Each convex region in the
above partitioning of the exterior of C'(F;, P;) corresponds to one node in the
floorgraph. If cis a door cell shared by two regions R and R,, then ¢ defines



Figure 5: a) Halfspaces Hy, ..., H; bounding C'(P, Q). b) Regions R; parti-
tioning the exterior of C'(P, Q) into convex regions. Door cell ry5. ¢) Floor-
graph for pair (P, Q).

an edge in the floorgraph. To each node/edge we assign a set of defining
inequalities and equalities.

Example 1: The assembly in fig. 4 contains three parts P, @), R. R is the
(fixed) container. P and () are rectangular. C'(P, Q) is a rectangle (fig. 5-
a), and the exterior of C'(P,Q) is a union of halfspaces Hy,..., Hy. The
orientations of Hy, ..., H, are indicated by arrows in the figure.

By convention, the halfspace obtained by reversing the inequality for H; is
denoted by H, . Similarly, the bounding plane of H; is denoted by H;~. The
exterior of C'(P,()) is thus partitioned into four regions Ry, ..., Ry, where
Ry, ..., Ry are given by

R, :H{ NHy, Ry: Hf N Hj,
Ry:Hf "H;, Ry: Hf N Hy.

The floorgraph for C(P, Q) is shown in fig. 5-c. The partitioning gives



23

R | %4

///////////////
_W 512

52|

a)
Figure 6: a) C-obstacle C'(P, R) for parts P, R in example 1. b) Floorgraph
for pair (P, R).

four door cells:

Hl mH2,7"23 H2 ﬂH?)_J
.H3 ﬁH4,7"41.H4 ﬂHi

The floorgraph for C(P, R) is shown in fig. 6. Since we constrain @ to
move in the vertical direction only, the floorgraph for (@), R) can be repre-
sented by a single node T}.

Simultaneous motions of all parts. The D—dimensional arrangement
Ap is constructed from the halfspace inequalities Hy, ..., H, in the following
way.

The position of each part P; is given by three parameters p{?), p{i), p¥).
These parameters describe the placement of P; with respect to a fixed initial
placement. Thus a point (pg}),pg}),pgl), o, pl ),pg(/ ), p*)) describes a simul-
taneous placement of all parts Py, ..., P.

Each halfspace inequality H; contains the three variables x,y and z. For
an inequality H stemming from a pair (P;, P;), we replace the variable = by
the expression p{) — p{). Similarly, substitute p{) — p{) for y and p{) — p¥)
for z.

After this substitution, a pair (P;, P;) gives the same inequalities as the
pair (P, P;). (This follows from the fact that C(F;, P;) = —C(F;, P;) by
definition). Thus it is sufficient to consider each pair (F;, P;), where i < j.

A point (pf, plM,pM, .. pk) piF) p®)) in EP is forbidden, if one of the



/N P
N\
/ ////
/
Y]
2 AN
a) . b)

Figure 7: An arrangement of surface patches has smaller number of cells than
the corresponding arrangement of (extended) hyperplanes. ¢ is a door cell.

points (p) — p{), p{ — p@, p¥ — pI)) for i < j is in C(P;, P;).
We must fix the position of one (arbitrary) part, since we are testing
for removability. Otherwise all (D—dimensional) cells in Ap would be un-
bounded. We thus set the parameters p(wk), pg(/k) and pg’“) of part P to zero.
Each of the inequalities for the halfspaces Hi,..., H, contains at most
six of the variables p!), p{), p{). Specifically each halfspace inequality is of

the form
a(pl) = p¥) +0(p) — pif)) + c(pl) —pP) < d.

We regard all inequalities thus obtained as D—dimensional inequalities,
where at most six variables have non-zero coefficients.

Notice that one floorgraph corresponds to each pair of parts F;, P; where
¢t < 7. In the next section it will be shown that floorgraphs allow for searching
Ap in the following way:

e Only a single connected component within Ap is traversed. We do not
need to enumerate all free cells in Ap.

e Aj is searched as an arrangement of surface patches (fig. 7), rather
than an arrangement of full hyperplanes.

