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ABSTRACT

This paper suggests a new method for the estimation of
satellite phase and code biases with undifferenced, uncom-
bined phase and pseudorange measurements from a global
network of reference stations. The method is based on a
generalized measurement model with individual phase and
pseudorange biases for each satellite, and uses a generali-
zed Kalman filter for coloured measurement noise.

The estimation of phase and code biases is performed
with a cascade of two Kalman filters: First, the non-
dispersive parameters of each receiver-satellite link are
combined into a single geometry term, and a conventio-
nal Kalman filter is used to estimate the geometry term, io-
nospheric delays, and individual ambiguities. The mapping
of all non-dispersive parameters to single geometry terms
improves the conditioning of the system of equations and,
thereby, enables a faster ambiguity fixing. A second filter
is then used to refine the geometry term, i.e. to estimate or-
bital errors, code biases and tropospheric delays. As the a
posteriori estimates of the first Kalman filter are correlated
over time and correspond to the measurement of the second
filter, the generalized Kalman filter of Bryson and Henrik-
son is used to whiten the measurement noise and to keep
the measurement and process noises independent.

One of the largest challenges for reliable precise point



positioning with integer ambiguity resolution is code mul-
tipath, which has to be considered carefully at both the re-
ference stations and mobile receiver. For the reference sta-
tion, a sidereal filtering can be applied to the pseudoran-
ge residuals to efficiently obtain multipath corrections. It is
shown that these corrections whiten the measurement noi-
se and result in substantially improved stability of the bias
estimates.

INTRODUCTION

Double-differencing enables integer ambiguity fixing
and positioning with millimeter-level accuracy, since it re-
moves most of the common errors, such as the ionospheric
and tropospheric delays and satellite biases with the help
of a nearby reference station. Meanwhile, absolute preci-
se point positioning is becoming increasingly popular as
it provides centimeter-level accuracy without the need of
a reference station. However, resolving the undifferenced
carrier phase integer ambiguities requires precise estimates
of the satellite code and phase biases [1–4].

Recently, Laurichesse et al. [5–7] have shown that frac-
tional widelane biases can be assumed constant over se-
veral months and narrowlane biases are still constant on
a daily basis, which enabled them to demonstrate undif-
ferenced integer ambiguity resolution. They used a two
steps procedure, where widelane fractional biases and inte-
ger ambiguities are first obtained from the geometry-free,
ionosphere-free Melbourne Wübbena combination [8]. In
a second step, the phase measurements are combined to
ionosphere-free combinations, which are then processed in
an extended Kalman filter to estimate ionosphere-free pha-
se clocks of both satellites and receivers, offsets between
ionosphere-free phase and pseudorange clocks, zenith tro-
pospheric delays, station coordinate corrections, satellite
orbit corrections, and L1 phase ambiguities. The fractional
widelane biases from the first step, the orbital errors, the
ionosphere-free phase clocks as well as the offsets between
phase and pseudorange clocks from the second step form
the four correction parameters, which Laurichesse sugge-
sted for precise point positioning.

Code multipath is one of the most challenging error
sources for precise point positioning. The multipath esti-
mation from the reference station can be observed from the
repeatability of range residuals at equal receiver-satellite
geometries, and can be precisely estimated by sidereal fil-
tering. In the first part of this paper, pseudorange residuals
are analyzed both in time and frequency domain, and a mul-
tipath correction is computed which whitens the measure-
ment noise and results in a two times lower standard devia-
tion. The second part focuses on the satellite code bias esti-
mation based on a very general measurement model, which
does not use any combinations of measurements. The bi-
as estimation is performed with a cascaded Kalman filter,
where a first Kalman filter is used to estimate the geometry

terms (including all non-dispersive parameters), the ionos-
pheric delays, the integer ambiguities and the phase biases.
A second stage Kalman filter uses the geometry estimates
from the first stage as new measurements to estimate sa-
tellite orbit corrections, satellite code biases and receiver
clock offsets. As the first filtering introduces some time cor-
relation into the geometry estimates, the method of Bryson
and Henrikson [9,10] is applied to decorrelate the measure-
ments by a pre-processing. Simulation results indicate that
both code multipath corrections and the cascaded Kalman
filter are two important steps to improve the reliability of
precise point positioning.

