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Abstract—We focus on the globally optimal linear beamformer
design based on quality-of-service (QoS) power minimization and
balancing in the satellite downlink (DL) with perfect and statisti-
cal channel state information (CSI) users. Contrary to the usual
rate requirements for the perfect CSI users, we consider ergodic
rate requirements for the statistical CSI users. Assuming that the
satellite works at Ka-band, we model the fading channels as zero-
mean Gaussian vectors with rank-one covariance matrices. This
leads to tractable ergodic mutual information expressions that
enable to formulate a simple necessary and sufficient feasibility
test for the power minimization under minimum rate constraints.
Moreover, we are able to solve the power minimization with a
globally optimal branch-and-bound (BB) method via properly
reformulating the optimization problem. This BB formulation
can also be applied to the rate balancing problem. The results
serve as a benchmark for other optimization methods.

Index Terms—QoS power minimization; rate balancing; beam-
forming; statistical CSI; ergodic rate; branch-and-bound; satel-
lite communications

I. INTRODUCTION

We consider the DL of a satellite communication system as

detailed in [1] and [2], where the N -antenna satellite serves a

set K of single-antenna receivers at the earth’s surface, with

|K| = K . These users are differentiated into the two disjoint

groups P and S: users where we have accurate knowledge of

the frequency flat channel states, e.g., static receivers with line

of sight to the satellite, and users where we can only estimate

the channel statistics, respectively, e.g., moving mobiles in

urban environments. Modeling the DL as a vector broadcast

channel (BC) [3], we focus on the power efficient linear

beamformer design based on:

(P) QoS power minimization: given QoS requirements, e.g.,

expressed as minimum rates, shall be fulfilled using

minimum total average transmit power;

(B) Balancing optimization: the ratios between achievable

and target rates shall commonly be maximized under a

total average transmit power restriction.

In agreement with recent literature [4], we are interested

in a stochastically robust formulation of above QoS power

minimization and balancing optimization. In contrast to the

usual rate requirements for the users with perfect CSI, ergodic

rate targets are used as QoS measure for the statistical CSI

users. Thereby, we properly exploit the knowledge about the

channel statistics to constrain the average rate of these users.

Note that the stochastically robust beamformer design based

on ergodic rate requirements for the statistical CSI users is

commonly known to be less conservative than worst-case

robust design strategies [5].

A. Channel Assumptions

Unfortunately, general ergodic rate expressions (e.g., see [6]

and [7]) are too complicated for a direct implementation in

currently available multi-user beamformer design techniques.

Therefore, we exploit the fact that in satellite communications

the fading channels can essentially be modeled as zero-

mean Gaussian vectors with rank-one covariance matrices

when assuming that the mobile users and the satellite work

at Ka-band (cf. [1] and [8]). The spatial signatures of the

channels remain essentially constant due to the large distance

from the satellite to the ground and the slow movement of

the mobiles. The signal of far distant large scatterers, e.g.,

mountains and skyscrapers, can be neglected in most of the

considered environments due to the additional path loss and the

delay compared to the direct path signal. However, the norm

and phase of the statistical CSI users’ channels strongly varies

with the position of the mobile, the surrounding scatterers, and

the shadowing in urban and sub-urban environments.

B. Difficulties

In [1] and [2], we considered the same system setup and

proposed efficient but suboptimal approaches for the robust

formulations of (P) and (B) that were based on partial zero-

forcing (ZF) and bounds on the ergodic rates, respectively.

Unlike these attempts, in this paper the focus is on globally

optimally solving the ergodic robust problem reformulations

of (P) and (B) under above assumptions. The difficulty is that

the problems are non-convex in the BC and, in contrast to the

perfect CSI rate constraints, no convex reformulation is known

for the ergodic counterparts. Especially, we cannot write

the problems with minimum signal-to-interference-plus-noise-

ratio (SINR) constraints since the ergodic rate expressions

cannot be represented in terms of some SINR like term. Thus,

employing the convex optimization techniques of [9] and [10]

is impossible for the considered system setup.

An additional problem is that (P) might not have a solu-

tion if an overloaded setup with less transmit antennas than

users is considered. In [11], the feasibility region of the



perfect CSI vector BC is shown to be a simple polytope

when reformulating the minimum rate targets to equivalent

upper bounds on the minimum-mean-square-errors (MMSEs).

This feasibility region was further refined in [12] to singular

channels. However, the feasible region of the vector BC with

ergodic rate requirements is still unknown. The proof in the

perfect CSI case cannot straightforwardly be extended to the

considered ergodic robust formulation due to the lack of

appropriate lower bounds for the ergodic rates [2].

C. Contributions and Structure

In this work, we overcome both of above problems that are

a consequence of the ergodic rate requirements.

• We show that the complete feasibility region of the

ergodic robust QoS power minimization problem (P) is

again a polytope in terms of MMSEs. The proof is

based on the results in [11] and a tight upper bound

for the ergodic rates that was already introduced in [2].