4 Searching floor graphs

In the following we assume that all parts Py, ..., Py are open sets. In this way
none of the inequalities defined above is a strict inequality, i.e. all inequalities

10



are <-inequalities. We thus allow configurations in which two parts are in
contact, but do not overlap. Motions can consist of segments where two or
more parts slide along each other.

Let Gi,...,G be the floorgraphs for all pairs of parts. For a node n in
one of G;, let C(n) be the set of defining constraint inequalities. Similarly
C'(e) gives the defining constraints for an edge e in one floorgraph.

Let ny,...,ny be nodes in the floorgraphs, where n; is a node of G;. A
tuple S = (n4,...,ns) will be called a D—node.

Thus, a D—node contains exactly one node of each floorgraph. If zeEP
satisfies the constraints C'(ny),...,C(ns) then S is called a feasible D—node.

The origin in EP defines a D—node. Indeed, the origin is in free space,
and we can find a node n; in each floorgraph, such that the origin satisfies

We define a successor of a D—node in the following way.

Let

S = (Tll, vy T 15 My Y11 ...,nf)
be a D—node. Then

r__ !
S = (’I’Ll, ey M1, M5 M4 1, ,’I’Lf)

is a successor of S, if n! is a successor of n; in the floorgraph G;.
Similarly, we define a successor-edge of a D—node:

[—
Sh= (’I’Ll, ey 1, €, T4 1, ,Tl,f)
is a successor edge of
S = (Tll, vy T 15 My Y11 ...,nf)

if e is an edge emerging from n; in the floorgraph G;.

In general, a single D—node has several successors. Thus the successor
relation on D—nodes defines a graph. We search this graph in depth first
order, where all D—nodes previously visited are marked and not visited again:

1. Compute all floorgraphs for pairs P;, P; with ¢ < j.
2. Compute a D—node S for the origin in EL.
3. Set L = {S}.

4. Repeat until L = empty

11



(a) If L = empty return result ’infeasible’, and stop. Set P = first
node in L. Remove P from L.

(b) If P is unbounded, return the path from O to P and stop. Set L’
= successor edges of P.

(c) For each S in L', test whether S is feasible. If so, store a point x
satisfying the constraints in S.

(d) Remove infeasible nodes from L. Remove all previously visited
nodes from L'. Replace each successor edge in L' by the corre-

sponding successor node. Move all entries in L' to the front of
L.

Notice that each intermediate point x stored with a D—node S (except
the origin) is a point in a door cell. Thus each point x computed in 4-c
satisfies the constraints in one floorgraph edge and f —1 floorgraph nodes. In
step 4-d the constraints for this edge are replaced by the constraints for the
successor node in the corresponding floorgraph. New nodes generated at the
initialization of the list L' in 4-b again have constraints for f — 1 floorgraph
nodes and one floorgraph edge. Segments of the paths can be contained
entirely in cells of dimension less than D.

We must show that the sequence of points thus computed indeed yields
a feasible path.

Lemma 1 Let S| and S5 be two feasible D—nodes and Sy be a successor edge
of S1. Let x1 and x4 be points satisfying the constraints in Sy and Ss. Then
all points on the line segment connecting x, to xo in EP are in free space.

Proof: z; is in a region defined by nodes n;,...,ns. xo has floorgraph
nodes nq, ..., N1, N}, Nit1,...,ns. The nodes n; and n} are connected by an
edge e in GG;. By construction z, satisfies the constraints

C(Tll) Uu...uU O(?’Li_l) U 0(6) U O(TLZ’_H) Uu...uU O(?’Lf)
Since all inequalites are non-strict x5 also satisfies
C(n)U...uC(n;)U...uC(ny),

namely the constraints for z;. Each constraint set C'(n;) defines a convex
set in E'”, and their intersection is convex. Thus the entire line segment
joining 1 and x5 is in free space. e

12



For each D—node S, we store a pointer to its immediate predecessor. This
allows for returing a path from any feasible D—node to the origin (step 4-b).
This path connects the points x; stored with feasible D—nodes by straight
line segments.

