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1. Introduction 

Cold or frost stress is one of the important abiotic stresses which not only limits the 

geographic distribution of crop production but also adversely affects crop development and 

yield through cold-induced desiccation, cellular damage and inhibition of metabolic reactions 

(Chinnusamy et al. 2007; Gusta et al. 1997). Cold stress leads to chilling injury at 

temperatures between 10°C to 0°C whereas frost stress leads to freezing injury at 

temperatures lower than 0°C. Crop varieties with improved tolerance to frost are of enormous 

value for Middle and Eastern Europe with severe winters where daily average air temperature 

in January between 1995 and 2003 dropped down to between 3°C and -18°C (Figure 1). Frost 

tolerance (FT) is one of the most critical traits that determine winter survival of winter cereals 

(Saulescu and Braun 2001). Among small grain cereals, rye (Secale cereale L.) is the most 

frost tolerant species and thus can be used as a cereal model for improving FT (Fowler and 

Limin 1987; Hömmö 1994). After exposure to a period of non-freezing temperature, the so-

called cold acclimation, the most frost tolerant rye cultivar can survive severe frost stress 

down to about -30°C (Thomashow 1999).  

 

 

Figure 1 Daily average air temperature in January between 1995-2003 in Europe (Huld et al. 2006). 
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1.1 Cultivation and uses of rye 

Rye is a cross-pollinated cereal with a diploid genome and closely related to wheat and barley. 

The haploid genome of rye consists of seven chromosomes (2n=14) with a total estimated 

genome size of ~8,000 Mb, which is more than sixty times larger than the genome size of 

Arabidopsis thaliana (Zonneveld et al. 2005). The domestication process of cultivated rye is 

still not clear (Shang et al. 2006). However, it is generally accepted that the first cultivation 

of rye took place in the Fertile Crescent of Middle East and from there spread to Europe 

2000-2500 BC (Khush 1963). From the Middle Ages until the beginning of the 20th century 

rye was a major crop in Middle and Eastern Europe and once even surpassed wheat in 

cultivation area due to its better performance under unfavourable conditions such as frost, 

drought, and nutrient-poor soil (Murphy 2007). Despite the fact that rye originated from 

warm areas (the Fertile Crescent of Middle East), it is nowadays mainly cultivated in the 

temperate zone with severe winter conditions. Since the civilization moved northward toward 

Europe, there has been intensive selection for FT in rye. Alleles which were not well adapted 

to new climatic conditions were lost while mutations that gave a selective advantage against 

frost were favoured and eventually fixed (Revilla et al. 2005). 

According to data from FAO in 2009, rye is the fourth most important cereal in Europe in 

terms of production (8
th

 in the world, FAOSTAT, 2011). The top ten rye production countries 

are Russia, Germany, Poland, Belarus, Ukraine, Turkey, China, Canada, Spain, and USA 

(Figure 2). It is mainly grown in Europe with approximately 1.64×10
7
 tons annually 

corresponding to 84% of world production in 2009 (FAOSTAT, 2011). Although the harvest 

area of rye has decreased globally by more than one half since the 1960s, rye is still grown on 

about 6 million hectares in Europe due to its superior adaptation capability to harsher winter 

and poor, light soil and hence outperforms wheat and barley in less favourable environments. 

Besides, rye bread becomes more and more popular as healthy food because of its high 

soluble fibre and other beneficial nutrients such as phenolic compounds, vitamin B and 

vitamin E (Bondia-Pons et al. 2009).  
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Figure 2 Pie chart of top ten rye production countries in 2009 based on annual harvest quantity (2009 

FAOSTAT). 

Rye can be used for many purposes. In the growth stage before heading, rye is used as 

livestock pasture and green manure for crop rotation; in the harvest stage as grain, it is used 

as livestock feed and for vodka production; in the postharvest stage as flour, it is used for 

making “black” bread, consumed extensively in Middle and Eastern Europe (Bushuk 2001). 

Rye straw can be used to produce paper, insulation materials and renewable energy such as 

bioethanol. Due to these features, rye will remain an important cereal in Middle and Eastern 

Europe in crop rotation. Germany is the top exporter of rye contributing 39% of the rye 

export quantity in the world during 2008. The average yields of rye in Germany have been 

increased ~50% since 1984. However, German breeders are facing at least two challenges: 1) 

Reduction of genetic diversity in elite material; 2) Development of new elite material adapted 

to new expanding economic markets, e.g. Eastern Europe with continental climate and severe 

winters. Thus, there is a constant need to integrate desirable traits such as FT from the well-

adapted populations of the geographical target region. 
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1.2 Genetic diversity of rye  

Genetic diversity, the result of mutation and recombination, is vital to crop improvement. 

DNA markers, typically derived from a small region of DNA that show sequence 

polymorphisms between individuals, have been an indispensable tool for assessing genetic 

diversity. Many types of DNA markers have been used for this propose in various crop 

species such as restriction fragment length polymorphisms (RFLPs), random amplified 

polymorphic DNA (RAPD), amplified fragment length polymorphisms (AFLPs), Diversity 

Arrays Technology (DArT), simple sequence repeats (SSRs), and single nucleotide 

polymorphisms (SNPs). Among these, the latter three are particularly valuable because their 

detection is highly reproducible and can be easily automated (Jones et al. 2009). For example, 

around two thousand DArT markers distributed across the rye genome with one unique 

marker every 2.68cM has been developed for assessing genetic diversity and mapping 

(Bolibok-Bragoszewska et al. 2009). Another advance in rye genomics resource is the 

development of a Rye5K high-throughput SNP array generated using rye transcriptome 

sequencing (Haseneyer et al. 2011). With the help of these new technologies, exploiting 

genetic diversity in a non-model species like rye becomes more and more cost-effective.    

Investigating genetic diversity within and between populations is important for developing 

hybrid rye. Higher genetic variation within than between populations was observed when 

investigating 26 rye populations from Northern Europe with isoenzyme markers (Persson and 

von Bothmer 2000) and 12 rye populations from Northern Europe with RAPD markers 

(Persson et al. 2001). Similar results have also been reported in other outcrossing species, 

including white clover (George et al. 2006) and perennial ryegrass (Bolaric et al. 2005), 

probably a consequence of the obligate cross-pollinated reproductive behaviour of 

outcrossing species (Rafalski 2002). On the contrary, investigations in the self-pollinated 

species rice have revealed larger variation between populations (Zhang et al. 2009). A wide 

ecological and geographical distribution of rye probably contributes to its high genetic 

diversity within different populations. However, elite breeding material will inevitably suffer 

from reduction of genetic diversity due to genetic drift and high selection pressure. For 

example, a recent study has been done to investigate the genetic diversity of five Eastern 

European populations and the two heterotic rye breeding pools Carsten and Petkus (Fischer et 

al. 2010). Around 600 S0 rye plants were fingerprinted with 30 genome-wide distributed SSR 

markers revealing that the heterotic pool Carsten was genetically different from the Petkus 

pool and had less genetic diversity than the five Eastern European populations. Therefore, 
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broadening the genetic diversity of core breeding material is one of the most important 

cornerstones of a successful breeding program.  

1.3 Frost tolerance in plants 

Precise frost tolerance (FT) phenotyping is time and labour consuming. There are numerous 

ways to test FT which can be generally separated into direct and indirect approaches. For 

direct approaches, where plants are exposed to both cold acclimation and freezing tests, plant 

survival rate, leaf damage, regeneration of the plant crown, electrolyte leakage, and 

chlorophyll fluorescence are often used as phenotypic endpoints (Saulescu and Braun 2001). 

For indirect approaches, where plants are exposed to only cold acclimation, end points such 

as water content (Fowler et al. 1981), prolines (Dorffling et al. 1990), and frost induced 

proteins (Houde et al. 1992) are commonly used. The evaluation of FT can be conducted 

either under field conditions or in growth chambers. Both methods are associated with 

advantages and disadvantages. Under field conditions, plant damage during winter is often 

not only affected by low temperature stress per se, but also by the interaction of a range of 

factors such as snow coverage, water supply, and wind. Therefore, measured phenotypes are 

the result of the full range of factors affecting winter survival. Opportunities for assessing FT 

are highly dependent on temperature and weather conditions during the experiment. In 

contrast, frost tests in growth chambers allow for control of experimental error and are not 

limited to one trial per year. However, they are limited in capacity, more expensive to 

perform, and may not correlate well with field performance. Therefore, it has been 

recommended to test FT under both natural and controlled conditions whenever possible 

(Saulescu and Braun 2001).  

Investigating the functional genetic base of FT in expression studies performed under 

controlled conditions showed that FT is a complex trait with polygenic inheritance (Hannah 

et al. 2005; Kreps et al. 2002; Vogel et al. 2005). Metabolite profiling in Arabidopsis has 

revealed between 311 (63%) and 434 (75%) metabolites altered in response to cold (Cook et 

al. 2004; Kaplan et al. 2004). Among these, glucose, galactose, fructose, raffinose, sucrose, 

and xylose are involved in the central carbohydrate metabolism and play a prominent role 

during reprogramming of metabolism under cold stress. A large number of genes are up- and 

down-regulated when plants are exposed to cold/frost stress. Transcriptome analyses have 

estimated between 14% and 45% of the Arabidopsis genome to be cold responsive, 

depending on the cold treatment and other experimental factors (Hannah et al. 2005; Kreps et 

al. 2002; Vogel et al. 2005). Studies in wheat have also shown between 5% and 8% of 
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transcripts represented on microarrays to be regulated under cold stress (Monroy et al. 2007; 

Winfield et al. 2010). These genes are mainly involved in stress signalling, transcriptional 

regulation, and direct response to cold/frost, including cellular membrane stabilization. A 

model of the frost responsive network in plants is illustrated in Figure 3 structured in three 

levels. In level 1, the gene Inducer of Cbf Expression 2 (Ice2) is a basic helix-loop-helix 

transcription factor that can bind to cis-elements (Ice box) in the promoters of the C-repeat 

Binding Factor (Cbf) gene family and activate their transcription under frost stress in 

hexaploid wheat (Badawi et al. 2008). Over-expression of Arabidopsis Ice2 (Fursova et al. 

2009) resulted in increased tolerance to deep freezing stress at a temperature of -20°C after 

cold acclimation. In level 2, the Cbf gene family belongs to the family of APETALA2 

transcription factors. In barley as well as in diploid and hexaploid wheat, several cereal Cbf 

homologs have been cloned and mapped to the Fr2 locus on homoeologous group 5, which 

coincides with a major QTL for FT (Baga et al. 2007; Francia et al. 2007; Knox et al. 2008). 

Using wheat-rye addition lines, Campoli et al. (2009) assigned twelve members of the Cbf 

gene family to the long arm of chromosome 5R in rye. Several studies in Arabidopsis 

provided evidence that allelic variation in the Cbf gene family formed the molecular basis for 

the freezing tolerance QTL (Alonso-Blanco et al. 2005; McKhann et al. 2008). Cbf 

transcription factors activated Cold Responsive (COR) genes through binding to cis-elements 

(CRT/DRE) in the promoters of COR genes under cold stress in Arabidopsis (Chinnusamy et 

al. 2007). More than 70 proteins encoded by COR genes were involved in direct response to 

cold/frost forming level 3 in the frost-responsive network. Dehydrins, also known as Late 

Embryogenesis Abundant II (LEA II) proteins, were among these proteins that protected 

other proteins and membranes from cellular damage caused by dehydration (Kosova et al. 

2007). In barley, 13 dehydrin genes (Dhn 1-13) belonging to the COR gene family have been 

identified (Choi et al. 1999). Transcripts of Dhn1, Dhn2, Dhn3, Dhn4, Dhn7, and Dhn9 were 

detected in plants subjected to cold acclimation at 4°C followed by mild frost at -2°C or -4°C 

(Zhu et al. 2000). Dhn1 and Dhn3 were mapped in barley to chromosome 5H near a QTL for 

winter hardiness and on chromosome 6H, respectively (Kosova et al. 2007). Recent studies 

showed that cold/frost regulation and vernalization were interconnected (Galiba et al. 2009; 

Kosova et al. 2008). Winter cereals require long exposure to cold in winter, the so-called 

vernalization, to accelerate flowering in the next spring. This process prevents the early 

transition of winter cereals into the less cold-tolerant reproductive phase. The vernalization 

gene Vrn1 has been mapped to the second locus conferring frost tolerance, Fr1, on the long 

arm of homoeologous group 5 near the Fr2 locus (Galiba et al. 1995). Transcript levels of all 
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cold-induced Cbf genes at the frost tolerance locus Fr2 in barley were significantly higher in 

lines possessing the vrn1 winter allele than in lines possessing the Vrn1 spring allele 

(Stockinger et al. 2007). It remains unknown how the Cbf family members interact with Vrn1 

under frost stress. Despite a fairly clear understanding of the frost-responsive network on the 

gene level, relative little is known about the precise functional polymorphisms that determine 

FT which are of enormous value in plant breeding. Candidate gene-based association studies, 

described in the next chapter, are a valuable tool for marker-assisted selection (MAS) in rye 

breeding.  

 

 

1.4 Association studies and linkage disequilibrium 

Identification of genes and functional polymorphisms underlying traits of agronomic interest 

is pivotal for genome-based breeding. Genomics has developed many tools to identify genes 

that play a role in simply inherited traits. However, relating individual genes and alleles to 

complex traits such as abiotic stress tolerance is still challenging. Due to methodological 

Figure 3 Model of the frost-responsive network in plants (modified after Yamaguchi-Shinozaki and 

Shinozaki 2006). 

Grey ovals illustrate gene products of Ice2, Cbf gene family, Dhn gene family, and Vrn1. The small yellow 

circle indicates the phosphorylation of transcription factor Ice2 in response to frost stress. Red bars show 

the DNA strand while yellow and white boxes represent cis-acting elements and coding sequences of the 

genes, respectively. The mechanism that triggers the expression of Vrn1 under frost stress and the 

interaction between Vrn1 and Cbf gene family members are still unknown.  
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advances in molecular biology, plant breeders can now select varieties with molecular 

markers, such as SSRs and SNPs (Rafalski 2002; Tester and Langridge 2010). Bi-parental 

linkage mapping using segregating populations derived from crosses between parents with 

contrasting phenotypes is an important tool for discovering QTL for plant improvement. 

However, producing high resolution linkage maps with recombinant inbred lines or near 

isogenic lines is labour intensive and time consuming. An alternative approach, association 

studies, using ancestral recombination and natural genetic diversity within populations to 

study QTL, promises to compensate those shortcomings. At least three advantages can be 

anticipated by association studies: an increased mapping resolution, an increase in examined 

alleles and a reduced research time (Yu and Buckler 2006). Association studies generally fall 

into two categories: genome-wide and candidate gene-based association studies. The former 

utilise hundreds or thousands of markers covering the whole genome to find signals of 

association between markers and various complex traits; the latter tries to associate specific 

traits with markers from selected candidate genes that have putative roles in controlling 

phenotypic variation of the investigated traits. Association studies have identified a large 

number of genomic regions and individual genes in plants related to a range of traits (Table 

1). However, underlying population structure and/or familial relatedness between genotypes 

under study have proven to be a big challenge, leading to false positive associations between 

molecular markers and traits due to the heavily admixed nature of plant populations 

(Aranzana et al. 2005). In response, several advanced statistical approaches have been 

developed for genotype-phenotype association studies, including genomic control (Devlin 

and Roeder 1999), inference of population structure (Pritchard et al. 2000c), and linear mixed 

model-based methodologies (Stich et al. 2008a; Yu et al. 2006). The latter estimates 

population structure via a structure matrix and familial relatedness via a kinship matrix in a 

first step, and then includes these as covariates in a linear mixed model comprising the 

second step, thus arriving at phenotype-genotype association studies adjusting for population 

structure and kinship. This approach has proven to be the most effective approach and 

becomes the method of choice in plant and animal association studies (Kang et al. 2008; Yu 

et al. 2006). The general workflow of this approach adapted to this study is illustrated in 

Figure 4.  
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Table 1 Summary of recent association studies in plants 

Plant 

species 

Sample 

size 

Types of 

populations 

Traits CG or 

GWAS
b 

Reference 

Arabidopsis 95 Diverse accessions Flowering time CG Olsen et al.(2004) 

 95 Diverse accessions Disease resistance GWAS Aranzana et al.(2005) 

 96 Diverse accessions Shoot branching CG Ehrenreich et al.(2007) 

 275 Diverse accessions Flowering time CG Ehrenreich et al.(2009) 

 473 Diverse accessions Flowering time GWAS Li et al.(2010b) 

 199 Diverse accessions 107 traits GWAS Atwell et al.(2010) 

Barley 220 Diverse accessions Flowering time CG Stracke et al.(2009) 

 224 Diverse accessions  CG Haseneyer et al.(2010) 

 102  Core germplasm Growth habit GWAS Cuesta-Marcos et al.(2010) 

Douglas fir 700 Diverse families Cold hardiness CG Eckert et al.(2009) 

Maize 92 Inbred lines  Flowering time CG Thornsberry et al. (2001) 

 553 Inbred lines Kernel quality CG Wilson et al.(2004) 

 282 Inbred lines Carotenoid content CG Harjes et al.(2008) 

 4892
a
 Inbred lines Leaf architecture GWAS Tian et al.(2011) 

Pearl millet 598 Diverse accessions Flowering time GWAS Saidou et al.(2009) 

Ryegrass 26 Diverse accessions Heading date GWAS Skot et al.(2005) 

Potato 221 Diverse accessions Yield, quality GWAS Li et al.(2008) 

 123 Diverse accessions Disease resistance CG Malosetti et al.(2007) 

Rice 577 Diverse landraces Starch quality CG Bao et al.(2006) 

 103 Diverse accessions Yield GWAS Agrama et al.(2007) 

 373 Inbred lines 14 agronomic 

traits 

GWAS Huang et al.(2010) 

 118 Diverse accessions Starch quality CG Yan et al.(2011) 

Sorghum 195 Diverse accessions Grain quality CG Figueiredo et al.(2010) 

Soybean 139 Inbred lines Iron deficiency  CG Wang et al.(2008) 

 96 Diverse accessions Protein content GWAS Jun et al.(2008) 

Sugar beet 111 Inbred lines Yield, quality GWAS Stich et al.(2008b) 

Wheat 95 Elite inbred lines Kernel quality GWAS Breseghello et al. (2006) 

 207 Elite inbred lines Grain quality GWAS Reif et al.(2011) 

a 
Nested association mapping (NAM) design 

b 
Candidate gene-based or genome-wide association studies 
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The basic principle of association studies is based on linkage disequilibrium (LD), also 

known as gametic phase disequilibrium, which is the non-random combination of alleles at 

different loci. LD is an established concept in theoretical and population genetics which is 

gaining more and more attention in the genomic era since it determines the marker density 

required for marker-based studies, such as association studies or genomic selection (Flint-

Garcia et al. 2003). Many factors affect LD including linkage, selection, mutation, 

recombination, effective population size, and population structure (Flint-Garcia et al. 2003; 

Gupta et al. 2005). Studies on the extent of LD in various crops, such as Triticum durum 

(Maccaferri et al. 2005), Zea mays (Ching et al. 2002; Tenaillon et al. 2001), and Sorghum 

bicolor (Hamblin et al. 2005), indicated large variation in the extent of LD. The effect of 

germplasm on LD was clearly observed in barley, where LD decayed within 0.4 kb in wild 

material and extended up to 212 kb in elite lines (Caldwell et al. 2006a). LD decay can also 

vary considerably from locus to locus due to different recombination rates and selection 

pressures at different regions of the genome. In addition, higher levels of LD have been 

observed in self-pollinating species compared to outcrossing species, indicating that mating 

systems play a role (Flint-Garcia et al. 2003). Since rye is an outcrossing species, a low level 

of LD with a rapid decay is expected. 

 

Figure 4 Schematic diagram of the candidate gene-based association analysis approach used in this 

study (modified after Zhu et al. 2008). 

The figure is modified after Zhu et al (2008) 
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1.5 Objectives of this study 

The major goal of this study was to identify alleles associated with superior frost tolerance 

(FT) in winter rye through a candidate gene-based association approach. Therefore, the 

objectives of this study were to  

1) assess phenotypic variation of FT in five Middle and Eastern European winter rye 

populations using three different phenotyping platforms under controlled, semi-

controlled and field conditions;   

2) identify SNPs and haplotypes in twelve candidate genes with a putative important 

role in the frost responsive network;   

3) examine genetic diversity and LD of these rye populations using genome-wide 

distributed SSRs and locus-specific SNPs from these twelve candidate genes;   

4) investigate whether the SNPs and haplotypes of these twelve candidate genes are 

significantly associated with FT using linear mixed models;   

5) investigate whether epistasis (gene by gene interactions) and SNP by environment 

interactions play a role in FT. 