Moreover, the given proof is constructive in the sense that

it shows one way to find strictly feasible beamforming

vectors for the robust QoS problem.

• Given feasibility, we globally optimally solve the

QoS power minimization via a branch-and-bound (BB)

method (e.g., see [13]) that is adopted from the frame-

work in [14]. Therein, an optimization formulation is

given that takes into account the partly convex-monotone

structure of vector BC and interference channel problems.

The BB formulation in this work is better suited for the

considered robust beamformer design problems. That is,

also the stochastically robust balancing optimization (B)

can be incorporated in the given formulation.

We remark, that the BB method is inappropriate for real

satellite systems as it is an exhaustive iterative partitioning

procedure [13]. The considered formulation has exponential

complexity in the number of statistical CSI users. Therefore,

this method is merely for benchmarking the suboptimal partial

ZF and bounding methods of [1] and [2], respectively, in

selected scenarios with relatively small N and |S|.
The remainder of this work is structured as follows. The

detailed system model, together with the achievable and er-

godic rates of the BC at hand are introduced in Section II.

In Section III, (P) is recast. The MMSE feasible region of

the vector BC with ergodic rates is presented, followed by

a detailed proof. As the proof is constructive, a suboptimal

but feasible beamformer design method is proposed next.

In Section V, the used BB formulation is introduced and

problem (P) is rewritten to fit into this framework. One way

of implementing the BB algorithm is shown in Section V.

Problem (B) is recast in Section VI and shown to fit to the

BB formulation. Finally, numerical results for both problems

are presented and used to benchmark the partial ZF scheme

of [1] and the bounding methods in [2].

II. SYSTEM MODEL AND ACHIEVABLE RATES

In the considered vector BC, independent unit-variance

data signals sk ∼ NC(0, 1) are linearly precoded with the

beamformers tk ∈ C
N , k ∈ K = {1, . . . ,K} and then

simultaneously transmitted to theK receivers, i.e., the transmit

signal is x =
∑K

k=1 tksk ∈ CN . Assuming zero-mean

unit-variance additive Gaussian noise nk ∼ NC(0, 1) at the

receivers, the kth user’s received signal reads as

yk = hH
k x+ nk = hH

k tk + hH
k

K
∑

i6=k

tisi + nk,

where hH
k ∈ C1×N denotes the frequency flat fading channel

vector. The corresponding mutual information rk , I(x, yk)
of user k is given by

rk = log2

(

1 +
|hH

k tk|2
1 +

∑

i6=k |hH
k ti|2

)

. (1)

To rely on (1), the transmitter needs to know the channel

state hk which is only available for a subset of the users k ∈ P,

i.e., the perfect CSI users. For the other users k ∈ S = K \ P,
only the statistics of hk ∼ NC(0,Ck) are available why we

resort to the ergodic mutual information Rk , Ehk
[rk], i.e.,

the rate that is achievable on average. Under the assumption

that the covariance matrices are essentially rank-one in satellite

communications (cf. Subsection I-A), they are characterized

by the spatial signatures vk ∈ CN of the channels to users

k ∈ S. That is, we can write Ck = vkv
H
k . Being aware of vk,

the kth user’s ergodic rate reads as

Rk =
1

log(2)
ς

(

1
∑K

i=1 |vH
k ti|2

)

− 1

log(2)
ς

(

1
∑

i6=k |vH
k ti|2

)

, (2)

where we define ς(x) , ex E1(x) and E1(x) =
∫∞

x
e−t

t dt
denotes the exponential integral function [15].

III. QOS POWER MINIMIZATION

Given the non-negative QoS requirements ρk, expressed

as minimum rate targets, k ∈ K = {1, . . . ,K}, the power

minimization problem (P) can be formulated as

min
{tk}

K
∑

k=1

‖tk‖22

s. t.:

{

rk ≥ ρk ∀k ∈ P,

Rk ≥ ρk ∀k ∈ S.

(3)

Here, we write {tk} to explicitly denote that an optimization

(or function) depends on all beamformers tk with k ∈ K.

As already mentioned in the introduction, (3) might not

have a solution in general. A given set of rate targets {ρk}Kk=1

might be infeasible when K > N , even though the transmit

power is unbounded in this problem formulation (e.g., see the

discussion in [16] and [10]). In [11], a simple (non-iterative)

feasibility test is given for the purely perfect CSI power



minimization problem with regular channels.1 In this case, the

QoS feasibility region, formulated as achievable MMSEs, is

a polytope with individual box constraints and one half-space

constraint for the sum of the MMSEs. For singular channels,

additional half-space constraints bound the feasible MMSE

region [12]. Next, we incorporate the ergodic rate requirements

of (3) into this feasibility region framework.