MEASUREMENT MODEL

In the approach of Wen et al. [1] [3], Henkel et al. [2],
and Davaine [4], the absolute code and phase measure-
ments on two frequencies are modeled as

λ1φ
k
1,i(tn) = g̃ki (tn)− Ĩk1,i(tn) + λ1Ñ

k
1,i+

˜̃̃
β1,i +

˜̃̃
βk
1 + ǫk1,i(tn)

λ2φ
k
2,i(tn) = g̃ki (tn)− q212Ĩ

k
1,i(tn) + λ2Ñ

k
2,i+

˜̃̃
β2,i +

˜̃̃
βk
2 + ǫk2,i(tn)

ρk1,i(tn) = g̃ki (tn) + Ĩk1,i(tn) + ok1,i(tn) + ηk1,i(tn)

ρk2,i(tn) = g̃ki (tn) + q212Ĩ
k
1,i(tn) + ok2,i(tn) + ηk2,i(tn),

(1)

with i, m andk representing receiver, frequency and satel-
lite indices,λm being the wavelength,q12 = f1/f2 being
the frequency ratio,̃Ik1,i denoting the ionospheric slant de-

lay, Ñk
m,i being the integer ambiguity,{

˜̃̃
βm,i,

˜̃̃
βk
m} being

the phase biases,okm,i being the code multipath, andǫkm,i

andηkm,i being respectively the phase and code noise. The
geometry term̃gki contains the non-frequency dependent
terms and is described by

g̃ki (tn) = rki (tn) + c(δτi(tn)− δτk(tn −∆τki (tn)))+

T k
i (tn) + bgi + bkg , (2)

whererki denotes the true range,cδτi denotes the receiver
clock offset,cδτk denotes the satellite clock offset,∆τki
represents the propagation time from the satellite to the re-
ceiver,T k

i denotes the tropospheric delay,bgi andbkg denote
respectively the receiver and satellite code bias.

The tildes on the variables of Eq. (1) arise from a set
of parameter mappings, which ensure a full-rank equation
system, i.e. the code biases have been mapped to geometry
and ionospheric terms, the satellite phase biases from one
satellite have been mapped to the receiver phase biases and
a subset of ambiguities is mapped to other ambiguities and
phase biases.



MULTIPATH ESTIMATION

The estimation of multipath delays is in general not fea-
sible in real-time, as multipath affects each satellite andfre-
quency differently, and thus, the system of equations beco-
mes rank deficient. However, multipath errors repeat with
the satellite geometry, i.e. every11h 58mins for geodetic
reference stations. This allows a separation from all other
error terms, and makes it well observable from the repea-
tability of the residuals. The latter ones are obtained from
a Kalman filter, which estimates the joint geometry terms,
the ionospheric delays, phase biases and integer ambigui-
ties, where the ambiguities are considered as float numbers.

GPS measurements were collected from a few SAPOS
stations in Bavaria [11] in the week between May30 and
June5, 2011. In Fig. 1, the residuals of the SAPOS (Sa-
tellitenpositionierungsdienst der deutschen Landesvermes-
sung) station at Günzburg (#274 in network) are shown for
a GPS satellite (PRN5) over7 consecutive days. The peri-
od was08:00 to 09:40 on the last day, and then shifted by
3mins56s every day to take the repeatability of the satellite
geometry into account. For clarity, the residuals were shif-
ted in Fig. 1 by2 meters in vertical directions to improve
the visibility.
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Fig. 1 Code residuals from SAPOS station at Günzburg on
six consecutive days: A high repeatability can be observed
over the days, which can be explained by multipath errors
that repeat with the satellite geometry. Note that the residu-
als were artificially shifted in vertical direction to improve
the visibility of the repeatability.

Fig. 2 shows the estimated code multipath at the station
of Günzburg, which is obtained from a sidereal filtering of
the code residuals over a continuous week. This average
can then be used as a priori correction of multipath for the
measurements on the next days.

