
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Detecting Geometric Infeasibility

Achim Schweikard

������
TUM-I9626

Juni 1996

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-06-1996-I9626-350/1.-FI

Alle Rechte vorbehalten

Nachdruck auch auszugsweise verboten

c
1996 MATHEMATISCHES INSTITUT UND

INSTITUT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN

Typescript: ---

Druck: Mathematisches Institut und

Institut für Informatik der

Technischen Universität München

Detecting Geometric InfeasibilityAchim SchweikardInformatik,Technische Universit�at M�unchenD-80290 M�unchenschweika@informatik.tu-muenchen.deJune 27, 1996AbstractAn exact and practical method for translational motion planningwith many degrees of freedom is derived. It is shown that certainD�dimensional arrangements of hyperplanes can be searched in thefollowing way: only a single connected component is traversed duringthe search, and the arrangement is searched as an arrangement of sur-face patches rather than full hyperplanes. This reduction in search ef-fort allows for polynomial time bounds in appropriate cases. Heuristicand randomized planners cannot return an information about infea-sibility of planning problems. Experiments with an implementationof the new methods suggest that translational infeasibility can be de-tected in practical cases.Keywords: geometric reasoning, assembly planning, motion plan-ning, complete algorithms, arrangement computation in D dimen-sions.CR-Classi�cation: I.2 Arti�cial Intelligence, I.2.9 Robotics, I.2.10Vision and Scene Understanding, J.6 Computer-Aided EngineeringIntroductionIt is conjectured that few basic principles su�ce to represent human abilitiesin geometric reasoning and motion planning. However, human reasoning is1

P QFigure 1: Detecting whether a part can be removed from other parts. PartsP and Q are movable, the container is �xedcapable not only of �nding a solution to a given motion planning problemrapidly, but also of quickly recognizing that no feasible solution exists. Intu-itively, recognizing infeasibility seems more di�cult than �nding one motion,if one exists. To detect infeasibility, a proof is required.Heuristic and approximate motion planning methods are often su�-ciently fast to solve practical problems, despite several results showing NP-completeness for large classes of problem instances. Typically, heuristic plan-ners search an approximate decomposition or a graph of random nodes untila motion has been found, or a preset running time limit has been reached.We are interested in practical methods which will not only report feasiblemotions, but are equally capable of reporting an exact information aboutinfeasibility.In this context we will address the following problem:� Given an assembly of polygonal or polyhedral parts, decide whetherone or more parts can be removed from the remaining set of parts byan arbitrary sequence of translations.Note that this includes arbitrary lock-and-key con�gurations, where sev-eral groups of parts must move simultaneously into distinct directions, and/orchange direction during motion. The number of translations in such a se-quence is not limited.Example: Parts P and Q in �g. 1 are movable, the container is �xed.The goal is to decide whether or not part P is removable, after an appropriateseries of translational motions of both P and Q.2

Lock

Bolt

ContainerFigure 2: To test whether or not the bolt is removable, intermediate place-ments of the lock must be searched.To explain why P is not removable, one would enumerate certain criti-cal intermediate placements of both P and Q, and test for removability ineach such placement. The main problem with reproducing such an intu-itive approach in an algorithm is the decision about which of the possibleintermediate placements are indeed critical.In the second example (�gure 2), intermediate positions of lock must betested to decide that the bolt is not removable. There are comparativelyfew critical placements of the lock. In contrast, the complete enumeration ofall distinct relative placements of vertices and bounding planes of parts willquickly become impossible even for simple cases.We are thus interested in methods for reducing the set of potential relativeplacements of parts, while retaining completeness. To obtain a practicalmethod, it is necessary to recognize the essential contacts between parts.But notice that we would detect infeasibility in error, if the set of essentialcontacts thus chosen was too small.Our methods are based on comparatively simple principles for analyz-ing D�dimensional arrangements of hyperplanes. This analysis �nds andenumerates critical placements without computing the entire arrangement.
3