For this purpose, we express the rate targets as maximum

MMSE requirements, i.e.,

εk = 2−ρk ≥ MMSEk =

{

2−rk k ∈ P,

2−Rk k ∈ S.
(4)

Moreover, we combine the channel vectors of the perfect CSI

receivers and the channel characteristics of the statistical CSI

receivers in the set of channel signatures H = {vk}k∈S ∪
{hk}k∈P. Based on above definition of the MMSEs and

regular channel signatures, the following theorem is valid.

Theorem 1. Let the channel signatures in H be regular. Then,

the maximum MMSE requirements {εk}Kk=1 are feasible iff

they lie inside a polytope with box constraints 0 < εk ≤
1 ∀k ∈ K and the single half-space constraint

∑K
k=1 εk >

max(0,K −N) (cf. [11, Theorem 1]).

In the remainder of this section, a detailed proof of this

statement is given and a suboptimal beamforming scheme is

presented that is motivated by the ideas of the proof.

A. Proof of Theorem 1

The proof of Theorem 1 is based on the fact that the ergodic

mutual information in (2) is upper bounded by (cf. [2])

Rk ≤ Rk = log2

(

1 +
|vH

k tk|2
1 +

∑

i6=k |vH
k ti|2

)

, (5)

which has the structure of the usual (non-ergodic) vector BC

mutual information expression but with ‘channels’ vk instead

of hk. The key property of this upper bound is that it is tight

for increasing interference Ik =
∑

k 6=i |vH
k ti|2 [cf. (19b)], i.e.,

the following lemma is valid.

Lemma 1. The ergodic rate Rk is upper bounded by Rk and

differs from Rk by only a small error, i.e., Rk ≥ Rk− δk with

δk ≥ 0. Here, δk is given by

δk =
1

log(2)
ς
(

1
/

Ik
)

− log2
(

1 + Ik
)

+
γ

log(2)
≤ γ

log(2)
,

where γ ≈ 0.5772 denotes the Euler-Mascheroni con-

stant [15], and has the following properties [2, Proposition 1]:

(i) δk is monotonically decreasing with Ik,

(ii) δk = γ
log(2) for Ik = 0, and δk = 0 for Ik →∞.

The proof of this lemma can be found in [2, Proof of

Proposition 1]. It is based on the fact that the difference

1A set of vectors A = {ak}
K

k=1
with ak ∈ CN is called regular iff

the vectors of any subset B ⊆ A with |B| ≤ N are linearly independent.
Alternatively, we can write that the matrix AB that combines the vectors in
B satisfies rank(AB) = min(N, |B|). If rank(AB) < min(N, |B|) for at
least one B ⊆ A, the vectors in A are singular.

log(1+x)− ς(1/x) ≥ 0, with x ≥ 0, is strictly monotonically

increasing in x, equals zero for x = 0, and becomes γ
for x→∞.

Being aware of the ergodic rate upper bound in (5) and

Lemma 1, we are in the position to prove Theorem 1 in two

main steps. First, we show that the MMSE conditions in The-

orem 1 are necessary, i.e., we cannot achieve MMSE values

outside of the polytope with box constraints 1 ≥ MMSEk > 0
and the half-space constraint

∑K
k=1 MMSEk > K−N . Then,

we demonstrate that the MMSE conditions in Theorem 1 are

also sufficient, i.e., all MMSE-tuples inside the polytope can

be reached with finite transmit power.

The necessity of the individual MMSE box constraints 1 ≥
MMSEk > 0, k ∈ K directly follows from the boundedness

of the rate expressions, i.e., 0 ≤ rk, Rk <∞, and the MMSE

definition in (4). Here, zero for MMSEk is only achieved for

Rk, rk →∞ which requires infinite transmit power. To show

necessity of the half-space constraint, we state the following

series of inequalities:

K
∑

k=1

MMSEk =
∑

k∈P

2−rk +
∑

k∈S

2−Rk

≥
∑

k∈P

2−rk +
∑

k∈S

2−Rk

> K −N,

(6)

where the first inequality immediately follows from (5). For

the second inequality, we apply the common uplink-downlink

duality-principle, using Rk instead of Rk (cf. [2]). Based on

an MMSE reformulation in the dual uplink, we can exploit

the MMSE-feasibility results of [11, Theorem 1].