Fig. 3 shows the benefit of the multipath correction,
i.e. the correction derived from the measurements between
May 30 and June5 is applied to measurements on June6.
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Fig. 2 Sidereal filtered code residuals of SAPOS station
Günzburg over one week: The filtering substantially redu-
ces the noise, which allows an accurate modeling of the
multipath pattern.

One can observe that the new residuals are white Gaussian
noise, i.e. the strong multipath pattern was removed.
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Fig. 3 Benefit of multipath correction: The correction re-
moves the strong multipath pattern and results in a white
Gaussian noise.

A histogram of the code residuals without and with ap-
plication of the multipath correction is given in Fig. 4. It
well approximates a bell-shape of a Gaussian distribution
in both cases, while the red curve (representing the code
residuals after applying the correction) concentrates more
in the center. Consequently, the multipath correction ena-
bles the bounding of the measurement noise by a Gaussian
distribution with significantly lower standard deviation.

The satellite phase bias estimation also benefits from the
a priori knowledge of the multipath. A comparison of Fig.
5(a) and (b) shows that the oscillations of the bias estimates
are suppressed, and a more smooth convergence is ensured.
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Fig. 4 Histogram of the code residuals without and with
applying the multipath correction: The multipath correction
results in a Gaussian distribution with significantly reduced
standard deviation.

Moreover, the correction of multipath also helps for the
integer ambiguity fixing, since the stability of the phase bi-
as estimates has strong influence on the convergence of the
ambiguities. Each vertical black line in both figures repres-
ents one ambiguity fixing. Without the correction of multi-
path, only2 out of 90 ambiguities are fixed, while40 am-
biguities have been fixed in Fig. 5(b). One can also observe
that the fixing of the first ambiguity takes place much ear-
lier with the a priori information.

DUAL-STAGE KALMAN FILTER

Generalized Kalman Filter for colored measurements

The measurement and state space models of a conventio-
nal Kalman filter are given by

xn = Φn−1xn−1 + wn−1

zn = Hnxn + ζn, (3)

wherexn andzn are the state and measurement vectors on
epochn, Φn is the state transition matrix,Hn is the geo-
metry matrix, andwn andζn are the state and measurement
noises, which follow zero mean Gaussian distributions with
covariance

E(wkw
T
l ) = Qkδkl, E(ζkζ

T
l ) = Rkδkl, (4)

with δkl being the Kronecker delta function. There is no
correlation between state and measurement noises, i.e.
E(wkζ

T
l ) = 0.

For a cascading of Kalman filters, the assumptions of
white measurement noise holds only in the first cascade. In
all following cascades, the measurement noises are colored
due to previous filtering processes.
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(a) No multipath correction
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(b) With multipath correction

Fig. 5 Satellite bias estimation without and with multipath
correction: The multipath error propagates into the bias
estimates which show large variations over time and pre-
vent a fast ambiguity fixing. In this case, only2 out of 90
ambiguities have been fixed, which are indicated as vertical
black lines. The multipath correction improves the stability
of the phase bias estimates. The integer ambiguity fixings
also benefit from the correction, i.e. the fixings occur much
earlier and the number of fixings increases from2 to 40.

This motivates more general measurement and state mo-
dels, i.e.

xn = Φn−1xn−1 + wn−1

zn = Hnxn + vn

vn = Γn−1vn−1 + ζn−1, (5)

where the matrixΓn describes the linear dependency of the
measurement noisevn between consecutive epochs, and
wn andζn are independent white Gaussian noises, i.e.

