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Abstract

Macromolecular crowding in living biological cells e�ects subdi�usion of larger bio-
molecules such as proteins and enzymes. Mimicking this subdi�usion in terms of
random walks on a critical percolation cluster, fractional Brownian motion and
continuous time random walk, we here present a case study of EcoRV restriction
enzymes involved in vital cellular defence. EcoRV has been found in two con�gur-
ational states. The unbound protein switches between an inactive structure with a
closed cleft and another, in which the cleft is more open. It is able to cleave and
deactivate the foreign DNA, only when it is in its open state. Surprisingly, the
probability xact to �nd the enzyme in the active state at a given instant of time is
as low as ∼1%.

We show that due to its so far elusive propensity to an inactive state the enzyme
avoids non-speci�c binding and remains well-distributed in the bulk cytoplasm of
the cell. Despite the reduced volume exploration of subdi�usion processes, the low
activity of the enzyme surprisingly guarantees a high e�ciency of the enzyme.

Analysing di�erent stochastic processes for subdi�usion and by variation of the non-
speci�c binding constant and anomaly we demonstrate that reduced non-speci�c
binding are bene�cial for e�cient subdi�usive enzyme activity even in relatively
small bacteria cells.

Our results corroborate a more local picture of cellular regulation and demonstrated
a solution to subdi�usion-e�ciency paradox; Speci�c molecular design renders the
e�ciency of EcoRV enzymes almost independent on the exact di�usion conditions.
This case study also provides us a chance to compare di�erent subdi�usive processes
in living cells and guides us to a broader understating of di�usion controlled reactions
in living cells.
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Introduction

In many processes such as gelation, coagulation, crystallization, or self-assembly in
colloidal or polymer systems, thin �lm growth in materials science and chemical
reactions in biology, the components as the �rst step perform a random movement
in a �uid, di�use [1] and when they are close together, a reaction may start. The
usual paradigm for biochemical reactions assumes the formation of an encounter
complex, that may undergo chemical transformation and forms a product. In di�u-
sion limited processes, the �xation step (product formation) proceeds much faster
than the di�usion of reactants, and thus the rate is governed by di�usion. Di�usion
control is more likely in solution where di�usion of reactants is slower due to the
greater number of collisions with solvent molecules. Reactions where the encounter
forms easily and the products form rapidly are most likely to be limited by di�usion
control. Di�usion limited processes are commonly found in biochemical processes
such as catalysis and enzymatic reactions, regulation processes, protein aggregation,
and complexation in cells [2].
The simplest model of di�usion-limited encounter in three dimensions has been for-
mulated by Smoluchowski. In Smoluchowski theory reactants are assumed to be
noninteracting, spherical, and chemically isotropic. Smoluchowski absorption rate
of a di�using particle of radius Rp and a �xed sphere target of radius Rt (where the
annihilation occurs) [3], is

κt = 4πDRp∞, (1)

where p∞ is the relative bulk density of the reactant, D is the di�usion coe�cient
and R = Rt +Rp is the encounter distance.

The Smoluchowski theory is still the main theoretical framework within which the
previously mentioned processes are analyzed and this approach is strictly valid only
for diluted solutions. Di�usion limited biochemical cellular reactions underlying
regulation processes have traditionally been investigated at dilute solvent conditions
[4]. Most systems, for instance cells, contain a large number of proteins, nucleic acids,
and other smaller molecules that occupy up to 30% to 40% of the available volume [5,
6]. Since no single macromolecular species need to be present at high concentration,
such media are referred to as crowded or volume occupied, rather than concentrated
[7]. In addition, the macromolecules cannot interpenetrate, therefore the fraction of
volume into which a macromolecule can be placed, is much less than the fraction of
volume into which a small molecule can be placed (Fig. 1). The total free energy
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Introduction

Figure 1: Schematic illustration of available volume (blue) and excluded volume
(pink and black) to the center of a small(A,C) and large spherical molecule (B,D)
added to a solution containing an approximately 30% volume fraction of large spher-
ical molecules (A,B)[9]

of interaction between a recently added molecule and all the other molecules in
the crowded medium is inversely proportional to the probability of placement of
that molecule at a random location within the crowded medium [8], and the extra
work required to transfer the molecule to a crowded solution resulting from steric
repulsion between that molecule and background molecules depends upon its size
and shape relative to the background molecules [9, 10] (Fig. 1). It raises the question
whether such e�ects are important for the cell. Zimmerman and Trach estimated
that excluded volume e�ects in the cytoplasm of Escherichia coli (E.coli) bacterium,
without well de�ned nucleus, are comparable to those obtained in a 35% solution
of a ∼ 70 kDa globular protein, such as bovine serum albumin or hemoglobin [11].
Any cell is extremely large relative to any particular macromolecule and is likely to
contain several micro-environments, within each of which a particular macromolecule
will be subject to a di�erent set of background interactions. The cytoplasm of
E.coli contains at least three such micro-environments: the immediate vicinity of the
inner plasma membrane, within which the macromolecule of interest will encounter
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a high local concentration of membrane phospholipids and proteins, the interior
and immediate vicinity of the nucleoid, where the macromolecule will encounter an
extremely high local concentration of DNA, and the remaining cytoplasm, within
which the macromolecule will be subject mainly to the in�uence of other soluble
proteins, RNAs, and possibly other large particles such as lipid granules.

As a matter of fact, crowding e�ects are expected to impact profoundly on the
thermodynamics and kinetics of biological processes in vivo [5, 12], such as pro-
tein folding and stability [13], aggregation [14] and changes in enzyme function and
turnover [15].
Larger biopolymers and tracers in living biological cells and arti�cially crowded
control environments in accord with recent high-detail simulations [15] perform sub-
di�usion of the form [16, 17, 18, 19, 20, 21]

〈r2(t)〉 ' tα with 0 < α < 1, (2)

as observed experimentally for particles as small as 10 kD, with α in the range of
0.40 to 0.90 [16, 17, 20]. The observed subdi�usion has been measured to persist over
tens to hundreds of seconds [16, 17] and thus appears relevant to cellular processes
such as gene regulation or molecular defence mechanisms. Subdi�usion leads to
reduced global volume exploration and dynamic localisation at reactive interfaces
[22]. It is argued that molecular processes in the cell could not be subdi�usive, as
this would hinder enzymes activity due to the slowness of the response to external
and internal perturbations, and �nally compromise the overall �tness of the cell but
computer simulations highlighted that the probability to reach a target is increased
for a subdi�usive particle as compared to a normal di�usive particle and cell may
bene�t from the subdi�usion of macromolecules in its interior [16, 23]. In that sense
subdi�usion would give rise to a more local picture of di�usion-limited biochemical
reactions in biological cells.

In this thesis we present a further clue to understanding the relation between
crowding-induced anomalous di�usion and the design of vital cellular mechanisms.
Our case study addresses the dynamics of the type II restriction endonuclease
EcoRV, that occurs in the bacterium E.coli.

E.coli is a common gram-negative bacterium found in normal human bacterial �ora.
In fact, the presence of E.coli and other kinds of bacteria within our intestines is
necessary to help the human body develop properly and to remain healthy. Some
strains, however, can cause severe and life-threatening diarrhea. E.coli cells are typ-
ically rod-shaped, and are about 2.0 micrometers (µm) long and 0.5 µm in diameter,
with a cell volume of 0.6 − 0.7 (µm3) [24] and E.coli DNA is 1.5 mm long, mainly
concentrated in the middle of the cell and occupies around a quarter of the cell
volume.

One of the enzymes in Escherichia coli is EcoRV (read Eco-R-�ve), a type II re-
striction endonuclease. Its name indicates that the restriction endonuclease is found
in Escherichia coli (�Eco�), strain RY13 (�R�), restriction endonuclease number �V�.
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(a)

Figure 2: (a) Artistic view of a slice through an E.coli cell, courtesy David Goodsell,
Sripps. In the cytoplasm biomacromolecules such as ribosomes, larger proteins, and
messenger RNA are seen.

Restriction enzymes (restriction endonucleases) are found in bacteria and evolved to
provide a defense mechanism against invading viruses. They cleave the phosphodi-
ester bond (covalent bonds between a phosphate group and two 5-carbon ring car-
bohydrates) within a polynucleotide chain (biopolymers like deoxyribonucleic acid
(DNA) and ribonucleic acid (RNA) composed of 13 or more nucleotide monomers
covalently bonded in a chain). Typically, a restriction site will be four to six nuc-
leotides long. Restriction endonucleases are divided into three categories, Type I,
Type II, and Type III, according to their mechanism of action.

EcoRV recognizes the 6-base DNA sequence 5'-GAT|ATC-3' and makes a cut at
the vertical line therefore renders it inactive with respect to transcription and rep-
lication. EcoRV forms a homodimer in solution before binding and acting on its
recognition sequence [25]. Initially the enzyme binds weakly to a non-speci�c site
on the DNA (non-speci�c binding) and randomly walks along the molecule until the
speci�c recognition site is found [26]. Then it binds to the speci�c site (speci�c bind-
ing) and cleavage occurs within the recognition sequence and does not require ATP
hydrolysis [26]. DNA cleavage is an important mechanism in the cellular defence
against foreign DNA of viruses attacking the cell. The cell's own DNA is protec-
ted against EcoRV action by methylation by a modi�cation enzyme of the DNA at
cytosine or adenine [26]. Bacteria use methylase to be able to di�erentiate between
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foreign genetic material and their own, therefore protecting their DNA from their
own immune system.

Interestingly, as seen by X-ray crystallography, EcoRV can be found in two con-
�gurational states [27, 28]. The unbound protein may switch between an inactive
structure with a closed cleft and another, in which the cleft is more open. In open
state EcoRV non-speci�cally binds to DNA that could be the native DNA or foreign
DNA.

Remarkably, the probability xact to �nd the enzyme in the open-cleft, active state
at a given instant of time is as low as ∼1% [28, 29]. It is a priori puzzling why a
vital defence mechanism should be equipped with such a low activity. A physiologic
rationale of the open/closed isomerisation could be to reduce non-speci�c binding
to the cell's native DNA. Alien DNA invading the cell would thus immediately be
surrounded by a higher EcoRV concentration that, after switching to the active
state, could attack this DNA [29]. Here we study the stochastic dynamics of EcoRV
in E.coli. We consider possible methods to simulate crowding induced subdi�usion
in the cell. Typically there are three prominent physical models for subdi�usion of
particles in cells and each corresponds to a distinct potential cellular mechanism:

First, the cytoskeleton is made up of semi �exible polymeric �laments such as mi-
crotubules and F-actins, which can be branched and cross-linked by proteins. This
sca�old is now considered as a set of �xed obstacles which di�using particles must
navigate. Also, the cytoplasm can be compartmentalized by lipid membranes which
further constrain the particle. Such environment with obstacles can be modeled by
a random walk on a fractal. The random walker meets the dead ends on all scales
and the motion is subdi�usive. The anomalous di�usion exponent is related to the
fractal and spectral dimensions, df and ds, characteristics of the fractal, through
α = ds/df [30]. A typical example is the subdi�usion on a percolation cluster near
criticality that was actually veri�ed experimentally [31]. Recent studies [32] show
that the crowded cytoplasm may have a random fractal structure, and bearing in
mind that, volume fraction f of the cellular cytoplasm is close to the site percola-
tion on cubic lattice (threshold is f ≈ 31%) and that of bond percolation f ≈ 25%
[30, 33], molecular crowding may indeed appear severe. To model the cytoplasmic
crowding we use static bond percolation cluster, where the bonds connecting the
sites of a regular lattice of the d-dimensional space are present with probability p.
The ensemble of points connected by bonds is called a cluster. If p is above the
percolation threshold pc, an in�nite cluster exists. If p = pc, this in�nite cluster
is a random fractal characterized by its fractal dimension df . Number of recent
works applied the percolation idea to stochastic motion in a crowded environment
[34, 35, 36, 37].
Second, macromolecular crowding and the presence of elastic elements, such as cyto-
skeletal �laments and nucleic acids, give the cytoplasm viscoelastic properties. As
a particle moves through this medium, the cytoplasm �pushes back�, creating long-
time correlations. This memory leads to subdi�usive behavior that can be modeled
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by fractional Brownian motion (fBm). In normal Brownian motion on a surface the
fractal dimension of the random walk is df = 2, but in fBm process particle ex-
plores more than just a surface as its fractal dimension is given by df = 2/α which
α = 2H [38]. Thus the sampled subspace is considerably larger than a surface with
dimension of df = 2 and may even exceed the dimension of the bulk (df = 3).

Third model is the continuous time random walk (CTRW) [39]. If a particle dif-
fusing through the cytoplasm encounters a binding partner, then it will pause for a
period of time before dissociating and di�using away. Multiple binding events with
a range of rate constants generate long tails in the waiting time distribution, leading
to subdi�usive behavior [39]. Another scenario could be a tracer in a very crowded
environment trapped in dynamic �cages" whose life times are broadly distributed.
In particular, the CTRW induces subdi�usion by altering the timing between two
di�usional steps yielding a di�usion equation. The mechanism underlying subdi�u-
sion pattern remains not being resolved and coexistence of two di�erent processes
such as di�usion on fractals and CTRW are the subject of research in recent years
[40, 41].
Using percolation cluster, fBm, CTRW and the synergy of CTRW and percolation
cluster and with help of extensive simulations we sample the times an enzyme needs
to locate its target, a speci�c sequence on an invading stretch of DNA randomly po-
sitioned in the cellular cytoplasm (the volume not occupied by the native DNA). The
average target knockout time, equivalent to the mean �rst passage time (MFPT)
to hit the target in an active state, is studied as function of non-speci�c binding
constant K0

ns of active EcoRV to DNA and the bond occupation probability p or
anomaly in fBm and CTRW. Our results show, however, under the assumption of
normal di�usion in the cell the performance of EcoRV is only marginally better than
that of a 100%-active mutant: normal di�usion on the length scales of an E.coli cell
provides very e�cient mixing, and the reduced activity of EcoRV would not consti-
tute an advantage but under subdi�usion, EcoRV's performance is surprisingly high.
This provides a concrete solution to the subdi�usion-e�ciency paradox and supports
current ideas that subdi�usion does not contradict e�cient molecular reactions in
cells.
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Chapter 1

Fractals

The word fractal was published by Benoît Mandelbrot [42], who is often called the
`father of fractals' in 1975. It was derived from the Latin fractus meaning �broken� or
�fractured�. The idea of fractals goes back to the 17th century, when mathematician
and philosopher Gottfried Leibniz, as described in his work �The Monadology�[43],
considered recursive self-similarity. In 1872 Karl Weierstrass introduced a func-
tion with the non-intuitive property of being everywhere continuous but nowhere
di�erentiable and its graph is a fractal in today's language. In 1904, Helge von
Koch gave a more geometric de�nition of a similar function, which is now called the
Koch curve [44]. Jean Baptiste Perrin, groping towards a fractal description of a
natural phenomenon, discussed the indeterminate nature of �occulated soap �ake
precipitate out of soap solution [45, 46]. In 1915, Waclaw Sierpinski constructed
his triangle and one year later, his carpet. Georg Cantor also gave examples of
subsets of the real line with unusual properties. These Cantor sets are also now
recognized as fractals. In the late 19th and early 20th centuries, Henri Poincaré,
Felix Klein, Pierre Fatou and Gaston Julia investigated iterated functions in the
complex plane, although they could not visualize the beauty of many of the objects
that they had discovered, because modern computer graphics was not invented yet.
In the 1960s, Mandelbrot started investigating self-similarity in papers such as How
Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension
[47]. He illustrated this mathematical de�nition with computer-constructed visual-
izations. These images captured the popular imagination; many of them were based
on recursion, leading to the popular meaning of the term �fractal� [48]. A fractal as
Mandelbrot has explained it in his book, is a fragmented geometric shape that can
be split into parts, each of which is a reduced-size copy of the whole [49], a property
called self-similarity.
Fractals model disorder in nature more successfully than do objects of classical geo-
metry. In the famous words of Mandelbrot, clouds are not spheres, mountains are
not cones, coastlines are not circles, bark is not smooth, nor does lightning travel in
the straight line [49].
Approximate fractals are easily found in nature. These objects display self-similar
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Fractals

structure over an extended, but �nite, scale range. Examples include clouds, river
networks, mountain ranges, snow �akes [50], lightning, cauli�ower, and systems of
blood vessels, DNA and polymers [51] can be analyzed as fractals. Even coastlines
may be considered fractal in nature. The most basic properties of fractals are self-
similarity, symmetry under dilation or scaling and the fractal dimension.
We mainly have two kinds of fractals, deterministic fractals and random fractals.
Deterministic fractals are geometrical structures with the property that parts of the
structure are similar to the whole [30]. The Koch curve and Sierpinski gasket are
the well known deterministic fractals and best examples for deterministic fractals.
The Koch curve is constructed from a unit segment. The middle third section is
replaced by two other segments of length 1/3, making an equilateral triangle or a
tent, as shown in Fig. 1.1a. The same procedure is repeated for each of the four
resulting segments (of length 1/3). This process is iterated for in�nite number of
times. The length of the intermediate curve at the nth iteration of the construction
is (4/3)n, where n = 0 denotes the original straight line segment. Moreover, the
length of the curve between any two points on the curve is also in�nite since there
is a copy of the Koch curve between any two points. Therefore the length of the
Koch curve is in�nite, but it is con�ned to a �nite region of the plane. Thus, the
Koch curve is somewhat `denser' than the regular curve of dimension d = 1, but
certainly not as dense as a two dimensional object. Therefore its dimension should
be between one and two. If a regular object - such as a line segment, or a cube- of
dimension d is magni�ed by a factor b, the original object would �t bd times in the
magni�ed ones. This consideration may serve as a working de�nition of the fractal
dimension, df . Formally let r(S) be similarity transformation that maps all points
x onto new points x′ = rx. The set S is called self-similar with respect to the scaling
ratio r < 1 if S is equal to the union of n(r) replicas of r(S). If this is the case, one
may further de�ne the self similarity dimension, Ds [30]:

Ds =
lnn(r)

ln(1/r)
(1.1)

In the Koch curve the line is magni�ed by the factor of three, and there �t exactly
four of the original curves. Therefore the Koch curve is self similar with r = 1

3
,

n(r) = 4, and df = Ds = ln4/ln3 ∼ 1.262.
The Sierpinski gasket (Fig. 1.1b) is one of the most popular fractals. A geometric
method of creating the gasket is to start with a triangle and cut out the middle
piece. This results in three smaller triangles to which the process is continued. The
nine resulting smaller triangles are cut in the same way, and so on, inde�nitely. The
gasket is perfectly self similar, an attribute of many fractal images. Any triangular
portion is an exact replica of the whole gasket. The resulting fractal dimension
is given by 2df = 3, or df = ln3/ln2 ∼ 1.585. All deterministic fractal lattices are
obtained in a similar way to the examples above and all have a generator, it proceeds
with a set of operations that are repeated in a recursive way. There are two kinds of
generators for deterministic fractals. In one case, the initiator is replaced by smaller
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1.1 Properties of fractals Fractals

(a) (b)

Figure 1.1: (a) The Koch curve. The initiator is a unit segment. The middle section
is replaced by two (similar) sections, forming a tent shape and by doing it again it
forms a snowman. After few iterations the last curve is produced. (b) The Sierpinski
gasket after few iterations generated from the outside inwards.

replicas of itself and the resulting fractal has then an upper cuto� length which is
the length of the initiator. In the alternative approach, replicas of the initiator are
assembled into a larger object. In the �rst case the fractals grow inwards and in
the second model grow outwards. The lattice then has a lower cuto� length, but
no characteristic large length scale. An ideal fractal lattice has no cut o� lengths.
But the real-life objects, or fractals constructed in a computer, have both upper
and lower cuto�s that represent the size of the fractal structure and the size of its
elementary units, respectively [30]. This behavior is typical for natural fractals like
biological cell boundaries [52].

1.1 Properties of fractals

The most important property of fractals is their self-similarity, or their symmetry
under dilation. To explain what self-similarity means; if we look at a fern leaf
(Fig. 1.2), we will notice that every little leaf - part of the bigger one - is very sim-
ilar to the whole fern leaf. We can say that the fern leaf is self-similar. The same is
with fractals: you can magnify them many times and after every step you will see
the same shape, which is characteristic of that particular fractal. If we examine the
Koch curve we notice that there is central object in the �gure which is similar to a
snowman. To its right and left there are two other snowmen, each being an exact
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1.2 Random fractals Fractals

Figure 1.2: A self similar fern leaf. Every little leaf is very similar to the whole fern
leaf.

reproduction of the central snowman, only smaller by a factor of 1/3. Both of these
snowmen display even smaller replicas of themselves to their right and left, etc. In
fact, if we look at the Koch curve at any given magni�cation we will see the same
motif again and again.
The main di�erence between regular Euclidean space and fractal geometries is in
symmetry in translation. Regular space is symmetric under translation but in
fractals this symmetry is violated. Fractals are symmetric under dilation. Fractals
are used for modeling in biology, geography, astrophysics etc. In biology plants and
animals exhibit properties of self-similarity as has already been seen in the case of
the fern. In humans branches of arteries and veins can be modeled using fractals,
as well as kidney structure, heart and brain waves, lungs and the nervous system.
In some instances the stock market and economic meters can exhibit properties of
self-similarity and as such fractals can be used here.
The other important properties of fractals is their fractal dimension df that we
explained before.