To obtain a practical algorithm, we must implement the test for feasibil-
ity in step 4-c of the above sketch. This test is implemented as a simplex
feasibility test ([10]). If positive, the test returns a point z satisfying the
given constraints. In the simplex test, we must ensure that variables may
become negative. Here standard methods apply.

Furthermore, we must implement the test for boundedness in step 4-b.
We must thus decide whether the current D—node contains a ray u. Let S
be the current D—node. u may have points in the boundary of .S, i.e. on the
defining hyperplanes of S, but must not cross these hyperplanes.

A direct approach uses a simplex minimization along an appropriate vec-
tor v, followed by a maximization along the same direction. However, this
test can fail to detect unboundedness if S does indeed contain rays, but the
set, of these rays has dimension lower than D. I.e. the test may fail if all such
rays are contained in a hyperplane, and v is orthogonal to this hyperplane.
In this case the result of the minimization/maximization is undefined and
depends on the implementation. An implementation-independent (and more
rapid) test is the following: Let

H1:’I’le—dl:O,...,Hr:nrl'—drzo

be the equations of the hyperplanes defining S. ny,...,n, are the normal
vectors of the hyperplanes Hy, ..., H,. Let xy be the point in S computed in
step 4-c. Assume the above hyperplane equations are oriented such that xg is
above (or in) all hyperplanes Hy, ..., H,, i.e. nyzo—d; > 0,...,n.xo—d, > 0.
To decide whether there is a vector u such that xy + tu does not cross one
of Hy,...,H, for any t > 0 it suffices to test whether there is a u with
niu > 0,...,n,u > 0. Thus a single simplex phase 1 test will find out
whether S is unbounded.

To illustrate the search process, we return to example 1 above (see fig. 5
and 6). The first D—node is given by the three floorgraph nodes (R, S1,T}).
It is then tested whether the constraints in C'(R; ), C(Sy), C'(11) determine an
unbounded cell. The first cell is bounded and a successor edge is tested next.
Assume this successor edge is (R, s12,71). The corresponding constraints
define an empty set. The next successor edge is (12, S1,71), which is non-

13



empty. We thus move to the new current D—node (Ry, Sy, T1). This node is
bounded. The next step tests one of the open successor edges (Ra, s12,77) or
(re3, S1,T1). The latter edge is found to be feasible. From the third D—node
(R3,S1,T1), we move to (Rs, S2, 7)) which is unbounded.

5 Analysis

The above method outputs a path - if one exists - as a sequence of line
segments in FP. Each segment represents a simultaneous translation of one
or more parts, possibly in distinct directions. To find such a path, a tree of
line segments is expanded internally.

We will first consider the number of node expansion steps taken by the
algorithm. We decompose the faces of each part into triangles. Let n be the
maximum number of triangles in each of the £ parts. To compute the pairwise
Minkowski-differences, it suffices to compute the Minkowski-differences for
pairs of triangles on faces, and we will obtain O(n?) inequalities for each pair
of parts. We obtain a total of s = O(k?n?) halfspaces in Ap.

Let m be the maximum number of nodes in each floorgraph. Then m =
O(n?). At each step, we will reach a new node in one floorgraph, while the
pointer to the current node in all other floorgraphs is not moved. At each
step will reach a new cell in Ap, and cells will not be visited again. Ap has
at most O((k*n?)?) cells [2].

It will now be shown that the number of steps in the above method can
be reduced to account only for the maximum number m of nodes in the
floorgraphs, and not for the actual number of bounding planes.

Lemma 2 The number of node expansions in the above algorithm is bounded
by O((k*m)”), where m is the number of nodes in each floorgraph and k is
the number of parts.