E(wn) = 0, E(wnw
T
m) = Qnδnm, (6)



and

E(ζn) = 0, E(ζnζ
T
m) = Rnδnm

E(wnζ
T
m) = 0. (7)

At first glance, one might augment the state vector byvn
and, thereby, return to white Gaussian measurement noise.
However, this will introduce some linear dependency bet-
ween the states and, thereby, results in a singularity. The-
refore, Bryson and Henrikson suggested an alternative ap-
proach in [9]: It starts with a time “pseudo-differenced”
measurementz∗n, which eliminates the termΓnvn and only
keeps the white Gaussian noiseswn andζn, i.e.

z∗n = zn+1 − Γnzn

= Hn+1xn+1 + vn+1 − Γn (Hnxn + vn)

= Hn+1 (Φnxn + wn) + Γnvn + ζn

− (ΓnHnxn + vn)

= (Hn+1Φn − ΓnHn) xn +Hn+1wn + ζn

= H∗

nxn + v∗n, (8)

with

H∗

n , Hn+1Φn − ΓnHn

v∗n , Hn+1wn + ζn. (9)

The new measurement noisev∗n has therefore zero mean,
and a covariance matrixR∗

n obtained from

E{v∗nv
∗T
m } = E{(Hn+1wn + ζn) (Hm+1wm + ζm)T}

=
(

Hn+1QnH
T
n+1 +Rn

)

δnm

= R∗

nδnm, (10)

with
R∗

n , Hn+1QnH
T
n+1 +Rn. (11)

It can be observed from Eq. (9) that a correlation is intro-
duced between the transformed measurement noisev∗n and
the process noisewn, i.e.

E{wnv
∗T
m } = E{wn (Hm+1wm + ζm)

T
}

=
(

QnH
T
n+1

)

δnm

= Snδnm, (12)

with
Sn , QnHn+1. (13)

Therefore, a decoupling between the two noises is necessa-
ry. It can be performed by introducing a new process noise
w∗

n, which satisfies

E{w∗

n} = 0

E{w∗

nw
∗T
m } = Q∗

nδnm

E{w∗

nv
∗T
m } = 0. (14)

The state transition in Eq. (5) can be rewritten by adding
the transformed measurements as a zero term, i.e.

xn = Φn−1xn−1 + wn

+ Jn−1 ·
(

z∗n−1 −H∗

n−1xn−1 − v∗n−1

)

= Φ∗

n−1xn−1 + w∗

n + Jn−1z
∗

n−1, (15)

whereJn−1 is some weighting being introduced a few lines
later, andΦ∗

n andw∗

n are defined as

Φ∗

n , Φn − JnH
∗

n

w∗

n , wn − Jn−1v
∗

n−1. (16)

TheJn matrix shall be chosen such that the new process
noise is uncorrelated with the new measurement noise, i.e.

E{w∗

nv
∗T
m } = E{(wn − Jnv

∗

n) v
∗T
m }

= (Sn − JnR
∗

n) δnm
!
= 0, (17)

which can be easily solved forJn:

Jn = Sn (R
∗

n)
−1

. (18)

The optimizedJn can then be used to rewriteQ∗

n as

Q∗

n = E{w∗

nw
∗T
n }

= E{(wn − Jnv
∗

n)(wn − Jnv
∗

n)
T}

= E{(wn − Sn(R
∗

n)
−1v∗n)(wn − Sn(R

∗

n)
−1v∗n)

T}

= Qn − Sn(R
∗

n)
−1ST

n − Sn((R
∗

n)
−1)TST

n+

Sn(R
∗

n)
−1R∗

n((R
∗

n)
−1)TST

n

= Qn − Sn(R
∗

n)
−1ST

n . (19)

Combining Eq. (8), (9), (11), (13), (16), (18), and (19), the
set of the new variables can be summarized as

z∗n = zn+1 − Γnzn

H∗

n = Hn+1Φn − ΓnHn

Sn = QnH
T
n+1

R∗

n = Hn+1QnH
T
n+1 +Rn

Jn = Sn (R
∗

n)
−1

Q∗

n = Qn − Sn (R
∗

n)
−1 ST

n

Φ∗

n = Φn − JnH
∗

n.

