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ABSTRACT 

While Computer-Aided Design (CAD) has made significant progress since its inception, CAD 
tools are still used primarily for the creation, modification and documentation of designs 
rather than as ‘active’ partners in the design process. Spatial grammars are an approach for 
design synthesis having the potential to computationally support the human designer. They 
provide a method for rule-based, generative shape design but have yet to find general 
application within CAD systems. While many spatial grammars exist on paper, only a few 
have been computationally implemented to date. This is especially the case for three-
dimensional systems. Most spatial grammars are hard-coded, i.e., once implemented, the 
vocabulary and rules cannot be changed without re-programming. 

This work presents a new approach for creating a general three-dimensional spatial grammar 
system based on mechanical engineering CAD that enables visual, interactive definition and 
application of grammar rules for computational design synthesis. The method is based on a 
set grammar that uses a set of parameterized primitives and supports the definition of non-
parametric and parametric rules, as well as their automatic application. It comprises a method 
for the automatic matching of the left hand side of a rule in a current working shape, including 
defining parametric relations. 

Enhancements to the set grammar approach enable the use of Boolean operations, sweeping 
objects and three-dimensional labels to significantly increase the expressiveness of the 
geometry that can be generated with regard to mechanical engineering solutions. In addition 
to parametric relations and labels that are used as instruments to embed constraints in the 
rules, a collision detection mechanism is introduced to prevent generation of overlapping 
parts and to constrain the possible design space. A prototype implementation based on an 
open-source 3D modeling kernel and CAD system is presented and used to illustrate the 
approach through several mechanical engineering design examples such as the generation of 
vehicle wheel rims, robot arm concepts or gear systems. 

The main contribution that results from this approach is that instead of being exclusively 
created for a specific example or domain, the software prototype provides a flexible platform 
supporting designers with visual, interactive definition and application of their own spatial 
grammar rules in a familiar CAD environment without programming. It puts the creation and 
use of three-dimensional spatial grammars on a more general level and enables their usability 
in mechanical engineering CAD systems to provide for more ‘active’ support of the 
engineering designer. 

 



 

ZUSAMMENFASSUNG 

Trotz der erheblichen Fortschritte die Computer-Aided Design (CAD) seit seinen Anfängen 
gemacht hat, werden CAD Werkzeuge noch immer fast ausschließlich zur Erzeugung, 
Modifizierung und Dokumentation von Konstruktionen verwendet und nicht als ‚aktive‘ 
Partner im Konstruktionsprozess. ‚Spatial Grammars‘ stellen einen Ansatz zur Synthese von 
Geometrie dar, der das Potential besitzt den Konstrukteur computerbasiert zu unterstützen. 
Sie bieten eine Methode zur regelbasierten Generierung von Geometrie, welche bis dato keine 
Verbreitung im Bereich von CAD Systemen gefunden hat. Dies gilt insbesondere für 
dreidimensionale Systeme. Die überwiegende Anzahl an ‚Spatial Grammas‘ sind hard-coded, 
d.h. einmal implementiert können die Vokabeln und Regeln nicht ohne Umprogrammieren 
des Systems geändert werden. 

Die vorliegende Arbeit präsentiert einen neuen Ansatz zur Umsetzung eines allgemeinen, 
dreidimensionalen ‚Spatial Grammar‘ Systems, das, basierend auf maschinenbaulichem CAD, 
die visuelle, interaktive Definition und Anwendung von Grammatikregeln zur 
rechnerbasierten Synthese von Geometrie ermöglicht. Die Basis der vorgestellten Methode 
bildet eine ‚Set Grammar‘. Unter Verwendung eines Satzes parametrisierter Primitive 
unterstützt diese Methode die Definition nicht-parametrischer und parametrischer Regeln 
sowie deren Anwendung. Sie umfasst einen Ansatz zur automatischen Erkennung der linken 
Seite einer Regel in einer existierenden Geometrie und berücksichtigt dabei auch vorhandene 
parametrische Beziehungen. 

Durch Erweiterungen des ‚Set Grammar‘ Ansatzes wird die Verwendung von durch 
Boolesche und Sweeping Operationen erzeugten Volumenkörpern sowie der Einsatz von 
dreidimensionalen ‚Labels‘ ermöglicht. Mit Blick auf die Generierung maschinenbaulicher 
Lösungen wird dadurch die Aussagekraft der erzeugbaren Geometrie signifikant erhöht. 
Zusätzlich zu parametrischen Beziehungen und ‚Labels‘ als Instrumente zur Festlegung von 
Randbedingungen wird ein Mechanismus zur Kollisionserkennung eingeführt, durch den die 
Generierung überlappender Bauteile vermieden sowie der zur Verfügung stehende Bauraum 
eingeschränkt werden kann. Unter Verwendung eines Softwareprototyps, der auf Grundlage 
eines Opern Source 3D Modellierungskernels und CAD Systems implementiert wurde, wird 
der beschriebene Ansatz anhand einiger maschinenbaulicher Konstruktionsbeispiele wie z.B. 
der Generierung von Autofelgen, Roboterarmen oder Getriebesystemen veranschaulicht. 

Der Hauptbeitrag des vorgestellten Ansatzes, ist, dass der Softwareprototyp, anstatt als 
eigenständiges System für einen einzigen, spezifischen Anwendungsfall programmiert zu 
sein, eine flexible Plattform bietet, die Konstrukteure bei der visuellen, interaktiven Definition 
und Anwendung ihrer eigenen ‚Spatial Grammars‘ in gewohnter CAD Umgebung unterstützt 
ohne dabei Programmierkenntnisse zu erfordern. Der Ansatz ermöglicht eine generellere 
Erzeugung und Verwendung von dreidimensionalen ‚Spatial Grammars‘ sowie deren 
Nutzung in maschinenbaulichen CAD Systemen, um dem Konstrukteur eine ‚aktivere‘ 
Unterstützung bieten zu können. 
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1. Introduction 

1.1 Current situation and motivation 
Remaining competitive in global markets is the crucial challenge for companies today. Above 
all, companies are forced to develop better products faster. In the engineering domain the 
computer has become a key tool, as it provides support and can automate a great variety of 
tasks involved in the creation of products. Its use significantly improves the ability of 
companies to meet the time, cost and quality requirements of competition. With continuously 
increasing computational resources, it is possible to perform routine tasks quicker and handle 
growing amounts of data more efficiently. 

Today, a vast range of software tools are available to engineers covering areas such as design, 
analysis, simulation, optimization, manufacturing or visualization, to name a few. 
Engineering design, which is one of the central tasks of product development, is greatly 
supported by the use of Computer-Aided Design (CAD) systems. Since the development of 
the first concepts in the early 1960s (SUTHERLAND 1963), CAD has made significant progress. 
Over the decades, CAD systems have evolved from two-dimensional computational drawing 
applications to three-dimensional parametric, feature-based modeling systems – the standard 
systems used by mechanical engineers today. Based on a wide range of functionality, they 
provide high generality with regard to the geometric models that can be designed. Over many 
years of development, the interfaces of CAD tools have also evolved and become quite 
sophisticated (CHASE 2002), resulting in systems that are easy and intuitive to use via a 
graphical user interface (GUI). 

The input and decisions about how to perform modeling operations are provided by the 
human designer. CAD systems on the market are used primarily for the creation, modification 
and documentation of designs and, therefore, can be considered passive (HEISSERMAN et al. 
2004, CHASE 2002). Especially automatic support for the actual act of synthesis, i.e. the 
creation of non-predefined, possibly new, design solutions, is hardly provided by CAD tools. 
Consequently, the powerful computational systems that exist today are used below their 
capacities in this area (CELANI 2002). 

Grammar-based design synthesis systems are considered to be potentially powerful tools for 
the generation of designs with little or no user-input (CHASE 2002). Especially spatial 
grammars provide a method for rule-based, generative shape design but have yet to find 
general application within CAD. To extend on current CAD tools, spatial grammars have the 
potential to act as an active partner through the synthesis of designs, thereby further 
supporting the human designer. They can support routine design tasks, assist in the generation 
of alternative designs and, even more interesting, create spatially novel solutions beyond what 
a designer might think of. 

More than 40 years ago, STINY & GIPS (1972) introduced shape grammars as a generative 
approach to shape design. In following research, STINY (1980a) further detailed this concept 
and subsequently distinguished set grammars as a simple variant of shape grammars (STINY 
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1982). Since then, a significant amount of research has been published on shape and set 
grammars, both of which can be classified under the more general term spatial grammars 
(KRISHNAMURTI & STOUFFS 1993). Originally presented for paintings and sculptures, this 
concept has also been successfully applied in other domains, such as architecture, industrial 
design, decorative arts and engineering (cf. overviews in CHAU et al. 2004 and CAGAN 2001). 

While many spatial grammars exist on paper, only a few, limited spatial grammar systems 
have been computationally implemented to date. This is especially true for three-dimensional 
systems. Of those that have been implemented, many are restricted to one specific design 
domain or application example. Further, the majority of implemented examples do not 
provide for a visual way to edit an existing grammar or to develop a completely new 
grammar. Instead, they usually require coding of grammar rules in textual form (CHASE 
2002), meaning that, once implemented, the vocabulary and rules cannot be changed without 
re-programming. This makes at least some programming knowledge necessary. Practicing 
designers, however, tend to think spatially. They are used to working in a graphical 
environment, for example, using the GUI of a CAD system, or are often not willing or able to 
program due to limited programming experience. Instead, they want to focus on designing. 

1.2 Research goals 
The aim of the research presented in this thesis is the development of a new approach for 
creating a general three-dimensional spatial grammar system. Instead of being exclusively 
created for a specific example or domain, the more general system will provide a flexible 
platform supporting designers with visual, interactive definition and application of their own 
grammar rules in a familiar CAD environment without programming. Aiming to overcome 
the limitations of currently available three-dimensional spatial grammar systems, the 
approach taken here seeks to make the advantages of spatial grammars available in CAD 
systems. Enhancing CAD systems with computational design synthesis capabilities 
transforms such systems into a more active partner for the human designer. 

The thesis is written from a mechanical engineering perspective, but the approach described is 
applicable to other domains, such as architecture, as well. The aim is to provide design 
support through the integration of a spatial grammar interpreter in a CAD system. Therefore, 
the developed approach is implemented as a prototype software system based on a three-
dimensional solid CAD system. This reflects a statement by GIPS (1999) who describes the 
idea of developing a shape grammar plug-in for a traditional CAD program that would assist 
in creating a shape grammar, which, in turn, would help the practicing designer. 

The term ‘visual’ is used to distinguish from grammar approaches that require programming 
for the development of new rules. The direct visual manipulation of displayed geometric 
objects using the computer mouse is not within the focus, as the extent to which this is 
possible is highly dependent on the CAD system used and only marginally affects the actual 
approach. As is common in mechanical engineering design, the need to define parametric 
relations and exact measurements is realized using numerical inputs that trigger an immediate 
update of the geometry and its visualization. 
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1.3 Thesis outline 
The thesis starts with a background chapter that introduces computational design synthesis 
and the set and shape grammar formalism. It explains the meaning of interpreters and user 
interaction, presents and characterizes existing spatial grammar implementations and takes a 
look at related approaches in the area of Knowledge-Based Engineering (KBE). 

Building on the background chapter, Chapter 3 discusses the potential benefits of using a 
spatial grammar approach in CAD and the challenges that are involved in creating a general, 
three-dimensional grammar interpreter. 

Taking the various challenges highlighted in the previous chapter into consideration, Chapter 
4 outlines this research’s approach, starting with a clarification of the concepts used in the 
development of non-parametric and parametric grammar rules and their automatic 
application. Enhancements to the approach in terms of using Boolean operations, simple 
swept objects and three-dimensional labels to significantly increase the expressiveness of the 
geometry that can be generated are described subsequently. Finally, a collision detection 
mechanism adding further possibilities to constrain design generation is introduced. 

The implementation of the approach in a prototype software system is presented in Chapter 5. 
The chapter demonstrates the functionality and the use of the system as well as some 
important issues concerning the internal realization of the implementation. Several 
mechanical engineering examples that cover the different aspects of the presented approach 
are given in Chapter 6. 

The thesis ends with a summary of the research contributions, a discussion of the limitations, 
potential areas of improvement, suggestions for future research and a conclusion. 
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2. Background 

This chapter discusses relevant research topics and existing work related to this thesis. It 
provides the basis for the derivation of benefits and challenges presented in Chapter 3 and 
enables the reader to gain an understanding of the context of this thesis. 

The chapter starts with an introduction to the general area of computational design synthesis, 
followed by an explanation of the formalism that underlies the approach of spatial grammars 
including the related terminology. The meaning of grammar interpreters as well as aspects of 
user interaction are described, before an overview of important existing spatial grammars is 
given. Here, the focus is on implemented grammar systems; these are characterized in more 
detail. The final part of this chapter compares the spatial grammar approach to KBE 
approaches used in commercial CAD software. 

2.1 Computational design synthesis 
The approach presented in this thesis aims at computationally supporting the human CAD 
designer in the design synthesis phase. Design synthesis can be thought of as creating form, or 
product structure, to fulfill desired behavior and function (STARLING & SHEA 2005) based on 
the creation and combination of building blocks. It is the creative step itself, the conception 
and postulation of possibly new solutions to solve a problem, which in engineering design is 
mostly performed by creative human minds (ANTONSSON & CAGAN 2001). Formalization of 
the design synthesis process enables the computer-based, automated or semi-automated 
generation of designs making use of the capacities that computers provide. 

Several methods for formal, computational design synthesis have been successfully developed 
during the last decades. Three major themes among these methods are function-based 
synthesis, grammar-based synthesis and analogy-based design (CHAKRABARTI et al. 2011). 
Overviews of existing examples can be found in CHAKRABARTI et al. (2011), ANTONSSON & 
CAGAN (2001) and CHAKRABARTI (2002). They cover a wide range of applications, for 
example, structures (e.g. SHEA & CAGAN 1999), consumer products (e.g. AGARWAL & 
CAGAN 1998), mechanical systems (e.g. STARLING & SHEA 2005), automotive styling (e.g. 
MCCORMACK et al. 2004), and microelectromechanical systems (e.g. BOLOGNINI et al. 2006). 

The approach in this thesis relies on grammar-based synthesis, namely spatial grammars, as 
they have the potential to be directly used in a CAD environment that is familiar to designers. 

2.2 Spatial grammars: theoretical fundamentals 
‘Spatial grammars’ is a general term that includes all kinds of grammars that define languages 
of shape, for example, string grammars, set grammars, graph grammars and shape grammars 
(KRISHNAMURTI & STOUFFS 1993). This thesis focuses on set and shape grammars because 
the presented approach is based on a set grammar formulation and among the related existing 
implementations, there are also several shape grammar systems. 
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2.2.1 Formalism 
The formalisms of set and shape grammars are similar. Both are generative systems that 
generate shapes applying defined rules iteratively starting from an initial set or shape that 
exists within a defined vocabulary of shapes. A set grammar is formally defined as G = (S, L, 
R, I) where: 

 S is a finite set of shapes 

 L is a finite set of labels 

 R is a finite set of rules, and 

 I is the initial set, where I is a subset of (S,L)0 

The set of labeled shapes, including the empty labeled shape, is (S,L)0 and is also called the 
vocabulary. The rewriting rules are defined in the form A → B, where A and B are both 
subsets of the vocabulary. An example for a rule is given in Figure 2-1(a). It is demonstrated 
on a simple, two-dimensional level to make it easily understandable to the reader and it does 
not make use of labels which are explained in more detail in the next subparagraph. 

 

Figure 2-1: Example for the application of a rule according to the grammar formalism 

rule A → B working shape C

t(A) detection in C

(a)

(b)

subtraction: C - t(A)

t(B) addition: C + t(B)

(c)

(d)

(LHS) (RHS)

C’
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To apply a rule to a given set of shapes (Figure 2-1(a), right), which is called the working 
shape C or current working shape (CWS), first, A in the left hand side (LHS) of a rule has to 
be detected in C. This matching process can make use of valid Euclidean transformations, t, 
that are applied to A, to find more possible matches of A in the working shape C (Figure 
2-1(b)). The transformed subset A is then subtracted from C (Figure 2-1(c)) and the 
transformed subset B of the right hand side (RHS) of the rule is added (Figure 2-1(d)), thus 
resulting in a new set of shapes C’ where C’ = C – t(A) + t(B). 

Defining more than one rule, for example the two shown in the upper part of Figure 2-2, and 
applying the rules using different application sequences enables the generation of alternative 
solutions. Two example solutions and the according rule application sequences are shown in 
the lower part of Figure 2-2, both starting with the current working shape as shown in Figure 
2-1(a), right. 

The formalism of shape grammars is basically the same as the set grammar formalism, where 
I is the initial shape, A and B are shapes in the vocabulary and rules apply to subshapes of 
labeled shapes to produce other labeled shapes. In comparison, set grammar rules apply to 
subsets of sets of shapes to produce other such sets (STINY 1982). Therefore, designs 
generated by a set grammar consist of shapes in S. Designs defined by shape grammars, 
instead, consist of shapes and subshapes of shapes in S, because the compositional units in 
designs can be decomposed and recombined in different ways (STINY 1982). Shape grammars 
work directly on spatial forms (KRISHNAMURTI & STOUFFS 1993), while set grammars treat 
designs as symbolic objects with geometric properties, which makes them more amenable to 
computer implementation (STINY 1982). Strictly speaking, a shape grammar involves the use 
of a maximal line representation, which can be broken down and re-represented in a large 
number of ways. For example, a line can be broken up into smaller line segments to form 
subshapes. This ability for re-representing shapes in a number of ways enables for wider 
matching of the shape A in the LHS of a rule to embedded subshapes in the working shape C. 

  

Figure 2-2: Two rules and two solutions created using different rule application sequences 

(1) (2)

→ (1) → (2) → (2) → (1) 
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2.2.2 Labels 
The second component of the grammar formalism presented above is the set of labels. Labels 
have been applied in a wide range of scopes (see overview in Figure 2-3) and are therefore 
explained in more detail in this subparagraph. The most common way to represent a label is a 
dot, or small circle, that might be filled or empty. In addition characters, or letters, and 
numbers have been used, often in combination with a geometrical symbol. 

Spatial labels are used to control where, i.e. the relative position in relation to a distinct shape, 
and how, i.e. under what specific Euclidean transformations, rules apply to a CWS (KNIGHT 
1994). In this context, spatial labels can also remove symmetries (rotational, reflective) of a 
shape. Often spatial labels are used to prevent application of rules to the same shape more 
than once or to make rules applicable only to the most recently added shape in a CWS. Spatial 
labels have a specific location but are invariant if a rule is applied under rotation or scale 
transformations. 

Figure 2-4(a) shows an example for a rule using spatial labels that combine the described 
purposes. Applying the rule to the initial set in Figure 2-4(b), the label depicts the one 
transformation under which the rule is to be applied. Without using a label, there would be 
several different rotation or reflection transformations to match the rectangle. Applying the 
rule a second time, the label forces the LHS to match under a combined reflection and 
rotation transformation. Further, the LHS can only be matched to the rectangle with the label, 

 

Figure 2-3: Concise overview of the use of labels 

 

Figure 2-4: Rule using spatial labels 

labels

constraints non-geometric
information

distinction of 
basic elementsstatespatial

application to 
specific CWS part

determination of 
transformation 
for application

application iteration

application sequence

generation termination

denotation of 
shapes

assignment of 
materials etc.