To address these objectives, an association panel of five Middle and Eastern European winter 

rye populations was established comprising 201 rye genotypes from important rye producing 

countries. Gamete capture was performed to allow for determining the linkage phase in the 

plants under study. Population structure and kinship were studied using 37 SSRs to avoid 

false positive results in the association studies. 
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2. Material and methods 

2.1 Plant material 

Plant material was derived from one Middle and four Eastern European cross-pollinated 

winter rye breeding populations. 33 plants from PR 2733 (Belarus), 44 plants from 

EKOAGRO (Poland), 15 plants from SMH2502 (Poland), 41 plants from ROM103 (Poland), 

and 68 plants from Petkus (Germany). For convenience, they will be hereafter referred to as 

PR, EKO, SMH, ROM, and Petkus, respectively. The Petkus population has undergone 

several cycles of recurrent selection, while the breeding history of the four Eastern European 

populations is unknown. Since rye is an outcrossing species, it is highly heterozygous, which 

leads to difficulties in determining haplotype phase. To address this problem, gamete capture 

was performed (Figure 5). Between 15 and 68 heterozygous plants from each of the five 

populations were crossed with the self-fertile inbred line Lo152 resulting in 201 heterozygous 

S0 plants, each with one gamete known. To produce sufficient seed for phenotyping, S0 plants 

were cloned in four to six plants per clone. S0 plants were selfed to obtain S1 families. 10-15 

randomly chosen single plants from these S1 families were subsequently selfed and the 

obtained seeds were bulked with equal amounts of seeds per single S1 plant to obtain S1:2 

families. S1 and S1:2 families were used for phenotyping (see chapter 2.2). For molecular 

analyses, genomic DNA of S0 plants was extracted from leaves according to the procedures 

in Rogowsky et al (1991). 

2.2 Phenotypic data assessment 

FT was measured in three phenotyping platforms: controlled, semi-controlled, and field. In 

the controlled platform, experiments were performed in climate chambers at -19°C and -21°C, 

in 2008 and 2009, respectively, at ARI Martonvásár, Hungary, using established protocols 

(Vagujfalvi et al. 2003). Briefly, seedlings were cold-acclimated in a six week hardening 

program with gradually decreasing temperatures from 15°C to -2°C. After that, plants were 

exposed to freezing temperatures within six days by decreasing the temperature from -2°C to 

-19°C or -21°C and then held at the lowest temperature for eight hours. After the freezing 

step, temperature was gradually increased to 17°C for regeneration. The ability of plants to 

re-grow was measured after two weeks using a recovery score, which ranged on a scale from 

0: completely died, 1: little sign of life, 2: intensive damage, 3: moderate damage, 4: small 

damage, to 5: no damage. The experiment in 2008 contained 139 S1 families. The experiment 

in 2009 contained 201 S1:2 families, augmenting the same 139 S1 families from the 

experiment in 2008 with an additional 62 S1:2 families. Five plants of each S1 or S1:2 family 
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were grown as one test unit with five replicates per temperature and year. Due to the limited 

capacity of climate chambers, genotypes were randomly assigned into three and four 

chambers in 2008 and 2009, respectively.  

In the semi-controlled platform, experiments in the two years 2008 and 2009 were performed 

with 3 replicates per year at Oberer Lindenhof, Germany, using the same 139 S1 families and 

201 S1:2 families, respectively. From each family a test unit of 25 plants was grown outdoors 

in wooden boxes one meter above the ground in a randomized complete block design 

(RCBD). In case of snowfall, plants were protected from snow coverage to avoid damage by 

snow molds. Two weeks after a frost period, % leaf damage was scored as the proportion of 

the 25 plants of each family that showed leaf damage (dry and yellow leaves). In order to 

keep the same sign as with the measurements in the controlled and field platforms, % leaf 

damage was replaced by % plants with undamaged leaves, calculated as 100% - % leaf 

damage. Outcomes were recorded in January, February, and April of 2008 for the 139 S1 

families and in February and March of 2009 for the 201 S1:2 families.  

In the field platform, experiments were performed with the same 201 S1:2 families in five 

environments in 2009 (Kasan, Russia, KAS; Lipezk, Russia, LIP1; Minsk, Belarus, MIN; 

Saskatoon, Canada, two different fields, SAS1 and SAS2) and in one environment in 2010 

(Lipezk, Russia, LIP2). Depending on the environment 50-100 plants were used per test unit. 

The outcome, % survival, was calculated as the number of intact plants after winter divided 

by the total number of germinated plants before winter. RCBD design with 2 replicates was 

used for the SAS1 and SAS2 environments, while all other environments used 15 x 15 alpha-

lattice design with 3 replicates.  

2.3 Phenotypic data analyses 

An analysis of variance (ANOVA) was performed separately for each environment from the 

three phenotyping platforms using the software package GenStat Discovery v3.0 (VSN 

International Ltd., Hemel Hempstead, United Kingdom). The correlations between 

environments based on raw means (means of replicates) of phenotypic values were calculated 

using Pearson’s correlation.  

To obtain adjusted entry means of each genotype, combined analyses of environments within 

each phenotyping platform were performed using linear mixed models. The general form for 

the three phenotyping platforms was: 



Material and methods 

 

21 

 

y = 1β1 + XPLATFORM βPLATFORM + ZPLATFORM γPLATFORM + ZGENOTYPE γGENOTYPE + ε, 

 

where y is the n × 1 vector of platform-specific phenotypes, 1 denotes a n × 1 vector of 1s and 

β1 is the intercept. XPLATFORM denotes the n × k design matrices for the fixed effects of 

platform, βPLATFORM is the associated fixed effects vector for the platform-specific effects, and 

ZPLATFORM (n × m), and ZGENOTYPE (n × h) are the corresponding design matrices for the 

random effects of platform (described in detail in 2.3.1, 2.3.2, and 2.3.3) and genotype, 

respectively. The residual error vector ε was assumed to comprise independent and 

identically distributed random Normal errors with mean of 0 and variance σ
2
, ε ~ N (0, Iσ

2
). 

Statistical significance of fixed and random effects were assessed using Wald’s test (Wald 

1943) and the likelihood ratio test, respectively (Van Belle et al. 2004).  

Broad-sense heritabilities (h
2
) in the controlled and field platforms were estimated as: 

ĥ
2
 =  ̂g

2
 /( ̂g

2
 +  ̂ge

2
/t +  ̂e

2
/rt) 

where  ̂ g
2
,  ̂ ge

2
 and  ̂ e

2
 denote genotypic variance, genotype × environment interaction 

variance, and experimental error variance, respectively, and t and r are the number of 

environments and replications within environment, respectively. ĥ
2 

for the semi-controlled 

platform could not be estimated using linear mixed model for longitudinal data due to unclear 

genotype × environment variance. The correlations between platforms based on adjusted 

entry means were calculated using Pearson’s correlation coefficient.  

2.3.1 Controlled platform  

The outcome vector y was recovery score and the platform specific effect, βPLATFORM included 

the effect of year, temperature, genotype × year, and genotype × temperature interactions. A 

common platform-specific random effect controlling for the seven chambers across the two 

years 2008 and 2009 was included in the model, γPLATFORM ~ N (0, Iσ
2

chamber). No additional 

explicit generation adjustment for S1 versus S1:2 families was included in the statistical model 

as these were confounded with the fixed effect adjustment for year and the random chamber 

effects, and hence could not be additionally estimated. In other words, the generation effect 

was assumed implicitly adjusted for by other year effects in the model. 

2.3.2 Semi-controlled platform  

The outcome vector y was % plants with undamaged leaves measured repeatedly over three 

months (January, February, and April) in 2008 and two months (February, March) in 2009. 
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Therefore, a linear mixed model for longitudinal data was formulated where each test unit (25 

plants) was assumed to be correlated among month of the same year. The platform specific 

effect vector, βPLATFORM, included three terms: year effect, an overall linear trend in time for 

the three months in 2008 and two months in 2009, and the interaction of year and linear trend 

in time which would allow the linear time trend to differ in 2008 from 2009. Three platform 

specific random effects (vector γPLATFORM) were used: replication, a random intercept and a 

random slope with respect to month at each level of test unit. The random intercept and slope 

induce a correlation between two observations sharing the same random effect (test unit) and 

this correlation depends on time. That means in 2008 a test unit in January compared to the 

same test unit in February has a different (probably higher) correlation than this test unit in 

January compared to in April. Thus this model accounts for the correlated structure of 

repeated measurements.  

2.3.3 Field platform  

The outcome vector y was % survival and the platform-specific fixed effect βPLATFORM 

included indicator variables for the six environments, five environments in 2009 and one in 

2010. Platform-specific random effects included genotype by environment interaction and a 

block effect nested within environments arising from the lattice design. 

2.4 Candidate gene selection and primer design 

Twelve candidate genes, ScCbf2, ScCbf6, ScCbf9b, ScCbf11, ScCbf12, ScCbf14, ScCbf15, 

ScDhn1, ScDhn3, ScDreb2, ScIce2, and ScVrn1, were selected based on their putative role on 

FT in closely related species. Individual Cbf genes were selected based on an expression 

study in rye (Campoli et al. 2009) and linkage mapping in barley and diploid wheat (Francia 

et al. 2007; Knox et al. 2008), Vrn1 based on linkage mapping and a real-time PCR 

expression study in wheat (Galiba et al. 1995; Sutton et al. 2009), Ice2 based on an 

expression study in wheat (Badawi et al. 2008), and Dhn1 and Dhn3 based on an expression 

study in barley (Choi et al. 1999). Following the Cbf nomenclature proposed by Skinner et al. 

(Skinner et al. 2005), names with the same number followed by different letters describe 

highly identical but distinct genes, for example, the highly identical Cbf9a and Cbf9b genes 

first identified by Jaglo et al. (2001). Primers for all genes were designed using Primer-

BLAST from the NCBI database (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) based on 

sequences available in GenBank; information can be found in Table 2.  
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Table 2 Primer information on twelve candidate genes selected based on their association with frost tolerance 

Primer set name Forward (F) and reverse (R) primer 

sequence 

(5’-3’) 

PCR annealing 

temperature (°C) 

Final MgCl2 

Concentration 

(mM) 

Primer design based on 

(GenBank accession 

number) 

GenBank accession 

number of submitted 

rye sequence 

ScCbf2 F: CCTCGATCGGCCGGCGTGTAGC 

R: GTCCATGCCGCCGATCCAGTGCTC 

66 1.5   T. monococcum 

(AY951945) 

HQ730763 

 

ScCbf6 F: ATGTGTCCGATCAAGAGGGA 

R: CTAGCTCTGGTAGCTCCAGA 

60 1.5   S. cereale 

(EU194242) 

HQ730764  

 

ScCbf9b-fragment 1 F: TCTAGTGGTTGACGTGTGGG 

R: CGTCTCGTGGAACTTGGTC 

62 1.5   T. monococcum 

(AY951945) 

HQ730765  

 

ScCbf9b-fragment 2 F: ACCACTACTCCACACCTCTCACGA 

R: TCCCCCAAAAGTAGAAACC 

56 1.5   S. cereale 

(AF370730) 

HQ730765  

 

ScCbf11 F: ATGGAGTGGGCGTACAGCGG 

R: GTCAGTAGTTCCACAGGCTGA 

63 1.5   S. cereale 

(EU194240) 

HQ730766  

 

ScCbf12-fragment 1 F: GCCTCAACTTCCCGGACT 

R: TCTTTCTTGTTTGCCAGCCT 

52 1.5   S. cereale 

(EF028763) 

HQ730767  

 

ScCbf12-fragment 2 F: GCGTCCCGCAAAACTATAAA 

R: ATGTCGTGGCACAATGAGTC 

63 2.0  S. cereale 

(EF028763) 

HQ730767  

 

ScCbf14 F: GTGATGGGCACAGGACG 

R: TTTCACAATGAACGAGCACG 

65 1.5   T. monococcum 

(AY951945) 

HQ730768  

 

ScCbf15 F: AGCTCTCCTTCCTCTCCGTC 

R: GCCTTCAGTGTCCCAGCAC 

64 1.5   S. cereale 

(EF028765) 

HQ730769  

 

ScDreb2-fragment 1 F: TGGAGCAGAGGAAAGTACCCGGA 

R: AGGTGGCTTCCTCGCCCTCT 

65 1.5   A. tauschii 

(GU017675) 

HQ730774 

ScDreb2-fragment 2 F: CCAGCCTGGAAGGTGAGATCTTCTGT 

R: ATAGATGCCACTGGCGGCGCA 

58 1.5   A. tauschii 

(GU017675) 

HQ730774 

ScDhn1 F: CCACGTAGCACGCACGCTGT 

R: TCTTCCTCCTCCCGCCCACG 

61 1.5   H. vulgare 

(AF043087) 

HQ730770  

 

ScDhn3 F:  TGGTGGGCATTTCCAGCCCG 

R: ACGTCCCGGGTACATACAAGCA 

61 1.5   H. vulgare 

(AF043089) 

HQ730771   

 

ScIce2- fragment 1 F: GCACTTGATGGTGAATTTTGG 

R: TGATTGCGAACAAAAGCAAG 

62 1.5   T. aestivum 

(EU562184) 

HQ730772   

 

ScIce2- fragment 2 F: TCCCTTCTCAGCTTGTTGAA 

R: GAGGAAGCTATTGGCTGTCG 

62 1.5   H. vulgare 

(DQ113909) 

HQ730772   

 

ScVrn1 F: GGAGATTCGCACGTACGAT 

R: ATGACTCGGTGGAGAACTCG 

58 1.5   H. vulgare 

 (EU331765) 

HQ730773 
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Due to limited information on rye DNA sequences in GenBank, primers for ScVrn1, ScIce2, 

ScDhn1 and ScDhn3 were designed based on homologous genes in H. vulgare, T. aestivum, 

and T. monococcum. Despite lack of homology in non-coding regions, putative functional 

regions of the candidate genes could be amplified. A 250 bp fragment of the promoter and 

first exon of ScVrn1 was amplified since there is evidence that this region is one of the 

determinants of winter/spring growth habit in barley and wheat (Beales et al. 2005; Yan et al. 

2003). 

 

2.5 Amplification of candidate genes and DNA sequencing 

Sixteen fragments of twelve candidate genes were amplified by PCR in 10 µl reaction 

volumes containing 10 ng DNA, 150 nM of each primer, 1x Taq DNA polymerase reaction 

buffer, 1.5 or 2.0 mM MgCl2, 0.2 mM of each dNTP, and 0.5 U Taq DNA polymerase. After 

an initial denaturation at 96°C for 10 min, 35 cycles were conducted at 96°C for 1 min, 

primer-specific annealing temperatures at 52-66°C for 1 min, 72°C for 1 min, and a final 

extension step at 72°C for 15 min. The actual numbers of successful PCR amplification of the 

201 genotypes differed from gene to gene ranging from 128 genotypes (64%) in ScCbf11 to 

198 (98%) in ScVrn1. Missing amplification products in individual genotypes were most 

likely the result of SNPs or insertion and deletion events (Indels) in the primer binding sites. 

However, absence of some Cbf genes in particular genotypes, as has recently been reported in 

barley and wheat (Fricano et al. 2009; Knox et al. 2010) cannot be excluded as an alternative 

explanation. The PCR products were purified in 96-well MultiScreen PCR plates (Millipore 

Corporation, Billerica, MA, USA) and directly sequenced through the QIAGEN sequencing 

service using Sanger sequencing technology (QIAGEN, Hilden, Germany) which has high 

sequencing accuracy of up to 99.99% (Shendure and Ji 2008). Amplicons of each S0 plant 

were sequenced with both forward and reverse PCR primers.  

2.6 Sequence analyses 

Sequence data were assembled into contigs and SNPs were detected using the software 

Variant Reporter
TM 

V1.0 (Applied Biosystems, Foster City, CA, USA). The DNA sequence 

of the homozygous inbred line Lo152 was used as reference sequence, and alleles of this 

common parent were subtracted from all sequences to determine the haplotype phase. 

Heterozygous Indels were detected either manually by checking sequences from both strands 

or using the web-based program Indelligent v1.2 (Dmitriev and Rakitov 2008). In case of 

large Indels, amplicons from the respective genotypes were sub-cloned using the TOPO TA 
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Cloning Kit (Invitrogen, Carlsbad, CA, USA). At least five clones were sequenced to resolve 

large heterozygous Indels. Sequences of the Lo152 reference alleles from the twelve 

candidate genes were submitted to GenBank under accession numbers HQ730763–

HQ730774. For convenience, polymorphic sites along the sequence were numbered starting 

with “SNP1”. Indels were treated as single polymorphic sites and referred to in the text as 

SNPs instead of differentiating between SNPs and Indels. For all sequence analyse, Lo152 

alleles were excluded leading to a situation similar to inbred line. Haplotypes and haplotype 

frequencies were determined within each candidate gene using Arlequin v3.1 (Excoffier et al. 

2005). Nucleotide diversity (π) was calculated as the average number of nucleotide 

differences per site between two sequences for both, the complete sequences and restricted to 

exons. Haplotype diversity (Hd) was calculated as the probability that two randomly chosen 

haplotypes from a given population were different. Analyses of nucleotide and haplotype 

diversity were performed separately for each population as well as for all populations 

grouped together using the software DnaSP v5.10 (Rozas et al. 2003). Average nucleotide 

diversity (π) over all genes was calculated using concatenated sequences that were generated 

in software TASSEL v2.1(Bradbury et al. 2007). To test for selection Tajima’s D was 

calculated as the difference between the mean pairwise nucleotide differences (π) and the 

number of segregating sites (S) relative to their standard error using the software DnaSP 

v5.10. The statistical significance of Tajima’s D was obtained assuming that D follows a beta 

distribution.  

2.7 SSR genotyping and genetic diversity analyses 

Thirty seven SSR markers were chosen from literature based on their experimental quality 

and map location as providing even coverage of the rye genome. Primers and PCR conditions 

for rye microsatellite (RMS) and Secale cereale microsatellite (SCM) markers were 

described in detail by Khlestkina et al. (2004) and Hackauf and Wehling (2002), respectively. 

Fragments were separated using a 3130xl Genetic Analyzer (Applied Biosystems Inc., Foster 

City, CA, USA) and allele sizes were assigned using the program GENEMAPPER (Applied 

Biosystems Inc., Foster City, CA, USA). Genotyping data obtained from the SSR analyses of 

the 201 genotypes were used for the following calculations. Polymorphic information content 

(PIC) was estimated according to Botstein et al. (1980) using the software package 

PowerMarker v3.0 (Liu and Muse 2005). PIC, the probability that a given offspring of a 

parent carrying the rare allele at the index locus will allow deduction of the parental genotype 

at the marker locus, was estimated as 
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where g is number of alleles, plu and plv are the frequencies of the uth and vth alleles at the lth 

locus, respectively. To eliminate bias whereby the observed number of alleles highly depends 

on the number of analysed genotypes, allelic richness (Rs) was estimated from a rarefaction 

method (Petit et al. 1998) implemented in FSTATv2.9.3 (Goudet 1995). Briefly, the method 

estimates the expected number of alleles in a sub-sample of n genotypes, given that N 

genotypes have been sampled at a locus, where N ≥ n. In this study it was specifically 

calculated as 
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where N is the number of observed genotypes (201 or less), Ni the number of genotypes with 

type i alleles among the N genotypes, n the number of genotypes in each population, and S is 

the total number of alleles among the N genotypes. To visualize the degree of variation within 

and between populations, principal co-ordinate analysis (PCoA) was performed based on 

SSRs and haplotypes of candidate genes using DICE similarity coefficients (Dice 1945) 

estimated in NTSYSpc v2.2 (Applied Biostatistics Inc., Setauket, NY, USA). Analysis of 

molecular variance (AMOVA) was performed based on SSRs and candidate gene 

polymorphisms using Arlequin v3.1 with 15,000 permutations of the data to estimate 

statistical significance at P < 0.001 for each variance component (Excoffier et al. 2005; 

Excoffier et al. 1992). The Lo152 alleles were excluded from all analyses. 

2.8 Estimation of population structure and kinship 

In order to correct for confounding effects in the association studies, population structure and 

kinship were estimated based on 37 SSR markers as described in 2.7. Population structure 

was inferred using the STRUCTURE software v2.2, which is based on a Bayesian model-

based clustering algorithm that incorporates admixture and allele correlation models to 

account for genetic material exchange in populations resulting in shared ancestry (Pritchard et 

al. 2000a). Briefly, the method assigned each individual to a predetermined number of groups 
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(k) characterized by a set of allele frequencies at each locus, assuming that the loci are in 

Hardy-Weinberg equilibrium and linkage equilibrium. Ten runs for values of k ranging from 

two to eleven were performed using a burn-in period of 50,000 replications followed by 

50,000 Markov Chain Monte Carlo iterations. Posterior probabilities of each k were averaged 

over the ten runs to determine the maximum posteriori k. The population structure matrix 

QSTRUCTURE was estimated, providing for each of the 201 genotypes an estimate of the 

proportion membership in the k populations. The phylogenetic tree was constructed based on 

Rogers distance (Rogers 1972) from 37 SSR markers using a clustering method UPGMA 

(Unweighted Pair Group Method with Arithmetic Mean) implemented in PowerMarker v3.25 

(Liu and Muse 2005). The kinship matrix (K) was estimated from the same SSR markers 

using the allele-similarity method (Hayes and Goddard 2008), which guarantees a positive 

semi-definite relationship matrix among the 201 genotypes, and was used for the covariance 

structure of the random genotype effects in the linear mixed model. For a given locus, the 

similarity index Sxy between two genotypes was 1 when alleles were identical and 0 when 

alleles were different. Sxy was averaged over the 37 loci and transformed and standardized as 

Ŝxy = (Sxy – Ŝxymin) / (1 - Ŝxymin), where Ŝxymin is the minimum relationship in the matrix. 