In the dual vector MAC, the data signals dk ∼ NC(0, 1) are
transmitted with power pk over the vector channels bk = hk

for k ∈ P and bk = vk for k ∈ S. The MAC receiver passes the

observed superposition of the channel outputs and the additive

noise η ∼ NC(0, IN ) through the equalizer fH
k ∈ C1×N to

get the estimate d̂k ∈ C for dk. Defining the MAC MMSE of

user k as MMSEMAC
k = minfH

k
E
[

|d̂k − dk|2
]

, the optimum

MMSE equalizer reads as (e.g., [17])

fH
MMSE,k =

√
pkb

H
k

(

IN +

K
∑

i=1

bib
H
i pi

)−1

and results in the MAC MMSE expression

MMSEMAC
k = 1− pkb

H
k

(

IN +

K
∑

i=1

bib
H
i pi

)−1

bk. (7)

Adding up these terms for all k ∈ K, the sum MMSE in the

considered vector MAC can be formulated as

K
∑

k=1

MMSEMAC
k = K − tr

(

PBH(IN +BPBH)−1B
)

= K −N + tr
(

(IN +BPBH)−1
)

,

(8)

where B = [b1, . . . , bK ] and P = diag(p1, . . . , pK). Since
the inverse in (8) is positive semidefinite, its trace is lower



bounded by N − rank(B). Therefore, any MAC power allo-

cation with finite sum transmit power tr(P ) <∞ satisfies

K
∑

k=1

MMSEMAC
k > K − rank(B) ≥ K −N. (9)

We remark that the latter of the two inequalities is strict for

K < N as the sum MMSE is clearly bounded below by zero,

whereas the inequality becomes an equality for K ≥ N when

assuming regular channels, i.e., when rank(B) = min(N,K).
Note that the bounded vector BC (with Rk for k ∈ S) and

the dual MAC share the same feasibility region because of the

duality principle. Precisely, the same MMSEs are achievable

in the MAC and the bounded BC, i.e., MMSEMAC
k = 2−rk for

k ∈ P and MMSEMAC
k = 2−Rk for k ∈ S, using the same

total transmit power tr(P ) =
∑K

k=1 ‖tk‖22 (e.g., see [18]).

Therefore, we can conclude that whenever an MMSE-tuple is

achievable in the vector MAC with finite transmit power, this

also holds for the bounded BC. Thus, the second inequality

in (6) is valid.

So far, we have only shown that no MMSE-tuples are

achievable that lie outside the polytope. Next, we prove that

the given constraints are also sufficient for feasibility, i.e.,

we show that all tuples {MMSEk}Kk=1 in the interior of

the polytope are achievable. For this purpose, we consider

an arbitrary tuple of MMSE targets {εk}Kk=1 that satisfy

1 ≥ εk > 0 ∀k ∈ K and
∑K

k=1 εk > K − N . As these

target MMSEs reside in the interior of the polytope, we know

from the discussion above and the results in [11] that, if we

restrict to regular channels {bk}Kk=1, there exists a tuple of

beamformers {t̂k}Kk=1 having finite norm that simultaneously

satisfy the next set of inequalities:

2−rk({t̂k}) ≤ εk ∀k ∈ P

2−Rk({t̂k}) ≤ εk ∀k ∈ S,

where rk({tk}) and Rk({tk}) define the mapping of the

beamformers {tk}Kk=1 to the corresponding (bounded) rate

values [see (1) and (5)]. Note that such a set of beamformers

(that additionally minimizes the total transmit power) may be

found either via a fixed-point based power minimization in

above dual MAC and a transformation of the results to the

bounded BC [2], or directly via convex optimization methods

in the bounded BC [10], for example.

Now, in order to show that the same MMSE targets are

achievable in the vector BC with ergodic rates, but with dif-

ferent transmit power, we have to find beamformers {t′k}Kk=1

with finite norm such that

rk({t′k}) ≥ rk({t̂k}) ∀k ∈ P (10a)

Rk({t′k}) ≥ Rk({t̂k}) ∀k ∈ S. (10b)

These beamformers may be constructed via a proper scaling

of the vectors {t̂k}Kk=1, for example. That is, we choose

t′k =
√
αt̂k ∀k ∈ K, (11)

with α ≥ 1. Since rk({t′k}) = rk({
√
αt̂k}) is strictly

monotonically increasing with α [see (1)], above choice α ≥ 0

always satisfies (10a). For (10b) to hold, we require a large

enough α that additionally satisfies

Rk

(

{√αt̂k}
)

≥ Rk

(

{√αt̂k}
)

− δk
(

αÎk
)

≥ Rk

(

{t̂k}
)

∀k ∈ S,
(12)

with the interference term Îk =
∑

i6=k |vH
k t̂i|2. The first

inequality in this series stems from Lemma 1. For the second

inequality in (12), we differentiate two cases with respect to

the interference, namely Îk > 0 and Îk = 0.
If the interference term is strictly positive, i.e, Îk > 0, then

Rk({
√
αt̂k}) = log2

(

1 +
α|vH

k t̂k|2
1 + αÎk

)

is monotonically increasing with α but bounded, i.e., we have

lim
α→∞

Rk({
√
αt̂k}) = log2

(

1 + |vH
k t̂k|2

/

Îk
)

.

Moreover, the resulting maximal error term is

δk(αÎk) =
1

log(2)
ς

(

1

αÎk

)

− log2
(

1 + αÎk
)

+
γ

log(2)
.