1.2 Random fractals

Fractals do not need to be generated by deterministic rules. Random fractals are
generated by stochastic processes, trajectories of the Brownian motion, Lévy �ights,
percolation clusters, and di�usion-limited aggregation are good examples of random
fractals.

Natural objects do not contain identical scaled down copies within themselves and
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1.2 Random fractals Fractals

are more similar to random fractals rather than deterministic fractals. Consider the
generation of a random Koch curve, but in the following steps (k = 2 onwards), the
fractals are obtained by replacing each line segment with the generator in such a
way that the triangle of the generator points randomly to either side of the original
line. The �gure for the �nal fractal shape looks very irregular compared to the exact
Koch curve but is closer to the shape of natural objects such as coastlines. Just as
for exact fractals, one can de�ne a fractal dimension for random fractals. One can
use the box counting or sand box algorithms to determine the fractal dimension of
the random fractals. In the box counting method, space is divided into equal sized
cubes (or squares if the �gure lies on a plane) of linear dimension r [30]. One then
counts the number of cells, N(r) that are needed to cover the given shape. If

N(r) ∝ r−df . (1.2)

as the length r is changed, one says that the distribution of points is df -dimensional.

Figure 1.3: Random Koch curve. The fractals are obtained by replacing each line
segment with the generator in such a way that the triangle of the generator points
randomly to either side of the original line and the �nal fractal is more similar to
the objects in nature like coastlines.

This de�nition obviously agrees with the Euclidean dimension for straight lines and
planes but gives fractional values for more complicated shapes such as coastlines.
Note that the equation above is of the same form as that which comes from the
de�nition of the self-similarity dimension mentioned above.

Another example can be Sierpinski carpet (Fig. 1.4a). It is obtained from a unit
square initiator. The generator divides this square into nine smaller cells and dis-
cards the central cell. In Fig. 1.4a we show the result obtained when the discarded
cell is one of the nine cells, chosen at random. Clearly the two �gures are related,
but the object in Fig. 1.4b is no longer self-similar, instead, we can argue that it is
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1.2 Random fractals Fractals

(a) (b)

Figure 1.4: (a) The deterministic Sierpinski carpet, generated by removing central
subunits of a subdivided squared to 3 by 3 (b) Random Sierpinski carpet, more
similar to a sponge.

self-similar in a statistical sense; the distribution of holes looks similar at all length
scales. Also on average, the �mass� of the object (the black areas in the �gure)
increases by a factor of eight when space is dilated by a factor of three. The random
carpet has the same fractal dimension df = ln 8/ ln 3 as the deterministic carpet.
Generally, the mass M of random fractals scales upon dilation, by a factor b, as
Euler's homogeneous function

M(bL) = bdfM(L), (1.3)

exactly as for deterministic fractals. Note that the solution of this functional equa-
tion is

M(L) = ALdf , (1.4)

where A is constant.

Indeed, the fractal of Fig. 1.4b resembles a surface of a real sponge more closely
than does the original Sierpinski carpet. A similar adaption of the Koch curve,
say, may provide an appropriate description of the coastline of Norway. Therefore
random fractals are useful as models for natural phenomena. Also in Mandelbrot
works, we now know that natural objects are more likely to be fractals rather than
not. Actually it is claimed that fractals are more stable and they are connected to
self-organized criticality [53].
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1.3 Percolation

Percolation is one of the most important and best understood phenomena giving
rise to random fractals. We mentioned that many objects in nature resemble a
random fractal rather than perfect geometrical shapes. Forming random fractal
could be due to dynamic chaotic processes, self organized criticality, etc. Percolation
is one of the simplest models for disordered systems [54, 55]. Percolation has lots
of applications to such diverse problems as supercooled water, galactic structures,
fragmentation porous materials, earthquakes and oil recovery. The word percolation
means to cause (a liquid) to pass through a porous body and is taken from co�ee
percolators. The importance of percolation lies in the fact that it models critical
phase transition of rich physical content. Also it can be formulated and understood
in terms of very simple geometrical concepts. Historically percolation goes back
to Flory and Stockmayer who wanted to describe how small branching molecules
form larger macromolecules if more chemical bonds are formed between the original
molecules. Percolation processes were introduced in the mathematics literature, in
a publication, in 1957 by Broadbent and Hammersley. Hammersely had called the
new computer one of the reasons of developing the percolation theory that even up
today, they play a very crucial role for percolation in lattices that have thousands
of millions of sites being simulated [55].

First we explain percolation theory then discuss its structural properties and di�er-
ent exponents in particular close to the percolation threshold.

1.3.1 Percolation transition

Consider a square lattice on which each bond is present with probability p, or absent
with probability 1−p. Present or empty bonds can stand for di�erent physical prop-
erties. It can be pathway for electrical conductors and absent bonds can represent
insulators and the electrical current can �ow only thorough present bonds. When
p is small, there is dilute population of bonds, and the cluster of small numbers of
connected bonds predominate. Therefore at low p, the mixture is still an insulator
for the electrical current, since a conducting path that connects opposite edges does
not exist [55]. As p increases the size of the clusters also increase. Eventually,
for p large enough, there exists a cluster that spans the lattice from edge to edge
(Fig. 1.5) and we have electrical current through the cluster. If the lattice is in�nite,
the inception of spanning cluster occurs sharply upon crossing a critical threshold
of the bond concentration, p = pc. The probability that a given bond belongs to
the incipient cluster, P∞ undergoes a phase transition: it is zero for p < pc, and
increases continuously as p is made larger than the critical threshold pc (Fig. 1.6)
Above and close to the transition point, P∞ follows a power law:

P∞ ∼ (p− pc)β (1.5)
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(a) (b)

(c)

Figure 1.5: Bond percolation on the square lattice. Bonds are present on 25 by 25
square lattices with probability (a) p = 0.3 and (b) p = 0.4 (c) p = pc = 0.5. In (a)
and (b) when p < pc the clusters are growing by increasing p but still there is no
spanning cluster in (c) p = pc the cluster spanning the lattice appears for the �rst
time

This phenomenon is known as percolation transition. P∞ plays the role of an
order parameter, analogous to magnetization in a ferromagnet, and β is the critical
exponent of the order parameter. At the transition point the electrical current can
percolate through the medium for the �rst time. In fact, the transition is similar
to all other continuous (second-order) phase transitions in physical systems. In the
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1.3 Percolation Fractals

Figure 1.6: Percolation transition. The probability P (p) that a bond belong to
the spanning cluster undergoes a sharp transition. Below the critical probability
threshold pc, there is no spanning cluster so P (p) is zero but P (p) becomes �nite as
soon as p = pc.

(a) (b)

Figure 1.7: (a) Site percolation in square lattice above criticality (b) Continuum
percolation of circles on the plane. As the concentration of the circles increases the
clusters grow in size till the spanning cluster appears.

conductor case pc would separate the conducting and non-conducting phases.
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There exist other types of percolation models. In site percolation the percolating
elements are lattice sites, rather than bonds. In that case we think of nearest -
neighbor sites as belonging to the same cluster (Fig. 1.7a). Continuum percolation is
de�ned without resorting to a lattice - consider for example a set of circles randomly
placed on a plane, where contact is made through their partial overlap (Fig. 1.7b).
Finally one may consider percolation in di�erent space dimensions. The percolation
threshold pc is a�ected by these various choices (table 1.1), but critical exponents
such as β, depend only upon the space dimension.

One example of bond percolation in biology is the spreading of an epidemic. The
epidemic starts with a sick individual which with probability p can infect its nearest
neighbors in one time step and dies after that. In this case the critical concentration
pc separates the phase in which epidemic always dies after �nite number of time
steps from the phase where epidemic continues forever.

Let us de�ne some more of these important critical exponents. The typical length of
�nite clusters is characterized by the correlation length ξ. It diverges as p approaches
pc as

ξ ∼ |p− pc|−ν , (1.6)

with the same critical exponent ν below and above the transition. The average mass
(the number of sites in site percolation, or number of bonds in bond percolation) of
�nite clusters, S, is analogous to the magnetic susceptibility in ferromagnetic phase
transitions. It diverges about pc as

S ∼ |p− pc|−γ (1.7)

again with the same exponent γ on both sides of transition.

In table 1.1 the value of pc for di�erent lattices in di�erent dimension is given.
In Bond percolation the critical concentration is always smaller than pc for site
percolation, since a bond has always more neighbors than a site. For example in a
square lattice a bond has six nearest neighbors and in site percolation case a site
has four nearest neighbor. Thus large clusters of bonds can be formed faster than
clusters of sites and lower concentration of bonds is needed to form the spanning
cluster.

In this chapter we described percolation transition and its di�erent quantities. These
quantities are characterized by critical exponents σ and τ , γ, ν and β which are not
independent from each other. If one knows two exponent the others follow. For
length scales smaller than the correlation length, �nite cluster or in�nite cluster is
self-similar and can be characterized by fractal dimension df and graph or chemical
dimension dl. Above pc for length scales longer than ξ, the in�nite cluster is homo-
geneous and has the dimension d of the lattice.
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Lattice Site Percolation Bond percolation
Square 0.592746 0.5
Traingular 0.5 2 Sin(π/18)
Simple cubic lattice (�rst nearest neighbor) 0.311605 0.2488126
Simple cubic lattice (Second nearest neighbor) 0.137 -
Continuum percolation d = 2 0.312 ± 0.005 -
Continuum percolation d = 3 0.2895± 0.0005 -

Table 1.1: Percolation threshold for several two and three dimensional lattices

1.3.2 Structural properties of the percolation

In 1977 Stanley [56] showed that the structure of percolation cluster can be described
by fractal concept. Consider �rst, the in�nite cluster at the critical threshold pc.
An example of the in�nite cluster is shown in Fig. 1.8. The cluster contains holes

Figure 1.8: In�nite cluster percolation connects all side of the lattice together.

on all length scales, similar to the random Sierpinski carpet of Fig. 1.4b and is self
similar in all length scales. Therefore it can be considered as a fractal and it can be
proved by a box counting algorithm too. The fractal dimension df describes how on
the average the mass S within a sphere of radius r scales with r:

S(r) ∼ rdf (1.8)

We are dealing with random fractals, therefore, in order to have exact results S(r)
is obtained by averaging over many cluster con�gurations (in di�erent percolation
simulations), or, equivalently, averaging over di�erent positions of the center of the
sphere in a same in�nite cluster.
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Below the percolation threshold the mean size of �nite clusters, is of the order of
the correlation length ξ. Therefore, clusters below criticality can be self-similar only
up to length scale ξ. Above criticality, ξ is a measure of the size of �nite clusters
in the system. The in�nite cluster remains in�nite in extent, but its largest holes
are also of size ξ. It means that the in�nite cluster can be self-similar only up to
length scale ξ. At distances larger than ξ self-similarity is lost and the in�nite cluster

Figure 1.9: The in�nite percolation cluster at criticality are presented by Sierpinski
gasket. There is self-similarity for distances shorter than ξ, and for larger length
scales the cluster is homogeneous.

becomes homogeneous. In other words, for length scales shorter than ξ the system
self similar and we see a fractal structure whereas for length scales larger than ξ the
system is homogenous. The situation is sketched in Fig. 1.9, in which the in�nite
cluster above criticality is likened to a regular lattice of Sierpinski gaskets of unit
cell size ξ. This can be mathematically summarized as:

S(r) =

{
rdf r < ξ,
rd r > ξ.

(1.9)

The probability that an arbitrary site, in a region of volume V , belongs to the
in�nite cluster is S/V . That is the ratio between the number of sites on the �nite
cluster and total number of sites. If the linear size of the region is smaller than ξ,
the cluster is self-similar, so

22



1.3 Percolation Fractals

d 2 3 4 5 6
df 91/48 2.53± 0.02 3.05± 0.05 3.69± 0.02 4
dmin 1.1307± 0.0004 1.374± 0.004 1.60 ± 0.05 1.799 2
dred 3/4 1.143 ± 0.01 1.385 ± 0.055 1.75 ± 0.01 2
dBBf 1.6432 ± 0.0008 1.87 ± 0.03 1.9 ± 0.2 1.93 ± 0.16 1/2
ν 187/91 2.186 ±0.002 2.31±0.02 2.355 ± 0.007 5/2

Table 1.2: Fractal dimensions of the substructures of percolation clusters [30].

P∞ ∼
rdf

rd
∼ ξdf

ξd
, r < ξ. (1.10)

using Eqs.(1.5) and (1.6) we can express both sides of Eq.(1.10) as power of p− pc:

(p− pc)β ∼ (p− pc)−ν(df−d), (1.11)

and
df = d− β/ν. (1.12)

Therefore the fractal dimension of percolation is not a new, independent exponent,
but depends on the critical exponents β and ν. Since β and ν are universal, df is
also universal.

The fractal dimension is not su�cient to fully characterize the geometrical properties
of percolation clusters. Di�erent geometrical properties are important according to
the physical application of the percolation model. For example we consider the
shortest path between two sites on the cluster. We call this path the chemical
distance l. The chemical dimension or topological dimension describes how the mass
of the cluster within a chemical length l scales with l while the fractal dimension df
describes how the mass of the cluster scales with the Euclidean distance r:

S(l) ∼ ldl . (1.13)

By comparing Eqs.(1.8) and (1.10), one can infer the relation between regular Euc-
lidean distance and chemical distance:

r ∼ ldl/df ≡ lνl . (1.14)

This relation is often written as l ∼ rdmin , where dmin ≡ 1/νl can be regarded as the
fractal dimension of the minimal path.

The concept of the chemical length �nds several interesting applications, such as oil
recovery, in which the �rst-passage time from the injection well to a production well
in a distance r, is related to l. It is also useful in the description of propagation
of epidemics and forest �res. Suppose that trees in a forest are distributed as the
percolation model. Assume that �re distributes from a burning tree to a tree close
to it in each unit time. The �re front will then advance one chemical shell (sites
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at equal chemical distance from a common origin) per unit time. The speed of
propagation would be [30]

v =
dr

dt
=
dl

dt
∼ lνl−1 ∼ (p− pc)ν(dmin−1). (1.15)

In d = 2 the exponent ν(dmin − 1) ≈ 0.16 is small and so the increase of v upon
crossing of pc is steep and a �re that could not propagate at all below pc, may
propagate very fast when the concentration of trees is only slightly bigger (just
above pc).

Figure 1.10: Bold solid lines are red bonds which carry the whole current and
deleting them stops the current �ow.

Critical exponents such as ν, β are universal and depend only on the dimensionality
of space, not on other details of the percolation model. df and dl are not the only
exponents characterizing percolation cluster at pc. A percolation cluster is composed
of several fractal sub-structures which can be described by other components. Sup-
pose that one applies a voltage on two sites of a metallic percolation cluster. The
backbone of the cluster consists of those bonds (or sites) which carry the electric
current. The red bonds carry the total current and deleting a red bond stops the
current �ow (Fig. 1.10). In table 1.2 we list the values of some of the percolation
exponents discussed above.
The fractal dimension of the backbone, dBBf , is smaller than the fractal dimension
of the cluster (see Table. 1.2 ). That means, most of the mass of the percolation
cluster is concentrated in the dangling ends, and the fractal dimension of dangling
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ends is equal to the fractal dimension of in�nite cluster. The fractal dimension of
the backbone is known only from numerical simulation.
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Chapter 2

Di�usion

Here we discuss dynamical properties of percolation systems. We will show that
due to the fractal nature and self-similarity of percolation systems physical laws of
transport are changed and are anomalous. We consider the total resistance and
conductivity and the mean squared displacement and the probability density of
random walks as two representative examples. To see the anomalous behavior on
fractals and percolation clusters, we �rst discuss transport and random walk in
regular lattices. The problem of random walk in a network or lattice was �rst studied
by G. Pólya in 1919 [57]. That is a stochastic process of a wandering point moving
between the sites (nearest neighbors) of the simple cubic lattice and the position
changes by ±1 just along one of the axes in any step. Random walk represents the
thermal motion of electrons in a metal or moving the holes in semiconductor. It can
describe Brownian motion of a particle, the spreading of a drop of ink in a glass of
water or bacterial motion.

2.1 Random walks

The simplest example of a random walk is a stochastic process of a wandering
point moving between the sites (the nearest neighbors), with equal probabilities,
of the simple hypercubic lattice and the random walker moves just along one of
the coordinate axes in any step. Usually the time variable is considered to be
discrete. Due to moving randomly to the new position and choosing the new site
independently from the history of the walk, a random walk process is Markovian. If
ei is a unit vector pointing to a nearest-neighbor site, after n steps, the displacement
is:

r(n) =
n∑
i=1

ei, (2.1)

26



2.1 Random walks Di�usion

Hence the average displacement will be zero because 〈ei〉 = 0. Since 〈ei.ej〉 = 0 for
i 6= j and 〈ei.ei〉 = 1, the mean squared displacement is:

〈r2(n)〉 =

〈(
n∑
i=1

ei

)2〉
= n. (2.2)

Since the step time unit is τ , t = nτ , then

〈r2(n)〉 = (2d)Dt. (2.3)

If a is the lattice spacing then D = a2/2dτ is the di�usion constant and governs
how quickly the random walker will spread out into the environment. This kind of
motion is known as normal or regular di�usion. The mean squared displacement is
the second moment of probability density P (r, t), the probability that the walker
has displaced to r after time t. We can calculate the mean squared displacement by
solving 〈r2(n)〉 =

∫
r2P (r, t)ddr. P (r, t) can be calculated in one dimension easily.

Assume that the jumps in one direction occur with equal probability p = 1/2, the
probability to reach site m after N step is given by binomial distribution

p (m,M) =

(
1

2

)N
N !(

N+m
2

)
!
(
N−m

2

)
!
. (2.4)

using the Sterling approximation we have

logN ! ∼=
(
N +

1

2

)
lnN −N +

1

2
ln 2π, (2.5)

and from the expansion ln(1 + z) ∼ z − z2/2, when z � 1 one obtains

lnP (x,N) ≈ −1

2
lnN + ln 2− 1

2
ln 2π − m2

2N
. (2.6)

Then

P (m,N) ≈
√

2

πN
e−

m2

2N . (2.7)

We de�ne
P (x,N) ∆x = P (m,N) ∆m. (2.8)

Then

P (x,N) =
∆m

∆x

√
2

πNa2
e−

x2

2Na2 . (2.9)

We know ∆x = 2a∆m, therefore we have a Gaussian distribution

P (x,N) =

√
1

2πNa2
e−

x2

2Na2 . (2.10)

An interesting feature of regular di�usion is that its time dependence is universal,
regardless of the dimension of the space, d.
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2.2 The probability density

It will be interesting to �nd a more general derivation of the probability density
of being at r after n steps. We now tackle this question, following the method
of characteristic functions. Consider a walk that takes place in Rd (continuous
space) and the steps are drawn from the probability density p(r′), and assume that
the walk starts at the origin. The simple random walk is a special case, in which
p(r′) = [1/(2d)]

∑
i δ(r

′ − aei).
The Fourier transform of P is called the characteristic function of the probability
density:

Fn(k) =

∫
Pn(r)eik.rddr (2.11)

Because the steps are independent, the process obeys Markov property, then

Pn+1(r) =

∫
Pn(r′)p(r− r′)ddr′ (2.12)

Therefore, the Fourier transform is:

Fn+1(k) = Fn(k)λ(k), (2.13)

Where λ(k) is the characteristic function of step probability density. It is also known
as step structure function. It is de�ned as:

λ(k) =

∫
p(r′)eik.r

′
ddr′. (2.14)

A recursive relation from Eq.(2.13) yields:

Fn(k) = λ(k)n. (2.15)

We obtain the probability density from the inverse transform

Pn(r) =
1

(2π)d

∫
Fn(k)e−ik.rddk. (2.16)

Suppose that the step probability function has zero mean and �nite variance, then
at long times the distribution Pn(r) will be a Gaussian. This is a result of the cent-
ral limit theorem that states conditions under which the mean of a large number of
independent random variables, each with �nite mean and variance, will be approx-
imately normally distributed [58, 59]. In simple one dimensional case, according
to Eq.(2.14) and knowing that

∫
rp(r)dr = 0 and

∫
r2p(r)dr = a2, the structure

function is,

λ(k) = 1− 1

2
k2a2 + O(k2), (2.17)
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and therefore the characteristic function is

Fn(k) = e−nk
2a2/2+nO(k2). (2.18)

For very long times when (n � 1), the main contribution to Fn(k) comes from
|k| < 1/n1/2, and O(k2) ∼ 1/n1/2 can be neglected. Then from the inverse transform,
we have

Pn(r) =
1

2π

+∞∫
−∞

e(−nk2a2/2−ik.r)dk =
1√

2πa2n
e−r

2/(2a2n). (2.19)

or in terms of time variable t = nτ

P (r, t) =
1√

4πDt
e−r

2/(4Dt). (2.20)

Which is the same result as Eq.(2.6) since D = 1/2 in our one dimensional case [30].
The probability density in d dimensional space is essentially the same, and just the
normalization factor should change to (4πDt)−d/2.