2.9 Linkage disequilibrium 

Linkage disequilibrium was measured by the parameter r
2 

(Hill and Robertson 1968) for 

candidate genes and SSR markers using DnaSP v5.10 and TASSEL v2.1, respectively, with 

Indels treated as single polymorphic sites and SNPs with minor allele frequencies (MAF) < 

0.05 excluded due to instability. r
2
 is calculated as 

   
               

 

        
   

 

where pA, pB, pa, and pb are the frequencies of alleles A, B, a, and b in the population. 

Haplotype frequencies of allele combinations are denoted as pAB, pAb, paB, and pab, 

respectively. The LD decay curve was fitted under the mutation-drift-equilibrium model, the 

expected value of r
2
 is E (r

2
) = 1 / (1+4Nc), where N is the effective population size, and c is 

the recombination fraction between sites. With assumption of a low mutation rate and an 

adjustment for sample size, the expectation becomes (Hill and Weir 1988): 
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where Γ=4Nc and n is the number of genotypes compared. The LD decay curve was 

estimated using a non-linear least-squares estimate of Γ fitted by the nls function in the R 

software package (R Development Core Team 2009), separately for each population and for 

all populations pooled together. The approach of Breseghello and Sorrells (2006) was used to 

determine threshold values of r
2
 that indicated significant LD. r

2
 values were estimated from 

37 unlinked SSR markers and square root transformed so that they would be better 

approximated by a Normal distribution. The 95th percentile from the empirical distribution of 

all 666 pairwise r² derived from the 37 genome-wide distributed SSR markers was selected as 

the threshold value, with the rationale that any value above the threshold could in high 

likelihood be attributable to genetic linkage. Threshold values were calculated separately for 

each population and for all populations pooled together. The extent of LD of SNPs within 

candidate genes was estimated as the point where the LD decay curve passed below the 

threshold.  

2.10 SNP-FT association analyses 

Twelve candidate genes ScCbf2, ScCbf6, ScCbf9b, ScCbf11, ScCbf12, ScCbf14, ScCbf15, 

ScDhn1, ScDhn3, ScDreb2, ScIce2, and ScVrn1 were tested for association with FT. SNP-FT 

associations in all platforms were performed using linear mixed models that evaluated the 

effects of SNPs with MAF > 5% individually, adjusting for population structure, kinship and 

platform-specific effects. A one stage approach was chosen for analysis which directly 

models the phenotypic raw data as the response variable. The models for each phenotyping 

platform were the same as in phenotypic data analyses plus the factors of SNPs, population 

structure, and kinship. The general form of the linear mixed model for the three platforms 

was: 

 

y = 1β1 + XSNPβSNP + QSTRUCTURE βSTRUCTURE + XPLATFORM βPLATFORM + ZPLATFORM γPLATFORM 

+ ZGENOTYPE γGENOTYPE + ε, 

 

where y is the n × 1 vector of platform-specific phenotypes, 1 denotes a n × 1 vector of 1s and 

β1 is the intercept, XSNP (n × p), QSTRUCTURE (n × q) and XPLATFORM (n × k) are design matrices 

for the fixed effects of SNPs, population membership and platform, respectively, and 

ZPLATFORM (n × m) and ZGENOTYPE (n × h) are the corresponding design matrices for the 

random effects of platform (described in 2.3.1, 2.3.2, and 2.3.3) and genotype. If a platform 

contained random effects, these were accommodated by including a random effect γPLATFORM~ 
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N (0, Dσ
2
) with mean of 0, and variance covariance matrix D. The random genotype effect 

was similarly assumed to follow a Normal distribution, γGENOTYPE~ N (0, 2Kσ
2

g), where K was 

the estimated kinship matrix and σ
2

g the variance component due to genotype. In order to 

account for kinship in the estimation of random genotype effects, γGENOTYPE, the design matrix 

ZGENOTYPE was multiplied by the cholesky-root of the kinship matrix. The residual error 

vector ε (n × 1) was assumed to comprise independent and identically distributed random 

Normal errors with mean of 0 and variance σ
2
, ε ~ N (0, Iσ

2
).  

Analyses of SNP-FT associations were performed using the lme4 package (Bates and 

Maechler 2010) implemented in R (R Development Core Team 2009). Significance of 

individual SNP effects was assessed via the t-statistic performed at the two-sided alpha = 

0.05 level. A multiple testing problem arises, which inflates the false positive rate of the 

study. A simple and common way to handle this problem is Bonferroni correction where the 

significance level is divided by the number of tests. However, the Bonferroni correction is too 

conservative and only suitable for independent tests, an assumption violated in this study due 

to a high LD between some of the SNPs as shown in chapter 3.4. Therefore, the less stringent 

significance level of alpha = 0.05 is reported in the main results in order to retain candidates 

for further validation in upcoming experiments. Empirical correlations between the 170 SNP-

FT associations reported among the three phenotyping platforms were performed using 

Pearson’s correlation based on the t values from the corresponding association tests. The 

genetic variation explained by an individual SNP or haplotype was calculated as 100 × ((σ
2

g – 

σ
2

gSNP)/σ
2

g), where σ
2

g is the genetic variation in the reduced model without an individual 

SNP and σ
2

gSNP is the model including an individual SNP (Mathews et al. 2008). This ad-hoc 

measure can result in negative estimates since variance components do not automatically 

decrease with more adjustment in a model as error sums of squares do; negative estimates 

were truncated to 0. Genetic variation explained by non-significant SNPs was also reported 

since these 170 SNPs were chosen from candidate genes with prior knowledge. SNP × 

environment interaction effects were tested by likelihood ratio test, comparing the full model 

with main effects of SNP and environment plus interaction between them to the reduced 

model with main effects of SNP and environment only. The null distribution of this 

likelihood ratio test is asymptotic to the chi-square distribution (Van Belle et al. 2004).  

2.11 Haplotype-FT association and epistasis  

Haplotype phase was determined by subtracting the common parent Lo152 alleles and 

haplotypes were defined within each candidate gene using DnaSP v5.10 (Rozas et al. 2003). 
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Haplotype-FT associations were performed using candidate gene haplotypes with MAF > 5%. 

The same platform-specific statistical models controlling for population structure, kinship, 

and platform-specific effects were used to test associations between haplotypes of the 

respective candidate genes and FT. For these analyses βhap replaced βSNP as a measure of the 

haplotype effect of the non-reference compared to the reference haplotype Lo152. First, 

significant differences between haplotypes of one gene were assessed using the ANOVA F-

test. Under the null hypothesis of no association between haplotypes and FT, the effects βhap 

for each haplotype will be the same. If the overall statistic was significant, individual 

haplotype effects were tested against the reference haplotype Lo152 via t-tests. Based on 

haplotype information gene × gene interactions (with frequency of haplotype combination > 

5%) were assessed using the likelihood ratio test, comparing the full model with main effects 

plus interaction to the reduced model with main effects only. The null distribution of this 

likelihood ratio test is asymptotic to the chi-square distribution (Van Belle et al. 2004).  
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3. Results 

3.1 Phenotypic variation in the three phenotyping platforms 

Phenotypic assessment of FT was carried out in four environments in the controlled, two 

environments in the semi-controlled, and six environments in the field platforms. Phenotypic 

data were analyzed separately in each environment which revealed significant genotypic 

variation in ten out of twelve environments from the three different phenotypic platforms 

(Table 3).  

Table 3 Means over replicates of recovery score, % plants with undamaged leaves, and % survival, 

variance components, and F test for each environment in the controlled, semi-controlled, and field 

platform, respectively. 

Environment Source Mean Variance 

components 

P-value from 

F test 

Controlled platform     

-19°C/2008 Genotype 2.42  0.233 <0.01 

 Chamber  0.004 <0.01 

 Residual  0.449  

-21°C/2008 Genotype 1.94  0.177 <0.01 

 Chamber  0.934 <0.01 

 Residual  0.430  

-19°C/2009 Genotype 1.53  0.147 <0.01 

 Chamber  0.060 <0.01 

 Residual  0.507  

-21°C/2009 Genotype 1.09  0.168 <0.01 

 Chamber  0.048 <0.01 

 Residual  0.514  

     

Semi-controlled platform     

January 2008 Genotype 92.59  8.10 <0.01 

 Residual  15.77  

February 2008 Genotype 75.08  15.94 <0.01 

 Residual  45.84  

April 2008 Genotype 47.04   25.90 <0.01 

 Residual  75.64  

February 2009 Genotype 67.14  15.67 <0.01 

 Residual  85.42  

March 2009 Genotype 35.52  9.74 <0.01 

 Residual  30.31  

    

Field platform     

KAS Genotype 62.4  2.96 0.52 

 Block  10.85 0.03 

 Residual  34.46      

LIP1 Genotype 65.7  6.37 <0.01 

 Block  35.33 <0.01 

 Residual  66.87  
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(Table 3 continued)     

Environment Source Mean Variance 

components 

P-value from 

F test 

MIN Genotype 74.1  0.00 0.90 

 Block  5.27 <0.01 

 Residual  37.60  

SAS1 Genotype 69.4  400.40 <0.001 

 Residual  531.64  

SAS2 Genotype 26.0  248.56 <0.001 

 Residual  545.65  

LIP2 Genotype 85.1  14.03 <0.01 

 Block  17.33 <0.01 

 Residual  71.93  

 

 

In the controlled platform, genotypic variation for FT was significant at both temperatures for 

both years (P < 0.01). The median recovery scores ranged from 2.5 (between intensive and 

moderate damage) at -19°C in 2008 to 1.0 (little sign of life) at -21°C in 2009 (Figure 5). As 

expected, recovery scores were higher at -19°C than at -21°C in the same year but were lower 

in 2009 than in 2008 probably due to different generations of rye material and thus different 

levels of inbreeding (S1 vs S1:2 families). The high variability at -21°C in 2008 might have 

been induced by substantial variation between chambers. The correlations of FT between -

19°C and -21°C in 2008 was 0.59 which was similar to that in 2009 (r = 0.60).  

Figure 5 Phenotypic variation in a) controlled, b) semi-controlled, and c) field phenotyping 

platforms in year 2008, 2009, and 2010. 

The values are the average phenotypic raw values of three replicates (two for SAS1 and SAS2) for each 

genotype. Boxes indicate the range of the middle 50% of the data with a horizontal line representing the 

median and vertical lines beyond the boxes indicate the upper and lower 25% of the phenotypic means. 

Outliers are represented by crosses. -19°C and -21°C are the two tested temperatures. Jan., Feb., Apr., and 

Mar. are months when FT was measured. KAS, LIP1, MIN, SAS1, SAS2, and LIP2 are the field  

Figure 5 Phenotypic variation in a) controlled, b) semi-controlled, and c) field phenotyping platforms 

in the years 2008, 2009, and 2010. 

The values are the average phenotypic raw values of three replicates (two for SAS1 and SAS2) for each 

genotype. Boxes indicate the range of the middle 50% of the data with a horizontal line representing the 

median and vertical lines beyond the boxes indicate the upper and lower 25% of the phenotypic means. 

Outliers are represented by crosses. -19°C and -21°C are the two tested temperatures. Jan., Feb., Apr., and 

Mar. are months when FT was measured. KAS, LIP1, MIN, SAS1, SAS2, and LIP2 are the field locations. 
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In the semi-controlled platform, genotypic variation for FT was significant during all months 

for both years (P < 0.01). Linear decreasing trends were observed during each year which 

was expected since those were longitudinal data and thus the damaged portions of plants 

increased during the progression of winter. The correlations of FT between each month in the 

same year were low to medium ranging from r = 0.22 (January 2008 vs April 2008) to r = 

0.51 (January 2008 vs February 2008). 

In the field platform, genotypic variation for FT was significant (P < 0.01) in four (LIP1, 

LIP2, SAS1, and SAS2) of the six environments. Compared to other environments, SAS1 and 

SAS2 showed much larger genotypic variances (Table 3) and better differentiations for FT 

among genotypes, with a survival rate ranging from 5% to 100% with a median of 75% and 0% 

to 95% with a median of 20%, respectively. The large difference of survival rate between 

SAS1 and SAS2 was probably due to different altitudes and consequently different severity 

of frost stress. The correlations of FT between each environment were very low ranging from 

r = 0.01 (KAS vs SAS1) to r = 0.36 (SAS1 vs SAS2). 

In combined analyses across environments in each phenotyping platform, the adjusted entry 

means for recovery score of the 201 genotypes in the controlled platform ranged from 1.02 to 

2.24, with a mean of 1.73 indicating scores between little sign of life and intensive damage 

(Table 4). Significant differences (P < 0.01) between genotypes, temperatures, and chambers 

were observed. In the semi-controlled platform, the adjusted entry means of % plants with 

undamaged leaves in the 201 genotypes ranged from 56.0% to 70.9%, with a mean of 63.5%. 

The effects of genotype and year were significant (P < 0.01). In the field platform, the 

adjusted entry means of % survival in the 201 genotypes varied between 57.4% and 69.4%, 

with an average of 62.7%. The effects of genotype, environment and genotype × environment 

interaction were significant (P < 0.01). The heritability estimates were low in the field 

platform (ĥ
2
 =0.35), but higher in the controlled platform (ĥ

2
 =0.67). As no estimation of 

variance component for genotype x environment was possible for longitudinal data due to 

confounded genotype × environment variance, calculation of ĥ
2 

for the semi-controlled 

platform was not performed.  
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Table 4 Adjusted entry means (minimum-maximum), variance components, and heritabilities (ĥ
2
) of FT 

in three phenotyping platforms in the combined analyses across environments 

Source Phenotypic means  
a
  Variance 

components 

P-value 
b
 ĥ

2
  

Controlled      

Genotype 1.73 (1.02-2.24)  0.14 <0.001 0.67 

Temperature   NA <0.001  

Year   NA <0.001  

Genotype × temperature   0.09 <0.01  

Genotype × year   0.06 <0.01  

Chamber   0.10 <0.001  

Residual   0.61   

      

Semi-controlled      

Genotype 63.5 (56.0-70.9)  7.70 <0.001 NA
 c
 

Year   NA <0.001  

Overall linear trend   NA <0.001  

Year × overall linear trend   NA <0.001  

Linear trend per test unit   37.1 <0.001  

Residual   46.0   

      

Field      

Genotype 62.7 (57.4-69.4)  14.4 <0.001 0.35 

Environment   NA <0.001  

Genotype × environment   68.9 <0.001  

Block   10.9 <0.01  

Residual   239.1   

NA: not available  
a 

Recovery score (0-5) in the controlled platform; % plants with undamaged leaves in the semi-controlled 

platform; % survival in the field platform 
b 
Wald’s test for fixed effects and likelihood ratio test (LRT) for random effects (see chapter 2.3) 

c  
Not estimated due to confounded genotype × environment variance 

 

When looking at FT in each population, the PR population showed the highest mean FT over 

the three platforms (Table 5). Among the top ten most frost tolerant genotypes, six were from 

the PR population; among the top ten most frost susceptible genotypes, five were from the 

Petkus population. However, there was a significant differentiation of FT among populations 

in the three platforms (P < 0.01). The correlation between adjusted entry means of FT was 

low with r = 0.38 (P < 0.01) between the controlled and semi-controlled platforms; r = 0.31 

(P < 0.01) between the controlled and field platforms; and r = 0.19 (P < 0.01) between the 

semi- controlled and field platforms (Figure 6). 
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Table 5 Adjusted entry means ± SE and range (minimum-maximum) for recovery score, % plants with 

undamaged leaves and % survival in the controlled, semi-controlled and field platform in each 

population and over all populations, respectively. 

  Overall  PR EKO  SMH ROM  Petkus 

No. of genotypes  201  33 44  15 41  68 

 Controlled  

 

 1.73±0.01 

(1.02-2.24) 

 1.82±0.04 

(1.30-2.24) 

1.78±0.02 

(1.40-2.02) 

 1.66±0.06 

(1.33-2.15) 

1.69±0.03 

(1.02-2.05) 

 1.70±0.02 

(1.34-2.07) 

 Semi-controlled 

 

 63.5±0.18 

(56.0-70.9) 

 64.6±0.36 

(60.1-68.5) 

64.3±0.37 

(59.0-70.9) 

 63.3±0.75 

(56.0-67.6) 

64.4±0.32 

(58.3-67.7) 

 
62.1±0.26 

(57.6-66.4) 

 Field  

 

 62.7±0.17 

(57.4-69.4) 

 64.1±0.44 

(57.5-69.4) 

63.1±0.31 

(57.8-67.8) 

 61.1±0.62 

(58.1-64.5) 

62.0±0.35 

(58.1-67.1) 

 62.4±0.27 

(57.4-67.1) 
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Figure 6 Scatter plots showing correlations between the three phenotyping platforms based on 

adjusted entry means of 201 genotypes. 
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3.2 Genetic diversity 

 

3.2.1 Assessing genetic diversity of the five rye populations using SSR markers 

Genetic diversity within the five populations was summarised based on 37 genome-wide SSR 

markers (Table 6). A total of 230 alleles and an average of 6.2 alleles per locus were 

observed. PIC varied from 0.37 to 0.51 with an average of 0.47. Allelic richness, which is not 

affected by sample size, ranged from 2.51 to 3.43, with a mean of 3.16. PIC was highly 

correlated with allelic richness (r = 0.965). Compared to the four Eastern European 

populations, the Petkus population had a slightly lower mean number of alleles per locus, PIC, 

allelic richness, and number of private alleles, despite the fact that it had the largest 

population size. Genetic diversities of individual SSR markers across the five populations are 

summarized in Table 7. The 37 SSR markers were evenly distributed across the whole rye 

genome with on average five SSR markers per chromosome with an average marker interval 

of 21 cM according to the length of the integrated consensus map of Gustafson et al. (2009). 

The number of alleles of each SSR marker was high ranging from 2 to 23. PIC among 37 

SSR markers varied from 0.12 to 0.85 with an average of 0.47 while allelic richness from 

1.67 to 6.68 with an average of 3.42. The top five highly polymorphic SSR markers are 

RMS1007, RMS1121, RMS1083, RMS1012, and SCM214 in terms of allelic richness.  

Table 6 Genetic diversity within populations based on 37 SSR markers 

Population  No. of 

genotypes 

No. of private alleles 
a
 

(%) 

Average no. of alleles 

(range) 

PIC 
b
 Allelic 

richness 
c
 

PR  33 20 (12.1%) 4.46 (2-12) 0.50  3.43 

EKO 44 14 (8.8%) 4.30 (2-18) 0.49  3.28 

SMH 15 3 (2.4%) 3.38 (1-9) 0.46 3.18 

ROM 41 13 (7.7%) 4.50 (2-13) 0.51  3.38 

Petkus 68 4 (3.6%) 3.00 (1-10) 0.37  2.51 

a
 Private alleles denotes the number of alleles which occurred only in one population 

b
 PIC: Polymorphic information content, a higher value means higher genetic diversity 

c 
Allelic richness is a measure of the number of alleles independent of sample size, a higher value means higher 

genetic diversity
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Table 7 Chromosomal locations and genetic diversities estimated as numbers of alleles, polymorphic 

information content (PIC) and allelic richness of the 37 SSRs 

 
SSR markers Chromosome No. of alleles PIC Allelic richness 

RMS1107 1R 7 0.59 3.64 

RMS1280 1R 4 0.16 2.18 

RMS1303 1R 5 0.29 2.34 

SCM247 1R 4 0.42 2.61 

SCM266 1R 2 0.16 2.04 

RMS1138 2R 7 0.35 3.59 

RMS1230 2R 5 0.69 4.08 

RMS1238 2R 5 0.60 3.52 

SCM276 2R 3 0.27 2.58 

SCM290 2R 5 0.41 3.23 

SCM294 3R 3 0.33 2.14 

RMS1028 3R 9 0.55 4.26 

RMS1254 3R 6 0.55 3.55 

RMS1261 3R 10 0.47 3.77 

RMS1323 3R 4 0.08 1.67 

RMS1007 4R 23 0.85 6.68 

RMS1026 4R 5 0.19 2.16 

RMS1181 4R 2 0.32 2.00 

SCM047 4R 2 0.19 1.94 

RMS1083 5R 16 0.80 5.98 

RMS1205 5R 5 0.48 2.81 

RMS1218 5R 3 0.57 3.42 

RMS1237 5R 8 0.56 3.72 

RMS1259 5R 7 0.72 4.49 

RMS1278 5R 4 0.53 2.96 

SCM260 5R 5 0.13 2.20 

RMS1090 6R 6 0.57 3.24 

RMS1121 6R 15 0.63 6.44 

SCM107 6R 2 0.22 1.97 

SCM214 6R 8 0.79 5.22 

RMS1012 7R 14 0.78 5.79 

RMS1018 7R 11 0.77 5.34 

RMS1187 7R 2 0.36 2.00 

RMS1188 7R 4 0.52 3.17 

RMS1197 7R 4 0.36 2.82 

SCM063 7R 3 0.44 2.93 

SCM322 7R 3 0.58 4.06 

Mean   6.2 0.47  3.42 

 

 

3.2.2 Sequence polymorphisms and genetic diversity in candidate genes 

In total, 9,316 bp from 12 candidate genes in 201 rye genotypes were amplified resulting in 

161 SNPs, nine Indels, and an average polymorphism frequency of 1 polymorphism / 55 bp 

(Table 8). Forty-three SNPs were non-synonymous polymorphisms resulting in amino acid 
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replacements, 17 of which changed polarity. In the Cbf gene family, ScCbf9b had the highest 

number of SNPs (N=30), of which ten were non-synonymous and three led to an exchange of 

amino acids of different polarity. The first intron and second exon comprising 20% of the 

coding sequence of ScIce2 were amplified, resulting in the identification of 37 SNPs, all 

located in the first intron. A 250 bp fragment of the promoter and first exon of ScVrn1 was 

amplified but no polymorphic site was identified, except for a 2 bp Indel. Out of nine Indels 

identified, seven were located in the non-coding regions of ScCbf2, ScCbf9b, ScVrn1, 

ScDhn1, and ScDhn3 and two in the coding regions of ScCbf12 and ScCbf15 without causing 

a frame shift. It is noteworthy that the 200 bp Indel in the promoter of ScCbf2 contained two 

MYB and one MYC cis-elements, putative binding sites for the ScIce2 transcription factor.  