1 Related WorkTo �nd a plan for assembling an industrial product from its components, itis useful to compute a disassembly motion, i.e. a motion for separating orremoving parts from a given assembly.Natarajan [11] derives lower bounds on the number of simultaneous trans-lations necessary for separating objects.Agarwal, de Berg, Halperin and Sharir [1] consider sequences of transla-tions for separating polyhedra. In [1] the set of allowed motion directions isassumed to be given in advance.Kavraki [7] shows that the problem considered here is NP-complete evenfor a very restricted class of planar objects.In [13] we describe an algorithm for computing a subassembly S of agiven assembly, such that S is removable by a single translation, if such asubassembly exists. The output consists of S and an appropriate removaldirection d. Interestingly this computation is possible in polynomial time,even though the number of removable subassemblies is exponential in general.The algorithm in [13] will thus compute a valid subassembly and a removaldirection if there is such a subassembly, but does not enumerate all possiblesubassemblies.In [14] we describe techniques for analyzing arrangements de�ned by ra-diation beams in radiosurgery. These techniques are based on searchingso-called minimal and maximal cells in three dimensions and are related tothe methods developed here. Speci�cally, we �nd a constraint set consistingof constraints for minimal and maximal cells only, allowing for reducing theoriginal constraint set in such a way that it becomes solvable in practice.The minimal and maximal cells do not form a connected component, and forthe application in [14] it is su�cient to search the minimal and maximal cellsafter computing the entire arrangement.Guibas and Halperin et al. [4] describe methods for partitioning three-dimensional assemblies under in�nitesimal motions. The algorithm in [4]allows for computing one allowed in�nitesimal motion in polynomial time,and combines basic methods in [13] and [14]. An in�nitesimal motion maynot give a valid motion for removing parts, since parts may still collide duringthe motions extending the computed in�nitesimal motion. The number ofdistinct in�nitesimal motions is exponential, so that a valid partitioning maynot be found even if such a partitioning exists. However, the techniques in [4]4

include rotations.Wilson et al. [15] describe variants and improvements of the basic tech-niques in [13].The basic techniques in [13] are not used here, since these techniquesinherently require that all moving parts follow the same motion path.Instead, the analysis of 3-dimensional arrangements given by pairwiseMinkowski-di�erences of parts is used to guide the search of aD�dimensionalarrangement.The next section gives an informal description of the basic principles inthis context. The main idea of the present approach is described in sec-tion 3. Indeed, there is a remarkably simple way to compute certain multi-dimensional arrangements as arrangements of surface patches, while avoid-ing the computation of the entire underlying arrangement of hyperplanes.However, this is only possible for a particular class of arrangements. Thearrangements to be considered here all belong to this class. Section 4 de-rives an algorithm from these principles. Section 5 gives the analysis of thementioned reductions. Interestingly, output-sensitive improvements over di-rect methods can be obtained for the most e�ective reductions. Section 6describes experimental results obtained with an implementation. The exper-iments suggest that it is possible to decide about infeasibility in a completeway. The experimental evaluation compares the derived methods to approxi-mate and randomized motion planners. It is shown that the above principleslead to an exact motion planning algorithm of surprising performance inexperiments. 2 Basic ConceptsLet P1; : : : ; Pk be an assembly of three-dimensional parts. Thus P1; : : : ; Pkare non-intersecting polyhedra in given spatial placement.We allow for all parts to translate in space independently. The position ofeach part is given by three parameters. A space ED of dimensionD describesall simultaneous placements of all parts. Here D = 3k. A point in thisspace is called forbidden, if two or more parts intersect in the correspondingplacement.We consider pairwise Minkowski-di�erences (C�obstacles, [9]) for eachpair of parts Pi; Pj. The C�obstacle for Pi and Pj is a three-dimensional5