The state prediction is obtained from the extended state
space model of Eq. (15) as

x̂−

n = Φ∗

n−1x̂
+
n−1 + Jn−1z

∗

n−1

P−

n = Φ∗

n−1P
+
n−1Φ

∗T
n−1 +Q∗

n−1, (20)

and its update is given by

x̂+
n = x̂−

n +Kn

(

z∗n −H∗

nx̂
−

n

)

P+
n = (I −KnH

∗

n)P
−

n , (21)



with the Kalman gain

Kn = P−

n H∗T
n

(

H∗

nP
−

n H∗T
n +R∗

n

)−1
. (22)

In the following subsections, this generalized Kalman fil-
ter is applied to pre-processed measurements, i.e. some a
priori knowledge about the receiver and satellite positions
(given by navigation message), satellite clock offsets, and
tropospheric delays is subtracted from the original phase
and code measurements. This means that only the errors in
the geometry have to be estimated, which show much lower
dynamics. This enables a much stronger state space model
and, thereby, more accurate estimates of the orbital errors,
receiver clock offsets, and satellite code biases. For sim-
plicity, the tildes on all variables are omitted in Eq. (23),
which describes the difference between original measure-
ments and a priori knowledge:

λ1∆φk
1,i(tn) = ∆gki (tn)− Ik1,i(tn) + λ1N

k
1,i+

β1,i + βk
1 + ǫk1,i(tn)

λ2∆φk
2,i(tn) = ∆gki (tn)− q212I

k
1,i(tn) + λ2N

k
2,i+

β2,i + βk
2 + ǫk2,i(tn)

∆ρk1,i(tn) = ∆gki (tn) + Ik1,i(tn) + ηk1,i(tn)

∆ρk2,i(tn) = ∆gki (tn) + q212I
k
1,i(tn) + ηk2,i(tn). (23)

The geometry term can be further modeled as

∆gki (tn) = (~e k
i )

T∆~rk(tn) + cδτi + bkg , (24)

where~e k
i denotes the unit vector from satellite to receiver,

∆~r k denotes the satellite orbit correction,cδτ denotes the
receiver clock/bias term, andbkg denotes the satellite co-
de bias. A cascaded Kalman filter has the advantage that it
enables a faster ambiguity resolution compared to an esti-
mation of all unknowns in one single step, while it also re-
duces the computational complexity due to order reduction.
However, the cascading of filters introduces time correlati-
on into the a posteriori estimates, such that the assumption
of white Gaussian measurement noise is no longer fulfilled
for all filters except the first one. Therefore, the method of
Bryson et al. shall be used to decouple the filters.

In the following section, an upper index(1) and(2) is
introduced to well distinguish the variables between both
Kalman filters when needed.

First stage: Phase bias estimation

The state vector of the first Kalman filter is written as

x(1)
n =

(

∆gTn ,∆ġTn , I
T
n , İ

T
n , β

T
R, β

KT
, NT

)T

, (25)

where each element on the right side is itself a vector con-
taining the elements for all linksi → k. The measurement
vector combines two epochs of the phase and code measu-
rements to allow a better estimation of the first derivatives

of the geometry and ionospheric terms, i.e.

z(1)n =
(

λ1ϕ
T
1,n, λ2ϕ

T
2,n, ρ

T
1,n, ρ

T
2,n,

λ1ϕ
T
1,n+1, λ2ϕ

T
2,n+1, ρ

T
1,n+1, ρ

T
2,n+1

)T
. (26)

In the simulations, the standard deviations of the measure-
ment noises are chosen to be

σφ = 5 mm : phase noise
σρE1

= 11.14 cm : E1 code noise
σρE5

= 1.93 cm : E5 code noise,
(27)

where the latter two values correspond to the Cramer Rao
bound for a carrier to noise power ratio of 45 dB-Hz, a
bandwidth of 20 MHz for the L1 CBOC signal and of 50
MHz for the E5 AltBOC signal. The state space covariance
matrix of range and range-rate or ionospheric delay and its
drift was derived by Brown et al. in [12] and is given by

Σw,αα̇ = Sp ·

(

∆t4/4 ∆t3/2
∆t3/2 ∆t2

)

⊗ 1
s×s, (28)

with s being the total number of links between visible sa-
tellites and receivers, and variableα being either∆g or I.
There is in general no correlation between geometry, ionos-
phere and ambiguities, such that

Σw =





Σw,∆g∆̇g

Σw,Iİ

Σw,Nβ



 , (29)

with

Σw,b = 0
2s×2s, (30)

which means no process noise is assumed for the phase
biases and the integer ambiguities. The spectral amplitudes
of the random walk processes have been set toSp = 1mm
for the range rate, andSp = 1 cm for the ionospheric drift.