Nucleotide diversity (π) ranged from 0.4×10
-3

 in ScVrn1 to 14.5×10
-3

 in ScCbf11, and when 

restricted to exons, from 0 in ScIce2 and ScVrn1 to 14.5×10
-3

 in ScCbf11 (Table 8). The 

biggest difference between analyses of π for the whole gene compared to restriction to exons 

occurred in ScIce2 where π decreased from 11.2 to 0 due to absence of SNPs in the exon. 

Haplotype diversity (Hd) ranged from 0.11 in ScVrn1 to 0.98 in ScCbf9b. A significant 

positive Tajima’s D value was observed over all populations for ScCbf15 and ScIce2, 

whereas a significant negative value was observed in ScDhn1 and ScDreb2. In the SMH 

population, ScCbf6, ScIce2, and ScDhn1 had reduced nucleotide and haplotype diversities. 

Similarly in the PR and EKO populations, respectively, ScCbf11 and ScCbf15 had reduced 

nucleotide and haplotype diversities compared to the other genes (Additional table 1). 

Haplotype frequencies varied markedly between candidate genes, with some candidate genes 

dominated by a single haplotype and others with a more balanced haplotype frequency 

distribution (Figure 7). For example, in ScCbf14, ScVrn1, and ScDhn1, the most frequent 

haplotype occurred in more than 70% of genotypes, whereas in ScCbf9b all haplotypes 

occurred with frequencies less than 10%. The finding in ScCbf9b can be attributed to a large 

number of haplotypes (N=95) with high haplotype diversity primarily generated by 

polymorphic sites located in the coding region. Similarly, only five of 48 haplotypes in 

ScCbf12 occurred at a frequency greater than 10%. For ScCbf14, all populations had a similar 

distribution of haplotype frequencies. However, for ScCbf15 haplotypes 1, 2, 3, and 4 were 

evenly distributed in PR, whereas in the other four populations only two haplotypes (EKO 

and SMH: 1 and 2; ROM and Petkus: 1 and 4) were prevalent (80% - 95%). For ScCbf11, 

haplotype 1 was predominant in the PR and Petkus populations, occurring in 82% and 57% of 

genotypes, respectively, whereas haplotype 2 predominated in EKO (67%) and SMH (75%).  
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Table 8 Summary information on candidate gene (CG) sequences and sequence analysis 

Analyzed fragment length, gene coverage, number of genotypes, number of SNPs (MAF > 0.05), number of Indels and haplotypes (MAF > 0.05), haplotype (Hd) and 

nucleotide (π) diversity, Tajima’s D, and linkage disequilibrium (LD) 

a
 E: exon; UTR: untranslated region; I: intron 

b
 Failure of amplification in some of the genotypes may be due to the presence of SNPs/Indels in the binding sites of the sequences in some particular genotypes. 

c 
Proportion of haplotypes with MAF > 0.05.  

d 
Significance levels: *P < 0.05

CG Fragment 

length (bp) 

Gene coverage
 a

 No. of  

genotypes
 b

 

No. of SNPs  

(non-synonymous) 

No. of  

Indels 

No. of  

haplotypes 

Hd± SD π± SD ×10
-3

 

(only exon) 

Tajima’s D
 d

 Average 

 LD (r
2
) 

ScCbf2 619 5’UTR/E 169 2 (0) 1 7 (77.3%)
c
 0.67 ± 0.02 1.5 ± 0.1 (1.4 ± 0.1)   1.17 0.13 

ScCbf6 495 E 197 3 (0) 0 9 (88.8%) 0.44 ± 0.04 3.6 ± 0.3 -0.35 0.77 

ScCbf9b 1,371 5’UTR/E/3’UTR 183 30 (10) 1 95 (12.1%) 0.98 ± 0.03 7.1 ± 0.3 (11.5 ± 0.2)   1.71 0.14 

ScCbf11 623 E 128 27 (12) 0 12 (60.0%) 0.65 ± 0.02 14.5 ± 0. 9   1.74 0.51 

ScCbf12 754 5’UTR/E/3’UTR 141 25 (8) 1 48 (39.7%) 0.89 ± 0.02 8.8 ± 1.0 (7.7± 0.1)   0.40 0.38 

ScCbf14 560 E 185 5 (3) 0 4 (89.7%) 0.17 ± 0.04 1.5 ± 0.3 -0.27 0.92 

ScCbf15 502 E 172 3 (3) 1 9 (73.8%) 0.68 ± 0.04 3.0 ± 0.2  2.14* 0.30 

ScDhn1 435 5’UTR/E 138 4 (1) 2 12 (53.4%) 0.33 ± 0.05 2.7 ± 0.5 (4.4± 0.1) -1.86* 0.48 

ScDhn3 514 I / E/3’UTR 130 12 (2) 2 21 (83.2%) 0.73 ± 0.03 8.1 ± 0.6 (8.9± 0.1)  0.008 0.25 

ScDreb2 1,677 E3/I3/E4 197 13 (4) 0 47 (57.8%) 0.89 ± 0.02 3.0 ± 0.3 (3.4 ± 0.1) -1.80* 0.06 

ScIce2 1,224 I / E 189 37 0 32 (74.6%) 0.80 ± 0.02 11.2 ± 0.6 (0)  2.34* 0.36 

ScVrn1 542 5’UTR/E 198 0 1 2 (97.0%) 0.11 ± 0.03 0.4 ± 0.1 (0) -0.33 - 

Total 9,316   161 (43) 9 339     
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Figure 7 Haplotype frequencies of 12 candidate genes in five rye populations. 

The different haplotypes occurring within each gene are represented by different coloured bars (see 

legend). Haplotypes occurring at a frequency < 0.05 are pooled and shown as black bars. The number of 

investigated lines in each population is shown in brackets. 
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3.2.3 Genetic variation within and between populations 

PCoA of candidate gene haplotypes revealed large genetic variation within each population 

and no clustering according to population membership (Figure 8a). The first and second 

principal co-ordinates explained 10.3% and 9.7% of the total genetic variation, respectively. 

PCoA of the 37 genome-wide SSRs similarly identified most genetic variation as residing 

within populations (Figure 8b). However, on the genome-wide level it could differentiate the 

Petkus population from all Eastern European populations, and the PR population from the 

other three Eastern European ones. The first and second principal co-ordinates explained 7.3% 

and 4.1% of the total genetic variation, respectively. AMOVA based on 37 SSR markers and 

haplotypes of 12 candidate genes both revealed low variation (13.3% and 20.9% of total 

variation) between populations, but high variation (86.7% and 79.1% of total variation) 

within populations (Table 9).  
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Figure 8 Principal co-ordinate analysis of 201 rye genotypes from five populations based on 

candidate gene haplotypes (a) and 37 genome-wide SSR markers (b). 

PCo1 and PCo2 are the first and second principal co-ordinates and percentages indicate percent 

variation explained. The names of populations are indicated. 
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Table 9 Analysis of molecular variance (AMOVA) based on 37 genome-wide SSR markers and 

haplotypes of twelve candidate genes 

***Indicates significance (P < 0.001), obtained from 15,000 permutations 

3.3 Population structure and kinship 

To avoid false positive results in association analysis, population structure and kinship of 201 

genotypes were investigated using 37 genome-wide distributed SSR markers. The 

STRUCTURE analysis at k=2 showed that genotypes from the Petkus were separated from 

the other populations (Figure 9). At k=3 a third cluster (in blue) emerged only in the Eastern 

European populations comprising 91% of the EKO, 33% of the SMH and 46% of the ROM 

populations when setting the membership coefficient larger than 0.5. At k=4 there are two 

clear clusters: the cluster in yellow mainly consisting of the PR (Belarus), the cluster in red 

consisting of the Petkus population (Germany). The remaining genotypes (Poland) have a 

higher level of admixture. From k=5 to 10 most of the new clusters emerged only within the 

Eastern European populations. Based on the STRUCTURE analysis testing from k=2 to 10, 

the most probable number of populations was k=3 where the Ln Pr (X/k) (natural log 

probability of the allele frequency for k given clusters) reached a plateau starting from k=3. 

This is an indication of the “true” number of subpopulations. Phylogenetic tree analysis was 

generally in agreement with the STRUCTURE analysis that the Petkus population is different 

from the Eastern European populations. Few exceptions were two genotypes from ROM and 

one genotype from EKO that cluster together with the Petkus population (Figure 9). 

Additionally, the Petkus population was separated into two groups which could not be seen 

using the STRUCTURE analysis. Phylogenetic tree analysis did not separate the Eastern 

European populations clearly; however, one can still see a weak separate clustering of EKO 

and PR. Both analyses come to a conclusion that the genetic composition of the Petkus 

population is different from the four Eastern European populations. 

Source Df Sum of 

squares 

Variance 

components 

Percentage of total 

genetic variance 

 SSR markers     

Among populations 4 235,198 1.30*** 13.3 

Among individuals within population 196 1,801,269 8.50*** 86.7 

Total 200 2,036,468 9.80 100.0 

Candidate genes     

Among populations 4 21255,557 0.80*** 20.9 

Among individuals within population 196 109367,571  3.01*** 79.1 

Total 200 130623,128 3.81 100.0 
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Figure 9 Phylogenetic tree (above) and population structure diagrams (below) based on 37 genome-wide SSR markers. 

Each genotype is represented by a tree branch and a vertical bar in the phylogenetic tree and the population structure diagram, respectively. Results of population structure are shown 

when the numbers of estimated clusters equals k=2 to 4. The vertical bar is partitioned into k coloured segments that represent the genotype’s estimated membership fractions. The 

legend indicates the symbol and corresponding name of the each population.  
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The relatedness among the 201 genotypes estimated from the allele-similarity matrix ranged 

from 0.11 to 1.00 with a mean of 0.37 (Figure 10). Compared to the Eastern European 

populations, genotypes from Petkus showed a higher relatedness among each other with a 

mean of 0.53 probably due to more intensive intercross and backcross selections. 

 

3.4 Decay of linkage disequilibrium 

LD decay can vary considerably in different genomic regions due to different recombination 

rates and selection pressures at different regions of the genome. The mean r
2
 for pairs of 

SNPs within candidate genes ranged from 0.06 to 0.92 (Table 8). The LD patterns varied 

from gene to gene (Figure 11). Several strong LD blocks were observed in different genes. In 

ScCbf11, two strong LD blocks were observed, one in the interval from SNP1 to SNP12 

spanning 99 bp (mean r
2
 within LD block = 0.93), and one from SNP17 to SNP27, spanning 

243 bp (mean r
2
 within LD block = 0.98). In ScCbf14, all five SNPs were found to be in high 

PR 

 

EKO 

 

SMH 

 

ROM 

 

 

Petkus 

PR                    EKO         SMH        ROM                        Petkus 

No 

relatedness 

Complete 

relatedness 

Figure 10 Heatmap of relatedness among the 201 rye genotypes. 

Genotypes were sorted according to populations along the x-axis and y-axis. Each grid represents the pair-

wise relatedness between genotypes. The colour legend for relatedness with its density distribution is given 

on the right hand side. Counts are the numbers of pair-wise relatedness between genotypes. 
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LD with mean r
2 

values 0.92. Estimation of LD in ScIce2 was performed based on 37 SNPs 

(mean r
2 

= 0.36), all located in the first intron of the gene. There were three strong LD blocks, 

from SNP1 to SNP18 (block 1), SNP19 to SNP31 (block 2), and SNP32 to SNP37 (block 3), 

spanning 458 bp, 187 bp, and 61 bp, with a mean r
2 

within LD blocks of 0.85, 0.75, and 0.73, 

respectively. Interestingly, the mean r
2 

between blocks 2 and 3 decreased to 0.35, between 

blocks 1 and 2 further to 0.10, and between blocks 1 and 3 to 0.13. On the contrary, low LD 

was observed in ScCbf2 (mean r
2 

= 0.13), ScDhn3 (mean r
2 

= 0.25) and in the coding 

sequence of ScCbf9b (mean r
2 

= 0.14). The inter-genic LD among the ScCbf genes was very 

low (mean r
2 

= 0.05), and only ScCbf14 showed a slightly higher inter-genic LD (mean r
2 

= 

0.15) with ScCbf9b.  

Extent of LD determines mapping resolution and marker density in association studies. The 

average extent of significant LD pooling all candidate genes and populations together was 

approximately 520 bp using r
2 

= 0.16 as a critical threshold estimated from a separate 

analysis of 37 unlinked SSR markers (Figure 12). Since the physical distance of each 

candidate genes are unknown, pairwise comparisons of polymorphic sites were restricted to 

within candidate genes resulting in 2,194 pairwise comparisons of which almost one third 

were significant as determined by Fisher’s exact test. The average extent of significant LD in 

individual populations was much smaller because of more stringent threshold values and 

ranged from 0 bp in the SMH population to approximately 380 bp in the Petkus populations. 

Locus-specific LD across populations extended from approximately 80 bp in ScCbf15 to 800 

bp in ScIce2 (Additional figure1). In ScCbf11, ScCbf14, and ScDhn1, mean r
2 

remained larger 

than 0.16 within the 400 bp amplified region. Genome-wide LD based on SSR markers was 

low with a mean r
2 

= 0.01 (Additional table 2). The r² was very low and only one pair of 

markers (RMS1138 versus SCM276) on chromosome 2R exceeded the value of r²=0.1. On 

chromosomes 1R and 2R 41.7% and 53.3% of marker pairs showed intra-chromosomal LD at 

the level of r² > 0.01 which is a substantially higher proportion than that on the other 

chromosomes (average = 8.2%). 
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Figure 11 LD heatmaps of twelve candidate genes illustrating pair-wise measurements of LD (r²) 

between SNPs. 

On the left side of each LD heatmap the gene structure is given whereby exons, and 5‘- or 3‘-flanking 

regions are represented by grey cylinders and black lines, respectively. White cylinders with dashed lines 

indicate non-amplified exons. Black triangles represent polymorphic sites starting from “SNP1” on the top 

of each graph. Each grid represents the strength of LD estimated by r² for each pairwise comparison 

between polymorphic sites with a minor allele frequency (MAF) > 0.05. The colour legend for r
2
values is 

given on the right side. ScVrn1 was not included due to a lack of pairwise comparisons, since only one 

Indel was observed. 
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3.5 Association analyses 

 

3.5.1 SNP-FT associations across three platforms 

SNP-FT associations were tested using 170 polymorphisms from twelve candidate genes 

(161 SNPs and 9 Indels, for convenience further on summarized as “SNPs”). In the controlled 

platform, 69 statistically significant SNPs were identified among nine genes: ScCbf2, 

ScCbf9b, ScCbf11, ScCbf12, ScCbf15, ScDhn1, ScDhn3, ScDreb2, ScIce2 (all P < 0.05; 

Figure 13). In the semi-controlled platform, 22 statistically significant (P < 0.05) SNPs were 

identified among five genes: ScCbf2, ScCbf11, ScCbf12, ScCbf15, and ScIce2. In the field 

platform, 29 statistically significant (P < 0.05) SNPs were identified among six genes: 

ScCbf9b, ScCbf12, ScCbf15, ScDhn1, ScDreb2, and ScIce2. Eighty-four SNPs from nine 

genes were significantly associated with FT in at least one of the three platforms, and 33 

Figure 12 LD decay plots of twelve candidate genes over all populations and in five rye 

populations. 

Non-linear fitting curve from the mutation-recombination-drift model are shown. Thresholds for LD are 

indicated by a horizontal solid line which varied from 0.16 over all populations to 0.46 in the SMH 

population (see methods in chapter 2.9). 
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SNPs from six genes were significantly associated with FT in at least two of the three 

platforms. Across all three phenotyping platforms, two SNPs in ScCbf15 and one SNP in 

ScCbf12 were significantly associated with FT; all of these three SNPs are non-synonymous, 

causing amino acid replacements. No SNP-FT associations were found for SNPs in ScCbf6, 

ScCbf14, and ScVrn1. Full information on SNP-FT associations for all platforms can be 

found in Additional table 3. 

 

Figure 13 Venn diagram showing SNPs from candidate genes significantly (P < 0.05) associated with frost 

tolerance in one, two, and three phenotyping platforms. 

The first and second numbers in brackets are the number of significant SNPs and total number of SNPs in each 

candidate gene, respectively.  

 

Over all platforms the average percentage of significant SNP-FT associations was higher in 

the promoter and intron regions than in exons and 3’UTR (Figure 14). On average, 33.3% of 

significant SNP-FT associations were observed in promoters, 35.5% in introns, 17.2% in 

exons, 2.9% in 5’UTRs and 11.1% in 3’UTRs, suggesting that the regulatory elements might 

play an important role in the response to frost stress. It is worth pointing out that the vast 

majority (96%) of the intronic SNPs significantly associated with FT were located in the first 
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intron of ScIce2 with high LD and consequently lead to high percentages of significant SNP-

FT associations in this region. Comparing the three platforms, the controlled platform had the 

highest percentages of significant SNP-FT associations except for the 3’UTR. Surprisingly, 

the percentages of significant SNP-FT associations differed only slightly between 

synonymous and non-synonymous SNPs. 

 

Figure 14 The percentages of significant (P < 0.05) SNP-FT associations sorted according to gene regions 

and types of SNPs in the exons 

Histograms show the percentages of significant SNP-FT associations in all the SNPs belonging to the specific 

gene regions or types of SNPs in the exons. Numbers in brackets on the x-axis are the total number of SNPs in 

this gene region. The numbers on top of each bar are the number of SNPs significantly associated with FT.  

 

Allelic effects (βSNP) of the 170 SNPs studied were relatively low, ranging from -0.43 to 0.32 

for recovery scores in the controlled platform, -2.17% to 2.44% for % plants with undamaged 

leaves in the semi-controlled platform, and -3.66% to 4.30% for % survival in the field 

platforms (Figure 15). Among all significant SNPs, the smallest allelic effects (βSNP) in the 

controlled, semi-controlled and field platform were 0.16%, 1.96%, and 2.01% respectively. 

45.5% of all significant SNPs found in at least one platform had positive allelic effects, 

indicating the non-reference allele conveyed superior FT to the reference allele. The largest 

positive βSNP among the 170 SNPs in the field platform was observed for SNP7 in ScIce2 
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(βSNP = 4.30). This favorable allele was present predominantly in the PR population (55.2%), 

and occurred at much lower frequency in the other four populations (EKO: 4.7%, SMH: 6.7%, 

ROM: 7.1%, and Petkus: 0%). The proportion of genetic variation explained by individual 

SNPs ranged from 0% to 27.9% with a median of 0.4% in the controlled platform, from 0% 

to 25.6% with a median of 1.2% in the semi-controlled platform, and from 0% to 28.9% with 

a median of 2.0%in the field platform (Figure 16). These distributions were highly 

concentrated near 0.  
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Figure 15 Distribution of allelic effects (βSNP) of SNP-FT associations in a) controlled, b) semi-

controlled, and c) field platforms. 

The left and right hand side bars in a), b) and c) represent alleles with negative (-) and positive (+) effects 

relative to the Lo152 reference allele, respectively. The significance threshold (P < 0.05) for each 

platform is indicated by a dashed line.  
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Figure 16 Distributions of effect sizes of SNPs (genetic variation explained by individual SNPs) in 

three phenotyping platforms. 



Results 

 

51 

 

Empirical correlations of the SNP-FT association results, in terms of t values, between the 

three phenotyping platforms were moderate to low (Figure 17). The highest correlation 

coefficient was observed between the controlled and semi-controlled platforms with r = 0.59, 

followed by correlations between the controlled and field platforms with r = 0.54, and the 

semi-controlled and field platforms with r = 0.24. When correlations were restricted to the 

significant SNPs, slightly higher correlation coefficients were observed with r = 0.64 between 

the controlled and semi-controlled platforms, r = 0.66 between the controlled and field 

platforms, and r = 0.34 between the semi-controlled and field platforms. 

 

3.5.2 Haplotype-FT associations  

Haplotype-FT associations were performed using 30 haplotypes (MAF > 5%) in eleven 

candidate genes. Because only one haplotype in ScDhn1 had a MAF > 5%, ScDhn1 was 

excluded from further analysis. Large numbers of rare haplotypes (MAF < 5%) were found in 

ScCbf9b (N=62) and ScCbf12 (N=22) resulting in large numbers of missing genotypes (87.9% 

and 61.3%) for the association analysis. Haplotypes 2, 3, and 4 in ScCbf2 were significantly 

(P < 0.05) associated with FT in the controlled platform. Haplotype 3 in ScCbf2 which had a 

positive effect on FT, was present mainly in the PR population (20.7%), whereas occurred in 

much lower frequencies in the other four populations (0.0% in EKO, 0.0% in SMH, 5.1% in 

ROM, and 0.0% in Petkus, Figure 7). For haplotypes 1 and 2 in ScCbf15 and haplotype 1 in 

Figure 17 Correlation coefficients of the three different phenotyping platforms. 