region, de�ned by C(Pi; Pj) = fpj � pi j pi 2 Pi; pj 2 Pjg.The C�obstacles determine a set of halfspaces H1; : : : ; Hs in ED, suchthat the forbidden regions are bounded by the corresponding hyperplanes inthe following sense.H1; : : : ; Hs determine an arrangement AD of halfspaces in ED, and parti-tion ED into cells. A cell is a maximal connected region not containing anypoints on any of the hyperplanes bounding H1; : : : ; Hs. Cells are thus openD�dimensional sets. Cells are regular, i.e. for each cell c either all or nopoints in c are forbidden. The partitioning given by H1; : : : ; Hs also de�nescells of dimension less than D. Lower dimensional cells are regular as well.The speci�c method for obtaining the equations for H1; : : : ; Hs is notimportant in this context, but will be considered in some more detail below.The origin in ED represents the initial placement of all parts, and is notforbidden.Notice that AD contains unbounded cells. An unbounded cell is a cellentirely containing a ray in its interior. A valid removal motion for one ormore parts is a sequence of non-forbidden cells connecting the origin to oneof the unbounded cells.A direct way to obtain an answer to the problem stated above is thefollowing: We compute a graph representation of the arrangement AD ([2]).Graph nodes for unbounded cells are labelled. Searching this graph will givean exact solution to the above problem.However, this direct method cannot be used in practice. The reason isthat the graph representation of AD has an exponential number of nodes, andit is not possible to store this graph even for a small number of polyhedraeach with few faces.To see whether parts are removable, it su�ces to search a single connectedcomponent of the arrangement, namely the component containing the origin.It is obvious that searching only a single connected component will oftenreduce storage requirements to some extent, but this reduction is insu�cientin practice. However, this simple idea provides a basis for a more e�ectivereduction of the storage requirements and search e�ort, described in the nextsection.
6

R
1

R
2

cFigure 3: Door cell c. All points in both R1; R2 are visible from points in c.
Start

Q
P

Goal

P
Q

R R

Figure 4: Deciding whether a part can be removed from other parts. Part Qis constrained to move in the vertical direction only3 FloorgraphsConstraints for pairs of parts. For two parts Pi and Pj, the bound-ing planes of C(Pi; Pj) de�ne an arrangement of planes A(Pi; Pj) in three-dimensional space.We partition the complement of C(Pi; Pj) into convex regions. Eachconvex region thus obtained is given as the intersection of halfspaces. LetH ij1 ; : : : ; H ijr be the halfspaces stemming from Pi and Pj. These halfspacesare given as inequalities in the three parameters x; y and z.Let R1 and R2 be two adjacent convex regions in the partitioning of theexterior of C(Pi; Pj). Then there is a two-dimensional cell c in the (three-dimensional) arrangement A(Pi; Pj) such that all points inR1 are visible fromany point in c, and all points in R2 are visible from any point in c (�g. 3). cis a planar patch in A(Pi; Pj). We call c a passage or door cell.A
oorgraph is de�ned in the following way. Each convex region in theabove partitioning of the exterior of C(Pi; Pj) corresponds to one node in the
oorgraph. If c is a door cell shared by two regions R1 and R2, then c de�nes7

a)

H
1

2
H

3
H

4H

C(P, Q)

1

3

R R

R

c)

b)

12

R
1

C(P, Q)

