
Resource Constrained Video Coding Systems

Waqar Zia

Technische Universität München
Lehrstuhl für Datenverarbeitung

Resource Constrained Video Coding Systems

Waqar Zia

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. sc. (ETH) Samarjit Chakraborty

Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Klaus Diepold

2. Univ.-Prof. Dr.-Ing. Eckehard Steinbach

Die Dissertation wurde am 27.01.2012 bei der Technischen Universität eingereicht und

durch die Fakultät für Elektrotechnik und Informationstechnik am 04.07.2012 angenommen.

Abstract
This work provides a set of frameworks for computational resource management,
applicable for a variety of resource-constrained video communication systems. Such
existing systems do not employ computational resource optimizations because of
the current lack of understanding of resource usage models for video codecs. This
results in suboptimal performance, resource wastage and compatibility issues be-
tween communicating devices. The proposed frameworks have a special emphasis
on integrability with practically deployed systems, low complexity and performance
overhead, scalability, large dynamic range of operation, high accuracy, minimal inva-
siveness and minimal reliance on empirical performance tuning. The frameworks are
integrable with a large variety of the existing rate-distortion optimization strategies.
General design principles are also provided that can be applied to other emerging
video communication applications and future video codecs as well. The real-time
performance of the frameworks for a set of realistic video communication systems is
evaluated. Quantitative results are provided, which demonstrate the resulting per-
formance enhancements. The proposed frameworks not only provide optimization,
but are also a step forward towards a major goal for video communication appli-
cations: to foster compatible communication between devices of varying processing
capabilities.

Zusammenfassung
Diese Arbeit bietet eine Reihe von Rahmenbedingungen für das Management von
Rechnerressourcen, die für eine Vielfalt ressourcenbegrenzter Videokommunikations-
systeme anwendbar sind. Solche bestehenden Systeme verwenden aufgrund des der-
zeit mangelnden Verständnisses für Ressourcenverbrauchsmodelle bei Video-Codecs
keine Optimierung der Rechnerressourcen. Dies führt zu suboptimaler Leistung und
Kompatibilitätsproblemen zwischen kommunizierenden Geräten. Die vorgeschlage-
nen Rahmenbedingungen legen einen besonderen Schwerpunkt auf geringe Kom-
plexität und Leistungseinbußen, hohe Genauigkeit sowie geringe Invasivität. Die
Rahmenbedingungen können in einer Vielzahl bestehender Rate-Distortion- Opti-
mierungsstrategien integriert werden. Es sind quantitative Ergebnisse vorhanden,
die die resultierenden Leistungsoptimierungen demonstrieren. Die vorgeschlagenen
Rahmenbedingungen sind auch ein Schritt in Richtung eines der Hauptziele bei Vi-
deokommunikationsanwendungen: der Förderung einer kompatiblen Kommunikation
zwischen Geräten mit unterschiedlichen Verarbeitungskapazitäten.

Contents

1 Introduction 1
1.1 State-of-the-Art Resource Optimization 2
1.2 The Emerging Picture of Resource Optimized Video Communications 2

1.2.1 The Changing Realm of Digital Multimedia 3
1.2.2 The Future of Resource Optimized Systems 3

1.3 Our Contribution to Resource Optimized Video Communication Sys-
tems . 4

2 Preliminaries 5
2.1 Resource Constrained Video Communication: Formulation 6

2.1.1 The Constrained Resources for Video Communication Systems 6
2.1.2 Computational Resource Constraints of Implementation . . . 6

2.2 Video Codecs for Resource Constrained Communication Systems . . 8
2.2.1 Distributed Video Source Coding 8
2.2.2 Block-Based Hybrid Video Codecs 9
2.2.3 Error Concealment for Block-based Video Codecs 15
2.2.4 Discussion . 16

3 Resource Constrained Video Coding: Brief review 17
3.1 Encoder Optimizations . 17

3.1.1 Joint Source-Channel Power Optimizations 18
3.1.2 Joint R-D-C Optimization . 20
3.1.3 Motion Estimation Based Optimization 21
3.1.4 Mode Ranking . 21
3.1.5 Encoder Resource Usage Prediction 22
3.1.6 Skip Mode Prediction . 22
3.1.7 Computational Resource Management of a Video Encoder . . 23
3.1.8 Variable Complexity Transform 24

3.2 Decoder Optimizations . 24
3.2.1 Decoder Resource Usage Modeling 24
3.2.2 Computational Resource Management by Quality Degradation 25
3.2.3 RDC Optimizations For Streaming Applications Using Generic

Complexity Metrics (GCM) 26
3.3 Some comments on the reviewed work 27

4 Resource Constrained Video Coding Systems 29
4.1 Mobile Video Conversational Applications 29

iii

4.1.1 Error Robustness . 30

4.1.2 Performance Metrics . 32

4.1.3 Robust Wireless Video Communications 33

4.1.4 Performance Evaluation . 37

4.1.5 Discussion of Results . 41

4.2 Telepresence Systems . 42

4.2.1 Computer Vision Techniques For Telepresence Systems . . . 43

4.2.2 Resource Constraints in TPTA Systems 43

4.2.3 Resource Optimization in TPTA Systems 44

4.2.4 Review of Video Quality Evaluation in TPTA Systems 44

4.2.5 Evaluation Results and Discussion 45

4.2.6 Discussion of Results . 48

5 Computational Resource Optimized Video Codec 51

5.1 System Classification . 51

5.1.1 Source Codec Configuration 52

5.1.2 Channel Characteristics . 54

5.2 System-wide Timing Analysis . 54

5.2.1 Video Complexity Verifier . 56

5.3 Decoder Resource Usage Model . 59

5.3.1 Design Considerations . 61

5.3.2 Formulation of the Model . 62

5.3.3 Memory Usage Modeling . 66

5.3.4 Implementation Notes on Decoder Modeling 67

5.4 Online Resource Optimization . 68

5.4.1 RDC Optimizations . 69

5.4.2 CD Mode Ranking . 71

5.4.3 System-wide Computational Resource Management 72

5.4.4 Codec Behavior Under Lossy Channel Conditions 79

5.5 Offline Resource Optimization . 80

5.5.1 GOP-based Resource Optimization 81

5.5.2 Architectural Options for Optimization 81

5.5.3 Design Considerations for GOP-based Optimization 82

6 Selected Performance Results 85

6.1 Codec Software and Hardware Selection 85

6.2 Confidence Level and Unknown Variance 86

6.3 Decoder Resource Model Verification 87

6.4 Online Optimizations . 89

6.4.1 Reference System . 89

6.4.2 3GPP PSC Application . 91

6.4.3 TPTA Applications . 102

6.5 Offline Optimizations . 106

6.5.1 Reference System . 106

6.5.2 Selected Performance Results 107

7 Conclusion and Outlook 109

A Evaluation Framework 111
A.1 3GPP conversational application . 111

A.1.1 Simulation Environment Components 112
A.1.2 Simulation And Testing Environment 113

A.2 TPTA Evaluation Methodology and Framework 117
A.2.1 Performance Evaluation . 118

Chapter 1

Introduction

Global mobile video data traffic will increase by more than one hundred folds in
the years between 2008 and 2013, to 1400 petabytes per month, according to a late
2009 estimate from Morgan Stanley Research [1]. Comparing this estimate with the
actual growth to date shows that it was only moderately conservative [2]. Cisco
expects that mobile video will make 66% of the 7000 petabytes per month of global
mobile data traffic by 2015 [2]. But these numbers merely state the obvious; the
evolved high-speed mobile network and the recent range of innovative smartphones
are the catalysts for this expansion. Hence the aforementioned growth may not look
too surprising now. What stays hidden behind these numbers is the tremendous
processing power required to generate and consume this data round the clock. Surely
mobile processors have come a long way to be able to achieve this amazing feat.

Mobile video communication applications have been an elusive business target; mo-
bile video telephony has been promoted off and on in the past decade with limited
success, but only because the conditions were not right for the anticipated growth.
Mobile phones with high quality displays and cameras for video handling, as well
as widely deployed LTE high speed networks for video transport have only started
materializing in the past few years. Hence the science of video processing for mobile
devices is more relevant than ever before.

Different aspects of mobile video processing and communication have been vigor-
ously studied and are well-understood problems. The resources available for portable
and mobile communication devices are ever so limited. The two prime resources of
interest are the data transmission capacity and the computational resources. Inci-
dentally, the limited data transmission capacity is not a unique constraint for mobile
devices. It has come to be from systems much older than this; traditional terres-
trial and satellite video communication have been adapting to this constraint since
a long time. The principles developed there have been more or less adapted to the
mobile video communication systems in a relatively straight-forward manner, and
hence this optimization has a considerable head start. Today, the major chunk of
this optimization is the well-addressed rate-distortion optimization problem; a wide
range of deployed services are already benefiting from the proposed solutions.

The picture is a very different for the other major constraint for these systems; the

1

2

limited processing capabilities of mobile and portable communication devices. In
today’s deployments, handling of the computational resource constraint of a potable
device is merely left to the implementation. But this is not without reason; a
well-known system-wide deployable optimization for computationally resource con-
strained devices is not available.

1.1 State-of-the-Art Resource Optimization

During this work we have been involved in standardization for multimedia codecs
for the next generation of hand-held mobile communications (within 3GPP technical
specification group SA-4 for release 8 work). The standardization there can be con-
sidered as the state of the art for practically deployed systems. It is in these mobile
communication systems where the problem of computational resource management
is felt the most: it is desired to use the latest video codecs and good quality video,
on portable devices that will have a vastly varying resource capabilities. It is sur-
prising to know the solution that is being used in the standardization for the next
generation of mobile video communication systems: use “the rule of the thumb.”

It was decided in [3] to use the following set of coding options to limit the compu-
tational complexity for packet-switched conversational (PSC) applications:

• baseline profile for H.264/AVC [4],

• a single, most recent reference frame for inter-prediction,

• only 16x16, 8x16, 16x8, and 8x8 inter-prediction block modes.

Slightly more complex options were selected for multimedia broadcast-multicast
(MBMS) services, since real-time coding is not an important consideration for these
systems. There is no assurance whether any of these choices are optimal in any way.

However, the problem faced by the standardization community is not just the limited
computational resources of the target devices, but also the limited understanding
of the computational resource demands of video codecs on a specific hardware, its
modeling, and prediction etc. Given all the constraints, the choices made above
seem hardly surprising; it is a common practice not only in 3GPP but generally in
other related video coding applications as well. These related applications have also
been studied during our work, the details of which will be discussed in the following
chapters.

1.2 The Emerging Picture of Resource Optimized Video
Communications

Processing capabilities of mobile devices are ever changing; a few years ago, the
mobile devices were not associated and known in the market for their processing
capabilities. Today, a dual-core mobile processor [5] is considered a marketing and
selling point for mobile phones. On the other hand, the hallmark of high quality

3

video codec has been H.264/AVC albeit its high computational complexity, but high
efficiency video coding (HEVC) [6] is just around the corner claiming twice the visual
quality at the same data rates at a much higher complexity cost.

The portable, mobile device industry is still fragmented because of simple hardware
constraints. Just a minor change in screen size determines a different class of a
device; a slightly larger screen than a smartphone makes a tablet. However, at the
time of writing, Samsung has successfully demonstrated prototype of their foldable
active-matrix organic (AMO) LED technology [7]. Industrial innovations like this
are paving the way for convergence of the fragmented device categories.

1.2.1 The Changing Realm of Digital Multimedia

In the recent couple of years, there has been an explosion of online multimedia
content storage and distribution; both in the commercial and the non-commercial
domains. The contributing factors are ample availability of high speed internet
access with data transfer rates in excess of 1 Mbps, sufficient for distribution of
acceptable quality video content. This in conjunction with several factors e.g.

• high speed mobile all-IP access network of LTE (Release 8, 9) for portable,
hand-held devices,

• modern mobile phone sets with WVGA (Wide Video Graphics Array, 800x480)
or higher resolution, and

• newer adaptive multimedia streaming technologies (e.g. MPEG DASH [8],
Apple HTTP Live Streaming [9], and WebM [10], etc.) to match the rapidly
varying mobile network conditions,

have steered the same growth in the mobile telephony sector. These adaptive stream-
ing technologies are HTTP based, easily deployable on the open internet. Hence
same service can be offered in a scalable fashion to a mobile phone user as that
offered to a DSL internet user, albeit at very different quality depending on the
available network capacity and the end-user device capabilities. The intrinsic con-
vergence serves to boost the growth in this sector. The resulting overall growth
is fostering a renewed and shifted focus on video codecs. Specifically the shift has
been related to an enhanced interest in royalty-free technologies, in order to make
the life easier for the numerous small businesses and non-commercial users who drive
the open internet based business growth. Although at the moment these efforts are
premature, but are clearly gaining momentum. WebM based VP8 [11] video codec
effort will be studied as an example in Chapter 2.

1.2.2 The Future of Resource Optimized Systems

Our vision for future of mobile video communication is of adaptive, resource aware
devices that are able to achieve optimized video communication with other devices
of vastly varying hardware and software capabilities. Codecs could be installed and
optimized at the same time as the user requires them in a transparent fashion, and

4

are able to cater for the dynamic power constraints e.g. battery usage, thermal
dissipation and signal strength.

1.3 Our Contribution to Resource Optimized Video Com-
munication Systems

There exists a wide gap to bridge between the state-of-the-art and our vision of the
future of video communication systems. We want to take a step towards this future
by proposing a set of strategies that have relevance to practically deployed systems.
A major concern in this regard is that video communication applications have an
extensive number of variants, and newer emerging technologies change the shape of
these applications dramatically.

Keeping this in view we will employ a pyramid-shaped approach for our proposals: on
the bottom of the pyramid we will define design principles for resource optimization
that can be shared by a wide variety of video communications systems, e.g. conver-
sational, streaming, or multi-cast video communication systems. The preliminary
basics for the shared technologies are discussed in Chapter 2. The state-of-the-art in
the field of resource optimized video communications is reviewed in Chapter 3 and
our contribution to establish a suitable reference system is briefly reviewed in Chap-
ter 4. Our proposed design and optimization principles are specified in Chapter 5.
Even with changed designs and newer technologies, the principles can be reused,
e.g. this work mainly focuses on H.264/AVC video codec for evaluation, but the
applicability to other existing and future codecs is also assessed in Chapter 2.

At the top of this pyramid, we pick a few systems and apply our optimization
techniques to shed light on the performance enhancements. These systems are:

• mobile video conversational applications,

• video streaming applications and

• telepresence and teleaction (TPTA) systems.

For each of these systems we propose the optimization strategies on application-
level, their interaction with the underlying transport mechanism, and deployment
considerations in Chapters 5. Finally, the quantitative performance evaluation is
presented in Chapter 6 before concluding this work.

Chapter 2

Preliminaries

Before delving into the details of system optimizations, let us review a few impor-
tant concepts working at the heart of the targeted systems. Figure 2.1 shows an
abstraction of the video transmission system in one direction (a similar reverse flow
will compose a bidirectional communication). The captured video is source coded,
followed by channel coding and transmission. At the receiver side, after reception
and channel decoding the video data is decoded for presentation. This basic setup
can result in a variety of system configurations, which will be classified in detail in
Chapters 5. One of the major reasons for classification of different applications is
the nature of channel; reliable or lossy channel models result in a huge impact on
the system design and performance.

Video
Encoding

Channel
coding and
transmission

Video
Decoding

Reception
and channel
decoding

Transport
medium

Figure 2.1: An abstraction for a video communication system

5

6

2.1 Resource Constrained Video Communication: For-
mulation

The underlying problem that we intend to address comes from the fact that video
coding algorithms, like most other algorithms, have a non-trivial computational com-
plexity. As a word of caution: complexity itself is a frequently overloaded term: e.g.
algorithmic complexity is a similar term with a very different meaning: it is a metric
of the complexity of an object or content such as text, and not to be confused with
computational complexity.

An important consideration is the metric of complexity that can be used for assess-
ment of any optimization in this regard. Surely, just specifying that video coding
algorithms are solvable in polynomial-time, or even concluding that the complexity
grows linearly with the number of pixels to be processed is of little help for system
design purposes. We will use the physical computational resource usage as the met-
ric of computational complexity, since this quantity is easily measurable by several
metrics discussed in the following sections. Also, from a design point of view, provi-
sioning of physical computational resources (hardware and software) and their usage
is of main concern.

2.1.1 The Constrained Resources for Video Communication Sys-
tems

For video communication systems, two types of physical resources of interest are
typically constrained: the channel transmission capacity and the computational re-
sources of the hardware platform. The former resource constraint for video com-
munication system has been well investigated, and well known concepts and results
in this domain will be reused in this work. As a brief overview, since the informa-
tion contained in real time video can vary dramatically based on the scene content,
achieving a constant bitrate coding to match the allowed channel capacity is a chal-
lenge. If loss-less coding is employed, the resultant bitrate of coded video can vary
anywhere up to the actual bitrate of raw video (assuming such a coding tool is unable
to find and remove any redundancy in the content). Since the allowed buffering of
coded video in most transmission systems is finite, the feasible solution in this regard
comes from the realm of lossy video coding. This domain has been well established
over the past several decades, especially in the last decade a lot of in-depth work
has been carried out on the rate-distortion optimizations, see [12] and the references
therein. Sections 4.1 and 4.2 in Chapter 4 will describe the transmission subsystem
and conditions for the targeted communication systems in detail.

2.1.2 Computational Resource Constraints of Implementation

The main focus of this work is the computational resource constraint of the imple-
mentation (a combination of hardware and software). There can be several subtypes
of computational resources in a hardware that can be considered as constrained.

7

1. Processing resources: this constraint is contributed by several factors, e.g.
limited speed and processing capacity of the hardware, finite number of al-
gorithmic units, their suboptimal usage by the software, thermal dissipation
and power limitations, to name a few. These factors are the most pronounced
for the case of portable and mobile consumer-grade devices, where processing
power is at odds with limited size, overall weight and the manufacturing cost
of the device. For some professional-grade systems, as those discussed in Sec-
tion 4.2, manufacturing cost is not the main concern, but prolonged battery
operation is still an important consideration.

Every year the processing capability of hardware increases, but so do the pro-
cessing requirements. A brief overview of the current and next generation
video codecs in Section 2.2.2 will highlight this factor. This problem is quite
similar in its importance to the channel capacity limitation issue, but is not as
well addressed, and the reasons for this will be provided in detail in Chapter 3.

2. Memory resources: As with the computational hardware, physical memory
is also an important resource. It seems however that for the time being, the
growth of cheap and readily available physical memory has surpassed its usage
requirements. At the moment, it is not uncommon for mid-range mobile phone
sets with screens resolution suitable for video viewing (VGA/WVGA) to have
in excess of 512 MB of physical memory. A raw YUV 4:2:0 frame buffer
of WVGA resolution suitable for such displays occupies a mere 0.1% of this
memory.

At the same time, modern video codecs such as H.264/AVC apply coding
algorithms recursively on raw video data to compress it. Immediately after
the first recursion of coding, the residual data is already quite compressed.
Hence the main overhead in terms of memory usage comes from storage of raw
video buffers, and the possibility of multi-frame motion compensation, as will
be discussed in Section 2.2.2 has the main impact on memory usage of the
codec. An optimization strategy in this regard will be presented in Chapter 5.

3. Memory data transfer capacity: The transmission speed on internal busses
of the hardware is finite, resulting in limitations on memory data transfer
capacity. This limitation is applicable for the external physical memory or
the cached memory of the processor. As noted already that modern video
codecs are quite optimized in regards to compression, so memory data transfer
capacity limitation may not be a prime concern, yet it is not negligible. In
practical systems this data transfer capacity limitation will result in cache
misses and CPU stalls, which costs in terms of lost processing power.

4. Power: Power constraint is reflected by the limited power available for de-
vices with portable energy sources, e.g. battery operated devices, and thermal
dissipation limits.

Incidently, the impact of first and third items is reflected as a combination on the
CPU clock cycles (including stalled cycles) required by an algorithm to complete its
processing. Hence CPU clock cycles spent on completion of an algorithm is a good
metric for the usage of these resources.

8

The power constraint is also strongly related to the processing resources allocated
to algorithms and hence can be indirectly managed by managing the limits on pro-
cessing resources. This is also a suitable approach since power constraint does not
need a very fast adaptation (e.g. on the scale of typical video frame duration, which
is a few milliseconds), and can be controlled on a larger time scale, e.g. once every
few seconds or even once every few minutes.

Hence in the following sections, whenever resource constraints are discussed, un-
less qualified, they imply the processing resource constraints (including the impact
of memory data transfer capacity related CPU clock cycle consumption). Hence
the term complexity will be used synonymously with computational complexity, and
resource with processing resource, unless otherwise qualified.

2.2 Video Codecs for Resource Constrained Communi-
cation Systems

The most well-known video codecs are the hybrid block-based video coding stan-
dards from MPEG and ITU-T, e.g. H.264/AVC and MPEG-4 advanced simple
profile (ASP) [13]. Distributed video codecs have also gained significant attention
for resource constrained systems. In this section, an overview of these two main
categories will be provided in relation with the target resource constrained system.
Wavelets based video codecs are not considered here, since they are not best known
for application on resource constrained devices.

2.2.1 Distributed Video Source Coding

Distributed video source coding (DVSC) techniques have been quite frequently pro-
posed for shifting the computational complexity from the encoding end to the de-
coding end, as opposed to traditional block-based video coding, where the encoding
is computationally more intensive. A detailed analysis of DVSC will not be provided
here, and the reader is referred to [14, 15] and the references therein. We will jump
directly to take a look at the performance results of the state-of-the-art DVSC.

There are no internationally standardized DVSC codecs, rather different institutes
in the academia have proposed their own solutions. At the time of writing, the
DISCOVER codec [16, 17] is best known for its performance in terms of compression
and speed. At the transmitting end, a subset of the frames (called as key-frames)
are coded in intra-only coding mode by using H.264/AVC, and the remaining set
is coded in a distributed fashion. For the latter, 4x4 block sized discrete cosine
transform (DCT) and quantization is performed.

Figure 2.2 is the plot of the benchmarks for this coded provided online at [17]. The
bitrate is normalized to bits per pixel. As a reference, the uncompressed source video
content for this test requires 12 bits per pixel (YUV 4:2:0 raw video data). The two
curves show the performance comparison for the test sequence “Foreman”, the ref-
erence system is intra-only coded H.264/AVC. In this case intra-only H.264/AVC is

9

27

29

31

33

35

37

39

0 0.2 0.4 0.6 0.8 1

PS
N

R
 (d

B
)

Normalized bitrate (bits/pixel)

DISCOVER

H.264/AVC (Intra)

Figure 2.2: Performance evaluation [17] of DISCOVER DVSC for sequence “Fore-
man”

performing better than DISCOVER. On the other hand, using a frequency trans-
form, quantization and channel coding already makes the computational complexity
of DVSC quite close to that of intra-only coded H.264/AVC (the only remaining
difference in terms of complexity is the intra-prediction employed by H.264/AVC,
while post processing is not required at the encoding-end for intra-only coding of
H.264/AVC) .

Another problem noted in the evaluations presented in [18] is that the performance of
this codec flattens out below a peak signal-to-noise ratio (PSNR) of 40dB. Although
this PSNR is more than sufficient for mobile video communication systems, we
will see that it is not nearly sufficient for another system of interest presented in
Section 4.2. For these reasons that it is concluded that in its current shape, DVSC
is not best suited for application in the target systems.

2.2.2 Block-Based Hybrid Video Codecs

Hybrid video encoders based on block-based coding of video have been used ex-
tensively in the last four decades. All video codecs specified by international stan-
dardization development organizations (SDOs) like ISO/IEC and ITU-T are based
on this technique. Each standardized codec introduced in this period achieved in-
creasing compression efficiency compared to its predecessor (typically an increased
compression efficiency of the order of 50% with each new codec). Several alter-
nate technologies, e.g. wavelet-based video codecs, have been proposed to the SDOs
during this time but none have proven successful so far. At the time of writing,
H.264/AVC is an industry-wide accepted codec of choice, and the successful can-
didate technology as its successor (HEVC) also shares the same architecture [19].
H.264/AVC will be briefly touched in this section, for a detailed overview of its us-
age for video communication systems, see the description in [20] and the references
therein.

This section will provide an overview of a few important standardized and non-

10

standardized video codecs, with an emphasis on H.264/AVC, since this is the codec
used for most of the evaluation in this work. However, as mentioned previously, the
principles developed here have a generic foundation and can be applied to similar
block based video codecs.

H.264/AVC

In the last decade, H.264/AVC has well-established itself as the de facto standard for
robust and highly efficient video coding, to an extent that it hardly needs a formal
introduction. A few important tools of this codec that have been used for robust
video communication will be briefly touched upon here. For more details, see [21, 22]
and the references therein.

One of the prime reasons of popularity of H.264/AVC for robust video communi-
cation is the simplicity and low complexity of the error resilience tools it provides.
As a comparison, MPEG-4 ASP introduced sophisticated error-robustness tools like
re-synchronization markers and Reversible Variable Length Coding (RVLC). These
tools did not gain wide industrial acceptance because of the complexity involved
in implementing them. For example, RVLC relies on a cross-layer design approach
where the application layer (source decoder) tries to recover from the errors caused
by transport layers. However, in typical communication systems this is hard to
achieve; a packet that is detected as erroneous is discarded by lower layers and not
given to the application layer to apply RVLC.

Long-Term Memory Motion Compensation Long-term memory motion com-
pensated prediction (LTM-MCP) [23] and up to quarter-pel accurate motion com-
pensation are two of the most important features introduced in H.264/AVC. LTM-
MCP is considered to be a giant leap in the technology of hybrid video coding,
similar to moving from intra-prediction to inter-prediction back in 1980s [23].

Compression and visual performance of inter-prediction process in earlier standards
like ITU-T Rec. H.261 was considerably improved by adding fractional-pel interpo-
lation in ISO/IEC MPEG-1 on the cost of some added complexity. Fractional-pel
interpolation became an integral part of all the following standards like H.262 |
MPEG-2 and H.263. However, all these standards allow only half-pel interpolation.
Further interpolation using the same simple interpolation filters did not show any
further improvements. Since the time of introduction of MPEG-1, silicon technol-
ogy has progressed significantly and at present more complexity can be afforded to
achieve better compression performance.

To this end several new inter-prediction options were introduced in H.263+, includ-
ing Annex N: Reference Picture Selection Mode (RPS), which was later improved
as LTM-MCP [23, 24] and is incorporated in H.264/AVC and MPEG-4 ASP.

Digital video coding has been considered as a computationally intensive task even
since the time of H.261 and MPEG-1 video coding standards. On the other hand
memory requirements for video coding have become less of an issue compared to

11

available hardware, hence whatever extra free space is available can be used for
Long-term memory motion compensation [24].

Despite the popularity of LTM-MCP and fractional-pel interpolation, their inter-
dependence to achieve compression gain has been scantily addressed in literature.
Wiegend et al. [24] presented an analysis for a few macroblocks in a single frame
based on bilinear half-pel interpolation. In [25, 26], analysis of the aliasing distortion
introduced by fractional-pel interpolated motion compensation is presented. The
dominant source of spectral distortion is reported to be the digitization of video.

In [27], we have presented the study of the comparative impact of various phe-
nomenon leading to the gains provided by LTM-MCP. These factors are:

• Repetition of Image scene content: Repetition of Image scene content
can provide compression gain but it is limited in practical systems because of
small amount of memory used for long-term prediction and the relative speed
of motion with respect to search range used for motion estimation.

• Noise triggered random matches: Noise Triggered Random Matches are
possible for scene content with considerable input noise.

• Spectral Distortions: Spectral Distortions impact the processed video by
the following means:

– Analog to digital conversion of video: This step involves processing
of the video signal by a hardware to capture analog video, e.g. comb filter
video decoder [28], and a high speed digital-to-analog encoder e.g. [29].
In [27] we have studied and found the overall aliasing component to be
in the vicinity of -100dB.

– Downscaling: Depending on the application, the acquired video data
may be downscaled, and this again requires using a downsampling filer.
As studied in [27], the aliasing component introduced by a typical such
filter is approximately -6.3 dB at higher frequencies (at 80% of the Nyquist
frequency).

– Fractional-pel interpolation: H.264/AVC performs half- and quarter-
pel interpolation using a 6-tap FIR filter and a bilinear filter, respec-
tively, with aliasing components of -8dB and -4.7dB, respectively at high
frequencies. These filters have to be applied recursively for some interpo-
lation configurations, as discussed in [27].

By analyzing the numbers above, it can be seen that a significant spectral
distortion is introduced in the digital video signal, and one of the prominent
contributors is the fractional-pel interpolator because of their simple implemen-
tation to limit computational complexity. With multiple temporally preceding
reference frames made available by LTM-MCP, a match can be found in one of
these frames where the amount of this filtering required is lesser compared to
the match found in other frames. Since natural scene content contains ample
smooth motion, the probability of this event is quite high.

As can be seen by the above discussion, the most frequently occurring phenomenon

12

contributing to the gain of LTM-MCP is related to its synergy with finding block
matches that have a reduced amount of spectral distortion, as compared to other
marginalized phenomenon such as the noise-triggered random matches. Hence, the
major portion of the increased compression achieved by LTM-MCP comes from this
phenomenon, and the results we presented in [27] clearly demonstrate this.

In addition to providing enhanced compression, LTM-MCP is an important tool
for robust video communication. It provides multiple reference frames for inter-
prediction, increasing the chances of finding a reference region not effected by channel
losses. The proposed technique based on this principle is described in Section 4.1.

Slice Structure coding Slice structure coding is one of the most simple yet effec-
tive tools to achieve efficient and robust video communication over lossy channels.
The network-layer phenomenon where slices help foster robustness is related to the
re-packetization and segmentation at various protocol layers of the communication
system. As the coded video data is passed from the application layer to the layers
below, it is re-packetized and eventually segmented to match the packet size on the
physical layer of transmission. The packet sizes on the lower layers depend on the
type of the communication network, but are typically in the vicinity of a few hun-
dred bytes. On the other hand a coded video frame has a size typically of the order
of kilobytes. Due to this disparity, re-segmentation of coded video frame becomes a
necessity.

Losses on physical channel however result in loss of integral number of packets on
the physical layer. If for example, a single packet on the physical layer is lost, which
actually constitutes a small fraction of the data of the entire coded video frame, the
entire frame may be lost if there is no re-synchronization provided within the coded
frame data. Also, if temporal and/or spatial prediction is done from this lost region,
the decoded frame will be distorted. Hence slices in general provide exactly these
two missing features:

• Re-synchronization points within a coded video frame; a decoder can synchro-
nize decoding from the start of a slice.

• Provide the possibility of disabled prediction across slice boundaries to limit
spatio-temporal error propagation.

The concept of slices has been present even in the older codecs, for example as a
group of blocks (GOB) in H.261 and H.263, albeit with a limited functionality; an
entire row of macroblocks had to be coded as a single GOB. H.264/AVC comes with
the most advanced and flexible form of this tool that allows placing slice boundary
at an arbitrary macroblock boundary within a frame. Figure 2.3 shows the sketch
of such a slice structure coding in H.264/AVC.

This gives the flexibility to select almost any desired slice size. Hence this tool can
be very effectively used to match the packet sizes throughout the protocol stack to
minimize the need of re-packetization. In an event when channel losses occur, slice
sizes matched to the packet sizes used by lower layers result in a similar amount of
data lost across the layers. Hence a single packet of a few hundred bytes lost on
the physical layer will not cause an entire frame of probably several kilobytes to be

13

Frame
boundary

Macroblock
boundary

Slice boundary

Figure 2.3: A sketch of slice structure frame coding for H.264/AVC

lost. Since re-synchronization can be done on slice boundaries, it results in a robust
system design. It should be noted however that for a fixed number of bytes per slice,
a different fraction of the raw video frame will be contained in one slice, depending
upon the redundancy in that portion of the frame.

Off course, partitioning the frame spatially reduces the coding efficiency by increas-
ing packetization overhead and reduced potential of removal of spatial redundancy;
this results in a decrease of compression performance. We will present detailed
results for performance tuning using slice structure coding in Chapter 4.