Especially, δk(αÎk) is monotonically decreasing with α
and limα→∞ δk(αÎk) = 0 according to Lemma 1. As

Rk({
√
αt̂k}) > Rk({t̂k}) for α > 1 and as δk(αÎk) converges

to zero for large α, it is always possible to find an α⋆ such

that Rk({
√
α⋆t̂k})−Rk({t̂k}) ≥ δk(α

⋆ Îk).
Otherwise, if Îk = 0 exactly, then

Rk({
√
αt̂k}) = log2

(

1 + α|vH
k t̂k|2

)

unboundedly increases with α, while the maximal error term

is bounded from above, i.e., δk(0) =
γ

log(2) . For these reasons,

it is always possible to find an α⋆ such that Rk({
√
α⋆t̂k})−

Rk({t̂k}) ≥ γ
log(2) in this case.

Hence, a suitable α⋆ > 1 can be found such that the

second inequality in (12) is valid simultaneously for all k ∈ S.

Therewith, we have proven that we can construct a set of

beamformers {t′k}Kk=1 according to (11) that satisfies (4)

simultaneously for all k ∈ K, which completes the proof for

the converse of Theorem 1.

B. Suboptimal Beamforming

According to above proof, the feasible MMSE region re-

mains the same if we use the ergodic rate upper bound in (5)

instead of the actual ergodic rate in (2). Moreover, we remark

that the converse part of above proof is constructive. Feasible

beamforming vectors {tk}Kk=1 for given rate requirements

{ρk}Kk=1—reformulated as MMSE targets that satisfy Theo-

rem 1—are found in two main steps.

1) First, a set of feasible beamforming vectors {t̂k}Kk=1 has

to be determined for the case when we replace the ergodic

rate constraints with requirements on the upper bounds,

i.e., we require rk ≥ ρk ∀k ∈ P and Rk ≥ ρk ∀k ∈ S.

2) Based on {t̂k}Kk=1, strictly feasible beamforming vectors

{tk}Kk=1 for the constraints in (4) may be found via tk =√
αk t̂k and proper choices of αk ≥ 1, k ∈ K.



This motivates suboptimal two step approaches to obtain

reasonable beamformers for problem (3), as detailed in [2]

for example. Therein, we find the beamformers {t̂k}Kk=1 via

solving an approximation of (3), where we replace the ergodic

constraints with the constraints in 1), i.e.,

min
{t̂k}

K
∑

k=1

‖t̂k‖22

s. t.:

{

rk({t̂k}) ≥ ρk ∀k ∈ P,

Rk({t̂k}) ≥ ρk ∀k ∈ S.

(13)

This approximate problem can equivalently be formulated as a

power minimization with minimum SINR requirements, that is

commonly known to be a convex optimization problem [10].

That is, (13) is efficiently solvable via SINR uplink-downlink

duality and the standard interference function framework [19].

Then, instead of applying equal scaling for all t̂k, k ∈ K as

in (11), another optimization is performed in [2] for finding

those scalars {αk}Kk=1 that satisfy rk = ρk ∀k ∈ P and Rk =
ρk ∀k ∈ S and additionally minimize the transmit power, i.e.,

min
{αk}

K
∑

k=1

αk‖t̂k‖22

s. t.:

{

rk({αk t̂k}) ≥ ρk ∀k ∈ P,

Rk({αk t̂k}) ≥ ρk ∀k ∈ S.

(14)

Solving (14), efficient beamformers t′k = αk t̂k , k ∈ K may

be obtained that are feasible for (3) but suboptimal in general.

Note that the optimum of (14) is in general a upper bound for

the optimum of (3).

IV. PROBLEM REFORMULATION

In what follows, we consider {ρk}Kk=1 that are feasible.

Given feasibility, (3) is still a non-convex problem. The rates

are neither convex nor concave functions of {tk}Kk=1 and,

unlike the perfect CSI rate constraints, no convex reformu-

lation is known for the ergodic counterparts. This observation

motivated us to apply a globally optimal BB approach (e.g.,

see [13]). To this end, we use a BB formulation that is

similar to that in [14] and exploits the partly convex monotone

structure of the problem. The objective and the perfect CSI

rate requirements can equivalently be represented as convex

second-order-cones (SOCs), while the statistical CSI rate

requirements may be represented as a difference of monotonic

functions in the experienced useful signal and interference. In

the considered BB formulation, branching and bounding will

be performed on the reduced space of experienced interference

levels at the statistical CSI users.

For this purpose, we rewrite the power minimization prob-

lem into the following form:

min
(b,{tk})∈Q,i

b

s. t.: f({tk}, i) ≤ 0,

fi({tk}) ≤ i.

(15)

Here, Q defines a tractable (convex) constraint set that will be

defined by a transmit power constraint and the convex refor-

mulations of the perfect CSI rate requirements. The function

f({tk}, i) is entry-wise convex in the beamformers {tk}Kk=1

for fixed i and monotonically increasing in i for fixed {tk}Kk=1.