Second stage: Code bias estimation

The measurement vector of the second stage is set to the
a posteriori state estimate of the first Kalman filter, i.e.

z(2)n = x̂+,(1)
n , (31)

where the indices+ and− denote the a posteriori and a
priori estimates. In order to perform the filtering of the se-
cond stage, the matrixΓn in Eq. (5) representing the time
correlation of the measurement noise, as well as the ma-
trix Rn in Eq. (6) representing the covariance matrix ofζn,
have to be determined. To simplify notations, all matrices
exceptΓn are referring to the first Kalman filter.

The temporal correlation of the a posteriori state estima-
te of the first Kalman filter, which also equals the temporal



correlation of the measurements of the second Kalman fil-
ter, is calculated as

E

{

(

x̂+(1)
n − E{x̂+,(1)

n }
)(

x̂
+,(1)
n−1 − E{x̂

+,(1)
n−1 }

)T
}

= E{(z(2)n − E{z(2)n })(z
(2)
n−1 − E{z

(2)
n−1})

T}

= E{v(2)n v
(2)T
n−1 }. (32)

This temporal correlation of the measurement noise is fur-
ther developed with Eq. (5), i.e.

E{v(2)n v
(2),T
n−1 } = E{(Γn−1v

(2)
n−1 + ζn−1)v

(2),T
n−1 }

= Γn−1 ·E{v
(2)
n−1v

(2),T
n−1 }. (33)

Since

x̂+,(1)
n − x(1)

n = x̂−,(1)
n +Kn · (z(1)n −Hnx̂

−,(1)
n )− x(1)

n

= Φn−1x̂
+,(1)
n−1 +Kn · (z(1)n −HnΦn−1x̂

+,(1)
n−1 )− x(1)

n

= (I −KnHn)Φn−1x̂
+,(1)
n−1 +Kn(Hnx

(1)
n + v(1)n )− x(1)

n

= (I −KnHn)Φn−1x̂
+,(1)
n−1 −

(I −KnHn)(Φn−1x
(1)
n−1 + w

(1)
n−1) +Knv

(1)
n

= (I −KnHn)Φn−1(x̂
+,(1)
n−1 − x

(1)
n−1)+

(I −KnHn)w
(1)
n−1 +Knv

(1)
n , (34)

and there is no cross-correlation between the a posterio-
ri state estimatêx+,(1)

n−1 and the true noisewn−1 and vn,
another way to calculate the temporal correlation of the a
posteriori estimates of the first Kalman filter is given by

E

{

(

x̂+(1)
n − E{x̂+,(1)

n }
)(

x̂
+,(1)
n−1 − E{x̂

+,(1)
n−1 }

)T
}

= (I −KnHn)Φn−1P
−

n−1 (35)

Combining Eq. (32), (33), and (35) yields the matrixΓn−1:

Γn−1 = (I −KnHn)Φn−1 (36)

The covariance matrixRn−1 can be derived by

Rn−1 = E{ζn−1ζ
T
n−1}

= E{(vn − Γn−1vn−1)(vn − Γn−1vn−1)
T}

= E{vnv
T
n } − Γn−1E{vn−1v

T
n } − E{vnv

T
n−1}Γ

T
n−1

+ Γn−1E{vn−1v
T
n−1}Γ

T
n−1. (37)

Applying Eq. (33), it can be further simplified to

Rn−1 = E{vnv
T
n } − Γn−1E{vn−1v

T
n−1}Γ

T
n−1

= P+
n − Γn−1P

+
n−1Γ

T
n−1. (38)

According to Eq. (24), the state vector of the second Kal-
man filter is defined as

x(2) =
(

∆~rK,T,∆~̇rK,T, cδτTR , bTgK

)T

, (39)

where the orbital error has a linear dynamic state model:

∆~rkn = ∆~rkn−1 +∆t∆~̇rkn−1 + w∆~rK
n−1

. (40)