LHS matching
simplification 

(a) (b)
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i.e. the most recently added shape, and therefore the rule can only be applied once to any 
shape that is added to the CWS. 

The second category of labels is state labels (KNIGHT 1994). They are used to define when 
rules apply or, more precisely, the sequence and the repetition, i.e. (implicitly) the number of 
times a rule could be applied. This can also include the termination of the generation process, 
for example, if there are no further labels in a CWS and therefore no further rule is applicable. 
State labels are completely non-spatial, i.e., in comparison to spatial labels, not even the 
location matters. Often they are represented using numbers. 

Figure 2-5 illustrates several rules using state labels. If only rule (b) is defined in a grammar, 
it can be applied once to the initial set (a), whereas the state changes from “1” to “2”. This 
prevents further application of the rule, restricting the number of possible iterations. Adding a 
second rule (c) to the grammar with a state label “2” in its LHS, the application is no longer 
restricted to a single iteration. As the application of the rule changes the state back to “1”, the 
rule sequence is determined to apply rule (b) and (c) repeatedly one after the other. To 
terminate the generation process, rule (d) can be applied that changes state “1” into state “3”. 
This state is not part of any of the other rules and, thus, no further rule can be applied. 
Similarly, rule (e) can be applied. This rule does not change the state, but instead completely 
removes the label. 

More than one label and also different kinds of labels (spatial and state), can be defined in 
either side of a rule. 

The uses of labels described so far introduce constraints restricting the application of rules. 
However, labels can also be used to augment shapes with additional, non-geometric 
information or data. For example, they can distinguish or classify basic elements and parts of 
shapes, or they may have their own semantics to introduce other kinds of properties (STINY 
2006). Other examples are the use of text labels for the denotation of shapes, which can also 

 

Figure 2-5: Rules using state labels 

(a)

1

(d)

1 3

(e)

2

(c)

2 1

(b)

1
2
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be used to assign semantic or functionality to shapes. In the same way, labels can assign, for 
example, materials to solids that can be used to calculate the mass or render the texture and 
color of a solid (HEISSERMAN 1994). 

For example, rule (a) in Figure 2-6 adds the textual label ‘shaft’ to a cylinder so that it differs 
from other cylindrical objects, and gives semantic meaning to the geometry. A further rule 
could be defined that only applies to a ‘shaft’ and no other cylinder. Similarly, rule (b) 
augments the block with information about its material. 

The last category of labels shown in Figure 2-3 is the simplification of the LHS matching of a 
rule in the CWS. For the computational implementation of grammars the matching problem is 
a central challenge (KRISHNAMURTI & STOUFFS 1993), as the computer relies on formal 
representations of geometry that are not sufficiently suited to detect visual similarity of 
geometry under Euclidean transformations in a general way. This is especially true for curved 
shapes (JOWERS & EARL 2011). A few examples for spatial grammars exist that, while using 
curves, avoid shape-matching entirely by relying on labels (MCCORMACK & CAGAN 2006). In 
the example in Figure 2-7, the problem of matching curved geometry is circumvented using a 
combination of a straight line and a label in the LHS of rule (a). Instead of having to match 
curved geometry in the CWS (b), only the label and the straight line have to be matched. 

The label in Figure 2-7(b) indicates that a further rule has to be applied, i.e. the CWS with the 
straight line is an intermediate stage. The straight line acts as a reference, as only using the 
label in the LHS would not depict the rotation under which the rule has to be applied. In 
general, the reference does not necessarily have to be a line but multiple options using points 
and lines are possible to achieve this goal. The application of the rule results in the curvilinear 
design in Figure 2-7(c). It can be seen that this label type is an extension of the spatial label. 

  

Figure 2-6: Rules with labels adding non-geometric information to geometry 

 

Figure 2-7: Example using simplified LHS matching 
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2.2.3 Parametric grammars 
As an extension to the basic formalism STINY (1977, 1980a) describes parametric grammars 
where the rules are based on parameterized shapes and some or all of the parameter values are 
not predefined in the rule. Thus, a rule schema is defined that describes many different but 
related rules in one generalized rule. This allows for a wider variety of possible designs to be 
generated by fewer rules. Figure 2-8(a) shows a simple example of a parametric rule. The 
LHS is defined to be a parameterized quadrilateral, i.e. either the coordinates of its vertices or 
the lengths of its edges and the angles between them are not predefined. This allows for 
matching not only the quadrilateral shown in the LHS but any other quadrilateral, for 
example, the one shown in Figure 2-8(b). 

The RHS inscribes a new quadrilateral inside the matched one, whereas the vertices of the 
new quadrilateral are constrained to coincide with the midpoints of the edges. Starting with 
the shape in Figure 2-8(b) and applying the rule twice, generates the result shown in Figure 
2-8(c). 

2.3 Grammar interpreters and user interaction 
GIPS (1999) provides a general definition of shape grammar interpreters, calling them a 
“program for shape grammar generation”. According to CHASE (2002) “the complete process 
of generating a design with a grammar involves two main stages”: the development of the 
grammar and its application. The development of a grammar mainly comprises the definition 
and modification of the vocabulary and the rules as well as the design of the initial set. The 
tasks in the application phase primarily include the selection of a rule to be applied, the 
determination of an object, or set of objects, to apply the rule to, as well as the detection of the 
matching condition under which the LHS of a rule matches an object in the CWS. These three 
tasks, which are often interdependent, are illustrated in Figure 2-9 together with the 
development phase shown on the left hand side. The figure further shows several exemplary 

 

Figure 2-8: Example for a parametric grammar (adapted from STINY 1980a) 

(a)

(b) (c)
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scenarios for user interaction with an interpreter system. The single tasks can be performed by 
different entities, namely the developer, the user, i.e. the designer using the grammar rules, or 
the computer. Depending on the degree of computer involvement, it can be differed between 
manual, semi-automatic and automatic application modes. Non-automatic modes are needed 
in cases where it is difficult to embed certain constraints in the grammar (CHASE 1989), so 
that the user can interactively direct the rule application to generate suitable solutions. 

CHASE (2002) differs between the two roles ‘developer’ and ‘user-designer’. For many 
existing implementations the development of the grammar was rather difficult and generally 
included hard-coding to implement the system. For a more general use of grammars, however, 
it is inevitable that designers themselves are enabled to cover the development phase and 
define their own rules in a familiar environment without requiring programming. 
CHAKRABARTI et al. (2011) suitably define a grammar interpreter as a software program that 
interactively and graphically supports the tasks involved in the development and the 
application phase, without the need for extensive programming. 

2.4 Existing spatial grammars 
The theoretical aspects of shape and set grammars have been discussed in a variety of 
publications. The basic ideas were introduced by STINY and GIPS (STINY & GIPS 1972, STINY 
1980a, STINY 1982) and have further been evolved and explored in several other papers. 
Some of the important examples are the use of colors in grammars (KNIGHT 1989), the 
introduction of weights (STINY 1992), the determination of algebras of shapes (STINY 1991), 
and the distinction of different grammar types in KNIGHT (1999). It was also KNIGHT (1994) 
who first provided a comprehensive overview about shape grammars and so does STINY’s 
(2006) most recently published book Shape. The examples used to explain the theoretical 

 

Figure 2-9: Development and application of grammar rules including user interaction scenarios (adapted from 
 CHASE 2002) 

rule object matching
condition

applicationdevelopment
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aspects of grammars are mostly kept on a simple level focusing on illustrating particular 
issues. 

Other authors focused their work on mathematical or algorithmic aspects of grammars to 
create the foundation for computational implementations. It was especially Krishnamurti who 
published a series of papers in this area, for example about an algorithm for shape rule 
application (KRISHNAMURTI 1981) and about procedures for the recognition of three-
dimensional line shapes (KRISHNAMURTI & EARL 1992). Noteworthy are also the 
contributions by GIPS (1999) discussing general issues with regard to the implementation of 
grammars, for example, user interfaces and parametric grammars, and by CHASE (2002) 
analyzing user interaction in grammar-based design systems. 

While the research presented in the above publications has mainly a fundamental character, 
there exist many papers that concern specific spatial grammars for the generation of concrete 
artifacts. The majority of them stem from the areas of decorative arts and architecture. Early 
examples are the ice-ray grammar that generates Chinese lattice designs (STINY 1977) and a 
grammar for the design of Hepplewhite chair backs (KNIGHT 1980), both of which are based 
on parametric shape grammars. The often cited kindergarten grammar (STINY 1980b) 
illustrates the definition of design languages based on grammar rules using the three-
dimensional Froebel building blocks from the kindergarten method. Further prominent 
grammars exist for the creation of different ground plans or house designs, for example, 
Palladian villas (STINY & MITCHELL 1978), prairie houses in the style of Frank Lloyd Wright 
(KONING & EIZENBERG 1981), bungalows from suburban developments in Buffalo (DOWNING 
& FLEMMING 1981) and houses in the Queen Anne style (FLEMMING 1987). 

All of the examples mentioned in the previous paragraph are paper-based, i.e. the designs are 
created manually. Paper-based spatial grammars can serve as useful guides for the creation of 
designs (MCCORMACK & CAGAN 2002) and can easily be applied as most of the 
computationally difficult tasks, especially the recognition of the LHS of a rule in a CWS, are 
performed by the human grammarian. This, however, also makes the rule application error-
prone and the creation of many different solutions by hand can be an extremely time 
consuming task, especially in 3D. To make spatial grammars more valuable by using them in 
computational design synthesis systems requires their implementation. To date, however, only 
a few spatial grammar systems have been computationally implemented. Nearly all of these 
have been developed in academia as experimental prototypes or for educational purposes. An 
overview of implemented systems up until 2002 can be found in CHAU et al. (2004). A few 
more have been implemented since; an overview of the latest systems is presented in MCKAY 
et al. (2012). In the remainder of this section, the most noteworthy implementations are 
presented. From these systems, the ones that are most relevant to this thesis are characterized 
in more detail in Table 2-1 at the end of this paragraph. 

Many of the existing systems were implemented for one specific grammar and, from a user-
point of view, they only support the application of grammar rules, not their development. 
They are typically hard-coded meaning that “a computer program was created entirely to 
implement a single set of rules” (MCCORMACK & CAGAN 2003). Some were first developed 
on paper and later implemented, for example, the coffee maker grammar (AGARWAL & 
CAGAN 1998) which was implemented as a two-dimensional system that generates three 
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orthographic views to derive a three-dimensional representation of a coffee maker from. It 
consists of 100 rules and makes extensive use of labels, for example to control the generation 
process and to circumvent the need to match curvilinear lines (MCCORMACK & CAGAN 2006). 
It also relies on many parameters that the user can assign concrete values to during rule 
application. LI & KUEN (2004) implemented a system1 that provides a user interface for the 
application of rules that generate sections of two-dimensional Chinese wood-frame buildings 
represented by straight lines. The grammar consists of 48 rules that can be applied semi-
automatically by the user or, for example for the roof, automatically by the system. In the first 
case, the user chooses the rules manually, whereas the system only activates the rules that are 
currently applicable to the CWS after every application step. To restrict the application to 
certain areas of the CWS, a variety of different labels are used and 10 rules are available 
exclusively to remove remaining labels from a building design. Another example that uses 
labels to guide the application process is a grammar for the generation of 
microelectromechanical (MEMS) devices (AGARWAL et al. 2000). Using a form-function 
coupling, labels are further used to ensure that some indispensable functional entities exist in 
any final design solution. The 2D grammar consists of 15 rules and was implemented as a 
prototype software system. 

During the last fifteen years, an increasing interest in implementing more general interpreter 
systems, which can provide user support for both the development and the application phase, 
can be seen. To date, the majority of these systems are two-dimensional systems. GEdit 
(TAPIA 1999) allows for the visual development of rules as well as their interactive 
application, which includes subshape recognition. New shapes based on straight two-
dimensional lines can be created in an external drawing program and are converted to a 
maximal line representation once they are imported to GEdit. Shape rules can also contain 
labels to restrict the application of rules to a certain shape or to deal with reflection 
symmetries. They are drawn in the external program as ovals which can be filled with patterns 
to define different labels. Shaper2D2 (MCGILL & KNIGHT 2004) was implemented for 
educational purposes and allows for the direct visual manipulation of two shapes that are 
either rectangle, square, isosceles triangle or equilateral triangle by changing size, location or 
orientation. A maximum of two rules are iteratively and fully automatically applied where the 
resulting design is shown in real-time. Labels are used exclusively to remove symmetry of 
shapes. Their position can be changed to different predefined locations that are dependent on 
the degrees of the symmetry of a particular shape. DEAK et al. (2006) developed a software 
system named Spadesys, which can be used for what they call ‘CAD grammars’. CAD 
grammars as shown in the publication are a two-dimensional set grammar approach based on 
straight lines. Lines can be distinguished by assigning different line-types which can be seen 
as augmenting labels. Parametric grammar rules can be defined using the GUI of the system. 
They can be applied semi-automatically or automatically based on using scripting. 
Additionally, constraints and requirements can be defined importing an external chunk of 
code to the system. 

                                                 
1 http://andrew.li/research/Gram%20sim%20w%20descr.swf (accessed January 14th 2012) 

2 http://designmasala.com/miri/shaper2d/ (accessed January 14th 2012) 
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Most recent research makes an effort to extend on interpreters that can also handle curvilinear 
2D shapes. MCCORMACK & CAGAN (2006) presented an implementation that is able to match 
curve-based shapes, including parametric shape recognition. The focus of this system is not 
on the definition or modification of grammars, but on the application and, especially, the 
matching of the LHS of rules in a CWS. It was used to implement several different examples, 
among them a grammar originally presented in MCCORMACK et al. (2004) that is able to 
generate front views of Buick vehicles. The system provides a more general approach as it is 
not implemented for one specific example. However, new grammars have to be defined using 
a text-based interface. Jowers implemented a shape grammar interpreter, QI, for shapes based 
on quadric Bézier curves (JOWERS & EARL 2010, JOWERS & EARL 2011). New rules can be 
visually designed by defining or manipulating the positions of the curves’ control points. The 
system automatically detects the LHS of a rule under similarity transformations and includes 
subshape recognition. The SubShapeDetector3, also developed by JOWERS et al. (2008), 
allows for the import of hand-drawn sketches that act as the basis for the interactive 
development and application of rules. It includes a pixel-based approach for the detection of 
subshapes, enabling the use of curved shape grammars. The second version of this system, 
SD24 (JOWERS et al. 2010), additionally provides for the direct computerized drawing of 
shapes within the software and the definition of an arbitrary number of rules. A system with a 
similar range of functionality, however restricted to straight lines, but instead using maximal 
line representation for subshape detection and providing the possibility to define spatial labels 
in rules, was published by TRESCAK et al. (2009)5. 

Up to now, only a few implementations of three-dimensional spatial grammars exist and the 
ones that do exist are mainly designed to deal with specific or restricted problems. Their focus 
is on the application of rules and the generation of design solutions. Therefore, the rules, or 
rule schemata, are pre-implemented using programming or scripting languages. SHEA & 
CAGAN (1997) implemented eifForm which provides for the automatic or semi-automatic 
application of grammar rules. It is based on the shape annealing method which combines 
shape grammars with simulated annealing to generate optimally directed designs. Using a 
labeled boundary graph as an internal representation for the structural shapes, a two-
dimensional grammar for the generation of planar trusses and a three-dimensional grammar 
for the generation of domes and free-forms are developed. The system was later used in 
combination with an associative modeling system for the generation of cantilever roof trusses 
(SHEA et al. 2005). A further three-dimensional example is an implementation that uses a 
parallel grammar, i.e. a combination of graph and set grammars, for the generation of gear 
systems (STARLING & SHEA 2002). The geometric objects are represented by cylindrical 
primitives. The rule application is performed (semi-) automatically and the solutions are 
output as VRML6 files that can be opened in an external viewer. The software prototype 

                                                 
3 http://www.engineering.leeds.ac.uk/dssg/downloads/requestForm.php (accessed January 14th 2012) 

4 http://www.engineering.leeds.ac.uk/dssg/downloads/requestForm.php (accessed January 14th 2012) 

5 http://sourceforge.net/projects/sginterpreter/ (accessed January 14th 2012) 

6 „Virtual Reality Modeling Language“, a standard file format for representing 3D vector graphics 
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additionally includes simulation-based evaluation and optimization methods to generate 
optimally directed solutions (STARLING & SHEA 2005). MALAG is a system that is 
implemented for the grammar-based design of mass-customized housing using the example of 
Alvaro Siza's patio houses at Malagueira (DUARTE 2005). It provides a GUI window, in 
which the user can select different requirements, e.g. the number of people living in the 
house, the number of different kinds of rooms, spaciousness, capacity, etc., and can assign 
weights to some of them. Based on that data, a design brief, i.e. a symbolic description of a 
house, is generated. The design brief is used as input for the shape grammar based generation 
of a house design that fulfills the given requirements as good as possible. The output is a 3D 
model that can be displayed in a web-based design viewer (DUARTE & CORREIA 2006). 

Besides the latter systems, a few 3D implementations exist that are not designed to deal with 
one specific problem. Their focus is also on the application side and the rules have to be pre-
implemented using programming or scripting languages. Genesis is currently the only known 
commercially used implementation of a spatial grammar system and, consequently, can be 
considered very mature. It was implemented at Boeing (see e.g. HEISSERMAN et al. 2004) 
based on the original system that Heisserman developed in his PhD thesis to generate, for 
example, alternative Queen Anne houses, Sierpinski sponges, and fractal-like mountains 
(HEISSERMAN 1994). At Boeing it is used to support the development and interactive 
application of rules for tubing designs in aircrafts, but, generally speaking, it is not restricted 
to this application area and could work in different domains. It enables designers to explore 
solution spaces as well as to evaluate, compare and merge design alternatives. Rather than as 
replacement rules, i.e. replacing the match to the LHS of a rule with the RHS, the design rules 
are formulated through logical match conditions and design transformations. The geometric 
objects as well as the rules are implemented upfront for later use by designers. PIAZZALUNGA 
& FITZHORN (1998) used a commercial solid modeling kernel to develop a three-dimensional 
‘interpreter’. In this system the rules are defined using a programming language that makes 
most of the kernel’s capabilities accessible. The application of these rules requires user 
interaction, where the user chooses a rule and an object to apply the rule to. Labels 
represented by single letters are used to restrict the application of rules to a certain geometric 
object, to remove symmetries and in some cases to define a certain rule sequence. CHAU et al. 
(2004) presented an approach called SGS that can handle rectilinear and curvilinear basic 
elements in 3D space. The shapes and rules are created and edited in an external text file and 
applied to generate wire frame models. It uses points in combination with different single 
letters as labels to restrict rule application to certain parts of the CWS and to remove 
symmetries. Based on the use of letters, the labels can also be used to realize state labels. The 
implemented example of a Coca-Cola bottle grammar uses straight lines and labels in the 
LHSs of the rules to circumvent problems with matching curvilinear lines. 