HEVC

The Joint Collaborative Team on Video Coding (JCT-VC) formed jointly by ITU-T
VCEG and ISO/IEC MPEG is working on the standardization of the next generation
of video codec beyond H.264/AVC, referred to as HEVC [6]. Call for Proposals (CfP)
was made in January 2010 and the responses to the call were received in April 2010.

The considered technology (see [30, 31, 19] and references therein) is still based on
very similar principles of hybrid block-based video coding. In the following, a high-
level overview of the basic coding strategies for HEVC is presented that make the
comparison easier. Since at the time of writing the details of the specification are
not finalized, hence only the underlying principles will be highlighted here.

As with H.264/AVC, a network abstraction layer (NAL) is separated from the coding
layer. A treeblock concept is used to code a frame, not very different from the
macroblock concept of H.264/AVC. In terms of tools for error robustness, possibility
of slice structure coding is provided, where a slice is partitioned by treeblocks. A slice
provides the similar functionality of disabling the prediction across slice boundaries,
hence making a slice more or less independently decodable unit.

A set of intra-prediction modes is available in various directions, currently 36 dif-
ferent intra-prediction modes are possible in the working draft, with 33 of them
providing the possibility of intra-prediction in different angular directions using the
spatially neighboring samples. The intra-chroma prediction can have two different
possibilities, one alternative offers the possibility of using intra-luma as the predic-

14

tor for intra chroma, and 5 different modes are available in this case. Otherwise, 4
different prediction modes are available.

For inter-prediction, up to a quarter-pel interpolation is possible for luma, using an
8 tap spatial FIR filter. For chroma, one-eighth-pel interpolation can be done, and a
4 tap FIR filter is used for all the interpolation configuration. As with H.264/AVC,
there is a possibility of weighted inter-prediction. Similarly, multiple reference frames
can be used for inter-prediction.

The transform block sizes range from 4x4 to 64x64 sized blocks, using an integer-
transform (i.e. a reversible frequency transform on 32-bit machines, a similar prin-
ciple as that used for H.264/AVC). The scanning of transform block coefficients is
done by a traditional zigzag scanning variants.

Similar to H.264/AVC, HEVC comes with the possibility of in-loop post-processing
filtering in the shape of a deblocking filter and an adaptive loop filter. Although, a
distinction is made between a prediction-boundary and a transform-block boundary
for deblocking. This filter is applied sequentially to vertical and horizontal bound-
aries, respective, with varying boundary strengths based on the coded block modes
and pixels to be filtered.

The entropy coding scheme gives the same two options as for H.264/AVC: a context
adaptive variable length coding (CAVLC), that offers a lower-computational com-
plexity alternative, as well as context-adaptive binary arithmetic coding (CABAC).

For the next some time, the proposed technologies will studied further and the
specification text will be formalized. Still, from a high-level overview it is easy to
see that the codec is based on same design principles as for the previous video codecs
such as H.264/AVC, and the advancement is incremental, not disruptive.

VP8

VP8 [11] is an open source video codec supported by a consortium of companies,
in an effort to move towards a royalty-free codec. It is easy to observe from an
overview of VP8 that its architecture and working is quite similar to that of block-
based hybrid video codecs such as H.264/AVC. The block transforms are all 4x4 DCT
based (both for luma and chroma components). It comes with a set of intra- and
inter-prediction modes not very dissimilar to that of H.264/AVC, though the options
are much more limited. LTM-MCP is limited to three frames. Up to a quarter-pel
luma interpolation and one-eighth pel chroma interpolation can be performed, and
the block sizes for inter-prediction within an macroblock can be arbitrary.

Hence the resource management techniques developed for for H.264/AVC can be ap-
plied in a straight-forward manner to VP8. The subjective performance comparison
of VP8 [32] reports it to be quite close to H.264/AVC, but still lagging to that of
the upcoming HEVC codec.

15

2.2.3 Error Concealment for Block-based Video Codecs

In spite of the robustness tools available for block based video codecs, including
application level FEC, residual errors will remain depending upon the level of pro-
tection used as allowed by the application delay and general QoS requirements.
When the received data is erroneous, it has a significant effect on the quality of the
decoded video; not only instantaneously but also on the following video in decoding
order, owing to spatio-temporal error propagation. This phenomenon occurs because
of spatial and temporal predictors used in block-based video codecs to remove the
redundancy, and the detailed analysis of this will be presented in Chapter 4.

The typical standardized video codecs only specify the behavior of the decoder in
a loss-less scenario, and a tight synchronization is assumed between the reconstruc-
tion at the encoder and at the decoder. When this assumption is not fulfilled any-
more, e.g. in the case of data lost on channel, the reaction of the decoder is not
specified. However, as discussed previously, most robust video codecs come with
error-robustness tools that can be exploited to react and address this situation.

In the wake of the reception of an erroneous packet, he first reaction has to come
from the video decoder to minimize its impact as much as possible. Hence generally a
process referred to as error-concealment is invoked. This process is not standardized
and has been a topic of research, with hundreds of publications available (see the
detailed overview we provided in [33] and the references therein). Here we briefly
provide the overview of the categories of the techniques. Mainly, these techniques
are based on:

1. spatial prediction,

2. temporal prediction, and

3. hybrid prediction.

Spatial prediction techniques uses the correctly received and already concealed neigh-
boring pixels of the frame to reconstruct a lost region of the image. As expected,
these techniques can benefit a lot from Flexible Macroblock Ordering (FMO) tool
provided in H.264/AVC. These techniques, e.g. in [34] are typically based on the
smoothness constraint of the image and use weighted filtering to reconstruct the lost
region. As expected, the result of such technique will result in significant blur, and
model based refinements have been proposed in e.g. in [35] based on image texture
statistics.

Temporal prediction techniques use the previously correctly received or concealed
frames to reconstruct the lost regions. Hence they are based on the smoothness of
motion constraint of natural scene content. The most simple and widely used variant
is the previous frame concealment (PFC) which copies the collocated macroblock in
the temporally preceding frame to the lost region. Although this technique will
not be effected by the blur usually caused by spatial prediction based techniques,
but any significant motion in the frame with respect to the temporally preceding
frame will result in significant artifacts. Still this technique is widely used because
of it suitability for resource constrained devices, since such a simple copying has
the computational complexity comparable to one of the most simple coding modes

16

known to block based hybrid video coding: the skip inter-prediction mode. More
complex variants based on prediction of the lost motion vector have been proposed
(e.g. [36]) to alleviate the problems associated with PFC.

The most sophisticated approach in this regard is that of hybrid error concealment
that uses both spatial and temporal prediction. A simple variant as proposed by [37]
is to use spatial prediction for intra coded images and temporal prediction otherwise.

Hence it can be seen that the error concealment has been enhanced at the cost of
increased computational complexity. Which technique is most suitable depends on
the intended application and its susceptibility to channel losses.

2.2.4 Discussion

In spite of existence of several theoretically disruptive technologies like wavelets
based coding and DVSC, block-based video coding techniques have been the front
runner for quite some time now, and seem to stay this way for next some time. A
brief look at the upcoming technologies such as HEVC makes this quite clear. Hence
it seems feasible that the analysis presented in this work is not just limited for the
selected codec, i.e. H.264/AVC, but the general optimization principles discussed in
the following chapters can be used as a basis of optimization for the upcoming video
codecs as well.

Chapter 3

Resource Constrained Video
Coding: Brief review

In this chapter, the recent studies in the field of resource constrained video coding
will be reviewed. The techniques reviewed here try to address resource optimiza-
tion problem for diverse applications and they might focus on different video codecs.
But they all have one common denominator: they try to manage and optimally
operate a part of a video coding subsystem within some given, constrained compu-
tational resources. Studies that solely focus on computational complexity reduction
are not presented here, since these are mostly implementation dependent and can
be integrated into a given resource optimization technique.

As discussed in Chapter 2, a comprehensive picture of how the computational com-
plexity of evolving video codecs is changing in comparison with the evolving hard-
ware computational resources over time is essentially missing. While the latter is
approximately doubling every year, the former is an unknown. However experts in
field of video coding know the answer as a rule of thumb: as the codecs and the
hardware on which they run are evolving, the problem of computational resource
management of video coding is becoming increasingly important. A survey of liter-
ature review in the following also reaches the same conclusion.

3.1 Encoder Optimizations

These techniques involve the optimization of the resource consumption of the video
encoder to optimize the rate distortion performance in some specific way. The
approaches are categorized in the following sections from cross-layer optimization
approaches to algorithms that focus on a single coding module e.g. the motion
estimation.

17

18

3.1.1 Joint Source-Channel Power Optimizations

The target of such optimization is cross-layer power distribution between the source
coding and channel coding modules of a wireless video transmission system, such
that the end-to-end distortion is minimized.

Early Contributions

This approach has been investigated as early as in [38] for motion-JPEG based codec.
In other earlier works on joint source coding and transmission power allocation such
as [39, 40, 41, 42], the energy consumption for source coding was simply ignored.
MPEG-1/MPEG-2 based codec used in [41] had been treated in such fashion, and
in such systems transmission power has been a main resource to be optimized.

Relatively later in [43, 44, 45, 46], the computational resource usage of motion esti-
mation module of a hybrid video codec was included in the optimizations, and will
be touched later in Section 3.1.3.

In a set of related work by Xiaoan Lu et al. [47, 48, 49, 50, 51], the source coding
power consumption is related to solely the percentage of intra-coded macroblocks as
a fraction of total number of coded macroblocks. This relation is used for source-
channel power distribution. In essence, this approach also considers the motion
estimation to be the exclusive source of video encoder computational complexity.
This approximation may work well for older video codecs like H.263, which had a
handful of coding options (the evaluations is indeed provided exclusively for this
codec).

Dynamic Voltage Scaling (DVS):

In a special category of hardware capable of DVS, the clock frequency of a processor
can be dynamically adjusted to manage the power consumed by it. Hence a joint
power allocation can be realized easily by controlling the processor clock frequency.
A lot of work on joint source channel power optimization has been done based on
such hardware, some of it is reviewed here briefly.

Based on Implementation Profiling: In [52], an implementation of the H.264/AVC
reference software running on Intel R© PXA270 processor is profiled to measure the
amount of basic instructions used by the major encoding modules. The modules
with the largest computational demand have been identified for this H.264/AVC
encoder implementation. The encoding computational complexity is controlled ex-
clusively by configuring the motion estimation algorithms. The complexity is related
to processor clock frequency and hence the power requirement of source coding is
controlled using DVS.

Joint Power-Rate-Distortion Analysis: Joint Power-rate-distortion analysis
has been done in a number of related works by Zhihai et al. [53, 44, 54, 55, 56, 57].

19

The focus is to add the power constraint to the existing rate-distortion constrained
minimization problem already explored in great details for video coding systems.
The encoding complexity is related to the number of sum of absolute difference
(SAD) calculations, non-zero blocks and number of bits generated. The encoder
computational complexity is controlled by limiting the number of SAD calculations.

In the most recent of these related studies [57], the distortion D(R,P) at a given
rate R and normalized power consumption P is approximated as

D(R,P) = σ22−λRP
1/γ

(3.1)

where σ2 represents the variance of encoded picture, and γ is a constant empirically
determined for a given hardware. As with the rest of similar approaches to make
this a joint minimization problem discussed later, the crucial step is the selection
of the λ parameter in the Lagrangian minimization. In [57], the λ is empirically
approximated as:

λ = C0 + C1 × 2C2(ζ·256+ 1
M

∑M
i=1[mx(i)−mx]2+[my(i)−my]2) (3.2)

where C0, C1, C2 and 256 are empirical constants, ζ is the ratio of intra-coded
macroblocks in a frame, M is the number of macroblocks in the frame, [mx(i),my(i)]
is the motion vector of ith macroblock and [mx,my] is the mean motion vector of
the frame. It is evident that the relation is based on an empirical mathematical
relation between motion statistics and the power-distortion tradeoff based on a set
of evaluated video content.

Some Comments on Joint Source-Channel Power Optimizations

While the approach seems a theoretically intriguing choice of joint and cross-layer
optimizations, it has several pitfalls in practice. Source coding and channel coding
aspects should be left separate according to the Shannon separation principal, this
is how designs can be best optimized [58].

The rate-distortion constrained optimization for video codecs is already quite com-
plex problem with extensive work done on it. Introducing another constraint as
power makes it even more complex. At the same time, combining the power dis-
tribution of multiple layers is difficult to achieve at best in practical systems, these
modules may very well be separate hardware components. Hence it is best suited
to solve the source coding computational complexity problem exclusively on source
coding layer. A good approach in this regard can be where an “outer-control loop”
manages the power distribution between source coding and transmission modules,
based on some slowly varying parameters, such as the amount of energy available
from a portable power source. For example, in the usage scenario in [57] shown
in Figure 3.1, the average transmission power can be used to select the optimum
operating point that is adjusted at some suitable discrete points in time.

20

P
ow

er
 C

on
su

m
pt

io
n

le
ve

l

Maximum Encoding Power

1.0

O

Minimum Encoding bitrate Bitrate

Encoding

Optimum
Encoding Power

Total

Transmission

Figure 3.1: Energy tradeoff between video encoding and wireless data transmission
[57].

3.1.2 Joint R-D-C Optimization

In the domain of video codec resource management, the most frequently made choice
is to go for a joint R-D-C optimization. The reason is simple: the rate-distortion
constrained minimization is already a well-understood problem for video coding.
Encoding computational resource is yet another resource bound by the processing
resources at the terminal, and hence the attempt is to add this constraint into the
existing optimization problem to achieve a joint optimization of rate, distortion and
computational resource usage. Similar approaches to optimize based on the decoding
end complexity will be discussed in Section 3.2.3.

Analytic R-D-C Convex Hull:

R. Vanam et al. in [59] have used the encoder coding options to achieve the opti-
mization by determining a D-C convex hull. The coding options are sorted in order
of MSE, and an optimal coding point is chosen on the D-C curve. Unfortunately, it
is not feasible to determine precisely which coding option will achieve a lower MSE
without actually coding an image data first, and iterative encoding algorithm is also
proposed.

In [60, 61, 62] an empirical 3D curve fitting technique is employed. In [60, 61],
Evgeny Kaminsky et al. have related the computational complexity C to distortion
D as

C(R,D) = logβ(A · α−R/D) (3.3)

Where A, α, and β are empirically determined constants tuned by using a few
training video test sequences. A similar approach in [63] has also used a training set
of sequence to determine the D-C convex hull and use it to control the computational
resource usage of the video encoder.

21

The feasibility and theoretical basis of adding the complexity constraint to the ex-
isting RD constrained-minimization problem will be investigated in more detail in
Section 5.4.1.

3.1.3 Motion Estimation Based Optimization

In these studies, the dominant contributor to the encoder complexity has been at-
tributed as the motion estimation of hybrid video coding, e.g. [52, 43, 44, 45, 49].
Similar approach has been taken even as recently as [64]. Hence to manage the
encoding complexity dynamically to a desired level, basic motion estimation param-
eters such as the search window or amount of SAD calculations are controlled.

It is understandable why so many studies consider motion estimation as playing
the dominant role in the overall computational complexity; while this is a reason-
able assumption for simple motion estimation techniques like full search, it does
not hold well for other highly optimized motion estimation techniques like [65, 66,
67, 68, 69, 70]. For the implementations that use these highly optimized motion
estimation algorithms, other encoding modules (e.g. block transforms, intra-and
inter-compensation, entropy coding, etc.) are also of significance for this optimiza-
tion problem in general [71].

3.1.4 Mode Ranking

In several studies, the authors strive to select and use a subset of coding modes to
achieve computational resource savings. This can be a part of other computational
resource management techniques, for example used by [59] as discussed before in
conjunction with analytic RDC convex hull.

Complementary Macroblock Sets

In [72, 73, 62], Tiago A. da Fonseca et al. have developed a technique where a frame
to be coded is spilt into two complementary sets of macroblocks S and S′. All coding
modes are used for coding the macroblocks in set S, while only D dominant modes
within S are used to code the macroblocks in S′. The ratio between macroblocks
assigned to S and S′ is empirically, 10% of all the macroblocks in the image go to S.
The actually location of macroblocks in the image are chosen pseudo-randomly. The
number of dominant modes actually explored in S′ depends on the computational
resources available, and this can be adjusted dynamically to achieve the targeted
computational resources.

This technique relies on the semi-stationary statistics of optimal coding modes within
a single frame, which might not hold well for a variety of scene content.

22

Discussion on Coding Mode Ranking

To predict which coding mode will work optimally for a given macroblock by using
computations that are significantly smaller than the actual coding is a difficult task
at best. The more simple a technique is used for this purpose, the more crude the
results are. For example, in [74] the coding gain achieved by different coding tools
within H.264/AVC is sorted simply according to the average performance based on
the measured results on a number of test sequences. Such average statistics will
give suboptimal results on a local scale, e.g. on a frame or a sub-frame level. These
aspects will be investigated in more detail in Section 5.4.2.

3.1.5 Encoder Resource Usage Prediction

In [75, 76] Yuri V. Ivanov et al. have proposed a method of optimizing the en-
coding end computational resource usage by first predicting the computational re-
source usage of a complete frame. This is done by first predicting the proportion of
macroblocks that fall under a particular class amongst a set of 5 different classes.
The classes essentially describe the modes used for coding the macroblocks. The
prediction is done by using the mode decisions done for the suitable neighboring
macroblocks.

Next, based on this predicted distribution, the resource usage of coding a complete
frame is predicted. If this prediction goes beyond target resource budget, more
complex modes are excluded.

As shown in [76], the predicted resource usage may have in excess of 30% peak error,
with average error between 5 to 10%.

3.1.6 Skip Mode Prediction

In such techniques as proposed in [77, 78, 79, 80], the resource usage is controlled by
effectively selecting what proportion of the macroblocks in a picture can be coded
in skip mode. Skip mode has the least computational overhead at the encoding end
for typical implementations.

In [77, 78] C.S. Kannangara et al. have used a threshold lagrangian RD cost, de-
termined based on statistical parameters of the image being coded, e.g. the MSE
between the current and the previous frame, and the available computational re-
sources. If the lagrangian cost of coding the macroblock is above this threshold, the
macroblock is skipped. Hence the selected threshold actually controls the computa-
tional resource usage of coding a frame. The costs of the coded macroblock Jcode,
and the skipped macroblocks Jskip are expressed as:

Jcode = Dcode + λr ·Rcode + λc · Ccode
Jskip = Dskip

23

The decision whether or not to skip a macroblock is expressed by the relation

Dcode + λr ·Rcode + λc ≥ Dskip (3.4)

Hence Equation 3.4 becomes the basis for the resource management.

One aspect that is quite peculiar in Equation 3.4 is that it is assumed that Ccode = 1,
i.e. the coding computational resource usage of all the coded macroblocks is the
same. Theoretical and practical observations indicate on the contrary in a vast
number of studies. Just as one example: for H.264/AVC, the motion compensation
cost for a block that is compensated by using a full-pel configuration requires just
a copy operation in memory, while for the motion compensation for a block that
is compensated by using a half-pel, quarter-pel configuration, each pixel is derived
by applying two six-tap FIR filters, followed by a bilinear filtering and clipping,
in addition to the copying. As expected, in [27] it was shown that for a specific
implementation of H.264/AVC, the computation resource cost of the latter mode
is approximately 10 times more than the former mode. Hence the assumption of
constant block complexity will have a huge impact on any later optimization that is
based on Equation 3.4.

3.1.7 Computational Resource Management of a Video Encoder

In [81, 82], Li Su et al. have provided the most comprehensive work to date on com-
putational resource management of an H.264/AVC encoder. It addresses both the
motion estimation computational resource management as well as coding complexity
management.

Like [83, 77] it also usees the concept of virtual resource buffers but in a more flexible
way: the buffer fullness of the virtual resource buffer is used as a control input to
the encoder resource controller that uses a proportional-only control mechanism.

At the motion estimation stage, several alternate complexity configurations execu-
tion paths are enabled. The selected path depends on the available computational
resources. The paths are listed in the following in decreasing order of complexity:

1. Full motion search

2. Full fractional-pel search and reduced full-pel search

3. Only full-pel search

4. Reduced full-pel search only

5. No motion search, setting motion vectors to zero

At the macroblock coding stage, the available coding modes are divided into three
distinct sets of modes: SKIP mode, Inter16 mode (16x16 to 8x16), Inter8 modes (8x8
to 4x4) and Intra-coding modes. Based on the available computational resources,
only a few sets are used. Which of the sets to select is yet again the mode-ranking
problem discussed before. In this work, the ranking is done by using modes of the
immediate spatial and temporal neighbors as predictors.

24

This work will be studied in more detail in Chapter 6 and used as a reference for
evaluation of the proposed framework.

3.1.8 Variable Complexity Transform

In [71] Richardson et al. have proposed a variable complexity DCT algorithm. The
complexity is adjusted to match the available computational resources. It is shown
to work for implementation where DCT is a significant contributor of complexity,
shown to be approximately 30% for an implementation of MPEG-4 ASP.

3.2 Decoder Optimizations

The techniques presented in this section focus on the resource management of the
video decoder under constrained computational resources. The resource usage mod-
eling of the video decoder is an important part of such optimization, hence it is
discussed before the optimization techniques.

3.2.1 Decoder Resource Usage Modeling

The target of these techniques is to model the video decoder or part of it, to be
able to predict the computational resource usage that will entail to decode a spe-
cific portion of the compressed data. Such models do not themselves constitute a
complete resource management technique, but are rather an important cornerstone
of the technique.

Video Complexity Verifier (VCV)

At the decoding end, the concerned video coding standardization bodies have tried
to develop a video complexity verifier (VCV) mechanism [84, 85, 86] with a varying
degree of success. The target is to develop a model that can be used to profile various
video streams based on the expected computational resource usage at the decoding
end, following the lines similar to the HRD approach of [87]. These models are
based on video coding statistics such as the bitrate. Hence the VCV can be useful
as a part of an over-all computational resource management scheme by predicting
the computational resource usage at the decoder. However, mostly such attempts
have gained little traction and in the standardization community referred to as
“implementation issues.”

A detailed characterization of the algorithmic modules of an H.264/AVC decoder in
context of typical scene content is provided in [88, 89].

25

Computational Resource Usage Model for SVC

A rather simple computational resource usage model for SVC codec is proposed
in [90] that assumes a constant computational overhead for all macroblocks within a
given frame; the overhead is differentiated only based on the type of picture coding
(intra-coded or I-picture, inter-predicted or P picture and bidirectionally predicted
or B picture).

By using this approximate model, it can be approximated to some extent what
scalable coding configuration on group of pictures (GOP) level is suitable for a
decoder.

Computational Resource Usage Model for Individual Decoding Modules:

In a series of related works [91, 92, 93, 94], Szu-Wei Lee et al. have developed the
resource usage models for various coding modules of H.264/AVC. These models have
been developed separately for motion compensation and CAVLC decoding modules.

In [91] the computational resource usage model of H.264/AVC motion compensation
module is modeled as a function of:

• the number of data cache misses,

• the number of applied horizontal and vertical interpolation filters and

• the number of motion vectors per MB.

Based on these variables the predicted computational resource usage of the motion
compensation process is predicted with a worst case error of 10% when tested for a
variety of test content.

Likewise, in [93, 94], the computational resource usage of H.264/AVC CAVLC de-
coding module is modeled as a function of 5 variables of the H.264/AVC bitstream:

• the number of non-skipped MBs,

• the number of CAVLC executions,

• the number of trailing ones,

• the number of remaining non-zero coefficients, and

• the number of run executions.

In an anticipated future work by the authors, these models will be eventually com-
bined for resource usage prediction of the decoder.

3.2.2 Computational Resource Management by Quality Degrada-
tion

In [95] T. Lan et al. have developed a basic decoding resource usage model for
MPEG-1/2 video decoders, that achieves a significantly accurate decoding resource

26

usage prediction. The model is based on four parameters including coed block pat-
tern, motion vector count and magnitude, and macroblock type. In [96] a compu-
tational resource usage model of MPEG-4 ASP based on 7 coding parameters is
proposed.

The predicted resource usage is utilized to select one of several decoding routines
that trade complexity with precision. The underlying framework of computational
resource scalable algorithms, also applicable for video encoders, has been discussed
in [97]. An example of possible tradeoff at the decoder between performance and
resource usage is as follows: in codecs like MPEG-1/2 and MPEG-4 ASP, perfect
reconstruction was not possible by the inverse transform implemented with 32 bit
integer arithmetic, and some non-compliant inverse transform routines could be even
faster, but would result in an increased amount of reconstruction error. This however
is not applicable for H.264/AVC which allows for perfect reconstruction for error-free
case.

3.2.3 RDC Optimizations For Streaming Applications Using Generic
Complexity Metrics (GCM)

In a set of comprehensive investigations by Mihaela van der Schaar et al. in [98, 99],
the decoding computational resource usage of a video decoder is modeled using
GCMs. Although as described in [98], the model is demonstrated for wavelets based
JPEG-2000, it can be possibly extended to DCT-based hybrid video codecs. The
resource usage modeling approach used in these investigations is different from those
presented in Section 3.2.1. The generic resource usage model is based on:

• the percentage of decoded nonzero transform coefficients,

• the percentage of decoded motion vectors out of the maximum number of
possible motion vectors.

The GCM is then translated into implementation dependent real complexity metrics
(RCM). In [98] the model is used for bitstream adaptation at the transmitting end
to optimize the overall streaming application.

As shown in Figure 3.2, the proposed resource usage model is used to select the
representation of video to stream to the client based on its available computational
resources. The bitstream adaptation is expressed as the optimal j∗(i), λ∗r , and λ∗c
expressed as

{j∗(i), λ∗r , λ∗c}∀bi = arg min
j(i),λr,λc

{
N∑
i=1

(
D
j(i)
i + λr ·Rj(i)i + λc · Cj(i)i

)}
: RGOP ≤ Rmax and CGOP ≤ Cmax (3.5)

for the access unit bi with N access units per GOP, j(i) indicates the adaptation
point, RGOP and CGOP are the cumulative bitrate and resource usage of a GOP

27

Complexity
Model

Decision taking
engine

Complexity
Mapping

Bitstream
adaptation

engine

Server/Proxy Receiver

GCMs

RCMs

Content
parameters

Source and
Adaptation
metadata

Bitstream Adapted
bitstream

Figure 3.2: Decoder resource usage model being used for bitstream adaptation [98]

respectively, while Rmax and Cmax express the maximum allowable rate and resource
usage on a GOP basis respectively.

This approach is one of the most comprehensive solution of the video decoder re-
source optimization problem because it tries to address the problem of decoding
resource management at the transmitting end and uses a model based approach for
this purpose. The selected approach to integrate the technique in a streaming ser-
vice however requires per access unit based communication between client and the
server. The overhead might not be desirable in a streaming application framework
in regards to scalability.

3.3 Some comments on the reviewed work

As commented earlier, the studies presented in the preceding sections attempt to
optimize performance of various modules within the video coding subsystem of an
application. A few studies have been explicitly marked that comprehensively address
a broader part of the video coding subsystem. What is essentially lacking in the
picture is a study that tries to optimize the end-to-end video coding subsystem.
This problem will be revisited in Chapter 5 with our proposed framework.

By observing the chronological order of the studies presented in the preceding sec-
tion, it becomes clear that the problem of computational resource management is
becoming increasingly important, with more and more work being done to solve
parts of this problem with each following year.

28

Chapter 4

Resource Constrained Video
Coding Systems

The computational resource management problem exists for any application that
contains a video coding subsystem, when a part of that subsystem operates on a
computationally constrained hardware. The type of the video coding subsystem
depends on the intended application in terms of the video codec used, codec settings
of quality, buffering parameters, delivery format, error protection and recovery, etc.
Eventually, the permutations of the parameters result in an extensive number of
variants of the video codec subsystem. In Chapter 5 we will describe a categorization
of these variants. The issue of computational resource constraint effects most of such
video codec applications.

As introduced before, the target of this work is to formalize a solution of compu-
tational resource management in a generalized way for a range of such variants,
instead of proving a precise solution for one variant that has little applicability for
the other. A few of the systems however will be used as the basis of detailed ex-
perimental evaluation and verification. The details of those system configurations
as well as the optimizations we have proposed for these reference systems will be
provided in the following sections of this chapter.

4.1 Mobile Video Conversational Applications

Video conversational applications for hand-held devices in UMTS-like networks rep-
resent a culmination of bidirectional, live and mostly point to point (only two ter-
minals conversing with one another) service. However, the principles discussed here
can also be directly extended to a live multicast/broadcast based application.

The application is characterized by the following features:

• Low end-to-end delay: as understood for a conversation application, the end-
to-end delay has to be minimized as much as possible. For example, as specified
in 3GPP technical specification [100], it should be of the order of 100ms.

29

30

• Portable, consumer-grade devices: A mobile conversational application is tar-
geted for consumer hand-held or portable devices that come with the typical
constraints of limited computational resources and power as discussed in the
preceding sections. As with any communication application, available trans-
mission capacity is a constraint. But this constraint is also cumulated by the
other constraint of limited processing power of the devices.

• Error prone communication: With the current technology, specifically for wire-
less communications, reliability is never a given. The problem is compounded
by the low delay requirements: re-transmission based strategies have little
room in these application since they might introduce an arbitrary amount of
delay. Error protection like application level forward error control (FEC) is
always a possibility, but channel capacity and complexity constraints limit the
scope. In spite of all the efforts, there will always be residual error rate, and a
robust system design must take this into consideration.

In the following section, we describe an existing and well known form of such appli-
cation: 3GPP Conversational Packet Switched Video Services.

3GPP mobile video telephony services are enabled by conversational packet switched
multimedia services [101] which are based on IP multimedia subsystem (IMS). In
such a service, a hand-held transceiver is connected via bidirectional high speed
packet access (HSPA) link to base station, which connects to the core network.
The remote terminal may also be a hand-held device. Bidirectional transmission of
compressed H.264/AVC packetized video data is done via RTP along with RTCP
control information, the protocol stack is shown in Figure 4.1. Upon reception, the
lower protocol layers detect and discard corrupted data packets.

Conversational Multimedia Application

Audio, Text... Video
(H.264/AVC)

Payload Formats

RTP

RTCP/
AVPF

UDP

IP

Figure 4.1: Protocol stack of 3GPP Conversational Packet Switched Video Services

4.1.1 Error Robustness

Mobile communication channels suffer from frequent fading that results in bursty
losses. As mentioned previously, channel coding is an expensive option, since it
requires even more channel capacity. Regardless of channel protection, losses are
bound to happen in mobile environments. Figure 4.2 shows one instance when a

31

typical video content that has not been optimized to handle channel errors is subject
to losses.

Frame Index: 41 46 51 56 61

15

20

25

30

35

40

1 21 41 61 81 101 121 141

PS
N

R
 (d

B
)

Frame Index

Reconstructed
Decoded

Figure 4.2: Instantaneous impact of an error on video quality

The results are shown for 3G packet-switched conversational application, and the
application level parameters are specified in detail by 3GPP [102]. This application
is characterized by its stringent low-delay and low resource usage requirements, since
the processing has to be done in real time on hand-held devices. As a result, the
maximum allowed buffering at the encoder is limited to 250 ms and to limit buffering
overheads, complete intra-frame updates are not used. A simple pseudo-random
intra MB refresh technique is used, with 5% MBs of every frame coded in intra
mode, as proposed by earlier error protection strategies based on pseudo-random
intra updates as discussed in [103, 104, 105]. Only the most recent frame is used for
motion compensation to limit the computational resource use. No other mechanism
is provided for error robustness, e.g. slice-structure coding is not used.

It can be seen from Figure 4.2 that with a system that is not well tuned, a single
radio-link control (RLC) packet data unit (PDU) loss at frame number 45, devas-
tating distortion is observed not only for that frame but for the following frames as
well. The peak signal-to-noise ratio (PSNR) of the luma (Y) picture component also
expresses this, with a drop of several dBs. This is as expected from H.264/AVC that
achieves very high compression efficiency by meticulously removing spatio-temporal
redundancies.