Reformulations of the statistical CSI rate requirements will be

the basis of this function. Finally, fi({tk}) ≤ i will combine

the definitions of the experienced interference from statistical

CSI users, where equality holds in the optimum.

To arrive at (15), we first introduce the power constraint

K
∑

k=1

‖tk‖22 ≤ b2 (16)

where the new slack variable b ∈ R+ is additionally the

objective of the QoS power minimization problem. Note that

equality holds in the optimum for this constraint. A standard

convex formulation of (16) is the SOC representation (cf. [10])

‖vec(T )‖2 ≤ b, (17)

with vec(·) denoting the column stacking operator and the

matrix T = [t1, . . . , tK ] combines all beamforming vectors.

Next, we (convex) reformulate the rate requirements. To this

end, we express the required useful signal power at user k ∈ P

in terms of the experienced interference, i.e.,

|hH
k tk|2 ≥ gk(Ik) = (2ρk − 1)(1 + Ik), (18a)

where we defined the interference to be

Ik =
∑

i6=k
|hH

k ti|2 k ∈ P. (18b)

A similar reformulation for the ergodic rate requirements of

the statistical CSI users k ∈ S results in

|vH
k tk|2 ≥ gk(Ik) =

1

ς−1
(

ρk log(2) + ς(1/Ik)
) − Ik, (19a)

where the experienced interference is denoted as

Ik =
∑

i6=k
|vH

k ti|2 k ∈ S. (19b)

We remark that gk(Ik) is positive and linear (and increasing)

in Ik for k ∈ P. Moreover, as (18a), (19a), and (17) are inde-

pendent with respect to scalar multiplications {ejφk tk}Kk=1 of

the beamformers, we can require the useful signals to be real

valued, i.e., Im{hH
k tk} = 0 for k ∈ P and Im{vH

k tk} = 0
for k ∈ S. Exploiting these properties, we can equivalently

formulate (18a) as SOCs [10], i.e,

hH
k tk ≥

√
2ρk − 1

∥

∥

[

hH
k Tk̄, 1

]∥

∥

2
k ∈ P, (20)

where Tk̄ = [t1, . . . , tk−1, tk+1, . . . , tK ] combines all beam-

formers except for the kth one.

Unfortunately, a similar reformulation is impossible

for (19a) as gk(Ik) is non-linear in Ik, k ∈ S and it is

non-convex. However, noting that gk(Ik) is monotonically

increasing in Ik, k ∈ S and introducing {Ik}k∈S as additional

slack variables, we recast (19a) with (19b) as

vH
k tk ≥

√

gk(Ik), ‖vH
k Tk̄‖2 =

√

Ik k ∈ S. (21)



Then, we relax the equality constraint in (21) to inequality

which is valid as ‖vH
k Tk̄‖2 ≤

√
Ik will be satisfied with

equality in the optimum. Note, that the search space of the

optimization under consideration is increased by this notation.

However, assuming a tuple of interference values {Ik}k∈S

given, the resulting optimization is a standard second-order-

cone-programming (SOCP) problem and efficiently solvable

via standard interior-point methods [20]. Thus, it remains to

search over the space spanned by {Ik}k∈S, which will be done

with the BB algorithm (cf. Section V).

Now, to arrive at the general formulation in (15) for the BB

method, we define the ℓth element of i as iℓ(k) =
√
Ik and

k ∈ S. Here, ℓ(·) maps the user index k ∈ S ⊆ K to the

entry index of the vector i, i.e., ℓ : S → {1, . . . , |S|}. With

this generic interference vector, the ℓth entries of the vector

functions f({tk}, i) and fi({tk}), from the explicitly written

constraints in (15), are fℓ(k)({tk}, iℓ(k)) =
√

gk(i2ℓ(k))−vH
k tk

and fi,ℓ(k) = ‖vH
k Tk̄‖2, respectively. The tractable SOCs for

the transmit power (17) and the useful signal of the perfect

CSI users (20) explicitly represent the convex set Q in (15).

V. BRANCH AND BOUND METHOD

Based on the formulation in (15), the typical BB optimiza-

tion procedure can be employed (e.g., [13]), where branching

and bounding is performed on the non-convex variables in i.

To this end, we require an initial index set A = {1} and the

interference box B1 = [imin, imax] that contains the optimal

interference vector iopt and is labeled with a lower bound

L(B1) and an upper bound U(B1) on the achievable objective.

Given this initialization, the following branching and bounding

steps are repeated until some ǫ-accuracy is met (cf. [14]).

1) Branching: In each iteration, the box Bl with minimum

lower bound (15), i.e.,

Bl = argmin
{Bm},m∈A

L(Bm),

is devided into disjoint sub-boxes {Bj}j /∈A. A standard

bisection along the longest edge of Bl may be applied for

example, such that the two sub-boxes are of equal size.