In addition to the systems described so far, a few three-dimensional implementations provide 
limited capabilities to customize rules. However, they do not allow for new rules to be 
defined without programming. The rules are realized as pre-implemented rule schemata to 
which the user can assign specific values. The sizes of shapes and their spatial relations, as 
well as the number of rule applications, can be defined before the application of a rule; the 
rule application itself is executed automatically. WONG & CHO (2004) started from the 
concept of Shaper2D (see above) and extended it to simulate three-dimensional blocks into a 
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single rule. In the revised version of this system, Shape Designer V.2 (WONG et al. 2005), the 
user can choose from several different predefined rule schemata. A rule is applied by typing a 
short command into a text input window. Commands consist of a short name for the chosen 
rule schema and the required values for the parameters. Depending on the rule schema, these 
include some or all of the following: number of iterations, translations, rotations, scale factor 
and sizes. Some rule schemas also include labels whose location is represented as one of the 
parameters that values can be assigned to. 3DShaper (WANG & DUARTE 2002) provides a 
dialog window for a pre-implemented rule schema to define the sizes and the spatial 
relationships of two blocks by typing in the required values. In doing so, one or two additive 
rules are specified which are immediately applied and saved in data files. A visual 
representation of the rules, as well as of the generated design, is available after opening the 
created files in an external viewer. In order to eliminate the ambiguity in shape rule 
applications that arises due to the symmetry of blocks, labels are defined in the rule schema. 
The position of a label can be set to one of the corners of a specified block. 

The latest prototype implementation of a grammar system that provides capabilities for the 
(re-)definition of rules, Grammar Environment (LI et al. 2009a, LI et al. 2009b), is based on 
the system by CHAU et al. (2004) but extends it with the capability to define new shapes and 
non-parametric, (labeled) rules in a graphical environment. The application of rules generates 
wire frames, like the original system, however, it is restricted to the use of points and straight 
lines. 2D shapes and rules can be directly created in the Grammar Environment system, but 
for the design of 3D shapes an external shape editor is needed. For this purpose, the 
commercial CAD system AutoCAD is used. The data of the designed geometry can be 
imported to the Grammar Environment system to be used for rule definition and application. 

Table 2-1 presents an overview of the characteristics of the most relevant spatial grammar 
implementations to this thesis. Their relevance was determined by their three-dimensional 
capabilities and/or the possibility to visually define and modify rules, as these are the foci of 
this thesis. The data was gathered from published papers and system tutorials, by testing a 
working copy of the corresponding implementation and also in direct correspondence with the 
authors. 
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Table 2-1: Relevant spatial gram
m

ar im
plem

entations and their characteristics 

name GEdit Shaper2D QI SubShapeDetector Shape Grammar Interpreter SD2

reference Tapia (1999) McGill & Knight (2004) Jowers & Earl (2011) Jowers et al. (2008) Trescak et al. (2009) Jowers et al. (2010) 

dimension(s) 2D 2D 2D 2D 2D 2D

shape types straight lines rectangle, square, isosceles/ 
equilateral triangle; customized 
shape(s) (to replace one of  the 
standard shapes per rule)

quadric Bézier curves arbitrary (pixel-based) straight (poly-)lines arbitrary (pixel-based)

max. number
of shapes

unrestricted 1 (LHS), 2 (RHS) unrestricted unrestricted (no explicit single 
shapes)

unrestricted unrestricted (no explicit single 
shapes)

max. number
of rules

unrestricted 2 unrestricted unrestricted (one loaded at a 
time)

unrestricted unrestricted

rule format additive, subtractive, replacing additive additive, subtractive, replacing additive, subtractive, replacing additive, subtractive, replacing additive, subtractive, replacing

parametric rules no no no no no no

labels spatial spatial no no spatial no

definition/editing/mani
pulation of rules

visual, interactive
(restricted to def inition)

direct visual manipulation of  
shape sizes/location/ orientation

visual, interactive visual, interactive (restricted to 
copy& paste of (sub-)shapes)

visual, interactive visual, interactive

LHS matching automatic, including subshapes rules are always applied to most 
recently added shape; LHS is 
always subset of  RHS of  
previously applied rule; 
automatic detection of  the 
corresponding transformation

automatic, including subshapes automatic, including subshapes automatic, including subshapes automatic, including subshapes

transformations for 
matching

translation, rotation, scale, 
ref lection

translation, rotation, ref lection translation, rotation, scale,
ref lection

translation, vertical ref lection translation, rotation, scale,
ref lection

translation, rotation, scale 
(manual specif ication of factor), 
vertical ref lection

application mode semi-automatic automatic semi-automatic semi-automatic (semi-)automatic semi-automatic

max. number
of applications

no explicit restriction 25 no explicit restriction no explicit restriction 100 no explicit restriction

one single, integrated 
system

external system needed to 
create new shapes

external f ile for customized 
shape necessary

yes import of  sketched shape(s) 
needed

yes yes

unique 
characteristic(s)

preview of  all possible results 
applying a rule

real time design generation and 
display; direct visual 
manipulation of  shapes

based on parametric curves;
curvilinear subshape detection

pixel-based, curvilinear 
subshape detection

generation chain preview;
generates all possible next steps

pixel-based, curvilinear 
subshape detection; preview of  
possible replacements

Note:
• reference: one of the latest publications about the implementation
• dimension(s): dimension of the space in which the shapes/rules are used
• shape types: types of shapes that are used in the given rules or that are provided in the implementation for the definition of rules; e.g. some systems provide straight lines to define other, more complex shapes, others 

are restricted to a given set of predefined shapes, etc.
• max. number of shapes: maximum number of shapes that can be used in the definition of a rule or that are given in a rule schema
• max. number of rules: maximum number of rules that can be defined in a grammar; some systems are pre-implemented rule schemata that are restricted to a certain number of rules
• rule format: the types of rules the implementation supports/provides – these can be “additive“ if only part of the RHS equals the LHS, “subtractive” if the RHS equals only part of the LHS or “replacing” if the 

complete LHS is substituted by the RHS
• parametric rules: depicts whether the implementation uses or allows for the definition of parametric rules as described in STINY 1980a
• labels: depicts whether the implementation uses or allows for the definition of  labels and the kind of  labels (according to the overview in Figure 2-3)
• definition/editing/manipulation of rules: depicts the means of user-interaction for the definition of new rules, editing existing rules or the manipulation of rule schemata
• LHS matching: characterization of how the LHS (shapes and transformations) of a rule is matched in the CWS
• transformations for matching: the kinds of transformations that can be used to find matches of the LHS in the CWS
• application mode: the level of human intervention required or allowed in application steps, e.g. the selection of a rule or an object to which a rule is applied
• max. number of applications: some implementations are restricted to a certain number of rule applications (or iterations)
• one single, integrated system: some implementations require external systems, e.g. for the definition of new shapes or to view generated designs
• unique characteristic(s): characteristics that can only be found in the corresponding implementation
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Table 2-1: Relevant spatial gram
m

ar im
plem

entations and their characteristics (continued) 

name Genesis 3D grammar interpreter 3DShaper SGS Shape Designer Shape Designer V.2 Grammar
Environment 

reference Heisserman et al. (2004) Piazzalunga & Fitzhorn (1998) Wang & Duarte (2002) Chau et al. (2004) Wong & Cho (2004) Wong et al. (2005) Li et al. (2009)

dimension(s) 3D 3D 3D 3D 2D or 3D (2D methods 
simulating 3D objects)

2D or 3D 3D

shape types 3D polyhedral and 3D swept 
solids

blocks blocks (cube, oblong, pillar, 
square); possibly 
substitutable by a customized 
shape

straight lines and circular 
arcs

triangle, rectangle, 
square, block (2D 
simulating 3D)

straight lines, triangle, rectangle, 
pentagon, block, triangular 
pyramid; in 3D only one single 
type used at a time for a rule 
schema

straight lines

max. number
of shapes

unrestricted (rules can 
operate on other represen-
tations than shapes as well)

1 (LHS), 5 (RHS, in the given 
examples, theoretically 
expandable)

1 (LHS), 2 (RHS) unrestricted 1 (LHS), 2 (RHS) 1 (LHS), 20 (RHS, in the given 
schemata, theoretically 
expandable)

unrestricted

max. number
of rules

unrestricted theoretically unrestricted (new 
ones could be coded)

2 unrestricted 2 3 (2D) and 1 (3D) in the given 
schemata

unrestricted

rule format described in terms of  logical 
match conditions and design 
transformations (additive, 
subtractive or
replacing/modifying)

additive, replacing additive additive, subtractive, 
replacing

additive additive, replacing additive, subtractive, 
replacing

parametric rules yes no system represents a rule 
schema: pre-implemented
shapes and their spatial 
relations are parametric

no no rule schemata: depending on a 
particular schema, the spatial
relations and scaling factor or 
some of  the sizes are parametric

no

labels spatial, state, non-geometric 
information

spatial, state spatial spatial, LHS matching 
simplif ication

spatial spatial spatial, state, non-
geometric information

definition/edi-
ting/manipula-
tion of rules

hard coding
(high-level language)

hard coding numerical input form for the 
assignment of  concrete 
values to the given 
parameters for the derivation
of  a rule instance

text f ile editing manipulation of a shape’s 
location, translation or 
scaling using sliders;
immediate update of  the 
displayed geometry

command line input for the 
assignment of  concrete values to 
the parameters of  a loaded 
schema for the derivation of  a 
rule instance; def inition of  new 
schemata programming Prolog 
scripts theoretically possible

visual, interactive
(within a restricted 
design space)

LHS matching design rules encode the  
logical match conditions - for 
applying the design 
transformations

manual (sub-)shape selection no explicit matching; 
transformation for each new 
shape is separately calculated 
including the transformations 
of  all previously added 
shapes and regarding the 
label position

automatic (sub-)shape 
recognition based on user-
specif ied transformation
(cf . “transformations for 
matching”)

based on the “Shaper2D” 
approach

not clear:
- 2D: mainly based on the 
“Shaper2D” approach
- 3D: similar to 3DShaper 
including scaling; rule is 
recursively applied to all existing 
blocks

automatic, including
subshapes

transformations 
for matching

(rules can transform shapes 
using) af f ine 
transformations, multiple 
transformations

calculated based on the 
manual (sub-)shape selection;
considering translation, 
rotation, scale, ref lection

cf . “LHS matching” manually specif ied by the 
user selecting a set of  
point triples in LHS and 
CWS; can realize 
translation, rotation, scale, 
ref lection

cf . “LHS matching” cf . “LHS matching” based on the “SGS”
approach; extension to 
automatic detection of  
all relevant pairs of  
point triples

application 
mode

semi-automatic (interactive) 
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semi-automatic automatic semi-automatic automatic automatic semi-automatic

max. number
of applications
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integrated 
system

yes (import of  surrounding 
geometry f rom external CAD 
systems possible)

yes (several dif ferent 
windows/views for coding and 
graphical output)

external viewer needed to 
display the actual rules and 
the resulting design; external 
f ile for customized shape 
necessary

text f ile editor needed yes yes (including an internal editor 
for editing rule schemata)

external CAD applet 
needed for the creation
of  3D shapes

unique 
characteristic(s)

only known commercially 
used implementation 

based on a commercial solid
modeling kernel

using circular arcs in 3D 
space

real time design 
generation and display as 
in “Shaper2D”

preview of  all possible 
results applying one or 
all rules
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2.5 Relation to Knowledge-Based Engineering in CAD 
Aiming at making CAD systems more active based on a spatial grammar approach, it should 
not be neglected that there has been significant progress since the inception of the first CAD 
approaches. Many enhancements have been introduced with a focus on supporting designers 
with easier creation and modification of designs. This is an important aspect in engineering as 
the modeling process usually is iterative taking many rework-cycles influenced by different 
requirements. The changeability of existing geometric models in CAD systems was 
significantly improved with the introduction of feature-based, parametric modeling in the 
beginning of the 1990s (SHAH & MÄNTYLÄ 1995). Even since, approaches in CAD have 
further evolved. Especially techniques attempting to preserve and reuse design knowledge 
have been developed. The approaches that are most closely related to the spatial grammar 
approach are commonly summarized under the term Knowledge-Based Engineering (KBE). 

Generally speaking, KBE is about the “use of advanced software techniques to capture and re-
use product and process knowledge in an integrated way” (STOKES 2001). The main aim is to 
assist or automate routine, repetitive and time consuming design tasks. The term KBE has 
been used in two different ways in both academic research and industry. The original use 
stems from expert systems where symbolic systems were created to encode domain and 
problem-solving knowledge that could automatically be reasoned about using an inference 
engine to solve synthesis, diagnosis, analysis and planning tasks (LEVITT 1991). Research 
activities are, for example, about capturing, re-using and sharing engineering knowledge or 
improving the methodological support (VERHAGEN et al. 2011). For the implementation, 
stand-alone KBE development packages7 exist, which are not dependent on any proprietary 
CAD system. They are often language-based (COOPER & LA ROCCA 2007), i.e. they provide a 
programming language to create KBE applications for specific problems. An example is the 
BAe Airbus wing rib design KBE tool8, which generates wing ribs automatically in any 
location on an airplane wing (COOPER et al. 2001). Based on a programming language, these 
KBE development tools are very general and can be very powerful, but at the same time they 
also require a skilled KBE development engineer (COOPER et al. 2001). Due to their 
generality, it might be possible to implement spatial grammar approaches based on some of 
these languages as well. 

However, as the focus of this thesis is to create a general spatial grammar system that does not 
require programming, the original use of the term KBE and the mentioned development 
packages are not discussed in detail here. Instead, the focus of the discussion is on tools that 
are ‘visually’ usable by the design engineers while they work in a familiar software 
environment, not needing any further stakeholder like a programmer or a knowledge engineer. 
These tools, claiming KBE capabilities from the CAD vendors’ perspective, can nowadays be 
found as integrated parts of mainstream commercial CAD software9 (COOPER & LA ROCCA 
2007). They usually contain knowledge in limited forms and some of them directly evolved 

                                                 
7 for example Genworks, http://www.genworks.com/ (accessed January 14th 2012) 

8 implemented using ICAD which does not exist anymore 

9 popular examples are NX Knowledge Fusion or CATIA V5 Knowledgeware 
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from existing CAD functionality, e.g. parametric modeling. Their categorization corresponds 
to the second, more recent use of the term KBE, which is less restrictive and can refer to any 
process-related or reference knowledge used within CAx tools (FENVES et al. 2005). 

Keeping in mind that the detailed capabilities of each KBE approach can differ considerably, 
Table 2-2 gives an overview of the general characteristics of the most relevant KBE 
approaches in CAD systems in comparison to spatial grammars. The fundamental 
characteristics of each approach address the questions as to whether or how the geometry of 
an existing model is changed by using single approaches (‘Geometry change’) and if its 
topology stays the same or not (‘Influence on topology’). The ‘Character’ indicates the way 
the approaches alter an existing model, for example, whether they add in new geometry or 
update the existing one. Further, it is specified how the location of the modification in an 
existing model is determined when using the single approaches (‘Location of application’) as 
well as the number of solutions that can be created and to what extent they differ 
(‘Solutions’). 

The first approach, ‘pure’ design automation, is about the generation of a model or a part of a 
model used to automate frequently recurring design tasks. It is usually based on the execution 
of a script10, whereas scripts do not necessarily have to be written manually. The systems 
provide functionality to record the user’s modeling command sequence and save it in a script 
file commonly called ‘macro’ (CHOI & HAN 2002). A macro can be executed to automatically 

                                                 
10 for example Visual Basic is used as a script language in many CAD systems 

Table 2-2: Characteristics of different KBE approaches in comparison to spatial grammars 
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recreate the exact same geometry and topology, i.e. one single solution that is always 
identical. Only if used in combination with another geometric model, it can have an influence 
on the topology of the overall result. A macro can usually only add the geometry as saved 
according to the modeling sequence and not, for example, modify existing geometry. A 
modification is only possible applying the macro to the exact same model it was created with 
or rewriting parts of the recorded script of the macro to generalize it. The geometry created by 
a macro is always inserted in the exact same location as recorded, no matter what the 
surrounding or interpenetrating geometry is. 

Parametric CAD models allow for the creation of geometry that can be rapidly changed and 
updated. Once a model is designed, user-defined mathematical equations can be used to 
define parametric relations between different parameters (LEE 1999). Changing the value of 
only one or a few input parameters, a new instance of the parametric model is automatically 
calculated (SHAH & MÄNTYLÄ 1995). The geometry of the model is updated according to the 
defined parametric relations. The solutions created are instances of the initially designed 
model and generally only differ in terms of their dimensions, whereas this is not restricted to 
scaled versions only. Changes of the topology can be realized in very limited form, e.g. by 
making the number of instances of a pattern dependent on other parameters. 

A further KBE concept that can often be found in CAD packages are templates. There are 
several different kinds of templates, e.g. scripting templates that lower the coding effort for 
writing scripts or templates that contain a basic structure and geometric elements as the basis 
for the design of different detailed variants of a part. An advanced kind of geometry template 
is User-Defined Features (UDFs). Features are high level parametric modeling entities that 
have some engineering significance and ease the design of recurring shapes (SHAH & 
MÄNTYLÄ 1995). The ‘standard’ features most commonly provided by mechanical 
engineering CAD systems are, for example, fillets, chamfers, pockets, holes, etc. UDFs 
enable designers to define their own customized compound features (e.g. see HOFFMANN & 
JOAN-ARINYO 1998). These help to facilitate the design of frequently occurring, very similar 
subparts of geometric models as needed, for example, in product variants. A UDF can be 
composed of different standard features and might contain parametric relations and 
parameters that can be changed to instantiate the geometry of the UDF once it is inserted into 
a design. In conventional CAD design, the designer has to position the UDF in an existing 
model and manually define the required reference elements. The topology of a UDF itself 
always stays the same but it changes the topology of the model it is inserted into. 
Theoretically an unlimited number of different solutions can be created depending on the 
different UDFs used and the locations in which they are manually added to an existing design 
by the user. 

The last KBE functionality considered is the possibility to define a limited form of rules. 
Some CAD systems provide a wizard for their definition so that no or hardly any 
programming knowledge is needed. The user can compile different rules combining 
predefined script statements with geometric parameters. They typically consist of if-else 
statements and relational operators. In comparison to higher level scripting languages, no 
advanced constructs like loops are available. Depending on the fulfillment of the defined 
conditions, the geometric model is modified in the according location(s). Usually the 
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modifications are limited to showing or hiding predesigned geometric entities and changing 
their parameters or the execution of macros (see pure automation). Depending on what parts 
are currently set visible, different topologies can be represented and in combination with 
different parameter settings, a wide number of solutions can be achieved. However, as every 
used component has to be predesigned, the solutions are all predictable. 

In comparison to the presented KBE approaches in CAD, spatial grammar approaches are 
based on rules that can be parametric but are not expressed by if-else branches or other 
programming statements. Instead, they directly work on shapes whereas the location of their 
application depends on where the LHS of a rule can be detected in an existing design. The 
rules ‘know’ where they can be applied in comparison to, for example, UDFs which require 
manual specification of their position. The detected LHS in the existing design is substituted 
by the geometry in the RHS of the rule. This allows for the definition of rules with not only 
‘additive’, but also ‘subtractive’ or ‘replacing’ character. In combination with different rule 
sequences, it is possible to generate a wide range of topologically different solutions that are 
not predesigned, as in case of rule scripting. Therefore, the solution space that is defined by a 
grammar often contains unexpected solutions that were not thought of upfront during the 
definition of the grammar. 
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3. Benefits and challenges 

In theory, the computational use of spatial grammars can be very beneficial to support 
designers. The advantages of such systems, however, have not yet been realized because the 
current grammar approaches and implementations face a number of challenges that have yet 
to be adequately solved, several of which have already been mentioned throughout the 
previous chapters. This chapter summarizes the theoretical benefits of using a spatial 
grammar approach in CAD design and the challenges that exist for the development of an 
ideal 3D spatial grammar system. 