However, synchronization is assumed to exist between the encoder and the decoder,
i.e. it is assumed that the decoder will have the same reconstructed data to use
for prediction as the encoder has. With a loss of data at the decoding end, this

32

assumption is violated. This results in an instantaneous drop of quality. However,
even in subsequent frames, this lost region may be used for prediction at the encoder.
As a result, when the decoder also uses this lost region for prediction, and as this
process is repeated recursively, it results in the error propagation via the predictors.
Hence, a loss of video data will result not only in distortions in the immediately
effected frame but also the subsequent frames owing to this spatio-temporal error
propagation.

The difference between reconstructed and decoded signals reduces subsequently be-
cause of the effects of saturation and breaking of prediction chain, e.g. with intra-
coded blocks. Hence the residual error rate is a significant problem for video com-
munication on existing mobile communication systems, and only robust, loss aware
coding can handle the error propagation appropriately. At the same time, real time
video coding along with speech processing etc. on a hand-held device leaves lit-
tle room for employing error-resilience techniques that increase the computational
resource use.

Before delving into the details of the robust system design, lets discuss the appro-
priate performance metrics.

4.1.2 Performance Metrics

Objective Metrics

A typical assessment metric is the PSNR, which for 8-bit precise signal with an MSE
e is defined as

PSNR(e) , 10 log10

(
2552

e

)
. (4.1)

Another metric used is percentage of degraded video quality (PDVD), defined as:

PDVD =

∑N
i=1 f(d̂i, d̃i)

N
%,

f(d̂i, d̃i) = 1 if (d̂i − d̃i) > 2 dB, 0 otherwise (4.2)

whereby d̂i is the reconstructed PSNR of ith frame, and d̃i is the decoded PSNR of
the corresponding frame for a sequence with N frames. This metric represents what
fraction of decoded video has considerable distortion added because of losses, and
hence tends to decouple this distortion from the compression losses. The threshold
of this is selected as 2 dB.

Subjective metrics

Objective quality metrics such as PSNR can not give a reliable and accurate mea-
surement of the visual quality of a video that was first encoded at low bit rate and

33

then transmitted over a lossy channel. A number of different objective video quality
metrics has been proposed (see e.g. [106] for an overview). But none of those metrics
has been verified for H.264/AVC in a satisfactory way. In addition for large majority
of the so far proposed metrics no independent and reliable verification exist, that
shows a high correlation between the estimated quality of the metrics and the re-
sults of subjective tests. For this reason subjective testing still is the only reliable
methodology to precisely measure the picture quality of a distorted video.

The subjective tests are conducted for a presented data by subjects who not active
in the field of video coding (non-experts). They are screened for visual accuracy and
color blindness and trained for the task of evaluating the video. The setup of the
test room as well as the test procedure and the processing of the results followed the
recommendations given in [107, 108].

For the target system, the aim of the test is to rate the ability of the proposed schemes
to correct errors that are introduced by the lossy channel, and a continuous quality
evaluation was performed. In a continuous quality evaluation subjects evaluate the
quality in real time using a slider (the slider is located on the screen next to the
displayed video and is steered by using the mouse input) with a continuous scale.
To ensure that only the degradations introduced by the channel are evaluated and
not the degradations introduced by coding at low bit rate, the video under test is
placed side by side to the same video without the channel degradations and the
subjects were asked to rate the amount of additional degradation. The position of
the slider is recorded every 50 ms and like this a quality degradation over time graph
is obtained. To check if the test subjects were able to reproduce their own results
each test case is evaluated a second time during the whole test.

4.1.3 Robust Wireless Video Communications

In this section we will provide a brief review how we enabled a robust video coding
subsystem in wireless mobile applications such as discussed in Section 4.1.

Slice-Based Coding

As discussed in Section 2.2.2, slice structure coding limits the impact of a loss to a
part of a coded frame, rather than an entire frame. The effects of loss of the entire
frame were shown in Figure 4.2. We now observe the impact of slice size on error
resilience of this application.

To obtain the results, we use a Radio Access Bearer (RAB) that supports transmis-
sion of 128 kbps, with a radio frame size of 320 bytes. We compare three different
channel configurations: loss-less, with moderate RLC-PDU loss rate of 0.5%, and
finally one with a higher loss rate of 1.5%. The content used in this example is
the Quarter Common Intermediate Format (QCIF) sized test sequence “Stunt” [109]
at 15 frame per second. The target bitrate of the video encoder is matched to
the throughput of channel while taking into account packetization overheads of the
protocol stack.

34

Figure 4.3 shows a comparison of the effects of various slice sizes at different channel
loss rates. A point on the curves represents the average the Y PSNR, of several
unique channel realizations at the parameterized loss rate in order to achieve higher
statistical significance. The effects of reduced compression efficiency resulting from
using smaller slice sizes is visible on the error-free curve by the reducing PSNR for
smaller slice sizes. However, at a loss rate of 0.5%, the drawbacks of using larger slice
sizes become obvious. The advantage of using slice sizes smaller than 350 bytes do
not sufficiently compensate for their overhead. However, increasing slice size beyond
this results in a the drop of PSNR. This is because of a greater portion of a frame
affected by a lost RLC PDU. The performance degradation is much more drastic for
a loss rate of 1.5%, shown by a significant drop of PSNR for larger slice sizes.

23

24

25

26

27

28

29

30

31

32

50 150 250 350 450 550 650

D
ec

od
ed

 P
S

N
R

 (
dB

)

Slice Size (Bytes)

Loss-less

Loss rate 1%

Loss rate 1.5%

Figure 4.3: Performance comparison with varying slice sizes, with RLC-PDU loss as
a parameter.

To configure the system in an error robust configuration, appropriate slice size should
be selected. Typically it is close to half the radio frame size (RFS), but too small a
slice size can result in considerable degradation of quality because of added restric-
tions on the prediction syntax. The RFS for the experiment in Figure 4.3 was set
to 320 bytes. A suitable slice size observable from graph is 200 bytes.

Intra-Coding

As discussed before, a complete intra-frame update is infeasible for the target system
because of stringent channel capacity and delay requirements, hence several gradual
intra-update mechanisms have been proposed, e.g. by using a pseudo-random intra-
coded macroblock updates [103, 104, 105].

Another technique investigated here is temporal subsequences with instantaneous
RIR tuning (SSIT), which is expressed as

ρ = α · βs−s′ (4.3)

35

where on receiving the feedback of a lost packet, the RIR rate ρ is instantaneously
increased to a peak value α and is then reduced with each frame according to β.
Here, the latest loss report is received while encoding frame s′ while the current
frame being encoded is s. α and β are tuned experimentally, and the selected value
of both is 0.5. This technique expedites error recovery compared to RIR, while
avoiding the buffering overheads of transmitting a complete intra frame.

Interactive-Error Control

As discussed in the preceding sections, H.264/AVC is the state-of-the-art codec of
choice for robust video communication. Several of its error resilience tools e.g. slice
structure coding and flexible macroblock (MB) ordering (FMO) [110] etc. provide
some robustness in an open-loop video communication system. For a more robust
system, long-term memory (LTM) motion compensated prediction (MCP) along
with average statistical information of channel knowledge has been employed in
selecting optimal mode decisions, for example in [111, 23].

The stringent delay requirement of the target application also provides a window
of opportunity. It is known that feedback-based error resilience techniques perform
better for smaller delays [112]. In addition to this, a bidirectional communication link
with possibility of control traffic makes feedback based techniques an ideal choice.

Further feedback based techniques in conjunction with accelerated retroactive de-
coding (ARD) have been investigated in [113, 114, 115]. In [116], proxy-based RPS is
employed along with temporal sub-sequences for conversational applications. How-
ever, these techniques are unsuitable to be directly applied to the target system
because of the complexity and delay constraints, as discussed in the following sec-
tion.

A computational complexity constrained interactive error control (IEC) technique
based on simple and efficient interactive error tracking (IET) has been devised and is
introduced in the following. A realistic simulation of the system is done and several
objective and subjective assessments will be provided that will help identify the most
robust system configuration.

The IEC techniques elaborated here work on packet loss report from the receiver,
which is translated to lost reference regions at the encoder by using IET described
below.

Error Tracking: An abstract depiction of spatio-temporal error propagation is
shown in Figure 4.4. In this example, a packet transmitted by the encoder at time
t-3T is lost, and the loss report is received at time t.

The encoder keeps a record of the recent packets it has transmitted and the cor-
responding reference area in each such packet. Hence the lost packet number is
translated into the corresponding lost reference region of frame t-3T.

After this, error tracking is applied. We propose a technique in which lost area in a
reference frame is assumed to grow at a rate equal to the motion vector search range

36

Receiver

Transmitter

Nack Packet Loss

t

t-T

Time

t-2T

t-3T

t-4T

Figure 4.4: IEC with error tracking. The video frame rate is 1/T

plus 2 pixels in each temporally predicted frame. The additional 2 pixels serve to
compensate the effects of H.264/AVC fractional-pel interpolation. Simulation results
will show the suitability of this technique. The shaded regions in Figure 4.4 are lost.

IEC with Error Tracking: For the proposed system, for all the blocks b in a
given access unit (AU), the rate (r) distortion (d) minimization problem is stated
as:

∀b m∗b = arg min
m∈O

(db,m + λOrb,m) (4.4)

The minimization is done for the usable option set O with a lagrangian multiplier
λO. Since long term memory (LTM) motion compensated prediction (MCP) takes
a considerable part of the total resources [117], the option set is restricted to only
one frame for MCP process. Two complexity constrained IEC techniques will be
employed for the study, as shown in Figure 4.5.

In this system, the average round-trip-time (RTT) of the feedback messages is mea-
sured dynamically. For both the configurations, reference frames up to RTT +T are
kept in the reference frame buffer.

For the configuration in Figure 4.5(a), the inter-coding option set is limited to the
most recent reference frame. The distortion d corresponding to inter-prediction from
lost regions is indeterminate as such, and hence such modes are invalid. If none of
the inter-coding modes within O is valid, only then a modified option set Ô is used
by recursively including temporally older reference frames one by one until at least

37

P P P

Time

P P P

RTT+T

(a) Most-recent frame MCP

P P P

Time

P P P

RTT+T

(b) Sub-sequences

Figure 4.5: Proposed IEC configurations.

one valid inter-coding mode is found. Intra-coding modes are unaffected by this
process.

For the second configuration as depicted in Figure 4.5(b), the inter-coding option set
is limited to the reference frame that temporally precedes the frame being encoded
by RTT . The modification of option set is done in the same way as for IEC1, except
that there is only one additional, temporally preceding, reference frame available in
case of errors. This technique will be referred to as IEC2. The additional robustness
by using reference frames RTT away from the current frame is that the loss report
typically arrives before the reference is used for MCP and the probability of error
propagation is reduced as such. However, temporally older reference frames reduce
the compression efficiency, hence the cost-benefit analysis will be provided by this
work.

Effect on the computational resource usage of the encoder: The number
of modes in Ô are less than or equal to the number of modes for error-free case O.
Since the implementation does not require actual distortion calculations for invalid
modes, this technique, referred to as IEC1, ensures that the computational resource
usage stays strictly inbound in the case of error reports.

It should also be noted that the loss report handling and IET are packet-based
processes. For the practical system configuration as investigated later, there are
typically less than 10 packets per frame. Hence the computational overhead of such
processing is negligible compared to the rest of the codec complexity.

4.1.4 Performance Evaluation

The simulation environment used for generating the results has been documented
in Section A.1. The video sequences have been selected by the video adhoc group
within 3GPP [118]. The results are reported for QCIF sized sequences “Party” at 15
frames per second (fps). A 3GPP channel simulator [118] with realistic loss patterns
is employed. The radio access bearer supports 128 kbps. In order to achieve better
statistical significance, each test is repeated with 128 different channel realizations,

38

and the readings averaged. In a realistic depiction, the feedback traffic is multiplexed
along with normal video traffic, which is exposed to a RLC-PDU loss rate of 0.5%.

Results based on objective metrics

19

21

23

25

27

29

31

0 0.01 0.02 0.03 0.04 0.05

P
S

N
R

 (
dB

)

RLC-PDU loss rate

RIR
SSIT
IEC2
IEC1

(a) Test sequence “Party”

19

21

23

25

27

29

31

0 0.01 0.02 0.03 0.04 0.05

PS
N

R
 (d

B
)..

..

RLC-PDU loss rate

RIR
SSIT
IEC2
IEC1

(b) Test sequence “Stunt”

Figure 4.6: Average results based on PSNR vs. RLC-PDU loss rate performance

0

10

20

30

40

50

60

70

80

90

0 0.01 0.02 0.03 0.04 0.05

P
D

V
D

 (
%

)

RLC-PDU loss rate

RIR
SSIT
IEC2
IEC1

(a) Test sequence “Party”

0

10

20

30

40

50

60

70

80

0 0.01 0.02 0.03 0.04 0.05

PD
V

D
 (%

)..
..

RLC-PDU loss rate

RIR
SSIT
IEC2
IEC1

(b) Test sequence “Stunt”

Figure 4.7: Average results based on PDVD vs. RLC-PDU loss rate performance

Figure 4.6(a) show the decoded PSNR vs. RLC-PDU loss results for sequence
“Party.” The measured RTT for the experiments was less than 130 ms and hence 3
reference frames were used. RIR rate was set to 5% of the total MBs in a frame.
It can be seen that RIR technique performs worst. Using temporal sub-sequences
along with instantaneous RIR tuning performs reasonably better for lossy channel
conditions. IEC2 gives better performance, however the best configuration is IEC1.
It is evident that the quality loss incurred by using sub-sequences, because of tem-
porally older references, can not be compensated by the error robustness it adds for
all practical loss scenarios. IEC1 shows an improvement of 4 dB at a loss rate of
1.5%.

39

A very similar trend has been seen to be followed by other test sequences, e.g.
“Stunt”, shown in Figure 4.6(b) and Figure 4.7(b).

Figure 4.7(a) also shows that the proposed configurations give a significantly robust
system with only about 20% of the video affected under the worst case losses of 5%.
The feedback overhead only amounts to a maximum of 0.8% of a 128 kbps channel
at a loss rate of 5%.

15

17

19

21

23

25

27

29

31

33

35

50 75 100 125 150 175 200 225
Frame Number

PS
N

R
 (d

B
)

RIR SSIT
IEC1 IEC2
Loss-less Loss-less with Sub-seq

Figure 4.8: PSNR variation within sequence “Stunt”

Figure 4.8 shows the variation of PSNR for the sequence “Stunt” for one channel
realization. In addition to the results for all the techniques at an RLC-PDU loss rate
of 1.5%, error-free results with and without using sub-sequences are plotted. Only
a selected portion of sequence is plotted for better viewing. IEC techniques show
very fast recovery from the losses. The results show as expected from theoretical
basis, IEC based techniques recover from the effect of loss as soon as the feedback
is received, compared to the gradual intra-update based techniques.

Results based on subjective tests

Figure 4.9 shows the instantaneous visual comparison of frame number 220 from
Figure 4.8. In this case, the subjective results follow closely to the objective analysis.

However, the objective results can be misleading in many other cases. To evaluate
this, detailed subjective test were conducted for the presented data by 16 students
not active in the field of video coding (non-experts). The setup has been specified
in 4.1.2. All subjects except one could very well reproduce their own results, the
results from the latter were removed from the final results. In addition to detailed
quality versus time results, the mean quality over time for a give test case is also
given for an easy, direct comparison.

As an example, the results for the sequence “Party” are plotted in Figure 4.10, for

40

(a) RIR (b) SSIT

(c) IEC2 (d) IEC1

Figure 4.9: Subjective comparison for the investigated techniques.

41

more detailed analysis the reader is referred to the results we presented in [119].
The x-axis is the playback time of the sequence, and y-axis is the continuous quality
scale from 0 to 100, the maximum value representing no observed visual degrada-
tion compared to the reference video. The plotting is done by removing an initial
transient period required by testing subjects to adapt to the displayed video. In
addition, on the extreme right, mean observed quality is also plotted for a rough
but quick comparison. The number along with labeling of the curves represents the
RLC-PDU loss rate.

It can be seen from the results that IEC1 and IEC2 show superior performance
than SSIT and RIR at high loss rate of 5%. However, in this range, IEC1 is only
marginally superior compared to IEC2. At moderate loss rates of 1.5%, IEC1 per-
forms much superior to IEC2. At this loss rate, the reported performance of IEC2
is no more better than the simple RIR. This is contributed by the relatively large
camera panning motion in the sequence resulting in further degradation of reference
signals. Another interesting observation is that for large RLC-PDU losses of 5%,
SSIT performs almost as worse as RIR. For moderate losses of 1.5%, SSIT performs
even worse than RIR.

0

20

40

60

80

100

0.00 5.00 10.00 15.00 20.00 25.00 30.00Time (Sec)

Q
u

a
li

ty
 S

c
a
le

SSIT 5.0%
RIR 5.0%

SSIT 1.5%

RIR 1.5%

IEC2 5.0%

IEC1 5.0%

IEC2 1.5%

IEC1 1.5%

Mean

Figure 4.10: Subjective test results for sequence “Party”

4.1.5 Discussion of Results

As seen in the results, the visual quality of error protection by the use of subsequences
only is not sufficient and for some sequences is even below the quality that can
be achieved by using very simple random intra-MB refresh (RIR) technique. The
popular concept of using temporal subsequences to achieve added error robustness
severely degrades the subjective performance because of flicker artifacts. Several
results show that users would rather prefer no IEC than using subsequence based
SSIT, although a large objective performance enhancement is achieved. Also, even

42

without any channel losses, the prediction degradation of subsequence based IEC2
considerably degrades the performance and it is concluded that for the given system,
subsequence based error control techniques are not suitable.

This subjective result is in contrast to what PSNR values have suggested in Fig-
ure 4.6(a). While for IEC1 PSNR values can at least capture the tendency of the
visual quality, the visual quality for SSIT for this sequence is clearly below the visual
quality for RIR.

This demonstrates that for such investigations, PSNR values can be severely mislead-
ing. The reason for this poor correlation between PSNR values and visual quality
for the technique of subsequences is rapid fluctuations in video quality because of
individual subsequences being affected by loss in an un-even, independent fashion.
This fluctuation is reported as an annoying flicker artifact by subjects evaluating the
video sequences. However, metrics like the PSNR cannot show the impact of such
artifacts.

In spite of this, subjective tests are manyfold time-consuming and expensive. Hence
for system design, such tests should be planned carefully at intermediate levels and
less frequently compared to objective evaluation.

Overall, IEC1 provides a robust system, and a considerably smaller performance
margin between different loss scenarios enhances the QoS. Hence the IEC technique
using most recent reference frame is best performing solution for the target system
and it improves the overall performance of the system by 4 dB for a moderate RLC-
PDU loss rate of 1.5%, with more advantage for higher losses. On top of that, it has
a negligible impact on the computational complexity of the system.

4.2 Telepresence Systems

Telepresence is the experience of being immersed in a location distant from one’s
physical location, and a wide variety of application scenarios is possible to achieve
this goal. A common denominator in these systems is a multi-view (typically stereo)
camera system that transmits stereo video to a remote observation site.

In most application scenarios, the channel capacity is limited between the sites and
hence source coding of transmitted data is necessary. Typical choice for source
coding of video is standardized lossy video coding techniques like H.264/AVC or
MPEG-4 ASP.

At the observation site, an observer is immersed in the remote scene using the
received video and a generated virtual 3D environment. Applications where the
observer can physically interact back with the transmission site are called as telep-
resence and teleaction (TPTA) systems. A teleoperator carries the stereo camera
system and the observer is referred to as human operator. The remainder of this
section will talk about TPTA systems, telepresence system being a subset of that.
Such a scenario is relevant to a broad range of applications, including remote edu-
cation, entertainment, advertising, nuclear industry, outer space etc, e.g. see [120]

43

for an overview. Interestingly this diverse field of applications also comes with the
challenges of diverse demands and constraints.

Figure 4.11: A depiction of a Telepresence scenario.

4.2.1 Computer Vision Techniques For Telepresence Systems

In addition to monitoring in real-time, another main use of the received video at
the observation site is to virtually immerse the observer in the remote scene. This
is done by using the received video and a generated virtual 3D environment. The
generation of virtual 3D environment at the human operator site requires stereo
matching [121, 122] to be performed on the received video. Most well known and
suitable stereo matching algorithm for TPTA are real-time algorithms based on
dynamic programming (DP) [123, 124] and belief propagation (BP) [125, 126, 127].

4.2.2 Resource Constraints in TPTA Systems

Evidently, even the real-time stereo matching algorithms require a significant amount
of computational resources. On the other hand in many TPTA application scenar-
ios, the teleoperator site is severely constrained in terms of available computational
resources, e.g.

• Frequently the teleoperator is a mobile entity with self-contained constrained
portable power source.

• The teleoperator might have to survive in a hostile environment for extended
periods of time without power replenishing, e.g. in nuclear or space environ-
ments.

• Some solutions focus on the extension of an existing mono-view system to a 3D
system. In order to reuse such system the upgrading is done only at receiving
end [128]. Likewise the multiple video sources can be decentralized, e.g. 2
robots each with a mono view camera. Stereo matching in this case can only
be performed remotely.

• The teleoperator might be an inexpensive unit with limited processing power
e.g. a hand-held mobile device with stereo cameras used for personal commu-
nication or distant learning, etc.

In order to enhance the operational time of the teleoperator and reduce the compu-
tational demands, it is prudent to perform stereo matching away from the teleoper-

44

ator, e.g. at an intermediate proxy or receiving end where the resources are not so
constrained.

4.2.3 Resource Optimization in TPTA Systems

The main computational resource optimization task at the teleoperator site is to
address the real-time video coding. In spite of the fact that in telepresence system,
the target video quality might be significantly higher than, e.g. in consumer-end
mobile video conversational applications, there are quite a few similarities:

• Low-end to end delay: As for a conversational application, minimization
of end-to-end delay is critical in teleoperator systems. Hence the principals of
stringent buffering requirements also exist here.

• Error robustness: As with low delay conversational applications, the task
of designing an error robust system is challenging. Although here, with more
computational resources available at the decoder end, techniques based on
ARD might also be feasible.

• A bi-directional communication link is present for teleaction.

• As mentioned before, computational resources are constrained at the teleop-
erator site.

4.2.4 Review of Video Quality Evaluation in TPTA Systems

Performing stereo matching at the receiver site on the data that has been subject
to lossy source coding is currently not well understood. Much of the work relevant
to the transmission of multi-view content in conjunction with stereo matching has
been done in the area of 3D TV. However, this application has much different con-
straints than TPTA. In contrast to TPTA, in this application the resources at the
transmission end are higher compared to the receiving end. Therefore, the typi-
cal research focus is based on performing stereo matching at the transmitting end,
e.g. [129, 130, 131]. In [128], the authors do focus on performing stereo matching at
the receiving end. The target of their study however, is the evaluation of multi-view
video compression alone and does not focus on the impact on stereo matching.

This issue is also important since standard video codecs like MPEG-4 ASP or
H.264/AVC are designed for human psychovisual (HPV) model; optimization for
computer vision algorithms like stereo matching is not a design criteria for them.
Likewise, the subjective and objective metrics discussed in Section 4.1.2 are also not
directly applicable.

This is evident from Equation 4.4, which is equally applicable in this application.
The main target is to determine the relation between the cost function of RD mini-
mization (d) and that of stereo matching algorithms. Since both minimizations have
different targets and constraints, it is evident that the two are not linearly related.

45

Performance Metrics

Quantitative evaluation is required for both the received video sequences and the
estimated disparity maps. To evaluate the quality of the estimated disparity maps
from the compressed images, the percentage of bad pixels (PBP) of the reconstructed
disparity map is used. For all the regions of an M ×N sized image it is defined as

PBPALL =

∑M
x=1

∑N
y=1 f(dx,y, d̂x,y)

M ×N %,

f(dx,y, d̂x,y) = 1 if |dx,y − d̂x,y| > C, else 0, (4.5)

where d̂x,y is the disparity at a pixel location in the reconstructed disparity map
from the compressed image and dx,y is the corresponding disparity in the reference
disparity map. The explanation of the reference disparity map will be given in the
following section. C is the pre-defined threshold. In a similar fashion, PBPNON OCCL

and PBPDISCNT are calculated exclusively for the non occluded and discontinuous
regions of the image respectively, to give further insight into the performance.

4.2.5 Evaluation Results and Discussion

The framework used for the generating the results is described in detail in Sec-
tion A.2. The most suitable test content for the target system comes in the form of
multi-view video sequences used for the evaluation of H.264/AVC Annex H (MVC).
Natural scene content is best suited for most application scenarios, and it typically
contain significant noise. For multi-view sequences, the results for two views close
to the center of camera grid are shown here.

A variety of stereo matching techniques have been evaluated. The results for the
techniques based on the real-time DP algorithm of [124] that employs a high quality
adaptive weighting approach described in [132] to compute the matching costs and
is relatively more complex. This is a scanline based technique since the disparity
map is computed separately for each image scanline. Such techniques are less com-
putationally intensive than global techniques, say based on belief propagation (BP)
optimization principle [125].

A single solution to RD minimization for an access unit is not a sufficient measure to
highlight the dependence between the two cost functions. In order to achieve higher
statistical significance, several solutions are achieved by starting the minimization
at different blocks within an access unit and then applying it to all blocks in a loop-
around fashion. Each different iteration gives a unique solution and a corresponding
value of PBP. At least 128 such readings are then averaged to get the final value in
order to have a higher statistical significance.

From a system design point of view, the PBP plot versus the transmission bitrate
is the most meaningful, since the channel capacity is the actual resource of concern.
However, given the rate distortion (RD) curves, the transmission bitrate can directly
be transformed into PSNR.

46

Results

MVC ALL
MVC NON OCCL
MVC DISCNT MPEG-4 ASP DISCNT

MPEG-4 ASP ALL
MPEG-4 ASP NON OCCL

LEGEND:

0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

40

50

Bits/Pixel

B
ad

 p
ix

el
s

(%
)

(a) “Vassar” with BP

0.2 0.4 0.6 0.8 1 1.2 1.4
0

5

10

15

20

25

Bits/Pixel

B
ad

 p
ix

el
s

(%
)

(b) “Vassar” with CDP

Figure 4.12: Performance results for test sequence “Vassar”

0.2 0.4 0.6 0.8 1 1.2 1.4
35

40

45

50

55

Bits/Pixel

P
S

N
R

 (
d

B
)

MVC

MPEG−4 ASP

Figure 4.13: Rate-distortion performance comparison of MPEG-4 ASP and MVC
for “Vassar”

Figure 4.2.5 shows the the performance for views 3 and 4 of the VGA sized test
sequence“Vassar,” shot at 25 fps. PBP (shown as“Bad pixels (%)”) is plotted against
transmission bitrate. PBPALL, PBPNON OCCL and PBPDISCNT are shown as “ALL,”
“NON OCCL,” and “DISCNT” on the graphs, respectively. RD characteristics are
given in Figure 4.13. It should be noted that the transmission of uncompressed video
content requires 24 bits/pixel. The parameter C for calculating PBP is set to 0, since
a small change in the disparity might lead to a large error in the interpreted depth.
The results for H.264/AVC Annex H are represented by“MVC”. Only baseline profile
is used to limit the resource usage, with a single temporal reference and a single frame
as inter-view reference.

The main result of interest is the curve “ALL,” since it gives the overall performance

47

of all the regions of the image. It can be observed that for BP, even at the highest
transmission rate 14% of pixels are still erroneous with MPEG-4 ASP, in contrast to
5% for MVC. The performance is still not converging to its best even at high data
rates. CDP is the most robust technique amongst several stereo-matching techniques
that were evaluated, and with MVC it converges to less than 3% bad pixels above
0.8 bit/pixel (a compression factor of 30 times). The best performance of CDP with
MPEG-4 ASP shows 7% bad pixels.

It has been demonstrated in [133] that MVC achieves a better and robust perfor-
mance across the board. This is contributed by the RD curves shown in Figure 4.13,
where MVC achieves a gain of more than 5dB compared to MPEG-4 ASP in the
vicinity of 0.8 bit/pixel. Typical PBP losses are in the vicinity of 5% and 3% at
around 1 bit/pixel when MVC is used in conjunction with BP and CDP respectively.
It can also evident that MVC shows extra performance gain for discontinuous re-
gions of the image (plotted as “DISCNT”) as compared with MPEG-4 ASP. This is
as expected, since compared to the traditional 8x8 transform size in MPEG-4 ASP,
MVC is equipped with a 4x4 transform size that reduces the ringing artifacts, espe-
cially around object boundaries and discontinuities [21]. For more detailed results
the reader is referred to our work in [133].

It is worthwhile to comment on how much is actually gained by Annex H of H.264/AVC.
Figure 4.14 shows the performance of the 3 codecs in comparison: H.264/AVC An-
nex H (shown as MVC), H.264/AVC without Annex H (shown as H.264/AVC) and
MPEG-4 ASP. Only “ALL” regions are plotted to avoid a clutter. From the per-
formance results and RD curves of “Vassar” it can be seen clearly that there is no
observable performance difference between MVC and H.264/AVC. There is only a
marginal advantage for the sequence “Hall”. It is as expected since the only time
spatial prediction provides a higher compression gain is when temporal predictor is
considerably bad. This is possible when the frame rate is significantly low, as for
the sequence “Hall,” which has a framerate of 5 fps.

It can be observed that a compression factor of 30 or less in general should be
selected to avoid a large performance degradation. Also, although global stereo
matching methods like BP are more complex than the scan-line based techniques,
CDP shows the best results here for natural scene content that has significant noise.
If MPEG-4 ASP is chosen owing to its lower complexity as compared to MVC, CDP
should be used as a candidate stereo matching algorithm to avoid large performance
degradation. CDP shows the best results in conjunction with MVC; at a compression
factor of 30, the results for CDP along with MVC converge to a mere 3% bad pixels.
The resulting system configuration is extremely robust; considerable complexity of
stereo matching can be removed from the resource constrained transmission end
while having minimal performance degradation and a significant transmission data
reduction of 30 times. MVC also enables enhanced performance around spatial
discontinuities of scene content, owing to its small transform block size.

It is also observed that for a delay constrained stereo video application, MVC does
not provide any dramatic gain over traditional H.264/AVC. The gains come only
when the target frame rate is so low that the quality of temporal predictor is signif-
icantly degraded in comparison to the spatial predictor.

48

0.2 0.4 0.6 0.8 1 1.2 1.4
0

5

10

15

Bits/Pixel

B
ad

 p
ix

el
s

(%
)

MVC

H.264/AVC

MPEG−4 ASP

(a) “Vassar” with CDP

0.2 0.4 0.6 0.8
5

10

15

20

25

30

35

Bits/Pixel

B
ad

 p
ix

el
s

(%
)

MVC

H.264/AVC

MPEG−4 ASP

(b) “Hall” with CDP

0.2 0.4 0.6 0.8 1 1.2 1.4
35

40

45

50

55

Bits/Pixel

P
S

N
R

 (
d

B
)

MVC

H.264/AVC

MPEG−4 ASP

(c) “Vassar” RD

0.2 0.4 0.6 0.8
30

35

40

45

50

55

60

Bits/Pixel

P
S

N
R

 (
d

B
)

MVC

H.264/AVC

MPEG−4 ASP

(d) “Hall” RD

Figure 4.14: Comparisons for H.264/AVC and MVC.

4.2.6 Discussion of Results

Following observations are of interest:

1. Experts in fields of video coding would recognize a video coded at 35-40 dB as
high-quality content. The objective tests for the target system reveal that for
this system, this is not nearly sufficient. For a robust system configuration,
the required PSNR is in the vicinity of 50 dB.

2. Subjective tests for this system are not very helpful. At this quality, content
might be indistinguishable by test subjects, while the objective evaluation
reveal even the indiscernible quality difference impact stereo matching signifi-
cantly.

3. Objective results provide sufficient guidance to select suitable components and
operating points for the target system.

4. MVC does not provide any considerable performance gain over traditional
H.264/AVC for the target system at normal NTSC/PAL frame rates.

49

Comparison of the findings in Section 4.1 and Section 4.2 brings us to a very impor-
tant conclusion: there is no single optimal option in the domain of quality metrics
and evaluation for video, they have to be carefully selected based on the target ap-
plication and the evaluation has to be formulated carefully to meet the application
demands.