Di�usion is known as the limit of continuous time and continuous space. Let us
consider a discrete time and space random walk in one dimension. At each time step
the walker hops with the equal probability 1

2
to the nearest site to its right or left.

So the probability of being at site m at the nth step, Pn(m) satis�es the Eq.(2.3):

Pn+1(m) =
1

2
Pn(m− 1) +

1

2
Pn(m+ 1),

or

Pn+1(m)− Pn(m) =
1

2
Pn(m− 1)− Pn(m) +

1

2
Pn(m+ 1), (2.21)

It is easier to deal with di�erential equations and this motivates the passage to the
continuum limit. We introduce the variables x = ma and t = nτ , and take the
limit a→ 0 and τ → 0. Then the probability Pn(m) will be replaced by probability
density P (x, t). We keep a2/2τ = D constant in the limiting process and Eq.(2.21)
becomes

∂

∂t
P (x, t) = D

∂2

∂x2
P (x, t). (2.22)

This is the di�usion equation in one dimension and with initial condition P (x, 0) =
δ(x) the solution will be Eq.(2.20). Indeed in the long time limit there is no di�erence
between discrete random walks and di�usion. In higher dimensions the di�usion
equation is

∂

∂t
P (r, t) = D∇2P (r, t), (2.23)

where ∇2 is the d-dimensional Laplacian operator.

We had assumed the in one dimensional walk the random walker moves to its right
or left with the equal probability. Let us assume the probabilities to move to right
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and left are not equal and are r and l such as r + l ≤ 1. This causes a drift to the
right. Therefore the di�usion equation changes to

∂

∂t
P (x, t) = −v ∂

∂x
P (x, t) +D

∂2

∂x2
P (x, t), (2.24)

Eq.(2.24) is a Fokker-Planck equation where

D = lim
∆x→0
∆t→0

k 〈(∆x)2〉
2∆t

, v = lim
ε→0

∆x→0
∆t→0

∆xε

∆t
(2.25)

that k = l + r and ε = r − l. D = a2/(2τ) and v = εa/τ is called the drift
velocity. Eq.(2.24) is known as the classical di�usion equation with drift (where the
parameter v governs the speed of drift to either the left or the right). Note that in
the convection-di�usion equation, the factor v/D and 1/∆x diverge as ∆x goes to
zero in continuum limit. Therefore the convective term ∂P/∂t dominates over the
di�usion term ∂2P/∂t2. Then ε must be proportional to ∆x, when ∆x→ 0 to have
a nonpathological continuum limit and ensure that both the �rst and the second
order spatial derivative are �nite [58].
If r = l, then v = 0 and there is no drift (and no drift term in Eq.(2.24). In this
case, we end up with the classical di�usion equation which is the governing equation
of the simple random walk or a Brownian motion. The parameter D is the di�usion
coe�cient. If r + l < 1, then we can have resting phases or waiting times in the
random walk. This gives k (and D) a value than the case r + l = 1. This leads to
an intuitive interpretation that random walkers who occasionally stop to rest will
spread out in the environment slower than those that don't.
We also write the Eq.(2.24) as a continuity equation that expresses the conservation
law meaning that the walker cannot be created or destroyed;

∂

∂t
P (x, t) =

∂

∂x
J(x, t), (2.26)

where J ≡ vP −D∂P/∂x is the probability current [30].
We �nd a relation between macroscopic transport parameters like conductivity and
microscopic coe�cient of di�usion if we let the walker to posses an electric charge
e, in a metal that is restricted to half of the space x > 0 at temperature T . Then
there will be an electric �eld E and a constant velocity v and by applying Ohm law
we will have : neν = −σE, where n is the density of charges per unit volume. We
will have ∂P/∂t = 0 and from Eq. (2.24) we obtain:

σE

ne

∂P

∂x
+D

∂2P

∂x2
= 0; (2.27)

solution of this equation is P (x) = Ce−σEx/(neD) (by applying the boundary condi-
tions and considering that there is no �ux in x < 0 therefore J(x = 0) = 0). On
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the other hand the charges will be in thermal equilibrium which is characterized by
Boltzman distribution Peq = Ce−Eex/(kBT ). By comparing these two results we have:

σ =
ne2

kBT
D. (2.28)

This formula is called Einstein relation and was introduced in 1905 as an unexpected
connection between conductivity (macroscopic parameter) and di�usion coe�cient
(microscopic coe�cient).

2.3 Anomalous di�usion

Random walks obey Gaussian statistics, and their mean squared displacement in-
creases linearly in time; 〈r2〉 ∼ t. In many physical systems, however, it is found
that di�usion follows an anomalous pattern: the mean-square displacement is 〈r2〉 ∼
t2/dw , where dw 6= 2. Here we shortly introduce di�erent kinds of anomalous di�u-
sion including continuous time random walks (CTRWs) (with heavy tailed waiting
time distributions), and a variation of fractional Brownian motion (FBM) model.

2.3.1 Continuous time random walk

We use CTRW model with slow-decaying waiting times between consecutive steps to
illustrate a di�erent cause for anomalous di�usion. First let us introduce continuous-
time random walk (CTRW) and then we will discuss anomalous CTRW. The con-
tinuous time random walk (CTRW) was introduced by Montroll and Weiss [60].
Unlike discrete time random walks, time steps are random variables. We assume
that ψ(t) is the probability density of waiting times. Then the probability that the
waiting time between steps is greater than t is the cumulative function of ψ between
time t and in�nity

Ψ(t) =

∞∫
t

ψ(t′)dt′ (2.29)

We de�ne ψn(t) as the probability density that nth jump happens at time t.

ψn+1(t) =

t∫
0

ψn(t′)ψ(t− t′)dt′. (2.30)

So once the walker arrives at time t′ < t it stays there till time t. We de�ne ψ̂(s) as
the Laplace transform of ψ(t)

ψ̂(s) =

∞∫
0

ψ(t)e−stdt, (2.31)

31



2.3 Anomalous di�usion Di�usion

then we will �nd

ψ̂n(s) = ψ̂n(s), Ψ̂(s) =
1− ψ̂(s)

s
. (2.32)

We introduce the probability of being at point r at the nth step, Pn(r)

P (r, t) =
∞∑
n=0

Pn(r)

t∫
0

ψn(t′)ψ(t− t′)dt′ (2.33)

By applying Laplace transform we obtain

P̂ (r, s) =
∞∑
n=0

Pn(r)ψ̂(s)
1− ψ̂(s)

s
(2.34)

Fourier transform of Eq.(2.34) gives

P̂ (k, s) =
1− ψ̂(s)

s[1− ψ̂(s)λ(k)]
(2.35)

This equation is called the Montroll-Weiss equation and is an exact solution in
Fourier-Laplace space. For the special case ψ(t) = δ(t− τ), 〈r̂2(t)〉 = t, the random
walker performs normal di�usion. Now We assume ψ(t) be a power-law waiting time
distribution

ψ(t) ∼ At−(α+1), 0 < α ≤ 1 (2.36)

which has no characteristic time scale. The divergence of the characteristic waiting
time

∫∞
0
tψ(t)dt causes interesting e�ects such as aging and weak ergodicity breaking

[61, 62, 63]. The mean squared displacement can be found from Eq.(2.35)

〈r̂2(s)〉 = (−i)2∂
2 ˆP (k, s)

∂k2
|k=0 (2.37)

For slow decaying ψ(t) ∼ At−(α+1) mean-square displacement is

〈r̂2(t)〉 ∼ tα, 0 < α ≤ 1 (2.38)

that shows a subdi�usive behavior for CTRW.

2.3.2 Random walks and di�usion on fractal objects

The trail of a random walker is a complicated random object. The trail is self-similar
and can be considered as a fractal. The fractal dimension of a random walk is called
the walk dimension and is denoted by dw. If we think of the sites visited by a walker
as `mass', then the mass

M ∼ t ∼ rdw , (2.39)

Where r is the typical distance covered after time t. The mean squared displacement
is then given by

〈r2(t)〉 ∼ t2/dw . (2.40)

For regular di�usion dw = 2, but in fractals dw 6= 2 and the di�usion is anomalous.
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2.3 Anomalous di�usion Di�usion

Figure 2.1: Random walk path in the percolation cluster at criticality.

2.3.3 Di�usion in percolation clusters

De Gennes [64] pondered the problem of a random walker in percolation clusters,
which he described as �the ant in the labyrinth�. We mentioned that percolation
clusters may be considered as random fractals. Therefore di�usion in percolation
clusters can be explained as di�usion in fractals. Then the mean squared displace-
ment of a random walker di�using in a percolation cluster is

〈r2(t)〉 ∼ t2/dw . (2.41)

Remembering that the probability of being on the in�nite cluster is proportional to
|p − pc|β, we consider the di�usion on percolation clusters in three di�erent cases;
above criticality, at criticality and below criticality and study long-time asymptotic
limit of a time-independent di�usion constant D(p, t) = 〈r2(t)〉/t [30]:

• Above criticality (p > pc), r(t) � ξ that results in long ranged di�usion
coe�cient D ∼ (p− pc)µ−β. The motion is subdi�usive in short times and in
long times it changes to normal di�usion, since the cluster is homogeneous in
long scales.

• At criticality (p = pc), D ∼ t(2/dw)−1. The percolation cluster is a fractal and
self-similar on all length scales. The motion is subdi�usive in all time scales
except in �rst few steps where the random walker meets no obstacle.
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d dw µ̄ = µ/ν dBBw
2 2.878± 0.001 0.9826± 0.0008 2.62± 0.03
3 3.88± 0.03 2.26± 0.04 3.09 ± 0.03
4 4.68 ±0.08 3.63 ± 0.03 -
5 5.50 ± 0.06 4.81 ± 0.04 -
6 6 6 4

Table 2.1: Dynamical exponents for percolation

• Below criticality (p < pc), when t → ∞, D ∼ t−1(p − pc)
−2ν . The random

walker is trapped in local environment and the long ranged di�usion coe�cient
becomes zero.

The scaling function of D that is consistent with these properties, is [30]

D(t, p) = t2/dw−1f(εt(dw−2)/(µ−β)dw), (2.42)

where ε = (p− pc)/pc measures the distance from criticality and

f(x) ∼


xµ−β as x→∞,
constant as x→ 0,
(−x−2ν) as x→ −∞.

(2.43)

consistency yields the relation

dw = 2 +
µ− β
ν

(2.44)

and df = d− β/ν.
Numerical estimates of the transport exponents in percolation are listed in Table
2.1.

2.3.4 Spectral dimension and fractons

Spectral (or fracton) dimension is used to describe the dynamic of fractal networks.
It is de�ned by

ds =
2df
dw

, (2.45)

therefore from Eq.(2.40), anomaly α can be de�ned by the spectral and fractal
dimension.

〈r2(t)〉 ∼ tα, α =
ds
df

(2.46)
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Alexander and Orbach [65] conjectured that the fracton dimension of an in�nite
percolation cluster is

ds =
4

3
, (2.47)

for all dimensions d > 1. Indeed the spectral dimension is exactly 4
3
in d ≥ 6, and

close to 4
3
in 2 ≤ d < 6.

Now we consider the vibrational modes of an elastic fractal such as percolation
cluster, consisting of particles connected by harmonic springs. In fractals vibra-
tional modes are called fractons rather than phonons. The density of fractons found
for fractals g(ω) ∼ ωds−1 is valid for the percolation cluster at criticality. Above crit-
icality the crossover behavior in the displacement 〈r2(t)〉 ∼ t2/dw (t < tcross ∼ ξdw)
and 〈r2(t)〉 ∼ t(t > tcross), gives the characteristic length scale [30]

Λ(ω) ∼
{
ω−2/dw ω � ωξ,
ω−1 ω � ωξ.

(2.48)

That can be identi�ed as the wavelength of the vibrational modes. In isotropic case
in which the spring constants are summed to be scalars one obtains the equations

d2Ui(t)

dt2
=
∑
j

kij [ Uj(t)− Ui(t)] , (2.49)

where Ui is the displacement of ith site, and sum runs over all nearest neighbors j
of site i. From Eq.(2.49) we obtain the scaling relation t ∼ 1/ω2, so the crossover
frequency ωξ is

ωξ ∼ t−1/2
cross ∼ ξ−dw/2 ∼ (p− pc)dwν/2. (2.50)

This frequency separates two vibrational regimes, fractons with a density of states
g(ω) ∼ ωds−1, and phonons, with density of states g(ω) ∼ ωd−1.
For percolation above criticality the vibrational modes are either localized fractons
for ω > ωξ and their amplitude decays exponentially with distance or phonons,
extended over the whole cluster, for ω < ωξ.

2.3.5 Fractional Brownian motion

Another alternative way to study the anomalous di�usion is to generalize the random
walk model by adding long range correlations as the fractional Brownian motion
(fBm) BH , which is developed by Mandelbrot [66]. fBm is an extension of the
classical Brownian motion that allows its disjoint increments to be correlated with
a Hurst parameter H ∈ (0, 1) that usually starts at zero. Its covariance function is:

E[BH(t)BH(s)] =
1

2
(|t|2H + |s|2H − |t− s|2H), (2.51)
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Covariance function describes the variance of a random variable process or a random
�eld and shows how much two variables change together. The value of parameter
H in fBm shows process the fBm is:

• If H = 1/2, the process is in fact a Brownian motion or a Wiener process.

• If H > 1/2 then the increments of the process are positively correlated. This
dependence means that if there is an increasing pattern in the previous �steps�,
then it is likely that the current step will be increasing (to same direction) as
well.

• If H < 1/2, the increments of the process are negatively correlated. This de-
pendence means that if there is an increasing pattern in the previous �steps�,
then it is likely that the current step will be decreasing (to opposite direction).

In stochastic processes we apply fBm as we apply classical Brownian motion x(t) =
x(t − 1) + δx. δx is a white noise in classical Brownian motion and in fBm, is a
fractional gaussian noise de�ned as: δx(t) = BH(t+1)−BH(t). Similar to the normal
Brownian motion, fBm is an ergodic process that means it has the same behavior
averaged over time as averaged over space and the mean squared displacement is

〈r2(t)〉 ∼ t2H . (2.52)

From Eq.(2.53) we obtain

dw =
1

H
. (2.53)

2.4 First passage time

The �rst passage underlies many stochastic processes in which the event relies on
a variable reaching a speci�ed value for the �rst time. The problem of determining
the �rst-passage times for di�usion and other Markov processes arises in biological
modeling, �ring of neurons [67], di�usion-limited aggregation [68], the passage of
a biomolecule through a membrane nanopore [69], the encounter of two independ-
ently di�using particles [3] or the electrical current caused by anomalously moving
charge carriers in amorphous semiconductors [70] can be mapped onto the problem
of calculating the �rst passage time density (FPTD), and the associated mean �rst
passage time (MFPT) [58].
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The First passage probability is the probability that the di�using particle (or a ran-
dom walk) �rst reaches a speci�ed site at a speci�ed time. An important aspect of
�rst passage phenomena is the conditions by which a random walk process termin-
ates. In many cases the di�using particle physically disappears or dies when the
speci�ed point or set of points is hit. A natural way of constructing the FPTD in
such a case is the method of images [58]. For instance, on the semi-in�nite domain,
we use this method and mirror the unrestricted propagator with initial condition
x0.

Another way of obtaining FPTD is applying an absorbing boundary at the target
position xtarget and calculating the negative time derivative of the survival probabil-
ity. We de�ne P (r, t) as the probability distribution and F (r, t) as the �rst passage
time (FPT) probability. For a random walk to be at r at time t, the walker must
�rst reach r at some earlier time t′ and the return to r after t− t′ time steps. This
connection between P (r, t) and F (r, t) may be expressed as the convection relation,
with initial conditions that the walk starts at r = 0 [58]

P (r, t) = δr,0δt,0 +
∑
t′≤t

F (r, t′)P (0, t− t′). (2.54)

By Laplace transform we have

F (r, s) =

{
P (r,s)
P (0,s)

r 6= 0,

1− 1
P (0,s)

r = 0.
(2.55)

Therefore we obtain the �rst passage time probability from probability distribution.
We de�ne survival probability S(t) =

∫∞
0
P (r, t)dr as the probability of being alive

for the walker, then the �rst passage probability will be 1 − S(t) and �rst passage
time density, pfp is de�ned as

pfp = −dS(t)

dt
. (2.56)

The unbiased Brownian domain with initial condition P0(x) = P (x, 0) = δ(x − x0)
is described by the FPTD

pfp(t) =
x0√

4πDt3
e

(
−x20
4Dt

)
, (2.57)

which de�nes the probability pfp(t)dt for the particle to arrive at x = 0 during the
time interval t, ..., t + dt. Its long-time behavior corresponds to the 3/2 power-law
behavior

pfp(t) ∼
x0√
D
t−3/2. (2.58)

In particular, even for Brownian processes there are natural cases when the charac-
teristic time diverges. The mean �rst passage time (MFPT) T =

∫∞
0
tpfp(t)dt =∞.
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In a �nite box of size L, the Brownian �rst passage time problem has an exponential
tail, with increasingly quicker decay on increasing mode number,

pL(t) =
π

DL2

∞∑
n=0

(−1)n(2n+ 1)e

(
−D(2n+1)2π2t

4L2

)
, (2.59)

With an initial condition in the center of a box with two absorbing boundaries, the
MFPT becomes T = L2/(2D).

In CTRW case the essential property of subdi�usive �rst passage time problems
lies in the fact that the long-tailed nature of the waiting time PDF translates into
the FPTD itself. The MFPT diverges both in the absence of a bias and under a
constant drift, pertaining to both �nite as well as semi-in�nite domains [71, 72]. For
the three cases of �rst passage time problems, we obtain the following subdi�usive
generalizations:

(a) For subdi�usion in the semi-in�nite domain with an absorbing wall at the origin
and initial condition P (x, 0) = δ(x− x0), pfp is [71]

pfp(t) ∼
x0

|Γ(−α/2)|K1/2
α

t−1−α/2. (2.60)

The decay becomes a �atter power law than in the Markovian case (ppf (t) ∼ t−3/2).
(b) pfp for subdi�usion in a �nite box is [71]:

pfp(t) ∼ t−1−α. (2.61)

The exact FPTD of fBm, is not known. It was conjectured [73], based on scaling
argument and numerical evidence, that for large t, in semi in�nite domain ppf (t)
scales with t as

pfp(t) ∼ tH−2. (2.62)

2.5 Ergodicity

For completeness we mention a subtle point in the analysis of time series of anom-
alous di�usion processes, namely ergodicity. A system is ergodic if there is at least
one trajectory that passes through all points in phase space (for which probability
density p is non-zero). The concept of ergodicity is also signi�cant from a measure-
ment perspective because in practical situations, we do not have access to all the
sample realizations of a random process. We therefore have to be content in these
situations with the time-averages that we obtain from a single realization. The time
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averaged mean squared of a continuous random process X(t) is de�ned by

〈x2〉T =
1

2T

T∫
0

X2(t)dt. (2.63)

The ensemble averaged mean squared displacement is the spatial average over the
probability density function P (x, t) to �nd the particle at position x (in one dimen-
sion) at time t.

〈x2(t)〉N =

∫
x2P (x, t)dx. (2.64)

Then we call a process ergodic in mean squared displacement if the time average
asymptotically approaches the ensemble average.

lim
T→∞
〈x2〉T = 〈x2〉N (2.65)

2.5.1 Ergodicity in di�erent processes

We consider a process subdi�usive, if the mean squared displacement of processes
is [74, 75]

〈x2(t)〉 =
2dKα

Γ(1 + α)
tα, (2.66)

where 0 < α ≤ 1 and Kα with dimension [Kα] = cm2s−α is the anomalous di�usion
constant. The limit α = 1 corresponds to regular Brownian motion. We will see in
the next chapter that for regular Brownian motion ensemble averaged mean squared
displacement is 〈x2(t)〉 = 2dDt, is linear in time and also is ergodic.

In order to avoid errors in the ensemble average due to inhomogeneities between
individual particles, for instance di�erences in mass and surface structure, relatively
early idea of single particle trajectory analysis was brought forward [76]. From the
time series x(t) recorded in such setups that one determines the time averaged mean
squared displacement (TA MSD)

δ2(∆, T ) =
1

T −∆

T−∆∫
0

(x(t+ ∆)− x(t))2dt. (2.67)

∆ is referred to as the lag time and T is the overall measurement time. TA MSD
is a two time quantity in the sense that the position di�erence entering expression
(Eq.(2.67)) corresponds to two points of the time series x(t) separated by the lag
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time ∆. In recent years single particle trajectory analysis has indeed become one
of the standard tools to probe the motion of a test particle. This technique reveals
the subdi�usive behavior of large molecules in the crowded environment of living
biological cells [16, 18, 77] and in reconstituted crowding environment [78, 79]. Sub-
di�usion was observed on longer scales in the motion of individual bacteria in a
bio�lm [80]. In many of these studies signi�cant scatter of the amplitude of the TA
MSD for di�erent trajectories have been observed [80]. Scattered amplitude between
individual trajectories, may have di�erent origins. It may be caused due to spatial
inhomogeneities that the tracer particle is in the area with varying di�usivities and
the sojourn times in di�erent areas are the impact on the behavior of individual
trajectories. Scattered amplitude may be due to dynamic properties of the process
(for example in CTRW). Also the �tness of the recorded trajectories could be an-
other reason of the scattered amplitude. There may be no su�cient sampling, in
the sense that for the given measurement time, the time series become too short to
be statistically su�cient [81].