Spatial grammars are an approach that provides the possibility of computationally 
synthesizing designs. Consequently, they have the potential to help make CAD systems a 
more active design partner. The rules that are defined for a grammar are often much less 
complicated than the actual designs they produce (STINY 1980b). Grammar-based synthesis of 
designs involves several aspects that are beneficial with regard to designer support. Routine 
design tasks, which are often time-consuming and tedious, can be automated, thus, leaving 
more time for creative activities and helping to reduce errors (CHAKRABARTI et al. 2011). 
Especially in mechanical engineering design it is often the case that many revisions are 
needed before the final version of a design is achieved. In case of major changes, for example 
because of changing requirements for a product, a grammar-based approach means that the 
design does not have to be completely reworked; rather, it means that a few rules will have to 
be modified, added or deleted. Based on such changes, the quick generation of a new solution 
is possible. 

Besides saving time in the creation of a single solution, one of the most powerful aspects of 
spatial grammars is their ability to rapidly generate a range of design alternatives. In changing 
a few simple rules, grammar-based approaches allow for the construction of a multiplicity of 
complex designs (STINY 1980b), helping with regard to the creation of product variants. 
Grammar-based approaches can, therefore, be highly supportive in meeting growing customer 
demand for one-of-a-kind design within a class of products (CAGAN 2001). There is no need 
to specify every single solution when higher-level descriptions, i.e. a small number of abstract 
rules, can generate them automatically (MCCULLOUGH 1996). Even in those cases where only 
one solution is needed, the generation of different variants can be helpful in finding better or 
even optimal solutions. 

Spatial grammars can also help to enhance design creativity by offering spatially novel, 
inventive solutions beyond what a designer might think of or that may not be obvious to the 
designer due to limitations of knowledge or fixation (CHASE 1989, CHAKRABARTI et al. 2011). 
Thus, spatial grammar systems usually aim to assist and not to replace the designer 
(HEISSERMAN et al. 2004, JOWERS et al. 2008). 

A grammar-based approach helps to encode design knowledge, saving knowledge chunks and 
making them reusable. Formalizing knowledge can help designers who develop their own 
rules to move away from intuitive methods of design towards a more structured, 
methodological procedure (CHASE 1989). This can lead to a better understanding of a design 
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problem (CHAKRABARTI et al. 2011), as designers have to actively and consciously think 
about their “ideas and knowledge about possibilities for design in an explicit and detailed 
way” (STINY 1980b).  

The majority of the benefits discussed can only be derived through a general computational 
implementation of spatial grammars. As a method that follows a strict formalism, they seem 
to lend themselves well to computer implementations (CHASE 1989). However, as can be seen 
in the previous chapter, many of the existing systems are restricted in some form or another. 
There are a lot of different challenges to implementing a grammar interpreter, especially 
regarding the issues of generality and usability. Many challenges have been identified in 
earlier work, for example, by GIPS (1999), CHAU et al. (2004), LI (2005) or, most recently, by 
CHAKRABARTI et al. (2011) and MCKAY et al. (2012). The most relevant challenges with 
regard to the approach presented in this thesis are summarized in the following. 

Using programming for the development of rules and their application provides high 
flexibility for the implementation of various geometry or vocabulary, especially in expressing 
relations between, or constraints on, geometric objects. However, as described in the 
introduction, programming in a design environment has several drawbacks. A system that 
designers really want and need to use has to make trying out grammars easier than trying 
them by hand (GIPS 1999). With regard to better acceptance, interpreter implementations 
should also be better integrated with the software toolset designers are used to working with, 
for example with CAD systems. 

For increased usability, many existing interpreters focus on the application of rules. However, 
a generalized interpreter that provides for facilitated use of grammars without programming 
must support the tasks in both stages – development and application – in an interactive, visual 
manner. Especially in three-dimensional space, where spatial thinking is more demanding, it 
is important to have direct visualization of the rules as they are developed. Without direct 
visualization, the designer must first write code, and possibly compile it, to see whether the 
intended geometric objects and spatial relations are generated.  

Once defined, it should also be possible to modify existing rules in an easy way, especially 
because defining a grammar “often tends to be a ‘generate and test’ cycle” (CHASE 2002). As 
a new grammar is often tested and modified several times before it describes the intended 
design language, this demands proper user support not only for the development of rules, but 
also for their application. The possibility to easily edit rules becomes even more important 
with regard to the use of a grammar system in mechanical engineering, as the rules can be 
seen as chunks of knowledge that continuously evolve during the product development 
process, and are influenced by external requirements stemming from other domains, e.g. 
manufacturing constraints. 

A visual, interactive approach has to provide a set of standard commands whose functionality 
works on a higher level than programming, but visually usable via a user interface, therefore 
making it easier to work with. The interplay of the different single commands needs to 
provide high flexibility to enable a generalized design and use of grammars. In that regard, 
specific challenges arise, especially in conjunction with a three-dimensional approach. Being 
the basis for the definition of a grammar, the vocabulary should be as flexible as possible to 
allow for the creation of a wide variety of geometric objects. For the definition of rules, these 
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geometric objects have to be graphically represented to allow for direct manipulation and 
positioning in 3D space. The latter requires the robust handling of 3D transformation 
operations, at least for translation and rotation. For the application of a rule, the geometric 
objects as well as their location and orientation have to be defined in a way that enables the 
automatic matching of the LHS. Realization of automatic LHS matching, however, should not 
restrict the complexity of geometric objects that can be used for the definition of rules. In 
general, computer-based recognition, or matching of 3D objects under transformations and 
parametric relations, is a known and difficult problem. This is mainly because, to date, a 
general technique to computationally perform the same functions as the human visual 
perception system has not been developed (IYER et al. 2005). 

To allow for a wider variety of possible designs, not only the definition of non-parametric but 
also the definition of parametric rules should be possible along with their automatic 
application. To enable the possibility of better directing the generation of the solutions, it 
should not only be possible to automatically, but also manually or semi-automatically, apply 
rules. Further, the number of geometric objects in a rule should not be restricted. The same 
applies to the number of rules that can be defined and applied since the interaction of several 
different rules generally leads to a wider variety of alternative solutions. 

In summary, the requirements for an ideal 3D spatial grammar system are: 

 general, i.e. not restricted to a specific problem, 

 an unrestricted vocabulary allowing a wide variety of complex, 3D geometric objects, 
but at the same time 

 automatic matching of the left hand side of rules under transformations and 
considering parametric relations, 

 graphical representation and direct, visual manipulation of objects in rules, 

 robust handling of transformation operations in 3D, 

 definition of parametric rules, 

 mechanisms for the visual incorporation of constraints including labels, 

 an unlimited number of rules, 

 an unlimited number of objects that can be used in rules, 

 interactive application of rules (automatic, semi-automatic, manual), 

 support for both definition of new rules and editing/modification of existing rules, 

 better integration with other design software, e.g. CAD systems, and 

 an intuitive user interface requiring little to no programming. 

With regard to the overall goal of this research and the challenges discussed in this chapter, 
the following table gives an overview of the contributions of this thesis and the chapters they 
are addressed in. 
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Table 3-1: Overall goal, research contributions and the related chapters of this thesis 

New approach for creating a general, visual, interactive 3D spatial grammar system

Visual definition and modification of rules 4.1.1 and 5.2

Definition of additive, subtractive and substituting rules 4.1.1 

Wide range of shapes for rule definition
(parameterized primitives, Boolean and sweeping operations)

4.1.1, 4.3.1, 
4.3.2

Parametric rules 4.2

Consolidated concept for labels 4.4

Unrestricted number of rules, shapes in rules and applications of rules 4 and 5

Interactive rule application 5.3

Automatic LHS matching 4.1.2, 4.2.2, 
4.3, 4.4.2

Collision detection 4.5

Integration into CAD 5
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4. Approach 

The approach developed in this thesis addresses the challenges that exist for three-
dimensional spatial grammar systems as discussed in the previous chapter. It is 
conceptualized in a way that allows for developing and applying grammars in a visual, 
interactive manner. This chapter first introduces the basics of the proposed approach, as well 
as the development and application of non-parametric rules. The second part describes the 
enhancement of the approach to parametric rules, followed by an extension using objects 
based on Boolean and sweeping operations. The concept and usage of 3D labels is presented 
in another sub-chapter. Using collision detection in this spatial grammar approach concludes 
the chapter. 

4.1 Basics and non-parametric rules 
The approach described in this thesis is based on a set grammar formulation of spatial 
grammars. The vocabulary consists of a set of parameterized three-dimensional primitives, 
namely, box, torus, cone, cylinder, sphere and ellipsoid. Defining more than one primitive in a 
side of a grammar rule, as well as variations of the defined parameters, allows for the 
description of a wide range of geometry. Figure 4-1 shows a base version (left) and a version 
with alternative parameter values (right) for each primitive used, including the 
parameterization. 

 

Figure 4-1: Primitives used illustrated by two different instances 
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This section introduces the basics of the approach in conjunction with non-parametric 
grammar rules. Following the definition by CHASE (2002), it is subdivided in two parts: the 
development and the application of a spatial grammar. 

4.1.1 Development of rules and transformations of objects 
To define rules in the form A → B (cf. 2.2.1), one needs to define the geometric object(s) in A 
and B as well as their spatial relations. The fundamental aspects for the visual definition of 
spatial grammar rules are the creation and the positioning of geometric objects in 3D space. 
The basis for the definition of geometric objects is the given set of parameterized 3D 
primitives shown in Figure 4-1. An object is created by choosing one of these primitives and 
by assigning values to its parameters. As is usually the case in the design of solids in 
mechanical engineering CAD, the input is realized numerically so that exact values can be 
assigned to the parameters. The parameters describe the size as well as the location and 
orientation of the objects. In the process of designing a rule, the assigned values can be 
modified until the intended rule is achieved. The final parameter values defined remain static 
in the later application of the rule. 

Every primitive geometric object that is created has its own local coordinate system. This 
coordinate system and, therefore, the attached object itself, can be translated and rotated in 
relation to the global coordinate system labeled ‘x, y, z’ in Figure 4-2 (left). 

Through this coordinate system, the location and orientation of the object is defined or 
changed in three-dimensional space. The information about the position is kept in a 
transformation matrix. As is common in 3D applications, this is a 4x4 matrix containing 
homogeneous coordinates (Figure 4-2, right). It enables the calculation of different kinds of 
transformations in one single matrix. Several transformations can be easily concatenated by 
multiplying the corresponding matrices. This is especially useful for the application of spatial 
grammar rules, as they require the replacement of the transformed LHS of a rule, t(A), by the 
transformed RHS, t(B). 

For simplicity in defining the spatial relations of objects and easy access to the transformation 
information, a rule is designed such that there is one reference object, L0, in the LHS. The 

 

Figure 4-2: Global coordinate system and object with local coordinate system (left) and general transformation 
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reference object is located in the global origin and must not be rotated. It is the basis for the 
detection of the spatially related objects in the rule’s LHS. The transformation matrix of the 
reference object, TL0, always equals the identity matrix I. Any further geometric objects in the 
LHS are then positioned in relation to this reference object and, therefore, in relation to the 
global origin. Thus, the relative spatial relations of the single objects are implicitly defined via 
the reference object. For an arbitrary number, m, of objects in the LHS, the transformation 
matrices of additionally added objects are denoted TLj  for  j = 1, … , m-1. 

The objects in the RHS of a rule are also positioned in relation to the global origin and, as a 
result, are implicitly positioned in relation to the reference object in the LHS. There is no need 
for a reference object in the RHS, i.e. any object can be arbitrarily located and rotated. The 
transformation matrices of an arbitrary number, n, of objects, Ri, in the RHS of a rule are 
denoted TRi  for  i = 0, … , n-1. Figure 4-3 shows an example for a rule consisting of several 
objects including the reference object, L0, located at the global origin in the LHS. 

Choosing the objects to be inserted in the LHS and RHS, defining the values for their size 
parameters and their transformations and making sure that one of the objects in the LHS 
fulfills the reference object preconditions is all that is needed to visually develop an arbitrary 
range of non-parametric grammar rules. 

4.1.2 Application of rules and LHS matching 
As shown in section 2.3, the application of grammar rules can be subdivided into the three 
steps of (1) the determination of a rule to apply, (2) the determination of an object to which 
the rule is applied and (3) the determination of a matching condition. The latter two steps 
concern the matching of the LHS of a rule in the CWS. Once a match is found, a further step 
is needed. According to the grammar formalism, the match has to be subtracted from the 
CWS and then be replaced by the RHS of the rule under the matching transformation. 

In the approach presented here, the selection of rules to apply, as well as the number of rule 
applications, is assumed to be done either manually by the user or randomly by the system. 
The remaining steps are supported automatically. The semi-automatic application of rules in 
this approach is restricted to the scenario of “manually selecting a rule and automatically 
detecting all objects to which it can be applied”. The alternative scenario of “manually 

 

Figure 4-3: Example for a non-parametric rule 
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selecting an object and automatically finding all rules that can be applied to it” is not included 
here. 

Matching – detection of the LHS of a rule in the CWS 

Once a rule is selected for application, according to the equation C’ = C – t(A) + t(B) (cf. 
formalism in section 2.2), the first step is to detect the LHS of the rule under a certain 
transformation, t(A), in the CWS. Generally, the automatic matching of the LHS of a rule in a 
current design is a difficult problem, especially in three-dimensional systems. Existing 3D 
grammar systems require, for example, manual matching by the user (e.g. PIAZZALUNGA & 
FITZHORN 1998) or they circumvent the problem due to the nature of the provided rules and 
the way the transformation for every single shape is calculated (e.g. WANG & DUARTE 2002). 
The aim of the approach presented in this thesis is to automatically match the LHS of a rule in 
the CWS. As the approach is based on basic primitives, it can benefit from the fact that for 
any primitive it is explicitly known which class it is derived from, i.e. the ‘type of primitive’, 
for example, box, cylinder, etc. 

Several conditions have to be fulfilled so that a LHS with an arbitrary number of objects can 
be detected in a CWS. The procedure consists of four main steps, which are illustrated in 
Figure 4-4 and explained below. 

Before the detailed detection is performed, a rough pre-check (step 0) is useful to examine 
whether matching is possible, in general, illustrating an advantage of a set grammar approach. 

 

Figure 4-4: General steps for matching a LHS with an arbitrary number of objects in a CWS 
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First, the geometric objects in the LHS of the rule are counted and the result is compared to 
the total number of objects in the CWS. If the latter is smaller than the number of objects in 
the LHS, a match is not possible. The second part of the pre-check treats the LHS objects as 
isolated, single objects. It determines the primitive type of every object in the LHS and checks 
whether an object with the same type exists in the CWS. If there are more objects of a 
primitive type in the LHS than in the CWS, matching is also not possible. For example, if 
there are two boxes and one cylinder in the CWS but three boxes in the LHS, the rule cannot 
be matched. These simple pre-checks can help save considerable computational time. 

The approach for the detailed matching finds all possible matches of the LHS of a rule in the 
CWS. Beforehand, one reference object, L0, in the LHS is identified, as it is theoretically 
possible that there is more than one object located in the global origin without any rotation. 
(step 1) The first step is to find matches of L0 within all the CWS objects, Ck, 
for  k = 0, … , p-1, where p is the total number of objects in the CWS. This consists of a 
comparison of the objects’ primitive types with the primitive type of L0 and an equality check 
of the size parameters. 

(step 2) For every match of the reference object, L0, the remaining objects in the LHS, Lj 
for  j = 1, … , m-1, are checked for matching in the CWS. Every Lj is therefore compared to 
the CWS objects, Cq, starting with q = 0 and incrementing q until q = p-1, excluding the case 
where Cq is represented by the same object as the considered match of the reference object. 
The procedure is the same as in (step 1), except that Lj is checked instead of L0. 

(step 3) If a certain object, Lj, matches a CWS object, Cq, the spatial relation between Lj and 
L0 has to additionally be equal to the spatial relation between Cq and the considered Ck. This 
is checked by comparing the relative transformation matrices of the two pairs of objects. The 
condition that has to be fulfilled is: TLj = TCk

-1 • TCq. 

If all matching conditions are fulfilled for all objects in the LHS of a rule, the set of matched 
objects is returned. Even if a complete set of matched objects in accordance to a reference 
object match was found, still the remaining CWS objects are checked, because overlapping 
objects are generally allowed. This means that two identical objects can have the exact same 
transformation, therefore resulting in two matches with one single reference object match. 
The outcome of the complete matching procedure is the set of all matches of the LHS in the 
CWS, whereas every single match itself is a set of objects or at least one object. 

An illustrative example of the procedure is given in Figure 4-5. All size parameters of boxes 
in the LHS as well as in the CWS that are not explicitly shown are 10 mm. The upper part of 
the figure shows a rule with two boxes in the LHS and a cone in the RHS. The pre-check for 
matching the LHS in the CWS (lower part of Figure 4-5) is successful, as the number of 
objects, or boxes, in the LHS of the rule (two) is lower than the number of objects (six) or 
boxes (five) in the CWS. L0 is located in the global origin without any rotation and is, 
therefore, the reference object of the LHS. It is checked for matches to all objects of the CWS. 
The first object, C0, does not match, as it is of a different primitive type (cylinder). C1, 
instead, is of the same type and can be further checked for matching of the parameters. Width, 
length and height of both the objects equal 10 mm and, therefore, C1 is the first match of the 
reference object L0. Based on this, the remaining objects of the LHS, in this case only L1, have 
to be checked for possible matches in the CWS. C0, again, does not match because of the 
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different primitive type. Object C1 is the match for the reference object, L0, and must not be 
checked again. 

C2 has the same primitive type as L1, but, as the width and height both are 7.5 mm, the size 
parameter check fails. The matching procedure continues identifying the reference object’s 
next match in the CWS. C2 cannot be matched, again because of the different size parameters. 
Therefore, the next object in the CWS that fulfills all conditions is C3. Candidates for 
matching the second object in the LHS are the boxes C1, C4 and C5. However, taking a look at 
the spatial relations between the objects in all possible pairs, (C3, C1,), (C3, C4) and (C3, C5), 
shows that none of the relative transformations are identical to that of (L0, L1) in the LHS of 
the rule, i.e. the equation TL1 = TC3

-1 • TC1/4/5 is not fulfilled. In the case of the pair (C3, C4), 
the absolute values in the relative transformation matrix are the same, but the translation 
values in the matrix are negative and, therefore, no match is detected. With C4 as the next 
match of the reference object, the pair (C4, C3) results in a set of matched objects, as now, in 
comparison to the pair (C3, C4), also the relative transformation is the same. The two 
remaining matching possibilities on the basis of C4, the pairs (C4, C1) and (C4, C5), both fail 

 

Figure 4-5: Example for the matching procedure: rule above, CWS below 
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the relative transformation check. The matching procedure for the last object, C5, is basically 
the same as for C4 and results in another set of matched objects (C5, C4). In summary, the set 
of all matches of the LHS in the CWS that are given in the example shown in Figure 4-5 
consists of ((C4, C3), (C5, C4)). 