50

Chapter 5

Computational Resource
Optimized Video Codec

In Chapter 3, various approaches to address a computationally constrained system
were reviewed. It is evident that a wide majority of literature in this field tries
to mange the computational resource usage of the video encoder only. This is con-
tributed by the factor that the motion estimation required at the encoding end makes
the task of encoding many folds more complex than the task of decoding. Yet some
other studies focused on solving the computational resource management problem
at the decoder end. However it was observed that a comprehensive technique that
has the potential to address the problem for a variety of application scenarios is
missing. Many of the investigations are in fact presented as an information theoretic
point-of-view: they optimize a part of the source codec without the context of the
target application and the deployment problem that needs to be addressed.

In the following section we propose a classification of the various video source coding
configurations that are targeted for computational resource optimization. This is
followed by the approach that we propose to address a variety of these configurations.
As discussed before, instead of enabling a highly optimized application where the
design principles have little relevance to another variant, a generalized solution is
proposed that can address a variety of systems.

5.1 System Classification

As highlighted in Chapter 4, video coding applications come in various shapes. These
variants have different resource optimization considerations. Figure 5.1 shows an ab-
straction of the generalized system architecture that can encompass these various
applications, where n = {1, 2, · · · , N}. Various sets of hops, proxies and heteroge-
neous networks may be a transparent part of the overall system. In the following we
classify the main parameters of interest that distinguish these application variants
in terms of the applicability of a resource optimization strategy.

51

52

Terminal A

Source Codec

Transceiver
Channel

Segmenter / Re-
assembler

Terminal B1

Terminal B2

Terminal Bn

Source Codec

Transceiver

Segmenter / Re-
assembler

Source Codec

Transceiver

Segmenter / Re-
assembler

Source Codec

Transceiver

Segmenter / Re-
assembler

Figure 5.1: An abstraction of a generic video coding application

5.1.1 Source Codec Configuration

The most important parameter that impacts the resource optimization strategy is
the configuration of the video source codec used by the application.

Type of Adaptation

On the basis of the type of adaptation possible, we distinguish between online and
offline optimization configurations.

Online Optimized Configuration: Online optimization in this context is when
optimization for resource usage is done in real-time, while generating the coded video
content, e.g. on a frame or even on a sub-frame level. From an architectural point-of-
view, such applications allow for resource optimizations embedded within the video
encoder module. Hence a resource optimized video conversational application and
live multicast are example applications of online optimization.

Note that in this context, even an application that encodes a previously saved content
in real time may be suited for an online optimization, e.g. a streaming application
that has to transcode the video data for each session. Real-time transcoding is
however typically avoided in applications because these are not commercially scalable
with the number of clients.

Offline Optimized Configuration: Offline optimized configuration in this con-
text are used in applications where real-time resource usage optimizations are not
possible; in terms of architecture: when the optimization is not possible within the
video encoder.

53

The optimizations might still be possible for the receivers after the segmentation
of the coded content on a GOP level or even less frequently. However, these opti-
mizations are quite different from online optimization, as in this case the suitable
content is merely selected post encoding. It is evident that this variant offers lesser
optimization flexibility.

A typical example would be an adaptive streaming application, where at the out-
put of segmentation at terminal A, a set of representations with different coding
parameters are available. An optimization at this level can be selection of a suitable
representation for a given client based on the available resources. The encoder or
sets of encoders might be encoding live content or the content might be pre-encoded.

Codec Topology

On the basis of codec topology, the video source codec configurations are distin-
guished between point-to-point and point-to-multipoint topologies.

In a point-to-point codec topology a sending terminal or sender delivers a unique
video content to a receiving terminal (receiver, for short notation) over the channel.
An example of this topology is in a video conversational application, where a person
is communicating with only one other person. Hence in Figure 5.1, N = 1, i.e. only
two terminals are communicating with each other: A and B1. The source coding
module at both the terminals A and B1 perform both real-time video encoding as
well as decoding simultaneously. After the network abstraction at the source coding
level, there is little need for segmentation of the content in order to minimize the
end-to-end delay. Both the terminals are connected via bidirectional communication
link.

In a point-to-multipoint topology, a sender is sending the same video content to
multiple receivers over the channel. In this case for Figure 5.1, N ≥ 1.

An example of this configuration is in a (possibly live) multimedia multicast appli-
cation over packet switched networks, e.g 3GPP Multimedia Broadcast Multicast
(MBMS) applications [134, 135]. Terminal Bn will only employ a real-time video
decoder, while for live content terminal A will employ a real-time video encoder.

From a resource-optimization framework perspective, point-to-point configuration
offers a greater potential for optimization as compared to point-to-multipoint opti-
mization; for the latter several terminals share the same video representation while
each may have a different resource budget. Hence for point-to-multipoint topology,
some terminals may perform suboptimally.

It should however be noted that the typical adaptive streaming applications like
MPEG DASH also fall under point-to-point topology: although in this case for
Figure 5.1, N ≥ 1, the sender can share a unique video representation with a given
receiving terminal, independently of another receiver. Hence this configuration can
be decomposed into N unique point-to-point configurations.

54

Direction of Communication

Here we distinguish between unidirectional and bidirectional communications. Bidi-
rectional communications offer the best possibility of adaptation; both sender-end
and receiver-end resource optimizations are feasible. Even for unidirectional commu-
nications, there is a distinction between receiver-aware and receiver-agnostic appli-
cations. The former has a possibility of a backward data flow when the receiver joins
a session, in the form of a handshake protocol etc. This allows for some information
exchange necessary for system-wide optimizations. Receiver-agnostic applications
on the other hand do not offer this possibility, and hence offer the least flexibility
for an optimization framework.

5.1.2 Channel Characteristics

Several channel characteristics significantly impact any video coding application, e.g.
capacity, end-to-end delay, and error susceptibility. The first two attributes often
together determine the third: typically low delay and severely capacity constrained
channels are error prone, as discussed before in Chapter 4. However, in terms of the
impact on resource optimization framework, error susceptibility is of prime interest.
Specifically, the optimization framework has to cater for the impact of channel losses
on dynamic resource utilization by the terminals.

5.2 System-wide Timing Analysis

As the video data flows from the system from the uncompressed end to the decoded
end via the encoder, transport medium and the decoder, several timing constraints
are to be observed. Both the ends, i.e. the uncompressed video data generation or
video capturing and the decoded video display are assumed to work synchronously,
in a periodic fashion. It implies that capturing frame interval, and the decoded
frame rendering interval is the same, i.e. T cap = T rend = T (substituting T in
place of a time interval ∆t for simplification of notation). This also implies identical
raw data generation and consumption rate, respectively. For the sake of simplicity
and without loss of generality, temporal sub-sampling and/or spatial scaling are
considered to be external to this setup.

A crucial timing analysis is typically formulated with the assumption of constant
bitrate transmission on the channel. Hence in Figure 5.2, the bitrate at the input
and the output interface of the channel is constant, denoted by R. Since even with
the most sophisticated rate-distortion minimization algorithms a strictly constant
bitrate coding cannot be guarantee (bar using bitstream stuffing), the output of
the encoder and the input of the decoder work at a variable bitrate as shown by
the bold interfaces in Figure 5.2. To compensate for this discrepancy of a variable
bitrate interfaces mixed with constant bitrate in a single chain, buffering (BHRD)
must be employed as shown in Figure 5.2

The timing and the data flow of this buffered system is addressed in detail for

55

Encoder Decoder

ChannelEncoding
Engine

Decoding
Engine

Video
Capture

Video
Rendering

Figure 5.2: Hypothetical reference decoder (HRD) data flow and the buffering

standardized codecs by a mechanism referred to as video buffering verifier (VBV)
or recently for H.264/AVC, a part of the hypothetical reference decoder (HRD).

Encoder-end Decoder-endCBR Channel

Figure 5.3: The timelines and intervals of different processes in a traditional hypo-
thetical reference decoder (HRD) model

As an example Figure 5.3 shows the timing analysis typically done for the VBV
formulation, as in [84]. The ticks on the time axis t have a period T , and are time-
aligned to the frame capturing and rendering times. For simplicity and without loss
of generality, the composition delay ∆tc is assumed to be zero, hence the composition
time is equal to the decode time, as in a forward-only inter-predicted video. The
amount of bits processed by the system at any time is denoted by bt, the end-to-end
network-related delay is denoted by ∆tC , the buffer size is BHRD, the corresponding

maximum buffering delay is ∆tB
HRD

, hence in this model the ideal end-to-end delay
∆tEi is given by

∆tEi = ∆tC + ∆tB
HRD

. (5.1)

The important assumption in this system is that the system (both the encoder and
the decoder) is equipped with infinite resources and hence the encoding and decoding
steps are temporally atomic. This assumption has quite pervasive implications as
we see in the following.

56

5.2.1 Video Complexity Verifier

In any realistic system, the encoding and the decoding steps are not atomic and
for encoding/decoding each frame in Figure 5.2, each terminal requires a variable
time duration. Hence the thick lined boxes of Figure 5.4 represent the modules
that require a variable delay in processing the information. As a result, the input
interface of the encoder and the output interface of the decoder will require additional
buffering to cater for this variable delay. At the same time, this delay does not have
a direct relation to the variation of the coded bitrate (compensated by BHRD),
hence a buffer is added immediately at the output of the encoder and the input of
the decoder. In order to reuse the existing VBV models, these buffers are treated
separately from the HRD. They can however be combined when required in the final
model.

Encoder

Decoder

Encoding
Engine

Video
Capture

Video
Rendering

Channel

Decoding
Engine

Figure 5.4: An abstraction of generic video complexity verifier (VCV)

If a maximum timing jitter of maxp(∆T
enc
p) and maxp(∆T

dec
p) is allowed at the

encoder and the decoder, respectively, where p denotes a frame index, the size of
pre-encoder and post decoder buffer in number of frames is given by

Benc,ip = ceil
((

maxp
(
∆T encp

))
/T
)

Bdec,op = ceil
((

maxp
(
∆T decp

))
/T
) (5.2)

respectively. Both the now required additional post-encoder and pre-decoder bit-
stream buffers must have a size of BHRD, since theoretically a VBV compliant
system can generate an amount of data up to BHRD in an infinitesimal amount of
time. The end-to-end delay ∆tE of the system is increased to

∆tE = ∆tEi + T ·
(
Benc,ip +Bdec,op

)
. (5.3)

where ∆tEi is given by Equation 5.1.

Figure 5.5 extends the timing analysis of the HRD to include the computational
complexity aspects as well, according to the architecture in Figure 5.4. As in other

57

literature, we refer to this timing formulation as the video complexity verifier (VCV).
It is worthwhile to note from the diagrams that the VCV has a few things in common
with the VBV, but quite a few differences as well.

• The VBV at the encoder end is frequently compared to a leaky bucket analogy;
a buffer with variable inflow and a constant outflow. At the decoder end this
analogy for VBV is“inverted”. The VCV however at any terminal is based on a
variable computational demand by video data fed at periodic intervals of time,
and processed by essentially constant application of computational resources.
While the VBV timings at the encoder are mirrored at the decoding end,
there is essentially little similarity or relation in the shapes of the VCV timing
diagrams. The VCV timing at each terminal depends on the implementation
as well, in addition to the coded content.

• VCV is a virtualization of the system; corresponding to a variable resource
demand and constant resource supply are the video frames (coded or un-coded)
flowing within the system. Hence unlike the VBV buffer fullness the VCV
buffer fullness does not directly indicate the actual video frame buffer fullness,
rather the fullness of a “virtual resource usage buffer.”

With the encoding and decoding being non-atomic processes, the step boundaries
in the VBV indicative of the addition and removal of bits at the encoding and
the decoding end respectively no longer be necessarily aligned to the frame cap-
turing/rendering times. However, we keep this alignment in the generalized timing
analysis, keeping the VBV timings intact in order to build the VCV model on top
of the established VBV model.

To analyze the end-to-end timing of a frame, let the frame capture time, encoding
start time, encoding completion time, encoded data output time, decoder input time,
decoding start time, decoding completion time and rendering time be denoted by
tcapp , tenc,stp , tenc,endp , tenc,opp , tdec,ipp , tdec,stp , tdec,endp , and trendp , respectively. For the
system, the capturing and rendering are considered atomic processes without loss of
generality, since otherwise they will simply add a constant delay in the overall model.
In this analysis, tcapp , tenc,opp , tdec,ipp , and trendp are time-aligned to timing interval T .
Here for n ∈ {enc, dec} signifying the encoder and a decoder, respectively,

0 ≤
tf∑
t=ti

Cnt −Hn.(tf − ti) ≤ Cn,max,∀ti ≤ t < tf (5.4)

where Hn are the steady-state rate of availability of the computational resources at
a terminal n in the given period, and

tn,endp∑
t=tn,stp

Cnt = ∆Cnp = ∆tnp .Hn. (5.5)

Cn,maxp = Bn.Hn.T , where depending on the terminal, Bn is the pre-encoder buffer
Benc,ip or the post-decoder buffer Bdec,op.

58

Encoder-end Decoder-endCBR Channel

Encoder-end Decoder-end

Encoder-end

Decoder-end

Figure 5.5: Timelines of various processes for VCV

59

Here t is discretized to a factor of the GCD ofHn and T . The bounds of Equation 5.4
relate to the virtual resource usage buffer (and not the actual frame buffers), the
lower-bound in Equation 5.4 guarantees no buffer under-runs, while the upper-bound
prevents overflows. Figure 5.5 shows the VCV timing in the context of VBV. As can
be seen, the computational resource demand schedule is aligned with the capturing
schedule tcapp at the encoding end. At the decoding end, the computational resource

demand schedule is aligned with the decoder input schedule tdec,ipp . Henc and Hdec
are intentionally shown different, the comparison signifies little parallels with VBV;
the slope and the shape of the computational resource demands at the terminals are
as unique as the implementation. The virtual computational resource usage buffer
status is also shown at the bottom of Figure 5.5. As expected, unlike for VBV the
maxima and minima of the buffers at the terminals may not be aligned with the
each other in general.

Since in Figure 5.5 the decoder schedule is aligned to the the decoding input and
not the rendering process, only the impact on the encoding-end delay is visible, that
increases by tB

enc,ip
. Figure 5.6 explores the time-lines in a bit more detail. Initially,

the start of the encoding schedule tenc,stp leads the encoder output schedule tenc,opp by

∆tC
enc,init

= Cenc,init/Henc. Likewise the start of the decoding schedule tdec,stp leads

the rendering schedule trendp by ∆tC
dec,init

= Cdec,init/Hdec.

It is also worthwhile to notice the status of the actual pre- and post-encoder/decoder
buffers. A yet-unprocessed frame has to reside in the buffer, and the usage of raw-
frame buffers is an important consideration because of the size of uncompressed
video. The bottom part of Figure 5.6 shows the status of these buffers. At any
point in time, a single frame is present inside the encoder or the decoder, which is
the non-shaded portion between the shaded parts. The remaining data is split in
the pre- and post- encoder/decoder buffers. The initial encoding start time is given

as tenc,st
init

= tcap
init

+ ∆tC
enc,init

. At any point in time, tenc,stp = tenc,endp−1 . Similar
observations can be made for the decoder.

5.3 Decoder Resource Usage Model

A crucial step involved in computational resource management is to model the com-
putational resource usage. Especially, the decoder resource usage modeling is an
essential cornerstone for online optimization framework, as will be described in Sec-
tion 5.4. The existing techniques for modeling the computational resource usage of
video codecs require fully invasive measurements of the codec’s algorithmic mod-
ules. To achieve this, in-depth knowledge of the algorithmic modules is required
along with a complete access and understanding of the implementation. In most
cases this is not possible, e.g. complete access and understanding of the implemen-
tation is commonly not given to a system designer, or the user installs a codec on an
unknown hardware. This is a severe disadvantage to the science of computational
resource management.

60

Capture schedule

Encoding Output schedule

Encoding Completion schedule

Encoder-end Decoder-end

Encoding start schedule
Decoder input schedule

Rendering schedule

Decoding Completion schedule

Decoding start schedule

Pre-encoder buffer fullness

Post encoder buffer fullness

Pre-decoder buffer fullness

Post decoder buffer fullness

Encoder-end

Decoder-end

Figure 5.6: Status of the frame buffers used for VCV

61

5.3.1 Design Considerations

Following are some important design considerations for the decoder resource usage
model:

Decoder Model Prediction Accuracy

The model has to be able to predict the actual computational resource usage of a
decoder with sufficient accuracy. Since no model can provide an error-free prediction,
one already has to provide means to address the prediction error ε, in order to provide
prediction error robustness.

1. Providing a safety factor in model usage based on a comprehensive knowledge
of the observed average error ε̄ as well as the maximum (peak) prediction error
εmax values for the model. The target values used in optimizations should cater
for these values.

2. A feedback channel to report the long-term drift between the predicted and ac-
tual values, the reports can be on a GOP level. This can allow the optimization
algorithm to readjust its optimization parameters.

3. Extra post-decoding buffers to cache the frames to be presented. But this
buffering is absolutely limited because of:

(a) Memory constraints, since uncompressed video data requires significant
memory space.

(b) More buffering eases the peak load computational requirements but will
also adversely effect the end to end delay and jitter, which is undesirable
in most scenarios.

4. Optimized coding to cater for any eventual catastrophic events because of
prediction errors, e.g. providing decoder refresh frames in a periodic fashion.

The types of the error metrics of concern are:

1. The maximum (peak) prediction error εmax for a given frame. If εmax � 0
(i.e. model prediction too optimistic) and prediction error robustness is not
sufficiently provided to handle this, it will result in visual quality degradation
in the form of a form of a jitter.

On the other hand, if εmax � 0 (i.e. model prediction too pessimistic), it will
result in visual quality degradation because of sub-optimal coded content.

2. Average prediction error ε̄ over a period of time. This parameter is more
critical since average prediction error translates into a prediction drift between
the sending and the receiving terminal. If ε̄ > 0 and prediction error robustness
is not sufficiently provided to handle this, it will result in failure to maintain
the decoding and presentation time-line till such a time when a decoder refresh
is provided. This will result in a catastrophic degradation.

62

A negative prediction error (ε̄ < 0) will result in a degraded video quality and
suboptimal resource usage. However, the effects are not as drastic as for ε̄ > 0.

Relevance to applications

Although there can be several approach variations to solve the computational re-
source management, the approaches that have good potential to be integrated in
current as well as future applications should be considered. The following factors
contribute to this:

Ease of determining the model: Techniques based on an intrusive analysis of
an implementation have little practical relevance. With smart portable devices in
today’s world it is not possible to predict an implementation at design-time. For
example, a user installs a newly available video streaming client software on one
of the several possible compatible devices. Even with a single-OS, single-hardware
based solutions, it is expensive to do detailed codec analysis. Hence techniques based
on fully intrusive measurements of the codec’s algorithmic modules will gain little
adaptation.

Low communication and storage overhead: The model should have a com-
pact notation so that it can be conveniently communicated to the sending end with
minimal overhead. There should be little, if any, need of bidirectional communica-
tion otherwise for optimizations.

Low computational complexity: The usage of model in real-time should have
very little computational overhead; there is little use of a technique for computational
resource management that increases the computational overhead significantly.

5.3.2 Formulation of the Model

Complexity

Video
Decoder

Coded units

Decoded units

Figure 5.7: A high-level abstraction of the video decoder

Figure 5.7 represents an abstraction of the digital video decoder. Let Fr(Sp) denote
the coded or compressed version of the pth video frame Sp at a decode time t. Here
E ⊂ Rr identifies the space spanned by the encoding process of the target video

63

codec such that Fr†Fr(Sp) = Sp, where F is the encoding process identified by r. r is
in turn identified by the information embedded in Fr(Sp) (note that for older codecs
before H.264/AVC, the reconstructed version is only approximately equal to the
original Sp for practical implementations). The impact of losses will be considered
later, here lossless delivery is assumed.

Let Fr(Sp) be split by a reversible process into S data packets and fed to the de-
coded in correct order, as shown in Figure 5.7. As a result at time t + ∆tcp the
decoded frame is output from the decoder, where ∆tcp is the composition offset of

the said video frame. At the said time t, corresponding decoding processing Fr†

consume computational resources provided by the platform on which this decoder
implementation runs.

Coded units

Decoded
frames

Decoder

Coded
data

buffer

Decode
Engine . Temporal predictors

Post-
decoder
buffer

Decoded
data buffer

Figure 5.8: Flow of the data in the buffered model

The timing model at the compressed interface are specified by standardized video
decoders, as discussed in Section 5.2. The coded picture is removed from the buffer
at the decoder input at a time instant t, as shown in Figure 5.8, to be decoded into
Sp. For a real implementation Sp will be made available in the decoded buffer at
a time t + ∆tp, where ∆tp is the result of consumption of computational resources
in the decode block. It is this quantity that is needed to be predicted by a decoder
model.

∆Cp = ∆tp.H = f(Fr(Sp)) =
S∑
s=1

{f(Frs(Sp))} . (5.6)

Equation 5.6 essentially relates the computational resource usage Cp to be strictly
dependent on the coded data Fr(Sp), since this is the sole input of the decoder,
and for standardized decoders, the control decisions are independent on previous
decoded output. On the right hand side, this is related to the packetized data, since
this is the accessible data at the input of the decoder. Hence the model needed is of
the mapping function f(.) in Equation 5.6.

The proposed model is defined by an implementation-independent model Ψ and an
implementation transform Θ as

∆Cp = 〈Θ,Ψr〉+ ε, ε = 〈Θ′,Φu〉. (5.7)

64

Hence the implementation-independent model Ψ is r dimensioned, in the same sub-
space E, and is uniquely determined by Fr. The error term ε is in turn defined by
another implementation transform Θ′. Φu however is correlated to Fr, but U * E,
where U is the space spanned by Φu. Note that this model essentially decouples the
decoder computational resource usage from the data to be decoded.

In order to understand how the model relates to the architecture of the decode engine
module of Figure 5.8, it is expanded in Figure 5.9. The codec control module extracts
essential information from Fr(Sp) to identify r, so that Sp could be reconstructed.
Along its path Fr(Sp) is processed by several groups of decoding algorithms, e.g.
al, l = 1, 2, ..., A is one such group. As an example, in an H.264/AVC decoder,
full-pel, half-pel and quarter-pel interpolation filters are a set of algorithms that
make the group, which is referred to as motion compensation. Which algorithm of a
given group will act upon data is decided by the used coding options, and the thin
lines leading from the codec control to individual algorithmic modules provide this
control. The thick lines leading to ∆Cp represent the computational resource usage
of each of these algorithms.

a1

a2

aA

Codec
Control

b1

b2

bB

x1

x2

xX

Figure 5.9: An architectural abstraction of the decoder

The computational resource usage arising from the application of algorithms on
the coded data based upon the codec control decisions result in the major part
of computational overhead, and this is represented by the first term on the right
hand side of Equation 5.7 (〈Θ,Ψr〉). This term is the major contributor of the
computational resource usage. All the codec control decisions are observable at the
encoder by a simple implementation.

However, in general there are a few algorithmic manipulations done by a standard
compliant decoder that are not easily measurable at the encoder. An example of
such algorithms for an H.264/AVC decoder is the management of the motion vector
pertaining to a block of pixels pointing outside the bounded area of the reference
image. Such computational overhead is represented by the second term on the right
hand side of Equation 5.7. In Figure 5.8, this is shown by the dashed connecter
between the data-flow lines and control lines.

65

Low Complexity Approximation

In order to approximate the second term on the right hand side of Equation 5.7
with reasonable computational overhead, we approximate the resource usage to vary
linearly within a range of an activity factor σ expressed as

∆Cp ≈ ∆Ĉp = 〈Θl,Ψ
r〉,Ll−1 < σ ≤ Ll. (5.8)

σ =

√√√√ 1

M

M∑
b=1

(
(V x
b)2 + (V y

b)2
)

(5.9)

Equation 5.9 expresses the selected activity factor σ as the mean squared horizontal
and vertical motion vectors V x and V y for all the blocks M in a frame. The number
of pieces l = 1, 2, ..., L for this piecewise linear model and the thresholds Ll are tuned
empirically. Here L0 = 0 and LL → ∞. The selected activity factor is particularly
low cost in terms of computational resources needed to estimate it, which is of
importance since this factor needs calculation in real-time.

Determining Implementation Transform

The implementation-independent model Ψ is fixed for a given codec. From Equa-
tion 5.8, the implementation transform Θl for a given activity factor l is derived
as

Θl = Ψl† ~̂C, (5.10)

which signifies that all the rows of matrix Ψ contain vectors with same activity factor

l and has rank r. The vector
~̂C contains the corresponding known ∆Ĉp for each of

the rows. The implementation notes for determining
~̂C are provided in the following

sections.

Implementation-Independent Model for H.264/AVC

When applied to H.264/AVC base-line decoding of video, r corresponding to the
number of the coding modules to be modeled is determined as follows. There are
five groups of algorithmic modules, namely intra-prediction, inter-prediction, recon-
struction, deblocking and entropy encoding.

1. Intra prediction consists of 24 different coding algorithms:

• 9 different I 4x4 prediction modes, as specified in Section 8.3.1.1 of [4],

• 8 different I 8x8 prediction modes, as specified in Section 8.3.2.1 of [4],

• 4 different I 16x16 prediction modes, as specified in Section 8.3.3 of [4],

66

• and 4 intra-chroma prediction modes, as specified in Section 8.3.4 of [4].

2. Inter-prediction consists of 72 different algorithms: the 8 unique prediction
modes: P SKIP, P 16x16, P 16x8,..., P 4x4, as specified in Section 7.4.5 of [4]
(including the 4 sub macroblock modes as specified in Section 7.4.5.2 of [4]).
Each of these 8 unique prediction modes can have 9 unique interpolation con-
figurations: full-pel, half-pel and quarter-pel interpolation in both horizontal
and vertical directions, as specified in Section 8.4.2.2.1 of [4], resulting in 9
interpolation permutations.

3. Reconstruction consists of four different modes: reconstruction for normal
blocks, reconstruction for blocks with a single DC coefficient, reconstruction of
empty blocks and finally, an implicit copy mode, which is effectively a P SKIP
mode with zero motion vectors.

4. Deblocking filter comes with 10 different filter algorithms for varying boundary
strengths: 6 different filtering options for luma and 4 for chroma, as specified
in Section 8.7 of [4].

5. The entropy coding for baseline H.264/AVC is modeled by 7 algorithmic mod-
ules, each of these modules depend on: number of coefficients, number of DC
coefficients, number of trailing ones, number of trailing ones for DC blocks,
number of coefficient token for VLC, number of coefficient token for FLC, and
the number of bits written, respectively, as specified in Section 9.2 of [4].

In total this makes r = 118 for the modeling of the baseline decoding. Hence the
size of data required to express the model is just 118 · L · R bytes, where R is the
number of bits used to represent a single entry of the model.

It will be later shown by quantitative evaluations in Chapter 6 that for most plat-
forms L = 2 is able to provide with a fairly accurate model sufficient for most
applications. With a typical application using 32 bit arithmetic, the total amount
of raw data needed to express the model is just 944 Bytes.

5.3.3 Memory Usage Modeling

As discussed in Chapter 2, the dominant contributor of memory usage is LTM-MCP.
Different implementations however store raw video frame data in different fashion,
resulting in differing memory usage increase per increase of reference frame. This
depends on the precision and bit-depth per sample, and the basic memory unit used
to store it. Typically 8 bit representation of pixels is used for normal-fidelity video
and one byte of memory is used to store it. The main difference comes from the
fact that several implementations save an up-scaled version of the raw video buffer
to avoid repeated interpolation process. Hence for H.264/AVC where a quarter-pel
interpolation of luma is allowed, the luma buffer is upsampled 4 times and stored.
This process however is more common at the encoding end, where such up-sampling
can help the motion estimation process. In general, if LTM bytes are required
to store a reference frame, then the memory requirement of J reference frames is
approximated as J · LTM .

67

5.3.4 Implementation Notes on Decoder Modeling

The implementation steps required to be performed to determine the decoder model
are as follows:

1. A coded video bitstream of natural scene content and known coding options
Ψl is fed to the decoder.

2. For each sample of decoded data output Sp, the corresponding ∆Cp = ∆tp.H
is measured.

(a) A platform-dependent accurate cycle counting mechanism must be used
for this instrumentation.

(b) The error in the instrumentation step is platform dependent. A post-
processing may be performed to reduce this error. For example:

i. A Monte Carlo method is employed by performing multiple iterations
of steps 1 and 2. The number of iterations to be performed is com-
mented upon in Section 6.2. Typically, 64 iterations were found to
provide sufficiently accurate results for most of the platforms.

ii. Data is reconstructed by using the first principal component (using
PCA).

3. As a result of instrumentation we will have l linear regressions to be solved,
solution is given by Equation 5.10.

4. In order to assess the memory usage LTM of a single added reference frame, a
comparison of the codec’s run-time memory usage is done between J = 1 and
J = 2. The difference of the decoder’s run-time memory provides with the
estimate of LTM . It should be noted however that for this comparisons, just an
increased number of stored but unused short-term reference frame is necessary
and sufficient; it is not required to perform motion compensation from multiple
frames. Hence, by using two anchor streams with different number of stored
reference frames and actually using a single, most recent reference frame (as
described for IEC-1 in Chapter 4), the memory instrumentation analysis will
be orthogonal to the computational resource usage instrumentation above.
Hence this measurement can be taken along with the computational resource
usage instrumentation described before, and a separate instrumentation is not
required.

Based on the results and the maximum allowed memory budget at the terminal,
a client can select an appropriate maximum number of reference frames, Jmax.

Hence the required process to be carried out to determine the decoder model is of a
black-box modeling that can be fully automated. There are two typical scenarios to
achieve this: if the implementation is known at the device-manufacturing stage, only
a script has to be run that feeds the implementation with a set of video content with
known coding options, several iterations are made and corresponding slice or frame
level accurate times are measured. This data is then processed offline to determine
the model.

68

On the other hand, if the implementation is not known at the design step, e.g. as is
typical for programmable devices as smart-phones or PCs, where user can install a
codec at will to result in a unique implementation, the model can be determined at
install time by this fully automated process.

A quantitative analysis of the performance and accuracy of the proposed decoder
model will be presented in Chapter 6.

5.4 Online Resource Optimization

For this category of optimization, at any instant of time, the optimization algorithm
is capable of impacting the current and subsequent decisions for encoding mode
selection and motion estimation. Hence this adaptation can be performed on any
sample level; down to a single frame, or a part of the frame. Since this optimization
targets to impact the encoding decisions directly, it is performed at the sending
(encoding) end.

One important problem arises because of this optimization configuration: in a vast
majority of applications, the decoders are resource constrained. The question arises:
how can the sending end achieve optimizations of computational resource usage at
the other end of the network? In existing systems, even the lowest delay feedback
channels cannot be used to solve this problem, all it can achieve is to provide some
periodic feedback of past statistics. Hence it is pivotal that a computational resource
usage model of the decoder is made available at the sending end to approximate the
computational resource usage incurred at the receiving end.

This has an important implication: this receiver optimization relies on a receiver-
aware application, e.g. there should be a hand-shake mechanism as a part of session-
joining protocol, or some alternate means where the sender has the possibility to
learn the model of the receiver. The case when this is not possible is discussed
in Section 5.5. The sending end will then use this model in conjunction with the
resource management mechanism to optimize the end-to-end system.

On the other hand, the observation of computational resource usage of the encoder
for online optimizations at the sender end is achievable by real time instrumentation.

Hence in this class of optimization techniques, the computational resource usage
model developed in Section 5.3 is made available at the sending end, along with the
current steady-state resources H and memory usage constraint Jmax for optimiza-
tion. Hence this optimization will integrate the computational resource optimization
problem of all the resource-constrained terminals joining the service.

To summarize the above, this optimization is characterized by:

1. Online encoding or re-encoding of video.

2. Resource optimization performed at the encoding end.

3. If resource optimization of decoding end is to be performed, the sending end
has to be aware of the real time resource usage of the decoder by using the

69

computational resource usage model of the decoder. Hence the sending end
has to be “receiver aware.”

5.4.1 RDC Optimizations

Although any optimization for computational resources might be categorized as RDC
optimization since both the RD and computational resource optimizations are being
performed, here RDC optimization only refers to the joint RDC optimizations.