The underlined numbers were based on empirical correlations of the t-values from all 170 SNPs and 84 (in 

brackets) SNPs significantly associated with FT in at least one of the three platforms, respectively. The 

inner numbers are based on the phenotypic adjusted entry means. 
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ScIce2, significant associations (P < 0.05) were found across two and three platforms, 

respectively (Table 10). Haplotype effects (βHap) were relatively low and comparable to the 

allelic effects (βSNP) ranging from -0.31 to 0.49 (recovery score), -1.71% to 2.74% (% plants 

with undamaged leaves), and -3.32% to 3.80% (% survival) in the controlled, semi-controlled 

and field platforms, respectively. The highest positive effect on survival rate was observed 

for haplotype 1 of ScIce2 in the field platform, implicating this haplotype as the best 

candidate with superior FT. This favorable haplotype was present mainly in the PR 

population (35.7%), occurring in much lower frequencies in the other four populations (0.0% 

in EKO, 6.7% in SMH, 5.3% in ROM, and 0.0% in Petkus (Figure 7). The proportion of 

genetic variation explained by all haplotypes ranged from 0% to 25.7% with a median of 1.6% 

in the controlled platform, from 0% to 17.6% with a median of 1.4% in the semi-controlled 

platform, and from 0% to 9.3% with a median of 4.8% in the field platform. 
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Table 10 Summary of haplotypes significantly associated with FT in at least one platform, their haplotype effects, and percent genetic variation explained by the haplotypes 

Candidate 

gene 

Name of 

haplotype
 a
 

Controlled 

(recovery score 0-5)
 b

 

  Semi-controlled 

 (% plants with undamaged leaves) 

 Field  

(% survival) 

P-value
 c
 βHap % genetic 

variation 

explained 

 P-value βHap % genetic 

variation 

explained 

 P-value βHap % genetic 

variation 

explained 

ScCbf2 Overall
d
 <0.001 - 25.7  0.21 - 16.3  0.40 - 5.0 

 2 0.04 -0.11 -  0.51 -0.51 -  0.73 -0.51    - 

 3 <0.001 0.49 -  0.19 1.36 -  0.12 3.32 - 

 4 <0.001 -0.31 -  0.12 -1.43 -  0.74 0.57 - 

ScCbf15 Overall <0.01 - 0.6  0.09 - 17.6  0.09 - 4.4 

 1 <0.01 -0.22 -  0.04 -1.69 -  0.06 -3.32 - 

 2 <0.01 -0.21 -  0.13 -0.92 -  0.04 -2.59 - 

ScIce2 Overall 0.04 - 4.8  0.02 - 13.3  0.13 - 8.1 

 1 <0.01 0.29 -  <0.01 2.74 -  0.02 3.47 - 
a 
Haplotypes with minor allele frequency (MAF) > 5% 

b 
0: completely died. 1: little sign of life. 2: intensive damage. 3: moderate damage. 4: small damage. 5: no damage 

c 
P-values < 0.05 are printed in bold 

d 
All haplotypes (MAF > 5%) within a candidate gene
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3.5.3 Complex epistasis contributing to frost tolerance 

Epistasis, or gene × gene interaction, is an important context-dependent genetic effect. Out of 

all 55 possible gene × gene interactions (eleven genes with more than two haplotypes with 

MAF > 5%), 30 were tested since the rest were dominated by a single haplotype combination 

(> 95%). Among the 30 possible gene × gene interactions, eleven, six, and one were 

significantly (P < 0.05) associated with FT in the controlled, semi-controlled, and field 

platforms, respectively. ScCbf15 × ScCbf6, ScCbf15 × ScVrn1, ScDhn3 × ScDreb2, and 

ScDhn3 × ScVrn1 were significantly associated with FT across two platforms, none were 

significantly associated with FT across all three platforms (Figure 18). ScVrn1was involved 

in eight gene × gene interactions which was the largest number despite the fact that it was not 

significantly associated with FT in any platform in the statistical model without interaction 

term. Two gene × gene interactions occurred between members of the Cbf gene family: 

ScCbf6 × ScCbf15 and ScCbf11× ScCbf14. 

 

Figure 18 Significant (P < 0.05) gene × gene interactions for frost tolerance in three phenotyping 

platforms. 

Candidate genes are sorted in three known and one unknown level according to the frost responsive 

cascade (Yamaguchi-Shinozaki and Shinozaki 2006). 
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3.5.4 SNP by environment interactions  

SNP by environment interaction is another important context-dependent genetic effect. In the 

controlled platform, 95 SNPs with significant (P < 0.05) SNP by environment (temperature 

and year) interactions were identified among all candidate genes except for ScVrn1 (Figure 

19). In the semi-controlled platform, 70 SNPs with significant SNP by environment (year) 

interactions were identified among eight genes: ScCbf2, ScCbf9b, ScCbf11, ScCbf12, 

ScCbf15, ScDhn1, ScDhn3 and ScIce2. In the field platform, 58 SNPs with significant SNP 

by environment (field location) interactions were identified among nine genes: ScCbf6, 

ScCbf9b, ScCbf12, ScCbf14, ScCbf15, ScDhn1, ScDhn3, ScDreb2 and ScIce2. There are 147 

SNPs from eleven genes (except for ScVrn1) with significant SNP by environment 

interactions in at least one of the three platforms, and 55 SNPs from eleven genes (except for 

ScVrn1) in at least two of the three platforms. Across all three phenotyping platforms, 21 

SNPs from ScCbf15, ScDhn1, ScDhn3 and ScIce2 with significant SNP by environment 

interactions were found. Full information on SNP × environment interactions for all 

platforms can be found in additional table 3. 

 

Figure 19 Venn diagram showing SNPs from candidate genes with significant (P < 0.05) SNP × 

environment interaction in one, two, or three phenotyping platforms. 

The first and second numbers in brackets are the number of significant SNP × environment interactions and total 

number of SNPs in each candidate gene.  
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4. Discussion 

 

4.1 A diverse germplasm collection for winter rye association studies 

The choice of germplasm representing phenotypic and genetic diversity of the examined 

species is important in association studies. Theoretically, diverse germplasm including 

worldwide cultivars, landraces, and possibly even wild species should be used to fully exploit 

ancestral recombination and mutation events. In this study germplasm was restricted to 

Middle and Eastern European rye populations due to the following two reasons. Firstly, the 

five Middle and Eastern European populations are good representatives of the worldwide 

germplasm because 81% of rye production in the world in 2009 was located in Middle and 

Eastern Europe. Secondly, the primary aim of this study was to improve FT of the Middle 

European Petkus population by identifying favorable alleles from Eastern European 

germplasm which might have undergone strong selection pressure for FT. Thus, germplasm 

from countries with mild winters such as Spain, Turkey, and Iran is not expected to possess 

such favorable alleles due to lack of selection pressure. Phenotypic variation in 12 

environments from three phenotyping platforms was high and mainly attributed to genotypes. 

Genetic diversity was also high based on both sequencing data of candidate genes and SSRs. 

 

4.1.1 Comparing genetic diversity of the five winter rye populations to other species  

Assessment of genetic diversity based on genome-wide SSRs and locus-specific candidate 

genes are complementary investigations, the former providing a global view of the rye 

genome and the latter focussing on genes involved in the frost tolerance network. Nucleotide 

and haplotype diversity of twelve candidate genes were investigated in the five winter rye 

populations from Middle and Eastern Europe. SNP frequency observed in a total of around 

10 kb DNA sequence was on average one SNP every 52 bp and the average nucleotide 

diversity (π) ranged from 0.4×10
-3

 to 14.5×10
-3

 with an average value of π = 5.6×10
-3

. These 

values are as high as those reported in maize landraces, where one study reported a rate of 

one SNP per 62 bp, a range of π from 0.1×10
-3

 to 13.3×10
-3

 and an average value of π equal 

to 4.0 ×10
-3 

(Yamasaki et al. 2008). Some studies have suggested that comparisons among 

different species should be restricted to homologous genes (Krutovsky and Neale 2005). 

Nucleotide diversities of three Cbf homologs in 34 Arabidopsis ecotypes (AtCbf1, AtCbf2 and 

AtCbf3) ranged from π =2.6×10
-3

 to 6.9×10
-3 

(Lin et al. 2008), a smaller range compared to 

this study (π =1.5×10
-3

 to 14.5×10
-3

), which is likely due to the different mating system (Nei 

1987). Observed haplotype diversities of HvCbf9b in Hordeum spontaneum, old cultivars, 
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and modern cultivars of H. vulgare were 0.48, 0.18, and 0.06, respectively, which is much 

lower than that of ScCbf9b (Hd = 0.98 ± 0.03) in this study (Fricano et al. 2009). Another 

example also showed higher sequence diversity of rye compared to barley using 14 

amplicons of rye derived from barley expressed sequence tags (ESTs) putatively involved in 

biotic and abiotic stress tolerance (Varshney et al. 2007). This again indicates that the mating 

system plays an important role on genetic diversity between different species. To summarize, 

genetic diversity in this rye germplasm is high and therefore suitable for association studies.  

Natural selection leaves its traces in the pattern of nucleotide polymorphism in the genes. 

Strong directional selection on the loci responsible for some kind of abiotic stress tolerance 

should reduce diversity within locally adapted populations due to increases in frequency of 

alleles conferring adaptation. However, no reduction of genetic diversity was observed in the 

Eastern European populations compared to the Petkus population based on FT candidate 

genes. One possible explanation is that at the time when selection of FT took place, winters in 

Germany, the provenance of the Petkus population, were harsh enough to form a similar 

selection pressure on the Petkus population compared to Eastern European populations under 

Eastern European winters. It must be stated however, that Petkus is the only representative 

for the Middle European rye populations in this study and thus conclusions on population 

differences must be limited to the Petkus population. Another reason could be that FT is a 

complex quantitative trait involving large gene networks comprising individual genes 

contributing only small effects, thereby making it difficult to detect selection signatures, such 

as reduction of genetic diversity in candidate genes.  

On the contrary, genome-wide assessment of diversity using SSR markers revealed a higher 

genetic diversity for the Eastern European populations PR, EKO, SMH, and ROM compared 

to the Middle European Petkus population. One reason for this finding might be a bottleneck 

effect due to a higher selection pressure in the Petkus population, whereby it could be 

assumed that many “unfavourable” minor alleles were eliminated to pave the way for plants 

with desirable traits. The Petkus population, one of the two heterotic groups in rye, has 

systematically been improved by more than five cycles of full sib recurrent selection for yield, 

thousand-grain weight, resistance to lodging, self fertility, and disease resistance. A reduction 

in allele diversity of SSR markers due to hitchhiking with linked loci which were targets of 

selection is therefore probable. The reduction of genetic diversity due to human-induced 

selection has been well documented in barley and maize (Fricano et al. 2009; Kilian et al. 

2006; Tian et al. 2009). By contrast, the Eastern European populations experienced a lower 
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selection pressure by mass or half sib selection in the breeding programs where introgression 

of foreign material was common in order to keep genetic variability on a high level. 

Therefore, the Eastern European populations can be used for broadening the genetic diversity 

of the elite breeding materials such as the Petkus population.  

4.1.2 Genetic differentiation between the Petkus and Eastern European populations 

Based on the STRUCTURE analysis testing from k=2 to k=10, the most probable number of 

populations was k=3 where the Middle European Petkus population was clearly separated 

from the Eastern European populations. This conclusion is based on three reasons: Firstly, the 

Ln Pr (X/K), which is the natural log probability of the data (allele frequency) for k given 

clusters that are present in the data, reached a plateau starting from k=3. This is an indication 

of the “true” number of subpopulations by Pritchard et al. (2000b). Secondly, k =3 can be 

explained by the cultivation history of rye. According to the most recent archaeological 

evidences, rye was first cultivated at Abu Hureyra, in modern Syria (Hillman et al. 2001; 

Murphy 2007) and later spread to Russia and Belarus via Caucasia and then into Poland and 

Germany (Bushuk 2001; Salamini et al. 2002). This is consistent with the observation of this 

study that EKO, SMH, and ROM (from Poland) have membership fractions from PR (from 

Belarus). The Petkus population, which is elite material from KWS-LOCHOW GMBH, has 

gone through intensive and effective selections for e.g. yield, resistance to lodging, and 

disease resistance. Therefore, the Middle European Petkus population is clearly separated 

from the Eastern European populations. This was further confirmed by phylogenetic tree 

analysis and PCoA based on SSR markers.  

 

4.1.3 Selection pattern and decline of LD 

LD results from the interplay of many factors. Selection, which causes locus-specific 

bottlenecks, is one of the factors that increase LD within and between alleles of selected loci. 

In the present germplasm, ScCbf15 and ScIce2 showed significant positive values of Tajima’s 

D (2.14 and 2.34, respectively; P < 0.05) over all populations, indicating balancing selection, 

whereby genotypes carrying alleles with intermediate frequency are favored. Positive 

Tajima’s D values can also be observed if a population was formed from a recent admixture 

of two different populations, which cannot be excluded in this study. ScDhn1 and ScDreb2 

showed a significantly negative value of Tajima’s D (P < 0.05), indicating purifying 

selection, whereby an excess of polymorphisms with low frequencies was observed. 

Interestingly, Dhn1 in Scots pine has also been described as subject to positive selection 
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(Wachowiak et al. 2009), implying that Dhn1 is possibly a target of selection in different 

species. In this study, a large variation of mean r
2 

in seven Cbf genes (0.13 to 0.92) was 

observed, indicating that the Cbf gene family has probably undergone diverse selection 

history. The extent of LD across all twelve candidate genes and over all rye populations was 

approximately 520 bp. This rapid decay of LD could be expected, because compared to self-

pollinated species, cross-pollinated rye has a higher effective recombination rate (Flint-

Garcia et al. 2003). In contrast to self-pollinated species, where LD extends up to 212 kb in 

cultivated barley(Caldwell et al. 2006b), a comparable fast LD decay has been reported in 

other cross-pollinated species, including douglas fir, maize, and ryegrass (Krutovsky and 

Neale 2005; Tenaillon et al. 2001; Xing et al. 2007). Pairwise LD measured by r
2
 based on 

SSRs was very low (mean r
2 

= 0.01), which was expected since the 37 SSRs have an average 

marker interval of 21 cM according to the integrated consensus map of Gustafson et al. 

(2009). Knowledge about LD can give hints for the marker density that is required for GWAS. 

The rapid decay of LD in rye promises a high resolution mapping in GWAS. A challenge, 

however, is that a huge number of markers is required for covering the whole genome 

encompassing more than 8,000 Mb. The exact number required for GWAS in rye is difficult 

to estimate with this study since LD decay could vary considerably from locus to locus due to 

different recombination rates and selection pressures at different regions of the genome. A 

more complete picture of LD extent in rye might be obtained using genome-wide distributed 

SNP markers (Haseneyer et al. 2011).  

 

4.2 Association analyses 

 

4.2.1 Biological implications of candidate genes with significant associations 

Statistically significant SNP-FT associations were identified in nine out of twelve candidate 

genes hypothesized to be involved in the frost responsive network among which the 

transcription factor Ice2 is one of the key factors. The function of Ice2 was characterized both 

in wheat and Arabidopsis (Badawi et al. 2008; Fursova et al. 2009). Over-expression of 

TaIce2 and AtIce2 in transgenic Arabidopsis plants resulted in increased FT of transgenic 

plants and was associated with higher expression levels of the Cbf gene family. Using 

electrophoresis mobility shift assays, Badawi et al. (2008) further showed that TaIce2 binds 

to the promoter region of TaCbf9. Unfortunately, no interaction between ScIce2 and ScCbf9b 

could be observed in this study probably due to the large number of rare haplotypes (MAF < 

5%) in ScCbf9b resulting in many missing genotypes (87.9%) and thus in insufficient 
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statistical power to identify gene × gene interaction. However, in the rye homolog ScIce2 we 

detected 30 out of 37 SNPs in high LD (average r
2 

= 0.85) which were significantly 

associated with FT. These results support the findings of expression studies that Ice2 is one of 

the key elements in the frost responsive network. Given that these 30 SNPs are all located in 

the first intron of the gene, they are unlikely to be functional. However, it is possible that they 

are in LD with functional polymorphisms located in the coding sequence (CDS) of the gene 

which we have not investigated due to a lack of rye sequences in GenBank for primer design. 

The favorable allele of SNP7 in ScIce2 had a relatively large allelic effect on FT in the 

controlled and field platforms when compared to other SNPs in this study. This allele was 

present predominantly in the PR population while entirely absent in the Petkus population. 

Thus, this SNP might facilitate marker-assisted backcrossing to introgress favorable genomic 

regions into the Petkus population, thereby improving FT of current breeding materials. 

The Cbf gene family, regulated by Ice2, belongs to the family of APETALA2 (AP2) 

transcription factors, some of which (except Cbf11) are closely linked in cereals and map to 

the FT locus Fr2 on homoeologous group 5 of barley and wheat spanning approximately 0.8 

cM in the genetic maps (Baga et al. 2007; Francia et al. 2007; Knox et al. 2008). The order of 

Cbf genes in the genetic map is consistent in both species and they share high sequence 

similarity (Galiba et al. 2009). Expression studies have revealed that the Cbf gene family is 

involved in the frost responsive network in diverse species (Campoli et al. 2009; Hannah et al. 

2005; Stockinger et al. 2007). In this study, seven Cbf genes were investigated and 

statistically significant associations were found in at least one platform for ScCbf2, ScCbf9b, 

ScCbf11, ScCbf12, and ScCbf15 but not for ScCbf6 and ScCbf14. This confirms previous 

studies that not all members of the Cbf gene family are involved in the frost responsive 

network (Campoli et al. 2009; Stockinger et al. 2007). In ScCbf2, a 200 bp Indel was highly 

associated (P = 6.27e
-5

) with FT in the controlled platform and explained a high proportion of 

the genetic variation in the controlled (25.7%) and semi-controlled (16.3%) platforms. It is 

noteworthy that this 200 bp Indel in the promoter of ScCbf2 contained two MYB and one 

MYC cis-elements. In wheat the presence of MYB and MYC elements has been shown to 

affect the binding specificity of TaIce41 (wheat homolog of ScIce2) and consequently the 

expression level of the TaCbf gene family (Badawi et al. 2008). Expression studies are 

needed to investigate the effect of multiple binding sites for ScIce2 in Cbf gene promoters on 

the expression level of Cbf genes. A study in Triticum monococcum suggested that 

polymorphisms in TmCbf12, TmCbf14, and TmCbf15 are the most likely explanation for 

observed differences in FT (Knox et al. 2008). Among the five significantly associated Cbf 
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genes in our study, SNP17 in ScCbf12, as well as SNP1 and SNP2 in ScCbf15 were 

significantly associated with FT across all three platforms. Given that these three SNPs are all 

non-synonymous, leading to amino acid exchanges in the CDS of their respective genes, they 

are good candidates for functional genetic studies. In a recent candidate gene-based 

association study, Fricano et al. (2009) found two SNPs located in the 3’-untranslated region 

of HvCbf14 significantly associated with FT in barley. The 3’-untranslated region of ScCbf14 

was not sequenced in this study; it would be interesting to sequence this region to investigate 

whether it also contains SNPs significantly associated with FT in rye as well. However, 

members of the Cbf gene family are not the only key factors in the frost responsive network 

(Fowler and Thomashow 2002; McKhann et al. 2008). Hannah et al. (2005) reported that 45% 

of the Arabidopsis transcriptome was cold responsive, but only 33% of the cold responsive 

transcriptome belonged to the Cbf regulon. In a study of wheat, Monroy et al. (2007) reported 

that at least one-third of the genes induced by cold did not belong to the Cbf regulon. The 

transcription factor AtHOS9, which encodes a putative homeobox protein, has been shown to 

contribute to the regulation of FT in Arabidopsis independently of the Cbf regulon (Zhu et al. 

2004). Thus, extending research to the analysis of more candidate genes of the frost 

responsive network in this dataset would certainly be worthwhile.  

The dehydration-responsive element binding gene, Dreb2, another member of the AP2 

transcription factor family, has been isolated and characterized in several crop species such as 

wheat, barley, maize, and rice (Dubouzet et al. 2003; Egawa et al. 2006; Qin et al. 2007; Xue 

and Loveridge 2004). Similar to Cbf genes, Dreb2 can specifically bind to DRE/CRT cis-

elements of the stress-inducible target genes, albeit primarily under drought rather than 

cold/frost stress (Liu et al. 1998). However, it is not surprising that Dreb2 can also be 

induced by cold/frost as shown by recent studies in wheat and maize since both drought and 

cold/frost stresses lead to dehydration of cells (Egawa et al. 2006; Qin et al. 2007). In this 

study, three SNPs in ScDreb2 were significantly associated with FT supporting the 

hypothesis that Dreb2 in rye is not only involved in drought response but also in frost 

response. 