R2

r

r

r

r

4

R
2

41

12

23

34

r

Figure 5: a) Halfspaces H1; :::; H4 bounding C(P;Q). b) Regions Ri parti-tioning the exterior of C(P;Q) into convex regions. Door cell r12. c) Floor-graph for pair (P;Q).an edge in the
oorgraph. To each node/edge we assign a set of de�ninginequalities and equalities.Example 1: The assembly in �g. 4 contains three parts P;Q;R. R is the(�xed) container. P and Q are rectangular. C(P;Q) is a rectangle (�g. 5-a), and the exterior of C(P;Q) is a union of halfspaces H1; : : : ; H4. Theorientations of H1; : : : ; H4 are indicated by arrows in the �gure.By convention, the halfspace obtained by reversing the inequality forHi isdenoted by H�i . Similarly, the bounding plane of Hi is denoted by H=i . Theexterior of C(P;Q) is thus partitioned into four regions R1; : : : ; R4, whereR1; : : : ; R4 are given byR1 : H+1 \H�2 , R2 : H+2 \H�3 ,R3 : H+3 \H�4 , R4 : H+4 \H�1 .The
oorgraph for C(P;Q) is shown in �g. 5-c. The partitioning gives8

s
12

s
23

s
34

s
45 s

52

1

S

S S
2

S
3

S
4

5

s
52

s
45

s
34

s
23

s
12

C(P, R)

b)a)Figure 6: a) C-obstacle C(P;R) for parts P;R in example 1. b) Floorgraphfor pair (P;R).four door cells:r12 : H+1 \H=2 , r23 : H+2 \H=3 ,r34 : H+3 \H=4 , r41 : H+4 \H=1 .The
oorgraph for C(P;R) is shown in �g. 6. Since we constrain Q tomove in the vertical direction only, the
oorgraph for (Q;R) can be repre-sented by a single node T1.Simultaneous motions of all parts. TheD�dimensional arrangementAD is constructed from the halfspace inequalities H1; : : : ; Hs in the followingway.The position of each part Pi is given by three parameters p(i)x ; p(i)y ; p(i)z .These parameters describe the placement of Pi with respect to a �xed initialplacement. Thus a point (p(1)x ; p(1)y ; p(1)z ; : : : ; p(k)x ; p(k)y ; p(k)z) describes a simul-taneous placement of all parts P1; : : : ; Pk.Each halfspace inequality Hi contains the three variables x; y and z. Foran inequality H stemming from a pair (Pi; Pj), we replace the variable x bythe expression p(i)x � p(j)x . Similarly, substitute p(i)y � p(j)y for y and p(i)z � p(j)zfor z.After this substitution, a pair (Pj; Pi) gives the same inequalities as thepair (Pi; Pj). (This follows from the fact that C(Pj; Pi) = �C(Pi; Pj) byde�nition). Thus it is su�cient to consider each pair (Pi; Pj), where i < j.A point (p(1)x ; p(1)y ; p(1)z ; : : : ; p(k)x ; p(k)y ; p(k)z) in ED is forbidden, if one of the9

c

a) b)Figure 7: An arrangement of surface patches has smaller number of cells thanthe corresponding arrangement of (extended) hyperplanes. c is a door cell.points (p(i)x � p(j)x ; p(i)y � p(j)y ; p(i)z � p(j)z) for i < j is in C(Pi; Pj).We must �x the position of one (arbitrary) part, since we are testingfor removability. Otherwise all (D�dimensional) cells in AD would be un-bounded. We thus set the parameters p(k)x ; p(k)y and p(k)z of part Pk to zero.Each of the inequalities for the halfspaces H1; : : : ; Hs contains at mostsix of the variables p(i)x ; p(i)y ; p(i)z . Speci�cally each halfspace inequality is ofthe forma(p(i)x � p(j)x) + b(p(i)y � p(j)y) + c(p(i)z � p(j)z) � d:We regard all inequalities thus obtained as D�dimensional inequalities,where at most six variables have non-zero coe�cients.Notice that one
oorgraph corresponds to each pair of parts Pi; Pj wherei < j. In the next section it will be shown that
oorgraphs allow for searchingAD in the following way:� Only a single connected component within AD is traversed. We do notneed to enumerate all free cells in AD.� AD is searched as an arrangement of surface patches (�g. 7), ratherthan an arrangement of full hyperplanes.4 Searching
oor graphsIn the following we assume that all parts P1; : : : ; Pk are open sets. In this waynone of the inequalities de�ned above is a strict inequality, i.e. all inequalities10