We have seen the parallels between the VBV and VCV in Section 5.2.1: the available
computational resources per unit time are limited to some constantHn for a terminal
n. The resultant analysis draws parallel from the constrained bitrate coding.

The rate-distortion minimization problem for H.264/AVC has for each block a coding
option set O that consists of all the combinations of quantization parameters, coding
modes and motion vector configurations for inter-prediction. As a result, the set
of complete coding configurations of all the blocks is infeasibly large for practical
computational purposes. Hence, the problem is simplified to reduce the complexity.
The typical approach as described in [21] is to split the overall optimization problem
into individual independently solvable problems:

1. Since the distortion for a given mode and content is an asymptotically in-
creasing function with an increasing quantization parameter, the quantization
parameter is removed from the optimization and selected by other mechanisms
e.g. based on [136]. Hence the dimension of the problem is reduced signifi-
cantly.

2. The optimization of motion vectors is treated separately from the other coding
modes. These two optimizations are performed separately as independent
lagrangian minimization problems.

The second step of optimizations based on Lagrangian minimizations is described
in detail in [12], and its theoretical basis is covered in detail in [137]. While it may
seem very intuitive to apply a similar approach to the optimization of computational
resource usage as well, as discussed in Section 3.1.2, we must compare the theoretical
basis to see if this is indeed a feasible approach.

RD Versus CD

For a constrained optimization problem as the one shown in Equation 4.4, the cost
function Jb,m is given as

Jb,m = (db,m + λOrb,m) (5.11)

The costs are obtained my measuring or reliably estimating distortion for a given
block coding mode. The minimal cost is determined by differentiating against the

70

reconstruction distortion and setting to zero:

d Jb,m
d rb,m

=
d db,m
d rb,m

+ λO = 0 (5.12)

which gives

λO = −d db,m
d rb,m

. (5.13)

Although d db,m/d rb,m can be measured or estimated (although at a cost of compu-
tational resource usage) for each optimization, the crucial factor in this optimization
is the lagrangian multiplier λO. This parameter has to be based on stationary or at
least semi-stationary statistics and has to hold for a range of the optimizations for
Equation 5.11.

Understandably, the lagrangian multiplier is equal to the negative slope of the R-D
curve and hence determine how much distortion reduction can be optimally traded
for a corresponding rate for a given optimization point (Equation 5.11) of the R-
D curve. Interestingly, this slope has a very well defined and direct link to the
quantization parameter in hybrid video codec; at a given operating point at the R-D
curve, for a given mode, it is the indeed the quantizer that trades rate and distortion.
As a result an empirical curve-fitting becomes feasible to achieve a stationary and
stable solution, and in [137] it was determined to be λO′ = 0.85QH.2632

for an H.263

and MPEG-4 ASP and in [12] it was determined to be λO′ = 0.85 · 2(QH.264−12)/3 for
H.264/AVC, where O′ is the remaining option set when the motion vector selection
has been split already from the optimization problem.

By the above understanding, it is worthwhile to see if the same approach of la-
grangian constrained optimization can be used for CD tradeoff. A direct extension
to the cost would be

Jb,m = (db,m + λrOrb,m + λcOCb,m) . (5.14)

One obvious problem with direct extension to Equation 5.14 is that a reliable es-
timate of distortion is required. In real system making such reliable estimate for
this optimization or the optimization of Equation 5.11 has no rate overhead, but
it will potentially have a considerable computational resource overhead. Hence an
estimation of cost in Equation 5.14 will in turn increase the cost itself.

Another question is hinged on one crucial aspect: what is the suitable stationary
choice of λcO frequently introduced in Chapter 3. Similar to Equation 5.13, for a
specific rate it is

λcO = −∂db,m
∂Cb,m

. (5.15)

71

Unfortunately however, quite unlike the quantity expressed in Equation 5.13 which
was directly related to the quantization parameter, the quantity expressed in Equa-
tion 5.15 is not dependent on any simple underlying phenomenon to establish a valid
solution for a range of optimization of Equation 5.14. It rather depends on the sam-
ple being coded, the type of redundancy it has, and that a particular coding tool is
designed to remove the particular type of redundancy or not. For example, for SD
scene content, 8x8 or 4x4 inter-prediction modes might be more suitable than 16x16,
while for HD scene content it may be the other way around. Same goes for different
parts of a single frame where the texture is different. This strong content depen-
dence and the potential for large overhead makes a similar approach of constrained
minimization highly unsuitable for computational resource optimization problem.

5.4.2 CD Mode Ranking

As discussed in the preceding section, it is difficult to achieve a joint RDC opti-
mization, mainly because of the lack of available statistically (semi-)stationary CD
relationship. Stable and reliable statistical relations are generally based on the ac-
tual, underlying physical phenomenon in the system being optimized, as shown in
the preceding section for RD optimizations. However, it is still feasible to have a
stationary CD ranking of individual coding modes.

Mode ranking is the approach for optimal grading or ranking of the coding modes
based on the stationary CD performance statistics. Since this is based on stationary
statistics, the real-time performance overhead is also minimal. Two types of con-
siderations have to be made: distortions in system with reliable communication link
versus lossy communication medium.

With a reliable mode ranking available, the approach that can be used to address
the resource management problem consists of a two step process:

1. Based on the available resources, dynamically and adaptively select a suitable
subset Ô of the coding options O in Equation 5.11, based on the developed
mode ranking.

2. Perform the constrained minimization as usual with only rate-distortion trade-
off.

After developing the basis of mode ranking in this section, the dynamic adaptive
algorithm will be discussed in Section 5.4.3

Ranking of Inter-prediction Techniques Based on Interpolation Configu-
ration

A mode ranking scheme based on stationary statistics (that do not vary significantly
with scene-content) is introduced by ranking the fractional-pel interpolated modes in
conjunction with Long-term memory motion compensated prediction (LTM-MCP)
tool of H.264/AVC.

72

Based on the analysis in Section 2.2.2 and our work in [27], we have been able
to rank the 6 unique fractional interpolation configurations in descending order of
their CD tradeoff ∂db,m/∂Cb,m: FP-FP, FP-HP, FP-QP, HP-HP, QP-QP, and HP-
QP, respectively. With LTM-MCP, there is possibility of finding a block match
in one of the previous frames where the interpolation configuration introduces a
lower distortion. This occurs in practice whenever there is smooth camera or object
motion, which is common in natural scene content. This fact results in the dominant
portion of prediction gain for LTM-MCP. The converse also holds: the probability of
finding a block match in a temporally farther frame is higher only at an interpolation
configuration which introduces lesser distortion as compared to the block match in
one of the newer reference frames.

Hence the inter-prediction modes should be ranked as above with each added farther
temporal reference for inter-prediction. This mode-ranking technique is applicable
to most scene content and hence the ranking is also stationary.

Ranking of Modes for Robust Video Coding

The preceding section provides ranking only for a subset of the available coding
modes. For the remaining modes, we use a second criteria: ranking the modes
based on their average performance statistics for a variety of scene content coded
in a variety of transmission conditions. Obviously this greedy technique may not
be optimal for local optimizations, but it will provide us performance enhancement
when considered over a longer-term.

In regards to robust video communication, typically, the more neighboring samples
are used to generate a predictor in a given mode, the more that coding mode is prone
to spatio-temporal error propagation. This process has been elaborated in earlier
presented results, e.g. of Section 4.1.3 and Section 4.1.3. Interestingly, the number of
samples used to generate a predictor has a direct impact on the computational cost
of a coding mode, hence it is no wonder that the ranking provided in the preceding
section is also ascending with ascending number of pixels used for inter-prediction.
Hence if such a ranking is used for optimizations, it will also foster robust video
coding for lossy transmission systems.

For the remaining coding modes, statistics rank intra-prediction modes have a higher
∂db,m/∂Cb,m then inter prediction, since although the latter results in reduced dis-
tortion but has a much higher computation resource usage cost of motion estimation
and compensation. The complete ranking used for H.264/AVC will be discussed in
the following sections.

5.4.3 System-wide Computational Resource Management

To achieve system-wide optimization, different components devised in the preceding
sections are put together. The proposed framework for an optimized video delivery
setup is described by the following steps:

73

1. As introduced in proceeding sections, a fixed, implementation dependent com-
pact model is determined for a given receiving terminal. As this is fixed for a
given implementation, it needs only to be determined once per implementation.
Here implementation refers to a unique hardware-software combination.

2. As highlighted before, for most high quality, real-time adaptations, even a low-
delay feedback channel is not sufficient for the purpose of feedback of Cn of
a terminal: a typical NTSC video system might operate close to 30 fps or a
frame coding period of around 33 mSec. Even if the computational resource
optimization is done once every frame, a feedback channel with maximum
delay of 33 mSec is difficult to ascertain for most applications (a good solution
should do multiple optimizations per frame). Also the optimization should
not mandate a bidirectional communication link, except for a bidirectional
handshake information exchange for live case.

Hence to estimate the Cn at the receiver, the sender has to utilize the re-
source usage model of the receiver. The encoding end is made aware of this
model of the terminals connected to it, as shown in a high-level abstraction in
Figure 5.10. Here an example of a given receiver joining an optimized video
communication session is shown. Upon the request to join this optimized ser-
vice, the sending end optionally queries the receiver that wishes to join about
its video decoder model. Two pieces of information are needed to be commu-
nicated to the sending end to enable it to do optimizations:

• As discussed in Section 5.3.2, the computational resource usage model of
the receiver that consists of Θl, L, and Ll, l ∈ {2, ..., L− 1}. The memory
usage model needs just the reporting of J n,max.

• The steady state availability of resources for this terminal Hn.

Obviously this is just one abstraction. A service can be envisioned that allows
updating of the Hn based on dynamic resource situation, e.g. power level
available at the terminal.

3. The sender then uses this model for optimized video delivery for the rest of the
session. During the encoding process the sender monitors the coding options
being utilized during the transmission of video data. As discussed before,
as an example for H.264/AVC, a 118 component baseline model is required,
this means monitoring the corresponding 118 coding modes. This gives the
implementation-independent Ψr for a given frame p. If Ψr belongs to activity
factor l, then the approximated computational resource usage incurred is given
in Equation 5.9. The number of reference frames that the encoder should use
for inter-prediction is given by Jmax = minn(J n,max).

Sub-frame Prediction

Since current state-of-the-art video codecs like H.264/AVC have several coding mod-
ules that still work on a traditional frame-based level (e.g. the deblocking filter,
applied after all slices of the frame are decoded and implementation specific features
like the distortion estimates at the encoding end and frame up-sampling etc.) some

74

Sending End ReceiverSending End Receiver

Join

Query Model

Model, resources feedback

Optimized video
delivery start

Resources update

Figure 5.10: An abstraction of session setup for optimized delivery

additional processing is required for sub-frame based computational resource opti-
mization. For this purpose, linear prediction of the model components is done on sub-
frame level to predict the resource usage of the overall frame, i.e. ∆Cp = 1/ρ ·∆Cρp ,
for a fraction ρ of the pth frame processed and the corresponding computational
resource usage ∆Cρp .

Since the sender can monitor its own computational resource usage, the use of the
video encoding model is not required at the sender.

Now since all the required components of the model are available at the encoding
end, computational resource optimization can be performed.

Complexity Quantization

As discussed in Section 5.4.1, the best computational resource optimization approach
that is feasible for practical systems is to select a subset Ô of the coding options
to trade complexity for distortion and then use the conventional RD optimizations.
Since the typical paradigm of lossy coding trades rate for distortion by exploiting
a quantization parameter, we introduce a similar the notion of computational com-
plexity quantizer QC . This subset is denoted as OQC .

The purpose of this mechanism is to introduce coding options to a set of allowed
coding options Ô, in this example by starting with intra-only coding, corresponding

75

to the maximum, value of this quantizer QC,max, and then adding incrementally
complex inter-coding options. The following provides a solution for H.264/AVC but
this can be extended to other hybrid video codecs.

An Example Complexity Quantizer for H.264/AVC: The options are added
based on the mode ranking approach described in Section 5.4.2. ForQC ≥ QC,max−9,
full-pel P SKIP and P 16x16 coding is allowed for a fraction of macroblocks given
by: 1 − 1.3e−0.36(QC,max−QC+1), the remaining macroblocks are Intra-coded. From
each further reduction in QC , following steps are taken:

1. Reference frame index j is set to 1, j = 1 is the most recent reference.

2. With each decrement of QC , interpolation configurations FP-FP, FP-HP, FP-
QP, HP-HP, QP-QP, and HP-QP respectively are added to Ô for Pj SKIP
and Pj 16x16 inter-coding modes.

3. With each further decrement of QC , inter coding options Pj 8x16, Pj 16x8,
Pj 8x8, Pj 8x4, Pj 4x8, and Pj 4x4 respectively are added to Ô.

4. Increment j, repeat from step 2.

QC,max − 20 represents the highest possible computational resource usage for a de-
coder in this configuration, since increasing number of reference frames only increase
the memory requirements but not the computational resource overhead. However,
for the encoder, further increase in computational resource usage is possible by incre-
menting j as above, since each added reference frame increases the motion estimation
effort required. QC,max depends on Jmax, given as QC,max = 12Jmax + 9. QC is
initialized at QC,max/2.

This example is be no means the only possible solution; the dynamic range of this
quantizer can still be extended beyond by adding simpler options at QC,max (like
limiting the intra-prediction modes to a subset of all intra-coding modes provided by
H.264/AVC) or at the other end by adding more complex options at QC,min than the
H.264/AVC baseline encoding (e.g. bidirectional predicted frames, CABAC, etc.).

QC Controller

A key problem in this regard is to achieve stable control of the system. If QC is
the control parameter of interest and the computational resource usage is the main
output of interest, then what is the nature of the system it controls?

The main input of video codec is the digital video itself, another important input is
the bitrate quantization parameter. However, the main concern is the former, since
statistics of real time video input are an unknown. On the other hand, in order to
maintain a reasonable computational resource usage bounds, existing video coding
techniques do not make real-time statistical analysis of the input video content.

As discussed in Section 3.1.5, some authors have tried to make a real-time estimate of
the computational resources. However, before going into this analysis, let us briefly
leap forward to take a look into how the resource demand varies in a real video

76

coding system. Figure 5.11 is shown to get an overview of the system behavior of a
video codec performing on a ultra-low voltage CPU, coding the sequence “Foreman”
at 64 kbps. The complete simulation description of such realistic scenario will be
treated later in Chapter 6; for now the only aspect of interest is how the system
behaves for a slight shift in the initial conditions.

Figure 5.11 plots the real-time computational resource usage as it varies with each
input frame of video. The “original” curve is the performance of the system with
QC = QC,max − 16. In the curve “altered,” QC is increased by a single step; QC =
QC,max−15 for a single frame index p = 28, and is reverted back to QC = QC,max−16
from the next frame. Hence the input differs from the original for only one frame.
The comparison of the two curves immediately expose a highly non-linear, chaotic
system [138]; the more the time passes by, the more the output differs from the
original output.

20 30 40 50 60 70 800.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Video frame index p

∆
C p

(M
eg
a
cl
oc
k
cy
cl
es
)

Original
Altered

Figure 5.11: A computational resource demand snapshot, showing a chaotic system

As discussed in [138], nonlinear systems have more complex behavior than linear
systems, and their analysis is much more difficult. This is so because nonlinear
equations cannot in general be solved analytically. Secondly, powerful mathematical
transforms (like Laplace and Fourier) do not apply to nonlinear systems. “Hence
there are no systematic tools for predicting the behavior of nonlinear systems.” [138]
Rather, an inventory of analysis and design tools e.g. adaptive control and feedback
linearization etc. are used.

At the same time, the lack of a suitable model for real-time video content make
this non-linear system time varying as well. Recently, intelligent feedback based
control systems have been seen to perform very well for systems that are difficult to
model [139]. It is proposed to use the previous output of the system for modeling

77

the system and this approach will be followed here.

Design considerations for the controller: The target of the controller is to
achieve ∆Cnp of a terminal as close as possible to Hn.T . However since a single video
content is coded and then decoded by various terminals (set aside occasional channel
errors), a single control variable QC is controlling all the processes. Yet the output
from each terminal, ∆Cnp is unique. Hence it is not possible to achieve a globally
optimal configuration for all the connected terminals in general. To determine the
targets of this optimization, a few considerations have to be made.

• Overshoot of ∆Cnp beyond Hn.T at a terminal will result in jitter of a video
frame encoding or decoding, and its accumulation results in an added de-
lay. Each terminal has an allowed maximum delay quota owing to the buffer-
ing Benc,ip for the encoder and Bdec,op at the decoder, as introduced in Sec-
tion 5.2.1. If the upper bound on ∆Cn,maxp = Bn.Hn.T is overshot, or equiva-
lently, the upper bound defined in Equation 5.4 is overshot, this will result in
failure of a terminal to maintain its presentation timeline.

• On the other hand too little ∆Cnp compared to HnT results in wastage of
resources at the terminal.

It can be seen from the above considerations that while an undershoot will result in
quality degradation, an overshoot of the VCV buffer bounds will result in breakdown
of service for a terminal, and hence is a hard limit.

Controller Design: The controller used here is shown in Figure 5.12. To achieve
the control with higher degree of precision, subframe level control is performed at
intervals of ∆tsf < T ; ρ = ∆tsf/T . To formulate the control, a change of notation
is required however. In Figure 5.5 and the related formulation so far have used a
simplified notion of Cnt , where the terminal n incurs the resource demand of an entire
frame ∆Cnp in an atomic fashion; as soon as the frame is made available for coding or
decoding. This notation is sufficient to understand the frame-level processes, since
the capturing and rendering deadlines are typically frame based. In reality, the
resource demand is incurred in a continuous fashion, as sub-frame level video data
is coded or decoded. We denote this more realistic resource demand variation as C̃nt .
The prediction of sub-frame computational resource demand ∆Cρp has already been
described in Section 5.4.3.

At each sub-frame level optimization, the change in the control parameter ∆QCn at
any time instant tcur is determined as

∆QCn = K1

(∑
tcur C̃nt −Hntcur
Cn,max

)
+K2

(∑
∆tsf C̃nt
Hn∆tsf

− 1

)
(5.16)

Were K1 and K2 are constants selected empirically, and ∆tsf is the time elapsed since
the last time QC was updated by ∆QC . As the term in Equation 5.16,

∑
tcur
Cnt −

Hntcur tends to Cn,max, the first factor
(∑

tcur C̃nt −Hntcur
)
/Cn,max tends to 1.

78

Hence K1 is selected so that QC is increased appropriately to avoid the violation of
the limits of Equation 5.4. The normalization makes implementation independent
selection of K1 possible.

The factor K2 ensures that the resource demand
∑

∆tsf C̃nt matched the resource
supply ∆tsfHn as much as possible. In case of an exact match, the second term
is reduced to zero. The overshoot and underrun of resource usage makes this term
greater or less than zero, respectively. Here as well the normalization is performed
to ensures implementation independent selection K2 possible. The actual selected
values of K1 and K2 will be provided in Chapter 6.

There is a single control parameter, QC , applied to all the processes (the encoding
at the sending terminal and decoding at several receiving terminals) each generally
resulting in a unique output, i.e. the ∆Cnp at each terminal. The controller will

suggest a quantizer for all of the terminals considered for optimization Q̂Cn,new =
Q̂C,oldn + ∆QCn , which is fed to the post-processing block in Figure 5.12. This block
performs the following operations:

• To begin with, largest quantizer maxN (Q̂Cn,new) is chosen as the initial candi-
date Q̃C,new.

• The control parameter to be used is the given as:

QC = CLIP(ROUND(Q̃C,new), 1, QC,max).

For streaming applications where pre-coded segments of media are made available,
the same principle as above can be used by considering ρ > T to be the segment
duration.

Signal flow
Multiple signal flow

Figure 5.12: The block diagram of the control system

QoS Provisioning: As discussed before, a single control parameter will be avail-
able for optimizing an entire connected service. At the same time, the upper bounds
of computational resource usage at each terminal has to be strictly maintained.
When these two considerations are combined, this results in an undesirable effect:

79

the terminal with least available resources dictates and effectively limits the overall
QoS.

Therefore, to let the service perform amicably, a parameter κ = I/N is introduced at
the controller. This parameter determines which I of the total N terminals must be
optimized for. The sending terminal is an exception: it has always to be optimized
for. The QoS provisioning block shown in Figure 5.12 achieves this by performing
the following steps in the given sequence:

1. The running average of quantizer QC,av over one second period is maintained
at the QoS provisioning block as the metric of quality of the connected service.

2. A variable RESn is maintained for each terminal, initialized to zero. If QC,av ≥
QC,TH (a predetermined threshold value), RESnc is incremented after each
frame-level optimization, where nc is the most resource constrained terminal:
nc = arg(maxN (Q̂Cn)). This information is provided to the QoS module via
the connection from the post-processing module shown in Figure 5.12.

3. If I/N > κ, and RESn for a terminal n is greater than a threshold, the terminal
is removed from further optimizations.

4. Such a terminal n removed from optimization can be reconsidered after a
transmission of an IDR frame, with its RESn reset to zero.

The QoS admission control policy can appropriately adjust κ till the quality metric
QC,av reaches a desired threshold.

5.4.4 Codec Behavior Under Lossy Channel Conditions

So far the model developed in Section 5.3 assumes a loss-less reception of coded video
data. Likewise, the encoder behavior for sender end optimizations is also described
for a loss-less scenario. The entire system is however effected by losses, and the
impact on both the encoder and the decoder is summarized in the following.

Effect on Resource Usage at the Decoding End

The decoder, upon detection of an erroneous bitstream initiates the error-concealment
process. As already described in detail in Section 2, this is not a standardized pro-
cess and a plethora of techniques exist to fulfil this purpose. It has already been a
recommendation that the error concealment techniques should not be significantly
more complex than the actual decoding modes which are lost. For example, in our
experiments PFC has been used. The technique has two advantages: it is easier to
compare with other results since it is widely used, and secondly its complexity is
in comparable to the P SKIP mode, which in general is considered to be the most
simple coding mode, as already discussed in Chapter 3.

For delivery of video over lossy channels, a robust system configuration has been
proposed in Chapter 4. For such a system, the sender-end is made aware of the
losses. Upon reception of such a message, if the concealment technique used follows

80

the above guidelines, no action is needed to update the computational resource usage
estimate of the decoder made at the sender end, as long as the concealment is less
complex than decoding itself. This will be corrected by the periodic updates by
the decoder as discussed in Section 5.4.3. Till such an update is received, the only
side-effect of this will be a probable resource buffer underrun.

Effect on Resource Usage at the Encoding End

Similar to the decoding-end concealment with a strong focus on computational re-
source constrained devices, Chapter 4 has also discussed the proposed resource con-
strained error-recovery techniques at the encoding end. Specifically, IEC-1 strives
to recover from errors without significantly increasing the computational resource
demand.

However, to enable the prediction from a frame not impacted by losses, the quantizer
in Section 5.4.3 is modified as follows. The start index j of reference frame is
initialized with the most recent reference frame with reference regions available for
prediction (a lost reference region is already known at the encoder by the error-
tracking mechanism).

The resultant change in the computational resource usage is well modeled by the
decoder model introduced in Section 5.3.2, and hence the remainder of computational
resource optimization can follow as usual in the case of channel losses.

5.5 Offline Resource Optimization

For this category of optimization, the optimization algorithm may only select one of
several possible pre-encoded versions or representations of the same source content.
With a pre-determined set of coded representations, only the decoding end resources
are targeted for optimization.

Since hybrid video codecs provide with the possibility of hierarchical spatio-temporal
predictions, this adaptation can only switch to independently-decodable samples.
For example, an IDR frame of H.264/AVC in a given representation. Likewise,
for scalable/multi-view coded content, a higher layer/view is dependent on lower
layer(s)/view(s) for decoding, respectively, and cannot be decoded independently.
This adaptation is typically referred to as Group Of Pictures (GOP) based adapta-
tion.

Since online optimizations as discussed in Section 5.4 can adapt on a frame or even
sub-frame level, they can achieve a superior performance. However, three important
pre-requisites were also defined in Section 5.4, if any of them is not fulfilled, offline
resource optimization is the only available option. A wide range of applications fall
under this category:

1. Online encoding is hardly scalable for commercial applications: the computa-
tional resource demand grows linearly with number of unique representations
to be generated. Hence even if the source content is live, a scalable application

81

only generates a handful of representations for adaptation for all the clients.
Hence online optimization strategy proposed in Section 5.4 is not usable di-
rectly.

2. Receiver-awareness is also a potential bottleneck for scalable applications. As
before, the online optimization strategy proposed in Section 5.4 is not usable
since it relies on a decoding-end model available at the encoding end for re-
source optimization of the decoder.

Two such very important classes of well-known applications are the traditional ter-
restrial and satellite video broadcast, and the more recent adaptive HTTP stream-
ing technologies like DASH and Apple HLS etc. In these applications, adaptation
is achievable by the means of a set of alternate representations made available to
the client to choose from. These existing systems only target channel capacity opti-
mizations however.

5.5.1 GOP-based Resource Optimization

A GOP-based adaptation is performed by selecting a GOP from the representation
x in a subset X̂ of all the representations X , such that:

x = arg min
x∈X

tGOPf∑
t=ti

Cxt −H · (tGOPf − ti)− Cmax

∣∣∣∣∣∣∣∑tGOP

f
t=ti

Cxt −H·(tGOPf −ti)≤Cmax

(5.17)

∆Cxp = 〈Θl,Ψ
r,x〉,Ll−1 < σ ≤ Ll, (5.18)

This subset X̂ consists of representations that are short-listed by an outer optimiza-
tion loop, e.g. channel capacity optimization, if it exists. Equation 5.18 uses the
formulation of Equation 5.8 for prediction of resource usage. Equation 5.17 selects
the GOP from a representation such that highest resource buffer fullness is achieved
without overflow. This optimization targets to maximize the resource utilization. ti
is the time of availability of the first frame intended to be presented in the decoder
buffer.

5.5.2 Architectural Options for Optimization

In general, offline optimizations can be performed either at the sending-end for each
of the receivers to be optimized or at each of the receiver themselves (unlike online
optimizations of Section 5.4 which are performed exclusively on the sending end).
Each possibility has its own implication, as discussed in the following.

Sending-end Optimizations

In this configuration, the receiver communicate their respective computational re-
source model to the sending end in a similar fashion as described for online optimiza-

82

tions in Section 5.4.3. Using these models, the sending end can select the appropriate
representations to stream to individual receiver based on the optimization criteria
specified in Section 5.5.1.

The advantage of this strategy is that the model stays fixed for a given decoder
implementation and as a result the communication overhead is minimized. The
drawback however is that, as noted already, such receiver awareness may prove a
bottleneck for scalability, e.g. commercial applications targeting hundreds of thou-
sands of clients. Secondly, some widely deployed applications such as the traditional
TV broadcast are inherently designed to be receiver-agnostic.

Receiving-end Optimizations

In this case, the computational resource usage model Θl is still needed at the receiver,
albeit for different reasons. The receiver should be able to predict the expected
computational resource usage of a given representation before attempting to decode
it, so as to compare it with its computational resources and make a well-informed
selection. In order to make use of this model, the receiver has to have the knowledge
of Ψr, the associated activity factor l, and the number of reference frames used J .
Hence the overhead of this adaptation is:

1. Real-time data transfer overhead of Ψr, l and J from sending-end to the
receiver. Considering the maximum range of each of the components specified
in Section 5.3.2, which depends on the resolution of the content used, the
overhead data rates are calculated and listed in Table 5.1. The overhead is
considerable for QCIF case, when compared to the typical data rates used for
such video content. However, these are raw data rates, and compression of
this data can be considered if required (e.g. by using run-length coding).

Content type Frame rate Signaling overhead Bitrate overhead
per frame (bytes) (kbps)

HD 30 233 56
SD 30 203 49

QCIF 15 144 17

Table 5.1: Signaling overhead for receiver-end optimization

2. Equation 5.8 is used on run-time to predict the computational resource usage
at the receiver on a GOP level.

5.5.3 Design Considerations for GOP-based Optimization

How the representations are provided and selection (adaptation) can be performed
for the GOP-based resource optimization algorithm introduced in Section 5.5.1 ac-
tually depends on what selection options are provided by the application.

In the case of a typical TV broadcast, there is no option provided of selecting between
representations, hence SVC is the only available option for adaptation. In this case,

83

a broadcasted channel provides a scalable video content, each layer can be considered
as a representation. Hence the client with more resources can decode a higher layer
and vice versa. Since the framework of such applications offers limited capabilities
for signaling of the content model information above, it has to be embedded within
the content, e.g. the private data fields within the MPEG-2 TS [140]. In such
adaptation, the higher layers not decoded are simply discarded at the client side,
and no channel capacity is saved.

For adaptive streaming applications like DASH, the server has a possibility of provid-
ing a set X of independent representations for adaptation. The model information
can be provided as a part of “index segments” in DASH, which can be accessed inde-
pendently of the content, and hence the selection can be performed before actually
accessing and downloading the media. This approach results in channel capacity
saving.

These optimizations rely on an end-to-end delay of at least one GOP interval. Since
end-to-end delay is not a major constraint in such systems, most often if not always
a reliable channel is available. Hence error robustness is not a design consideration
for these optimizations.

84

Chapter 6

Selected Performance Results

In Chapter 5, we have presented a comprehensive analysis of a generic computa-
tional complexity constrained video communication framework in the beginning.
Video communication applications were categorized based on the underlying service
topology and type of adaptation, followed by a comprehensive timing analysis. A
decoder computational resource usage model was proposed and analyzed. Finally
optimization frameworks were proposed for online and offline encoding configura-
tions..

In this chapter the proposed framework is evaluated quantitatively along with the
definition of the reference system for the sake of comparison. Various system con-
figurations of interest are simulated and evaluated.

6.1 Codec Software and Hardware Selection

In order to have a reliable verification, several well-known H.264/AVC software
codecs were evaluated on a wide range of hardware platforms.

• The most suitable option in this regard is using MVC capable H.264/AVC
codec by Nokia [141]. This software is designed to be implemented on mobile
platforms for real-time video encoding and decoding.

• x264 video encoder [142] is written for fast processing on desktop computers
as well as portable laptops etc. for generating content mainly for storage and
local viewing. The corresponding video decoder typically used is FFmpeg [143],
which is also designed for similar purpose.

• As a reference, all techniques were also verified on JM software [144], although
it is a reference software and not intended for any real application.

The above codeces have been modeled on a variety of realistic hardware platforms:

• Hardware architecture (HA) 1: Qualcomm’s MSM7200/7201ATM Chipset So-
lution [145] consisting of a 528 MHz ARM11TM applications processor. The
optimizations was verified on a mobile phone set [146]. JM reference software

85

86

was not evaluated on this platform since it is not designed to work on such
portable devices.

• HA2: An ultra-low-voltage Intel R© AtomTM Processor N270 [147].

• HA3: AMD OpteronTM [148], based on a conventional desktop CPU. Simu-
lations based on non-constrained computational resources were typically done
on this platform.

6.2 Confidence Level and Unknown Variance

A typical problem faced in assessing the systems similar to the target system is the
impact of several underlying randomly varying phenomenon on the observations.
In the target system, if the resource management is operating on a lossy channel,
then these phenomenon include the variations in channel characteristics, the non-
deterministic nature of the resource constrained hardware, and last but not the
least: the varying statistics of the video source content. It is difficult to know the
exact distribution of these phenomenon before hand, and for real-time video source
content, this is next to impossible.

A similar problem discussed in [149] deals with the varying channel characteristics.
To formulate the problem, the probability that the mean metric of interest QM i

after I iterations of the experiment is away from the true mean QM of that metric
by the confidence interval ε is given as

P
(∣∣QM −QM i

∣∣ > ε
)

= 1− β, i = 1, ..., I. (6.1)

The bound β is the confidence level, which is lower bounded by Chebyshev inequal-
ity [150] as β ≥ 1 − (1/εI)σ2

QM
. As described in [149] citing work of [151], this is

simplified by considering σ2
QM
≈ σ2

QM i
.