The dehydrin genes, part of the COR gene family, are regulated by the Cbf gene family and 

the Dreb2 gene via the cis-element DRE/CRT present in the promoter region of COR genes 

(Yamaguchi-Shinozaki and Shinozaki 2006). Transcripts of HvDhn1, HvDhn3 and other 

HvDhn genes were detected under frost stress in barley (Zhu et al. 2000). We detected SNP2 

and SNP3 in high LD (r
2 

= 0.93) in the promoter region of ScDhn1 and SNP3 of ScDhn3 with 

significant associations with FT in the controlled platform. These SNPs might serve as 
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variants which affect the binding specificity of the Cbf gene family. This study confirmed 

results from expression studies in barley, wheat and Arabidopsis and suggests that Ice2, the 

Cbf family, Dreb2, and the Dhn gene family are involved in the frost responsive network in 

rye as well.  

4.2.2 Effect sizes of SNP-FT associations 

Effect sizes of markers, commonly expressed as percentage of the genetic variance explained 

by markers, are of primary interest in association studies since they are the main factors that 

determine the effectiveness of subsequent marker assisted-selection processes. Studies on the 

genetic architecture of quantitative traits have attracted a lot of interest and became a hot 

topic in recent years (Buckler et al. 2009; Flint and Mackay 2009; Ingvarsson and Street 

2010). Small allelic effects were found in maize flowering time where the largest effect of a 

QTL allele was only 0.4 days as measured by anthesis-silking interval (Buckler et al. 2009). 

A recent review summarizing association studies in 15 different plant species implicated that 

the effect size of QTL depends largely on the phenotypic traits, species, and types of variants 

(Ingvarsson and Street 2010). A candidate gene-based study in Douglas Fir revealed that 30 

SNPs from 12 candidate genes out of 384 SNPs from 117 candidate genes were significantly 

associated with ten cold hardiness related traits (Eckert et al. 2009). Effect sizes of the 

significant SNPs were relatively small ranging from 1% to 3.6% of variance explained. In 

this study, the distributions of SNP effect sizes (percentage of the genetic variance explained 

by individual SNPs) highly concentrated near zero and few SNPs having large effects with 

maximum 28.8% explained genetic variation. A similar distribution of haplotype effect sizes 

was observed. However, validation of the effect sizes using an independent set of populations 

or near isogenic lines is needed to avoid bias. It is worth pointing out that only 170 SNPs in 

12 candidate genes were used, a more complete picture of the genetic architecture of FT in 

rye might be seen using genome-wide association studies with high marker coverage. 

4.2.3 Correlations of SNP-FT associations between platforms 

Low to moderate empirical correlations of SNP-FT associations were observed across the 

three phenotyping platforms reflecting the complexity of FT. There are at least two reasons 

that might explain why relatively low to medium empirical correlations of SNP-FT 

associations were observed: 1) different duration and intensity of freezing temperature and 2) 

different levels of confounding effects from environmental factors other than frost stress per 

se. In the controlled platform, plants were cold-hardened and then exposed to freezing 

temperatures (-19°C or -21°C) in a short period of six days using defined temperature profiles. 
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Recovery score in the controlled platform represents the most pure and controlled 

measurement of FT among the three platforms since the effect of environmental factors other 

than frost stress is minimized. In the semi-controlled platform, plants were exposed to much 

longer freezing periods with fluctuating temperatures and repeated frost-thaw processes. In 

addition, a more complex situation occurs in this platform, requiring plants to cope with other 

variable climatic factors such as changing photoperiod, natural light intensity, wind, and 

limited water supply. Thus, the measurement % plants with undamaged leaves in the semi-

controlled platform reflects the combined effect of various environmental influences and 

stresses on the vitality of leaf tissue. This measurement does not cover FT recover ability of 

the plant and is probably only suitable for mild frost stress. In the field platform, winter 

temperatures, similar to that in the semi-controlled platform, also fluctuated but were 

generally lower than in the semi-controlled platform due to strong continental climate in 

Eastern Europe and Canada. The measurement % survival in the field reflecting severe 

damage of the plant is further confounded by environmental effects, such as plant nutrition 

(Gusta et al. 1999), snow mould (Wisniewski et al. 1997), soil moisture (Szucs et al. 2003), 

topography, and other unmeasured factors. Phenotypic analysis in the field platform revealed 

significant effects of environment and genotype × environment, confirming the role of 

environmental factors on FT. It is worth pointing out that the variance of genotype × 

environment interaction was almost five times higher than the variance of genotype. 

Unfortunately, these environmental factors are difficult, if not impossible, to explicitly 

control in the field platform. One approach to control for environmental factors is to perform 

FT phenotyping in growth chambers where most of environmental effects are removed (e.g. 

wind) or can be monitored (e.g. temperature). Broad-sense heritability (h
2
) in the controlled 

platform was considerably higher than in the field platform indicating better control of 

environmental factors. Another advantage of the controlled platform is that it allows more 

than one experiment per year and hence more than one selection cycle per year. Besides, the 

controlled platform guarantees sufficient frost stress, which is not always the case in field 

environments. However, given the low to moderate correlations among the three phenotyping 

platforms observed in both phenotypic and association analysis, predicting genotype 

performance only with semi-controlled and controlled platforms might be difficult since 

selection response is proportional to the correlation of FT between platforms (Lande and 

Thompson 1990). Further investigations, such as using the same endpoint, are needed to 

increase correlations among platforms.  
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4.2.4 Context-dependent effects of association analyses 

Epistasis, generally defined as the interaction between genes, has been recognized for over a 

century (Bateson 1909), and recently it has been suggested that it should be explicitly 

modeled in association studies in order to detect “missing heritabilities” (Phillips 2008; Wu et 

al. 2010). Several recent association studies in plants have revealed the presence of epistasis 

in complex traits, including potato tuber quality, barley flowering time, and maize kernel 

quality (Li et al. 2010a; Manicacci et al. 2009; Stracke et al. 2009). In this study, eleven, six, 

and one significant (P < 0.05) gene × gene interaction effects were found in the controlled, 

semi-controlled and field platforms, respectively, suggesting that epistasis may play a role in 

the frost responsive network. From the frost responsive network, one might hypothesize that 

transcription factors interact with their downstream target genes, for example, that ScIce2 

interacts with the ScCbf gene family and the latter interacts with COR genes, such as the 

dehydrin (Dhn) gene family. Indeed significant interactions were observed between ScIce2 × 

ScCbf15, ScCbf14 × ScDhn3, and ScDreb2 × ScDhn3. Some candidate genes in the same 

cascade level also interact with each other, such as members of the ScCbf gene family ScCbf6 

× ScCbf15 and ScCbf11 × ScCbf14. Similar interactions within the Cbf gene family were also 

observed in Arabidopsis where AtCbf2 was indicated as a negative regulator of AtCbf1 and 

AtCbf3 (Novillo et al. 2004). In this study, ScVrn1 was not significantly associated with FT 

but had significant interaction effects with six other candidate genes, suggesting an important 

role of ScVrn1 in the frost responsive network. To confirm direct physical interactions of 

transcription factors with their downstream target genes, further experiments are needed, for 

example, electrophoresis mobility shift assays or chromatin immunoprecipitation (ChIP) 

sequencing technology. It is worth pointing out that the power of detecting gene × gene 

interaction in this study might have been low due to the relatively small sample size. 

SNP or QTL by environment interaction is sometimes regarded as noise because the effects 

are not consistent across environments and only relevant in a specific environment. The 

presence of QTL by environment interaction depends on traits under study. In maize, 

detection of QTL for grain yield, plant height, and ear height highly depend on environment, 

whereas flowering-related traits such as anthesis-silking interval were less environmental 

dependent (Boer et al. 2007; Lima et al. 2006; Vargas et al. 2006). In this study, 54.7%, 

38.8%, and 30.0% of the 170 SNPs showed significant SNP by environment interaction in the 

controlled, semi-controlled, and field platforms, respectively, indicating a need to consider 

SNP by environment interaction in MAS (Additional table 3). This high percentage of SNPs 

with significant SNP by environment interaction is not surprising since genotype by 
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environment interaction is highly significant (P < 0.001) in phenotypic analysis. Fifteen 

SNPs from three genes (ScCbf9b, ScCbf12, and ScDreb2) in the controlled platform, six 

SNPs from four genes (ScCbf2, ScCbf12, ScCbf15 and ScIce2) in the semi-controlled 

platform, and three SNPs from three genes (ScCbf9b, ScCbf12, and ScDhn1) in the field 

platform were associated with FT with significant SNP main effect but without significant 

SNP by environment interaction effect implying that these SNP alleles consistently confer FT 

across environments. They are good marker candidates since the major goal of this study was 

to identify alleles associated with superior FT for selection of cultivars adapted to the wide 

range of climates in Eastern Europe. It is worth pointing out that among all 170 SNPs, SNP17 

in ScCbf12 was significantly associated with FT with SNP main effect across the three 

platforms and at the same time without significant SNP by environment interaction effect 

across the three platforms making it the best candidate for MAS. 

4.2.5 Comparison between SNP- and haplotype-FT association analyses 

Single-SNP association, namely testing one SNP at a time, has been proven to be powerful in 

the SNP-FT association analyses as shown in chapter 3.5.1. However, there is relatively little 

information provided by single SNPs unless the trait is monomorphic and the single SNP is 

the causal variant or highly correlated with it. For a complex quantitative trait like FT, 

simultaneous analyses of multiple SNPs may jointly provide information on associations 

leading to higher power. However, a statistical problem, the so-called “colinearity” may arise 

since predictors for the phenotype are highly correlated, e.g. high LD between SNPs in some 

of the candidate genes such as ScCbf11, ScCbf14, and ScIce2. An alternative method to 

perform multiple-SNP association analyses is to replace SNPs with haplotypes which are 

defined in this study as combinations of alleles from different SNPs within one gene. 

Haplotype-association has several advantages over SNP-association. Firstly, unlike the bi-

allelic property of SNPs, haplotypes are often multi-allelic and therefore fit the distribution of 

quantitative traits better, thus increasing the statistical power. In other words, testing 

individual SNPs once at a time might neglect their joint distribution. Second, genetic 

variation in populations is structurally organized into haplotypes (Clark 2004). That is several 

SNPs might function together to change the protein structure if they are located in the coding 

region or capture the combined effect of cis-acting variants if they are located in the promoter 

region. Third, haplotype-association can circumvent the multiple testing problem by reducing 

the number of tests and thus increase the chance to reject the null hypothesis (Zhao et al. 

2007). Fourth, haplotype-association can avoid colinearity in multiple SNP-associations. Due 

to these reasons, haplotype-association is widely used in human GWAS (Clark 2004; Morris 
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and Cardon 2007). Two challenges are often faced by the human geneticist: Defining 

haplotpye blocks with genome-wide distributed SNPs (Zhao et al. 2003) and inferring 

haplotype phase in heterozygous species (Clark 2004; Scheet and Stephens 2006; Stephens et 

al. 2001). In this study, it seems reasonable to define haplotpye blocks within the genes which 

are supposed to be the functional units in the genome. The employment of gamete capture 

gives rise to an unprecedented opportunity to determine haplotype phase in a heterozygous 

species without ambiguity. Despite many advantages of haplotype-association mentioned 

above, in this study less statistical power was observed in general compared to the SNP-

association results except for ScCbf2. One possible reason is that there are many missing data 

ranging from 2.1% to 87.9% in haplotype-associations since the rare haplotypes (MAF < 0.05) 

were excluded from the analyses due to the possibility of causing type I error (false positive) 

inflation. Therefore, haplotype-associations in this study have a smaller sample size and 

consequently less statistical power (Table 10). A much larger sample size of germplasm is 

needed if one wants to test all rare haplotypes. Another reason could be that if the association 

signal is mainly driven by a single SNP, using haplotypes might just add noise to the 

association since LD in this case probably arose from genetic drift instead of selection (Hayes 

2007). However, this explanation might be less likely because FT is a polygenic trait with 

many causal variants. Some other studies based on both simulation and real data suggested 

that single SNP-association had similar or greater power and precision than haplotype-

association (Grapes et al. 2004; Nielsen et al. 2004; Zhao et al. 2007). However, Hayes (2007) 

came to an opposite conclusion and suggested that whether to use single SNP-association or 

haplotype-association is mainly determined by the level of LD in the population. If LD 

measured by r
2
, is high or even equal to 1, testing single SNPs has a similar or the same result 

as haplotypes since they have a similar or even the same allele frequency; If LD is low, a 

different picture of association might arise. The present study supports this assumption that 

single SNP-association and haplotype-association in ScIce2 with high LD had similar results 

whereas in ScCbf2 with low LD more significant associations were found in haplotype-

association than in single SNP-association. In conclusion, SNP and haplotype-association 

should both be performed whenever possible. 

4.2.6 Multiple testing in association analyses 

An α = 0.05 has been widely accepted as the significance threshold in hypothesis testing 

(Sterne and Davey Smith 2001). Some studies also used α = 0.01 as the significance threshold. 

Nevertheless, these significance thresholds are suitable if only one hypothesis is tested at a 

time. An inherent problem of hypothesis testing is the so-called “multiple testing”. Multiple 
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testing leads to an inflation of the false positive rate (type I error) which means a true null-

hypothesis is rejected. A simple and common way to handle this problem is Bonferroni 

correction where the significance level is divided by the number of tests (Van Belle et al. 

2004). However, the Bonferroni correction is very conservative and only suitable when 

independent factors are tested. This assumption is violated in this study due to high LD 

between SNPs in some genes such as ScCbf11, ScCbf14, and ScIce2. In order to retain SNP-

candidates for further validation in upcoming experiments, the less stringent significance 

level of α = 0.05 was taken as significance threshold. In Table 11 a summary on the numbers 

of significant associations at different alpha levels including Bonferroni correction is shown. 

Compared to the controlled platform, the numbers of significant associations in the semi-

controlled and field platforms decreased faster when increasing the stringency of the 

significance level. In the controlled platform, nine SNPs from ScCbf9b and ScCbf12, two 

haplotypes from ScCbf2, and epistatic effects between ScCbf6 × ScCbf15, ScCbf6 × ScVrn1, 

and ScCbf14 × ScDhn3 remained significantly associated with FT even under the most 

stringent significance level (α =0.000058). Overall, the P-values of SNP and haplotype 

associations were smaller in the controlled platform compared to that in the semi-controlled 

and field platforms. One possible explanation is probably a smaller experimental error due to 

a better control of environmental noise in the controlled platforms. This is supported by the 

phenotypic data analyses where the heritability in the controlled platforms was almost twice 

as high as that in the field platform.  

Table 11 Numbers of significant associations at different α levels 

 Controlled Semi-controlled Field 

α level SNPs 

(genes)
 a
 

Haplo-

types 

Epistasis SNPs 

(genes) 

Haplo-

types 

Epistasis SNPs 

(genes) 

Haplo-

types 

Epistasis 

0.05 69 (8) 6 11 22 (4) 2 6 31 (6) 2 2 

0.01  49 (6) 3   8   5 (3) 1 4 22 (3) 0 0 

0.00416
b
 44 (6) 3   6   3 (3) 0 0   7 (2) 0 0 

0.000294
c
 18 (4) 2   4   0 0 0   1(1) 0 0 

0.000058
d
   9 (2) 2   3   0 0 0   0 0 0 

a 
The numbers of genes were counted once there was a significant SNP present in the genes 

b 
Adjusted for Bonferroni correction by 0.05/12 (the number of genes) 

c 
Adjusted for Bonferroni correction by 0.05/170 (the number of SNPs) for SNP and by 0.05/30 for haplotype 

and epistasis 
d 
Adjusted for Bonferroni correction by 0.01/170 for SNP and by 0.01/30 for haplotype and epistasis
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4.3 Outlook 

Fast and precise phenotyping of traits is crucial for association studies and other breeding 

experiments. Under field conditions, sufficiently low temperatures and durable frost periods 

are needed to obtain differentiation between frost tolerant and frost susceptible genotypes for 

association studies. Within six tested field environments, only two (SAS1 and SAS2) showed 

satisfactory FT differentiation between genotypes. This underlines the need of multiple years 

and locations for assessment for FT under field conditions. Besides, large experimental error 

due to inhomogeneity of soil and microclimate conditions poses a challenge in field trials. To 

address this, one approach is to use spatial models to adjust for the spatial trend across the 

field. As suggested by Gilmour et al. (1997), spatial variation can be partitioned into the 

following three additive components: local trend, global trend and extraneous variation. 

Another challenge of FT phenotyping is the need to perform precise and high-throughput 

phenotyping in order to catch up with the high-throughput genotyping technologies. For 

example, chlorophyll fluorescence which measures frost damage of leaves as a decrease in 

the maximum quantum efficiency of photosystem II could be automated using the high-

throughput screening system, Scanalyzer 3D, provided by the LemnaTec company (Tester 

and Langridge 2010). 

Genome-wide association studies, using high-density genotyping arrays to perform 

association analysis without prior knowledge, is an alternative to candidate gene-based 

association studies. This approach has successfully identified many QTL controlling 

morphological and agronomic traits in Arabidopsis, barley, and rice (Atwell et al. 2010; 

Cockram et al. 2011; Huang et al. 2010; Li et al. 2010b). For traits such as disease and insect 

resistance (Ingvarsson and Street 2010) that are regulated by a few genes with large effect 

sizes, it is logical to use single marker regression since the aim is to identify a few causal 

variants or markers in LD with the causal variants. In this approach markers are tested one at 

a time and then model selection techniques such as forward selection, backward elimination 

and/or stepwise regression are tested to select the best combination of markers. However, 

estimated marker effects are biased due to model selection. Therefore it is important to 

validate the significance and effect size of the markers in an independent population. Besides, 

the risk of identifying false positive signals due to multiple testing is high. For traits that are 

regulated by many genes with small effect sizes, fitting a multiple marker regression model 

using all markers simultaneously is an alternative to select a few significant markers. This 

method is known as genomic selection, a rapid evolving field of research (Bernardo and Yu 

2007; Meuwissen et al. 2001). However analysis of such large amounts of markers together 
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leads to over-parameterisation where the number of observations is much smaller than the 

number of predictors (n<p). Various methods have been developed to tackle this problem, for 

example, ridge regression (Piepho 2009), Bayes A and Bayes B (Meuwissen et al. 2001), and 

Bayesian LASSO (Li et al. 2011). In addition, to select the right statistical model, another 

obvious concern for successful genome-wide association studies is the availability of high-

density genotyping arrays generated in low cost, high-throughput, and high accuracy. 

Recently a Rye5K SNP array has been developed using rye transcriptome sequencing 

(Haseneyer et al. 2011) and a 20K SNP array will be available in the near future (Eva Bauer, 

pers. communication). It is exciting to see whether genome-wide association studies can help 

to identify new QTL controlling important agronomic traits in rye as well. 

Classical plant breeding, relying solely on phenotypic selection has been historically 

successful since centuries. However, the disadvantages of phenotypic selection are obvious: 

Phenotypic selection is time-consuming, it is difficult to measure traits such as abiotic stress 

tolerance, and is dependent on the stage of development (e.g. yield can only be measured in 

the late stage of plant development). MAS, generally defined as a technique that utilizes 

DNA markers for selection of desirable genotypes, might overcome the disadvantages of 

phenotypic selection as mentioned above (Collard and Mackill 2008). It has been shown to be 

a very valuable tool for improving simply inherited traits such as pest or disease resistances 

(Jefferies et al. 2003) or even complex traits such as drought stress tolerance (Ribaut and 

Ragot 2007). MAS has the potential of providing more efficient use of new genetic variation 

from exotic germplasm. For example, aiming at broadening the genetic diversity of elite 

hybrid rye, an introgression library was developed by crossing an inbred line and a 

heterozygous Iranian primitive population followed by MAB using AFLP and SSR markers 

(Falke et al. 2008). SNPs and haplotypes with significant association with FT in the present 

study could be used as DNA markers for rapid and precise germplasm screening. Since most 

of the available genetic resources of rye are from population varieties, it will greatly facilitate 

the process of preselecting frost tolerant donor plants for hybrid rye breeding programs 

(Viktor Korzun, pers. communication). However, a validation step is needed before using 

these SNPs and haplotypes as DNA markers. Near-isogenic lines (NILs) which have a similar 

genetic background, but are homozygous for either the positive or negative alleles can be 

compared in the controlled and/or field platforms for FT. As an alternative validation 

approach, an allele-specific expression assay can be performed to assess differential allelic 

expression (Pastinen 2010; Serre et al. 2008). The relatively higher costs of MAS compared 

to traditional phenotypic selection is the main concern of Dreher et al. (2003), however, the 
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fast development of high-throughput genotyping platforms (e.g. Illumina’s iScan) and next 

generation sequencing techniques (e.g. Roche’s 454 GS FLX, Illumina’s HiSeq2000, and 

ABI’s SOLiD) plus the rapid decline of their costs will ultimately lead to a more common 

adoption of MAS in breeding programs in the near future.  

 



Summary 

 

71 

5. Summary 

Frost is an important abiotic stress that not only limits geographic distribution of crop 

production but also adversely affects crop development and yield. Crop varieties with 

improved frost tolerance (FT) are of enormous value for countries with severe winters. As the 

most frost tolerant small grain cereal, rye (Secale cereale L.) is an ideal cereal model for 

investigating the genetic basis of FT, a complex trait with polygenic inheritance. In order to 

dissect FT, a multi-platform candidate gene-based association approach was performed in 

201 winter rye genotypes. 

