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ABSTRACT

Galileo and GPS receivers can measure the carrier phases

with millimeter accuracy. However, the carrier phases are pe-

riodic which requires the resolution of an integer ambiguity

for each satellite.

This paper provides two new constrained integer least-

squares estimators that include some a priori knowledge on

the relative receiver position in spherical coordinates: a maxi-

mum a posteriori probability estimator and an inequality con-

strained integer ambiguity resolution. The latter one uses a

polynomial barrier function. Both estimators enable a sig-

nificant reduction of the integer search space, a substantial

improvement in the float ambiguity estimates, and thereby, a

higher probability of correct integer ambiguity resolution.

Index Terms— Carrier phase based positioning, integer

ambiguity resolution, inequality constraints, barrier function,

GPS and Galileo.

1. INTRODUCTION

GPS and Galileo receivers use both the code and carrier

phases for positioning. The carrier phase can be tracked with

millimeter accuracy but it is periodic, and requires the resolu-

tion of an integer ambiguity for each satellite. The differential

positioning of a receiver with respect to a reference station en-

ables a resolution of these ambiguities as atmospheric errors

and satellite biases can be canceled by double differences.

Fig. 1 shows the wavefronts from three satellites, which

intersect in the true receiver position. The pure code solution

provides a rough estimate of the receiver position, which leads

to a certain search space volume (shown as circle). Obviously,

the introduction of some a priori knowledge on the length and

orientation of the baseline further constrains the search space.

The Least-squares Ambiguity Decorrelation Adjustment

(LAMBDA) method was developed by Teunissen in [1] to

solve the unconstrained integer least-squares estimation. He

introduced an integer ambiguity transformation based on an

alternating sequence of permutations and integer decorrela-

tions to obtain a sphere-like and largely decorrelated search

space. In [2], Teunissen provided an integer least-squares

estimator with a hard constraint on the baseline length. He
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Fig. 1. Integer ambiguity grid: The search space volume of

the float solution is reduced by spatial constraints on the re-

ceiver position with respect to a reference station.

extended his constraint to a ”soft“ Gaussian one in [3]. How-

ever, he did not include any constraints on the baseline orien-

tation. This is a non-trivial extension as the angles describing

the baseline direction enter the cost function in a highly non-

linear form. However, soft constraints on the direction are

extremely helpful to reduce the size of the search space and,

thereby, to improve the reliability of ambiguity resolution.

This paper is organized as follows: Section II includes our

system model with a spherical parameterization of the base-

line coordinates. A maximum a posteriori probability estima-

tor with Gaussian a priori knowledge of the baseline length

and orientation is introduced in Section III. It enables a sub-

stantial reduction of the probability of wrong fixing compared

to unconstrained ambiguity resolution. Section IV includes a

second soft constrained integer ambiguity resolution, which

includes some inequality constraints by a polynomial barrier

function. Finally, Section V summarizes the paper.



2. SYSTEM MODEL

The double difference carrier phase measurements on fre-

quency fm of satellite k ∈ {1, . . . ,K} are modeled as

∇∆φk
m = ∇∆rk + λm∇∆Nk

m

−q21m∇∆Ik +∆T k +∇∆ηkφm
, (1)

with the double difference range ∇∆rk , the double differ-

ence integer ambiguity ∇∆Nk
m, the double difference iono-

spheric and tropospheric delays ∇∆Ik and ∇∆T k, the ra-

tio of frequencies q1m = f1/fm, and the double difference

measurement noise ∇∆ηkφm
. Obviously, the double differ-

ence atmospheric delays can be neglected for short baselines

as considered in this paper. A similar model is used for the

double difference code measurements, i.e.

∇∆ρkm = ∇∆rk + q21m∇∆Ik +∇∆T k +∇∆ηkρm
. (2)

Two multi-frequency linear combinations are applied to the

double difference carrier phase measurements λm∇∆φm and

code measurements ∇∆ρm: a code carrier linear combina-

tion and a code-only combination, i.e.

Ψ =









M
∑

m=1
(αmλm∇∆φm + βm∇∆ρm)

M
∑

m=1
(β′

m∇∆ρm)









, (3)

where αm denote the weighting coefficients of the phase

measurements, and βm and β′
m represent the code coeffi-

cients on frequency m ∈ {1, . . . ,M}. These coefficients

were optimized by Henkel et al. in [5]-[7] such that the

linear combinations preserve the non-dispersive range (i.e.
∑M

m=1(αm + βm) = 1), eliminate the ionospheric delay

(i.e.
∑M

m=1(αm − βm)q21m = 0), keep the integer nature of

ambiguities (i.e.
∑M

m=1 αmλmNm = λN ), and maximize

the ambiguity discrimination defined as the ratio between

the combination wavelength and combination noise standard

deviation.

The combined measurements Ψ are modeled as

Ψ = Hξ +AN + b+ ε, ξ ∈ R
3×1,N ∈ Z

K×1, (4)

where H describes the differential geometry given by

H =







(e1)T − (eK)T

...