However the main problem for generating the results here is to be able to predict
a suitable number of iterations I such that QM i has a high confidence level. The
above formulation does little help in this case, since it is not possible to arrive at
even the approximation σ2

QM i
without a priori knowledge of I. The approach used

here in the simulations is the following: initially set I = C1 and then I is increased
dynamically. The simulations are further iterated till

∣∣QM j −QM i

∣∣ < TH1, i =
1, ..., I, j = 1, ..., J, J = I − C1. Typical tolerance value TH1 is 3% to ensure
the results have converged suitably. C1 has to be set large enough to avoid a false
positive generated by a local minima of QM i since as a result simulations will be
terminated prematurely. Here it is set to 5. With these settings, in all the results
presented here, I always stays under 128 iterations. Similarly, 64 iterations were
found to be sufficient for determining the implementation transform of the decoder
model.

87

50 100 150 200

6

7

8

9

10
x 10

5

0 50 100 150 200 250
0

5

10

15

Frame Index

(%)

Cycles

Figure 6.1: Performance of the simplest decoder model (L = 1) for sequence “Fore-
man”

6.3 Decoder Resource Model Verification

In this section, we will provide a quantitative evaluation of the decoder resource
usage model proposed in Section 5.3.2 to shed light on its accuracy and robustness.
The “training set” in this case is the natural and readily available scene content that
provide the known coding options Ψl and measured computational resource demand
~̂C (following the guidelines of Section 5.3.4) to generate the model Θl as given in
Equation 5.10.

We have used the sequence “Bar” and “Stunt” for this purpose. The former contains
significant static scene content with relatively high background texture, while the
latter consists of hectic motion throughout the content. Hence combined, the two
provide a good mix of the activity factor σ. The coding conditions used were 64
kbps with most-recent reference frame used for inter-prediction. At first, a linear
model approximation is evaluated as the simplest approximation (L = 1) and its
performance is assessed.

Figure 6.1 assesses the performance of the simplest approximation with L = 1, which
implies a linear model. This evaluation is done on HA1. The model is then applied to
predict the computational resource usage (∆Ĉp) of “Foreman” and the instantaneous
result is plotted along with absolute error magnitude |εp| (in percents). It can be
seen that the prediction follows the actual resource usage ∆Cp to some extend, but |ε|
frequently peaks significantly above 5%, with a mean value of approximately 2.5%.

For the second set of evaluation, the same configuration was used as above, with
L = 2, and L1 is empirically tuned to 1.1, hence essentially splitting the static and
very low-motion scenes from all the other content. The performance is shown in
Figure 6.2 along with |εp|, εmaxp , ε̄p (mean error), and

∑
p εp (cumulated error). It

can be seen that this approximation is sufficiently accurate. This has been verified

88

50 100 150 200

6

8

10
x 10

5

50 100 150 200
0

2

4

0 50 100 150 200 250

−100

−50

Frame Index

(%)

(%)

Cycles

Figure 6.2: Decoder model with L = 2, its instantaneous, average, peak and cumu-
lative error performance for “Foreman”

for a variety of content. The peak error magnitude εmaxp stays well below 5% and ε̄p
is in the vicinity of 1%.

Another result using same modeling parameters is tested on HA2 for sequence
“Party” coded at 128 kbps showing a similar and stable result in Figure 6.3. In
this case the “training set” was coded at half the bitrate (64 kbps) of the verification
scenario. Verification has been done for up to 4 times the image resolution and
bitrate as used for “training set.” Hence this modeling configuration is considered
sufficiently accurate to be reliably used across the range of implementations and
coding parameters.

It may be noted however, that although average and peak error is within well man-
ageable region, the accumulated error is still of concern for the framework proposed
in Chapter 5, since the sending end relies on this estimate. As shown in Figure 6.2,∑

p εp grows to 100% over a period of 200 frames. Hence as already discussed in
Section 5.3.1, this problem must be catered for. The two possible approaches (that
can even be used in conjunction) to address this are:

• A periodic update from the decoder about the actual status of its resource
buffer fullness, and the sending end synchronizes its estimate to rid of this
accumulation.

• A factor of safety is ensured such that H.T > ∆Ĉp + ε̄p. If this condition is
fulfilled, there will be no steady-state accumulation of error and the problem
of drift is avoided altogether.

89

50 100 150 200 250 300

5

6

7

8

9
x 10

6

0 50 100 150 200 250 300 350
0

5

10

15

Frame Index

Cycles

(%)

Figure 6.3: Verification of the model on HA2 for sequence “Party”

6.4 Online Optimizations

In this section we investigate the performance of the optimizations for online encod-
ing applications. Two target systems will be investigated: a mobile video conversa-
tional application and TPTA system.

K1 and K2 used for the optimizations defined in Section 5.4.3 (Equation 5.16)
are found empirically as 5.6 and 7.3, respectively. As described in Section 5.4.3,
these values are independent of the implementation (both software codec and the
hardware), and are fixed for a given video coding standard.

6.4.1 Reference System

The foremost question for evaluation of the proposed system of Section 5.4 is which
reference system to use for quantitative performance evaluation and comparisons?
The proposed system is abbreviated as PROP. For most results we use two reference
systems:

Fixed Computational Resource Usage Configuration

This technique is an enhanced form of what is being deployed in current and next
generation of mobile video communication applications e.g. in [3], as introduced in
Section 1.1. The enhancement done is that for coding a video sequence at a given
terminal n is

Cn,max = max
p

(∆Cnp). (6.2)

90

This will give the best performance achievable by this technique. Practically how-
ever, it is quite difficult to implement Equation 6.2 for online-encoding systems since
it relies on the resource usage required for coding video frames in future. Instead,
maxp (∆Cnp) is determined from a set of training sequences (sequences encoded using
the same parameters as for encoding the stream being evaluated, e.g. the bitrate).
We will abbreviate this technique as FCC. As a reference this is still well suited,
since it will reflect the optimal performance bounds achieved by existing systems.

Resource Management Using Complexity Allocation Management (CAM)

This technique, abbreviated here as CCAM, is based on the Complexity Allocation
Management technique proposed in [81, 82]. This technique has a two-level resource
management framework: one on frame level and the other on a macroblock level.

Frame-level CAM: The overall technique begins with the prediction of ∆Cnp
denoted as ∆Ĉnp . The prediction is made from a recently coded frame with similar
optimization, bounded by a minima and maxima (those seem to converge to 0 and
Cn,max respectively very quickly). ∆Ĉnp is the frame level computational resource
usage target.

The frame-level optimizations are achieved by selecting one of five different ME
options, as enlisted in Section 3.1.7, each with a different level of computational
complexity. Mode ranking is done based on RD performance in the previous frame.

Macroblock-level CAM: After coding a fraction ρ of a frame, the computational
resource budget estimate for the remaining frame is given by

∆Ĉn1−ρ
p = ∆Ĉnp −∆Cnρp (6.3)

which is distributed evenly in all the remaining macroblocks. Based on this estimate,
a subset of coding modes is selected, as detailed in [82]. Hence this technique also
is virtually using the notion of complexity quantization, yet splitting it into two
separate parts is not very optimal; there is little use of performing motion estimation
for inter-prediction modes that are ruled out for the coding step.

Another problem in both the frame-level and macroblock CAM of this technique is
that it uses close temporal and spatial neighbors as predictors. This results in an
undue statistical bias in mode decisions till the predictors are reset at GOP level.

Extensions: This technique has been extended here for this work to also manage
computational resource usage of a video decoder following the same principles used
above for video encoder at frame and macroblock levels. At the frame level, the 5
different motion estimation paths detailed in Section 3.1.7 can also be used to manage
the resources at the decoder as well, since they impact on motion-compensation

91

(inter-prediction) process, and this process is typically the most computational-
intensive at the decoding end. For example, removing the fractional-pel search
at level-3 removes the requirement of fractional-pel motion compensation. Setting
motion vectors to zero at level-5 simplified the motion compensation significantly.
Also, the QoS provisioning concept introduced in Section 5.4.3 is extended to this
technique so that it can be used to manage resource usage of an entire video coding
system.

6.4.2 3GPP PSC Application

As discussed in Section 4.1, and Section 5.1.1, video conversational applications on
portable devices are the most challenging in terms of robust performance in wake
of losses and limited computational resources. The assessment of these systems is
presented here first.

The details of the target system have been introduced already in detail in Section 4.1.
Typically in terms of the codec topologies introduces in Section 5.1.1, it falls under
point-to-point topology. Still video-conference type of applications can be envisioned
as an extension, which will fall under point-to-multipoint topology. For the opti-
mizations, the receiver(s) will feedback their computational resource usage model to
the sending end as discussed before in Section 5.4.3.

Simulation framework

An overview of the simulation framework can be found in Annex. A. The codec
configuration has been discussed in detail in Section 5.4.3. QCIF sized video test
sequences “Stunt” [109] has been used at 15 fps, while “Foreman” has been used at 30
fps due to its popularity and hence easy comparisons with established benchmarks.
Although extensive tests have been conducted on other sequences as well, similar
results have been inferred from them as well. Here for the sake of compactness, the
results from these two sequences are presented.

“Stunt” is a scene shot with a typical portable camera unit and represents hectic
motion throughout. The motion is so intense in most of its parts that the ME suf-
fers significantly since good inter predictors are hard to find. The resource varies
quite dramatically on various platforms tested for both encoding and decoding pur-
poses. “Foreman” on the other hand represents a sequence shot it outdoors with
potentially very good inter-prediction candidates in general. Specially the last part
of the sequence represents a pseudo-static scene and this typically results in very
small coded error and very small resource demand on the terminals. Hence in the
following results, the last 200 frames of this sequence are shown since it shows the
entire dynamic range of motion and stationary characteristics, and it is this part
that is found to be the most challenging for the control algorithms.

The content used for the training purpose for FCC are the video test sequences used
in [3] and QCIF sized “Foreman”.

92

1.5 2 2.5 3 3.5 4 4.5

25

26

27

28

29

30

31

32
PS

N
R

 (d
B

)

(Mc)

PROP
FCC
CCAM

5

(a) Sequence “Stunt”

1.5 2 2.5 3 3.5 4

26

27

28

29

30

31

32

33

(Mc)

PS
N

R
 (d

B
)

PROP
FCC
CCAM

4.5

(b) Sequence “Foreman”

Figure 6.4: Computationally resource constrained decoder average performance

The guidelines of robust system configuration in Section 4.1.3 are followed. The
channel coding overheads are given due consideration. As a result while a RAB with
effective bitrate of 128 kbps is used, the effective bitrate allocated for video is 92%
of this (approx. 118 kbps). This bitrate is quite quite suitable for the selected test
content with the given coding parameters. Unless specified, Benc,ip = Bdec,op = 2.

Since there are a considerable number of parameters involved, it is more prudent
to see the results by initially fixing one set of parameters and then going into more
details later. Hence in the first part the lossless performance is assessed in detail.
With the understanding of the performance of the techniques in the loss-less scenario,
we will proceed to add the effects of channel losses and its analysis.

Performance in loss-less configuration

To begin with, the performance of the system is analyzed in the absence of channel
losses. These results will also be applicable in the case when a reliable communication
medium is used, although in conversational applications, this luxury is not possible
because of the strict end-to-end delay requirements.

Since for the target communication system the bitrate is strongly coupled to the
transmission capacity offered by the RAB, the average results for PSNR are provided
against ∆Cnp for each of the techniques. At first, the computational resources at only
the decoding end are limited on HA1, while the encoding-end is configured to have
non-constrained computational resources. The results are shown in Figure 6.4. On
an initial view the results for both the sequences look similar; approximately 4 mega
clock cycles (Mc) per frame (denoted as ∆Cdecp) is a sufficient amount of resources

for achieving QC = 1 throughout coding the sequences. Beyond this, there is no
further improvement observable in any on the techniques.

On the other extreme, in the vicinity of ∆Cdecp = 1.8 Mc, only QC = QC,max is able
to maintain the upper bound defined in Equation 5.4, and the controllers are no
longer to maintain real-time coding below this value of ∆Cdecp , denoted as ∆Cdec,minp .

93

Apparently since the quantization mechanism is different in PROP as compared
to CCAM, PROP can sill control on ∆Cdecp slightly lower than ∆Cdecp = 1.8 Mc.

However, for “Foreman” ∆Cdec,minp is slightly lower for all the techniques, around 1.6
Mc.

Hence for this system, the optimization potential lies in the dynamic range of com-
putational resources ∆Cdec,minp ≤ ∆Cdecp ≤ ∆Cdec,maxp . As discussed in Section 5.4.3,
the codec used for this evaluation provides the possibility to extend this dynamic
range almost arbitrarily (e.g. by using LTM-MCP) if the resources are available.
The purpose of these simulation is to highlight the principle and the potential for
optimization.

The range of PSNR variation for “Foreman” however is much more compared to
“Stunt” in the same period of resource variation; “Foreman” is able to achieve much
higher PSNR at peak resource availability due to smooth motion in the content com-
pared to “Stunt”; in the latter, at times good inter-prediction matches are infrequent
with the available motion search range. At the same time due to higher texture,
at very low resource configuration where mostly low complexity intra-coding modes
are more frequent, the PSNR is lower than that of “Stunt”.

It can be seen that FCC performance is the worst in the range of interest, while
PROP outperforms CCAM by a margin of up to approximately 3dB.

It is easily understandable why would FCC perform the worst; its PSNR performance
will be at best equal to PROP for the sample with maximal resource demand within
the entire set of training sequence, while the other techniques adapt to the content at
even sub-frame level. For the other techniques it is worthwhile to take a closer look
at the instantaneous optimization results to understand the working and identify
the reasons for the performance difference.

Figure 6.5(a) shows the plot of the instantaneous resource usage by a decoder with
unconstrained resources. It can be seen that on this specific hardware platform the
resources usage can vary between 2.6 Mc and 3.4 Mc. Correspondingly, by using
PROP as shown in Figure 6.5(b), the resource usage is optimized for a budget of 3
Mc. This figure also shows the trend of unconstrained resource usage by the encoder
in the same session; although the two terminals are operating on different platforms
and hence the two curves in this figure are on separate Y-axis, not meant to be
compared with each other. It is the shape of the curves that is of interest.

Figure 6.5(b) still shows some peaks in ∆Cdecp that might seem undesirable; however,
allowing fluctuations is important for the optimization as long as it does not indicate
an instable behavior and the bounds of Equation 5.4 are not violated. Hence in
Figure 6.6 the fluctuations in the resource buffer fullness is plotted along with the
correspondingQc. It can be seen in comparison with Figure 6.5(a) that around frame
index 100, the controller reduces the quantizer significantly because of less resource
demand, and as soon as the resource demand increases (also evident by the spike in
buffer fullness of Figure 6.5(a)) the Qc increases once again. Instantaneous PSNR
plot is not given since in an instantaneous plot like this, it is difficult to decouple
scene-content related fluctuations from the resource optimization fluctuations; these
effects are quite clear from the average plots.

94

20 40 60 80 100 120 140 160 180 2002

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Frame Index

(Mc)

(a) Unconstrained resource usage by the decoder

20 40 60 80 100 120 140 160 180 2002

4

6

8

10

12

14

Frame Index
20 40 60 80 100 120 140 160 180 2002.5

3

3.5

4

4.5

5

5.5

(Mc) (Mc)

(b) PROP used on decoder (Secondary Y-axis), unconstrained re-
source usage by the encoder

Figure 6.5: Instantaneous results for selected frames of “Foreman”

95

80 85 90 95 100 105 110 115 120
0

1

2

3

4

80 85 90 95 100 105 110 115 120

6

8

10

12

Frame Index

(Mc)

Figure 6.6: The resource buffer fullness (above) and the Qc for a selected portion of
the sequence

A comparison of this with the results from CCAM is worthwhile to see the reason
for its slightly inferior performance. It can directly be seen from Figure 6.7 that the
management technique is not quite able to converge well to the target computational
resources. This can also be seen from the instantaneous buffer fullness. The reason
is evident from the frame-level control parameter shown in the bottom of the figure.
For this technique, the numbers 1 thorough 5 on the Y-axis correspond to the 5
different motion estimation levels as listed in Section 3.1.7 at the frame-level, and
consequently the motion compensation process. However, the granularity of this
control is only at the frame-level. Also these levels are quite coarse (only 5 differ-
ent configurations), and the different coding options e.g. different block partitions
and intra-prediction modes etc. are decoupled from the frame-level control. These
effects impact adversely on the performance. However, this is understandable since
the mechanism is mainly devised keeping in view encoding-end optimizations only;
decoder optimizations were never a consideration for this technique.

In the second set of plots in Figure 6.8, the resources at the encoding-end are con-
strained on HA2, while the decoder is operated in an unconstrained fashion. As for
the previous sets, results for “Stunt” and “Foreman” are shown. In comparison to
the optimization at the decoding-end, the gap in the performance between CCAM
and PROP is reduced, although PROP still outperforms CCAM by as much as ap-
proximately 2.5dB for the sequence “Stunt” and 2dB for “Foreman.” The reason of
this improvement may also be contributed by the special focus on ME optimization
by CCAM. FCC performance is distinctly worst in the entire range of optimization.
The higher dynamic range of PSNR for “Foreman” observed for the previous set of
plots for the decoder is also observable at the encoding end as well owing to the
same reasoning.

96

40 60 80 100 120 140 160 180

2

3

4

40 60 80 100 120 140 160 180
0

1
2

3
4
5

20 40 60 80 100 120 140 160 180 200

2

4

Frame Index

(Mc)

(Mc)

Figure 6.7: Computational resource usage (top), the resource buffer fullness (middle)
and the complexity index (bottom) for a selected portion of the sequence “Foreman”
using CCAM

97

0 0.5 1 1.5 2 2.5
x 102

25

26

27

28

29

30

31

32

PS
N

R
 (d

B
)

(Mc)

PROP
FCC
CCAM

(a) Sequence “Stunt”

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
x 102

26

27

28

29

30

31

32

33

(Mc)

PS
N

R
 (d

B
)

PROP
FCC
CCAM

(b) Sequence “Foreman”

Figure 6.8: Computationally resource constrained encoder average performance

A look on the instantaneous resource usage show how PROP manages to converge
to its target resource usage (∆C̄encp = 8 Mc in this run) for the sequence “Foreman”,
as compared to the unconstrained resource usage, e.g. in Figure 6.5(b). The corre-
sponding computational resources at the decoder end are also shown for HA1, but
in this case the decoder resource usage is not constrained. It can be seen that the
encoder resource usage is quite well-converged to its target setting.

In comparison however CCAM shows a significant problem. As shown in Figure 6.10,
the results for a few selected frames show significant instability at certain instances.
At frame indices 104 and 118, ∆Cencp peaks to 125% of its target value, while for the
remaining frames this is compensated by lower values. This ensures that the buffer
level is maintained within the required bounds.

Upon a close look at how the frame-level motion estimation configuration is chosen,
the reason of this instability becomes clear. In the frames coded immediately pre-
ceding the above mentioned frames, the conditions seemed feasible to select level-1
complexity at frame level. Full motion estimation is performed at this level. How-
ever, there is a huge increase in the resource demand at this level, and this results
in the instability.

Such instability is avoided in PROP by keeping all control parameters suitably re-
configurable at sub-frame level, since frame level decisions are too coarse to achieve
a stable control. The fluctuations shown in Figure 6.10 result in a slight increase in
the quality of the previously mentioned frames on the cost of the adverse effects on
the quality on a number of following frames.

In the typical usage scenario of PSC, the resources at both the transmitting and
receiving end are constrained. In order to visualize the performance of such a system,
a 3D curve is required, with two axis for the computational resource values ∆Cnp at
each of the terminals and the z-axis (vertical) for the PSNR plot. As before, the
encoder is operating on HA2 while the decoder is operating on HA1.

Since from the results of the previous two sets of data have shown that the most
robust technique in all configuration is PROP, only the results for PROP are shown.

98

20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

10

20 40 60 80 100 120 140 160 180 200
2

3

4

(Mc) (Mc)

Frame Index

Figure 6.9: PROP used on encoder, unconstrained resource usage by the decoder
(secondary Y-axis)

104 106 108 110 112 114 116 118

8

10

104 106 108 110 112 114 116 118
0

5

10

15

102 104 106 108 110 112 114 116 118 120

2

4

Frame Index

(Mc)

(Mc)

Figure 6.10: Computational resource usage (top), the resource buffer fullness (mid-
dle) and the complexity index (bottom) for a selected portion of the sequence “Fore-
man” using CCAM

99

The curves, as shown in Figure 6.11(a) and Figure 6.11(b) show that the performance
converges to the plots for individual performance optimization of the encoder and
the decoder, when the resources of the other terminal are unconstrained. The signifi-
cantly flat “roof”, the sharp facing edge of the surface, and numerical comparisons to
the individual curves in the preceding sections indicate that as the resources at one
of the terminals are reduced, the effect on the performance at the other terminal is a
smooth transition to a reduced value; the reduced resources at one terminal do not
cause any unexpected adverse effects on the performance of the other. The result-
ing performance can be determined at any operating point of resource configuration
from these curves.

Figure 6.12 gives an inside look into how the controller achieves optimization at a
specific operating point for both the terminals. In this figure, the target ∆Cencp = 8
Ms, while ∆Cencp = 3 Ms for the sequence “Foreman”. As before, since the architec-
tures are different, the numbers of the encoder and the decoder cannot be compared
with each other, the relative shape of the curve is of interest though.

It can be seen that till frame index 120, the encoding-end mostly determines the
optimization. This changes from this point onwards till the end of plot, and in this
second section the decoder determines the optimization. Evidently, the two regions
are quite well distinguished in terms of scene content as well. The first part consists
of medium to high camera motion, while the second part is quasi-stationary. It can
be expected that the encoding effort is significant in the high motion area because
of the relatively difficult convergence in motion estimation algorithm.

Discussion on results: The previous sections provided performance comparison
of the various resource management techniques. The results were compared by
first optimizing at a single terminal, either encoder or the decoder and letting the
other terminal run unconstrained. For both encoder and decoder optimizations,
PROP performed the best followed by CCAM. FCC performed the worst overall.
Instantaneous resource usage was investigated in detail to reveal the reasons for this
performance. Finally, results for joint encoder-decoder optimization was presented
using PROP. This technique is able to converge relatively quickly to its optimal
performance. For joint optimization at various terminals, different terminals may
be most resource constrained at different times, and this joint optimization at the
encoding-end is able to cater for this to achieve optimal results. As already seen,
the decoder model used at the encoding end for optimization is quite accurate, yet
it is required to update the sending end about actual resource usage to avoid any
effects of drift between the modeled results and the actual results.

Performance with an error-prone channel

As seen in the preceding section, for error-free case, PROP performs the best in
the dynamic range used in these simulations in terms of the available computational
resources. In this section we evaluate the performance of PROP in an error-prone
channel. Section 5.4.4 commented on the impact of channel losses on the computa-
tional resources of the system, and it was established how it impacts the proposed

100

1
2

3
4

5

0

1

2

x 102

26

28

30

32

(Mc)(Mc)

PS
N

R
 (d

B
)

27

27.5

28

28.5

29

29.5

30

30.5

31

(a) Sequence “Stunt”

1
2

3
4

5

0

1

2

x 102

26

28

30

32

(Mc)(Mc)

PS
N

R
 (d

B
)

26.5

27

27.5

28

28.5

29

29.5

30

30.5

31

31.5

(b) Sequence “Foreman”

Figure 6.11: Both encoder and decoder computationally resource constrained

101

20 40 60 80 100 120 140 160 180 200

2

4

6

8

10

20 40 60 80 100 120 140 160 180 200
2.5

3

3.5

4

4.5

5

(Mc)(Mc)

Frame Index

Figure 6.12: PROP used for both the encoder and the decoder (secondary Y-axis)

resource optimization framework.

In order to assess the impact of the channel losses on the system, we will use the
framework already presented in Section 4.1.3. The most suitable robustness tech-
nique in this regard has been established to be IEC-1, which uses LTM-MCP feature
of H.264/AVC to achieve robustness in conjunction with an error-tracking mecha-
nism. Section 5.4.4 also noted that this technique is suitable for the computational
resource optimization since it does not dramatically impact the computational re-
source performance of the system with increasing losses in the system.

Hence in Figure 6.13 the above configuration is used to generate the results for a
system where the resources on the decoding end are constrained. This figure shows
the PSNR performance of the techniques with varying RLC-PDU loss rates (ν),
with computational resource usage as the parameter, and the same two video test
sequences “Stunt” and “Foreman” as in the preceding sections. The computational
resource configuration selected to see the behavior of the codec is around the “knee”
of the curve in Figure 6.4; the lower region sees a rapid decrease in performance
while the region above this “knee” is already converging to the best performance.

It can be readily seen from the curves that because of the hectic motion in sequence
“Stunt” it is strongly impacted by the channel losses. “Foreman” on the other hand
does not have such rapid motion and hence it is not so adversely effected by spatio-
temporal error propagation. Still compared to the results of various error-robustness
techniques presented in Section 4.1.3, the drop in the performance with increasing
losses is significantly minimized already. At the higher end of resource availability
the PSNR achieved by “Foreman” is also higher than that of “Stunt”.

The observation of interest here is that the configurations with lower resources be-
have in a more robust fashion; the slope of the curves with lesser resource availability
is less than that of higher resources. Similar observation can be made for the case

102

0 1 2 3 4 5

25

26

27

28

29

30

31

RLC PDU loss rate (%)

PS
N

R
 (

dB
)

3.0 Mc
2.2 Mc
1.9 Mc

(a) Sequence “Stunt”

0 1 2 3 4 5

27

28

29

30

31

32

RLC PDU loss rate (%)

PS
N

R
 (

dB
)

3.0 Mc
2.2 Mc
1.9 Mc

(b) Sequence “Foreman”

Figure 6.13: Performance of codec with resource-constrained decoder in a lossy
channel scenario

where the resources on the encoding end are constrained as shown in Figure 6.14.
As an example, the slope of the 3 Mc and 2.2 Mc curve at 30 dB in Figure 6.13(b)
is -72.8 db/ν and -59.3 db/ν respectively, indicating a much rapid performance de-
scend in performance for the higher resource configuration (3 Mc) at the same PSNR
level.

This observation is inline with the analysis in Section 5.4.2; more available resources
allow for selection of modes that utilize higher resources to generate complex intra-
and inter-predictors to achieve better compression. However, typically the more
complex the predictors are, the more neighboring samples they utilize to generate
a predictor and hence are more prone to error-propagation. It is this effect that is
observable from these curves.

This still however does not define any optimal operation points since higher resources
still provide a higher PSNR performance. Although for a sequence like “Stunt” the
curves seem to converge to a point in the vicinity of 5% RLC-PDU losses, but at this
high a loss ratio, the overall performance of the system is barely satisfactory (below
25 dB) and this does not indicate a suitable operating region. Still the important
observation from these results is that devices with lower processing power, although
will observe a reduced video quality, but will observe a more uniform performance
experience for a lossy channel.

6.4.3 TPTA Applications

In this section we apply the principles developed in Section 5.4 to perform the re-
source optimization of the TPTA system introduced in Section 4.2. The reference
techniques used to benchmark the system are the same as in Section 6.4.1, however
there are several important differences in terms of resource optimization considera-
tions:

• Only the encoding-end is resource constrained, as discussed in Section 4.2.

103

0 1 2 3 4 5
24

25

26

27

28

29

30

31

RLC PDU loss rate (%)

PS
N

R
 (

dB
)

56 Mc
65 Mc
125 Mc

(a) Sequence “Stunt”

0 1 2 3 4 5

27

28

29

30

31

32

RLC PDU loss rate (%)

PS
N

R
 (

dB
)

56 Mc
65 Mc
125 Mc

(b) Sequence “Foreman”

Figure 6.14: Performance of codec with resource-constrained encoder in a lossy
channel scenario

• A reliable communication channel is typically enabled, this is especially im-
portant for the accompanying heptic information exchange.

• A variety of communication technologies can be used on communication link,
unlike some pre-defined RABs as used for the mobile communication system
evaluated in Section 6.4.2.

Keeping in view the last two considerations, the RD and CD performance assessment
of various techniques in Section 6.4.1 give the best insight into the system perfor-
mance. For the purpose of evaluation, we have used an extensive set of video test
sequences, including MVC content used in Section 4.2.5 as well as test sequences
used for the evaluation of HEVC [152]. In our evaluation we have observed two
disparate classes of video content, which we term as class A and class B, respec-
tively. The reason for this classification is the dependance of the performance of the
evaluated techniques on the video scene content, and will be commented upon in
the following. Here as an example, we present results for two test sequences: “Bas-
ketballDrill” from class A (resolution: 832x480, 50 fps) and “RaceHorses” from class
B (resolution: 832x480, 30 fps) [152]. For this set of investigations the encoding
could is not performed in real time because of implementation issues. Such issues
are resolved by multi-threaded implementations in practice, and hence the analysis
presented here does not loose generality.

The first set of results in Figure 6.15 show the RD performance of various techniques
with the encoder resource usage as a parameter. Upon an initial sight it is clear that
the results for the two classes are quite different; the “BasketballDrill” performance
of most configurations is already converged except for FCC. At 8 Gc the performance
of PROP and CCAM is identical, indicating that at this amount of resources, for
this test sequence the scenario is of virtually unconstrained resources. At 4 Gc,
PROP provides 0.5 dB gain compared to CCAM. Alternately, Figure 6.16 shows the
RC performance with bitrate as a parameter. This provides a more insightful view
and it can be observed from the results for “BasketballDrill” that the curves for both
PROP and CCAM are quite flat, with marginal improvement with the increasing

104

1 2 3 4 5 6 7 8

x 10
6

27

29

31

33

35

37

39

40

Bitrate (bits per second)

PS
N

R
 (

dB
)

PROP 2 Gc
PROP 4 Gc
PROP 8 Gc
CCAM 2 Gc
CCAM 4 Gc
CCAM 8 Gc
FCC 2 Gc
FCC 4 Gc
FCC 8 Gc

(a) Sequence “BasketballDrill” [152]

1 2 3 4 5 6 7 8

x 10
6

24

26

28

30

32

34

36

38

Bitrate (bits per second)
PS

N
R

 (
dB

)

PROP 2 Gc
PROP 4 Gc
PROP 8 Gc
CCAM 2 Gc
CCAM 4 Gc
CCAM 8 Gc
FCC 2 Gc
FCC 4 Gc
FCC 8 Gc

(b) Sequence “RaceHorses”

Figure 6.15: Comparative RD performance of various resource optimization tech-
niques.

2000 3000 4000 5000 6000 7000 8000

27

29

31

33

35

37

39
40

∆Cp (Mc)

P
S
N
R

(d
B
)

PROP 2 Mbps

PROP 4 Mbps

PROP 8 Mbps

CCAM 2 Mbps

CCAM 4 Mbps

CCAM 8 Mbps

FCC 2 Mbps

FCC 4 Mbps

FCC 8 Mbps

(a) Sequence “BasketballDrill”

2000 3000 4000 5000 6000 7000 8000

26

28

30

32

34

36

38

∆Cp(Mc)

P
S
N
R

(d
B
)

PROP 2 Mbps

PROP 4 Mbps

PROP 8 Mbps

CCAM 2 Mbps

CCAM 4 Mbps

CCAM 8 Mbps

FCC 2 Mbps

FCC 4 Mbps

FCC 8 Mbps

(b) Sequence “RaceHorses”

Figure 6.16: Comparative CD performance of various resource optimization tech-
niques.

105

computational resources. Both the techniques show significant improvement over
FCC for most of the range of computational resources. For FCC however, all the
three performance curves are overlapping indication virtually no gain with increasing
resource availability. This will be described in the following.

Comparing all these results with the performance of the other sequence“RaceHorses”
show an entirely different scenario. As can be seen in Figure 6.15(b), “RaceHorses”
requires significantly more resources for all the techniques to converge to the optimal
performance. PROP and CCAM are still performing quite close at 8 Gc, but PROP
is performing significantly better for 2 and 4 Gc. In fact PROP is converging to
its optimal performance at 4 Gc. In contrast FCC cannot achieve any optimization
at all, this is more clear from Figure 6.16(b) which shows flat curves for FCC.
Figure 6.16(b) also shows a larger performance improvement achieved by PROP for
larger bitrates as compared to CCAM.