are �-inequalities. We thus allow con�gurations in which two parts are incontact, but do not overlap. Motions can consist of segments where two ormore parts slide along each other.Let G1; : : : ; Gf be the
oorgraphs for all pairs of parts. For a node n inone of Gi, let C(n) be the set of de�ning constraint inequalities. SimilarlyC(e) gives the de�ning constraints for an edge e in one
oorgraph.Let n1; : : : ; nf be nodes in the
oorgraphs, where ni is a node of Gi. Atuple S = (n1; : : : ; nf) will be called a D�node.Thus, a D�node contains exactly one node of each
oorgraph. If x�EDsatis�es the constraints C(n1); : : : ; C(nf) then S is called a feasible D�node.The origin in ED de�nes a D�node. Indeed, the origin is in free space,and we can �nd a node ni in each
oorgraph, such that the origin satis�esC(ni).We de�ne a successor of a D�node in the following way.LetS = (n1; :::; ni�1; ni; ni+1; :::; nf)be a D�node. ThenS 0 = (n1; :::; ni�1; n0i; ni+1; :::; nf)is a successor of S, if n0i is a successor of ni in the
oorgraph Gi.Similarly, we de�ne a successor-edge of a D�node:S 0 = (n1; :::; ni�1; e; ni+1; :::; nf)is a successor edge ofS = (n1; :::; ni�1; ni; ni+1; :::; nf)if e is an edge emerging from ni in the
oorgraph Gi.In general, a single D�node has several successors. Thus the successorrelation on D�nodes de�nes a graph. We search this graph in depth �rstorder, where allD�nodes previously visited are marked and not visited again:1. Compute all
oorgraphs for pairs Pi; Pj with i < j.2. Compute a D�node S for the origin in ED.3. Set L = fSg.4. Repeat until L = empty 11

(a) If L = empty return result 'infeasible', and stop. Set P = �rstnode in L. Remove P from L.(b) If P is unbounded, return the path from O to P and stop. Set L0= successor edges of P .(c) For each S in L0, test whether S is feasible. If so, store a point xsatisfying the constraints in S.(d) Remove infeasible nodes from L0. Remove all previously visitednodes from L0. Replace each successor edge in L0 by the corre-sponding successor node. Move all entries in L0 to the front ofL.Notice that each intermediate point x stored with a D�node S (exceptthe origin) is a point in a door cell. Thus each point x computed in 4-csatis�es the constraints in one
oorgraph edge and f�1
oorgraph nodes. Instep 4-d the constraints for this edge are replaced by the constraints for thesuccessor node in the corresponding
oorgraph. New nodes generated at theinitialization of the list L0 in 4-b again have constraints for f � 1
oorgraphnodes and one
oorgraph edge. Segments of the paths can be containedentirely in cells of dimension less than D.We must show that the sequence of points thus computed indeed yieldsa feasible path.Lemma 1 Let S1 and S2 be two feasible D�nodes and S2 be a successor edgeof S1. Let x1 and x2 be points satisfying the constraints in S1 and S2. Thenall points on the line segment connecting x1 to x2 in ED are in free space.Proof: x1 is in a region de�ned by nodes n1; : : : ; nf . x2 has
oorgraphnodes n1; : : : ; ni�1; n0i; ni+1; : : : ; nf . The nodes ni and n0i are connected by anedge e in Gi. By construction x2 satis�es the constraintsC(n1) [: : : [C(ni�1) [C(e) [C(ni+1) [: : : [C(nf).Since all inequalites are non-strict x2 also satis�esC(n1) [: : : [C(ni) [: : : [C(nf),namely the constraints for x1. Each constraint set C(ni) de�nes a convexset in ED, and their intersection is convex. Thus the entire line segmentjoining x1 and x2 is in free space. � 12