2) Bounding: For each new sub-box Bj = [imin, imax], we
calculate the lower bound L(Bj) of the objective as

L(Bj) = min
(b,{tk})∈Q

b

s. t.: f({tk}, imin) ≤ 0,

fi({tk}) ≤ imax

(22a)

and the upper bound U(Bj) as
U(Bj) = min

(b,{tk})∈Q
b

s. t.: f({tk}, imax) ≤ 0,

fi({tk}) ≤ imax.

(22b)

These bounds guarantee that L(Bj)→ U(Bj) for imin →
imax. Finally, we update the index set A of the active

boxes according to the following rule:

A←
{

m ∈ (A \ {l}) ∪ {j}
∣

∣ L(Bm) + ǫ < min
n
U(Bn)

}

.

Note that we have minl∈A L(Bl) + ǫ ≥ minl∈A U(Bl) at

the convergence point of this BB procedure. If the chosen

tolerance is ǫ > 0, the algorithm converges in finitely many

iterations. However, being essentially an exhaustive search

strategy, the complexity of the BB method is exponential in

the dimension of i and the basis increases unboundedly with

decreasing ǫ [21, Theorem 4]. Therefore, this technique is only

tractable for small dimensions and may serve as a benchmark.

Furthermore, we remark that finding an initial box B1
that contains iopt is not a straightforward task. While we

can set imin = 0, imax is unbounded in general since the

transmit power b2 is unbounded for the power minimization

(P). Here, we can exploit the method in Subsection III-B for

finding suboptimal but initial feasible beamforming vectors

and, therewith, an upper bound for bopt. Being aware of

bupper > bopt, the entries in imax of B1 may be obtained via

(imax
ℓ(k))

2 = (K − 1)(bupper)2‖vk‖22 > I
opt

k , assuming that all ti,

i 6= k are colinear with vk and ‖ti‖22 = bupper.

VI. RATE BALANCING

A problem that is closely related to (P) is the rate balancing

optimization (B) that reads as
max
β,{tk}

β

s. t.:

K
∑

k=1

‖tk‖22 ≤ Ptx,

{

rk ≥ βρk ∀k ∈ P,

Rk ≥ βρk ∀k ∈ S,

(23)

where the transmit power is Ptx in the optimum and the

resulting rates are balanced, i.e., the rate of user k is βoptρk.
Actually, (3) and (23) are inverse problems (cf. [16] and [10]).

As a consequence, (23) may be solved via a series of QoS

problems (3) until the optimum equals Ptx. Alternatively, the

balancing problem can also be solved via above BB algorithm

when reformulating (23) to (15) as detailed next.

In order to arrive at (15), we first remark that β is maximized

in (23). Therefore, we set b = −β in this case, while the

constraints are formulated equal to Section IV except for

replacing ρk with −bρk. That is, the transmit power restriction

is recast as [cf. (17)]

‖vec(T )‖2 ≤
√

Ptx (24)

and the perfect CSI rate requirements are reformulated

into [cf. (20)]

hH
k tk ≥

√

2−bρk − 1
∥

∥

[

hH
k Tk̄, 1

]∥

∥

2
k ∈ P, (25)

where in addition Im{hH
k tk} = 0. Again, (24) and (25) are the

explicit contraints that shape Q in (15). For the ℓth element

in f({tk}, i) and fi({tk}) of (15), we write

fℓ(k)({tk}, iℓ(k)) =
√

gk(−b, i2ℓ(k))− vH
k tk k ∈ S, (26)

with Im{vH
k tk} = 0, and fi,ℓ(k) = ‖vH

k Tk̄‖2, respectively,
where we defined [cf. (19a)]

gk(x, y) =
1

ς−1
(

xρk log(2) + ς(1/y)
) − y.
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Figure 1. Minimum transmit power over β for an exemplary channel
realization in the fully loaded system with K = N = 4.

We remark that, in contrast to the power minimization

formulation in Section IV, problem (15) is not a SOCP

problem for fixed interference i. Neither Q nor f({tk}, i)
are convex in (b, {tk}) due to their dependence on b for

the balancing optimization [cf. (25) and (26)]. However,

additionally fixing b, the resulting constraints are the same

SOCs as for the power minimization. Moreover, noting that

b is monotonically decreasing in Ptx, the lower and upper

bound calculation in step 2) Bounding of the BB algorithm,

i.e., (22a) and (22b), may be done via a bisection with respect

to b. In each step of the bisection, a feasibility test has to

be performed to check wether b is achievable with transmit

power less than or equal to Ptx. This test may be realized with

the corresponding SOCP power minimization problems in 2)

Bounding of the BB algorithm in Section V that stem from

the reformulation in Section IV. Denoting the optimal transmit

power as P (−bρ1, . . . ,−bρK), the bisection is performed until

P (−bρ1, . . . ,−bρK) = Ptx.

VII. NUMERICAL RESULTS

For numerical evaluations, we consider a GEO-stationary

satellite that is directed to Munich (11°east and 48°north).