This difference in the performance of various techniques for the two selected test
sequences presented here is the basis of the classification we have observed for the
variety of test sequences evaluated in this study; for one set our reference tech-
niques CCAM performs quite close to the proposed technique PROP compared to
the other. The reason for this disparity is contributed by reliance of CCAM on
good zero motion-vector inter-prediction matches to reduce computational resource
demand, as described in Section 3.1.7 (for zero motion vector, no motion search is
performed). Availability of good matches with zero motion vector is highly scene-
content dependent; “RaceHorses” has significantly complex camera and object mo-
tion at a smaller frame rate as compared to “BasketballDrill”, resulting in lack of
good zero motion vector matches for the former. Also, as noted in Section 6.4.2,
a separation between frame and macroblock-level resource optimization also costs
CCAM in terms of performance.

It can also be observed from Figure 6.16(b) that there is an interdependence between
bitrate and computational resource usage for the case of CCAM; it converges to its
best performance more quickly for smaller bitrates. This can be expected; higher
bitrate for video coding results in a larger amount of residual data and more blocks
coded than being skipped. A similar, yet not so profound effect is also observed
from Figure 6.16(a).

FCC shows no performance gain in any of the presented scenario. For class A, this is
as expected, since the training set used to select the performance point (as discussed
in Section 6.4.1) also consists of class B test sequences, which require significantly
more computational resources. However, there is no performance improvement event
in the case of “RaceHorses” which belongs to class B. This is so because for high
quality video encoding such as the target system, the peak to average computational
resource demand for a video sequence is quite high, and it is the peak computational
resource demand that decides the actual operating point for this technique. The peak
resource demand in this case is clearly beyond 8 Gc shown in this figures, resulting
in no observed performance improvement.

106

6.5 Offline Optimizations

In this section we present the performance optimization results for the offline opti-
mizations as discussed in Section 5.5. As already discussed in Section 5.5, receiver-
end offline optimizations are the most relevant for several practical applications.
Hence in this section we present a few selected results for receiver-end GOP-based
adaptation for computational resource management. First, the reference algorithms
employed for evaluation are described.

6.5.1 Reference System

We have used two types of reference systems to compare to the proposed technique
in Section 5.5.1. The latter technique is abbreviated here as GA.

Adaptation Based on Training Set:

This represents an approach where the adaptation is performed based on a repre-
sentative set of training sequence X, where X ⊇ X . All the sequences have the
same number of representations made available. The representations are sorted and
indexed in ascending order of coding bitrate. For this reference system the selected
representation is governed by:

xmax = arg arg min
x∈X

(∑
∆tx

Cxt −H ·∆tx − Cmax
)∣∣∣∣∣∑

∆tx
Cxt −H·∆tx≤Cmax

, (6.4)

where ∆tx is the duration of the representation x with an index x. The first arg
function in Equation 6.4 returns the index x of the representation x. Hence xmax

represents the largest index for any sequence within X that can be selected by the
outer optimization algorithm (e.g. the bitrate adaptation algorithm).

It is evident that such “perfect-knowledge” is not possible in general at client side
for practical applications. Still this is reference is of theoretical interest as it reflects
the upper performance bounds for “design-time” optimizations, i.e. optimization
performed once for the lifetime of an implementation. This technique is abbreviated
as TA.

Sequence-based Adaptation

For this technique, the representation is selected as

x = arg min
x∈X

(∑
∆tx

Cxt −H ·∆tx − Cmax
)∣∣∣∣∣∑

∆tx
Cxt −H·∆tx≤Cmax

. (6.5)

107

Hence the difference between this technique and the proposed technique GA is that
instead of a finer-scale GOP-based adaptation, the adaptation is done based on the
entire duration of a sequence ∆tx. The results of this technique are of interest since
they will indicate the cost in terms of performance of not adapting to the varying
computational resource demands within a single content. This technique will be
abbreviated as SA.

6.5.2 Selected Performance Results

To assess the performance of the reference technique in comparison with the pro-
posed technique GA, we have used the same high-quality test content as in Section
6.4.3. The results for “BasketballDrill” and “RaceHorses” will be presented here as
an example. Figure 6.17(c) show the RD statistics of both the sequences, with each
point representing a unique representation. It can be seen that “RaceHorses” repre-
sents a much more complex content to encode than “BasketballDrill”, since a lower
PSNR is achieved for a similar bitrate by the former, even though it has a lower
framerate.

As can be seen from Figure 6.17(a), 6.17(b), that xmax for TA is being determined
by “BasketballDrill” for all the representations. This could be expected, since it has
a 40% higher frame rate than that of “RaceHorses” and hence although it might
have lower ∆Cxp in general,

∑
∆tx
Cxt is still larger because of a larger number of

frames to be encoded in a given time interval ∆tx. As a result, both SA and TA are
showing the same performance results in Figure 6.17(a). However, the performance
toll of TA becomes apparent in Figure 6.17(b) where it shows significantly lower
performance for most computational resource configurations. This is because as
expected: different video sequences have a vastly varying usage of resource, and
tuning the system for the worst-case scenario (in this case for “BasketballDrill”) is
a pessimistic approach resulting in significant performance toll for sequences with
lower resource demand (as in this case for “RaceHorses”). Figure 6.17(b) shows TA
lagging at least couple of dBs behind SA.

The effect of fine-grain adaptation of GA is already evident from Figure 6.17(a) and
6.17(b); while TA and SA appear to consolidate their performance in large steps, GA
seems to increase its performance much more smoothly. This effect is caused by the
variation of resource usage for coding a sequence. SA has to cater for the worst-case
computational resource demand within the entire sequence, resulting in suboptimal
performance for rest of the sequence, while GA can switch up to a more complex
representation in those latter parts. This gives a typical performance enhancement
of 1.5 dB to GA for most resource configurations. Hence the overall best performance
is achieved by GA for the presented results as well as the other sequences evaluated
during this work.

One anomaly observable from the results of GA is a that the performance increase
of this algorithm with increasing computational resource is not monotonic, and an
occasional loss of performance is observable at some points of the curves. This is
because the algorithm of GA (as depicted in Equation 5.17) is greedy in nature. It
happens at some instances that switching up to a better representation for a given

108

2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4

30

32

34

36

38

40

H (Gc/sec)

P
S
N
R

(d
B
)

GA
SA
TA

(a) Sequence “BasketballDrill”

2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4

29

31

33

35

37

H (Gc/sec)

P
S
N
R

(d
B
)

GA
SA
TA

(b) Sequence “RaceHorses”

1 2 3 4 5 6 7 8
x 10

6

30

32

34

36

38

40

Bitrate (bits/second)

P
S
N
R

(d
B
)

“BasketballDrill”
“RaceHorses”

(c) RD characteristics

Figure 6.17: Comparative D-C performance of various resource optimization tech-
niques for streaming along with RD characteristics of representations.

GOP might not be optimal globally for the whole duration of the sequence, as it
translates into switching down in another following GOP. In some cases the increase
of PSNR achieved by switching up cannot compensate for a greater PSNR reduction
for the later switching down since this is scene-content dependent, and this explains
a slight reduction in the average PSNR observed at some points on the curve.

Chapter 7

Conclusion and Outlook

This work is a step in the direction of defining a framework for computational re-
source management for video communication systems. This framework is essentially
missing in comparison to the well-known rate-management framework (the realm of
rate-distortion optimization). One aspect of this endeavour is to employ a pyramid-
shaped approach for the proposals: the design principles applicable to a wide range
of video communication systems make the foundation, while the performance is eval-
uated for a selected few systems at the apex. This ensures that the approach will
find relevance for other similar systems, e.g. a newer video codec, or a newer video
communication application, etc.

After the initial background literature review, a detailed insight is provided into
robust system design strategies and tools as well as quantitative evaluation tech-
niques for the target resource constrained video communication systems, namely:
mobile video conversational applications and telepresence/teleaction systems. For
the former system, the main challenge of robust video communication over a lossy
channel in conjunction with real-time, low-delay and complexity constraints is tack-
led. Feedback-based error mitigation techniques have been proposed that result in
an extremely robust system design without adding on complexity and delay con-
straints. Analysis of conventional robustness tools such as slice-based coding is also
presented for this system. The proposed system exhibits almost linear PSNR loss
with increasing channel loss rate, enabling to proceed further on with resource op-
timizations.

In relation to telepresence/teleaction systems, quantitative criteria is defined to as-
sess the impact of video compression artefacts on the performance of the system.
Specifically, the adverse effects of video compression on the performance of various
stereo-matching algorithms is analyzed. This enables identification of the most ro-
bust system configuration defined by the optimal coding bitrate, video codec and
stereo-matching algorithm, given a maximum allowed value of PBP.

Since video communication applications come in a wide variety of variants, a cate-
gorization is defined in this work in terms of codec topology and the type of adap-
tation. Hence optimization techniques are proposed based on these categories. The
two aforementioned video communication systems serve as an example where the

109

110

objective performance of the proposed techniques is demonstrated.

The first step in proposing computational resource optimization algorithms is to pro-
vide detailed system-wide timing analysis, since the traditional VBV timing analysis
is not valid for the target system. This timing bounds defined by this timing analysis
form the basis of the optimization algorithms defined later.

A crucial cornerstone in resource optimization is the prediction of computational
resource usage at a given terminal with reasonable complexity and accuracy. An
accurate, compact, and low complexity resource usage model is developed for this
purpose. This enables deploying easily integrable resource optimization algorithms
in a wide range of applications, especially online optimized applications. The model
has a compact representation and hence a low communication overhead.

The first optimization framework is targeted for online encoding systems. The op-
timization is performed at the encoding-end. It is established that instead of the
traditional RDC approach, CD mode-ranking is more feasible because of underly-
ing differences between RD and CD optimization. A robust CD mode-ranking is
specified for optimization in conjunction with well-established RD optimization. A
complexity quantization mechanism is defined that enables accurate resource usage
configuration when used in conjunction with the specified quantizer control mech-
anism. These design principles are further specified for the selected video codec
(H.264/AVC).

The second framework is targeted for offline optimizations such as video streaming
applications. A GOP-based optimization strategy is defined that can either be em-
ployed at the sending-end or at the receiving-end. The pros and cons in terms of
the signaling overhead and scalability are analyzed for each alternative..

Finally, quantitative effect on performance enhancement achieved by the above pro-
posed framework is presented for 3GPP PSC applications, TPTA systems and an
adaptive streaming application. Suitable reference systems are also specified for this
comparison. This comparison is based on the performance metrics analyzed in the
preceding sections.

As an outlook, dynamic mode-ranking can be integrated into the framework to adapt
to the scene content in semi-stationary manner. The reduction of the communica-
tion overhead for offline optimizations at the receiving-end has a strong potential
for further optimizations. Also the specified frameworks have to be extended to the
new codecs on the horizon such as the HEVC. In addition to newer codecs, new
emerging application scenarios (like the ongoing work on Modern Media Transport
within MPEG) should also be considered for the applicability of resource optimiza-
tion framework.

In terms of computational resource modeling, the task of defining the VCV and the
implementation-independent model should be carried out at the SDO which specifies
a video codec, since such a model is strictly codec dependent and demands in-depth
understanding of the coding techniques employed.

Appendix A

Evaluation Framework

In this annex we describe the simulation environment setup used to generate the
results. Mainly two types of systems were emulated: mobile video communication
systems, described in Section A.1, and telepresence/teleaction (TPTA) systems de-
scribed in Section A.2.

A.1 3GPP conversational application

As specification work for video codecs is mainly carried out within ISO motion pic-
ture expert group (MPEG) and ITU-T video coding expert group (VCEG), these
standardization bodies specify the operation of a video decoder for an error-free bit-
stream only. Since video codecs such as H.264/AVC are designed to cater for a wide
range of performance and application scenarios, significant flexibility is provided so
that the codec can operate effectively for a variety of scene contents, transmission
environments, and service constraints.

This flexibility poses a huge challenge for mobile environments. In order to ensure
proper functioning and compatibility, the video codecs have to be rigorously assessed
for these systems. This involves definition of performance requirements for various
services offered by the system in terms of some well defined metrics. A simulation
system that can sufficiently represent a broad range of service scenarios is necessary
to accomplish this task. Definition of such a system is a significant undertaking
in itself because of the challenges discussed in the rest of this section. Hence the
simulation environment proposed for this purpose in this work is aligned to efforts
in 3GPP SA4 video adhoc group (VAG).

The use of the proposed environment is in no way limited to just giving insight
into the performance of existing systems. This software is an indispensable re-
quirement to access original ideas and techniques proposed to enhance the system
performance for the future. The components and tools required for realizing the
simulation framework are described in Section A.1.1. Two different approaches for
a simulation framework are introduced and discussed in Section A.1.2, which are
suited for different applications.

111

112

A.1.1 Simulation Environment Components

A complete mobile video communication system consists of a large number of com-
ponents. For a simulation and testing environment, different modules need to be
provided to properly assess the service. Note that a real multimedia transmission sys-
tem involves a significant amount of further components, but for the sake of proper
assessment we abstract such services. The description of tools here is aligned to the
3GPP SA4 VAG data base [3] which collects tools necessary for video performance
assessment.

Video Test Sequences and Formats

Test Sequences: In order to access the performance of video codecs, a suitable
set of video test sequences has to be collected. The technical body SA-WG4 is
responsible for specification of multimedia codecs within 3GPP. As a result of some
activities within the group [3], a suitable set of video sequences has been selected
for performance evaluation. These sequences are in YUV 4:2:0 format with either
quarter-VGA or quarter common intermediate format (QCIF). The details about
the test content can be found in [3].

Video Codec: A software implementation of video codec to be accessed is re-
quired to complete the simulation framework. H.264/AVC is the latest and most
suitable choice for mobile environments because of its high compression efficiency
and error resilience features. An open source implementation of H.264/AVC codec
is for example available for simulation purposes [144] referred to as joint video model
(JM). Before the video source is fed to the encoder, pre-processing might be appro-
priate in terms of temporal and/or spatial sub sampling. The encoder has to be
configured according to the service requirements, and this is done via combination
of a configuration file and command line arguments. The operation is file I/O based;
all inputs are read from files, and outputs are written to files. For most real-time ap-
plications of interest in mobile environments, it is required that the output of source
coder is encapsulated in communication protocol, most prominently in a real-time
protocol (RTP) [153] before it could be transmitted. Like wise the reverse operation
has to be performed before the source decoding can be done. Packetization modules
based on RTP were developed to fulfill this purpose.

3GPP Transport Module: The transport of real-time services over mobile net-
works results in different kind of distortions and effects. For testing such services, a
channel transport software implementation is available from 3GPP [154]. This soft-
ware models the entire communication stack to the extent being necessary for the
testing. In addition, it supports most 3GPP multimedia service bearers. A service
bearer describes the channel parameters e.g. bitrate, delay, loss pattern etc. for a
given service. Like the case of the video codec, it is configurable via configuration
files and is file I/O based. The random seed initialization for a channel realization
is also configurable.

113

A.1.2 Simulation And Testing Environment

Based on the components described in previous section, two versions of the required
simulation environment are proposed here. These are described in detail in this
section along with their pros and cons.

File-I/O based Environment

Commonly, tools as for example discussed in Section A.1.1, have file I/O interfaces.
Based on these tools a simulation environment employing simple file interfaces is
introduced in the following. This simulation and testing environment is depicted in
Figure A.1.

Design Considerations: Several video applications are entirely unidirectional
(e.g. data flowing from the transmitter to the receiver). In this case the modules
can be connected with minimum changes to their existing interfaces and internal
architecture. The connected configuration of modules in this system is shown in
Figure A.1. As an example, in order to connect, run and control all the modules,
UNIX shell scripts are useful, which sequentially invoke the different modules. In this
system, a file is generated by each processing unit, which is numbered in Figure A.1.
The timing information is also embedded in this file.

Operation for Single Test Run: For a single run of the software, following steps
are performed:

• For an individual test file numbered “1”, determined by the source parameter,
a pre-processed file “2” is fed to the encoder.

Video

Source
Encoder

3G
P

P

T
ra

n
sp

o
rt

Video

Sink
Decoder

Quality

Assessment
Decoder

1 3

6 5

4

Pre-

Processing
2

PP

Parameter
Encoder

Parameter
Transport

Parameter

Source

Parameter

Figure A.1: File I/O Simulation Environment

114

• The encoder generates the compressed RTP according to the encoding param-
eters. Simulation time information is also embedded in the file by the encoder.
The resultant output file is marked as “3”.

• The RTP file with embedded time information “3” is then processed by the
transport software according to the transport parameters. A “simulated time”
is maintained by the module during this processing. The embedded timing
information of the input file is used to determine if a packet should be processed
at a given simulated time. Delays and losses are introduced to the data during
the processing. The delay information is communicated to the decoder by
updating the embedded timing information of the file “5”.

• Following this, the decoder takes up the received file “5”, and decodes it after
de-packetization. The decoded video is given by file “6”.

• After a complete file has been decoded, the quality assessment module takes
up the original video file“2”, the reconstructed video“4”and the decoded video
“6” to generate the resulting quality metrics for this run.

For statistical significance, in general multiple runs need to be carried out. This is
accomplished by applying different random seeds in the channel simulator software
from 1,..., N, each seed results in an individual run.

Principles and Problems: This simulation approach is sufficient in case of uni-
directional transmission, e.g. in case of services like MBMS. However, this approach
does not provide any room for investigations where a backward information flow
is proposed, e.g. in case of conversational applications. The reason is that all the
software modules discussed here have internal states. Consider the principle in Fig-
ure A.2. For example, if module 2 changes the state, then module 1 might want to
or has to change its state accordingly to optimize the system performance. This is
not possible for this simulation system since the modules do not interact with each
other in the backward direction. This prevents proper simulation and assessment of
techniques that incorporate feedback messages. Therefore, in the following section,
we propose a new simulation environment, which allows addressing these issues to
obtain meaningful results and to draw practical and relevant conclusions for media
handling and interaction in multimedia telephony services.

Time-sliced Multi-process Simulation and Testing Approach

To address the problems identified in the previous section, we propose a time-sliced
simulation environment. In what follows we discuss our consideration for developing
this environment:

Design Considerations: I/O interfaces of all modules that are expected to change
their state based on reverse information flow are modified. These modules are the
encoder, the decoder, and the channel module, and will be referred to as interactive

115

InputInput

File
Aux. Timing Data

Output
Module 1

File
Results

File

Results

Module 2

File

File

Figure A.2: File-based Simulation Approach

modules. Since we expect a backward information flow, an additional channel mod-
ule in the backward direction is incorporated. Instead of the simple file I/O, the
modules should communicate with each other by message queues, so that informa-
tion generated by one module can be made available to another module immediately,
where the latter can act on this. Most operating systems have support for message
queues, and all have their own considerations. All interactive modules have to be
trigger-able and interruptible, so that their execution could be halted to wait for the
processing of other modules. Most operating systems offer either processes and/or
threads to accomplish this. The performance overheads of processes are much more
than that of threads in terms of switching. However using processes results in lesser
changes to individual existing modules, hence UNIX processes were selected for im-
plementation along with inter-process communication queues for data and message
transfer.

Operation of Testing and Simulation System: The operation and data flow
for the simulation system is shown in Figure A.3. Compared to the file-based ap-
proach as shown in Figure A.1, media encoder, forward channel, media decoder,
and backward channel are controlled by a central controller or executive with the
main task of properly scheduling the operations in the simulation environment us-
ing the time-sliced simulation architecture. Pre-processing and quality evaluation is
still done offline, as for example user interaction with the played-out content is not
assumed. Note also that simulation is not necessarily real-time, which is of signif-
icant advantage as it might allow to speed up simulations or to simulate complex
operations which do not run in real-time.

In addition to file interfaces, the simulation system also includes data queues and
control queues which can be implemented by UNIX IPC queues. The following basic
operations are carried out

1. The video or media source is available in a file (indicated by interface “1”)
which might be pre-processed, e.g. sub-sampled, to obtain a pre-processed file
“2”.

2. The controller advances the time in step size of ∆ts milliseconds. Typically

116

Video

Sink

File Interface

Data Queue

Control Queue

Video

Source
Encoder

F
o

rw
ard

T
ran

sp
o
rt

Decoder

PP

Parameter
Encoder

Parameter
Transport

Parameter

Source

Parameter

Controller

Timer

B
ack

w
ard

T
ran

sp
o
rt

1

Quality

Assessment

Legend:

A

2

3

4

B

Pre-

Processing

Figure A.3: Proposed multi-process simulation environment

the simulation starting time is zero millisecond. At a given discrete time step

ts = K ·∆ts,K = 0, 1, 2, ... (A.1)

the controller communicates the time ts to the encoder. The processing of data
by all the interactive modules is simulated to be executed instantaneously. The
encoder executes all necessary processing which is due until the time ts, e.g.
it takes video frame up to time ts from file “2”, compresses it and outputs
all necessary information in data queue “A”. It also writes the encoded and
reconstructed media samples, i.e. the video frame, with appropriate timing
information to file “3”. Finally, it sends an acknowledgement (ACK) to the
controller for completion of its tasks and becomes inactive. In the case when
there is no input data at a given time ts or no output needs to be generated,
the module skips the processing and sends the ACK immediately. This ACK
is necessary for proper processing of the next module, as in the simulation
system, the encoder might take a variable amount of time for its processing.

3. Then, the controller triggers the forward channel with the same time stamp
ts. The channel checks the input data queue and processes all necessary infor-
mation and outputs data, if any data is available for the output data queue
“B”. Finally, it sends an ACK to the controller for completion of its tasks and
becomes inactive.

4. Likewise the controller sequentially (after receiving an ACK for completion
from the forward channel) triggers media decoder and backward channel with
the same time ts. The media decoder writes all decoded media samples, e.g.

117

video frames, with appropriate timing information to file “4”.

5. After receiving the ACK of the backward channel, all processing until time ts
for the entire simulation chain has been done. Hence the controller increments
the simulated time by the selected time increment ∆ts.

6. As soon as one of the modules decides it has finished its processing, it sends a
completion message to the controller. The controller takes care not to trigger
that module again. Also, this module sends a completion message to all the
modules receiving data from it.

7. The round robin scheduling of encoder, forward channel, decoder and backward
channel continues until the controller has received a completion signal from all
modules. When this has happened, it terminates the current simulation run.

8. The quality assessment is then done offline based on files “2”, “3”, and ”4”.

A.2 TPTA Evaluation Methodology and Framework

To evaluate the performance of stereo matching schemes in TPTA, we propose the
evaluation framework shown in Figure A.4. The proposed framework simulates the
integration of video coding and stereo matching in a TPTA scenario. The individual
components of this framework along with their interactions are explained in the
sequel. We will conduct the study on stereo videos since the results can easily be
extended for more than two views.

Reconstructed Stereo
video sequenceRemote end

Transmission
Video

Decoder
Video

Encoder

Uncompressed
St id

Stereo
Matching

Stereo video
sequence

Stereo
Matching

Performance
Evaluation

Disparity maps
to be evaluated

Reference
disparity maps

Figure A.4: Block diagram of the evaluation framework.

118

A.2.1 Performance Evaluation

At the encoder (shown in Figure A.4) the stereo sequences are rectified using the
camera parameters. The sequences are then converted to YUV 4:2:0 while the image
size must be a multiple of 16 pixels both in height and width. Therefore, the color
conversions are done before coding and if required, the dimensions are matched
by padding the image with grey values to avoid generating redundant data. The
resulting sequences are then fed to the selected video codec. The encoding quality
is determined by the allowed video bitrate on the channel; therefore, each of the left
and right video sequence is allowed half of the video bitrate to enable homogenous
video quality.

At the receiving end, the compressed video streams are decoded to get the recon-
structed video that will be used for stereo matching. Following this, the performance
evaluation is done using the metrics discussed above. Since the target of this study is
to asses exclusively the impact of video compression on the performance of the stereo
matching, the reference disparity map for performance evaluation is the disparity
map generated with no video compression applied, using the same stereo matching
technique.

Bibliography

[1] M. Meeker et al., “The mobile internet report,” Morgan Stanley Research,
Morgan Stanley & Co. Incorporated, Tech. Rep., 2009. [Online]. Available:
http://www.morganstanley.com/institutional/techresearch/

[2] “Cisco visual networking index: Global mobile data traffic forecast
update, 2010-2015,” Cisco Systems, Inc, Tech. Rep., Feb. 2011. [Online].
Available: http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/
ns537/ns705/ns827/white paper c11-520862.html

[3] “Technical specification group services and system aspects; video codec per-
formance,” 3GPP, 3GPP Technical Specification TS 26.902, Jun. 2007.

[4] “Advanced video coding for generic audiovisual services,” ITU–T Recommen-
dation H.264 – ISO/IEC 14496-10 (AVC), 2010.

[5] CortexTM-A9 Processor, ARM R©, 2011. [Online]. Available: http://www.arm.
com/products/processors/cortex-a/cortex-a9.php

[6] G. Sullivan and J. Ohm, “Recent developments in standardization of high effi-
ciency video coding (HEVC),” SPIE Applications of Digital Image Processing
XXXIII, Proc. SPIE, vol. 7798, 2010.

[7] J. Hicks. (2011, May) Samsung’s foldable AMOLED display: no creases, even
after 100,000 tries. [Online]. Available: http://www.engadget.com/2011/05/
15/samsungs-foldable-amoled-display-no-creases-even-after-100-00/

[8] Information technology - Dynamic adaptive streaming over HTTP (DASH) -
Part 1: Media presentation description and segment formats, ISO/IEC JTC
1/SC 29, 2011.

[9] R. Pantos, “HTTP live streaming,” Internet Engineering Task Force
(IETF), Internet draft, 2011. [Online]. Available: http://tools.ietf.org/html/
draft-pantos-http-live-streaming-07

[10] J. Bankoski, “Intro to WebM,” in Proceedings of the 21st international work-
shop on Network and operating systems support for digital audio and video.
ACM, 2011, pp. 1–2.

[11] J. Bankoski, P. Wilkins, and Y. Xu, “Technical overview of VP8,
an open source video codec for the web.” [Online]. Available: http:
//research.google.com/pubs/archive/37073.pdf

119

http://www.morganstanley.com/institutional/techresearch/
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.engadget.com/2011/05/15/samsungs-foldable-amoled-display-no-creases-even-after-100-00/
http://www.engadget.com/2011/05/15/samsungs-foldable-amoled-display-no-creases-even-after-100-00/
http://tools.ietf.org/html/draft-pantos-http-live-streaming-07
http://tools.ietf.org/html/draft-pantos-http-live-streaming-07
http://research.google.com/pubs/archive/37073.pdf
http://research.google.com/pubs/archive/37073.pdf

120

[12] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. Sullivan, “Rate-
constrained coder control and comparison of video coding standards,” Circuits
and Systems for Video Technology, IEEE Transactions on, vol. 13, no. 7, pp.
688–703, 2003.

[13] “Information technology – coding of audio-visual objects – part 2: Visual,”
ITU–T Recommendation ISO/IEC 14496-2:2004, 2004.

[14] B. Girod, A. Aaron, S. Rane, and D. Rebollo-Monedero, “Distributed video
coding,” Proceedings of the IEEE, vol. 93, no. 1, pp. 71–83, 2005.

[15] C. Brites, “Advances on distributed video coding,” Ph.D. dissertation, Univer-
sidade Técnica De Lisboa, 2005.

[16] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov, and M. Ouaret,
“The DISCOVER codec: architecture, techniques and evaluation,” in Picture
Coding Symposium, 2007.

[17] ——. DISCOVER distributed video codec. [Online]. Available: http:
//www.discoverdvc.org/

[18] J. Pedro, C. Brites, J. Ascenso, and F. Pereira, “Studying the feedback channel
in transform domain wyner-ziv video coding,” in Sixth Conference on Telecom-
munications, Peniche, Portugal, 2007.

[19] G. Sullivan and J.-R. Ohm, “Meeting report of the sixth meeting of
the joint collaborative team on video coding (JCT-VC),” Tech. Rep.
JCTVC-F Notes dB, 2011. [Online]. Available: http://wftp3.itu.int/av-arch/
jctvc-site/2011 07 F Torino/

[20] P. Chou and M. van der Schaar, Multimedia over IP and wireless networks:
compression, networking, and systems. Academic Press, 2007.

[21] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the
H.264/AVC video coding standard,” Circuits and Systems for Video Technol-
ogy, IEEE Transactions on, vol. 13, no. 7, pp. 560–576, July 2003.

[22] G. Sullivan and T. Wiegand, “Video compression-from concepts to the H.
264/AVC standard,” Proceedings of the IEEE, vol. 93, no. 1, pp. 18–31, 2005.

[23] T. Wiegand, N. Färber, K. Stuhlmüller, and B. Girod, “Error–resilient video
transmission using long-term memory motion–compensated prediction,” IEEE
Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 1050–1062,
Jun. 2000.

[24] T. Wiegand and B. Girod, Multi-Frame Motion-Compensated Prediction for
Video Transmission. KLADR: KL, 2001.

[25] T. Wedi and H. Musmann, “Motion-and aliasing-compensated prediction for
hybrid video coding,” Circuits and Systems for Video Technology, IEEE Trans-
actions on, vol. 13, no. 7, pp. 577–586, 2003.

[26] T. Wedi, “Hybrid video coding based on high-resolution displacement vectors,”
in Proceedings of SPIE, vol. 4310, 2000, p. 186.

http://www.discoverdvc.org/
http://www.discoverdvc.org/
http://wftp3.itu.int/av-arch/jctvc-site/2011_07_F_Torino/
http://wftp3.itu.int/av-arch/jctvc-site/2011_07_F_Torino/

121

[27] W. Zia and F. Shafait, “Reduced complexity techniques for long-term memory
motion compensated prediction in hybrid video coding,” in Proceedings Picture
Coding Symposium, Beijing, China, Apr. 2006.

[28] SAA7118, Trident Microsystems, 2010. [Online]. Available: http://www.
tridentmicro.com/producttree/tv/pc-tv/saa/saa7118/

[29] ADV7314: Multiformat 216 MHz Video Encoder with Six NSVTM 14-Bit DACs,
Analog Devices, 2011. [Online]. Available: http://www.analog.com/en/
digital-to-analog-converters/video-encoders/adv7314/products/product.html

[30] T. Wiegand, W.-J. Han, B. Bross, J.-R. Ohm, and G. J. Sullivan, “WD3:
Working draft 3 of high-efficiency video coding,” Tech. Rep. JCTVC-E603,
2011. [Online]. Available: http://phenix.it-sudparis.eu/jct/doc end user/
current document.php?id=2471

[31] S.-i. S. W.-J. H. Ken McCann, Benjamin Bross, “HM3: High efficiency video
coding (HEVC) test model 3 encoder description,” Tech. Rep. JCTVC-E602,
2011. [Online]. Available: http://phenix.it-sudparis.eu/jct/doc end user/
current document.php?id=2470

[32] F. De Simone, L. Goldmann, J. Lee, and T. Ebrahimi, “Performance analy-
sis of VP8 image and video compression based on subjective evaluations,” in
Proceedings of SPIE, vol. 8135, 2011, p. 81350M.

[33] T. Stockhammer and W. Zia, Multimedia over IP and wireless networks: com-
pression, networking, and systems. Academic Press, 2007, ch. Error-Resilient
Coding And Decoding Strategies, pp. 13–58.

[34] P. Salama, N. Shroff, E. Coyle, and E. Delp, “Error concealment techniques
for encoded video streams,” in Proceedings IEEE International Conference on
Image Processing, vol. 1, Washington DC, USA, Oct. 1995, pp. 9–12.

[35] W. Zeng and B. Liu, “Geometric-structure-based error concealment with novel
applications in block-based low-bit-rate coding,” IEEE Trans. on Circuits Syst.
Video Technol., vol. 9, no. 4, pp. 648–665, Jun. 1999.

[36] G. Bjøntegaard, “Definition of an error concealment model TCON,” Boston,
USA, Doc. ITU-T/SG15/LBC-95-186, Jun. 1995.

[37] Y.-K. Wang, M. Hannuksela, V. Varsa, A. Hourunranta, and M. Gabbouj,
“The error concealment feature in the H.26L test model,” in Proceedings IEEE
International Conference on Image Processing, vol. 2, Rochester(NY), USA,
Sep. 2002, pp. 729–732.