Plant material was derived from one Middle and four Eastern European cross-pollinated 

winter rye breeding populations: Petkus (Germany), PR (Belarus), EKO (Poland), SMH 

(Poland), and ROM (Poland). In order to determine the haplotype phase, gamete capture was 

performed where heterozygous plants from the five populations were crossed with the self-

fertile inbred line Lo152 resulting in 201 heterozygous S0 plants, each with one gamete 

known. 

Since FT is a complex quantitative trait affected by many genetic and environmental factors, 

twelve environments from three different phenotyping platforms under controlled, semi-

controlled, and field conditions were investigated. Significant genotypic variation of FT was 

found in all environments except for two field environments. However, the correlations of FT 

among the three different phenotyping platforms low to medium (r = 0.19-0.38) and thus 

might hinder the prediction of FT in the field from the other two platforms. Broad-sense 

heritability in the controlled platform was twice as high as that in the field platform indicating 

better control of environmental factors. Different populations might exhibit different FT due 

to local adaptation. The PR population showed slightly higher FT compared to other 

populations. 

Twelve candidate genes with a putative role in the frost responsive network were studied 

including seven members of the C-repeat Binding Factor (ScCbf) transcription factor family, 

as well as Dehydration-Responsive Element Binding gene 2, (ScDreb2), dehydrin genes 

(ScDhn1 and ScDhn3), Inducer of Cbf Expression 2 (ScIce2), and vernalization gene ScVrn1. 

A total of 161 single nucleotide polymorphisms (SNPs) and 9 insertions and deletions (Indels) 

were found within around 10 kb of DNA sequence, resulting in an average polymorphism 

frequency of 1 polymorphism / 55 bp and an average nucleotide diversity π = 5.6×10
-3

. A 

high level of genetic variation within the germplasm was observed which was mainly 

attributed to within population variation. Using 37 genome-wide SSR markers, a reduced 
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level of genetic diversity in the Petkus population was observed. Population structure and 

kinship analyses further revealed that the Petkus population was distinguished from the 

Eastern European populations. Extent of linkage disequilibrium (LD) determines mapping 

resolution and marker density in association studies. The extent of LD in this germplasm over 

all genes and populations was very low with approximately 520 bp using r
2 

= 0.16 as a 

critical threshold. 

The major goal of this study was to identify and characterize favorable alleles conferring 

superior FT in winter rye using linear mixed models. Statistically significant (P < 0.05) 

associations between FT and SNPs or haplotypes of nine candidate genes were identified. 

Two SNPs in ScCbf15 and one in ScCbf12, all leading to amino acid exchanges, were 

significantly associated with FT over all three phenotyping platforms. Favorable haplotypes 

in ScIce2 and ScCbf2 were mainly present in the PR population but entirely absent in the 

target Petkus population. Distribution of SNP effect sizes expressed as percentage of the 

genetic variance explained by individual SNPs was highly concentrated near zero with a few 

SNPs obtaining large effects. Relatively low to medium empirical correlations of SNP-FT 

associations were observed across the three platforms indicating the need for multi-level 

experimentation to dissect the complex mechanism of FT in rye. Two-way epistasis was 

found between 14 pairs of candidate genes suggesting the presence of epistatic interactions 

between genes involved in the frost responsive network. Significant (P < 0.05) SNP by 

environment interactions were found in more than 85% of the 170 SNPs in all candidate 

genes except for ScVrn1. 

Identification of alleles and genes underlying agronomic traits is important for genome-based 

breeding. The results demonstrated that given the huge genome size of rye (~8,000 Mb) and 

the rapid decline of LD, the candidate gene-based association approach remains one of the 

most appropriate strategies for identification of alleles influencing agronomic traits. 
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8. Additional tables and figures 

Additional table 1 Genetic diversities of twelve candidate genes within five rye populations 

 PR  EKO SMH ROM Petkus 

ScCbf2      

No. of genotypes  27 30 14  34 61 

No. of polymorphisms    2   3   3    3   3 

No. of haplotypes (private)    3 (0)   6 (0)   5 (0)    4 (0)   4 (1) 

Hd± SD    0.62 ± 0.07    0.64 ± 0.05   0.78 ± 0.09    0.61 ± 0.06   0.70 ± 0.03 

π ± SD (×10
-3

)    1.4 ± 0. 2   1.3 ± 0.2   2.1 ± 0.4    1.2 ± 0.2   1.6 ± 0.1 

      

ScCbf6      

No. of genotypes 32 42 15 36 69 

No. of polymorphisms   3   5   3   5   3 

No. of haplotypes (private)   3 (0)   7 (2)   2 (0)   6 (2)   4 (0) 

Hd± SD   0.49 ± 0.09   0.62 ± 0.05   0.13 ± 0.11   0.31 ± 0.10   0.40 ± 0.06 

π ± SD (×10
-3

)   3.9 ± 0.6   5.0 ± 0.3   1.2 ± 0.1   2.1 ± 0.8   3.4 ± 0.5 

      

ScCbf9b      

No. of genotypes 29 38 14 39 59 

No. of polymorphisms 25 31 27 32 30 

No. of haplotypes (private) 23 (12) 27 (17) 11 (5) 23 (15) 33 (26) 

Hd± SD   0.98 ± 0.01   0.98 ± 0.01   0.93 ± 0.06   0.96 ± 0.02   0.96 ± 0.01 

π ± SD (×10
-3

)   6.1 ± 0.6   6.6 ± 0.6   6.8 ± 0.7   6.8 ± 0.6   6.9 ± 0.6 

      

ScCbf11      

No. of genotypes 12 30   4 25 54 

No. of polymorphisms 15 28 13 28 28 

No. of haplotypes (private)   3 (1)   4 (1)   2 (0)   6 (3)   7 (4) 

Hd± SD   0.32 ± 0.16   0.53 ± 0.09   0.50 ± 0.27   0.73 ± 0.06   0.60 ± 0.05 

π ± SD (×10
-3

)   4.0 ± 2.8 11.5 ± 2.6 10.4 ± 5.6 16.6 ± 2.2 12.7 ± 1.5 

      

ScCbf12      

No. of genotypes 20 32 12 33 43 

No. of polymorphisms 25 23 22 24 25 

No. of haplotypes (private) 12 (8) 11 (4)   7 (3) 14 (8) 21 (15) 

Hd± SD   0.92 ± 0.04   0.79 ± 0.05   0.83 ± 0.1   0.89 ± 0.04   0.91 ± 0.03 

π ± SD (×10
-3

) 11.7 ± 2.7   4.8 ± 2.0   6.3 ± 2.9   5.4 ± 1.3 12.7 ± 1.5 

      

ScCbf14      

No. of genotypes 23 39 14 40 66 

No. of polymorphisms   5    5   5   5   5 

No. of haplotypes (private)   2 (0)   3 (1)   2 (0)   2 (0)   3 (1) 

Hd± SD   0.09 ± 0.08   0.19 ± 0.08   0.14 ± 0.12   0.10 ± 0.06   0.24 ± 0.06 

π ± SD (×10
-3

)   0.8 ± 0.7   1.6 ± 0.7   1.3 ± 11   0.9 ± 0.6   2.1 ± 0.5 
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 (Additional table 1 continued)     

 PR  EKO SMH ROM Petkus 

ScCbf15      

No. of genotypes 28 41 13 37 49 

No. of polymorphisms   4   2   2   4   4 

No. of haplotypes (private)   7 (2)   3 (0)   3 (0)   4 (0)   6 (2) 

Hd± SD    0.83 ± 0.04   0.26 ± 0.08   0.50 ± 0.14   0.70 ± 0.04   0.69 ± 0.04 

π ± SD (×10
-3

)   3.5 ± 0.3   0.5 ± 0.3   1.1 ± 0.3   3.4± 0.2   3.3 ± 0.2 

      

ScDhn1      

No. of genotypes 18 35 11 28 44 

No. of polymorphisms   5   6   0   6   6 

No. of haplotypes (private)   4 (1)   7 (2)   1 (0)   6 (3) 10 (7) 

Hd± SD   0.48 ± 0.13   0.56 ± 0.09   0   0.39 ± 0.12   0.41 ± 0.09 

π ± SD (×10
-3

) 10.8 ± 4.4   6.0 ± 1.7   0   2.2 ± 1.0   5.8 ± 2.0 

      

ScDhn3      

No. of genotypes 23 23 13 21 49 

No. of polymorphisms 12   7 10   8    4 

No. of haplotypes (private) 10 (6)   8 (1) 10 (6)   5 (1)   7 (4) 

Hd ± SD   0.84 ± 0.06   0.77 ± 0.06   0.95 ± 0.05   0.61 ± 0.09   0.66 ± 0.04 

π ± SD (×10
-3

) 14.2 ± 1.6   7.5 ± 1.6 14.1 ± 2.0 10.2 ± 2.5   5.8 ± 0.5 

      

ScDreb2      

No. of genotypes 18 41 15 38 64 

No. of polymorphisms   8   5   6   7   7 

No. of haplotypes (private) 18 (12) 17 (12) 12 (6) 22 (15) 34 (28) 

Hd ± SD   0.84 ± 0.06   0.81 ± 0.00   0.96 ± 0.00   0.92 ± 0.00   0.92 ± 0.00 

π ± SD (×10
-3

)   3.1 ± 0.0   2.4 ± 0.0   4.7 ± 0.0   2.9 ± 0.0   2.7 ± 0.0 

      

ScIce2      

No. of genotypes 28 42 15 38 63 

No. of polymorphisms 19 29 16 28   7 

No. of haplotypes (private) 12 (8) 13 (9)   4 (0) 13 (7) 11 (6) 

Hd± SD   0.84 ± 0.05   0.80 ± 0.05   0.54 ± 0.13   0.82 ± 0.05   0.74 ± 0.03 

π ± SD (×10
-3

) 12.5 ± 1.3   8.7 ± 1.4   8.0 ± 1.0 12.0 ± 1.1   8.4 ± 0.5 

      

ScVrn1      

No. of genotypes 29 44 14 40 68 

No. of polymorphisms   1   1   1   1   1 

No. of haplotypes (private)   2 (0)   2 (0)   2 (0)   2 (0)   2 (0) 

Hd± SD   0.11 ± 0.03   0.17± 0.07   0.26 ± 0.14   0.10 ± 0.06   0.09 ± 0.05 

π ± SD (×10
-3

)   0.4 ± 0.1   0.6 ± 0.2   0.9 ± 0.4   0.3 ± 0.2   0.3 ± 0.2 

SD: standard deviation 
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Additional table 2 Percentage of SSR marker pairs in LD both genome-wide and chromosome-wise  

 

 Chromosome 

(No. of markers)  

r
2
>0.1 

[%] 

r
2
>0.01 

[%] 

P<0.01 

[%] 

Genome-wide Total (37) 0.4 26.5 20.8 

Intra- chromosomal 1R (5) 0 41.7 41.7 

 2R (5) 6.7 53.3 33.3 

 3R (5) 0 13.3 6.7 

 4R (4) 0 10.0 0 

 5R (7) 0 10.7 57.1 

 6R (4) 0 0 10.0 

 7R (7) 0 7.1 14.3 

     r
2
: strength of LD
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Additional table 3 Allelic effect (βSNP), SNP effect (% genetic variation explained), and P-value of 170 SNPs main effects and SNP x environment interaction effects in three 

phenotyping platforms 

 Controlled 

(recovery score 0-5) 

Semi-controlled 

(% plants with undamaged leaves) 

Field 

(% survival) 

  

Gene_SNP βSNP %variation P- value SNP x envir. βSNP % variation P- value SNP x envir. βSNP % variation P- value SNP x envir. 

ScCbf2_SNP1 -0.26 27.88 6.27E-05
a
 0.0149 -0.18 1.04 0.7803 0.0002 0.75 0.00 0.5021 0.1888 

ScCbf2_SNP2 0.02 0.13 0.7591 0.2142 0.18 2.23 0.7046 0.2324 -0.20 0.00 0.7925 0.9957 

ScCbf2_SNP3 0.17 0.00 0.0236 0.0399 2.17 5.32 0.0022 0.4004 1.59 0.74 0.1904 0.9822 

ScCbf6_SNP1 0.03 1.15 0.6609 0.0086 0.88 11.11 0.1040 0.2309 1.33 3.89 0.1492 8.47E-05 

ScCbf6_SNP2 -0.04 0.00 0.4681 0.0033 0.51 7.03 0.3075 0.3924 0.76 2.79 0.3714 5.93E-05 

ScCbf6_SNP3 -0.05 0.00 0.3833 0.0027 0.26 4.43 0.6162 0.2501 0.78 2.60 0.3685 0.0114 

ScCbf9b_SNP1 0.05 1.85 0.3110 0.4967 -0.32 3.06 0.4807 0.6273 0.29 0.39 0.7038 0.6486 

ScCbf9b_SNP2 0.05 1.67 0.3516 0.2186 -0.23 2.30 0.6116 0.5168 -0.05 0.09 0.9449 0.8646 

ScCbf9b_SNP3 0.04 1.30 0.3945 0.2130 -0.22 2.11 0.6294 0.5787 -0.22 0.00 0.7756 0.8789 

ScCbf9b_SNP4 0.04 0.00 0.4512 0.9727 -0.14 2.15 0.7584 0.3837 -0.22 0.07 0.7712 0.4284 

ScCbf9b_SNP5 -0.04 0.00 0.5591 0.7890 0.79 5.76 0.1994 0.0001 -0.13 0.03 0.8995 0.1817 

ScCbf9b_SNP6 -0.12 0.00 0.0995 0.7922 -0.28 0.67 0.6726 0.0905 -1.27 4.61 0.2407 0.0185 

ScCbf9b_SNP7 -0.17 0.00 0.0726 0.1207 0.59 1.90 0.4474 0.0016 -1.17 1.88 0.3569 0.1894 

ScCbf9b_SNP8 -0.43 22.81 1.74E-05 0.0005 -1.37 8.85 0.1303 0.1082 -1.16 7.98 0.4407 1.87E-05 

ScCbf9b_SNP9 -0.25 22.69 0.0005 0.5768 -0.84 10.68 0.2000 0.0804 -0.33 0.56 0.7688 0.0553 

ScCbf9b_SNP10 0.04 0.02 0.5407 0.0815 0.34 0.00 0.5319 0.6344 0.80 0.83 0.3883 0.3098 
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 Controlled 

(recovery score 0-5) 

Semi-controlled 

(% plants with undamaged leaves) 

Field 

(% survival) 

  

Gene_SNP βSNP % variation P- value SNP x envir. βSNP % variation P- value SNP x envir. βSNP % variation P- value SNP x envir. 

ScCbf9b_SNP11 -0.28 23.77 0.0003 0.5515 -0.99 11.70 0.1748 0.0609 -0.80 4.29 0.5159 0.0332 

ScCbf9b_SNP12 -0.23 22.35 0.0013 0.6290 -0.80 10.52 0.2253 0.0822 -0.72 1.42 0.5240 0.0215 

ScCbf9b_SNP13 -0.24 19.09 0.0013 0.8087 -0.87 10.69 0.2027 0.0400 -0.59 1.42 0.6132 0.0398 

ScCbf9b_SNP14 0.05 0.00 0.3195 0.1492 0.59 0.00 0.2086 0.3535 -0.42 0.00 0.6048 0.0287 

ScCbf9b_SNP15 0.12 0.00 0.0485 0.0024 0.39 0.00 0.4522 0.3597 -0.36 0.00 0.6768 0.9599 

ScCbf9b_SNP16 -0.28 26.24 0.0002 0.5530 -1.27 14.65 0.0746 0.2225 -1.14 5.05 0.3469 0.0152 

ScCbf9b_SNP17 -0.43 23.52 6.33E-06 0.0031 -0.94 9.18 0.2879 0.0551 0.07 3.65 0.9652 0.0001 

ScCbf9b_SNP18 -0.01 0.21 0.9008 0.0109 -0.07 0.39 0.8828 0.2033 -0.59 0.15 0.4528 0.2257 

ScCbf9b_SNP19 -0.10 0.00 0.2814 0.0550 0.54 1.50 0.4763 0.2067 -1.92 10.18 0.1353 0.0311 

ScCbf9b_SNP20 0.04 0.48 0.5532 0.0014 0.65 0.00 0.2327 0.5985 0.51 0.00 0.5727 0.9838 

ScCbf9b_SNP21 0.03 0.92 0.6007 0.1242 0.23 0.87 0.6857 0.0395 -0.54 2.75 0.5794 0.5763 

ScCbf9b_SNP22 0.03 0.41 0.6751 0.1328 0.22 0.45 0.6966 0.0485 -0.88 5.32 0.3510 0.2431 

ScCbf9b_SNP23 -0.28 26.24 0.0002 0.5529 -1.27 14.65 0.0746 0.2225 -1.14 5.05 0.3469 0.0152 

ScCbf9b_SNP24 -0.03 0.00 0.7040 0.0426 0.72 4.03 0.2732 0.0092 -1.00 3.59 0.3433 0.3635 

ScCbf9b_SNP25 -0.26 18.52 0.0003 2.16E-07 -0.84 9.46 0.1695 0.0908 -1.11 4.51 0.2713 1.82E-05 

ScCbf9b_SNP26 -0.24 8.26 0.0004 0.0007 -0.17 0.53 0.7819 0.2048 -1.94 19.93 0.0653 6.12E-05 

ScCbf9b_SNP27 -0.18 16.37 0.0002 0.3205 0.67 0.00 0.1487 0.2952 -0.94 6.14 0.2160 0.0222 
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 Controlled 

(recovery score 0-5) 

Semi-controlled 

(% plants with undamaged leaves) 

Field 

(% survival) 

  

Gene_SNP βSNP % variation P- value SNP x envir. βSNP % variation P- value SNP x envir. βSNP % variation P- value SNP x envir. 

ScCbf9b_SNP28 -0.16 0.00 0.0995 0.0018 0.81 5.62 0.3534 0.0326 0.53 1.68 0.7004 0.6170 

ScCbf9b_SNP29 0.02 0.41 0.7932 0.0410 0.43 1.29 0.5030 0.0588 -0.98 4.00 0.3708 0.3316 

ScCbf9b_SNP30 -0.05 0.00 0.5568 0.0468 0.84 0.00 0.2205 0.3659 -1.16 3.90 0.3102 0.2115 

ScCbf9b_SNP31 -0.22 13.79 0.0002 0.8886 -0.14 0.81 0.7864 0.2824 2.02 3.01 0.0222 0.8535 

ScCbf11_SNP1 0.18 0.00 0.0523 0.9963 1.82 0.00 0.0456 0.0224 -0.64 2.01 0.6609 0.4213 

ScCbf11_SNP2 0.18 0.00 0.0523 0.9963 1.82 0.00 0.0456 0.0224 -0.64 2.01 0.6609 0.4213 

ScCbf11_SNP3 0.18 0.00 0.0523 0.9963 1.82 0.00 0.0456 0.0224 -0.64 2.01 0.6609 0.4213 

ScCbf11_SNP4 0.18 0.00 0.0523 0.9963 1.82 0.00 0.0456 0.0224 -0.64 2.01 0.6609 0.4213 

ScCbf11_SNP5 0.18 0.00 0.0523 0.9963 1.82 0.00 0.0456 0.0224 -0.64 2.01 0.6609 0.4213 

ScCbf11_SNP6 0.18 0.00 0.0523 0.9963 1.82 0.00 0.0456 0.0224 -0.64 2.01 0.6609 0.4213 

ScCbf11_SNP7 0.18 0.00 0.0523 0.9963 1.82 0.00 0.0456 0.0224 -0.64 2.01 0.6609 0.4213 

ScCbf11_SNP8 0.06 0.00 0.5495 0.7244 1.57 0.00 0.0760 0.0029 -1.04 3.93 0.4689 0.2861 

ScCbf11_SNP9 0.10 0.00 0.2802 0.9748 1.30 0.00 0.1314 0.0022 -1.09 4.73 0.4359 0.3691 

ScCbf11_SNP10 0.06 0.00 0.5495 0.7244 1.57 0.00 0.0760 0.0029 -1.04 3.93 0.4689 0.2861 

ScCbf11_SNP11 0.06 0.00 0.5495 0.7244 1.57 0.00 0.0760 0.0029 -1.04 3.93 0.4689 0.2861 

ScCbf11_SNP12 0.10 0.00 0.2802 0.9748 1.30 0.00 0.1314 0.0022 -1.09 4.73 0.4359 0.3691 

ScCbf11_SNP13 -0.08 4.06 0.1882 0.0365 -0.52 7.64 0.3597 0.0143 1.11 5.85 0.2496 0.8322 
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 Controlled 

(recovery score 0-5) 

Semi-controlled 

(% plants with undamaged leaves) 

Field 

(% survival) 

       P- value 

Gene_SNP βSNP % variation P- value SNP x envir. βSNP % variation P- value SNP x envir. βSNP % variation 0.4689 SNP x envir. 