In the next chapters we study the di�usion of an enzyme inside a cell using di�erent
dynamic processes such as bond percolation, CTRW and fBm. In case of di�usion
on percolation cluster we see that the ensemble averaged MSD and the TA MSD are
equal, therefore the di�usion is ergodic. fBm is a gaussian process with stationary
increments and due to its stationary character fBm is ergodic [82] and TA MSD in
one dimension is

δ2(∆, T ) = 2
Kα

Γ(1 + α)
∆α, (2.68)

and α = 2H is equivalent to the ensemble average in limit of long measurement
time. In the con�ned geometry both ensemble average and TA MSD reach a plateau
determined the interval size [81].

In contrast to fBm and di�usion on percolation cluster, heavy tailed waiting time
distributions CTRW causes weak ergodicity breaking. In this case, the ensemble
averaged MSD leads to 〈x2(t)〉 = 2Kαt

α/Γ(1+α) in one dimension. Strong ergodicity
breaking is found when a system is divided into inaccessible regions of its phase
space. Namely, a particle or a system starting in one region cannot explore all other
regions due to some non-passable barrier. In weak ergodicity breaking, the phase
space is not divided into inaccessible regions. Instead, due to the power law sticking
times, the dynamics are non-stationary and non-ergodic.

In this case in contrast to the ensemble averaged MSD the corresponding ensemble
averaged time averaged quantity

〈δ2(∆, T )〉 =
1

T −∆

T−∆∫
0

(x(t+ ∆)− x(t))2dt, (2.69)
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for ∆� T [83, 84] is

〈δ2(∆, T )〉 ∼ 2Kα

Γ(1 + α)

∆

T 1−α . (2.70)

This linear lag time dependence might deceivingly indicate normal di�usion. The
reason to use the additional ensemble average in Eqs.(2.69) and (2.70) is that the
pure time average δ2(∆, T ) shows pronounced scatter around its ensemble average
Eqs.(2.69). This is caused by the scale free nature of CTRW subdi�usion. In the
given time series there may occur a single or few events for which the individual
waiting times become of the order of the measurement time T , and no matter how
long T is chosen. Therefore in the derivation expression the additional ensemble
averaging is necessary to include the average number of steps performed in the time
interval ∆ [84].
Previously, weak ergodicity breaking was investigated for the following phenomena:
blinking quantum dots [85, 86], Lévy walks [87], occupation time statistics of the
CTRW model [88], the fractional Fokker-Planck equation [89] and in vivo gene reg-
ulation by DNA-binding proteins [22]. Recently, a relation between statistics of
weak ergodicity breaking and statistics of non-self averaging in models of quenched
disorder was found [90].
Another example of non ergodic process could be synergy of geometrical disorder
and energetic disorder [91, 92]. An example is the combination of geometrical re-
strictions modeled by fractals percolation cluster and of chemical residence times
represented by continuous time random walks CTRWs with heavy tails, each lead-
ing to subdi�usion. This process is proved to be non ergodic [41]. The ensemble
averaged MSD is

〈x2(t)〉 ∼ tαβ, (2.71)

which α is the anomalous coe�cient for CTRW and β = 2/dw is the anomalous
di�usion coe�cient in percolation. Ensemble averaged time averaged MSD for this
case is

〈δ2(∆, T )〉 ∼ t1−α+αβ. (2.72)

Taking α → 0 in Eq.(2.72) leads to a linear time dependence of the time averaged
MSD of the subordinated process independent of the underlying fractal structure.
On the other hand α ≤ 1 leads to a subdi�usive exponent dominated by the fractal
nature. Thus, we have a process that recovers time averaged exponents of the MSD
close to the fractal ones, yet characterized by ergodicity breaking [41].

To avoid complications in the sense mentioned here, in the following we restrict our
discussion to the ensemble quantities such as FPT density, MFPT, etc.
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Chapter 3

Di�usion in percolation cluster

3.1 Time dependent �rst passage properties between

two spheres

We would like to obtain the �rst passage time for a particle (for instance a protein)
that di�uses in our model cell, in which we mimic the crowding by allowing the
particle to move on a critical bond percolation cluster. As sketched in Fig. 3.1 we
impose that the outer sphere with radius R is re�ective (cell wall), while the inner
radius b de�nes the nucleoid containing the DNA. A particle arriving to this inner
sphere is absorbed, i.e., non-speci�cally bound to the DNA. First to simplify the
problem we solve it for regular space and then we extend it to the fractal space
problem.

We use The Green's function technique, to solve the problem in regular space. We
solve the problem for the case that the inner sphere is absorbing (at r = b) and
the outer sphere is re�ecting (at r = R > b). As the �rst passage characteristic
does not involve angular variables, the systems can be considered one dimensional.
Therefore, we take the initial conditions to be a spherical shell of concentration at
time t = 0, P (r, t = 0) = δ(r − r0)/Ωdr

d−1
0 that is initially at r = r0. Ωd is the

normalization coe�cient and the surface area of the d-dimensional sphere. In three
dimension Ωd = 4π and in two dimension Ωd = 2π.
The di�usion equation is:

∂P (r, t)

∂t
= D

[
∂2P (r, t)

∂r2
+
d− 1

r

∂P (r, t)

∂r

]
, (3.1)

The Laplace transform (Eq.(2.31)) of ∂2P (r,t)
∂r2

L
(
∂2P (r, t)

∂r2

)
=
∂2P (r, s)

∂r2
, (3.2)
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Figure 3.1: The outer sphere at r = R is re�ective and the inner sphere is absorbing
at r = b.

and the Laplace transform of dP (r,t)
dr

is

L
(
∂P (r, t)

∂r

)
= sL(P (r, t))− P (r, 0). (3.3)

To simplify the result we de�ne a dimensionless radial coordinate x = r
√
s/D, to

rewrite the di�usion in the form [58]:

P ′′(x, s) +
d− 1

x
P ′(x, s)− P (x, s) = −s

(d−2)/2

Dd/2

δ(x− x0)

Ωdx
d−1
0

, (3.4)

The prime means di�erentiation with respect to x.
For each subdomain x > x0 and x < x0, this is a Bessel equation in which the solution
is a superposition of the combinations xνIν(x) and xνKν(x) with ν = 1−d/2. Where
Iν(x) and Kν(x) are modi�ed Bessel functions of the �rst and the second kind. First
we apply the boundary conditions by considering absorbing and re�ecting boundary
conditions in one dimension to restrict the form of the Green's function. Boundaries
are absorbing at r = b and re�ecting at r = R. Therefore we have P (b, s) = 0 and
dP (r,s)
dr
|r=R = 0. Also the propagator should be continuous at r = r0 or in our case

x = x0. In both regions, interior (x− ≤ x < x0) and exterior (x0 ≤< x < x+),
Green's function vanishes at their respective boundaries [58]. If xb = b

√
s/D, then

we have;

P<(x, s) = AxνIν(x) +BxνKν(x),

P (xb, s) = 0,

P (xb, s) = bν(AIν(bx) +BKν(b)) = 0,

B = −A Iν(xb)

Kν(xb)
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Then P<(x, s) is
P<(x, s) = c1x

νC<(x, xb) (3.5)

where C<(x, xb) = Iν(x)Kν(xb) −Kν(x)Iν(xb). We apply re�ecting boundary con-
dition. If xR = R

√
s/D, and we know I ′ν(x) = −v

x
Iν(x) + Iν−1 and K ′ν(x) =

−v
x
Kν(x)−Kν−1 [93] we obtian

P>(x, s) = AxνIν(x) +BxνKν(x),

dP (x, s)

dx
|x=xR = 0,

P (x, s)

dx
|x=xR = A(xνRIν−1(xR))−B(xνRKν−1(xR)), B =

Iν−1(xR)

Kν−1(xR)

,

(3.6)

Then P>(x, s) is
P>(x, s) = c2x

νD>(x, xR). (3.7)

where D>(x, xR) = Iν(x)Kν−1(xR) + Kν(x)Iν−1(xR)). The general solution for the
Eq.(3.4) is:

P (x, s) = P<(x, s) + Θ(x− x0)(P>(x, s)− P<(x, s)) (3.8)

To ensure the continuity of the Green's function at x = x0, P>(x, s) and P<(x, s)
should be

P>(x, s)|x=x0 = P<(x, s)|x=x0

therefore we obtain:

c2 = c1
C<(x0, xb)

D>(x0, xR)

To �nd c1, we integrate Eq.(3.4) across the discontinuity at x0 to give the joining
condition

P ′>|x=x0 − P ′<|x=x0 = −−s
(d−2)/2

Dd/2

1

Ωdx
d−1
0

. (3.9)

The derivative of P<(x, s) for x = x0 is

P ′<|x=x0 = νxν−1
0 c1C<(x0, xb) + xν0c1C

′
<(x0, xb), (3.10)

and the derivative of P>(x, s) for x = x0 is

P ′>|x=x0 = νxν−1
0 c2D>(x0, xR) + xν0c2D

′
>(x0, xb), (3.11)

From Eq.(3.9) we have

c1 =
1

Ωdx
d−1
0

D>(x0, xR)

C<(x0, xb)D′>(x0, xR)− C ′<(x0, xb)D>(x0, xR)
. (3.12)

Therefore

P<(x, s) =
x−ν0 xν

Ωdx
d−1
0

C<(x0, xb)

C<(x0, xb)D′>(x0, xR)− C ′<(x0, xb)D>(x0, xR)
C<(x, xb) (3.13)
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3.1 First passage properties between two spheres Di�usion in percolation cluster

and

P>(x, s) =
x−ν0 xν

Ωdx
d−1
0

D>(x0, xR)

C<(x0, xb)D′>(x0, xR)− C ′<(x0, xb)D>(x0, xR)
D>(x, xR) (3.14)

The total current for the absorbing inner sphere is the Laplace transform of the �rst
passage probability, J(x0) =

∫
D ∂P

∂x
|x=xb .

J(x, s) = Dxd−1 ∂

∂x
P<(x, s)|x=xb

(
xd−1
b Ad

)
(3.15)

It would be interesting to study the �rst passage characteristic in the long time limit
when the outer sphere is enough large xR → ∞. In this limiting case, then we can
say Kν(xR)→ 0 so

J(x, s)→
(
x0

xb

)ν
Kν(x0)

Kν(xb)
(3.16)

From the long time or small s behavior of this function we obtain the time depend-
ent asymptotic. We study the basic case in details when

1. ν > 0 and d < 2. The expansion of Eq.(3.16) gives

J(x) = 1−
( s

4D

)ν Γ(1− ν)

Γ(1 + ν)
(x2ν

b − x2ν
0 )−

( s

4D

) Γ(1− ν)

Γ(2− ν)
(x2

b − x2
0). (3.17)

The probability of eventually reaching the sphere is 1, because the coe�cient
of zeroth power of s is one. Also the �rst passage time has a long tail of t−(1+ν)

that gives the in�nite �rst passage time to the sphere.

2. ν = 0 and d = 2. The expansion of Eq.(3.16) is

J(x) = 1− 2
ln(x0/xb)

ln s
+ ... (3.18)

The probability of eventually hitting the circle is 1. The �rst correction vary-
ing as 1/ ln s corresponds to the �rst-passage probability having 1/(t ln t2) time
dependence.

3. ν < 0, and d > 2. We de�ne ν ′ = −ν > 0, and the expansion of Eq.(3.16)
gives

J(x) =

(
xb
x0

)2ν′ [
1−

( s

4D

)ν′ Γ(1− ν ′)
Γ(1 + ν ′)

(x2ν′

b − x2ν′

0 )−( s

4D

) Γ(1− ν ′)
Γ(2− ν ′)

(x2
b − x2

0)

]
(3.19)
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3.2 Time dependent FPT on fractals Di�usion in percolation cluster

From the s → 0 limit of this expansion, we see the probability of eventually
hitting the sphere is (xb/x0)d−2. The leading correction term varying as sν

′

means that the hitting probability at time t varies as t1+ν′ .

3.2 Time dependent �rst passage properties on fractals

Now we expand the problem to the di�usion on the fractals. The goal is to determine
the full time dependency of the �rst passage probability between two concentric
spheres on a random fractal. The �rst arrival probability to a point r for our
particle in this medium becomes

J(r, t) = Krdf−dw+1 ∂

∂r
p(r, t). (3.20)

df is the fractal dimension, dw denotes the random walk dimension, and p(r, t) is
the propagator. The radius dependent di�usion constant is K(r) = Kr−θ, where
K(r)rdf−1 is de�ned as the total conductivity of a shell of rdf−1 sites. The di�usion
equation is

∂

∂t
p(r, t) =

1

rdf−1

∂

∂r

(
K(r)rdf−1 ∂

∂r
p(r, t)

)
. (3.21)

When df has an integer valueK(r) = K whereK is the constant di�usion coe�cient.
According to [94] as an approximation, K(r) can be written as K(r) ∼ Kr−θ with
θ = dw− 2 is identi�ed as the anomalous di�usion exponent. The exact solution for
di�usion on fractals is presented in [95]. We solve this equation exactly as we solved
Eq.(3.1), by Laplace transformation and using the initial condition for p(r, 0) =

δ(r − r0)/Adr
df−1
0 and the boundary conditions (P(b,s)=0, ∂

∂r
p(r, s) |r=R = 0), the

solution becomes:

P (r, s) = P< (r, s) + Θ (r − r0) (P> (r, s)− P< (r, s)) . (3.22)

Here P< is the solution for the region b < r < r0, and P> the solution for r0 < r < R,

P< (r, s) = − D>(r0, R)

KAdr
α+df−dw+1
0 (C<(r0, b)D′>(r0, R)− C ′<(r0, b)D>(r0, R))

rαC<(r, b),

(3.23)
and

P> (r, s) = − C<(r0, b)

KAdr
α+df−dw+1
0 (C<(r0, b)D′>(r0, R)− C ′<(r0, b)D>(r0, R))

rαD>(r, R).

(3.24)
We used the abbreviations

C< (r, b) = Iν (µrγ)Kν (µbγ)−Kν (µrγ) Iν (µbγ) (3.25)

D>(r, R) = Iν (µrγ) ((γν − α)Kν (µRγ) + µγRγKν−1 (µRγ))

+Kν (µrγ) ((α− γν) Iν (µRγ) + µγRγIν−1 (µRγ)) , (3.26)
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3.2 Time dependent FPT on fractals Di�usion in percolation cluster

and the parameters

α =
dw − df

2
, ν = 1− df

dw
, µ =

2
√
s

dw
√
K
, γ =

dw
2
. (3.27)

The propagator is zero at the surface of the absorbing sphere and its derivative is
zero at the surface of the re�ecting sphere.

The current density on the inner (absorbing) sphere (for simplicity we assume that
the outer sphere is very large, R→∞) is

J(s)|R→∞ =
(r0

b

)νγ Kν(µr
γ
0 )

Kν(µbγ)
. (3.28)

To study the behavior of J at long or short times, we expand it for small or large
values of s. For small values of s we �nd:

1. For ν = 0

J(s)|R→∞ =

[
1− 2γ

ln( r0
b

)

ln(K
s

)

]
. (3.29)

Similar to the results for normal space (Eq.(3.17)), the probability of hitting
the inner sphere equals 1, and the �rst correction varying as 1/ ln s corres-
ponds to the �rst passage probability having an asymptotic 1/(t ln2 t) time
dependence.

2. For ν > 0

J(us)|R→∞ = 1 +

(
s

4Kγ2

)ν
Γ(1− ν)

Γ(1 + ν)

(
b2γν − r2γν

0

)
−
(

s

4Kγ2

)
Γ(1− ν)

Γ(2− ν)

(
b2γ − r2γ

0

)
+ ... (3.30)

From the leading correction term we see that the �rst passage density has the
long time tail t−ν−1, leading to an in�nite �rst passage time to the sphere.

3. For ν < 0, β = −ν

J(s)|R→∞ =

(
b

r0

)2γβ
(

1 +

(
s

4Kγ2

)β
Γ(1− β)

Γ(1 + β)

(
b2γβ − r2γβ

0

)
−
(

s

4Kγ2

)
Γ(1− β)

Γ(2− β)

(
b2γ − r2γ

0

)
+ ...

)
. (3.31)

If s → 0, and if we assume that we are in two dimensional space (df = 2),
when ν < 0 the probability of hitting the sphere is (b/r0)d−2, as expected by
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3.2 Time dependent FPT on fractals Di�usion in percolation cluster

electrostatics. The correction terms give the time dependence of the hitting
probability for the subset of particles that eventually reach the inner sphere.
The leading correction term varying as sβ means that the hitting probability
varies as t−β−1, that is a power law of slope 1− ν as shown in Fig. 3.2. Finally
for short times, for s→∞

J(s)|R→∞=
(r0

b

)γ(ν− 1
2)
e
−
√
s

γ
√
K

(rγ0−bγ)
(
1− γ

√
K (4ν2 − 1)

8
√
s

(
b−γ−r−γ0

)
+...

)
.(3.32)

To plot the current J(t) we need to calculate the inverse Laplace transform of
Eq.(3.32). We used a Mathematica package NumericalLaplaceInversion.m [96] to
do the inverse laplace transform numerically. In Fig.3.2 the current density J(t)
versus time when R→∞ in a fractal space with fractal dimension of df = 3.5 and
ν = 0 is plotted.
In 3 dimensional percolation cluster dw > df and the walk is compact and leads to

Figure 3.2: The Current density versus time, when R → ∞, df = 3.5, θ = 1.5,
ν = 0, r0 = 6.

r
dw−df
0 behavior of the MFPT [97]. That r0 is the distance between the target and
the starting point for the random walker. Our results in Eq.(3.31) are in agreement

with [97] and the MFPT is proportional to r−2γβ
0 = r

dw−df
0 . This feature has strong

implications on reaction kinetics in cells. In the cases where the fractal description
of the cell environment rules, our results show that reaction times crucially depend
on the source target distance r0. On the example of gene colocalization, the import-
ance of dependence on the starting point has been shown [98]. On the other hand,
in processes in which the CTRW description of transport is valid, MFPTs do not
depend on the starting point at large distance r0 [97].
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3.3 Simulation of Random walk Di�usion in percolation cluster

3.3 Simulation of Random walk

The calculation of the �rst passage time for the full problem is not trivial. Apart
from the results for the characteristic time, further quantities of interest at �nite cell
radius R can only be obtained numerically. We simulate the di�usion on a critical
percolation cluster to model the subdi�usion caused by macromolecular crowding in
cytoplasm. In the percolation cluster, the bonds will connect points of a lattice with
the probability greater than a critical probability (pc). In two dimension pc = 0.5
and in three dimension pc = 0.2488, for hypercubic lattices.

A random walk is then performed on the biggest cluster of the lattice to make sure
that the cluster connects the sides of the lattice, see the example in Fig. 3.3b. When
p reaches pc there will be at least one cluster that is connected the sides of the lattice
together. We use labeling method [99] to count the number of sites in each cluster
and �nally to �nd the largest cluster and delete the bonds that do not belong to
the largest cluster. In appendix A a part of the source code that describes the
generating percolation cluster and �nding the in�nite cluster is attached.
Random walker chooses one of 2d possible directions to move. The move to the new
point of the lattice can be done by choosing a random number between 0 and 1.
There are two methods used to generate random numbers. One is physical methods
that measures some random physical phenomenon and then compensates for possible
biases in the measurement process. The other method is often called pseudorandom
number generators, uses computational algorithms that produce long sequences of
random results, which are determined by a shorter initial value, known as a seed.
The term �random number generator� usually refers to uniform random number
generator, while other distributions like Gaussian distribution are also possible. For
our case, it is essential to generate random number with uniform distribution to en-
sure the equal probability for jumps. In our code we used uniform random number
generator (ran3) to generate the random numbers. In Fig. 3.3a, the random walker
moves to its right if the generated random number is between zero and 1

2d
. In order

to have di�erent random walk paths we need di�erent random number sequences,
therefore it is essential to change the seed every time we run the code. The seed
can be a function of time then it changes automatically. For example the function
secnds(x) in Fortran, gets the time in seconds from the real-time system clock. X
is a reference time, in seconds. In the function ran3, seed should be large negative
integer, therefore we set it as -2secnds(x)+1.

In the regular lattice all the bonds are available for the random walker and the
motion normal Brownian. The random walk on the percolation cluster is similar to
blind ant walk [100] as the random walker chooses a direction as described above
and then checks if the chosen bond is available. If the chosen bond is available the
random walker moves to the new point of the lattice and we count one time step, if
the chosen bond is not available the random walker stays at its place and we count
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3.3 Simulation of Random walk Di�usion in percolation cluster
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Figure 3.3: (a)A Random walk on two dimensional regular lattice. The random
walker is in the center of the lattice, and with probability p, that is a generated
random number, moves to its on of four nearest neighboring sites. If 0 < p < 1/4 it
moves to to right, if 1/4 < p < 1/2 it moves to left, if 1/2 < p < 3/4, it moves up,
and if 3/4 < p < 1 it moves down. (b) Random walk path on the in�nite cluster in
the lattice of size 35 by 35, after 10000 time steps.

one time step. In Fig. 3.3a, a random walk on two dimensional regular lattice is
shown. The random walker starts in the middle of the lattice and has four choices
with equal probabilities to move. In Fig. 3.3b random walk path on the in�nite
cluster in the lattice of size 35 by 35, after 10000 time steps is displayed. Although
the random walker has taken su�cient number of steps, it has not visited all the
site of the square lattice.