[38] L. Qian, D. Jones, K. Ramchandran, and S. Appadwedula, “A general joint
source-channel matching method for wireless video transmission,” in Data
Compression Conference, 1999. Proceedings. DCC ’99, Mar. 1999, pp. 414
–423.

[39] Y. Eisenberg, C. Luna, T. Pappas, R. Berry, and A. Katsaggelos, “Joint source
coding and transmission power management for energy efficient wireless video

http://www.tridentmicro.com/producttree/tv/pc-tv/saa/saa7118/
http://www.tridentmicro.com/producttree/tv/pc-tv/saa/saa7118/
http://www.analog.com/en/digital-to-analog-converters/video-encoders/adv7314/products/product.html
http://www.analog.com/en/digital-to-analog-converters/video-encoders/adv7314/products/product.html
http://phenix.it-sudparis.eu/jct/doc_end_user/current_document.php?id=2471
http://phenix.it-sudparis.eu/jct/doc_end_user/current_document.php?id=2471
http://phenix.it-sudparis.eu/jct/doc_end_user/current_document.php?id=2470
http://phenix.it-sudparis.eu/jct/doc_end_user/current_document.php?id=2470

122

communications,” Circuits and Systems for Video Technology, IEEE Transac-
tions on, vol. 12, no. 6, pp. 411 –424, Jun. 2002.

[40] C. Luna, Y. Eisenberg, R. Berry, T. Pappas, and A. Katsaggelos, “Joint source
coding and data rate adaptation for energy efficient wireless video streaming,”
Selected Areas in Communications, IEEE Journal on, vol. 21, no. 10, pp. 1710
– 1720, 2003.

[41] P. Agrawal, J.-C. Chen, S. Kishore, P. Ramanathan, and K. Sivalingam, “Bat-
tery power sensitive video processing in wireless networks,” in Personal, In-
door and Mobile Radio Communications, 1998. The Ninth IEEE International
Symposium on, vol. 1, Sep. 1998, pp. 116 –120 vol.1.

[42] D. Li, Y. Sun, and Z. Feng, “Joint power allocation and rate control for real-
time video transmission over wireless systems,” in Global Telecommunications
Conference, 2005. GLOBECOM ’05. IEEE, vol. 4, 2005, pp. 5 pp. –2168.

[43] Q. Zhang, Z. Ji, W. Zhu, and Y.-Q. Zhang, “Power-minimized bit allocation for
video communication over wireless channels,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 12, no. 6, pp. 398 –410, Jun. 2002.

[44] Z. Ji, Q. Zhang, W. Zhu, J. Lu, and Y.-Q. Zhang, “Joint power control and
source-channel coding for video communication over wireless networks,” in Ve-
hicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th, 2001.

[45] Z. Ji, Q. Zhang, W. Zhu, and Y.-Q. Zhang, “End-to-end power-optimized video
communication over wireless channels,” in Multimedia Signal Processing, 2001
IEEE Fourth Workshop on, 2001.

[46] T.-H. Lan and A. Tewfik, “Power optimized mode selection for h.263 video
coding and wireless communications,” in Image Processing, 1998. ICIP 98.
Proceedings. 1998 International Conference on, vol. 2, Oct. 1998, pp. 113 –117
vol.2.

[47] X. Lu, Y. Wang, and E. Erkip, “Power efficient h.263 video transmission over
wireless channels,” in Image Processing. 2002. Proceedings. 2002 International
Conference on, 2002.

[48] X. Lu, E. Erkip, Y. Wang, and D. Goodman, “Power efficient multimedia
communication over wireless channels,” Selected Areas in Communications,
IEEE Journal on, vol. 21, no. 10, pp. 1738 – 1751, 2003.

[49] X. Lu, T. Fernaine, and Y. Wang, “Modelling power consumption of a h.263
video encoder,” in Circuits and Systems, 2004. ISCAS ’04. Proceedings of the
2004 International Symposium on, vol. 2, May 2004, pp. II – 77–80 Vol.2.

[50] X. Lu, Y. Wang, and E. Erkip, “Power efficient h.263 video transmission over
wireless channels,” in Image Processing. 2002. Proceedings. 2002 International
Conference on, 2002.

[51] E. Erkip, Y. Wang, D. Goodman, Y. Wu, and X. Lu, “Energy efficient cod-
ing and transmission,” in Vehicular Technology Conference, 2001. VTC 2001
Spring. IEEE VTS 53rd, 2001.

123

[52] W. Pu, Y. Lu, and F. Wu, “Joint power-distortion optimization on devices
with MPEG-4 AVC/H.264 codec,” in Communications, 2006. ICC ’06. IEEE
International Conference on, vol. 1, 2006, pp. 441 –446.

[53] Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu, “Power-rate-distortion anal-
ysis for wireless video communication under energy constraints,” Circuits and
Systems for Video Technology, IEEE Transactions on, vol. 15, no. 5, pp. 645
– 658, May 2005.

[54] W. Cheng, X. Chen, and Z. He, “Doubling of the operational lifetime of
portable video communication devices using power-rate-distortion analysis and
control,” in Image Processing, 2006 IEEE International Conference on, 2006,
pp. 2473 –2476.

[55] Z. He and D. Wu, “Resource allocation and performance analysis of wireless
video sensors,” Circuits and Systems for Video Technology, IEEE Transactions
on, vol. 16, no. 5, pp. 590 – 599, May 2006.

[56] Y. Liang, I. Ahmad, and J. Luo, “Joint power and distortion control in video
coding,” A. Said and J. G. Apostolopoulos, Eds., vol. 5685, no. 1. SPIE, 2005,
pp. 885–895. [Online]. Available: http://link.aip.org/link/?PSI/5685/885/1

[57] Z. He, W. Cheng, and X. Chen, “Energy minimization of portable video com-
munication devices based on power-rate-distortion optimization,” Circuits and
Systems for Video Technology, IEEE Transactions on, vol. 18, no. 5, pp. 596
–608, May 2008.

[58] C. Shannon, “A mathematical theory of communication,” ACM SIGMOBILE
Mobile Computing and Communications Review, vol. 5, no. 1, pp. 3–55, 2001.

[59] R. Vanam, E. Riskin, S. Hemami, and R. Ladner, “Distortion-complexity op-
timization of the H.264/MPEG-4 AVC encoder using the GBFOS algorithm,”
in Data Compression Conference, 2007. DCC ’07, 2007, pp. 303 –312.

[60] E. Kaminsky, D. Grois, and O. Hadar, “Dynamic computational complexity
and bit allocation for optimizing H.264/AVC video compression,” in Infor-
mation Technology: Research and Education, 2006. ITRE ’06. International
Conference on, 2006, pp. 167 –171.

[61] D. Grois, E. Kaminsky, and O. Hadar, “Buffer control in H.264/AVC ap-
plications by implementing dynamic complexity-rate-distortion analysis,” in
Broadband Multimedia Systems and Broadcasting, 2009. BMSB ’09. IEEE In-
ternational Symposium on, May 2009, pp. 1 –7.

[62] T. da Fonseca and R. de Queiroz, “Complexity-constrained h.264 HD video
coding through mode ranking,” in Picture Coding Symposium, 2009. PCS
2009, May 2009, pp. 1 –4.

[63] ——, “Complexity-constrained rate-distortion optimization for h.264/AVC
video coding,” in Circuits and Systems (ISCAS), 2011 IEEE International
Symposium on. IEEE, pp. 2909–2912.

http://link.aip.org/link/?PSI/5685/885/1

124

[64] C. E. Rhee, J.-S. Jung, and H.-J. Lee, “A real-time h.264/AVC encoder with
complexity-aware time allocation,” Circuits and Systems for Video Technology,
IEEE Transactions on, vol. 20, no. 12, pp. 1848 –1862, 2010.

[65] Y. Hu, Q. Li, S. Ma, and C.-C. Jay Kuo, “Joint rate-distortion-complexity
optimization for h.264 motion search,” in Multimedia and Expo, 2006 IEEE
International Conference on, 2006, pp. 1949 –1952.

[66] J. Stottrup-Andersen, S. Forchhammer, and S. Aghito, “Rate-distortion-
complexity optimization of fast motion estimation in H.264/MPEG-4 AVC,”
in Image Processing, 2004. ICIP ’04. 2004 International Conference on, vol. 1,
2004, pp. 111 – 114 Vol. 1.

[67] J. Zhang, Y. He, S. Yang, and Y. Zhong, “Performance and complexity joint
optimization for h.264 video coding,” in Circuits and Systems, 2003. ISCAS
’03. Proceedings of the 2003 International Symposium on, vol. 2, May 2003,
pp. II–888 – II–891 vol.2.

[68] D. Kwon, P. Agathoklis, and P. Driessen, “Performance and computational
complexity optimization in a configurable video coding system,” in Wireless
Communications and Networking, 2003. WCNC 2003. 2003 IEEE, vol. 3, 2003,
pp. 2086 –2089 vol.3.

[69] H. Ates, B. Kanberoglu, and Y. Altunbasak, “Rate-distortion and complexity
joint optimization for fast motion estimation in h.264 video coding,” in Image
Processing, 2006 IEEE International Conference on, 2006, pp. 37 –40.

[70] G. De Haan and P. Biezen, “An efficient true-motion estimator using candidate
vectors from a parametric motion model,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 8, no. 1, pp. 85 –91, Feb. 1998.

[71] I. Richardson and Y. Zhao, “Adaptive algorithms for variable-complexity video
coding,” in Image Processing, 2001. Proceedings. 2001 International Confer-
ence on, 2001.

[72] T. da Fonseca, R. de Queiroz, and D. Mukherjee, “Complexity-scalable
H.264/AVC in an ipp-based video encoder,” in Image Processing (ICIP), 2010
17th IEEE International Conference on, 2010, pp. 2885 –2888.

[73] T. da Fonseca and R. de Queiroz, “Macroblock sampling and mode ranking
for complexity scalability in mobile h.264 video coding,” in Image Processing
(ICIP), 2009 16th IEEE International Conference on, 2009, pp. 3753 –3756.

[74] M.-C. Chien, Z.-Y. Chen, and P.-C. Chang, “Coding-gain-based complexity
control for h.264 video encoder,” in Image Processing, 2008. ICIP 2008. 15th
IEEE International Conference on, Oct. 2008, pp. 2136–2139.

[75] Y. V. Ivanov and C. J. Bleakley, “Dynamic complexity scaling for real-time
H.264/AVC video encoding,” in Proceedings of the 15th international
conference on Multimedia, ser. MULTIMEDIA ’07. New York, NY, USA:
ACM, 2007, pp. 962–970. [Online]. Available: http://doi.acm.org/10.1145/
1291233.1291444

http://doi.acm.org/10.1145/1291233.1291444
http://doi.acm.org/10.1145/1291233.1291444

125

[76] ——, “Real-time h.264 video encoding in software with fast mode
decision and dynamic complexity control,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 6, pp. 5:1–5:21, February 2010. [Online]. Available:
http://doi.acm.org/10.1145/1671954.1671959

[77] C. Kannangara, I. Richardson, and A. Miller, “Computational complexity
management of a real-time H.264/AVC encoder,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 18, no. 9, pp. 1191–1200, Sept.
2008.

[78] C. Kannangara, I. Richardson, M. Bystrom, and Y. Zhao, “Complexity con-
trol of H.264/AVC based on mode-conditional cost probability distributions,”
Multimedia, IEEE Transactions on, vol. 11, no. 3, pp. 433 –442, 2009.

[79] C. Kim, “Complexity adaptation in video encoders for power limited plat-
forms,” 2010.

[80] W. Kim, J. You, and J. Jeong, “Complexity control strategy for real-time
H.264/AVC encoder,” Consumer Electronics, IEEE Transactions on, vol. 56,
no. 2, pp. 1137 –1143, May 2010.

[81] L. Su, Y. Lu, F. Wu, S. Li, and W. Gao, “Real-time video coding under power
constraint based on H. 264 codec,” in SPIE Visual Communications and Image
Processing, vol. 6508, 2007.

[82] ——, “Complexity-constrained h.264 video encoding,” Circuits and Systems
for Video Technology, IEEE Transactions on, vol. 19, no. 4, pp. 477 –490,
2009.

[83] Z. Zhong and Y. Chen, “Complexity regulation for real-time video encoding,”
in Image Processing. 2002. Proceedings. 2002 International Conference on,
2002.

[84] J. Ribas-Corbera, P. Chou, and S. Regunathan, “A generalized hypothetical
reference decoder for H.264/AVC,”Circuits and Systems for Video Technology,
IEEE Transactions on, vol. 13, no. 7, pp. 674 – 687, 2003.

[85] J. Valentim, P. Nunes, and F. Pereira,“An alternative complexity model for the
MPEG-4 video verifier mechanism,” in Image Processing, 2001. Proceedings.
2001 International Conference on, 2001.

[86] ——, “Evaluating MPEG-4 video decoding complexity for an alternative video
complexity verifier model,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 12, no. 11, pp. 1034 – 1044, Nov. 2002.

[87] S. Regunathan, P. Chou, and J. Ribas-Corbera, “A generalized video com-
plexity verifier for flexible decoding,” in Image Processing, 2003. ICIP 2003.
Proceedings. 2003 International Conference on, vol. 3, 2003, pp. III – 289–92
vol.2.

[88] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro, “H.264/AVC baseline
profile decoder complexity analysis,” Circuits and Systems for Video Technol-
ogy, IEEE Transactions on, vol. 13, no. 7, pp. 704 – 716, 2003.

http://doi.acm.org/10.1145/1671954.1671959

126

[89] M. Holliman and Y. Chen, “MPEG decoding workload characterization,” in
Proc. of Workshop on Computer Architecture Evaluation using Commercial
Workloads, 2003, pp. 23–34.

[90] Z. Ma and Y. Wang, “Complexity modeling of scalable video decoding,” in
Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE Interna-
tional Conference on, 31 2008.

[91] S.-W. Lee and C.-C. Kuo, “Complexity modeling for motion compensation in
H.264/AVC decoder,” in Image Processing, 2007. ICIP 2007. IEEE Interna-
tional Conference on, 16 2007.

[92] ——, “Complexity modeling of H.264/AVC CAVLC/UVLC entropy decoders,”
in Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium
on, May 2008, pp. 1616 –1619.

[93] ——, “Complexity modeling of spatial and temporal compensations in
H.264/AVC decoding,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 20, no. 5, pp. 706 –720, May 2010.

[94] S.-W. Lee and C.-C. J. Kuo, “H.264/AVC entropy decoder complexity analysis
and its applications,” Journal of Visual Communication and Image Represen-
tation, vol. In Press, Corrected Proof, 2010.

[95] T. Lan, Y. Chen, and Z. Zhong, “MPEG2 decoding complexity regulation
for a media processor,” in Multimedia Signal Processing, 2001 IEEE Fourth
Workshop on, 2001.

[96] M. Mattavelli, S. Brunetton, and D. Mlynek, “Implementing real-time video
decoding on multimedia processors by complexity prediction techniques,” in
Consumer Electronics, 1998. ICCE. 1998 Digest of Technical Papers. Inter-
national Conference on, 1998, pp. 264 – 265.

[97] C. Hentschel, M. Gabrani, K. Van Zon, R. Bril, and L. Steffens, “Scalable
video algorithms and quality-of-service resource management for consumer
terminals,” in Consumer Electronics, 2001. ICCE. International Conference
on, 2001.

[98] M. van der Schaar and Y. Andreopoulos,“Rate-distortion-complexity modeling
for network and receiver aware adaptation,” Multimedia, IEEE Transactions
on, vol. 7, no. 3, pp. 471 – 479, 2005.

[99] N. Kontorinis, Y. Andreopoulos, and M. van der Schaar,“Statistical framework
for video decoding complexity modeling and prediction,” Circuits and Systems
for Video Technology, IEEE Transactions on, vol. 19, no. 7, pp. 1000 –1013,
2009.

[100] “Delay budget within the access stratum,” 3GPP, 3GPP Technical Specifica-
tion TS 25.853, Mar. 2001.

[101] “Packet switched conversational multimedia applications; default codecs,”
3GPP, 3GPP Technical Specification TS 26.235, Mar. 2008.

127

[102] “Video adhoc group database for video codec evaluation,” 3GPP SA4 Video
Adhoc Group, Tech. Rep. S4-050789, 2005.

[103] G. Cote and F. Kossentini, “Optimal intra coding of blocks for robust video
communication over the internet,” Signal Processing: Image Commun., Special
Issue on Real-time Video over Internet, vol. 15, pp. 25–34, Sep. 1999.

[104] J. Liao and J. Villasenor, “Adaptive intra update for video coding over noisy
channels,” in Image Processing, 1996. Proceedings., International Conference
on, vol. 3. IEEE, 2002, pp. 763–766.

[105] Q. Zhu and L. Kerofsky, “Joint source coding, transport processing, and error
concealment for H.323-based packet video,” in Proceedings of SPIE, vol. 3653,
1998, p. 52.

[106] S. Winkler, Digital Video Quality Vision Models and Metrics. John Wiley &
Sons, 2005.

[107] Question ITU-R 211/11 ITU-R BT.500 Methodology for the Subjective As-
sessment of the Quality for Television Pictures, ITU-R Std., Rev. 11, 2002.

[108] Question ITU-T 21/9 ITU-T P.910 Subjective video quality assessment meth-
ods for multimedia applications, ITU-T Std., Rev. 1, 9 1999.

[109] “Technical specification group services and system aspects; video codec per-
formance,” 3GPP, 3GPP Technical Specification TS 26.902, 2007.

[110] T. Wiegand, G. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the
H.264/AVC video coding standard,” IEEE Trans. on Circuits Syst. Video
Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[111] R. Zhang, S. Regunthan, and K. Rose, “Video coding with optimal inter/intra-
mode switching for packet loss resilience,” IEEE Journal on Selected Areas in
Communications, vol. 18, no. 6, pp. 966–976, Jun. 2000.

[112] T. Stockhammer and S. Wenger, “Standard-compliant enhancement of JVT
coded video for transmission over fixed and wireless IP,” in Fourth Interna-
tional Workshop on Distributed Computing, Capri, Italy, Sep. 2002.

[113] B. Girod and N. Färber, “Feedback-based error control for mobile video trans-
mission,” Proceeding of the IEEE, vol. 97, pp. 1707–1723, Oct. 1999.

[114] I. Rhee and S. Joshi, “Error recovery for interactive video transmission over
the internet,” IEEE Journal on Selected Areas in Communications, vol. 18,
no. 6, pp. 1033–1049, Jun. 2000.

[115] M. Kalman, P. Ramanathan, and B. Girod, “Rate–distortion optimized
streaming with multiple deadlines,” in Proceedings IEEE International Con-
ference on Image Processing, Barcelona, Spain, Sep. 2003.

[116] W. Tu and E. Steinbach, “Proxy-based reference picture selection for real-
time video transmission over mobile networks,” in Proceedings IEEE ICME,
Amsterdam, Netherlands, Jul. 2005, pp. 309–312.

128

[117] Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu, “Power-rate-distortion anal-
ysis for wireless video communication under energy constraints,” IEEE Trans.
on Circuits Syst. Video Technol., vol. 15, no. 5, pp. 645–658, May 2005.

[118] “Permanent document on test components,” 3GPP, 3GPP Permanent Docu-
ment S4-060515, Aug. 2006.

[119] W. Zia, T. Oelbaum, and K. Diepold, “Subjective evaluation of error control
strategies for mobile video communication,” in Proc. Picture Coding Sympo-
sium, Nov. 2007.

[120] G. M. Mair, “Towards transparent telepresence,” in Virtual Reality: Second
International Conference, July 2007, pp. 300–309.

[121] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms,” Int. J. Computer Vision, vol. 47, no. 1, pp.
7–42, Apr. 2002.

[122] “Middlebury stereo evaluation,” http://vision.middlebury.edu/stereo/data.

[123] S. Birchfield and C. Tomasi, “Depth discontinuities by pixel-to-pixel stereo,”
Int. J. Computer Vision, vol. 35, no. 3, pp. 269–293, Dec. 1999.

[124] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nistér, “High quality real-time
stereo using adaptive cost aggregation and dynamic programming,” in Int.
Symp. 3D Data Processing, Visualization and Transmission, Jun. 2006, pp.
798–805.

[125] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient belief propagation for
early vision,” Int. J. Computer Vision, vol. 70, no. 1, pp. 41–54, Oct. 2006.

[126] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nistér, “Real-time
global stereo matching using hierarchical belief propagation,” in Br. Machine
Vision Conf., Sep. 2006, pp. 989–998.

[127] A. Klaus, M. Sormann, and K. Karner, “Segment-based stereo matching using
belief propagation and a self-adapting dissimilarity measure,” in Int. Conf.
Pattern Recognition, Aug. 2006, pp. 15–18.

[128] M. Morbee, L. Tessens, J. Prades-Nebot, A. Pizurica, and W. Philips, “A dis-
tributed coding-based extension of a mono-view to a multi-view video system,”
in 3DTV-Conf., Kos Island, Greece, May 2007.

[129] E. Ekmekcioglu, S. T. Worrall, and A. M. Kondoz, “Bit-rate adaptive down-
sampling for the coding of multi-view video with depth information,” in 3DTV-
Conf., May 2008.

[130] L. Karlsson and M. Sjostrom, “Region-of-interest 3D video coding based on
depth images,” in 3DTV-Conf., May 2008.

[131] S. Ince, E. Martinian, S. Yea, and A. Vetro, “Depth estimation for view syn-
thesis in multiview video coding,” in 3DTV-Conf., May 2007.

129

[132] K.-J. Yoon and I.-S.Kweon, “Adaptive support-weight approach for correspon-
dence search,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28,
no. 4, pp. 650–656, Apr. 2006.

[133] W. Zia, K. Diepold, and M. Sarkis, “Optimization of video coding for telepres-
ence applications,” in Applications of Computer Vision (WACV), 2009 Work-
shop on. IEEE, pp. 1–8.

[134] “Multimedia broadcast/multicast service; stage 1 (release 9),” 3GPP, 3GPP
Technical Specification TS 22.146, Jun. 2008.

[135] “Multimedia broadcast/multicast service (MBMS); protocols and codecs (re-
lease 9),” 3GPP, 3GPP Technical Specification TS 26.346, Sep. 2010.

[136] T. R. Gardos, “Video codec test model, near term, version 10 (TMN-10), draft
1,” Tech. Rep. Q15-D-65d1, 1998.

[137] T. Wiegand and B. Girod, “Lagrange multiplier selection in hybrid video coder
control,” in Image Processing, 2001. Proceedings. 2001 International Confer-
ence on, vol. 3. IEEE, 2001, pp. 542–545.

[138] J. Slotine, W. Li et al., Applied nonlinear control. Prentice hall Englewood
Cliffs, New Jersey, 1991, vol. 66.

[139] M. Fliess and C. Join,“Intelligent PID controllers,” in Control and Automation,
2008 16th Mediterranean Conference on. IEEE, 2008, pp. 326–331.

[140] “Generic coding of moving pictures and associated audio information: Sys-
tems,” ITU–T Recommendation ISO/IEC 13818-1:2007(E), 2007.

[141] K. Willner, K. Ugur, M. Salmimaa, A. Hallapuro, and J. Lainema, “Mobile 3D
video using MVC and N800 internet tablet,” in 3DTV Conference: The True
Vision-Capture, Transmission and Display of 3D Video, 2008. IEEE, 2008,
pp. 69–72.

[142] L. Aimar, L. Merritt, E. Petit, M. Chen, J. Clay, M. Rullgrd, C. Heine,
and A. Izvorski, “x264-a free H264/AVC encoder.” [Online]. Available:
http://www.videolan.org/developers/x264.html

[143] F. Bellard and M. Niedermayer, “FFmpeg.” [Online]. Available: http:
//ffmpeg.org/

[144] K. S. et al., “H.264/AVC software coordination.” [Online]. Available:
http://iphome.hhi.de/suehring/tml/

[145] MSM7200ATM Chipset Solution, QUALCOMM, 2007. [Online]. Available:
http://www.datasheetpro.com/268119 download MSM7200A datasheet.html

[146] HTC Touch HD phone specifications, HTC Corporation, 2007. [Online].
Available: http://www.gsmarena.com/htc touch hd-2525.php

[147] Intel R© AtomTM Processor N270, Intel Corporation, 2008. [Online]. Available:
http://ark.intel.com/products/36331

[148] AMD Inc. OpteronTM Processor Solutions.

http://www.videolan.org/developers/x264.html
http://ffmpeg.org/
http://ffmpeg.org/
http://iphome.hhi.de/suehring/tml/
http://www.datasheetpro.com/268119_download_MSM7200A_datasheet.html
http://www.gsmarena.com/htc_touch_hd-2525.php
http://ark.intel.com/products/36331

130

[149] T. Stockhammer, “System and cross-layer design for mobile video transmis-
sion,” Ph.D. dissertation, Technischen Universität München, 2008.

[150] A. Papoulis, S. Pillai, and S. Unnikrishna, Probability, random variables, and
stochastic processes. McGraw-hill New York, 1965, vol. 196.

[151] S. Riedl, “Iterative decodierung parallel verketteter binärer faltungscodes,”
Ph.D. dissertation, Technischen Universität München, Jan 1997.

[152] “Joint call for proposals on video compression technology,” ISO/IEC
JTC1/SC29/WG11, Tech. Rep. N11113, Jan. 2010.

[153] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A transport
protocol for real–time applications,” Internet Engineering Task Force (IETF),
Request for Comments (standard) 3550, Jul. 2003.

[154] “SA4 simulator for packet-switched services,” 3GPP SA4 Video Adhoc Group,
Tech. Rep. S4-050685, 2005.

All internet links were last checked in 6.1.2012.

List of Figures

2.1 An abstraction for a video communication system 5
2.2 Performance evaluation [17] of DISCOVER DVSC for sequence“Fore-

man” . 9
2.3 A sketch of slice structure frame coding for H.264/AVC 13

3.1 Energy tradeoff between video encoding and wireless data transmis-
sion [57]. 20

3.2 Decoder resource usage model being used for bitstream adaptation [98] 27

4.1 Protocol stack of 3GPP Conversational Packet Switched Video Services 30
4.2 Instantaneous impact of an error on video quality 31
4.3 Performance comparison with varying slice sizes, with RLC-PDU loss

as a parameter. 34
4.4 IEC with error tracking. The video frame rate is 1/T 36
4.5 Proposed IEC configurations. 37
4.6 Average results based on PSNR vs. RLC-PDU loss rate performance 38
4.7 Average results based on PDVD vs. RLC-PDU loss rate performance 38
4.8 PSNR variation within sequence “Stunt” 39
4.9 Subjective comparison for the investigated techniques. 40
4.10 Subjective test results for sequence “Party” 41
4.11 A depiction of a Telepresence scenario. 43
4.12 Performance results for test sequence “Vassar” 46
4.13 Rate-distortion performance comparison of MPEG-4 ASP and MVC

for “Vassar” . 46
4.14 Comparisons for H.264/AVC and MVC. 48

5.1 An abstraction of a generic video coding application 52
5.2 Hypothetical reference decoder (HRD) data flow and the buffering . 55
5.3 The timelines and intervals of different processes in a traditional hy-

pothetical reference decoder (HRD) model 55
5.4 An abstraction of generic video complexity verifier (VCV) 56
5.5 Timelines of various processes for VCV 58
5.6 Status of the frame buffers used for VCV 60
5.7 A high-level abstraction of the video decoder 62
5.8 Flow of the data in the buffered model 63
5.9 An architectural abstraction of the decoder 64
5.10 An abstraction of session setup for optimized delivery 74
5.11 A computational resource demand snapshot, showing a chaotic system 76

131

132

5.12 The block diagram of the control system 78

6.1 Performance of the simplest decoder model (L = 1) for sequence
“Foreman” . 87

6.2 Decoder model with L = 2, its instantaneous, average, peak and
cumulative error performance for “Foreman” 88

6.3 Verification of the model on HA2 for sequence “Party” 89
6.4 Computationally resource constrained decoder average performance . 92
6.5 Instantaneous results for selected frames of “Foreman” 94
6.6 The resource buffer fullness (above) and the Qc for a selected portion

of the sequence . 95
6.7 Computational resource usage (top), the resource buffer fullness (mid-

dle) and the complexity index (bottom) for a selected portion of the
sequence “Foreman” using CCAM . 96

6.8 Computationally resource constrained encoder average performance . 97
6.9 PROP used on encoder, unconstrained resource usage by the decoder

(secondary Y-axis) . 98
6.10 Computational resource usage (top), the resource buffer fullness (mid-

dle) and the complexity index (bottom) for a selected portion of the
sequence “Foreman” using CCAM . 98

6.11 Both encoder and decoder computationally resource constrained . . 100
6.12 PROP used for both the encoder and the decoder (secondary Y-axis) 101
6.13 Performance of codec with resource-constrained decoder in a lossy

channel scenario . 102
6.14 Performance of codec with resource-constrained encoder in a lossy

channel scenario . 103
6.15 Comparative RD performance of various resource optimization tech-

niques. 104
6.16 Comparative CD performance of various resource optimization tech-

niques. 104
6.17 Comparative D-C performance of various resource optimization tech-

niques for streaming along with RD characteristics of representations. 108

A.1 File I/O Simulation Environment . 113
A.2 File-based Simulation Approach . 115
A.3 Proposed multi-process simulation environment 116
A.4 Block diagram of the evaluation framework. 117

List of Tables

5.1 Signaling overhead for receiver-end optimization 82

133

	Introduction
	State-of-the-Art Resource Optimization
	The Emerging Picture of Resource Optimized Video Communications
	The Changing Realm of Digital Multimedia
	The Future of Resource Optimized Systems

	Our Contribution to Resource Optimized Video Communication Systems

	Preliminaries
	Resource Constrained Video Communication: Formulation
	The Constrained Resources for Video Communication Systems
	Computational Resource Constraints of Implementation

	Video Codecs for Resource Constrained Communication Systems
	Distributed Video Source Coding
	Block-Based Hybrid Video Codecs
	Error Concealment for Block-based Video Codecs
	Discussion

	Resource Constrained Video Coding: Brief review
	Encoder Optimizations
	Joint Source-Channel Power Optimizations
	Joint R-D-C Optimization
	Motion Estimation Based Optimization
	Mode Ranking
	Encoder Resource Usage Prediction
	Skip Mode Prediction
	Computational Resource Management of a Video Encoder
	Variable Complexity Transform

	Decoder Optimizations
	Decoder Resource Usage Modeling
	Computational Resource Management by Quality Degradation
	RDC Optimizations For Streaming Applications Using Generic Complexity Metrics (GCM)

	Some comments on the reviewed work

	Resource Constrained Video Coding Systems
	Mobile Video Conversational Applications
	Error Robustness
	Performance Metrics
	Robust Wireless Video Communications
	Performance Evaluation
	Discussion of Results

	Telepresence Systems
	Computer Vision Techniques For Telepresence Systems
	Resource Constraints in TPTA Systems
	Resource Optimization in TPTA Systems
	Review of Video Quality Evaluation in TPTA Systems
	Evaluation Results and Discussion
	Discussion of Results

	Computational Resource Optimized Video Codec
	System Classification
	Source Codec Configuration
	Channel Characteristics

	System-wide Timing Analysis
	Video Complexity Verifier

	Decoder Resource Usage Model
	Design Considerations
	Formulation of the Model
	Memory Usage Modeling
	Implementation Notes on Decoder Modeling

	Online Resource Optimization
	RDC Optimizations
	CD Mode Ranking
	System-wide Computational Resource Management
	Codec Behavior Under Lossy Channel Conditions

	Offline Resource Optimization
	GOP-based Resource Optimization
	Architectural Options for Optimization
	Design Considerations for GOP-based Optimization

	Selected Performance Results
	Codec Software and Hardware Selection
	Confidence Level and Unknown Variance
	Decoder Resource Model Verification
	Online Optimizations
	Reference System
	3GPP PSC Application
	TPTA Applications

	Offline Optimizations
	Reference System
	Selected Performance Results

	Conclusion and Outlook
	Evaluation Framework
	3GPP conversational application
	Simulation Environment Components
	Simulation And Testing Environment

	TPTA Evaluation Methodology and Framework
	Performance Evaluation