Replacing – calculation of the transformations of the RHS objects 

Following the equation C’ = C – t(A) + t(B) (cf. formalism in section 2.2), all of the rules are 
realized as replacement rules in this approach, i.e. the matched LHS is always fully subtracted 
from the CWS and replaced by the transformed RHS. While this is not always 
computationally efficient, for example in case of additive rules, it is the most general way to 
create a spatial grammar interpreter. 

The starting point for the replacement is the set of all possible LHS matches detected. In a 
parallel grammar approach, the rule would be applied to all these matches simultaneously 
(GIPS 1975). However, as is the case with most existing grammars, the approach described 
here is based on a serial application of rules. Therefore, a rule is always applied to only one 
match out of all found matches. This match can either be determined automatically by a 
randomized selection or manually chosen by the user. 

The RHS objects that will be inserted into the CWS to replace the detected LHS objects are 
denoted C’i  for  i = 0, … , n-1, where n is the number of objects in the RHS, as introduced in 
4.1.1. The transformation information, TCk, of the object that was matched to the LHS 
reference object is explicitly available, as are the transformation matrices TRi of the objects in 
the RHS of the rule. The new position of every object, C’i, is determined in two steps: (1) add 
the object to the CWS under the transformation TRi, as defined in the RHS of the rule and, in 
order to fulfill the equation in the grammar formalism, (2) apply the transformation under 
which the LHS was detected ‘t(A)’ to the RHS object ‘t(B)’. This means that the 
transformation of Ri is additionally multiplied with the transformation of the object Ck. 
Eventually, for all objects in the RHS, this results in the equation: 
TC’i = TCk • TRi  for  i = 0, … , n-1. After all transformations are calculated, the objects of the 
selected match can be subtracted from the CWS and replaced by the RHS objects under the 
calculated transformations. 

Coming back to the illustrative example in Figure 4-5, the depicted replacement procedure is 
as follows: Out of the set of all found matches, for example, the match (C4, C3) is chosen. In 
this case, C4 is identified as the match of the LHS reference object. The RHS of the rule 
consists of only one object, R0. It will be the new object C’0 in the CWS after the replacement 
and its position is calculated according to the equation: TC’0 = TC4 • TR0. Lastly, C4 and C3 are 
subtracted, resulting in the new CWS shown in Figure 4-6. 
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4.2 Parametric rules 
In the previous section, the used parameterized primitives are assumed to be fully defined, i.e. 
specific values are assigned to all parameters. The outcome is rules that are based on fixed, 
fully determined objects. In this section, the approach is extended to the use of parametric 
rules (cf. 2.2.3) to enable the generation of a wider variety of design solutions by fewer rules 
and incorporate constraints into rules. On paper, defining parametric rules is straight forward. 
Parametric relations and constraints are often implied using additional descriptive text (e.g. 
STINY 1977). However, a general computational implementation cannot be as easily created. 
One of the crucial points is to automatically match a general parameterized shape in the LHS 
of a rule to an existing design. Partially adapted from the original definition by STINY (1977, 
1980a) to fit the approach based on parameterized primitives, in the following aspects for the 
development and application of parametric rules are elaborated on. 

4.2.1 Development of parametric rules 
The set grammar formulation of spatial grammars chosen in this approach, which is based on 
the use of parameterized primitives, enables the definition of parametric rules, as the 
parameters are explicitly defined for each object. Parametric rules require all the basics 
needed for the development of non-parametric rules (cf. 4.1.1). Even though the intention is to 
define a parametric rule, initially the geometric objects have to be fully determined, i.e. 
specific values have to be assigned to all parameters. This is because a visual grammar 
system, in comparison to a grammar on paper or a hard-coded grammar, would not be able to 
create and display objects that initially have one or more unspecified parameters. Once the 
initial, non-parametric state of an object is designed, one or more of its parameters can be 

 

Figure 4-6: New CWS after application of the rule in Figure 4-5 to the object pair (C4, C3) 
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‘unlocked’, denoted as ‘free parameters’, to make it parametric. Parameters that can be 
unlocked are not only the ones that define geometric dimensions, called ‘size’ parameters, 
like width, length, radius, etc., but also those that determine the position of an object in 3D 
space, called ‘transformation’ or, more specifically, ‘location’ and ‘orientation’ parameters. 
Location parameters determine the translation of an object in the x-, y- and z-directions, 
denoted ‘translateX, translateY and translateZ’; orientation parameters determine the rotation 
defined as ‘yaw, pitch and roll’. 

If a parameter is unlocked, by default it is completely unrestricted, i.e. any real value can be 
assigned to it. However, there are two ways to constrain free parameters: 

(1) The values that are allowed to be assigned to a free parameter can be restricted to a certain 
range. An example rule with restricted ranges of possible values for the width w of a box and 
its rotation angle roll around the x-axis is shown in Figure 4-7. 

(2) Parametric relations can be defined between free parameters. To make a free parameter 
dependent on one or more other free parameters, mathematical equations can be defined. 
These equations consist of different operators and mathematical functions used with either 
free parameters as operands and/or numeric operands. For example, in Figure 4-8 the radius 
rR0 of the cylinder is dependent on the height of the box using the equation rR0 = ¼ * hR1

2 - π, 
whereas hR1 is restricted to a certain range. 

 

Figure 4-7: Parametric rule with free parameters that are restricted to certain ranges 

Figure 4-8: Rule with parametric relation between different objects in the RHS 
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This is similar to the approach taken in many commercial mechanical CAD systems for the 
definition of parametric relations in or between geometric models. In a CAD system, this is 
primarily used to lower the effort needed for the modification of a model. Changing the value 
of just one parameter subsequently triggers the change of one or more other parameters in the 
same model. The concept for grammar rules used here is basically the same; however, the 
main purpose is not the easier adaptation or modification of the geometry, but the definition 
of size or spatial relations within one or between different objects. 

To incorporate certain constraints based on range restrictions, it is often not sufficient to only 
define real values for the limits. Therefore, it is also possible to use equations containing 
parametric relations to define the minimum or maximum limit. Additionally, if a restriction in 
only one of the directions is needed, either minimum or maximum can be left blank. In Figure 
4-9 for example, the height of the cylinder in the RHS has to be at least twice as big as the 
radius, which is left unrestricted, but there is no maximum limit. 

The examples given so far have considered only objects in the RHS of a rule, but the 
described specification of free parameters can also be used for geometric objects in the LHS. 
LHS parameters can only be dependent on other parameters in the LHS. Parameters in the 
RHS, instead, can be dependent on parameters in both the RHS and the LHS. Figure 4-10 
illustrates an example in which the length of the box in the LHS is defined as being 
completely unrestricted. The width and the height are both dependent on the length. 
Additionally, a parametric relation between the height of the first box in the RHS, hR0, and the 
height of the second box, hR1, is defined, whereas hR1 itself is dependent on the width of the 
box in the LHS. 

 

Figure 4-9: ‘Range parameter’ with only one limit which is defined using a parametric relation 

r unrestr.

2 * r ≤ h
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Free parameters can be defined by the user as needed. However, in a computational system it 
has to be ensured that they, especially the parametric relations, are evaluated in a distinct 
sequence, so that all equations in a rule are resolvable during the application, independent of 
the sequence in which they are defined. For example, in the rule shown in Figure 4-10 the free 
parameter hR1 inevitably has to be evaluated first in the RHS, so that it is possible to resolve 
the equation for hR0. To determine the correct order of the parameters for their evaluation, a 
topological sort algorithm can be used after transforming the parametric relations in a rule 
into a dependency graph. If this step is already carried out in the development of a rule, it only 
has to be done once and not each time the rule is applied. It is further possible to use the same 
algorithm for the detection of cyclic relations between free parameters, e.g. width = length, 
length = height and height = width. Dependencies like this cannot be resolved during the 
application of a rule. Therefore, the detection of cyclic relations allows for avoiding their 
definition. 

4.2.2 Application of parametric rules 
Applying parametric rules, the impact of the free parameters is slightly different depending on 
the side of the rule in which they are defined. In the LHS a parametric object allows for 
matching a wider range of objects, so that the same rule can be applied in more cases. In the 
RHS, a parametric object provides for the generation of a wider variety of differently sized 
and transformed objects. 

For example, in the parametric rule in Figure 4-11(a) the length of the box in the LHS is 
restricted to a range with lower limit a and upper limit b. The effect is that it can not only 
match boxes with the (designed) length l, but also boxes with length a, length b or any other 
length in between the two limits (Figure 4-11(b)), providing, of course, that the non-
parametric width and height match in each case. Once a match is found, the actual value of 
the length of the detected box is assigned to the height of the cylinder in the RHS because of 
the parametric relation hR0 = lL0. The radius of the cylinder, instead, is not dependent on any 
other parameter but completely unrestricted, so that a virtually unrestricted variety of 
cylinders can be generated applying this rule (Figure 4-11(c)). 

Figure 4-10: Rule with parametric relations in the LHS and RHS 
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A wider variety of LHS matches can be detected if a parameter is not only restricted to a 
range but defined as completely unrestricted. Obtaining an even higher degree of matching 
generality is feasible if more than one parameter is ‘unlocked’. For the special case in which 
all size parameters of an object in the LHS are ‘unlocked’ and completely unrestricted, all 
objects of the same primitive class can be found, e.g. all boxes, no matter what length, width 
or height. This is the most general definition of a parametric rule’s LHS. 

Further, the use of parametric relations in the LHS enables the matching of objects under a 
certain ratio of dependent size parameters. For example, a parametric relation between length 
and width of a box can be defined as l = 3 * w, so that the matching is restricted to objects 
with a ratio of three between these two parameters. This concept can also be used for the 
detection of scaled versions of an object. The LHS of the rule in Figure 4-10 represents an 
example for this: the length of the box, lL0, is completely unrestricted but its width and height 

Figure 4-11: Impact of free parameters in the LHS and RHS applying a rule 
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are restricted by the parametric relations wL0 = lL0 and wL0 = lL0. The matching process 
therefore detects all cubes, no matter which size, but no other boxes. 

The procedure for matching parametric rules is basically the same as in the non-parametric 
case (Figure 4-12). First, the pre-checks are performed and the reference object in the LHS is 
identified as described in Section 4.1.2. The first step (step 1), which is about finding matches 
of the reference object in the CWS, is performed identically, except that any defined free 
parameters are additionally checked. The same applies to the second step (step 2) that checks 
the remaining objects in the LHS for matches in the CWS. As explained for the non-
parametric case, one object after another is checked according to the list of objects. 

Due to the sequence of the list of objects, however, the following issue can occur: If there is 
more than one object defined in the LHS, by the time a free ‘equation’ parameter is supposed 
to be evaluated, it is possible that the actual value of one or more of the parameters on which 
it is dependent has not yet been evaluated. For example, by the time the matching process 
reaches the box L1 in the LHS of the rule in Figure 4-13(a) to check it for matching the CWS 
(Figure 4-13(b)), its free parameters hL1 and wL1 cannot be evaluated as they are directly or 
indirectly dependent on the free height-parameter of the cylinder L2. 

 

Figure 4-12: LHS matching process including free parameter evaluation 
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In such cases, where parameters cannot be evaluated right away, the evaluation of the affected 
free parameters has to be postponed and it is assumed that the object is a match. Once the last 
object in the LHS is checked for matching, all postponed free parameters can be evaluated 
according to the parameter sequence that was determined during the development of the rule 
(see 4.2.1). If only one of them does not match, there is no need to go on evaluating the 
remaining parameters, as one single parameter-mismatch is sufficient to indicate that the 
complete LHS does not match. In Figure 4-13, for example, it turns out that the postponed 
parameter wC1 does not fulfill the condition defined in the rule and, therefore, the temporary 
assumption of having a match is retracted. 

Postponing the evaluation of parameters is applicable to matching the reference object as 
well. Further, it also applies to any free translation or rotation parameters. The evaluation of 
translation or rotation parameters starts off with the calculation of the relative transformation 
as explained for non-parametric rules. However, to be able to perform the check for free 
transformation parameters, the calculated relative transformation matrix is converted into the 
representation using ‘translateX, translateY, translateZ’ and ‘yaw, pitch, roll’. This is the 
representation used for the definition of equations during the rule development phase and it 
makes it possible to evaluate these parameters like any other size-parameters. 

Once the set of all possible LHS matches is detected, one is chosen and replaced by the 
transformed RHS of the rule as described for the non-parametric case in 4.1.2. If the RHS of 
the rule is also parametric, all free parameters are evaluated, again in the sequence that was 
determined during the development of the rule (see 4.2.1). This includes the assignment of 
concrete values to parameters that are either completely unrestricted or restricted by a range. 
They can be chosen either manually by the user or randomly in an automatic mode. Values 
that are assigned to completely unrestricted parameters or to ‘range’ parameters with only one 
limit are additionally checked for the fulfillment of implicit restrictions to generate valid 
geometry, e.g. the values for length, width and height have to be positive. 

The rule shown in Figure 4-14 revisits the illustrative example given in Figure 4-5, but this 
time it is augmented by free parameters to define a parametric rule. As the object C0 is a 
cylinder, the first candidate in the CWS to match the reference object L0 is the box C1. Width 

 

Figure 4-13: Rule (a) with the need to postpone the evaluation of certain parameters (hL1 and wL1) and a CWS 
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and height fulfill the matching conditions, the evaluation of the length, however, is dependent 
on the length of the second object according to the parametric relation lL0 = lL1 in the LHS of 
the rule. As the second object that will be checked and its parameters are not yet known, the 
evaluation is postponed and it is preliminarily assumed that the object C1 is a match of the 
reference object L0. 

Now possible matches for the object L1 are searched for in the CWS. C0 does not match and 
C1 was the match of the reference object, so C2 is the first object that comes into 
consideration. The parameter for the length of the object is defined as unrestricted in the LHS 
of the rule and, therefore, this condition is fulfilled. According to the evaluation sequence 
determined during the development of the rule, the next parameter to be evaluated is the width 
wC2, which equals 7.5 mm and is, therefore, within the given range of 7 mm to 12 mm. The 
parametric relation of the last free parameter, the height hC2, is also fulfilled as it equals the 
width of the object. After the LHS is completely checked, the postponed parameter, i.e. the 
length of the first box, can be evaluated. As required, its value equals the length of the second 
object and, therefore, the assumption of having a match is approved. The last step is to 
compare the relative transformation between the object pairs (L0, L1) and (C1, C2), which is 

 

Figure 4-14: Parametric version of the example in Figure 4-5 
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also successful. As in the non-parametric version of the example, the further matching 
procedure results in matches for the pairs (C4, C3) and (C5, C4). The set of all matches of the 
LHS in the CWS, therefore, consists of ((C1, C2), (C4, C3), (C5, C4)). 

Choosing, for example, the first match (C1, C2), results in the replacement of the two boxes by 
the cone in the RHS of the rule. The transformation is not dependent on any free parameters 
and is calculated as in the case of a non-parametric rule. The calculation of the free 
parameters in the RHS is again done in the sequence that was determined during the 
development of the rule. That means that, first, the new height is determined. It is dependent 
on the value that was detected for the width of the second box, wC2, and results in 11.25 mm 
according to the given equation. The new upper radius of the cone is in turn dependent on the 
height. The result of the evaluation of the according parametric relation is 2.25 mm. 

4.3 Objects based on Boolean operations and swept objects 
The spatial grammar approach described so far allows for a wide variety of different 
geometries to be generated. This is achieved by not restricting the number of geometric 
objects that can be defined on either side of a rule and allowing parameterized primitives that 
can be used with different parameter configurations and in conjunction with parametric 
relations. Nevertheless, there are restrictions that prevent the generation of more complex 
solid models, which are often needed in mechanical engineering. What if, for example, a 
round hole in a block is required? This cannot be accomplished with the approach described 
so far because it is based on a primitive instancing modeling approach, i.e. the objects in the 
LHS and RHS of a rule are exclusively parametric primitives. In the following subsections the 
approach is, therefore, enhanced to include further solid modeling functions, namely Boolean 
operations and sweeping. 

4.3.1 Boolean operations 
Combining the parameterized primitives used in this approach with each other helps to 
considerably increase the amount of different shapes that can be modeled in rules and thus the 
complexity of shapes that can be generated. Solid modeling systems usually support the 
combination of geometric objects based on Boolean set operations; the resulting objects will 
be denoted as ‘Boolean objects’ in the following. The common Boolean operations are union 
( ), intersection ( ) and difference (–). Figure 4-15 illustrates simple examples for each of 
these operations combining the given cylinder (object X) and box (object Y). When 
performing a union operation it is not relevant whether object X is added to Y (X  Y) or the 
other way around (Y  X), the resulting geometry is identical. The same applies to 
intersection operations, where the intersecting volume of the two solids defines the new 
object. In the case of using a difference operation, however, the geometric result is dependent 
on what object is subtracted from the other one, i.e. X – Y or Y – X. 
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The use of the three types of Boolean operations shown in Figure 4-15 is not restricted to 
combining primitives only. Any object can be based on other Boolean objects to an arbitrary 
depth. This allows for the definition of very complex objects. The correlations between the 
single objects are kept in a tree structure, which is commonly known as the Constructive Solid 
Geometry (CSG) representation. An example of an object based on the combination of several 
other Boolean objects is shown in the tree structure in Figure 4-16. Three cylinders with 
different spatial relations to each other are combined to one object using two union 
operations. The resulting object is then subtracted from a box using a difference operation to 
produce the intended design. 

All primitives a Boolean object is based on exist within the solid model and are still 
accessible after the Boolean operations are performed but only the resulting object is visible. 
Therefore, the underlying parameterized primitives, i.e. their sizes and transformations, can be 
modified whenever needed and the resulting Boolean object is updated accordingly. Because 
of that precondition, the basics and methods for the spatial grammar approach described so far 
can be completely transferred to the usage of Boolean objects. Consequently, rules including 
these kinds of objects can also be parametric. 

 

Figure 4-15: Different Boolean operations performed on the primitives X and Y 
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The definition of grammar rules is carried out directly on the underlying primitives. In this 
context, the Boolean objects can be seen as a ‘hull’ whose shape is defined only indirectly but 
represents the final geometric object. In a rule, the reference object cannot directly be 
represented by a Boolean object. Instead it has to be ensured that one of the underlying 
primitives is positioned in the global origin to define the reference object, unless there are 
other ‘conventional’ primitives in the LHS that fulfill the condition of being a reference 
object. Apart from that, the development of rules follows exactly the approach described for 
non-parametric (cf. 4.1.1) and parametric rules (cf. 4.2.1). 

The overall process for matching the LHS in the CWS generally stays the same as described 
in Chapter 4.2.2 for parametric rules. The only difference is that in addition to the object types 
for the geometric primitives (‘box’, ‘cylinder’, etc.), objects of the types ‘union’, 
‘intersection’ and ‘difference’ can occur. Once the process reaches an object in the LHS that 
has one of these types, it tries to find an object of the same type in the CWS. If this search is 
successful, a sub-process for matching the underlying parameterized primitives is initiated 
(Figure 4-17). For Boolean objects that are not only based on two primitives but on further 
Boolean objects, i.e. using a CSG tree like the example given in Figure 4-16, this sub-
processes is performed in a recursive manner. This means that if one of the underlying objects 
is a Boolean object itself, it is resolved using the same procedure until all Boolean objects are 
compared based on their underlying parameterized primitives for matching in the tree. 