3.3.1 Analysis of the mean squared displacement

Let us �rst study the random walk by studying the mean squared displacement
and �rst passage time density on regular lattices and percolation clusters. As we
had discussed it before the di�usion on percolation cluster is similar to di�usion
on fractals and it is an anomalous di�usion. In this simulation we calculate the
mean squared displacement 〈r2〉 ∼ t2/dw to check if the motion is subdi�usive and
we obtain the mean �rst passage time to the target. When the motion of random
walker is a normal di�usive motion, the MSD should be linear versus time. We
plotted ensemble averaged and time averaged MSD versus time. Both graphs are
linear in time and in �nite system, both reach a plateau when the random walker
visits all the points of the lattice.
In order to calculate the expectation value of x2 for a particle di�usion between two
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3.3 Simulation of Random walk Di�usion in percolation cluster

re�ecting boundaries at x = ±a in one dimension, we should �nd the propagator.
If the particle starts at x0 = 0, the di�usion equation is;

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
, (3.33)

and we have two boundary conditions, the re�ection boundary condition at x = ±a

∂P (±a, t)
∂x

= 0, (3.34)

and for initial condition

P (x, 0) = δ(x), (3.35)

then we can separate the variables and de�ne the propagator as

P (x, t) = T (t)X(x), (3.36)

that X(x) is

X(x) =
n∑
i=0

An sin(knx) +Bn cos(knx). (3.37)

If we substitute Eq.(3.36) to Eq.(3.33), we will have;

T (t) = eCnt. (3.38)

We obtain Cn
Cn = −Dk2

n. (3.39)

by applying the re�ecting boundary condition, we have

∂P (a, t)

∂x
= 0,

n∑
i=0

Bn cos(knx) = 0, kn = nπ/a, (3.40)

and

∂P (−a, t)
∂x

= 0,
∞∑
n=0

An cos(knx) = 0, An = 0. (3.41)

Then P (x, t) = T (t)X(x)

P (x, t) =
n∑
i=0

Bn cos
(nπx

a

)
e−D(nπ/a)2t. (3.42)

To apply the initial conditions, we should expand the delta function. We know the
fourier expansion of a function in an interval [-a,a] is f(x) = B0/2+

∑
Bn cos(nπx

a
)+
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∑
An sin(nπx

a
). That B0 = 1

a

∫ a
−a f(x)dx and Bn = 1

a

∫ a
−a f(x) cos(nπx

a
)dx. Therefore

for delta function, we have

B0 =
1

a

+a∫
−a

δ(x)dx =
1

a
, (3.43)

and

Bn =
1

a

+a∫
−a

δ(x) cos(
nπx

a
)dx =

1

a
. (3.44)

As An is zero, we have

δ(x) =
1

2a
+

1

a

∞∑
n=1

cos
(nπx

a

)
. (3.45)

Then Eq.(3.46) will be

P (x, t) =
1

2a
+

1

a

∞∑
n=1

cos
(nπx

a

)
e−D(nπ/a)2t. (3.46)

The expectation value of x2 is:

〈x2〉 =

+a∫
−a

1

2a
x2dx+

+a∫
−a

x2 1

a

∞∑
n=1

cos
(nπx

a

)
e−D(nπ/a)2tdx. (3.47)

In long times, the second part of above equation will be zero. And the �rst part is:

+a∫
−a

1

2a
x2dx =

a2

3
. (3.48)

Therefore we should observe a plateau in MSD after a long time that reaches the
values a2

3
in one dimension. In case of two dimensional random walk in a square lat-

tice of size a, the plateau reaches the value 2a2

3
and the plateau for three dimensional

walk reaches the values a2. For shorter time we de�ne the time �rst derivative of
the second part of the Eq.(3.47) as a Jacobi theta function θ4(z, q), when z = 0.

d

dt

1

a

∞∑
n=1

4a3

n2π2
cos(nπ)e−D(nπ/a)2t = −4D

∞∑
n=1

cos(nπ)e−D(nπ/a)2t (3.49)

The Jacobi theta function θ4(z, q) is de�ned as

θ4(z, q) = 1 +
∞∑
n=1

(−1)nqn
2

cos(2πz) (3.50)
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3.3 Simulation of Random walk Di�usion in percolation cluster

Therefore Eq.(3.49) is −4D θ4(0,q)−1
2

with q = e−Dπ
2t/a2 . For short times, if t → 0,

then q → 1 and θ4(1, 0) = 0. Therefore Eq.(3.49) will be 2D. In short times when
t → 0 we know limn→0〈x2〉 = 0, therefore the second part of Eq.(3.47) at t = 0 is

1
a

∞∑
n=1

4a3

n2π2 cos(nπ) = 1
a

4a3

π2

(
−π2

12

)
= −a2

3
. Finally the mean squared displacement in

one dimension is

〈x2〉 = 2Dt. (3.51)

In Fig. 3.4a the mean squared displacement (time averaged mean squared displace-
ment) for a random walk on a two dimensional regular lattice is plotted. The size of
the lattice is 20 by 20 (a = 10 in Eq.(3.47)). The slope of MSD is proportional to t,
for short times and after 100 steps it reaches the plateau that according to Eq.(3.47)
it should have the value of 2a2/3 = 200/3. Fig. 3.4b is the MSD for the same three
dimensional lattice.
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Figure 3.4: (a) The mean squared displacement, on a two dimensional regular lattice
(20 by 20)versus time steps. The slope of the MSD is proportional to t for short
times and reaches the plateau 2a2/3 = 200/3. (b) The mean squared displacement,
on a three dimensional regular lattice (20 by 20 by 20)versus time steps. The slope
of the MSD is proportional to t that proves the normal di�usion on the regular
lattice.

In Fig. 3.5 the mean squared displacement for a random walk on percolation cluster
in two and three dimensions is plotted. The di�usion is not normal anymore and
is anomalous. The Mean squared displacement is always proportional to t2/dw in
the case of normal di�usion dw is equal to 2, therefore MSD will be linear to time.
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3.3 Simulation of Random walk Di�usion in percolation cluster

In case of subdi�usion on the two dimensional percolation cluster from chapter one
dw = 2.87 then the MSD is proportional to t0.69 Fig. 3.5a. The walk dimension on
three dimensional percolation cluster is dw = 3.88 therefore MSD is proportional to
t0.515 (Fig. 3.5b. Both mean squared displacements reach a plateau of (2a2/3)in two
dimensional random walk (Fig. 3.5a and a2 in three dimensional random walk on
percolation cluster (Fig. 3.5b.
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Figure 3.5: (a) The mean squared displacement for a random walk on bond per-
colation cluster in two dimension. The di�usion is anomalous. The Mean squared
displacement is proportional to t2/dw and in this case is proportional to t0.69. (b)
The mean squared displacement for a random walk on percolation cluster in three
dimensions. MSD is proportional to t0.51.

3.3.2 Analyzing the �rst passage time density

The First passage time distribution can also give a clue to the di�usion type [58].
Usually we place a target (absorbing boundary condition) and as soon as the random
walker hits the target we record the �rst passage time. After several iterations we
can plot the �rst passage time distribution (FPTD). In an in�nite lattice the slope
of FPTD is a power law and proportional to t−1−α, that α = 2/dw is the anomalous
di�usion exponent. Normally to plot a FPT distribution we should count the number
of observations n in an interval a. If a is a constant interval we will have too many
�uctuations at the tail (right hand side) of the curve. At the right hand side of the
curve, each bin (the interval that the number of event are counted in) only has very
few samples in, so the �uctuations in the bin counts are large and this appears as
a noisy curve on the plot. To have a FPTD with out too many �uctuation, we can
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Figure 3.6: (a)The First passage time density of a random walk in one dimension,
the target is an absorbing point is one dimensional lattice, FPTD should be power
law with the slope of t−3/2. (b) First passage time density of a random walk in two
dimensional regular lattice, the target is an absorbing square of size 2 by 2 lattice,
FPTD should be logarithmic in two dimension (see Eq.(3.18)).

change the binning to the log bin and normalize it by dividing the FPTD to size
of each bin. Otherwise the slope of the curve will be the real slope plus one. By
de�nition a bin of constant logarithmic width means that the logarithm of the upper
edge of a bin (ti+1) is equal to the logarithm of the lower edge of that bin (ti) plus
the bin width (b). That is,

log(ti+1) = log(ti) + b,

ti+1 = elog(ti)+b = tie
b, (3.52)

the linear bin width of bin i, wi, is de�ned as wi = ti+1 − ti. The linear bin width
is directly proportional to ti because

wi = tie
b − ti = ti(e

b − 1). (3.53)

The number of observations in a bin (n) is equal to the density of observations in
that bin times the width of that bin. Therefore if the probability density function
be, f(t) ∝ tλ and the width of the bin, then w ∝ t

n ∝ tλt = tλ+1, (3.54)

and regressing log(n)tλ+1 versus log(t) yields a slope equal to λ + 1, not λ. If n is
divided by the linear width of the bin then,

n

w
=
tλ+1

t
= tλ, (3.55)
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Figure 3.7: The �rst passage time density of a random walk in three dimensional
regular lattice. The target is an absorbing cube of size 2, in the center of a very big
lattice. FPTD is a power law with the slope of t−3/2

and therefore a regression of the normalized logarithmic bin counts against the
logarithm of t will estimate λ.
The other solution to omit the �uctuations is plotting the cumulative distribution
function. The cumulative probability of a power law probability distribution is also
power law but with an exponent λ − 1. The cumulative distribution function of
f(t), describes the probability that a real-valued random variable T with a given
probability distribution will be found at a value less than or equal to t, in our case
cumulative function will be survival probability.

F (t) =

∞∫
t

f(t′)dt′, (3.56)

f(t) is the FPTD and usually a power law Ctλ.

F (t) =

+∞∫
t

Ctλdt′ =
C

λ− 1
x−(λ−1). (3.57)
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3.3 Simulation of Random walk Di�usion in percolation cluster

To have the cumulative (or survival probability), we assume the number of events
(found targets in that time interval) in the �rst time interval, out of total number of
events N is m1, then the cumulative distribution for that interval can be calculated
easily as the probability that the target is not found yet (N − m1). Therefore if
the number of events in the second time interval is m2, the survival probability will
be N −m1 −m2. Later we present some examples that calculating the cumulative
distribution provides a more exact results.

Fig. 3.6a shows the �rst passage time density of a random walk in one dimension,
the target is an absorbing point in one dimensional lattice, and after the random
walker hits the target the search is terminated and the search time will be recorded.
FPTD should be power law with the slope of t−3/2. Fig. 3.6b displays the �rst
passage time density of a random walk in two dimensional regular lattice, the target
is an absorbing square in the center of the lattice. Here we see that the slope of
FPTD logarithmic according to Eq.(3.18). In Fig. 3.7 the �rst passage time density
of a random walk in three dimensional regular lattice is displayed. The target is
an absorbing cube of size 2 in the center of a large enough lattice and we see that
FPTD is a power law with the slope of t−3/2.
All the FPTDs are plotted using log bin. An example of FPTD with normal binnig
is shown in Fig. 3.8. The �uctuations on the right hand side of the plot are too
many and it makes it quite impossible to determine the precise value of he slope.
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3.3 Simulation of Random walk Di�usion in percolation cluster

Figure 3.8: The �rst passage time density of a random walk using normal bin. There
are too many �uctuations on the tail of the power law and the estimation of the
slope is very di�cult.
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Chapter 4

Modeling EcoRV's dynamic in E.coli

cell

Here we present a further clue to understanding the relation between crowding-
induced anomalous di�usion and the design of vital cellular mechanisms. Our case
study addresses the dynamics of the type II restriction endonuclease EcoRV, that
occurs in the bacterium E.coli.

E.coli cells are typically rod-shaped, and are about 2 micrometers (µm) long and
0.5 µm in diameter, with a cell volume of 0.6 − 0.7 (µm3)[24] and E.coli DNA is
mainly concentrated in the middle of the cell (Fig. 4.1). We mentioned in intro-
duction that EcoRV enzyme recognizes the 6-base DNA sequence 5'-GAT|ATC-3'
and makes a cut at the vertical line therefore renders it inactive with respect to
transcription and replication. EcoRV forms a homodimer in solution before bind-
ing and acting on its recognition sequence [25]. Its molecular weight in solution is
58 kD [101], and thus belongs to the range of sizes for which subdi�usion under
crowding was reported [15, 20]. Initially the enzyme binds weakly to a non-speci�c
site on the DNA (nonspeci�c binding) and randomly walks along the molecule until
the speci�c recognition site is found [26]. Then it binds to the speci�c site (spe-
ci�c binding) and cleavage occurs within the recognition sequence, and does not
require ATP hydrolysis [26]. Fig. 4.2 shows how EcoRV cleaves the DNA. DNA
cleavage is an important mechanism in the cellular defence against foreign DNA of
viruses attacking the cell. The cell's own DNA is protected against EcoRV action
by methylation by a modi�cation enzyme of the DNA at cytosine or adenine [26].
Bacteria uses methylase to be able to di�erentiate between foreign genetic material
and their own, therefore protecting their DNA from their own immune system.
Interestingly, as seen by X-ray crystallography, EcoRV can be found in two con-

�gurational states [27, 28]. The unbound protein may switch between an inactive
structure with a closed cleft and another, in which the cleft is more open. In open
state EcoRV non-speci�cally binds to DNA that could be the native DNA or for-
eign DNA. One should keep in mind that EcoRV can bind to the native DNA non
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Figure 4.1: A painting from E.coli [102] E.coli lives in the human large intestine
and assists with waste processing, vitamin K production and food absorbtion. The
average human defecates between 100 billion and 10 trillion E.coli bacteria every
day.

Figure 4.2: EcoRV cleaving DNA. The protein loosely binds DNA and scans for its
recognition sequence. Once found, EcoRV kinks the DNA in a 50◦angle and cleaves
at the cognate sequence [103].

speci�cally but would not be able to cleave it due to methylation, and it can bind
speci�cally and also non speci�cally to the foreign DNA. In Fig. 4.3 we sketch an
E.coli cell and its native DNA, EcoRV enzymes in active and inactive states being
either attached non-speci�cally to the native DNA or freely di�using in the cellular
cytoplasm. The apparent void space in reality is a highly crowded (`superdense'
[16]) complex liquid, in which the enzymes subdi�use. An invading DNA is being
recognised and cleaved and deactivated by active EcoRV enzymes.
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Figure 4.3: Sketch of an E.coli cell with native DNA (violet) concentrated in the
center. EcoRV restriction enzymes occur in two isomers: inactive, with closed cleft
(red), and active with open cleft (yellow). Invading, foreign DNA (red double-helix)
is attacked by EcoRV and cut. The void intracellular space shown here in reality is
crowded by larger biopolymers.

The probability to �nd the enzyme active xact at a given instant of time is as low
as ∼1% [28, 29]. A large volume fraction of the cytoplasm is occupied by larger
biopolymers [6](see Fig. 2). For example, the cytosol of E.coli contains about 300-
400 milligrammes per millilitre (mg/ml) of macromolecules [11]. EcoRV in solution
forms homodimers of molecular weight 58 kD [101], and thus belongs to the range
of sizes for which subdi�usion under crowding was reported [15, 20].
We use di�erent processes to model the EcoRV's dynamic in E.coli cell. The struc-
ture of the crowded bacterial cytoplasm resembles a random fractal [32] and we
model the enzyme dynamics as a random walk on a discrete cubic lattice whose lat-
tice constant a corresponds to the EcoRV size. To model the cytoplasmic crowding
we use static bond percolation cluster. A number of recent works applied the percol-
ation idea to stochastic motion in a crowded environment [36, 37]. Later we study
the same system using di�erent process to model the crowding inside the cell by
using CTRW and fBm.

To obtain a better physical understanding of EcoRV non-speci�c binding to the cell's
native DNA, we study the dependence of the MFPT on the non-speci�c binding
constant K0

ns. Experimentally, K0
ns can be varied by changing the salt concentration

of the solution.
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4.1 Theory Modeling EcoRV's dynamic in E.coli cell

4.1 Theory

For the cubic lattice (p = 1) we obtain an analytical expression for the MFPT for
the geometry sketched in Fig. 4.4. We distinguish Region 1 containing the native
DNA, and Region 2 representing the cytoplasm. In this region foreign DNA enters
and the EcoRV action occurs. Let us �rst address the non-speci�c binding of EcoRV

Figure 4.4: Sketch of the cross section of an E.coli model cell. Region 1 contains
the cell's native DNA. In Region 2 (�cytoplasm�), foreign target DNA are attacked
by active restriction enzymes. The various symbols are explained in the text.

enzymes to the native cellular DNA in Region 1, corresponding to a volume of length
of L and radius R. Assuming rapid equilibrium with respect to enzyme binding and
unbinding from the DNA, we observe the following relation between the volume
concentrations of bound and unbound active (ready-to-bind) enzymes,

c
(1)
act

c
(1)
bound

=
1

K0
nsl

(1)
DNA

. (4.1)

In our notation c(1) denotes the overall volume concentration of enzymes in Region
1, while c

(1)
bound and c

(1)
bulk, respectively, measure the volume concentrations of enzymes

bound to the native DNA and of unbound enzymes. The non-speci�c binding con-
stant K0

ns to DNA refers to active (open-cleft) enzymes per DNA length, and is

of dimension [K0
ns] = [M−1bp−1]. Finally, l

(1)
DNA is the length of DNA per volume

in Region 1. Of the unbound enzymes, a fraction xact is in the active (open-cleft)
state, ready to bind to DNA. Thus, the concentration of active enzymes in Re-
gion 1 becomes c

(1)
act = xactc

(1)
bulk, and one may introduce an overall binding constant
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Kns = xactK
0
ns in Eq.(4.1):

c
(1)
bulk

c
(1)
bound

=
1

xactK0
nsl

(1)
DNA

=
1

Knsl
(1)
DNA

. (4.2)

As the total concentration of enzymes in Region 1 is c(1) = c
(1)
bulk + c

(1)
bound, and we

have c
(1)
bound = c

(1)
bulkxactK

0
nsl

(1)
DNA we can write

c
(1)
bulk =

c(1)

1 + xactK0
nsl

(1)
DNA

. (4.3)

In Region 1 the enzyme concentration will be governed by the di�usion equation of
the form

∂c(1)

∂t
= Deff∇2c(1), (4.4)

where Deff = D3d/(1+xactK
0
nsl

(1)
DNA) is an e�ective di�usion coe�cient incorporating

the assumption of rapid equilibrium with respect to binding to DNA and switching
between active and dormant states. 1D di�usion along the DNA is assumed so slow
that it can be ignored in connection with the overall di�usion of the enzyme. Indeed
the 1D di�usion constant for EcoRV have been measured to be orders of magnitude
smaller than for 3D di�usion [104].

In Region 2 (the �cytoplasm�), we assume that 3D di�usion is fast such that we can
write a conservation law for enzymes in the form of the di�erence between what the
�ux across the boundary with Region 1 and the amount of enzymes reacting with
the target per time,

d

dt
V (2)c(2) = −A(1)Deff

∂c(1)

∂r

∣∣∣∣
r=R

− kac(2). (4.5)

Here V (2) is the volume of Region 2, A(1) = 2πRL is the surface area of Region 1,
and ka is the rate constant for reaction with targets. The xact dependence of ka is
ka = xactk

0
a, where k

0
a is the rate constant for the active state. Note that in our

approach we assume that the switching between active and dormant state is fast in
comparison with the di�usion across the regions, i.e., we may assume an equilibrium
between these two states. Finally, we take cbulk to be continuous across the boundary
between the Region 1 and Region 2, and that initially the system is at equilibrium
with respect to the reaction-free situation with ka = 0. From the above system of
equations the average search time yields in the form

T =
(

1 + xactK
0
nsl

(1)
DNA

){ V (1)

k0
axact

(1 + y) +
R2

8D3d

1

1 + y

}
, (4.6)

where y = V (2)/
[
V (1)(1 + xactK

0
nsl

(1)
DNA)

]
and V (1) is the volume of Region 1.

The simulations were carried out on a 100 × 100 × 100 cubic lattice with native
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DNA occupying a 100 × 50 × 50 lattice in the middle. To compare the present
calculation with the simulations we assume a lattice spacing of a = 10 nm and set
L = 1µm, V (2) = 1µm3 and therefore V (1) = 0.25µm3. From this we obtain
R =

√
V (1)/(πL) ≈ 0.28µm.

We choose the enzyme di�usivity D3d = 3µm2/sec. This value obtained for lac

repressor in vivo at short times [105]. The DNA length per volume is l
(1)
DNA =

1.5 × 10−3m/V (1), and K0
ns = 107M−1bp−1, such that Kns = 105M−1bp−1 when

xact = 0.01 [106] with the base pair length bp = 0.35 nm.