ScCbf11_SNP14 -0.06 3.46 0.3113 0.0883 -0.29 5.80 0.6062 0.0302 1.13 7.64 0.2403 0.7648 

ScCbf11_SNP15 0.06 0.00 0.5495 0.7243 1.57 0.00 0.0760 0.0029 -1.04 3.93 0.4689 0.2861 

ScCbf11_SNP16 0.06 0.00 0.5495 0.7243 1.57 0.00 0.0760 0.0029 -1.04 3.93 0.4689 0.2861 

ScCbf11_SNP17 -0.06 3.46 0.3113 0.0883 -0.29 5.80 0.6062 0.0302 1.13 7.64 0.2403 0.7648 

ScCbf11_SNP18 -0.06 3.46 0.3113 0.0883 -0.29 5.80 0.6062 0.0302 1.13 7.64 0.2403 0.7648 

ScCbf11_SNP19 -0.06 3.46 0.3113 0.0883 -0.29 5.80 0.6062 0.0302 1.13 7.64 0.2403 0.7648 

ScCbf11_SNP20 -0.06 3.46 0.3113 0.0883 -0.29 5.80 0.6062 0.0302 1.13 7.64 0.2403 0.7648 

ScCbf11_SNP21 -0.06 3.46 0.3113 0.0883 -0.29 5.80 0.6062 0.0302 1.13 7.64 0.2403 0.7648 

ScCbf11_SNP22 -0.06 3.46 0.3113 0.0883 -0.29 5.80 0.6062 0.0302 1.13 7.64 0.2403 0.7648 

ScCbf11_SNP23 -0.06 3.46 0.3113 0.0883 -0.29 5.80 0.6062 0.0302 1.13 7.64 0.2403 0.7648 

ScCbf11_SNP24 -0.06 3.46 0.3113 0.0883 -0.29 5.80 0.6062 0.0302 1.13 7.64 0.2403 0.7648 

ScCbf11_SNP25 -0.06 3.46 0.3113 0.0883 -0.29 5.80 0.6062 0.0302 1.13 7.64 0.2403 0.7648 

ScCbf11_SNP26 -0.06 3.46 0.3113 0.0883 -0.29 5.80 0.6062 0.0302 1.13 7.64 0.2403 0.7648 

ScCbf11_SNP27 -0.04 1.68 0.5515 0.0364 0.06 0.40 0.9196 0.0394 1.58 8.13 0.1013 0.9757 

ScCbf12_SNP1 -0.32 0.00 2.01E-05 0.0026 -1.79 0.00 0.0142 0.6855 -0.64 0.00 0.6029 0.0940 

ScCbf12_SNP2 -0.33 1.33 3.49E-06 0.0008 -2.01 0.00 0.0037 0.5858 -0.28 0.00 0.8069 0.0520 

ScCbf12_SNP3 -0.36 0.00 1.01E-05 5.52E-08 -1.36 1.40 0.0861 0.5685 0.23 2.81 0.8637 0.0023 
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 Controlled 

(recovery score 0-5) 

Semi-controlled 

(% plants with undamaged leaves) 

Field 

(% survival) 

       P- value 

Gene_SNP βSNP % variation P- value SNP x envir. βSNP % variation P- value SNP x envir. βSNP % variation 0.4501 SNP x envir. 

ScCbf12_SNP4 -0.30 4.36 1.01E-05 0.0001 -1.69 0.00 0.0138 0.3444 -0.60 0.00 0.5964 0.0266 

ScCbf12_SNP5 0.17 12.53 0.0059 0.0348 -0.11 1.02 0.8503 0.0491 -0.36 5.91 0.7158 0.1559 

ScCbf12_SNP6 -0.31 0.00 0.0030 4.02E-05 -1.44 0.00 0.1278 0.3203 3.89 28.84 0.0140 1.48E-06 

ScCbf12_SNP10 -0.14 0.00 0.0882 0.0581 -0.58 2.48 0.4686 0.8583 -0.36 0.00 0.1971 0.7435 

ScCbf12_SNP11 -0.20 0.00 0.0137 0.1291 -1.14 3.02 0.1498 0.8404 -1.69 0.00 0.1584 0.7643 

ScCbf12_SNP12 -0.23 2.10 0.0046 0.1511 -1.30 4.07 0.0989 0.5391 -1.84 0.00 0.1093 0.9000 

ScCbf12_SNP13 -0.21 1.88 0.0110 0.1703 -1.45 2.84 0.0723 0.7805 -2.12 0.00 0.3438 0.6859 

ScCbf12_SNP14 -0.19 0.64 0.0323 0.0265 -1.29 7.40 0.1366 0.5959 -1.33 0.00 0.6387 0.7492 

ScCbf12_SNP15 -0.23 6.92 0.0017 0.0464 -0.65 0.66 0.3550 0.7029 -0.56 0.00 0.4852 0.6602 

ScCbf12_SNP16 -0.36 11.93 6.02E-07 4.41E-06 -1.97 0.00 0.0046 0.8984 -0.80 0.00 0.0232 0.3909 

ScCbf12_SNP17 -0.26 5.91 0.0108 0.5331 -2.15 14.34 0.0292 0.0891 -3.66 6.71 0.3507 0.3935 

ScCbf12_SNP18 -0.23 13.46 0.0023 0.0037 -1.65 7.18 0.0274 0.7553 -1.18 0.67 0.8362 0.6288 

ScCbf12_SNP19 -0.28 8.15 5.31E-05 5.16E-06 -1.67 1.59 0.0137 0.7656 -0.23 0.00 0.9826 0.3211 

ScCbf12_SNP20 -0.17 4.38 0.0084 0.0022 0.15 0.00 0.8056 0.4194 0.02 0.16 0.7550 0.3837 

ScCbf12_SNP21 -0.18 0.86 0.0321 0.0111 -0.27 0.00 0.7461 0.6823 -0.43 0.00 0.5026 0.5033 

ScCbf12_SNP22 -0.19 0.00 0.0245 0.4847 -1.17 5.24 0.1678 0.9416 -0.93 0.00 0.4563 0.6239 

ScCbf12_SNP23 0.07 0.00 0.4320 3.50E-05 -1.41 2.70 0.0891 0.7057 1.01 2.21 0.6869 0.8709 
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 Controlled 

(recovery score 0-5) 

Semi-controlled 

(% plants with undamaged leaves) 

Field 

(% survival) 

       P- value 

Gene_SNP βSNP % variation P- value SNP x envir. βSNP % variation P- value SNP x envir. βSNP % variation 0.3696 SNP x envir. 

ScCbf12_SNP24 -0.01 0.24 0.9506 0.4201 -2.44 17.42 0.0056 0.5346 -0.59 0.00 0.6869 0.4985 

ScCbf12_SNP25 -0.13 1.09 0.0714 0.0009 -0.47 0.00 0.4932 0.7494 -0.94 0.21 0.3696 0.8894 

ScCbf12_SNP26 0.11 2.29 0.0671 0.6055 -0.10 0.15 0.8559 0.9355 -1.99 11.81 0.0369 0.0220 

ScCbf14_SNP1 -0.06 0.28 0.5108 0.0027 -0.56 1.65 0.4813 0.5272 -1.65 9.51 0.2086 0.0031 

ScCbf14_SNP2 -0.06 0.28 0.5108 0.0027 -0.56 1.65 0.4813 0.5272 -1.65 9.51 0.2086 0.0031 

ScCbf14_SNP3 -0.09 2.11 0.2836 0.0096 -0.51 1.67 0.5414 0.2355 -1.78 10.53 0.1937 0.0032 

ScCbf14_SNP4 -0.06 0.28 0.5108 0.0027 -0.56 1.65 0.4813 0.5272 -1.65 9.51 0.2086 0.0031 

ScCbf14_SNP5 -0.08 1.16 0.3520 0.0086 -0.37 1.53 0.6633 0.1925 -1.49 9.26 0.2846 0.0025 

ScCbf15_SNP1 -0.13 5.07 0.0391 2.20E-16 -1.34 4.77 0.0192 0.0525 -3.15 7.26 0.0008 0.0045 

ScCbf15_SNP2 -0.14 0.00 0.0166 2.01E-12 -1.34 1.42 0.0112 0.0573 -3.20 9.60 0.0002 0.0002 

ScCbf15_SNP3 -0.22 5.71 0.0009 2.20E-16 -0.74 3.64 0.2066 0.0464 -2.32 3.91 0.0181 0.0362 

ScCbf15_SNP4 -0.06 0.00 0.3770 2.16E-07 -0.93 5.99 0.1319 0.7204 -1.27 0.00 0.2226 0.2168 

ScDhn1_SNP1 -0.14 0.24 0.1269 0.0964 0.31 0.00 0.6911 0.0268 -3.18 0.79 0.0292 0.4765 

ScDhn1_SNP2 -0.22 0.00 0.0143 0.0177 -0.24 0.00 0.7710 0.0208 -3.60 1.66 0.0198 0.0052 

ScDhn1_SNP3 -0.22 0.00 0.0200 0.0006 0.68 3.95 0.4302 0.0604 -3.36 0.00 0.0399 0.0014 

ScDhn1_SNP4 -0.11 0.00 0.2968 0.1255 0.49 25.61 0.5610 0.0158 -2.49 0.00 0.1401 0.0924 

ScDhn1_SNP5 -0.06 0.00 0.4529 0.3462 0.18 4.21 0.8051 0.0659 -1.74 0.90 0.1830 0.0219 
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 Controlled 

(recovery score 0-5) 

Semi-controlled 

(% plants with undamaged leaves) 

Field 

(% survival) 

       P- value 

Gene_SNP βSNP % variation P- value SNP x envir. βSNP % variation P- value SNP x envir. βSNP % variation 0.6225 SNP x envir. 

ScDhn1_SNP6 -0.15 0.00 0.0556 0.4082 0.43 10.19 0.5497 0.0161 -1.94 1.70 0.1363 0.0455 

ScDhn3_SNP1 -0.03 1.02 0.7531 0.0001 -1.06 0.00 0.2100 0.0465 -1.02 7.03 0.4763 4.15E-05 

ScDhn3_SNP2 0.10 0.13 0.4100 0.0178 -1.31 6.59 0.2101 0.0820 0.82 0.00 0.6225 0.6485 

ScDhn3_SNP3 0.25 1.64 0.0237 0.0264 -1.50 0.00 0.1699 0.6962 0.87 0.00 0.6020 0.4408 

ScDhn3_SNP4 0.14 2.41 0.2748 0.2470 -1.83 0.00 0.1397 0.4003 1.37 0.00 0.4661 0.5037 

ScDhn3_SNP5 -0.04 0.00 0.4219 0.2347 0.07 1.02 0.8888 0.8242 -0.70 0.00 0.4302 0.7414 

ScDhn3_SNP6 0.00 0.00 0.9543 0.0395 0.21 1.77 0.6854 0.8359 0.14 0.28 0.8737 0.5459 

ScDhn3_SNP7 -0.03 0.00 0.5362 0.0463 0.12 1.01 0.8160 0.5321 -0.01 0.00 0.9871 0.3183 

ScDhn3_SNP8 -0.02 0.00 0.6552 0.0065 0.28 0.81 0.5980 0.4018 0.01 0.11 0.9880 0.3412 

ScDhn3_SNP9 0.01 0.89 0.8497 0.3555 0.00 0.14 0.9970 0.8413 0.52 2.20 0.5616 0.2293 

ScDhn3_SNP10 0.01 0.00 0.8827 0.0021 -0.89 1.81 0.3017 0.9513 -1.38 4.67 0.3199 0.1326 

ScDhn3_SNP11 0.08 0.00 0.3551 0.0026 -0.63 1.86 0.4641 0.9126 -0.83 2.23 0.5544 0.2959 

ScDhn3_SNP12 -0.33 3.22 0.0699 0.0021 -1.20 4.34 0.3861 0.0314 -0.91 0.00 0.7074 0.7676 

ScDhn3_SNP13 -0.22 3.99 0.2188 0.0018 -1.95 1.11 0.1810 0.0217 -0.11 0.03 0.9645 0.8978 

ScDhn3_SNP14 0.09 0.00 0.3031 0.0171 0.30 0.00 0.7135 0.6287 0.44 0.00 0.7463 0.5049 

ScDreb2_SNP1 -0.02 0.88 0.6928 0.3216 0.31 0.00 0.5587 0.1515 1.02 1.65 0.2375 0.5235 

ScDreb2_SNP2 -0.08 3.53 0.3600 0.0038 -1.13 0.00 0.1688 0.9138 -1.17 0.46 0.4328 0.0003 
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 Controlled 

(recovery score 0-5) 

Semi-controlled 

(% plants with undamaged leaves) 

Field 

(% survival) 

       P- value 

Gene_SNP βSNP % variation P- value SNP x envir. βSNP % variation P- value SNP x envir. βSNP % variation 0.1648 SNP x envir. 

ScDreb2_SNP3 -0.16 1.26 0.0179 0.1111 -0.69 0.00 0.2620 0.8879 -2.02 2.38 0.0611 3.29E-05 

ScDreb2_SNP4 -0.05 0.00 0.4379 0.1936 -0.25 0.96 0.6359 0.4786 -1.07 1.27 0.2328 0.4509 

ScDreb2_SNP5 -0.12 0.00 0.0629 0.3869 -0.36 0.00 0.5449 0.8406 -1.91 2.37 0.0580 0.0009 

ScDreb2_SNP9 0.00 0.05 0.9575 0.5265 0.18 0.80 0.7372 0.2244 0.44 0.00 0.9530 0.7989 

ScDreb2_SNP10 0.16 0.00 0.0801 0.1342 0.15 0.00 0.8639 0.0783 -0.09 0.74 0.7330 0.5048 

ScDreb2_SNP11 -0.28 14.59 0.0004 0.3932 -0.21 0.00 0.7771 0.9675 -0.44 0.57 0.0327 0.9646 

ScDreb2_SNP12 -0.13 3.13 0.1026 0.9134 0.69 3.57 0.3525 0.5809 -2.60 5.17 0.5105 0.0006 

ScDreb2_SNP13 -0.05 1.66 0.6374 0.0239 -0.28 0.24 0.7880 0.2130 -1.13 1.80 0.0022 0.0045 

ScIce2_SNP1 0.29 13.67 0.0003 1.07E-09 0.41 0.00 0.5777 0.0160 3.75 15.46 0.0055 2.41E-12 

ScIce2_SNP2 0.32 14.71 6.69E-05 6.69E-09 0.18 0.00 0.8014 0.0394 3.37 10.01 0.0055 4.17E-11 

ScIce2_SNP3 0.32 14.71 6.69E-05 6.69E-09 0.18 0.00 0.8014 0.0394 3.37 10.01 0.0055 4.17E-11 

ScIce2_SNP4 0.25 12.76 0.0019 2.89E-10 0.14 0.00 0.8513 0.0179 3.37 10.01 0.0093 4.17E-11 

ScIce2_SNP5 0.30 6.05 0.0008 4.88E-10 1.43 0.00 0.0722 0.0005 3.44 7.30 0.0018 1.19E-08 

ScIce2_SNP6 0.28 5.81 0.0017 7.68E-10 1.56 0.00 0.0512 0.0004 4.13 12.20 0.0014 9.47E-10 

ScIce2_SNP7 0.32 5.85 0.0059 3.82E-10 1.22 0.00 0.1285 0.0006 4.30 14.30 0.0093 3.07E-10 

ScIce2_SNP8 0.30 6.05 0.0008 4.88E-10 1.43 0.00 0.0722 0.0005 3.44 7.30 0.0093 1.19E-08 

ScIce2_SNP9 0.30 6.05 0.0008 4.88E-10 1.43 0.00 0.0722 0.0005 3.44 7.30 0.0093 1.19E-08 
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 Controlled 

(recovery score 0-5) 

Semi-controlled 

(% plants with undamaged leaves) 

Field 

(% survival) 

       P- value 

Gene_SNP βSNP % variation P- value SNP x envir. βSNP % variation P- value SNP x envir. βSNP % variation 0.0093 SNP x envir. 

ScIce2_SNP10 0.30 6.05 0.0008 4.88E-10 1.43 0.00 0.0722 0.0005 3.44 7.30 0.0093 1.19E-08 

ScIce2_SNP11 0.30 6.05 0.0008 4.88E-10 1.43 0.00 0.0722 0.0005 3.44 7.30 0.0093 1.19E-08 

ScIce2_SNP12 0.30 6.05 0.0008 4.88E-10 1.43 0.00 0.0722 0.0005 3.44 7.30 0.0093 1.19E-08 

ScIce2_SNP13 0.25 12.46 0.0024 2.55E-11 0.27 0.00 0.7152 0.0068 3.19 10.42 0.0095 2.93E-11 

ScIce2_SNP14 0.30 6.05 0.0008 4.88E-10 1.43 0.00 0.0722 0.0005 3.44 7.30 0.0093 1.18E-08 

ScIce2_SNP15 0.25 12.46 0.0024 2.55E-11 0.27 0.00 0.7152 0.0068 3.19 10.42 0.0095 2.93E-11 

ScIce2_SNP16 0.25 12.46 0.0024 2.55E-11 0.27 0.00 0.7152 0.0068 3.19 10.42 0.0095 2.93E-11 

ScIce2_SNP17 0.25 12.46 0.0024 2.55E-11 0.27 0.00 0.7152 0.0068 3.19 10.42 0.0095 2.93E-11 

ScIce2_SNP18 0.30 6.05 0.0008 4.88E-10 1.43 0.00 0.0722 0.0005 3.44 7.30 0.0093 1.19E-08 

ScIce2_SNP19 -0.14 0.00 0.0074 1.12E-09 0.44 3.21 0.3770 0.8994 -0.82 0.00 0.3229 0.7267 

ScIce2_SNP20 -0.14 0.65 0.1187 0.1672 0.64 1.18 0.4897 0.2025 -0.60 0.00 0.7030 0.0318 

ScIce2_SNP21 -0.11 0.00 0.0322 1.23E-07 0.44 1.50 0.3771 0.8917 -1.03 0.00 0.2070 0.6296 

ScIce2_SNP22 -0.14 0.00 0.0039 1.06E-09 0.37 3.31 0.4433 0.7836 -1.01 0.00 0.2091 0.6386 

ScIce2_SNP23 -0.07 0.00 0.1674 3.28E-12 0.54 4.49 0.2659 0.9599 -0.90 0.00 0.2627 0.6366 

ScIce2_SNP24 0.10 0.00 0.0548 4.69E-05 0.01 0.23 0.9849 0.5378 0.18 0.00 0.8297 0.9665 

ScIce2_SNP25 -0.11 0.00 0.0433 2.87E-08 0.15 0.58 0.7633 0.6315 -0.55 0.00 0.5058 0.8997 

ScIce2_SNP26 -0.13 0.00 0.0292 1.40E-06 -0.02 0.01 0.9686 0.2441 -0.62 0.00 0.4936 0.7636 
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a
P-values < 0.05 are printed in bold  

 Controlled 

(recovery score 0-5) 

Semi-controlled 

(% plants with undamaged leaves) 

Field 

(% survival) 

       P- value 

Gene_SNP βSNP % variation P- value SNP x envir. βSNP % variation P- value SNP x envir. βSNP % variation 0.3115 SNP x envir. 

ScIce2_SNP27 -0.12 0.00 0.0177 4.38E-08 0.21 2.40 0.6755 0.7925 -1.19 0.00 0.1508 0.7225 

ScIce2_SNP28 -0.10 0.00 0.0600 4.80E-11 0.30 3.31 0.5643 0.9638 -1.00 0.00 0.2366 0.5358 

ScIce2_SNP29 -0.11 0.00 0.0425 8.65E-11 0.12 1.12 0.8222 0.7137 -0.86 0.00 0.3115 0.8055 

ScIce2_SNP30 -0.07 0.00 0.1582 2.37E-09 0.54 3.62 0.2710 0.9508 -0.71 0.00 0.3846 0.7304 

ScIce2_SNP31 -0.11 0.00 0.0205 2.42E-10 0.52 4.91 0.2824 0.9001 -0.86 0.00 0.2792 0.7266 

ScIce2_SNP32 -0.05 0.00 0.3082 1.64E-08 1.12 5.08 0.0167 0.7240 -0.52 0.00 0.5053 0.3258 

ScIce2_SNP33 -0.02 0.05 0.7024 2.25E-10 0.80 11.03 0.0711 0.0345 -0.99 0.00 0.1708 0.2416 

ScIce2_SNP34 0.00 0.00 0.9524 2.46E-09 1.02 12.75 0.0218 0.0336 -0.84 0.00 0.2475 0.2184 

ScIce2_SNP35 -0.01 0.01 0.8347 5.01E-10 0.44 4.39 0.3415 0.0171 -0.93 0.00 0.2166 0.6625 

ScIce2_SNP36 -0.03 0.00 0.4900 3.57E-07 0.95 8.54 0.0328 0.0111 -0.76 0.00 0.2996 0.2056 

ScIce2_SNP37 0.03 0.00 0.4396 3.49E-08 1.28 10.00 0.0035 0.0871 -0.60 0.00 0.4055 0.4698 

ScVrn1_SNP1 0.04 0.00 0.6560 0.2059 -1.01 0.06 0.2520 0.4924 -0.64 0.16 0.6600 0.7634 
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Additional figure 1 Scatterplots of pairwise distances and LD estimated by r
2
 between all SNPs (MAF > 5%) in 12 candidate genes over all 

populations and in individual populations. 

The non-linear fitting curve of the mutation-recombination-drift model is shown. Thresholds for LD are indicated by a horizontal solid line. 
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