 

Figure 4-16: Example CSG tree for an object created using several Boolean operations 

I
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A simple example kept on the level of one single Boolean operation, i.e. only two geometric 
primitives and no further Boolean objects are combined, is shown in Figure 4-18. This 
example is used to illustrate the steps needed for this sub-process. The LHS of the rule 
consists of an object, L0, created using a Boolean union operation that combines the box L0a 
with the sphere L0b (Figure 4-18(a)). The CWS (Figure 4-18(b)) is nearly identical to the LHS 
of the rule except that the order of the primitives that the object C0 is based on, namely the 
sphere C0a and the box C0b, is the other way around. 

Figure 4-17: LHS matching process including a sub-process for matching Boolean objects 

 

Figure 4-18: Example for a rule (a) and CWS (b) containing an object created using a Boolean union operation 
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Evidently the two Boolean objects L0 and C0 are the same. That means that the procedure has 
to be able to detect a match even if the order of the underlying primitives differs. For objects 
based on union operations like the one shown in the above example, as well as for objects 
based on intersection operations, the pairs with the order of the objects (L0a, L0b)  (C0a, C0b) 
and the pairs with the inverted order of objects for the LHS (L0b, L0a)  (C0a, C0b) are 
checked for matching. The comparison is done using the same methods as described for 
‘conventional’ matching: First the type of the objects is checked, followed by the size 
parameters and the relative transformation between the objects. If needed, it also includes the 
check of free parameters. In the first case above, the comparison of the object types of L0a 
(box) and C0a (sphere) fails and therefore it cannot result in a match. Even if the two spheres, 
L0b and C0a, were boxes of the same exact sizes as L0a and C0b, no match would be detected 
because the equality check of the relative transformation matrices would result in the negative 
version of the translations for the pair (C0a, C0b) in comparison to the pair (L0a, L0b). In the 
second case, the types and measurements of the compared objects L0b/C0a and L0a/C0b as well 
as the relative transformations of the object pairs (L0b, L0a) and (C0a, C0b) are identical. Due to 
this successful check, the superior Boolean objects L0 and C0 are identified as matches. 

 

Figure 4-19: Example for a rule (a) and two different CWSs (b) and (c) containing an object created using a 
   Boolean difference operation each 
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In contrast to objects based on Boolean union or intersection operations, the order of the 
underlying primitives of Boolean difference objects plays a crucial role. Therefore only one 
distinct check corresponding to the exact order of the underlying primitives in the LHS 
Boolean object is allowed to be performed. Trying to match the LHS of the rule in Figure 
4-19(a) with each of the two CWS examples in (b) and (c), the required check compares the 
pairs with the order of the objects (L0a, L0b)  (C0a, C0b). For the CWS in (b) this results in a 
match, whereas for (c) the check fails because the object L0a and C0a are of different primitive 
types. That is exactly the intended behavior of the check because the geometry of the Boolean 
object in (c) clearly differs from that in (a) and, therefore, must not result in a match. 

The last step in the application of a rule, the replacement of the matched objects in the CWS 
by the objects in the RHS of the rule, including the calculation of the related measurements 
and transformations, is identical to that explained in 4.1.2 and 4.2.2. 

A concluding example for the use of Boolean operations in a parametric rule is given in 
Figure 4-20. It is based on the ‘die’ shown in Figure 4-16. The underlying primitives are not 
explicitly shown in the figure, but their free parameters are denoted with index a for the box 
primitive and b to d for the three cylinder primitives. For reasons of clarity, the parametric 
relations for all transformation parameters as well as the ones of the object R0, which are 
defined as being equal to the corresponding size parameters of the dice in the LHS, are not 
shown. 

The rule finds all scaled versions of the die shown in the LHS and adds a second die to an 
existing one with an edge length that is 1.76 times larger than that of the matched Boolean 
object. Applying the rule four times to the last previously added die, starting with the die 
shown in Figure 4-16 as the initial set, results in the geometric model shown in Figure 4-21. 

 

Figure 4-20: Example for a parametric rule containing Boolean objects 
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4.3.2 Sweeping 
Using Boolean operations for the combination of parameterized primitives as described 
allows for a wide range of different shapes that can be modeled in rules. The predominantly 
used three-dimensional modeling technique in today’s mechanical engineering CAD systems, 
however, is to design geometric models based on sweeping operations. This technique often 
allows for easier modification of existing models and enables the design of geometric objects 
that cannot be created using Boolean operations or would require very high modeling effort. 
Therefore, aspects of sweeping are also incorporated into the spatial grammar approach. 

The basic idea of sweeping is to move a planar, two-dimensional cross-section along a 
guiding line to describe a volume in 3D space. In general, the guiding line can be linear 
(‘extrusion’), a circle or axis (‘revolve’), or an arbitrary three-dimensional curve. In the 
approach in this work, only the first two possibilities are considered, as the general automatic 
matching of a rule’s LHS containing an arbitrary trajectory is a very difficult issue. 

A cross-section in a grammar rule is created by means of defining a number of vertices. The 
result is a wire-profile made out of straight lines. To be able to derive a valid solid based on 
sweeping operations in the approach described here, this profile has to be closed and the wire 
has to be converted into a face. An example is shown in Figure 4-22. To facilitate the LHS 
matching process, the profile must be created on the xy-plane of the local coordinate system, 
one of the vertices has to be located at the origin, one of the edges of the profile has to be 
coincident with the x-axis and the profile must be created in the positive y-direction. 

 

Figure 4-21: Example solution applying the die rule four times 
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An extruded object is created based on a cross-section by defining its extrusion in the x, y or 
z-direction. That means that a vector is determined in relation to the local coordinate system 
and the cross-section is expanded along that vector. The related parameters are denoted ‘dirX, 
dirY and dirZ’. The definition of a revolve object is similar, except that the defined vector 
represents the axis that the cross-section is rotated around. The related parameters for the 
latter are denoted ‘axisX, axisY and axisZ’. An example for a grammar rule using different 
kinds of swept objects based on the cross-section in Figure 4-22 is given in Figure 4-23. The 
LHS consists of a revolve object, whose rotation-axis is defined by the parameters axisX = 1 
and axisY = 5 and, therefore, slightly deviates from the y-axis. Additionally, it is not fully 
revolved; the angle parameter is set to 230 degrees. The object in the RHS is created using an 
extrusion along a vector that is defined by the parameters: dirX = 3, dirY = 3 and dirZ = 2. 

As is the case with ‘conventional’ primitives, the parameters of swept objects can be used to 
define parametric grammar rules. The underlying profiles explained above, however, are not 
parameterized and, therefore, cannot be used for the definition of parametric rules. To 
circumvent this, cross-sections can alternatively be defined on the basis of a parameterized, 
two-dimensional plane primitive that posses the two parameters length and width. These 
parameters can be used for the definition of parametric rules. It is also possible to modify a 
plane primitive combining it with other primitives using Boolean operations. In conjunction 
with, for example, cylinder primitives, this approach allows for the creation of cross-sections 

 

Figure 4-22: Example for a two-dimensional cross-section 

 

Figure 4-23: Example for a grammar rule using different kinds of swept objects 
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that are not solely based on straight lines. At the same time these cross-sections are fully 
parameterized. Figure 4-24(a) illustrates a parametric example created using two Boolean 
difference operations. The first one subtracts a cylinder, L0c, from a plane primitive, L0b. From 
the resulting object, a further plane primitive, L0a, is subtracted. The parametric relations for 
the location parameters of the objects L0a and L0c are not shown for clarity. Figure 4-24(b) 
shows a swept revolve object that is generated based on the cross-section in (a). 

Except for the fact that they are based on only one single object, swept objects are technically 
similar to Boolean objects. For example, changes to both the size or transformation 
parameters of the underlying cross-section directly affect the geometric shape represented by 
the swept object. The transformation of a swept object in 3D space cannot directly be defined 
but is implicitly given by the underlying cross-section. Therefore, as is the case for Boolean 
objects, the reference object in the LHS of a rule cannot be represented directly by a swept 
object. Instead, it has to be ensured that the cross-section is positioned in the global origin. 

The process for matching the LHS in the CWS is also similar to the one for Boolean 
operations. Once an object of type ‘extrusion’ or ‘revolve’ in the LHS is reached during the 
process, first an object of the same type in the CWS has to be found. If this search is 
successful, the parameters, e.g. dirZ, axisX, angle, etc., are checked. If these parameters are 
all identical, a further sub-process for matching the underlying cross-section is initiated. A 
single plane primitive is handled like any other ‘conventional’ primitive (cf. 4.1.2 and 4.2.2). 
For a plane primitive that is additionally modified using Boolean operations, like the one 
shown in Figure 4-24(a), this sub-process is identical to the process for matching Boolean 
objects as described in 4.3.1. 

 

Figure 4-24: Example for a cross-section based on a plane primitive modified using Boolean operations (a) and 
   revolved object derived from it (b) 
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The last possible kind of cross-section matching checks for the equality of the faces that are 
derived from profiles made out of straight lines, like the example in Figure 4-22. This sub-
process is comprised of several steps. (1) First, a pre-check is performed that compares the 
number of edges of a profile and the size of the area enclosed by the profile. Only if both are 
identical, matching is generally possible. (2) Since the vertices and, therefore, implicitly the 
edges of a profile can be defined in an arbitrary sequence during the development of a rule, 
they are resorted so that they create a continuous path. (3) Based on the result of (2), the 
lengths of the single edges and the angles between adjacent edges are calculated. (4) With the 
‘first’ edge in the profile in the LHS acting as the starting edge, edge after edge is compared 
to the CWS profile with respect to the calculated length and the angles between the adjacent 
edges. If one single length or angle does not match, the next edge in the LHS profile is chosen 
as the starting edge and the same procedure as described before is again performed. This is 
done clockwise and counterclockwise until a match is found or until none of the possibilities 
results in a match. 

Replacing the matched objects in the CWS with the objects in the RHS is, again, identical to 
the methods described in 4.1.2 and 4.2.2. 

4.4 Three-dimensional labels 
With regard to the spatial grammar formalism (cf. 2.2.1), the focus of the approach described 
so far is on providing for the definition of shapes and rules in a way that is as general as 
possible. However, one component of the formalism, the set of labels, is not addressed so far. 
Labels can be used to better guide the shape generation process, i.e. constrain the application 
of rules, to help generating more meaningful or valid solutions. Further, they can be used to 
introduce additional, non-geometric data to rules and they provide the possibility to simplify 
LHS matching. 

This chapter introduces labels to the spatial grammar approach integrating the different uses 
of labels (cf. Figure 2-3) in a single concept. As with the other geometric primitives that can 
be used in this spatial grammar approach, a label is specified such that it has its own local 
coordinate system (Figure 4-25). This enables the determination of the location of a label 
using translation transformations. Additionally, however, it enriches the label with 
information about its orientation in three-dimensional space based on the possibility to change 
the rotation parameters. This has an influence on the detection of the transformation required 
to apply a rule. Due to the fact that these labels carry information about location and rotation 
in three-dimensional space, they are denoted ‘three-dimensional labels’ or ‘3D labels’. 

 

Figure 4-25: Three-dimensional label 
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3D labels do not have any geometric properties, but only carry transformation information. 
The sphere that can be seen in Figure 4-25 only exists for visualization purposes, i.e. it is 
merely displayed to ease the work with labels for the user in a visual, interactive grammar 
environment. Hence, the 3D label also cannot be detected as a match of a sphere object by the 
automatic LHS search during rule application. Without having any geometric properties, it is 
not possible to differentiate 3D labels by means of their shapes. Instead, the approach 
provides the possibility to assign different colors to a label. The effect is the same as using 
different shapes. At the same time, it simplifies the automatic matching of a label, as no shape 
needs to be matched, but only the symbolic numbers of the color values. Besides the color, a 
‘label name’ can be defined as an additional property. This allows for assigning a letter or 
number to further distinguish labels. The label name is not restricted to one single character or 
number but can consist of a string of arbitrary length and therefore enables the possibility to 
introduce a wider range of additional information in a grammar rule in textual from. The 
standard name of a label is defined to be ‘default’ (cf. Figure 4-25), whereas it is also possible 
to define labels without using a name. 

In principle, 3D labels have the same behavior as any other primitive in the approach. For 
example, they can be the reference object in the LHS of a rule or define different spatial 
relations together with other geometric objects. The application, including the matching of 
several objects and their relative transformations, stays the same as described in the previous 
chapters. It is also possible to define free parameters, the same way as explained for the 
definition of parametric grammar rules (cf. 4.2.1). Since labels do not have any geometric 
parameters, only the translation or rotation parameters can be ‘unlocked’. 

A 3D label is not directly assigned to a shape, i.e. there is no explicit connection defined 
between the two. Instead, an affiliation can be implicitly given by the spatial relation between 
a label and a shape. A spatial relation other than the one defined in the LHS of a rule, i.e. a 
different relative transformation, would not be detected as a match in the CWS. 

4.4.1 General uses for three-dimensional labels 
The concept of 3D labels introduced above can be used for all common applications of labels 
(cf. Figure 2-3). For use as a spatial label, only the information about the location but not the 
orientation is relevant. Unlocking all three rotation parameters and making them unrestricted 
makes a 3D label a ‘conventional’ spatial label. Using a label in this way, the application of 
rules can be restricted to a specific part of the CWS, for example, to the most recently added 
box as illustrated in Figure 4-26. Without labels it is necessary to manually choose one of the 
matches to avoid applying the rule to one specific box more than once. Using labels in the 
definition of the rule (Figure 4-26(a)) enables the automatic generation of the design in Figure 
4-26(c). The application starts by matching the LHS of the rule to the initial shape shown in 
Figure 4-26(b), which contains a randomly oriented 3D label. It can be matched since the 
orientation for a spatial label is not important, i.e. the rotation parameters of the label in the 
LHS of the rule are all unlocked, or free. 
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For use as a state label, in addition to the rotation parameters, the location parameters are set 
as unrestricted to make the label completely ‘non-spatial’, i.e. neither the location nor the 
orientation matter, but only that the label exists. The label is then assigned to a rule side rather 
than to a specific shape. Using 3D labels as state labels, rules can be defined in a way that the 
labels implicitly determine the rule application sequence if different kinds of colors and/or 
label names are used. Also the number of rule iterations or the termination of the shape 
generation process using a rule that erases the existing label(s) can be controlled. In Figure 
4-27, for example, the rules can only be applied iteratively according to the sequence (a)-(b)-
(c) due to the labels. Rule (d) can be used to abort the generation process after three, six, nine, 
etc. rule applications. 

 

Figure 4-26: Three-dimensional label used as spatial label to restrict rule application to the most recently added 
   shape in the CWS 

 

Figure 4-27: 3D labels used as state labels 
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3D labels can also be used to add non-spatial information to rules. Developing a new rule, one 
has to decide whether the additional information is relevant for the LHS matching process 
during the application of the rule or not. Depending on this choice, the different 
transformation parameters can be set as unrestricted or restricted. Most important for the 
augmentation of shapes is the additional ‘label name’. It can be used to classify or distinguish 
shapes or to add in a semantic meaning for a shape. The label name can also represent pure 
textual information that does not have any influence on the rule application but rather remains 
in the geometric model after design generation is finished. In this regard, such labels can be 
informative by adding information about design intent, manufacturing, for example, 
tolerances or welding information, measurement details, materials, texture, and colors. 

The last possible use of labels, the simplification of the LHS matching, is discussed in more 
detail in the next subsection. 

4.4.2 Using three-dimensional labels for simplified LHS matching 
Despite the possibility to use Boolean operations on objects and simple swept objects for the 
definition of parametric rules as described in Section 4.3, the complexity of the generated 
solutions can sometimes still be insufficient. Solids commonly used in mechanical 
engineering can be topologically more complex or even derived from free-form surfaces and 
include a wide range of detailing geometry, e.g. fillets and chamfers. Spatial grammar rules 
based on such complex geometry are difficult to handle generally in an implemented system 
because of the issues regarding automatic matching of the LHS. 

3D labels provide the possibility to be used as a ‘substitute’ for geometry in the LHS and 
therefore circumvent the difficulties with the automatic matching of the LHS. In comparison 
to the example shown in Figure 2-7 where the straight line is an implicit reference to 
determine the orientation under which the RHS of the rule has to be added to the CWS, it is 
not obligatory to have any shape in the LHS in addition to the 3D label. This is because the 
3D label, as introduced above, also carries information about orientation. The abstract 
additive rules in Figure 4-28 symbolize the difference between a ‘conventional’ rule (a) and a 
rule that contains only a 3D label in its LHS (b). Application of both rules would result in the 
same solution assuming that rule (b) is applied one more time than rule (a).  

For a 3D label that might exist in the RHS, like the one shown in the example in Figure 4-28 
(b), additionally a parametric relation can be defined, so that, for example, its location is 
dependent on an unrestricted parameter of one of the shapes in the RHS. It then implicitly 
depicts the location of the next rule to be applied in relation to the geometry in the RHS of the 
currently applied rule. 
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Rules developed based on this approach can contain an arbitrarily complex, parametric RHS 
and can be applied as long as the 3D label in the LHS can be matched. To generate 
meaningful mechanical engineering parts using three-dimensional labels for simplified LHS 
matching, it is necessary that the interfaces between the shapes in the different rules are 
ensured to fit once they are inserted in a design. Shapes with specified interfaces are denoted 
‘segments’ in this thesis. They are the subparts or building blocks used to generate 
mechanical engineering parts as symbolically illustrated in Figure 4-29. 

This concept has an analogy to an approach often used in variant management, called modular 
construction or assembly systems (see e.g. ULRICH 1995 or PAHL et al. 2007). In modular 
systems the aim is to define a limited number of basic building blocks, or modules, with well-
defined interfaces so that they can be combined to define a large range of product variants. 
Often these building blocks are derived from existing related product variants by extracting 
their commonalities. The extraction and definition of building blocks from existing designs is 
also applicable for the definition of segments. Ideally, in modular systems, the parts or 
subassemblies are used more than once in one product and so are segments in a part (see 

 

Figure 4-28: Conventional rule (a) and rule with only a 3D label in the LHS (b) 

 

Figure 4-29: Segments and their interfaces used to compose a mechanical engineering part (symbolic) 
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Figure 4-29). In comparison to modular systems that operate on the assembly or product level, 
the segment concept is used to generate parts through a series of interfaced segments. To 
allow for more complex part compositions, it is useful to use more than one type of interface 
together with different kinds of labels for the definition of rules. 

Three example rules that use 3D labels in the LHS and segments with complex curved 
geometry in the RHS are shown in Figure 4-30(a)-(c). The initial set Figure 4-30(d) contains 
another segment and two 3D labels. The interfaces of all segments are identical. An example 
for a solution generated applying the rules is shown in Figure 4-30(e). 