Proof. Each node in each floorgraph represents a convex (generalized)
cylinder in EP. (The cylinders are called generalized cylinders because their
bounding hypersurfaces are linear, not curved). The set of feasible points
for a D—node is the intersection of O(k?) such cylinders. There are O(k?m)
cylinders in our arrangement. At each step, we proceed from one conver
cell of this cylinder arrangement to the next convex cell. Notice that the

14



cylinder arrangement contains non-convex cells as well. At most one un-
bounded D—node will be examined, so we must only account for bounded
nodes. There is a vector v in EP such that each bounded convex cell has
exactly one extremal vertex in direction v. We are in D dimensions, and each
vertex is the intersection of exactly D hyperplanes, except in cases, where
hyperplanes are not in general position. After a sufficiently small displace-
ment of all hyperplanes, we can reach a placement, in which each v—extremal
vertex is the intersection of exactly D distinct hyperplanes. Of course this
displacement is only done for accounting purposes, not in the program. The
displacement of each hyperplane can be made sufficiently small such that
none of the convex cells of the cylinder arrangement will vanish. Each v-
extremal vertex of each convex cell is the intersection of at most D cylinders.
There are O(k?m) cylinders. We consider the number of subsets with at most
D elements in this set of size O(ka). This number is bounded by

(7)o () < Z
< (Rm)P 2, L < (Km)Pe,

where e is the Euler constant.
The first step in this chain of inequalities is the least obvious, but will
become clear if we observe that for any a > ¢

(a) _ Z(a! _ luc(ai)(aitl)-..a - g

i i(a—i)! il-(1-...-(a—1)) =5

Thus there are O((k*m)P) extremal vertices of convex cells in the cylinder
arrangement. BFach such convex cell has one v—extremal vertex, i.e. there
are O((k*m)?) convex cells in the cylinder arrangement.e

Here D = 3k — 3 for polyhedral assemblies and 2k — 2 in the planar
case. To see why D = 3k — 3 rather than D = 3k notice that the position
of one part must be fixed. Otherwise all (D—dimensional) cells would be
unbounded.

Simple examples show that the last reduction (which is the analysis of the
main step in the above method) yields a substantial reduction in practice.
Indeed, many floorgraphs (such as the one for the lock/container in fig. 2)
consist of a single node.

From the number of expansion steps, one can directly obtain a bound for
the running time of the algorithm:

Let LP(s,D) be the number of steps required for solving a linear pro-

15



|

Figure 8: An assembly with interlocking parts.

gram with s constraints and D variables. Then each node expansion will
require at most O((k?r)LP(k*r, D)) steps, where r is the maximum number
of constraints in each floorgraph node or floorgraph edge. The total running
time is thus bounded by O((k*m)?)k*r LP(k*r, D)).

In this bound we have not accounted for the precomputation of pairwise
floorgraphs. The analysis of this preprocessing step is straightforward and
follows methods in [12] and [13].

Assuming LP(s, D) is polynomial, one can obtain a polynomial time
bound for cases in which the number of node expansions remains constant.
This is the case for problems in which parts interlock (fig. 8). Here the num-
ber of node expansions is 1, since all successors of nodes in floorgraphs are
unreachable.

6 Experiments

To find practical limitations, the above methods were implemented on a
Unix-workstation HP 700 in C. We consider the example shown in fig. 4. In
this case there are three floorgraphs (for the pairs (P, @), (P, R) and (Q, R))
with at most five nodes. Three D—nodes are expanded during the search,
leading to 8 LP-calls each with 7 inequalities. The computing time required
to find a removal motion is 1 second. For appropriately enlarged part @,
removal of P becomes impossible, which is detected in the same amount of
time.