For eachD�node S, we store a pointer to its immediate predecessor. Thisallows for returing a path from any feasible D�node to the origin (step 4-b).This path connects the points xi stored with feasible D�nodes by straightline segments.To obtain a practical algorithm, we must implement the test for feasibil-ity in step 4-c of the above sketch. This test is implemented as a simplexfeasibility test ([10]). If positive, the test returns a point x satisfying thegiven constraints. In the simplex test, we must ensure that variables maybecome negative. Here standard methods apply.Furthermore, we must implement the test for boundedness in step 4-b.We must thus decide whether the current D�node contains a ray u. Let Sbe the current D�node. u may have points in the boundary of S, i.e. on thede�ning hyperplanes of S, but must not cross these hyperplanes.A direct approach uses a simplex minimization along an appropriate vec-tor v, followed by a maximization along the same direction. However, thistest can fail to detect unboundedness if S does indeed contain rays, but theset of these rays has dimension lower than D. I.e. the test may fail if all suchrays are contained in a hyperplane, and v is orthogonal to this hyperplane.In this case the result of the minimization/maximization is unde�ned anddepends on the implementation. An implementation-independent (and morerapid) test is the following: LetH1 : n1x� d1 = 0; : : : ; Hr : nrx� dr = 0be the equations of the hyperplanes de�ning S. n1; : : : ; nr are the normalvectors of the hyperplanes H1; : : : ; Hr. Let x0 be the point in S computed instep 4-c. Assume the above hyperplane equations are oriented such that x0 isabove (or in) all hyperplanes H1; : : : ; Hr, i.e. n1x0�d1 � 0; : : : ; nrx0�dr � 0.To decide whether there is a vector u such that x0 + tu does not cross oneof H1; : : : ; Hr for any t > 0 it su�ces to test whether there is a u withn1u � 0; : : : ; nru � 0. Thus a single simplex phase 1 test will �nd outwhether S is unbounded.To illustrate the search process, we return to example 1 above (see �g. 5and 6). The �rst D�node is given by the three
oorgraph nodes (R1; S1; T1).It is then tested whether the constraints in C(R1); C(S1); C(T1) determine anunbounded cell. The �rst cell is bounded and a successor edge is tested next.Assume this successor edge is (R1; s12; T1). The corresponding constraintsde�ne an empty set. The next successor edge is (r12; S1; T1), which is non-13

empty. We thus move to the new current D�node (R2; S1; T1). This node isbounded. The next step tests one of the open successor edges (R2; s12; T1) or(r23; S1; T1). The latter edge is found to be feasible. From the third D�node(R3; S1; T1), we move to (R3; S2; T1) which is unbounded.5 AnalysisThe above method outputs a path - if one exists - as a sequence of linesegments in ED. Each segment represents a simultaneous translation of oneor more parts, possibly in distinct directions. To �nd such a path, a tree ofline segments is expanded internally.We will �rst consider the number of node expansion steps taken by thealgorithm. We decompose the faces of each part into triangles. Let n be themaximum number of triangles in each of the k parts. To compute the pairwiseMinkowski-di�erences, it su�ces to compute the Minkowski-di�erences forpairs of triangles on faces, and we will obtain O(n2) inequalities for each pairof parts. We obtain a total of s = O(k2n2) halfspaces in AD.Let m be the maximum number of nodes in each
oorgraph. Then m =O(n2). At each step, we will reach a new node in one
oorgraph, while thepointer to the current node in all other
oorgraphs is not moved. At eachstep will reach a new cell in AD, and cells will not be visited again. AD hasat most O((k2n2)D) cells [2].It will now be shown that the number of steps in the above method canbe reduced to account only for the maximum number m of nodes in the
oorgraphs, and not for the actual number of bounding planes.Lemma 2 The number of node expansions in the above algorithm is boundedby O((k2m)D), where m is the number of nodes in each
oorgraph and k isthe number of parts.Proof. Each node in each
oorgraph represents a convex (generalized)cylinder in ED. (The cylinders are called generalized cylinders because theirbounding hypersurfaces are linear, not curved). The set of feasible pointsfor a D�node is the intersection of O(k2) such cylinders. There are O(k2m)cylinders in our arrangement. At each step, we proceed from one convexcell of this cylinder arrangement to the next convex cell. Notice that the14