As the geometry in the RHS is of no relevance for the further application of rules in a CWS, 
there are basically no restrictions on how segments are created. CAD systems usually provide 
many modeling concepts that can be used for designing segments. They can be modeled using 
different features (cf. 2.5) together with parametric primitives, Boolean objects or other 
advanced parametric modeling techniques like UDFs, sweeps along three-dimensional 
trajectories, lofts for the generation of solids or parametric free form surfaces to derive solids. 
Further, it is possible to import solid geometry from another modeling system or 3D model 
catalogues, for example using standard exchange formats like STEP. Since geometry that is 
imported using an exchange format is static, i.e. non-parametric, it cannot be used for the 
definition of parametric rules on its own. However, in conjunction with, for example, 
parameterized primitives a partly parametric RHS can be defined. 

 

Figure 4-30: Example for a grammar using 3D labels and segments 
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4.5 Collision detection 
Mechanical engineering parts or products usually have to fulfill different requirements and 
underlay certain constraints. Incorporation of all constraints needed in grammar rules is often 
only possible by developing grammar systems for one specific example, or purpose, and hard-
coding them. These grammars, however, are often static and are not easily adapted once they 
are created. The specification of constraints on a general level is a more difficult task, 
especially in an approach as the one presented in this work that provides for a more general 
platform and allows for the visual definition of rules. Parametric relations and parameters that 
are restricted to certain ranges (cf. 4.2) or the use of 3D labels (cf. 4.4) are mechanisms that 
allow for the visual incorporation of constraints in spatial grammars. These techniques are 
defined and used internally within rules. 

In this section collision detection is introduced to the approach as a further, rule-external 
possibility for constraining the design generation. A simple principle for the detection of a 
collision between two objects is used: The objects are intersected and the result is checked for 
the existence of vertices. If vertices exist, a collision is detected. For example, the intersection 
of the box and the cone in Figure 4-31(a) results in the shape shown in (b). A collision is 
detected because the resulting object contains several vertices (shown in (c) using a wireframe 
visualization of the object). 

This collision detection mechanism can be used for two different purposes during rule 
application, first to avoid collision of parts in assemblies and second to restrict the design 
space, i.e. the boundary within which design generation can occur. 

 

Figure 4-31: Principle for the detection of a collision between two objects 
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4.5.1 Part collision avoidance 
In many cases of grammar-based design generation it is not relevant whether the single 
geometric objects interpenetrate each other in the virtual model or not. This is especially true 
in cases where one single part is created, i.e. a ‘mechanical’ part that would be one continuous 
chunk of material when physically produced. Interpenetration is often explicitly wanted 
because it can support the generation of more unexpected designs. In fact, it can be a valuable 
technique in design and designers often conceive of designs in terms of interpenetrating 
masses or volumes (STINY 1980b). 

However, there are also cases where interpenetration of parts is unintended. Especially if the 
geometric objects represent different separated parts that could be physically assembled into a 
product, it has to be ensured that they do not collide with each other. In cases like this, 
collision detection can be used to avoid the overlap of single parts. 

As collision detection is a rule-external mechanism, it is not part of the rule development step. 
Instead, it can be activated before the application of a rule is started. The effect is that, once 
the application process reaches the step of substituting the LHS with the RHS of a rule and 
therefore inserts the RHS objects into the CWS, all of the RHS objects are checked for 
collisions with any other object that already exists in the CWS, except the ones that are in the 
LHS match of the rule in the CWS. If any of the objects collides, the attempt to apply the rule 
is retracted, the already inserted RHS objects are removed from the CWS and the overall 
process continues trying to apply the next rule. 

In the example given in Figure 4-32, two bushings as shown in (a) are to be placed on the 
shaft in (b). The rule to accomplish this task is given in (c). It is parametric so that it can 
match shafts of arbitrary length. Further, the translation of the bushing that is added in the 
RHS of the rule is restricted to a range to ensure that it is not placed beyond the height of the 
shaft. The first application of the rule on the shaft in (b) places a bushing with a randomly 
chosen translation within the given ranges resulting in (d1). To insert the second bushing, the 
rule is applied again. This time, the newly added bushing, shown transparently in (d2), 
collides with the already existing one. Therefore, the attempt to apply the rule is retracted and 
the bushing is removed from the CWS. The rule is tried another time. Now, a different 
location is randomly chosen, which does not result in a collision creating the solution in (d3). 
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4.5.2 Design space restriction 
In addition to avoiding overlapping parts, collision detection can also be used for the 
restriction of the available design space. This can be an outer border that must not be 
exceeded by the generated design. Or, it can be any other obstacle to define a certain space to 
be kept clear by the design generation process. 

A design space restriction can be designed like any other geometric model, but the objects 
used have to be converted to a state denoted ‘obstacles’ so that they can be differed from the 
objects used in the grammar rules. Consequently, obstacles can only be defined in the initial 
set and not in rules. Applying rules in a semi-automatic mode, it is theoretically also possible 
to manually select different objects and convert them to obstacles before the next rule is 
applied. With regard to the grammar formalism, however, this would mean that after every 
rule application a new initial set and, therefore, implicitly a new grammar is defined. 

If there are obstacles defined, they are checked for collisions once other objects are inserted. 
Figure 4-33 shows an example for a restricted design space made out of an outer border and 
an additional cylinder within the border. A rule that is applied on the box located within the 

 

Figure 4-32: Example for a grammar rule application avoiding collision of parts 
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design space results in the collision of the newly added box shown transparently with the 
cylinder obstacle. The attempt to apply the rule is retracted and the already inserted box is 
removed from the design. 

For clarity, the restriction of the design space in the figure above is represented by simple 
2,5D obstacles. In general, however, the design space restriction can be arbitrarily complex. 
For example it is possible to use already existing parts as obstacles. This allows for a 
grammar-based design generation of a part within a given design space that is defined 
implicitly by the surrounding parts. If a sub-assembly consisting of more than one single part 
is to be generated within the given design space, additionally the part collision avoidance 
(4.5.1) can be activated. 

4.6 Summary 
A new three-dimensional spatial grammar approach was presented in this chapter. The basics 
of the approach include the use of parameterized primitives and automatic matching of the 
LHS of a rule. To allow for a wider variety of solutions to be generated on the basis of only a 
few rules, parametric rules were introduced. To increase the complexity of shapes that can be 
defined in rules, the approach was enhanced by the possibility to use Boolean and sweeping 
operations in grammar rules. The concept of 3D labels was developed which can be used to 
constrain the application of rules, add additional information to rules and provide the 
possibility to simplify LHS matching which enables the use of geometrically complex 
segments. A mechanism to avoid part collisions and to be able to constrain the design space 
was added in the last section. The different components of the approach provide the basis for 
the implementation of a general, three-dimensional spatial grammar system that enables the 
development and application of grammar rules in a visual, interactive manner. 

 

Figure 4-33: Example for a restricted design space with an object detected colliding with an obstacle 
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5. Software prototype 

A prototype software system of the approach described in Chapter 4 has been implemented 
and published as open source software11. Figure 5-1 shows a screenshot of this system during 
the definition of a rule. 

This chapter elucidates the most important aspects of the software prototype. It starts with the 
underlying basics of the system and then moves on to explain how rules can be developed and 
applied using the provided functionality. Therefore, this chapter aims to not only explain how 
one can work with the system, but also how the system works. 

5.1 System basics 
The software prototype is based on an open source 3D mechanical engineering CAD system12 
that, in turn, is built using an open source geometric modeling kernel13. By using the existing 

                                                 
11 http://sourceforge.net/projects/spapper/ (accessed January 14th 2012) 

12 FreeCAD, http://sourceforge.net/apps/mediawiki/free-cad/ (accessed January 14th 2012) 

13 OpenCASCADE, http://www.opencascade.org/ (accessed January 14th 2012) 

 

Figure 5-1: Screenshot of the prototype software system 

Pr
op

er
ty

 d
oc

k 
w

in
do

w
 

O
bj

ec
t-t

re
e

Rule development and application toolbars Workbench selection

Report view with log entries



64 5. Software prototype 

user interface and the functionalities for geometry generation and manipulation provided by 
the kernel and the CAD system respectively, the coding effort was kept within reasonable 
limits. The CAD system uses Python14 as an internal scripting language and for the realization 
of an application programming interface (API). This allows the full range of CAD 
functionality to be addressed, for example for the definition and manipulation of geometry, 
but also to directly modify the GUI of the system15. The approach for the interpreter is, 
therefore, realized as a Python module that is integrated at the startup of the program. It adds 
an additional workbench to the CAD system, including two special toolbars for the 
development and application of spatial grammar rules. 

5.2 Development of grammar rules 
The toolbar for the development of grammar rules comprises eleven different buttons whose 
functionality is explained in this section. 

For the development of a new rule, two empty windows, containing a visualization of 
the global origin, are opened for the design of the geometric objects and their relations 

in the LHS and RHS, as shown in Figure 5-1. For the definition of new objects, the 
functionality of the existing ‘Part’-workbench of the CAD system can be used. This 
workbench provides a toolbar for the definition of the different primitives. However, it is 
recommended to use the ‘Geometric Primitives’ dialog window accessible via the main menu 
(‘Part > Create Primitives…’), because it contains a few additional primitives not included in 
the toolbar. The values for the parameters of the primitives, including size, location and 
orientation parameters, can be changed in the ‘Property’ dock window located on the left 
hand side of the program window (see Figure 5-1). Location and orientation parameters can 
be found under the entry ‘Placement’. Changing parameter values is realized using numerical 
inputs, upon which the visualization of the geometry is immediately updated according to 
these inputs. The ‘Placement’ can alternatively be changed visually by directly manipulating 
the translation and rotation of a geometric object with the mouse, after double-clicking it in 
the objects-tree in the upper left hand side of the CAD system. The ‘Part’ workbench further 
includes two toolbars that have the added functionalities to perform Boolean operations on 
geometric objects and to create extruded and revolve objects. The only functionality for the 
design of objects in grammar rules that is not directly available in the ‘Part’ workbench is for 
the creation of two-dimensional cross-sections made out of straight lines (cf. 4.3.2). This can 
be found in the ‘2d Drafting’ workbench. 

Using the functionalities described so far, it is already possible to define any kind of non-
parametric grammar rules. Furthermore, for the definition of 3D labels, which is not 
part of the standard geometric primitives’ toolbar, an extra button is available. Once 

inserted into a rule, a 3D label can be handled like any other geometric primitive. Location 
and orientation can be changed using the ‘Placement’ property. The further parameters of a 
3D label, color and label name, can be found and modified in the two tabs of ‘Property’ dock 

                                                 
14 http://www.python.org/ (accessed January 14th 2012) 

15 Via PyQt, http://www.riverbankcomputing.co.uk/ (accessed January 14th 2012) 
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window. If a larger sized model is designed defining a rule, the 3D label’s size can be 
increased using a scaling factor. This helps to ensure the visibility of the label and, therefore, 
the ability to conveniently work with it. The size of the label does not have any influence on 
the actual rule and its application, as only the existence of the label, its transformation 
information, its color and its name are of relevance. 

The grammar-based design generation does not necessarily have to begin with an initial set 
that contains geometric objects. If the generation is supposed to start from scratch, an initial 
set cannot contain any geometry. However, the LHS of a rule must not be completely empty, 
as for the application of the rule it would not be clear what to search for and under what 

transformation to insert the RHS into the CWS. For this reason, a special object, called 
‘starting symbol’, can be inserted into the LHS side of a rule or into an initial set. 

Generally a starting symbol is a special kind of label and similarly does not have any internal 
geometrical representation. While the symbol is visible in the GUI for increased usability, it is 
only relevant for the application of a grammar rule; what it looks like is irrelevant. In 
comparison to a 3D label, it does not have any parameters and there is no possibility to 
translate or rotate it in 3D space, i.e. it can only be inserted in the global origin. The use of a 
starting symbol is especially helpful if the RHS of the first rule to be applied is parametric or 
if there is more than one rule containing a starting symbol in the LHS. 

For the development of parametric rules the possibility to define free parameters is provided. 
By selecting a geometric object and pressing the ‘fp’-button, a dialog window is 
opened that lists all size, location and orientation parameters of the object, as well as 

all relevant free parameters that have been defined through other objects in a rule (Figure 
5-2). A parameter is unlocked, or ‘freed’, by ticking the according check box in the ‘Unlock’-
column. Once unlocked, the parameter appears in the list of free parameters on the right hand 
side of the dialog window. 

Figure 5-2: Dialog window for the definition of free parameters 
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To make it clear to which object(s) free parameters belong and to make them system-
internally accessible, the following convention for a free parameter’s full name is used: the 
first part represents the name of the rule side, followed by the name of the object and the 
name of the actual parameter, all separated by points, for example, RHS.Box001.Width. 

As described in the approach section of this thesis, a free parameter can be completely 
unrestricted, restricted by a certain range or defined by a parametric relation. After unlocking 
a parameter, by default it is completely unrestricted. This can be seen in the dialog window 
through the radio button set in the ‘Unrestr.’-column. Choosing a different option for the radio 
button allows for the definition of a range or an equation. In the latter case, an equation-string 
is defined by dragging and dropping parameter names from the free parameters list to the 
input field; the system automatically prevents making a parameter dependent on itself. The 
parameters in the input field can be extended to an equation by typing in additional operators 
and operands or mathematical functions. The full range of functions provided by the Python 
math library16 can be used. Free parameters of the selected object but also of other objects can 
be included in the definition of an equation. For the definition of equations in the LHS, only 
the LHS parameters are provided in the free parameters list, for equations in the RHS, 
parameters from both sides are available. To restrict a free parameter to a certain range, 
numbers can be typed into the input fields that are provided for the definition of the minimum 
and the maximum. Or, instead of numbers, equations can be created the same way as 
described for parametric relations. In the case that only one range limit is needed, one of the 
input fields can be kept blank. 

Once the OK button is pressed, the system internally performs several checks to ensure the 
validity of the defined free parameters. As mentioned in Chapter 4.2.1, the parametric 
relations are transformed into a dependency graph and, using a topological sort algorithm, 
possible cycles between parameters are detected. Further, if the radio button is either set to 
range or equation, it is checked whether the related input fields are filled in. In the case of 
range parameters, if only numeric values are used, their validity is checked with regard to the 
related parameter. This includes a check to ensure that the maximum is bigger than the 
minimum and that certain geometric, or internal boundaries, are not violated, for example, the 
minimum for size parameters must not be negative. Further, it is checked whether the objects 
of all parameters used in an equation still exist, because the related objects might have been 
deleted since the equation was defined. 

To facilitate the development of rules, a few auxiliary functions are provided. One is 
the possibility to copy selected objects from one rule side to the other. This is 

especially helpful for defining additive or subtractive rules, because in these cases either the 
LHS is part of the RHS or vice versa and, thus, the related objects do not have to be designed 
twice. It is also convenient for copying Boolean objects that are based on several other 
primitives because only the resulting, and not every single underlying object, has to be 
selected in the object-tree. 

                                                 
16 http://docs.python.org/library/math.html (accessed January 14th 2012) 
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Sometimes it is difficult to recognize and correctly modify the spatial relations of objects 
displayed in the LHS with respect to the ones in the RHS. Especially due to the standard 
functionality of the underlying CAD system that allows zooming and changing the view, a 
wrong impression of the real sizes of the displayed objects can be created. For this reason, a 

shaded, half-transparent version of the complete LHS of a rule can be displayed in the 
RHS. Internally, the displayed representation of the LHS, not its geometrical 

representation, is added to the RHS. This is done by integrating the scene graph17 of the LHS 
window into the scene graph of the RHS as a sub-graph. 

The definition and application of a rule is based on the relative transformations between the 
different objects. The location and orientation in the 3D space are defined via the local 
coordinate system of every single object (cf. 4.1.1). During the visual development of a 
grammar rule it can sometimes be difficult to visually identify the current ‘positions’ of the 
local coordinate systems. For example, if a cube is rotated 90 degrees it visually looks the 
same as a completely un-rotated cube, but the spatial relation to other objects would be 

different. Therefore, it is possible to show the local coordinate systems of selected 
objects to easily identify their orientation. Regarding the implementation, the 

representation of the local coordinate system is realized as a special sub-graph inserted into 
the scene graph. 

As explained in the approach section (cf. 4.1.1), there is always one reference object to be 
defined in the global origin in the LHS. All remaining objects in the LHS and RHS are 
positioned in relation to this object and, thus, implicitly in relation to the global origin. If the 
decision is made to define a different object as the reference object, it can be a tedious task to 
re-position the remaining objects accordingly. To facilitate changing the reference object, a 

function is provided to recalculate the position of a selected object to the global origin 
and relatively transform the remaining objects. This functionality can also be helpful in 

cases where it is easier to define a spatial relationship between objects directly and not in 
accordance to the reference object. For example, it is easy to define a primitive rotated 15 
degrees around the x-axis and a second primitive rotated 15 degrees around the y-axis. 
Recalculation of the first object back to the global origin to make it the reference object 
results in values for rotation and translation of the second object whose ‘manual’ calculation 
would be rather tedious. The functionality provided by this button is not only restricted to deal 
with reference objects, but it can also be used in the RHS of a rule if needed. 

Once fully defined, rules can be saved in a folder on the computer system. A rule is 
saved in an archive file18 with the filename extension ‘.rule’. Internally, this archive 

consists of four files, shown in the overview in Figure 5-3. Two of them are the CAD files of 
the LHS and RHS that are saved in the standard format19 of the underlying CAD system. This 
standard format is an archive itself containing the designed geometry as boundary 

                                                 
17 FreeCAD comprises Coin3D, an Open Inventor clone, which is built on OpenGL and uses scene graph data 

structures to render 3D graphics, http://www.coin3d.org/ (accessed January 14th 2012) 

18 The used format for the archive is the ZIP file format 

19 The filename extension of files saved in the standard format of FreeCAD is ‘.FCStd’ 
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representation (B-rep) data and an additional XML-file20 that saves the data as defined in the 
‘Property’ dock window (see Figure 5-1). 

In addition to the two CAD files, a thumbnail (‘.png’-format), that is, a preview image which 
is shown once a rule is loaded for application, is created and saved in the archive. The last file 
contains all free parameters that are defined for a rule, again in XML-format. The 
specification of a free parameter comprises its name, its type (unrestricted, range or equation), 
and, if needed, the minimum and maximum or the defined equation. An example is given in 
Figure 5-4. To save the parameters in the correct sequence, so that it is ensured that they are 
evaluable during rule application, they are sorted using the topological sort algorithm as 
described for the definition of free parameters (cf. 4.2.1). 

Before a rule is finally saved, several checks are performed to ensure its validity. For 
example, in the LHS at least one object must be defined, a reference object must exist and, in 
case a starting symbol is used, no further objects are allowed to be inserted. 

Any rule that has been saved can be opened for modification. In this case, the system 
internally extracts the archive file described above, the two CAD files are opened and 

                                                 
20 XML = EXtensible Markup Language 

 

Figure 5-3: Content of a rule file 

Figure 5-4: Snippet of an XML-file containing the definition of free parameters 

Brep xml

LHS

.rule

Brep xml

RHS

xml png

<Parameters>
<Parameter fptype="unrestricted" name="LHS.Cylinder.Height" />
<Parameter fptype="range" max="LHS.Cylinder.Height/3+2" min="5" name="RHS.Box.Width" />
<Parameter equation="LHS.Cylinder.Height" fptype="equation" name="RHS.Cylinder.Height" />
<Parameter fptype="unrestricted" name="LHS.Box.Height" />
<Parameter fptype="unrestricted" name="RHS.Box001.Width" />
<Parameter fptype="unrestricted" name="RHS.Box.Height" />
<Parameter equation="pow(RHS.Box.Height,2)*0.75" fptype="equation" name="RHS.Box.Length" />

</Parameters>
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the XML-file containing the definition of the free parameters is parsed and delivered back to 
the program. 