For the target association rate constant we take k0
a = (Na)3/Tlattice = a3(1 −

R3d)/τstep. Here Tlattice = N3τstep/(1−R3d) is the average search time for a random
walker starting far from the target on a N × N × N cubic lattice and spending a
time τstep per step to nearest neighbor sites. R3d ≈ 0.340537 is the walker's return
probability to its origin [57].

To match the time step τstep with the above di�usion constant through the mean
squared displacement of the walker we obtain τstep = a2/(6D3d) ≈ 5.6µs. The
assumption of a one lattice site target gives a target size of a = 10 nm. We have
chosen this target size to be lower than the in vitro e�ective sliding length [29]
at optimal salt conditions, partly due to possible blocking on the DNA by other
DNA-binding proteins.

The above numbers result in K0
nsl

(1)
DNA ≈ 3× 105, y|xact=1 ≈ 10−5, y|xact=0.01 ≈ 10−3,

V (1)/k0
a ≈ 2 sec, and R2/(8D3d) ≈ 0.003 sec, and with these parameters we have

to a good approximation T = K0
nsl

(1)
DNAV

(1)/k0
a, regardless of whether xact = 1 or

xact = 0.01.

4.2 Percolation cluster application

Our simulations of the search process were carried out on a 100 × 100 × 100 cubic
lattice and generate a bond percolation on it. We considered bond percolation, i.e.,
for each pair of nearest neighbor sites a bond is constructed with a probability p. The
largest cluster of connected sites was chosen and the remaining sites will be deleted.
Of these remaining sites those sites that are within the central 100 × 50 × 50-size
part constitute Region 1 with the native DNA. The number of such sites is denoted
by N (1) and the volume of this region is thus V (1) = a3N (1). The remaining sites
outside this region constitute the cytoplasm. The number of these sites is N (2), and
the corresponding volume becomes V (2) = a3N (2). A single target site is chosen
randomly among the cytoplasm sites. The searching random walker is only allowed
to walk between connected sites. In Fig. 4.5 a random walk on the bond percolation
is illustrated. The initial position of the searching random walker is chosen by �rst
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Figure 4.5: EcoRV's random walk (red dot), searching for the target (green dot), on
percolation cluster modeling the crowding.

deciding whether it is bound or unbound. From Eqs.(4.1) and (4.2), we can say

c
(1)
bound

c
(1)
bulk

= Knsl
(1)
DNA) = xactK

0
nsl

(1)
DNA. (4.7)

Also
V (1)c

(1)
bound + V (1)c

(1)
bulk + V (2)c

(2)
bulk = 1. (4.8)

We can assume the concentration of the free enzyme in region 1 and 2 is equal (

c
(1)
bulk = c

(2)
bulk). Then

c
(1)
bulk

[
V (1) + V (2) + V (1)xactK

0
nsl

(1)
DNA)

]
= 1. (4.9)

So the probability of being unbound punbound is,

punbound = c
(1)
bulk(V (1) + V (2)) =

V (1) + V (2)

[V (2) + V (1)(1 + xactK0
nsl

(1)
DNA)]

(4.10)

In this case its initial position is chosen randomly among all N (1) + N (2) sites,
and with probability xact it is chosen to be in the active state (otherwise it is in
the inactive state). If the walker is initially chosen to be bound, then it is placed
randomly among the native DNA sites, and its state is initially set as active. When
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xact < 1, it means EcoRV can switch between dormant and active states. The
probability of switching from active to dormant state pactive→dormant is considered
0.20. Then we can de�ne the probability of switching from dormant to active state
pdormant→active as pdormant→active/pactive→dormant = cactive/cdormant

pdormant→active =
xact

1− xact

pactive→dormant. (4.11)

When xact = 1, the enzyme is always active and cannot switch to dormant state.
Therefore pactive→dormant = 1 and pdormant→active = 0.
The other situation we should consider is when EcoRV is active and in region 1 (on
native DNA). It will be bound non speci�cally and spends some time stuck on DNA.
The probability of being stuck on DNA pstuck can be obtained from Eq.(4.1)

pstuck =
c

(1)
bound

c
(1)
bound + c

(1)
act

= K0
nsl

(1)
DNA/(1 +K0

nsl
(1)
DNA) (4.12)

and the probability that EcoRV is released after one time step is 1 − pstuck. Then
the probability of being released after nth time step is

〈t〉 =
∞∑
n=1

npnstuck(1− pstuck), (4.13)

Therefore

〈t〉 = (1− pstuck)
∞∑
n=0

(n′ + 1)pn
′

stuck, (4.14)

and

〈t〉 = (1− pstuck)
d

dpstuck

∞∑
n=0

pstuck = (1− pstuck)
d

dpstuck

pstuck

1− pstuck

. (4.15)

Finally we obtain

〈t〉 =
1

1− pstuck

= 1 +K0
nsl

(1)
DNA (4.16)

Therefore EcoRV should spend a random time taken from the exponential distribu-
tion of e−〈t〉.
One should keep in mind that quantities V (1) is indeed fraction of available lat-
tice sites on the cluster percolation in region 1 to the total number of sites in the
corresponding region. The same goes for V (2) and l

(1)
DNA.

To convert the value of K0
ns we know that one base pair is bp = 0.35 nm= 35×10−10

m and one mole per liter is 6 × 1023/10−3m3 and the binding constant K0
ns =

107M−1bp−1, is 10−9/(6.02 × 3.5) m2 and multiplication of K0
nsl

(1)
DNA gives us a di-

mensionless quantity. The initial time is set to t = 0, and the search is carried out
according to the following algorithm:
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1. If the walker (EcoRV) is in the inactive state or is situated in the cytoplasm,
a time τstep is added to the total search time t. If the walker is active and
situated in the region with the native DNA, then a random time is added to
t. The random time it should spend on the native DNA is taken from an
exponential distribution with average τstep(1 +K0

nsl
(1)
DNA).

2. One of the 6 directions possible on a cubic lattice is chosen at random. If a
bond exists to a neighboring site in this direction, the walker moves to this
site.

3. If xact = 0.01 and the walker is in the active state, it switches with probability
1/5 to the inactive state. If the walker is in the inactive state, it switches to
the active state with probability xact/5/(1− xact). In the case when xact = 1,
the walker always stays in the active state and switching is turn o�.

4. If the walker is on the target site and in the active state, the target is considered
to be found, and the time t is recorded as the search time. Otherwise the
iteration goes back to step 1.

This procedure is repeated 5,000 times on the same percolation cluster, with a
new target position and initial position of the searcher each time. The MFPT is
calculated as the average of the 5,000 recorded search times.

4.2.1 Error bars

We can calculate the error bars by determining the standard deviation on N repe-
tition.
The deviation is de�ned σ(t) =

√
Var(t). The variance is

Var(t) = σ2 =
N∑

i=1

ti − 〈t〉
N− 1

, (4.17)

where ti is the total search time of the ith repetition, and 〈t〉 is the MFPT. We have

Var(t1 + t2) = Var(t1) + Var(t2) (4.18)

and
Var(ct) = c2Var(t). (4.19)

Then

Var(mean) = Var(
N∑

i=1

ti/N) =
1

N2
Var(

N∑
i=1

ti) =
N

N2
Var(t) =

1

N
Var(t) (4.20)

Therefore the error bars have the value of mean deviation, σmean = σ/
√

(N).

67



4.2 Percolation cluster application Modeling EcoRV's dynamic in E.coli cell

4.2.2 EcoRV's dynamic's modeled by percolation cluster

In Fig. 4.6 we compare the MFPT for EcoRV (activity xact = 0.01) and mutant
enzyme (xact = 1) versus the bond occupation probability p. The bond occupation
probability changes between the full occupation (p = 1, normal di�usion) down
to the percolation threshold p = 0.2488 (subdi�usion with α = 0.51). While the
bonding constant K0

ns is 107M−1bp−1. For normal di�usion (p = 1) the MFPT
is just a factor of two smaller for EcoRV, compared to the fully active mutant.
Approaching the percolation threshold the native EcoRV increasingly outperforms
the mutant, at criticality EcoRV's MFPT is two orders of magnitude shorter than
that of the mutant. On average, the concentration of EcoRV is approximately

0.3 0.4 0.5 0.7 1
p

10
6

10
8

10
10

M
FP

T

x
act=1

x
act=0.01

Figure 4.6: Typical time for the restriction enzyme to locate the target in an active
state (MFPT) on a cubic lattice of size 100, as function of the bond occupation
probability. Close to criticality (pc = 0.2488 ), subdi�usion emerges with anomal-
ous di�usion exponent α = 0.51. The non-speci�c binding constant is K0

ns = 107

[M−1bp−1]. Error bars are of the size of the symbols or less.

1/xact = 100 times higher in the cytoplasm outside the volume of the cell's native
DNA than that of the mutant enzyme. At criticality, it is time-costly to cover
distances, and thus EcoRV is 100 times more e�cient than the fully active mutant
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enzymes. The mutant enzyme become trapped around the native DNA by they
being bound non-speci�cally. In contrast, under normal di�usion conditions (p = 1)
spatial separation is hardly signi�cant, and the lower concentration is compensated
by the higher activity of the mutant.

Even under severe anomalous di�usion with α ≈ 0.51 EcoRV's MFPT (for xact =
0.01) is only a factor of ten higher than at normal di�usion. That means that the
low-activity property of EcoRV renders their e�ciency almost independent of the
di�usion conditions, compared to the huge di�erence observed for the mutant.

Highly increased performance of the native EcoRV demonstrates that subdi�usion
is not suppressing e�cient molecular reactions. Also, our result show the reason for
EcoRV's low-activity, that in this light appears as a designed property. It should
be mentioned that the MFPT shown in our results is the result for an individual
EcoRV enzyme. Typically, a bacteria cell combines a large number of restriction
enzymes of di�erent families. This signi�cantly reduces the time scales shown here,
while preserving the characteristics of the EcoRV superiority.
To obtain a better physical understanding of EcoRV non-speci�c binding to the cell's
native DNA, we study the dependence of the MFPT on the non-speci�c binding
constant K0

ns. Experimentally, K0
ns can be varied by changing the salt concentration

of the solution. For the cubic lattice (p = 1) we obtain an analytical expression for
the MFPT for the geometry sketched in Fig. 4.4.

The simulations results for the case of normal di�usion are displayed in Fig. 4.7. At
small K0

ns, when the e�ect of native DNA is ignorable, the mutant (xact = 1) clearly
outperforms EcoRV, the gap in the MFPT corresponding to the reduced activity
(xact = 0.01), that is two orders of magnitude. As K0

ns increases both EcoRV
and mutant perform almost identically, with a small (factor of two) advantage to
EcoRV. For large K0

ns we can say that almost all active enzymes are bound to the
cellular DNA, and EcoRV has approximately a factor of 1/xact = 100 higher bulk
concentration. On the other hand its association rate constant with the target
DNA in the cytoplasm is reduced by the same factor. In this normally di�usive
regime dominated by non-speci�c binding, reduced activity of the restriction enzyme
has no signi�cant advantage. The resulting MFPT behavior according to Eq.(4.6)

T ≈ K0
ns`

(1)
DNAV

(1)/ka0 in this regime depends linearly on the non-speci�c binding
constant. Indeed, this behavior is independent of xact. The agreement between the
theoretical model and the simulations results is excellent over the entire range of
K0

ns (Fig. 4.7). Fig. 4.8 shows the behavior in the case of subdi�usion that is caused
by crowding and in our model by di�usion on the percolation cluster. Almost for
all values of K0

ns, EcoRV signi�cantly outperforms the mutant. At su�ciently large
K0

ns values (above some 103 M−1bp−1) the value of the MFPT is approximately two
orders of magnitude smaller, i.e., the performance is improved by a factor close to
the value 1/xact. This behavior is thus dominated by the costly subdi�usion from the
site of non-speci�c binding to the target. Because of subdi�usion on the percolation
cluster, it takes more time for mutant enzyme, that almost all of them are bound
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Figure 4.7: MFPT on a normal lattice (p = 1), as function of the non-speci�c
binding constant K0

ns. Simulations results are compared to the theoretical result
Eq.(4.6). Comparison between the simulation and theoretical results shows a very
good agreement.

non-speci�cally to the native DNA, to reach the target in cytoplasm. At low K0
ns

values both curves converge. Now, the MFPT is fully dominated by anomalous
di�usion to the target. Due to the compactness of the di�usion, that is caused by
absence of some of bonds on the percolation cluster, the di�erence between EcoRV
and the mutant becomes marginal and after an unsuccessful reaction attempt (when
EcoRV hits the target but is in the dormant state), EcoRV has a higher chance to
hit the target repeatedly before full escape, improving the e�ciency. As we are
dealing with random fractal, we have performed the simulation for di�erent clusters
and calculated the mean value. In Fig. 4.8 the thick lines show the average of
simulations over three di�erent critical percolation clusters, while the dotted lines
display the result for each individual cluster. Apart from the low K0

ns limit, the
results are very robust to the shape of the individual cluster. It would be interesting
to derive analytically the MFPT dependence on K0

ns. While the MFPT problem on
a fractal has been solved recently [?], it is not clear how to apply this method in the
present case, due to the division of the support into two subdomains. Similarly, for
the related case of fractional Brownian motion [107] this remains an open question.
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Figure 4.8: MFPT on a percolation cluster close to criticality (pc = 0.25) versus the
binding constant K0

ns. The value K0
ns = 107 M−1bp−1 used in Fig. 4.6 is marked

by the vertical line. Thick colored lines: average over three di�erent percolation
clusters. Dashed black lines: results for the individual clusters.

To obtain the mean �rst passage time for 1000 walkers, we choose a window of 1000
search times randomly among all of 10000 �rst passage times for a single walker
we have and �nd the shortest search time (the fastest walker) among them that
would be an equivalent of the �rst passage time for 1000 walkers. By repeating this
process 100 times we can calculate the mean value of 100 shortest search times as
the MFPT of 1000 walkers. In table 4.1 the result for 1000 walkers and single walker
with di�erent activities (xact = 0.01 and xact = 1 ) are presented. Behavior of the
MFPT for 1000 walkers is similar to the the single walker that means the MFPT
is shorter for EcoRV. In addition the concentration of enzymes has increased and
we should expect a shorter the MFPT, considering that the ratio of the MFPT of
mutant enzyme for 1000 walkers to the MFPT for EcoRV is larger than the single
random walker case. Among 1000 mutant enzymes there will be more enzymes
bound non-speci�cally to the native DNA while EcoRV has a higher concentration
in cytoplasm.

It will be interesting to study the change in the MFPT by changing the number of
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Walkers MFPT(s) σ MFPT (s) σ
(xact = 1) (xact = 0.01)

1 5.89× 105 5.88×103 4.03× 105 4.28×103

1000 5.05×102 16.1 2.85×102 9.2

Table 4.1: The MFPT for one random walker and 1000 random walkers when K0
ns =

107M−1bp−1 on regular lattice.
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Figure 4.9: The MFPT versus the number of targets. Number of targets vary
between one to 20, each target occupies a lattice site. and K0

ns = 107M−1bp−1, on
percolation cluster (p = 0.25) on a lattice of size 70 by 70 by 70 and 100 by 100 by
100 lattice sites.

targets and volume of the cytoplasm. The simulation has been executed for target
size of one, 10 and 20 lattice sites, andK0

ns = 107M−1bp−1, on the percolation cluster
on a lattice of size 70 by 70 by 70 and 100 by 100 by 100 lattice sites (Fig. 4.9). All
targets are places on one straight line, and the line is placed randomly in cytoplasm
for each realization. In all cases probability of hitting the target is increased and
the MFPT decreases by increasing the number of targets. By changing the lattice
size while keeping the ratio of DNA and cell radius (RDNA/Rcell = 0.5), there will
be less sites for EcoRV to explore therefore the MFPT is shorter for both kind of
enzymes. This e�ect is more obvious for EcoRV because it has a higher concentration
in cytoplasm than the mutant enzyme and reaches the target faster.
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Figure 4.10: The MFPT of two enzymes versus RDNA/Rcell on percolation cluster
(p = 0.25), K0

ns = 107M−1bp−1. The MFPT of both EcoRV and mutant enzyme
increase by increasing RDNA/Rcell, but the change for EcoRV is not as rapid as
mutant enzyme.

We studied the e�ect of changing the ratio RDNA/Rcell on the search e�ciency.
RDNA/Rcell varies between 1/8 to 3/4 and the MFPT of both EcoRV and mutant
enzyme increase by increasing RDNA/Rcell, as there will be larger volume of DNA for
both enzymes to get trapped in it. In Fig. 4.10, the MFPT of two enzymes versus
RDNA/Rcell is displayed. The change in the MFPT of EcoRV is not as much as
mutant's MFPT, because although the volume of native DNA and therefore trapping
sites is increasing, EcoRV is still to switch to dormant state and the MFPT does not
increase as rapid as permanently-active mutants that spends more time on DNA as
DNA volume increases.

In Fig. 4.11 we compare the MFPT for EcoRV (activity xact = 0.01) and mutant
enzyme (xact = 1) versus the bond occupation probability p with di�erent initial
conditions. The bond occupation probability varies between the full occupation
(p = 1, normal di�usion) down to the percolation threshold p = 0.2488 (subdi�usion
with α = 0.51). Bonding constant K0

ns is 107M−1bp−1. Once enzymes (EcoRV and
mutant) choose their starting sites among the native DNA sites. The other initial
condition would be when the enzymes starting sites are chosen only among cytoplasm
sites. The �nal result does not depend on the initial conditions and the behavior is
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Figure 4.11: The MFPT on a cubic lattice of the size 70 by 70 by 70 (smaller than
the 100 by 100 by 100 lattice in Fig.4.6), as function of the bond occupation probab-
ility for di�erent initial conditions. Close to criticality (pc = 0.2488 ), subdi�usion
emerges with anomalous di�usion exponent α = 0.51. The non-speci�c binding
constant is K0

ns = 107 [M−1bp−1]. Cytoplasm and DNA in the �gure, indicate the
initial condition for EcoRV (xact = 0.01) and the mutant enzyme (xact = 1).

similar to Fig. 4.6. In our simulations we had in mind biologically relevant situation,
namely that the walker on the average is placed in an equilibrated fashion. This
means that the walker has been around for a su�ciently long time such that its
position is random in the cell. Therefore an average over initial positions appears as
the appropriate choice. For the restriction enzyme this assumption appears justi�ed.
These enzymes are contained in the cells at any time and typical degradation times
surpass the life time the cell.
The First passage time density of both enzymes with di�erent initial conditions
(starting just on the native DNA or cytoplasm) and bond probability p = 0.3 is
displayed in Fig. 4.12a. Because of the �nite space FPTD has an exponential tail
that gives the characteristic time (or the MFPT). We see that although the shortest
time range belong to mutant enzyme that is starting in cytoplasm, longest search
times belong to mutant enzyme xact = 1 with both initial conditions on native DNA
and cytoplasm, and the order of longest time is much larger than shorter search
times that in�uence the �nal MFPT of the enzyme.
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Figure 4.12: (a) The FPTD for EcoRV (xact = 0.01) and the mutant enzyme
(xact = 1) with di�erent initial conditions on percolation cluster with bond prob-
ability p = 0.3, K0

ns = 107[M−1bp−1]. (b) The First passage time density of both
enzymes with di�erent initial conditions with bond probability p = 0.2488 and
K0

ns = 107[M−1bp−1].

In Fig. 4.12b �rst passage time density of both enzymes with di�erent initial con-
ditions with bond probability p = 0.2488 is displayed. Although the shortest time
range belong to mutant enzyme that is starting in cytoplasm, longest search times
belong to mutant enzyme xact = 1 with both initial conditions on native DNA and
cytoplasm, and the order of longest time is much larger than shorter search times
that in�uence the �nal the MFPT of the enzyme.
The FPTD for EcoRV (xact = 0.01) and the mutant enzyme (xact = 1) with bond
probability p = 1 and di�erent lattice sizes (50,150,200), without native DNA in
the center (K0

ns = 0[M−1bp−1]) is presented in Fig. 4.13a. As it is expected in the
subdi�usion regime the range of �rst passage time for the mutant enzyme increases.
In contrary with the subdi�usive regime, in this case the shortest �rst passage times
belong to mutant enzyme that outperforms EcoRV in absence of the native DNA.
By increasing the lattice size gap between the shortest FPT for mutant and EcoRV
is considerable.

In Fig. 4.13b FPTD of EcoRV and mutant in the regular lattice of size 20, without
native DNA is displayed. The target is a cube of size 2 �xed in the center. We see
that because of absence of DNA the mutant's search is faster. In Fig. 4.14 the MFPT
as a function of bond probability for a cell without native DNA is displayed. Even
in subdi�usion regime, the mutant enzyme outperforms EcoRV. In out theoretical
results, we expect the same behavior in regular lattice and in the subdi�usive regime
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Figure 4.13: (a) The FPTD for EcoRV (xact = 0.01) and the mutant enzyme (xact =
1) with bond probability p = 1 and di�erent lattice sizes (50,150,200), without native
DNA in the center (K0

ns = 0[M−1bp−1]) (b) The FPTD for EcoRV (xact = 0.01) and
the mutant enzyme (xact = 1) with di�erent lattice sizes in regular lattice p = 1,
K0

ns = 0 [M−1bp−1].