For comparison, a random planner based on the principles in [5, 8] was
implemented for the mentioned hardware environment. Both methods were
then applied to the example in figure 9. The running time of approximate

16



B 1
Kl
H

°] E

Start Goal

Figure 9: Moving part P from start to goal position.

planners depends largely upon the width of the smallest passage the planner
must find. Here the ratio between edge length of moving parts and width
of passages was set to 9/10. In this case the random planner takes on the
order of 30 seconds to find a solution. This computing time increased if the
width of the passages was reduced. The running time for the exact method
was not affected by this width, and a path was found in less than 2 seconds.
Infeasibility (after appropriate changes of the container) was detected in the
same amount of time. Preliminary experience with the exact method suggests
that it is capable of reaching or surpassing the performance of advanced
random planning schemes. Infeasibility can be detected. But notice that
the exact method is limited to translational motion planning, which is not
the case for random planners. The implementation of the exact method is
comparatively simple and consists of very little program code given standard
packages for arrangement computation and linear programming.

A simple bisection method can be used in combination with the above
methods to find extremal values of parameters (length/width of objects)
to allow for feasibility. However, since the methods are still restricted to
translations, maximum surface area problems ([3]) cannot be addressed with
this automatic planner.

7 Conclusions

The described methods allow for computing minimum cost paths. Here the
cost of a path is number of D—nodes along the path, rather than the total
Euclidean length in EP. This cost measure addresses practical considera-
tions, since the number of D—nodes along a path bounds the number of

17



direction/velocity changes during the motions. Assembly motions requiring
many changes of direction increase assembly costs, and are often impractical
due to fixturing and stability problems.

References

[1]

[10]

[11]

P. K. Agarwal, M. de Berg, D. Halperin, M. Sharir. Efficient Generation
of k-Directional Assembly Sequences. Proc. 7th ACM-SIAM Symp. Discr.
Algorithms (SODA), 122-131, 1996.

H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer, Heidel-
berg, 1987.

J. L. Gerver. On moving a sofa around a corner. Geometriae Dedicata,
42:267-283, 1992.

L. Guibas, D. Halperin, H. Hirukawa et al. Polyhedral assembly partitioning
using maximally covered cells in arrangements of convex polytopes. To appear:
Intl. J. Comp. Geometry and Applications.

L. Kavraki, J.-C. Latombe. On the complexity of assembly partitioning. In-
formation Processing Letters, 48(5), 229-235, 1993.

L. Kavraki, M. Kolountzakis. Partitioning a planar assembly into two con-
nected parts is NP-Complete. Information Processing Letters, 55(3), 159-165,
1995.

L. Kavraki. Randomized preprocessing of configuration space for fast path
planning. IEEE Intl. Conf. Rob. Automation, 2138-2145, 1994.

J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,
1991.

T. Lozano-Pérez. Spatial planning: A configuration space approach. IEEFE
Transactions on Computers, C-32(2):108-120, 1983.

J. J. More’, S. J. Wright. Optimization Software Guide. Frontiers in Applied
Mathematics , 14, SIAM, 1993. See also: ”http://www.mcs.anl.gov/home/
otc/Guide/SoftwareGuide/”.

B. K. Natarajan. On planning assemblies. In Proc. of the ACM Symp. on
Computational Geometry, pages 299-308, 1988.

18



[12]

[13]

[14]

[15]

J. O’'Rourke. Computational Geometry in C. Cambridge University Press,
Cambridge, 1994.

A. Schweikard and R. H. Wilson. Assembly Sequences for Polyhedra. Algo-
rithmica, 13(6): 539-552, June 1995.

A. Schweikard, R. Tombropoulos, L. Kavraki, J. R. Adler, J.-C. Latombe.
Treatment Planning for a Radiosurgical System with General Kinematics.
IEEE Conference Robotics and Automation, 1720-1727, May 1994.

R. H. Wilson, L. Kavraki, J.-C. Latombe, and T. Lozano-Pérez. Two-Handed
Assembly Sequencing. Intl. J. of Robotics Research 14(4): 335-350, 1995.

19