Since the radial component of the orbital error is the most
difficult term to estimate within short time, it is necessa-
ry to separate the radial direction from the Earth-Centered
Earth-Fixed (ECEF) unit vector. Therefore, the satellite lo-
cal Radial, In- and Cross-track (RIC) coordinate frame is
used. The transformation from RIC to ECEF is given by





∆rx
∆ry
∆rz



 = Rz(θ) ·





~eTR
~eTI
~eTC



 ·





∆rR
∆rI
∆rC



 , (41)

where matrixRz describes the rotation counter-clockwise
through an angleθ from Earth-Centered Inertial (ECI) fra-
me to ECEF frame along the earth rotation axis, which
points towards the observer, and the vectors~eR, ~eI and
~eC represent respectively the unit vectors in radial, in- and
cross-track directions. Given the position vector~rECI in
ECI frame, the direction of~eR coincides with the position
direction, the cross-track unit vector~eC lies along the an-
gular momentum vector~L = ~rECI ∧ ~̇rECI, and the in-track
vector completes the right-hand system [13].

In the simulation, the states including Eq. (25) and (39)
are generated in one step based on20 globally distributed
IGS (International GPS Service) stations. The generated sa-
tellite orbital corrections consist of the in- and cross-track
components, while the radial component is assumed to be
known perfectly. A cascaded Kalman filter has been im-
plemented to estimate all states: In the first stage, the io-
nospheric slant delays, the integer ambiguities, the phase
biases as well as the geometry terms are estimated.
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Fig. 6 The difference between the true satellite in-, cros-
s-track corrections and the estimates.

The geometry estimates, whose noise is sequentially
correlated, are then used as measurements for estimating
the satellite in- and cross-track corrections, the receiver



clock/bias terms and the satellite code biases in the second
stage. Fig. 6 shows difference between the true orbital cor-
rections and the estimates. The error in the estimates con-
verges to under2 cm after700 epochs. Fig. 7 shows the
error in the satellite code bias estimates. After500 epochs
the estimates have reached a level of1 cm.
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Fig. 7 The error between generated satellite code biases
and the estimates.

CONCLUSION

In this work, the code multipath analysis as well as the
code bias estimation have been performed. Given a network
of ground stations from SAPOS, a daily multipath pattern
has been observed in the code residuals. A sidereal filtering
has been applied to the samples gathered over one week,
such that the multipath pattern could be isolated and remo-
ved from the measurements. The effect on real data was an
almost complete mitigation of the multipath, resulting in an
almost white noise and in a much better ambiguity fixing
behavior. In the second section, a cascaded Kalman filter
has been proposed for the efficient estimation of satellite
phase and code biases. The time-correlation introduced by
the first Kalman filter has been taken into account by Bry-
son’s generalized Kalman filter for colored measurement
noise. The simulation results show that the difference bet-
ween the estimated orbital errors and the true ones has been
converged to less than2 cm within 23 min, and the dif-
ference between satellite code bias estimates and the true
ones has dropped below1 cm after17 min.
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[8] G. Wübbena, GPS carrier phases and clock modeling.
Lecture Notes in Earth Sciences: GPS-Techniques
Applied to Geodesy and Surveying, vol. 19, pp. 381-
392, 1988.

[9] A. E. Bryson, Jr. and L. J. Henrikson, Estimation
using sampled-data containing sequentially correla-
ted noise.J. of Spacecraft and Rockets, 5(6), 662-665,
1968.

[10] K. Wang, Y. Li, and C. Rizos, New practical approach
to Kalman filtering with time-correlated measurement
errors. 2010.

[11] Sapos Bayern - Referenzstationen, Bayerische Ver-
messungsverwaltung.http://sapos.bayern.de, acces-
sed on Jun. 7, 2011.

[12] R. Brown and P. Hwang, Introduction to random si-
gnals and applied Kalman filtering, 3rd edition. John
Wiley & Sons, New York, 1997.

[13] G. Born, Introduction to statistical orbit determinati-
on.Lecture notes, University of Colorado, 2011.