The satellite is equipped with a rectangular antenna array of N
elements. The K users, |P| = |S| = K/2, are randomly placed

within 1° to 21°east and 40° to 56°north. Within this geometric

model, we used the free space path loss model for determining

properly normalized values of {hk}k∈P and {vk}k∈S.

Since the BB algorithm in Section V is exponential in |S|,
we have performed simulations in relatively small systems to

be able to compute the optimal solutions. For this work, we

considered two systems in more detail: a fully loaded system

where K = N = 4 and an overloaded system with K = 6
users but only N = 4 transmit antennas. In both scenarios,

the basic targets of the users are chosen to be ρ′2i−1 = 1
and ρ′2i = 2, i ∈ {1, . . . ,K/2}, which we scaled with some

common factor β for the plots to the power minimization and
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Figure 2. Minimum transmit power over β for an exemplary channel
realization in an overloaded system with K = 6 and N = 4.

the rate balancing optimization results, i.e., ρk(β) = βρ′k.

A. Power Minimization Results

In Fig. 1 and Fig. 2, simulation results for the power

minimization are depicted for the fully loaded system and

the overloaded system, respectively. We remark that all finite

rate requirements are feasible in the fully loaded system. In

contrast, the achievable rates in the overloaded system are

limited, why we show only a small range for β in Fig. 1.

In both figures, we show an upper bound and a lower bound

for the achievable minimum transmit power. For the lower

bound, we solved (13), where the ergodic ratesRk are replaced

with their upper bounds Rk in (5). The upper bound is the

predicted minimum transmit power when replacing the ergodic

rates Rk in (3) with the following lower bound in [2]:

Rk ≥ Rk = log2

(

1 +
|vH

k tk|
2

eγ +
∑

i6=k
|vH

k
ti|2

)

− d
log(2) , (27)

where d ≈ 0.1709 is the maximal distance between ς(1/x)
and log(1 + e−γ x) for x ≥ 0 (cf. [2]).

Between the two bounds, we can find the global optimum

that corresponds to the power minimization results for per-

forming the BB algorithm and the curve for the proposed

suboptimal strategy in Subsection III-B. Astonishingly, only a

small difference is visible between these results for the consid-

ered channel realizations. That means, the suboptimal method

has the potential to achieve a close to optimal performance

with comparingly small complexity. Only two fixed point

algorithms have to be employed for solving (13) and (14).

In addition, the power minimization results for the partial

ZF strategy of [1] (and ZF over all users) are shown here.

However, note that the ZF methods strongly restrict the beam-

former directions. In the overloaded system (see Fig. 2), the

partial ZF strategy considerably reduces the available degrees

of freedom for the beamformers to the perfect CSI users, i.e.,

the beamformers are constrained to cause no interference to the

statistical CSI users. Considering a system with |S| = |P| = 3
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Figure 3. Average achievable balancing level βopt in an overloaded system
with K = 6 users and N = 4 transmit antennas for 10 channel realizations.

and N = 4, there is only one remaining degree of freedom

available for three perfect CSI users. Thus, the achievable rate

region (and MMSE region) is considerably reduced. Therefore,

these ZF methods clearly lack in performance and we were

not able to achieve a higher factor than β = 0.4 in the power

minimization. This effect is also visible for the balancing

optimization results detailed next.

B. Rate Balancing Results

In Fig. 3, we plotted the average (optimal) balancing level

βopt versus Ptx in dB for the balancing optimization (B). For

the figure, we generated 10 channel realizations hk , k ∈ P, and

vk, k ∈ S for the overloaded system and calculated the mean

of the outcomes βopt. We clearly see that βopt saturates in the

high Ptx regime. Note that, using Rk instead of Rk, we obtain

an upper bound for βopt, whereas a lower bound is obtained

for performing the optimization with Rk instead of Rk.

Also here, the global optimal curve based on the BB results

and the curve based on the suboptimal strategy lie between the

bounds as expected. Surprisingly, there is no difference visible

between the suboptimal method (see Subsection III-B) and the

globally optimal BB method in Fig. 3. In fact, the performance

degradation of the suboptimal method is negligible for the

considered scenarios. Moreover, we see that the partial ZF

curve saturates to some value smaller than 0.5 in Fig. 3 as

expected from the power minimization results. This means that

the achievable (ergodic) rate region is considerably reduced by

imposing ZF with respect to the statistical CSI users’ channels.

VIII. CONCLUSIONS

In this work, the complete feasibility region of the QoS

optimization in the vector BC with perfect and statistical CSI

users was presented for the assumption of rank-one channel

covariance matrices. The corresponding proof motivated a sub-

optimal two step beamforming and power allocation scheme

which has shown to achieve close to optimal performance

in satellite communications. For benchmarking issues, the

QoS power minimization with ergodic rate constraints and the

ergodic robust rate balancing optimization were reformulated

to fit into a known BB global optimization framework.
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