(eK−1)T − (eK)T






, (5)

with the unit vector ek pointing from the k-th satellite to the

receiver, and ξ being the baseline between both receivers. It

can be represented in spherical coordinates by two angles ν1
and ν2 and the length l, i.e.

ξ = r(ν1, ν2) · l, (6)

with

r(ν1, ν2) =





cos(ν1) cos(ν2)
cos(ν1) sin(ν2)

sin(ν1)



 . (7)

The second term in (4) represents the combined integer ambi-

guities N with the combination wavelength included in pre-

factor matrix A:

A =

[

λ · I
0

]

. (8)

The unknown biases b describe multipath with long decorre-

lation time, and are introduced to test the robustness of the

constrained ambiguity resolution. The measurement noise

ε ∼ N (0,Σ) is assumed to be white Gaussian noise.

3. MAXIMUM A POSTERIORI PROBABILITY

ESTIMATION OF INTEGER AMBIGUITIES

The constrained ambiguity resolution can be considered

as a maximum likelihood (ML) estimation or as a maximum a

posteriori probability (MAP) estimation. The latter one max-

imizes the a posteriori probability of the estimates of ν1, ν2
and l for a given set Ψ. This maximization is rewritten with

the rule of Bayes and the assumption of statistically indepen-

dent ν1, ν2 and l as

max
ν1,ν2,l

p(ν1, ν2, l|Ψ)

= max
ν1,ν2,l

p(Ψ|ν1, ν2, l) ·
p(ν1)p(ν2)p(l)

p(Ψ)
, (9)

where the conditional probability density is obtained from

p(Ψ|ν1, ν2, l) =
1

√

(2π)2|Σ|
e−

1
2 ‖Ψ−Hr(ν1,ν2)l−AN‖2

Σ−1 .

(10)

The a priori knowledge is assumed to be Gaussian distributed

with known means and variances, i.e.

p(νx) =
1

√

2πσ2
ν̄x

e
− (νx−ν̄x)2

2σ2
ν̄x , x ∈ {1, 2}

p(l) =
1

√

2πσ2
l̄

e
− (l−l̄)2

2σ2
l̄ , (11)

and the probability density function of the measurements is

obtained from (10) by

p(Ψ) =

∫∫∫

p(Ψ|ν1, ν2, l)p(ν1)p(ν2)p(l)dν1dν2dl. (12)

The maximization of (9) can be simplified by taking the loga-

rithm and omitting the pre-factor that does not depend on ν1,



ν2 and l, i.e.

min
ν1,ν2,l,N

J(ν1, ν2, l,N)

= min
ν1,ν2,l,N

(

‖Ψ−Hr(ν1, ν2)l −AN‖2
Σ

−1

+
(l− l̄)2

σ2
l̄

+
(ν1 − ν̄1)

2

σ2
ν̄1

+
(ν2 − ν̄2)

2

σ2
ν̄2

)

. (13)

This optimization is split into a tree search of N and an iter-

ative computation of ν1, ν2 and l for each candidate N . The

integer search aims on finding all integer vectorsN that fulfill

‖N̂ −N‖2
Σ

−1

N̂

≤ χ2, (14)

where N̂ = (Ā
T
Σ

−1Ā)−1Ā
T
Σ

−1
Σ

−1
Ψ denotes the un-

constrained float solution with the projected coefficient ma-

trix Ā = P⊥
HA = (1 −H(HT

Σ
−1H)−1HT

Σ
−1)A, and

χ2 is the search space volume. Teunissen introduced an am-

biguity transformation in [1] to decorrelate the search space

and to optimize the order of ambiguities. The efficiency of

the search can be further improved if the baseline constraints

are also included in the search tree as described by Jurkowski

et al. in [4].

The baseline parameters are determined iteratively with

the Newton method. In the n-th step, the baseline parameters

are given by





ν̂n+1
1

ν̂n+1
2

l̂n+1



 =





ν̂n1
ν̂n2
l̂n



− S−1





∂J
∂ν1
∂J
∂ν2
∂J
∂l



 , (15)

where ν̂x, x ∈ {1, 2}, and l̂ include the estimates of all

epochs, and the Hesse matrix is given by

S =









∂2J
∂ν2

1

∂2J
∂ν1∂ν2

∂2J
∂ν1∂l

∂2J
∂ν1∂ν2

∂2J
∂ν2

2

∂2J
∂ν2∂l

∂2J
∂ν1∂l

∂2J
∂ν2∂l

∂2J
∂l2









. (16)

As the cost function of (13) is not convex, the Newton method

is initialized with ν1, ν2 and l from a systematic grid.

Fig. 2 shows the benefit of a tight and soft length con-

straint for integer least-squares estimation (ILS) with Galileo.