cylinder arrangement contains non-convex cells as well. At most one un-bounded D�node will be examined, so we must only account for boundednodes. There is a vector v in ED such that each bounded convex cell hasexactly one extremal vertex in direction v. We are in D dimensions, and eachvertex is the intersection of exactly D hyperplanes, except in cases, wherehyperplanes are not in general position. After a su�ciently small displace-ment of all hyperplanes, we can reach a placement, in which each v�extremalvertex is the intersection of exactly D distinct hyperplanes. Of course thisdisplacement is only done for accounting purposes, not in the program. Thedisplacement of each hyperplane can be made su�ciently small such thatnone of the convex cells of the cylinder arrangement will vanish. Each v-extremal vertex of each convex cell is the intersection of at most D cylinders.There are O(k2m) cylinders. We consider the number of subsets with at mostD elements in this set of size O(k2m). This number is bounded by�k2m1 �+ : : :+ �k2mD � � PDi=1 (k2m)ii!� (k2m)DPDi=1 1i! � (k2m)De,where e is the Euler constant.The �rst step in this chain of inequalities is the least obvious, but willbecome clear if we observe that for any a � i�ai� = a!i!(a�i)! = 1�:::�(a�i)(a�i+1)�:::�ai!�(1�:::�(a�i)) � aii! .Thus there are O((k2m)D) extremal vertices of convex cells in the cylinderarrangement. Each such convex cell has one v�extremal vertex, i.e. thereare O((k2m)D) convex cells in the cylinder arrangement.�Here D = 3k � 3 for polyhedral assemblies and 2k � 2 in the planarcase. To see why D = 3k � 3 rather than D = 3k notice that the positionof one part must be �xed. Otherwise all (D�dimensional) cells would beunbounded.Simple examples show that the last reduction (which is the analysis of themain step in the above method) yields a substantial reduction in practice.Indeed, many
oorgraphs (such as the one for the lock/container in �g. 2)consist of a single node.From the number of expansion steps, one can directly obtain a bound forthe running time of the algorithm:Let LP (s;D) be the number of steps required for solving a linear pro-15

Figure 8: An assembly with interlocking parts.gram with s constraints and D variables. Then each node expansion willrequire at most O((k2r)LP (k2r;D)) steps, where r is the maximum numberof constraints in each
oorgraph node or
oorgraph edge. The total runningtime is thus bounded by O((k2m)D)k2rLP (k2r;D)).In this bound we have not accounted for the precomputation of pairwise
oorgraphs. The analysis of this preprocessing step is straightforward andfollows methods in [12] and [13].Assuming LP (s;D) is polynomial, one can obtain a polynomial timebound for cases in which the number of node expansions remains constant.This is the case for problems in which parts interlock (�g. 8). Here the num-ber of node expansions is 1, since all successors of nodes in
oorgraphs areunreachable. 6 ExperimentsTo �nd practical limitations, the above methods were implemented on aUnix-workstation HP 700 in C. We consider the example shown in �g. 4. Inthis case there are three
oorgraphs (for the pairs (P;Q), (P;R) and (Q;R))with at most �ve nodes. Three D�nodes are expanded during the search,leading to 8 LP-calls each with 7 inequalities. The computing time requiredto �nd a removal motion is 1 second. For appropriately enlarged part Q,removal of P becomes impossible, which is detected in the same amount oftime.For comparison, a random planner based on the principles in [5, 8] wasimplemented for the mentioned hardware environment. Both methods werethen applied to the example in �gure 9. The running time of approximate16