4.3 Fractional Brownian motion application

Another alternative approach to this problem is fractional Brownian motion. Frac-
tional Brownian motion is not only of interest for communications engineers, it has
applications in other areas, such as �nance, physics, probability, statistics, hydro-
logy, biology and bioengineering. In bioengineering for instance, fractional Brownian
motion is used to model regional �ow distributions in the heart, the lung and the
kidney [108] and viscolastic properties of polymers in solutions [109].
The choice of a non-Markovian process seemed appropriate as the experimentally
observed subdi�usion is claimed to be a consequence of the viscoelasticity of the
intracellular �uids [110]. Particles in cytoplasm and nucleoplasm stay longer at
their original position and return slower when having escaped to a far-away distance
and the poor spreading associated with subdi�usion implies a slow sampling pro-
cess. Subdi�usion in a viscoelastic �uid is modeled via fBm using Hosking method
[111] as an exact method or Weierstrass-Mandelbrot function (WMF) to generate
fractional gaussian noise [23].
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Figure 4.14: The MFPT as a function of bond probability for a cell without native
DNA is displayed. Even in subdi�usion regime, the mutant enzyme outperforms
EcoRV.

4.3.1 Generating fractional Brownian motion

From Eq.(2.51) we see that if H = 1/2, all the covariances are zero and the frac-
tional Gaussian noise (fGn(k) = BH(k + 1) − BH(k)) is a Gaussian process that
implies independence and agrees with the properties of Brownian motion, which
has independent increments. Covariances are negative for H < 1/2 and fBm is
anti-persistence. Covariances are positive for H > 1/2 and fBm is persistence. For
H = 0.3, the negative correlation accounts for the high variability, on the other hand
for H = 0.7 there are clearly periods in which the sample path increases and periods
in which it decreases. In Fig. 4.15, fBm path samples generated by Hosking method
are displayed. The negative correlations for H = 0.3 are also observed in this plot,
whereas the sample is more smooth for H = 0.7 due to the positive correlations.

The Hosking method

The Hosking method is an algorithm to simulate a general stationary Gaussian pro-
cess. We will focus on the simulation of fractional Gaussian noise (fGn) fGn(0), fGn(1)...
. Fractional Brownian motion sample is obtained from a fractional Gaussian noise
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Figure 4.15: Trajectory of a random walker in one dimension with Hurst parameters
H = 0.3, 0.5, 0.7. The correlations are negative for H = 0.3 and the sample is more
smooth for H = 0.7 due to the positive correlations.

sample by taking cumulative sums. The method generates Xn+1 given Xn, ...X0

recursively. It does not use speci�c properties of fractional Brownian motion nor
fractional Gaussian noise. The algorithm can be applied to any stationary Gaussian
process. The key observation is that the distribution of Xn+1 given the past can
explicitly be computed. We used this method which is an exact method to generate
fractional Gaussian noise (fGn). Later we used Weierstrass-Mandelbrot function
to generate the fGn in shorter time. Therefore we do not explain this method in
detail and more explanation of Hosking method is in [116]. The code using Hosking
method to generate fGn is attached in Appendix B.

Weierstrass-Mandelbrot function (WMF)

To mimic the subdi�usion of particles in crowded intracellular �uids like the cyto-
plasm, we have determined the di�usive steps according to theWeierstrass-Mandelbrot
function (WMF), see Eq.(4.21). The WMF yields a path with the characteristics of
fractional Brownian motion [113, 114], i.e., the individual step sizes are not inde-
pendent but correlated. For instance the WMF models the �uid's memory that is
re�ected in a nontrivial creep function [115]. We started N individual, noninteract-
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ing particles 1D, 2D, and 3D to model the EcoRV subdi�usion in E.coli's cell. They
followed their (subdi�usive) random walk up to a time Tmax. The erratic motion of
the particles was simulated using the forward integration of the Langevin equation,
i.e., the positions at times t = 1, 2, ..., Tmax were obtained by xi(t + 1) = xi(t) + ξi
with i = 1, 2, 3. As a model for subdi�usive motion we have chosen to calculate
the spatial increments ξi(t) = fGni(t) = W (t + 1)−W (t) in each spatial direction
i = 1, 2, 3 by the Weierstrass-Mandelbrot function [113, 114]:

W (t) =
∞∑

n=−∞

cos(φn)− cos(γnt+ φn)

γnα/2
(4.21)

Here, φn are random phases in the interval [0, 2π], γ > 1 is an irrational number,
Tmax is the length of the desired time series, and α is the degree of anomaly that
appears in the MSD (〈r2(t)〉 ∼ tα). In accordance with Saxton [114], we have chosen
γ =

√
π and restricted the sum to the terms n = −8, ...48. The errors caused by

this limitations are negligible [23, 114].

4.3.2 Mean squared displacement for fBm

The MSD of a fBm process in one dimensional in�nite space with di�erent Hurst
parameters 0.3, 0.5 and 0.7 is displayed in Fig. 4.16a. Mean squared displacement
is 〈r2(t)〉 ∼ t2H . All walkers start at x(t0) = 0, and fGn for Tmax steps is generated
with the help of Hosking method. The next step is de�ned as x(ti) = x(ti−1) +
fGn(ti). Fig. 4.16b shows the Time averaged MSD and the ensemble averaged MSD
of fBm in one dimensional �nite space with Hurst parameters H = 0.3. Due to the
di�using in the �nite space (L = 2) the ensemble averaged MSD follows Eq.(2.64)
and reaches a plateau of value L2/3 and the value of the plateau for the TA MSD is
2L2/3. This di�erence comes from the de�nition of TA MSD that follows Eq.(2.67).
Both MSDs have the same slopes that shows the ergodicity of fBm. Fig. 4.17a
depicts the behavior of the MFPT for fBM process in one dimension as a function
of Hurst parameter. The MFPT increases as H → 0.5. It was mentioned previously
(Eq.(2.62)) that the �rst passage time in semi in�nite domain is pfp(t) ∼ tH−2,
therefore the MFPT increases by increasing the value of H. The random walker
starts at x = 0,in the middle of the one dimensional box, and the target is at
x = 1.5. At x = −1.5 we have re�ecting boundary conditions.

4.3.3 EcoRV's dynamic's modeled by fBm

We considered the same initial conditions and theory for EcoRV (see section 4.2) to
study this problem with fBm process. The enzyme searches for DNA target with all
probability and parameters explained in section 4.2, only not in the lattice but in
the continuous space. In addition re�ective boundary conditions have been applied
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Figure 4.16: (a) The MSD of fBm in one dimensional in�nite space with di�erent
Hurst parameters 0.3, 0.5 and 0.7. MSD is 〈r2(t)〉 ∼ t2H . (b) The time averaged
MSD and the ensemble averaged MSD of fBm in one dimensional �nite space with
di�erent Hurst parameters 0.3. MSDs are proportional to t2H and due to di�usion
in �nite space reach a plateau.

for the cell's walls in three dimensions. For example if during the simulations the
random walker jumps in x direction behind the walls (|x(t)| > L at some time t is
bounced back to the position x(t)− 2|x(t)− Sign(x)L|.
Fig. 4.18 depicts the MFPT of two enzymes as a function of Hurst parameter for
EcoRV xact = 0.01 and mutant enzyme xact = 1 and the binding constant is K0

ns =
107M−1bp−1. For all values of H < 1/2 we are in subdi�usive regime and the MFPT
is increasing by as H → 1/2 (see Fig. 4.17 to compare the results in one dimension).
In the subdi�usive regime the value of the MFPT is always larger for the mutant
enzyme xact = 1. We know from our theoretical results for normal di�usion case
(Eq.(4.6)) and di�usion on the regular lattice (p = 1 in Fig.4.6)how the results will
be when H = 0.5. In limit of H → 1/2 the necessary computing time exceeds the
capability of our work stations. Therefore this limit is not the part of the following.
In percolation cluster anomaly is 2/dw = 0.51 therefore in our simulation for EcoRV,
we have chosen α = 0.5 (or H = 0.25) to compare the e�ects with percolation cluster
results. Dependency of the MFPT to the binding constant for EcoRV xact = 0.01
and mutant enzyme xact = 1 performing fBm with H = 0.25 is displayed in Fig. 4.19.
Almost for all values of K0

ns, EcoRV signi�cantly outperforms the mutant. At large
K0

ns values (above some 103 M−1bp−1) the value of the MFPT is approximately two
orders of magnitude smaller, i.e., the performance is improved by a factor close to
the value 1/xact. At low K0

ns values both curves converge. The behavior is very
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Figure 4.17: The MFPT for fBm in one dimension as a function of Hurst parameter.
The random walker starts at x = 0 and the target is at x = 1. The FPTD in semi
in�nite domain is pfp(t) ∼ tH−2, therefore the MFPT increases by increasing the
value of H.

similar to the di�usion on the percolation cluster. The FPTD has a �nite mean
and exponential tail for the fractal (percolation)[97] and fBm [49] model in �nite
domain, while it has an in�nite mean and a power law tail in a CTRW model. And
also both processes have increased probability to immediately return to points just
visited. Similarity of fBm and di�usion on fractals is the topic of ongoing research
[117].

4.4 Continuous Time Random Walk application

The CTRW induces subdi�usion by altering the timing between two di�usional steps
yielding a di�usion equation with a fractional time derivative. The overall density
of free proteins and molecular aggregates is very high in the cytoplasm. In this
crowded environment, the tracer particle is trapped in dynamic cages and their life

81



4.4 CTRW application Modeling EcoRV's dynamic in E.coli cell

H

Figure 4.18: The MFPT for fbm as a function of Hurst parameter H for EcoRV
xact = 0.01 and mutant enzyme xact = 1 for K0

ns = 107M−1bp−1. Similar to one
dimensional fBm the MFPT increases by increasing H.
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Figure 4.19: The MFPT for fbm as a function of binding constant for EcoRV xact =
0.01 and mutant enzyme xact = 1 for H = 0.25. fBm and percoaltion clusters share
the same nature and the their results should be similar.
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times are broadly distributed at high densities and leading to

ψ(t) =
α/τ

(1 + t/τ)1+α
. (4.22)

Therefore we use CTRW with heavy-tailed waiting time distribution that has an
in�nite MFPT (〈t〉 → ∞) to study our case. Eq.(4.22) asymptotically has the
power law behavior ψ ' τα/t1+α and converges for t→ 0 and is normalized.

4.4.1 Generating waiting times

The random walker takes steps on the lattice and in each step it waits a random time
taken from Eq.(4.22). To generate a random number with the distribution given by
Eq.(4.22), a commonly used technique is called the inverse transform technique. Let
y be a uniform random variable from the interval [0,1]. If X = F−1(y), then X is a
random variable with the cumulative distribution function FX(x) = F .

F (t) =

t∫
t0

ψ(t′)dt′ ≡ y. (4.23)

Therefore, if τ = 1 from Eq.(4.22) we obtain,

t = (1− y)−1/α − 1, (4.24)

t is the random variable with a distribution ψ(t).

In each step the random walker chooses a direction but the time is counted as an in-
teger number of random variable t. Fig. 4.20a shows trajectories of random walkers
performing CTRW on one dimensional lattice with di�erent values of the anomalous
coe�cient α for 100 time steps. Random walkers starting position is chosen ran-
domly between [0,80]. As the value of α decreases the random walker should wait a
longer time and for α = 0.2 and α = 0.5 we see an extreme stalling .
Fig. 4.20b displays the ensemble averaged MSD and the ensemble averaged time

averaged MSD and the time averaged MSD for individual trajectories in one di-
mension. They exhibit a considerable scatter in amplitude around the ensemble
averaged TA MSD. According to Eq.(2.70) the TA MSD is linear in time and the
ensemble averaged MSD is proportional to tα. In Fig. 4.21a mean squared displace-
ment for CTRW in three dimensions with α = 0.25 is displayed. Similar to the one
dimensional case the TA MSD is linear in time and the ensemble averaged MSD
is proportional to t0.25. The FPTD of CTRW process in one dimensional lattice is
displayed in Fig. 4.22a. According to Eq.(2.61) the �rst passage time density in a
�nite box is proportional to t−1−α. Here α = 0.5 therefore FPTD is a power law with
slope of -1.5. Using logarithmic binning we obtain a very good result. Fig. 4.22b
shows the FPTD for CTRW with α = 0.25 in one dimensional �nite box.

83



4.4 CTRW application Modeling EcoRV's dynamic in E.coli cell

(a)

1 10 100 1000
t

0.001

0.01

0.1

1

10

M
SD

Ensemble averaged MSD
TA MSD

~∆0.5

~∆1.0

(b)

Figure 4.20: (a) Trajectories of random walkers performing CTRW on one dimen-
sional lattice with di�erent values of anomalous di�usion coe�cient α for 100 time
steps is shown. Random walkers start position is chosen randomly between [0,80].
CTRW with α < 0.5 causes an extreme stalling. (b) Ensemble averaged MSD and
ensemble averaged time average MSD and time average MSD for individual tra-
jectories for CTRW with α = 0.5 in one dimension ensemble averaged MSD and
ensemble averaged time average MSD and time average MSD for individual traject-
ories for CTRW with α = 0.5 in one dimension

4.4.2 Waiting time distribution with a cuto�

In �nite systems, cuto�s occur naturally corresponding to, e.g., a maximal well depth
in a random energy landscape. We choose a power law waiting time distribution
with a cuto� and introduce the cuto� τ ∗ e�ective at t� τ ∗.

ψ(t) =
d

dt

[
1− τα

t+ τα
e−t/τ∗

]
. (4.25)

In free space Eq.4.25 produces initial subdi�usion 〈r2(t)〉 ' tα, and turns over to
〈r(t)〉 ' t at t� τ ∗. To generate a random number from Eq.(4.25) distribution we
should follow the same instruction to generate a random number with power law
distribution by obtaining the cumulative function F (t) and calculating F (t)−y = 0,
where y is the random variable with uniform distribution. Here calculating t is not
as easy as Eq.(4.24) but we can solve the equation by using numerical methods. In
appendix C the code to solve F (t) − y = 0 and generation of the random number
according to Eq.(4.25) distribution, is attached.
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Figure 4.21: (a) The Mean squared displacement for CTRW in 3 dimension with
α = 0.25. The TA MSD is linear in time while in the ensemble averaged MSD is
proportional to t0.25 (b) MFPT versus the anomaly α in CTRW.
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Figure 4.22: (a) The FPTD of CTRW process in one dimension with α = 0.5. (b)
The FPTD of CTRW process in one dimension with α = 0.25. Both FPTDs are
power law t−1−α.

4.4.3 EcoRV's dynamic's modeled by CTRW

We study EcoRV's di�usion performing continuous time random walk in three
dimensional lattice with the same sizes and probabilities de�ned in section 4.2.
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Fig. 4.23 depicts the dependency of the MFPT on binding constant K0
ns[M

−1bp−1]
with anomaly similar to percolation and fBm case α = 0.5 for the mutant enzyme
xact = 1 and EcoRV xact = 0.01. EcoRV di�uses in �nite space therefore choosing
a waiting time distribution with a cuto� [19] makes the simulation more realistic.
In random walk on the regular lattice case, the MFPT is around 104 − 105 time
steps therefore we assume after 104 steps the random walker has found the target
and choose the cuto� time τ ∗ = 10000 time steps. In this case the mutant enzyme
outperforms EcoRV for small values of binding constant but for larger values of K0

ns

there is not an obvious di�erent on enzymes performance and EcoRV's performance
is slightly more e�cient. The results for this case are very similar to the case for
normal random walk on regular lattice (Fig.4.7). It seems unlike percolation and
fBm case, the subdi�usive behavior of EcoRV under a heavy tailed waiting time
distribution does not improve the search e�ciency of EcoRV.
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Figure 4.23: The MFPT versus K0
ns[M

−1bp−1] for CTRW with α = 0.5 with power
law waiting time distribution with cuto� (τ ∗ = 10000) on regular lattice. Two cases
are studies. (a) Mutant enzyme xact = 1 (b) EcoRV which switches between dormant
and active state while moving to another lattice site xact = 0.01.
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4.4.4 CTRW on percolation cluster

Previously we discussed di�usion on percolation cluster and CTRW that are two
di�erent models for subdi�usion in cytoplasm and each leading to subdi�usion.
Both a CTRW and di�usion on a fractal have non-Gaussian propagators. Di�erent
methods such as p variation tests for categorizing di�usion are emerging [118, 119].
Currently these tests are still too simple and, both mechanisms can coexist [41].
Few studies started to consider both mechanism to study the anomalous di�usion
in the cell [40]. We consider the synergy of a non ergodic heavy-tailed CTRW on a
fractal and study our system when the particle moves in percolation clusters as we
described before and also waits for a random time (taken from a power law waiting
time distribution) on each site of the lattice. The ensemble averaged and ensemble
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Figure 4.24: (a) The ensemble averaged and the ensemble averaged time averaged
mean squared displacement of CTRW with α = 0.7 on percolation cluster in 3
dimension on cubic lattice with pc = 0.25. (b) Ensemble averaged and ensemble
averaged time averaged mean squared displacement for CTRW with α = 0.4 on
regular cubic lattice pc = 1. Cuto� time τ ∗ = 200 time steps and the MSD is linear
in time for time steps t > τ ∗.

averaged time averaged mean squared displacement for CTRW with α = 0.7 on
percolation cluster in three dimensions on cubic lattice with pc = 0.25 are displayed
in Fig. 4.24a. According to Eqs.(2.71) and (2.72) for percolation cluster, anomaly is
β = 2/dw = 0.51 and the ensemble averaged MSD in this case should be proportional
to tαβ = t0.36 and the TA MSD should be t1−α+αβ = t0.3+0.36. Fig. 4.24b shows
ensemble averaged and ensemble averaged time averaged mean squared displacement
for CTRW with α = 0.4 on regular cubic lattice pc = 1. Cuto� time τ ∗ = 200 and
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the MSD is linear in time for time steps t > τ ∗. For t < τ ∗ the ensemble averaged
MSD is proportional to tαβ = t0.4 (β = 1) and the TA MSD is linear in time
t1−α+αβ = t. We applied CTRW on percolation to model EcoRV's di�usion in E.coli

10
0

10
2

10
4

10
6

10
8

10
10

K
0

ns

10
9

10
12

10
15

M
FP

T

x
act

=0.01 switch while waiting

x
act

=0.01 

x
act

=1.0

Figure 4.25: The MFPT versus K0
ns[M

−1bp−1] on percolation percolation cluster
pc = 0.25 and performing CTRW with α = 0.5. Three cases are studies. (a) Mutant
enzyme xact = 1 (b) EcoRV which switches between dormant and active state while
moving to another lattice site xact = 0.01. (c) EcoRV which switches while moving
to another lattice site xact = 0.01 and also while it is waiting due to CTRW process.

cell. Fig. 4.25 depicts the dependency of the MFPT on binding constant K0
ns. The

result is very similar to the percolation (Fig. 4.8) and fBm (Fig. 4.19) results and
EcoRV outperforms the mutant enzyme for all values of binding constant. The
CTRW on percolation for (α ≤ 1) seems to be dominated by the fractal nature.
We also considered the situation that EcoRV switches between dormant and active
state while it is trapped on a lattice due to a power law waiting time distribution
of CTRW. The mean �rst passage time for this case is always smaller than the case
does not switch while waiting but does not show a huge advantage.
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Conclusions

We presented a case study of EcoRV restriction enzymes involved in vital cellular
defence. EcoRV belongs to the range of sizes for which subdi�usion under crowding
was reported [15, 20]. It is often argued that molecular processes in the cell could
not be subdi�usive, as this would compromise the overall �tness of the cell due to
the slowness of the response to external and internal perturbations.

We analyzed di�erent stochastic processes for subdi�usion and demonstrated a solu-
tion to this subdi�usion-e�ciency paradox. Speci�c molecular design renders the
e�ciency of EcoRV enzymes almost independent on the exact di�usion conditions.
This e�ect is more pronounced in percolation and fBm process. Even though EcoRV
is not always ready to bind, under subdi�usion conditions the low enzyme activity
represents a superior strategy. We showed that due to its so far elusive propensity to
an inactive state the enzyme avoids non-speci�c binding and remains well-distributed
in the bulk cytoplasm of the cell. Despite the reduced volume exploration of sub-
di�usion processes, the low activity of the enzyme surprisingly guarantees a high
e�ciency of the enzyme.