Double difference measurements on E1 and E5 were simu-

lated for a baseline length of 30 m, a geometry with 8 visible

satellites, 4 measurement epochs, and a standard deviation of

1 mm for the phase noise. Phase-only measurements were

considered to avoid code multipath, and a widelane combina-

tion with a wavelength of 78.1 cm was chosen to increase the

success rate. Obviously, the tightly constrained (TC) ambigu-

ity resolution reduces the probability of wrong unconstrained

fixing by more than four orders of magnitude if the a priori

length information is correct. However, it makes the fixing

also sensitive w.r.t. erroneous a priori information, i.e. it de-

grades the unconstrained performance if the error in the a pri-

ori information exceeds 50 cm. The soft constrained (SC)

fixing takes the uncertainty in the length information into ac-

count and, thereby, improves the unconstrained fixing for any

quality of the a priori information. Note that the TC ambigu-

ity resolution is obtained from the SC one by setting σ
l̂
→ ∞.

It can also be obtained from Lagrange optimization with an

equality constraint.
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Fig. 2. Comparison of unconstrained, soft constrained and

tightly constrained ambiguity resolution for erroneous base-

line length a priori information: The tightly constrained ambi-

guity resolution outperforms the unconstrained and soft con-

strained fixing for perfect a priori knowledge but is extremely

sensitive w.r.t. erroneous a priori information. The soft con-

strained ambiguity fixing benefits from the a priori informa-

tion even if it is biased.

4. ROBUST INTEGER AMBIGUITY RESOLUTION

WITH INEQUALITY CONSTRAINTS

The maximum a posteriori probability estimator of the

previous section enabled a substantial improvement in am-

biguity fixing as it benefits from an a priori known Gaussian

probability distribution of the baseline parameters. However,

if this information is erroneous or unavailable, inequality con-

straints can be very beneficial and lead to the minimization

min
ν1,ν2,l,N∈ZK

‖Ψ−Hr(ν1, ν2)l −AN‖2
Σ

−1

s. t. ν1,min ≤ ν1 ≤ ν1,max,

ν2,min ≤ ν2 ≤ ν2,max,

lmin ≤ l ≤ lmax, (17)

which can also be regarded as uniform distributions. The

inequality constrained ambiguity resolution can be approxi-



mated by an unconstrained optimization problem, i.e.

min
ν1,ν2,l,N∈ZK

(

‖Ψ−Hr(ν1, ν2)l −AN‖2
Σ−1

+
2
∑

i=1

f(νi, νi,min, νi,max) + f(l, lmin, lmax)

)

, (18)

with the barrier function

f(x, xmin, xmax) =











t · (xmin − x)h x < xmin,

0 xmin ≤ x ≤ xmax,

t · (x − xmax)
h x > xmax,

(19)

with penalty factor t and h ≥ 3. This barrier function is sec-

ond order continuously differentiable so that the minimiza-

tion of (18) can be again solved iteratively with the Newton

method. For t → ∞, (18) becomes equivalent to (17).

Fig. 3 shows the benefit of the inequality constraints for

float ambiguity estimation as a function of the tightness of

the bounds. For example, restricting the elevation angle to

an interval of δν1 = 10◦, reduces the uncertainty in the float

ambiguity estimates by a factor two compared to δν1 = 50◦.
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Fig. 3. Benefit of inequality constrained integer ambiguity

resolution over unconstrained ambiguity resolution

The float ambiguity estimates can be fixed either by a

search or rounding. The latter one is in general performed se-

quentially (e.g. [1]) to take the correlation between the float

ambiguities into account, i.e. the float conditional estimate of

the second ambiguity is given by

N̂2|1 = N̂2 − γ · (N̂1 − [N̂1]), (20)

where [·] denotes the rounding operator and γ is obtained by

minimizing the variance of N̂2|1, i.e.

γopt =
σ
N̂1N̂2

− σ[N̂1]N̂2

σ2
N̂1

− 2σ
N̂1[N̂1]

+ σ2
[N̂1]

, (21)

where the covariance between [N̂1] and N̂2 is given by

σ[N̂1]N̂2
= −

σ
N̂1N̂2

√

2πσ2
N̂1

+∞
∑

k=−∞

k

(

e
− (k+0.5)2

2σ2
N̂1 − e

− (k−0.5)2

2σ2
N̂1

)

which can be well approximated by a finite sum.

5. CONCLUSION

In this paper, the reliability of carrier phase based posi-

tioning with integer ambiguity resolution was improved by

including some soft constraints on the receiver position. This

a priori knowledge is typically given either as Gaussian dis-

tributions or inequality constraints on the spherical position

coordinates. For the first case, a maximum a posteriori prob-

ability estimator was derived based on the iterative Newton

method. For the second case, the inequality constraints were

included in the cost function by a polynomial barrier function.

The maximum a posteriori probability estimator enables

a probability of wrong fixing that is several orders of magni-

tude lower than for unconstrained ambiguity resolution even

if the a priori information is slightly biased. The inequality

constrained fixing benefits from a substantial reduction of the

integer search space and an improved accuracy of the float so-

lution, which turns into a lower probability of wrong fixing.
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