Start Goal

P Q P

Q

Figure 9: Moving part P from start to goal position.planners depends largely upon the width of the smallest passage the plannermust �nd. Here the ratio between edge length of moving parts and widthof passages was set to 9/10. In this case the random planner takes on theorder of 30 seconds to �nd a solution. This computing time increased if thewidth of the passages was reduced. The running time for the exact methodwas not a�ected by this width, and a path was found in less than 2 seconds.Infeasibility (after appropriate changes of the container) was detected in thesame amount of time. Preliminary experience with the exact method suggeststhat it is capable of reaching or surpassing the performance of advancedrandom planning schemes. Infeasibility can be detected. But notice thatthe exact method is limited to translational motion planning, which is notthe case for random planners. The implementation of the exact method iscomparatively simple and consists of very little program code given standardpackages for arrangement computation and linear programming.A simple bisection method can be used in combination with the abovemethods to �nd extremal values of parameters (length/width of objects)to allow for feasibility. However, since the methods are still restricted totranslations, maximum surface area problems ([3]) cannot be addressed withthis automatic planner. 7 ConclusionsThe described methods allow for computing minimum cost paths. Here thecost of a path is number of D�nodes along the path, rather than the totalEuclidean length in ED. This cost measure addresses practical considera-tions, since the number of D�nodes along a path bounds the number of17

direction/velocity changes during the motions. Assembly motions requiringmany changes of direction increase assembly costs, and are often impracticaldue to �xturing and stability problems.References[1] P. K. Agarwal, M. de Berg, D. Halperin, M. Sharir. E�cient Generationof k-Directional Assembly Sequences. Proc. 7th ACM-SIAM Symp. Discr.Algorithms (SODA), 122-131, 1996.[2] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer, Heidel-berg, 1987.[3] J. L. Gerver. On moving a sofa around a corner. Geometriae Dedicata,42:267{283, 1992.[4] L. Guibas, D. Halperin, H. Hirukawa et al. Polyhedral assembly partitioningusing maximally covered cells in arrangements of convex polytopes. To appear:Intl. J. Comp. Geometry and Applications.[5] L. Kavraki, J.-C. Latombe. On the complexity of assembly partitioning. In-formation Processing Letters, 48(5), 229{235, 1993.[6] L. Kavraki, M. Kolountzakis. Partitioning a planar assembly into two con-nected parts is NP-Complete. Information Processing Letters, 55(3), 159{165,1995.[7] L. Kavraki. Randomized preprocessing of con�guration space for fast pathplanning. IEEE Intl. Conf. Rob. Automation, 2138{2145, 1994.[8] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,1991.[9] T. Lozano-P�erez. Spatial planning: A con�guration space approach. IEEETransactions on Computers, C-32(2):108{120, 1983.[10] J. J. More', S. J. Wright. Optimization Software Guide. Frontiers in AppliedMathematics , 14, SIAM, 1993. See also: "http://www.mcs.anl.gov/home/otc/Guide/SoftwareGuide/".[11] B. K. Natarajan. On planning assemblies. In Proc. of the ACM Symp. onComputational Geometry, pages 299{308, 1988.18

[12] J. O'Rourke. Computational Geometry in C. Cambridge University Press,Cambridge, 1994.[13] A. Schweikard and R. H. Wilson. Assembly Sequences for Polyhedra. Algo-rithmica, 13(6): 539{552, June 1995.[14] A. Schweikard, R. Tombropoulos, L. Kavraki, J. R. Adler, J.-C. Latombe.Treatment Planning for a Radiosurgical System with General Kinematics.IEEE Conference Robotics and Automation, 1720{1727, May 1994.[15] R. H. Wilson, L. Kavraki, J.-C. Latombe, and T. Lozano-P�erez. Two-HandedAssembly Sequencing. Intl. J. of Robotics Research 14(4): 335{350, 1995.

19