The cytoskeleton resembles a fractal and thus can be modeled by random walks on
critical percolation cluster to mimic this subdi�usion. Cellular subdi�usion may also
be modeled by fractional Brownian motion (FBM) or continuous time random walks
(CTRW) [120]. FBM shares many features with di�usion on fractal structures, e.g.,
the compactness and ergodicity. In fBm process, particle's exploration is compact
as its walk dimension is given by dw = 2/α which α = 2H [38] and similar to the
percolation cluster in case of d dimensional di�usion (d>2) the walk dimension in
larger than the space dimension. Because of this compact exploration crowding-
induced subdi�usion does not hamper the cell but can be used to enhance the
cell performance. A strong anomaly (low α) leads to an increasing probability of
�nding the target. Therefore we expect that the essential observations for the MFPT
found for percolation cluster should be similar for the case of FBM (Fig. 4.26).
In CTRW similar to normal Brownian motion the walk dimension is dw = 2 and
the random walker explores a surface completely but will only visit a negligible
subspace when moving in three-dimensional bulk solution. For CTRW, subdi�usion
is induced by not moving in a given period of time (because of power law waiting
time distribution). Therefore the results in case study of EcoRV may be similar to
the Brownian motion We considered the possibility of coexistence of two di�erent
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Figure 4.26: The MFPT versus the binding constant for di�erent processes, di�usion
on regular lattice (p = 1), di�usion on critical percolation (p = 0.25), fBm, CTRW
on regular lattice and CTRW on percolation cluster. The vertical line indicates
K0

ns = 107 M−1bp−1. The MFPT for mutant enzyme are shown by dashed line.

processes such as CTRW and di�usion on fractals and thus performed our di�usion
for CTRW on percolation. We studied the case in which EcoRV while being trapped
next to the target EcoRV would have ample chance to convert to the active state
and knock out the target.

Our results demonstrate that reduced non-speci�c binding are bene�cial for e�cient
subdi�usive enzyme activity even in relatively small bacteria cells. It seems intracel-
lular �uids have just the right amount of crowding to induce an anomalous di�usion
near to the critical α [16, 20, 110]. We compare the results for di�erent processes
in Fig. 4.26. The values of MFPT are shifted. The behaviors of normal di�usion
and CTRW in a regular lattice are similar and the values of MFPT are just shifted
in CTRW resulted. In both processes the mutant enzymes outperform EcoRV for
small values of the binding constant and for larger values of K0

ns EcoRV performance
is slightly better than the mutant enzyme.

As we had expected, fractional Brownian motion and di�usion on percolation cluster
at criticality due to sharing the same nature, have similar behaviors. EcoRV out-
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performs the mutant enzyme almost for all ranges of the binding constant. We may
make this conclusion that CTRW on percolation inherits mostly the fractal nature
properties, as it shows the similar behavior to fBm and percolation cluster.

Subdi�usion-limited reactions generally increase the likelihood for biochemical re-
actions to occur when the reactants are close-by [16, 23]. Such a more local picture
of cellular biomolecular reactions in fact ties in with the observed colocalisation of
interacting genes [121]. In higher cells the similar locality is e�ected by internal
compartmentalisation by membranes. It will be interesting to obtain more detailed
information from single particle tracking experiments in living cells, in order to
develop an integrated theory for cellular signalling and regulation under crowding
conditions in living cells.
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Appendix A

Generating percolation cluster

To give some insight how generating percolation cluster works, two subroutines that
generate the percolation cluster and �nd the largest cluster are displayed.

1

subrout ine c r ea t e_pe r co l a t i on_c lu s t e r ( idum , pc , numpointx , numpointy ,
numpointz ,

bondxplus , bondyplus , bondzplus , bondxminus , bondyminus , bondzminus , nbond )
Imp l i c i t None
i n t e g e r i , j , k , numpointx , numpointy , numpointz
r e a l pc
i n t e g e r bondxminus ( 0 : numpointx+1 ,0: numpointy+1 ,0: numpointz+1)
, bondyminus ( 0 : numpointx+1 ,0: numpointy+1 ,0: numpointz+1) , &
bondxplus ( 0 : numpointx+1 ,0: numpointy+1 ,0: numpointz+1) ,
bondyplus ( 0 : numpointx+1 ,0: numpointy+1 ,0: numpointz+1)
i n t e g e r bondzminus ( 0 : numpointx+1 ,0: numpointy+1 ,0: numpointz+1) ,
bondzplus ( 0 : numpointx+1 ,0: numpointy+1 ,0: numpointz+1)
i n t e g e r idum
bondxplus=0
bondyplus=0
bondxminus=0
bondyminus=0
bondzplus=0
bondzminus=0
! Array bondxplus ( i , j , k ) has the value o f 1 ,

21 i f the bond between ( i , j , k ) to
( i , j +1,k ) i s ava i l ab l e , o therw i se i t has the va luse o f 0 .
! The same goes f o r a r rays bondyplus and bondzplus
! Array bondxminus ( i , j , k ) has the value o f 1 ,
i f the bond between ( i , j , k ) to
! ( i , j −1,k ) i s ava i l ab l e , o therw i se i t has the value o f 0 .
! The same goes f o r a r rays bondyminus and bondzminus
Do i =1,numpointx
Do j =1, numpointy
Do k=1,numpointz

p=ran3 ( idum)
i f (p<pc ) then
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bondxplus ( i , j , k )=1
End i f
bondxminus ( i , j +1,k )=bondxplus ( i , j , k )

End Do
End Do

End Do
Do j =1,numpointy
Do i =1, numpointx

41 Do k=1,numpointz
p=ran3 ( idum)
i f (p<pc ) then
bondyplus ( i , j , k )=1

End i f
bondyminus ( i +1, j , k )=bondyplus ( i , j , k )

End Do
End Do

END DO
Do i =1,numpointx
Do j =1, numpointy
Do k=1,numpointz

p=ran3 ( idum)
i f (p<pc ) then
bondzplus ( i , j , k )=1

End i f
bondzminus ( i , j , k+1)=bondzplus ( i , j , k )

End Do
End Do

END DO
61 end subrout ine

subrout ine f i n d_ i n f i n i t e_c l u s t e r ( bondxminus , bondyminus , bondyplus ,
bondxplus ,&

bondzminus , bondzplus , numpointx , numpointy , numpointz )
Imp l i c i t None ! f i nd i n g the b i g g e s t c l u s t e r
i n t e g e r : : numpointx , numpointy , numpointz , i , j , i i , j j , k , kk ,m, n , o , kn
i n t e g e r : : numcluster , nmaxcluster , sizemax , i n f i n i t e c l u s t e r i n d e x , newpoint

, time
i n t e g e r : : bondxminus ( 0 : numpointx+1 ,0: numpointy+1 ,0: numpointz+1) ,
bondyminus ( 0 : numpointx+1 ,0: numpointy+1 ,0: numpointz+1) , &
bondxplus ( 0 : numpointx+1 ,0: numpointy+1 ,0: numpointz+1),&
bondyplus ( 0 : numpointx+1 ,0: numpointy+1 ,0: numpointz+1) ,
bondzminus ( 0 : numpointx+1 ,0: numpointy+1 ,0: numpointz+1) ,
bondzplus ( 0 : numpointx+1 ,0: numpointy+1 ,0: numpointz+1)
i n t e g e r : : c l u s t e r i nd ex ( 0 : numpointx+1 ,0: numpointy+1 ,0: numpointz+1) ,
c l u s t e r s i z e ( 0 : numpointx∗numpointy∗numpointz ) , &
& nbondnew ( 0 : numpointx+1 ,0: numpointy+1 ,0: numpointz+1)
i n t e g e r : : probnew ( 0 : numpointx+1 ,0: numpointy+1 ,0: numpointz+1) ,
probold ( 0 : numpointx+1 ,0: numpointy+1 ,0: numpointz+1)
! Array bondxplus ( i , j , k ) has the value o f 1 ,
i f the bond between ( i , j , k ) to
( i , j +1,k ) i s ava i l ab l e , o therw i se i t has the va luse o f 0 .

81 ! The same goes f o r a r rays bondyplus and bondzplus
! Array bondxminus ( i , j , k ) has the value o f 1 ,
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i f the bond between ( i , j , k ) to
! ( i , j −1,k ) i s ava i l ab l e , o therw i se i t has the value o f 0 .
! The same goes f o r a r rays bondyminus and bondzminus
sizemax=0
c l u s t e r s i z e=0
probold=0
probnew=0
c l u s t e r i nd ex=0
numcluster=0
nbondnew=0
! f i nd i n g the b i gg e s t c l u s t e r
Do i =1,numpointx
Do j =1,numpointy
Do k=1,numpointz

i f ( c l u s t e r i nd ex ( i , j , k )==0)then
numcluster=numcluster+1
c l u s t e r i nd ex ( i , j , k )=numcluster
do i i =1,numpointx

101 do j j =1,numpointy
do kk=1,numpointz
probnew ( i i , j j , kk )=0
! p r obab i l i t y f o r po int i i , j j , kk in 3 dimension
probold ( i i , j j , kk )=0

end do
end do
end do

probold ( i , j , k )=1
newpoint=1
time=1
do whi le ( time<=numpointx∗numpointy∗numpointz . and . newpoint >0)
newpoint=0
Do m=1,numpointx
Do n=1,numpointy

Do o=1,numpointz
! c a l c u l a t i n g the p r obab i l i t y from ( i , j , k ) to go to a new point on

the l a t t i c e
! that could be ( i +1, j , k ) , ( i −1, j , k ) , ( i , j +1,k ) , ( i , j −1,k ) , ( i , j , k

+1) , ( i , j , k−1)
probnew (m, n , o )=probold (m, n+1,o ) ∗bondxplus (m, n , o )+
probold (m, n−1,o ) ∗bondxminus (m, n , o )

121 probnew (m, n , o )=probnew (m, n , o )+probold (m+1,n , o ) ∗bondyplus (m, n , o )+
probold (m−1,n , o ) ∗bondyminus (m, n , o )
probnew (m, n , o )=probnew (m, n , o )+probold (m, n , o+1)∗bondzplus (m, n , o )+
probold (m, n , o−1)∗bondzminus (m, n , o )

i f ( probnew (m, n , o )>1)probnew (m, n , o )=1
i f ( probnew (m, n , o ) >0.and . c l u s t e r i nd ex (m, n , o )==0)then

c l u s t e r i nd ex (m, n , o )=numcluster
newpoint=newpoint+1

end i f
end do

end do
end do
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Do m=1,numpointx
Do n=1,numpointy
Do o=1,numpointz
probold (m, n , o )=probnew (m, n+1,o ) ∗bondxplus (m, n , o )+
probnew (m, n−1,o ) ∗bondxminus (m, n , o )
probold (m, n , o )=probold (m, n , o )+probnew (m+1,n , o ) ∗bondyplus (m, n , o )+
probnew (m−1,n , o ) ∗bondyminus (m, n , o )
probold (m, n , o )=probold (m, n , o )+probnew (m, n , o+1)∗bondzplus (m, n , o )+

141 probnew (m, n , o−1)∗bondzminus (m, n , o )
i f ( probold (m, n , o )>1)probold (m, n , o )=1
i f ( probold (m, n , o ) >0.and . c l u s t e r i nd ex (m, n , o )==0)then

c l u s t e r i nd ex (m, n , o )=numcluster
newpoint=newpoint+1

end i f
end do

end do
end do
time=time+2

End do
End i f

End Do
End Do
End Do
nmaxcluster=numcluster
Do kn=1, nmaxcluster
do i =1,numpointx
do j =1,numpointy
do k=1,numpointz

161 i f ( c l u s t e r i nd ex ( i , j , k )==kn) then
c l u s t e r s i z e ( kn )=c l u s t e r s i z e ( kn )+1

end i f
i f ( c l u s t e r s i z e ( kn )>sizemax ) then
sizemax=c l u s t e r s i z e ( kn )
i n f i n i t e c l u s t e r i n d e x=kn

end i f
end do

end do
end do

End Do
pr in t ∗ , " sizemax , i n f i n i t e c l u s t e r i n d e x " , sizemax , i n f i n i t e c l u s t e r i n d e x
! d e t e l i n g sma l l e r c l u s t e r s , except the b i gg e s t c l u s t e r
do i =1,numpointx
do j =1,numpointy−1
do k=1,numpointz−1

i f ( c l u s t e r i nd ex ( i , j , k ) . ne . i n f i n i t e c l u s t e r i n d e x ) then
bondxplus ( i , j , k )=0
bondxminus ( i , j +1,k )=bondxplus ( i , j , k )

end i f
181 end do

end do
end do
do i =1,numpointx−1
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do j =1,numpointy
do k=1,numpointz−1
i f ( c l u s t e r i nd ex ( i , j , k ) . ne . i n f i n i t e c l u s t e r i n d e x ) then

bondyplus ( i , j , k )=0
bondyminus ( i +1, j , k )=bondyplus ( i , j , k )

end i f
end do

end do
end do
do i =1,numpointx−1
do j =1,numpointy−1
do k=1,numpointz
i f ( c l u s t e r i nd ex ( i , j , k ) . ne . i n f i n i t e c l u s t e r i n d e x ) then

bondzplus ( i , j , k )=0
bondzminus ( i , j , k+1)=bondzplus ( i , j , k )

end i f
201 end do

end do
end do
end subrout ine
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Appendix B

Hosking

This subroutine generated fGn using Hosking method. [112]

xtern double covar iance ( long i , double H) {
i f ( i == 0) re turn 1 ;
e l s e re turn (pow( i −1 ,2∗H)−2∗pow( i , 2∗H)+pow( i +1 ,2∗H) ) /2 ;

}
void hosking ( long ∗nn , double ∗H, double ∗L , i n t ∗cum , long ∗ seed1 , long
∗ seed2 , double ∗output ) {

/∗ f unc t i on that gene ra t e s a f r a c t i o n a l Brownian motion or f r a c t i o n a l
∗/

/∗ Gaussian no i s e sample us ing the Hosking method .
∗/

/∗ Input : ∗n determines the sample s i z e N by N=2^(∗n)
∗/

/∗ ∗H the Hurst parameter o f the t r a c e
∗/

/∗ ∗L the sample i s generated on [ 0 ,L ]
∗/

/∗ ∗cum = 0 : f r a c t i o n a l Gaussian no i s e i s produced
∗/

/∗ = 1 : f r a c t i o n a l Brownian motion i s produced
∗/

/∗ ∗ seed1 seed1 f o r the random generator
∗/

15 /∗ ∗ seed2 seed2 f o r the random generator
∗/

/∗ Output : ∗ seed1 new seed1 o f the random genera tor
∗/

/∗ ∗ seed2 new seed2 o f the random genera tor
∗/

/∗ ∗output the r e s u l t i n g sample i s s to r ed in t h i s array
∗/

long i , j , generator , m = pow(2 ,∗nn) ;
double ∗phi = ( double ∗) c a l l o c (m, s i z e o f ( double ) ) ;
double ∗ p s i = ( double ∗) c a l l o c (m, s i z e o f ( double ) ) ;
double ∗cov = ( double ∗) c a l l o c (m, s i z e o f ( double ) ) ;
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double v , s c a l i n g ;

/∗ s e t random genera tor and seeds ∗/
snorm ( ) ;
genera tor = 1 ;
gscgn (1 , &generator ) ;
s e t a l l (∗ seed1 ,∗ seed2 ) ;

/∗ i n i t i a l i z a t i o n ∗/
output [ 0 ] = snorm ( ) ;
v = 1 ;
phi [ 0 ] = 0 ;

35 f o r ( i =0; i<m; i++)
cov [ i ] = covar iance ( i , ∗H) ;

/∗ s imu la t i on ∗/
f o r ( i =1; i<m; i++) {

phi [ i −1] = cov [ i ] ;
f o r ( j =0; j<i −1; j++) {

p s i [ j ] = phi [ j ] ;
phi [ i −1] −= ps i [ j ]∗ cov [ i−j −1] ;

}
phi [ i −1] /= v ;
f o r ( j =0; j<i −1; j++) {

phi [ j ] = p s i [ j ] − phi [ i −1]∗ p s i [ i−j −2] ;
}
v ∗= (1−phi [ i −1]∗ phi [ i −1]) ;

output [ i ] = 0 ;
f o r ( j =0; j<i ; j++) {

output [ i ] += phi [ j ]∗ output [ i−j −1] ;
}

55 output [ i ] += sq r t ( v ) ∗snorm ( ) ;
}

/∗ r e s c a l e to obta in a sample o f s i z e 2^(∗n) on [ 0 ,L ] ∗/
s c a l i n g = pow(∗L/m,∗H) ;
f o r ( i =0; i<m; i++) {

output [ i ] = s c a l i n g ∗( output [ i ] ) ;
i f (∗cum && i >0) {
output [ i ] += output [ i −1] ;

}
}

/∗ s t o r e the new random seeds and f r e e memory ∗/
getsd ( seed1 , seed2 ) ;

f r e e ( phi ) ;
f r e e ( p s i ) ;
f r e e ( cov ) ;

}
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Waiting time distribution with cuto�

This subroutine generate random numbers taken from distribution given by Eq.(4.25)

#de f i n e MAXIT 1000
#de f i n e UNUSED (−1.11 e30 )
#de f i n e SIGN(a , b) ( ( b) >= 0.0 ? fabs ( a ) : −f abs ( a ) )
#de f i n e IM1 2147483563
#de f i n e IM2 2147483399
#de f i n e AM (1 . 0/ IM1)

7 #de f i n e IMM1 (IM1−1)
#de f i n e IA1 40014
#de f i n e IA2 40692
#de f i n e IQ1 53668
#de f i n e IQ2 52774
#de f i n e IR1 12211
#de f i n e IR2 3791
#de f i n e NTAB 32
#de f i n e NDIV (1+IMM1/NTAB)
#de f i n e EPS 1 .2 e−7
#de f i n e RNMX (1.0−EPS)

f l o a t z r i dd r ( f l o a t (∗ func ) ( f l o a t , f l o a t ) , f l o a t x1 , f l o a t x2 , f l o a t rn ,
f l o a t xacc ) ;

f l o a t dum;
f l o a t ctrw ( f l o a t , f l o a t ) ;
f l o a t xacc=1e−6; /∗ Accuracy o f Zr iddr func t i on ∗/

f l o a t tau =1.0 ;

27

f l o a t Lmd=0.00001; /∗ i n v e r s e o f c u t o f f time ∗/

i n t main ( ) {

f l o a t c fv ;

c fv =1.0−1.0/pow(1.0+RAND_MAX/tau , alpha ) ;
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/∗Cumulative func t i on f o r power law wait ing time d i s t r i b u t i o n ∗/
do{

dum=ran3(&idum) ;
}whi l e (dum>=cfv ) ; /∗ Generation o f a random number sma l l e r than

c fv ∗/

wait ingt ime=z r i dd r ( ctrw , 0 . 0 ,RAND_MAX,dum, xacc ) ;
/∗Zriddr f i n d s the root o f ctrw func t i on ∗/

}

47

f l o a t ctrw ( f l o a t x , f l o a t rn )
{

f l o a t ans ;
/∗do{
dum=ran2(&idum) ;
}whi l e (dum==1) ; ∗/

ans=1.0−exp(−Lmd∗x ) /pow(1.0+x/t0 , alpha )−dum;
// ans=1.0−1.0/pow(1.0+x/t0 , alpha )−rn ;
r e turn ans ;

}

f l o a t z r i dd r ( f l o a t (∗ func ) ( f l o a t , f l o a t ) , f l o a t x1 , f l o a t x2 , f l o a t rn ,
f l o a t xacc )

{
i n t j ;
f l o a t ans , fh , f l , fm , fnew , s , xh , xl ,xm, xnew ;
f l =(∗ func ) ( x1 , rn ) ;

67 fh=(∗ func ) ( x2 , rn ) ;

// p r i n t f (" x1=%f , x2=%f \n" , x1 , x2 ) ;
// p r i n t f (" rn=%f \n" , rn ) ;
// p r i n t f (" f l=%f , fh=%f \n" , f l , fh ) ;
i f ( ( f l >0.0 && fh <0.0) | | ( f l <0.0 && fh >0.0) ) {

x l=x1 ;
xh=x2 ;
ans=UNUSED;
f o r ( j =1; j<=MAXIT; j++){
xm=0.5∗( x l+xh ) ;
fm=(∗ func ) (xm, rn ) ;
s=sq r t ( fm∗fm− f l ∗ fh ) ;
i f ( s==0.0) re turn ans ;
xnew=xm+(xm−x l ) ∗ ( ( f l >=fh ? 1 .0 : −1.0)∗fm/ s ) ;
i f ( f abs (xnew−ans )<=xacc ) re turn ans ;
ans=xnew ;
fnew=(∗ func ) ( ans , rn ) ;
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i f ( fnew==0.0) re turn ans ;
i f (SIGN(fm , fnew ) != fm) {

87 x l=xm;
f l=fm ;
xh=ans ;
fh=fnew ;

} e l s e i f (SIGN( f l , fnew ) != f l ) {
xh=ans ;
fh=fnew ;

} e l s e i f (SIGN( fh , fnew ) != fh ) {
x l=ans ;
f l=fnew ;

} e l s e {
p r i n t f ( " never get here . " ) ;
e x i t (1 ) ;

}
i f ( f abs (xh−x l )<=xacc ) re turn ans ;

}
p r i n t f ( " z r i dde r exceed max i t e r a t i o n s . " ) ;
p r i n t f ( "random number i s %f \n" ,dum) ;
e x i t (1 ) ;

}
107 e l s e {

i f ( f l ==0.0) re turn x1 ;
i f ( fh==0.0) re turn x2 ;
p r i n t f ( " root must be bracketed in z r i dde r . \ n" ) ;
p r i n t f ( "random number i s %f \n" ,dum) ;
p r i n t f ( " f l=%f and fh=%f \n" , f l , fh ) ;
e x i t (1 ) ;

}
re turn 0 . 0 ;

}
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