Besides the rules, an initial set has to be defined to develop a complete grammar. This is done 
using a standard file in the CAD system and the functionality of the ‘Part’-workbench that is 
already described for the definition of rules in the beginning of this chapter. An initial set can 
consist of geometric objects, 3D labels or a starting symbol. Further, it can contain design 

space restrictions as described in Chapter 4.5.2. Any geometric object, also imported 
geometry21, can be selected and converted to an obstacle. These objects are moved to a 

special group called ‘Obstacles’ that can be seen in the object-tree of the CAD system. At the 
same time they are colored red and are shown transparently in the design window. If needed, 
they can also be converted back to ‘normal’ geometric objects. 

5.3 Application of grammar rules 
The toolbar for the application of grammar rules consists of three buttons. To apply rules, first 
the initial set of the grammar is opened. As the initial set is saved in the file format of the 

CAD system, it can be opened using the standard open dialog. However, using the 
button in the grammar application toolbar additionally adds a visualization of the 

global origin22. This makes it easier to identify the position of the object in 3D space, which is 
often helpful in cases where rules do not generate expected results and need to be analyzed in 
order to understand how to adapt them. 

After the initial set, rules can be selected and loaded into the system. Loading rules 
opens a new dock window (Figure 5-5) on the right hand side of the program window. 

The chosen rules are displayed in a re-sortable list that represents the application sequence of 
the rules. Every rule-entry in the list consists of the rule’s file-name and the preview image of 
the rule that was generated when the rule was saved (cf. 5.2). The latter makes it easier for the 
user to visually distinguish the rules, especially if they are applied manually. As described in 
the approach chapter (4.1.2), for every rule that is applied, one out of all found matches of its 
LHS in the CWS has to be selected. It is possible to determine for every rule in the list 
whether this selection has to be done manually by the user or whether it is done randomly by 
the system. Further, if a rule contains free parameters in its RHS that are completely 
unrestricted or restricted by a range and, therefore, require assignment of a concrete value, it 
can be depicted whether this value will be randomly chosen by the system or has to be 
manually defined by the user. The checkbox at the beginning of every list entry can be ticked 
or un-ticked to determine whether the rule is active for the application or not. This makes it 
easy to explore the impact of single rules in a grammar on the generated solutions. Clicking 
on the arrows on the right hand side of a list entry moves the position of a rule up or down 
resulting in a change of the rule application sequence. In case a special rule sequence is 
needed that, for example, requires one and the same rule to be applied more than once, rules 
can also be loaded into the list more than once. 

                                                 
21 For example STEP files can be imported from other CAD systems 

22 The current version of FreeCAD does not show the global origin 
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In addition to the settings for each rule, several general configuration options concerning the 
application of rules are available. The field ‘Applications’ depicts the number of rules to be 
applied. This is a rule-external mechanism to abort the rule application even if further rules 
would be applicable. On the other side, as it is also possible that no more rules in the list are 
applicable, the system stops the rule application even if the depicted number of applications 
has not been reached. If the number of rule applications selected is higher than the actual 
number of active rules in the list, the application continues at the beginning of the list once the 
end of the list has been reached. Rules can not only be applied in accordance to the sequence 
defined in the list, they can also be randomly chosen by the system. In conjunction with the 
possibility to load a rule into the list more than once, this can be used to implicitly define a 
weighting of the rules. Taking, for example, a grammar with two rules and loading the first 
rule three times, but the second one only once, would create a 75-percent chance that the first 
rule is applied. 

If more than one solution is needed, the number of solutions generated can be increased. 
Generally this makes sense only if more than one rule is loaded in conjunction with random 
rule selection or if the loaded rule(s) are parametric. Otherwise the same result would just be 
generated several times. Further, the option for collision detection can be activated to avoid 
overlap of single parts or shapes (cf. 4.5.1). The last configuration option allows for depicting 
the number of digits after the decimal point that is used to round floating-point numbers when 
parameters in the LHS and the CWS are checked for equality during the LHS matching 
process. This is mainly relevant for the calculation of the relative transformation between 
objects in rules that have at least two objects in the LHS and, predominantly, if rotational 

 

Figure 5-5: Dock window with list of loaded rules and application settings 
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transformations are used because they involve sine and cosine functions. The standard value, 
which is set to 2, is appropriate in most cases. Clicking the button on the upper right hand side 
clears the current list of loaded rules and resets all application settings to the default 
configuration. 

Once all rules are loaded and the configuration options for the application are set as 
needed, the application process can be started by clicking the ‘Apply rules’- button in 

the application toolbar. The system applies the rules trying to match the LHS according to the 
method described in Chapter 4. If the option to manually select one of the found matches is 
chosen, a dialog window listing all found matches is opened after the LHS matching process 
is finished (see example in Figure 5-6). 

Selecting an entry in the list highlights the related match in the CWS. Once the OK button is 
pressed, the system replaces the selected match with the RHS of the rule as explained in 
Chapter 4. If the rule includes free parameters in the RHS that have to be chosen manually, 
another dialog pops up to allow the user to input the actual value. The system checks whether 
the user input satisfies any implicit boundaries or defined range limits. 

To make it easier to comprehend why a rule has not been matched or why its application 
delivered an unexpected result, the system records log entries about internally performed 
checks and calculations (see lower right in Figure 5-1). Through this log the user can better 
track in what ways a rule has to be modified to reach the desired behavior. 

5.4 Summary 
A prototype system for a spatial grammar interpreter was described that implements the single 
components of the approach presented in Chapter 4. Based on an open source CAD system, it 
enables the visual, interactive development and application of three-dimensional spatial 
grammar rules. Additional functionalities were integrated that make the system more user-
friendly and automatically check for errors or inconsistencies, for example, to ensure the 

 

Figure 5-6: Dialog window to select one of the matches with the according CWS in the background 
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validity of parametric rules. An overview of the most important implementation issues and an 
instruction to the functionalities of the system were given in this chapter. 

To summarize, the different settings allow the user to specify whether the application of rules 
should be done manually, semi-automatically or automatically (cf. Figure 2-9). In the case of 
fully automatic rule application, the system selects a rule, either according to the rule list or 
randomly, it automatically determines the matching conditions and objects in the CWS that 
match the LHS, and it randomly selects one of the found matches and assigns random values 
to any free parameters that require the assignment of a concrete value. For the manual 
application of rules, the user makes the decisions and gives the needed input data. For 
example, manual rule selection can be realized by activating only one of the rules in the rule 
set and setting the number of rule applications to one. Additionally, the LHS match selection 
can be set to manual as well as the determination of free parameters. The only step that is 
always performed by the system is the matching of the LHS. 
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6. Examples 

To evaluate the approach, several spatial grammars are designed using the prototype system 
described in the previous chapter. The main aim of the examples is to test and validate the 
methods presented in Chapter 4. The focus is not on the grammars themselves in terms of 
their validity or the solutions spaces they create but rather the visual, interactive development 
and application of rules and the generation of alternative mechanical engineering design 
solutions including complex geometry. 

6.1 Vehicle wheel rims 
Parts of the approach evaluated in this example: non-parametric rules (additive, replacing), 
design space restriction 

The generation of vehicle wheel rims is chosen as a mechanical engineering design example 
since single piece rims combine mechanical issues, e.g. strength, with the need to be 
aesthetically pleasing. The rim rules are all non-parametric. The four rules for the generation 
of the spokes are shown in Figure 6-1. Rule (a) inserts the first spoke in relation to the hub; 
rule (b) adds a second spoke translated in the x-direction in relation to an existing spoke; rule 
(c) replaces an existing spoke by two new spokes that are rotated by 45 and -45 degrees 
respectively; and, rule (d) adds a new spoke rotated 90 degrees in relation to an existing one. 

 

Figure 6-1: Rules for the generation of rim spokes (a)-(d) and the initial set (e) 

(e)

(c) (d)

(a) (b)
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The rules above allow the single objects to overlap, which can help to generate more 
unexpected designs. The starting design for the grammar, consisting of the felly and the hub 
of the rim (Figure 6-1(e)), is designed manually using the standard functionality of the 
underlying CAD system. In addition to the felly and the hub, the initial set contains a design 
space restriction that prevents from generating spokes outside the outer diameter of the rim 
(shown transparently in Figure 6-1(e)). To generate acceptable design solutions, the rules are 
applied in a semi-automatic mode where the user decides how many rules to apply and in 
each application step manually chooses one of the found LHS matches. A selection of 
different created solutions is shown in Figure 6-2. While some of the results were predictable, 
others were unexpected, e.g. the two on the right hand side. 

The creation of engineering designs is always influenced by many constraints not only in the 
designs themselves, but also stemming from other domains like customer requirements, 
manufacturing, costs, laws and standards, etc. Production capabilities have an especially large 
influence on the geometry of a design. The spokes of customized rims, like the ones generated 
with the grammar above, are sometimes manufactured on milling machines due to the high 
flexibility and the low volumes produced. The spokes of the designs shown in Figure 6-2 are 
all in one plane. The necessity to have the spokes on one plane could be required due to 
restrictions of the available production capabilities. Extending these capabilities to more 
complex manufacturable 3D geometry directly influences the range of valid rules that can be 
defined and, therefore, the resulting solutions. Generally speaking, it is possible to modify 
rules systematically to define new design languages that reflect changing circumstances 
(STINY 1980b). 

Figure 6-2: Generated rim solutions 
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As an example, rules (a) and (d) in Figure 6-1 are modified. In the first case, the spoke is 
additionally rotated 10 degrees around the y-axis and translated slightly in z-direction (Figure 
6-3(a)). In the second case, both spokes are rotated 10 degrees around their y-axes. In a 
subsequent step, object R0 is set back to the global origin and, accordingly, the position of R1 
is transformed so that the RHS of the rule is in the correct spatial relation to the reference 
object in the LHS (Figure 6-3(b)). Figure 6-3(c) shows three examples for rim solutions 
generated using the modified set of rules. 

This example for spatial grammars was previously presented in HOISL & SHEA (2009). 
However, in previous work the rules were implemented directly as Python scripts, or hard-
coded, and restricted to 2.5D geometry. In comparison to using the interactive, visual 
approach presented here, defining the rules by writing the scripts was rather tedious, as it was 
often not clear whether the intended rules and effects were realized until their later 
application. This required many time-consuming test and modification cycles.

6.2 Cylinder cooling fins 
Parts of the approach evaluated in this example: parametric rules (additive, subtractive) 
including parametric relations and ranges with static limits 

As the second example, the generation of cooling fins for the cylinder of motorcycle engines 
is considered. In comparison to vehicle wheel rims, cooling fins do not have to be 
aesthetically pleasing but have to fulfill requirements concerning, primarily, the avoidance of 
overheating, manufacturability and fitting into the available space. 

The rules were derived by analyzing the cooling fins of the cylinder of a Kreidler Florett 
motorcycle and are shown in Figure 6-4. The majority of the rules in this example are 
parametric. Rule (a) inserts the first two fins, translated in the x- and y-direction in relation to 
the cylinder; applying rule (b), two new fins are added to an existing one at a distance of 15 

 

Figure 6-3: Adapted rules and newly generated rim solutions 
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mm from each other; rule (c) matches an existing fin of arbitrary length and adds another fin, 
which is rotated 90 degrees around the z-axis, translated in x-direction by 80% of the length 
of the matched fin and is assigned a length within the range of 30 to 80 mm; rule (d) finds an 
existing fin of arbitrary length and adds a new fin whose length is 80% of the length of the 
matched fin; rule (e) is similar to rule (d) but instead of decreasing the length of the new fin, it 
increases it by 20%; rule (f) matches an existing fin of arbitrary length and deletes it; rule (g) 
matches an existing fin of arbitrary length and rotates it around the z-axis by a value within 
the range of -20 to 20 degrees; and, rule (h) tries to find three fins that are at least 60 mm long 
and adds a reinforcing fin, which is realized using a cylinder primitive segment rotated 90 
degrees around the y-axis and translated along the x-axis by 80% of the average length of the 
three matched fins. The last rule (h) is intended to help prevent fins from excessive vibrations 
if they are too long. In rules (c), (d), (e) and (g), the length of the object R0 in the RHS is set 
to the same length as the object that is matched to L0. This parametric relation is not explicitly 
shown in the rule figures. 

 

Figure 6-4: Rules for the generation of cooling fins 

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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The initial set is designed manually. It consists of the cylinder, without the bore-hole, and four 
attached smaller cylinders, which provide the material needed to fix the cylinder head with 
screws. 

Figure 6-6 shows several examples of solutions generated using the rules above. The rules are 
applied in a semi-automatic mode to generate meaningful design solutions. The cylinder bore-
hole is inserted in a manual step using a Boolean operation after the application of rules is 
finished. 

 

Figure 6-5: Initial set for the cooling fin grammar 

 

Figure 6-6: Several designs generated by applying the cooling fin grammar rules (Figure 6-4) 
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6.3 High voltage insulators 
Parts of the approach evaluated in this example: swept objects based on parameterized plane 
primitives using Boolean operations, 3D labels used as spatial and state labels, parametric 
rules (parametric relations and ranges with parametric limits) 

High voltage insulators are used in a wide variety of applications. The specific example 
chosen here is derived from the design of centenary insulators for high-speed railways. This 
kind of insulator has to fulfill several requirements that vary depending on the particular 
application scenario. The requirements concern both mechanical and electrical engineering 
and are highly dependent on the geometric design. Examples are the mechanical resistance an 
insulator has to provide, prevention of electrical arcs and water bridges caused by rain fall, 
minimization of contamination, or the magnitude of leakage current. The basic element of an 
insulator is a cylindrical shank that is covered by several sheds. Important geometric 
parameters influencing the design are the spacing between the single sheds, the diameters of 
the sheds, their thickness and the shed body angle. 

The initial set for this grammar does not contain any geometric objects. Instead it comprises 
the starting symbol to allow for a wide variety of different insulators to be generated from 
scratch. The basis is created in the first rule shown in Figure 6-7(a). It replaces the starting 
symbol with the cylindrical shank object, R0, whose height can vary from 200 mm to 400 mm. 
The radius is also unlocked and restricted to a range between 15 mm and 30 mm. In addition 
to the shank, the first shed of the insulator, R1, is introduced. It is represented by a revolve 
object whose cross-section is rotated around the z-axis. The cross-section is defined by two 
parameterized plane primitives (Figure 6-7(b)), whereas R1b is subtracted from R1a using a 
Boolean difference operation. The width, wR1a, of the first plane represents the thickness of 
the shed and can be set to values between 10 mm and 20 mm. The length corresponds to the 
radius of the shed. Its lower limit is defined to be at least 25 mm longer than the radius, rR0, of 
the shank, whereas the upper limit is set to 100 mm. The second plane primitive is rotated by 
180 degrees with respect to the first one. Additionally it is translated to the outer corner of the 
first plane according to the equation transXR1b = lR1a and placed 3mm higher on the z-axis. 
The pitch angle of the plane can be varied within a defined range of 5 to 15 degrees. This 
angle correlates to the shed body angle. The last object, R2, which is added applying the first 
rule, is a 3D label (see Figure 6-7(a)). Its purpose will become clear in the description of the 
remaining two rules of the grammar. 

The second rule (Figure 6-7(c)) adds a new shed to the insulator in relation to an already 
existing shed. The LHS of the rule consists of the shank and a shed. The unlocked parameters 
of these two objects are the same as the ones shown in Figure 6-7(a) and (b). However, they 
are all set as unrestricted so that any shank-shed pair of arbitrary dimensions can be matched; 
for clarity these free parameters are not displayed in Figure 6-7(c). Additionally, the 
translation of the shed in z-direction is set as unrestricted to be able to match sheds that are 
positioned anywhere along the shank. This unrestricted translation is accomplished by the 
definitions transZL1a unrestr. and transZL1b = transZL1a+3 for the two underlying plane 
primitives of the shed’s cross-section. The only restriction for matching the LHS is given by 
the 3D label. Its translation on the z-axis has to be equal to the one of the shed determined by 
the first underlying plane primitive. This is expressed by the equation transZL2 = transZL1a. 



6.3 High voltage insulators 79 

As the rule represents an additive rule, the geometric objects in the LHS are all part of the 
RHS as well. The same free parameters as the ones shown in Figure 6-7(a) and (b) are defined 
again for the shank, R0, and the shed, R1, and are set equal to the free parameters of the LHS’s 
objects; again, these free parameters are not shown in the figure for clarity. Additionally, a 
new shed, R2, is added to the insulator. It is positioned at least 5mm above the top of the 
matched shed, transZR1a+wR1a+5 ≤ transZR2a, and to the most 30mm above it. The last object 
introduced is the 3D label, R3. It is allocated to the shed, R2, via its translation in z-direction 
using the parametric relation transZR3 = transZR2a. The 3D label used in both sides of the rule 

 

Figure 6-7: Rules for the generation of high voltage insulators 
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acts as a spatial label, as it always restricts the application of the rule to the most recently 
added shed. 

The last rule in Figure 6-7(d) is an abstract rule that does not change the geometry of the 
insulator. Instead it checks the position of the 3D label and, therefore, implicitly the position 
of the most recently added shed in relation to the shank. If it is located within 60mm from the 
top of the shank, a match of the LHS can be detected. The RHS of the rule keeps the shank 
but removes the 3D label with the effect that no further rules can be applied and the 
generation procedure terminates. Therefore, the 3D label also has state label character. The 
rule prevents sheds from being inserted in positions that are higher than the maximum height 
of the shank, i.e. without a ‘physical’ connection to the shank. 

The automatic generation of solutions always starts with the application of the first rule that 
can only be applied once. Next, rules two and three are applied interchangeably. Rule two 
inserts a new shed every time it is applied. Matching the LHS of the third rule fails as long as 
the 3D label is not in the specified range. Once it is applicable, it results in the end of the 
generation process. For some of the solutions the values that have to be assigned to free 
parameters are randomly selected by the system, for others they are manually defined. Figure 
6-8 shows several insulator solutions generated using the presented rules. The joints are 
manually added after the generation. 

 

Figure 6-8: Several examples for generated insulator solutions 
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6.4 Robot arm concepts 
Parts of the approach evaluated in this example: simplified LHS matching using 3D labels 
and parametric segments, general uses for 3D labels 

The following spatial grammar example has a focus on simplified LHS matching using the 3D 
label concept described in Section 4.4. The example is able to generate different complex 
geometry solutions for robot arm concepts. A robot usually consists of several robot arms that 
can be rotated around different axes. These robot arms have to be designed in a way that they 
fulfill requirements concerning stability, weight, design space, etc. Here, the application is 
approached only conceptually as an example for complex 3D design generation in a 
mechanical engineering related area. The grammar is intended to illustrate and validate the 3D 
label approach rather than validate the grammar itself, i.e. in terms of the design space 
defined. Figure 6-9 shows the spatial grammar developed based on the approach of using 
three-dimensional labels for simplified LHS matching and different segments of robot arms. 
The rules were derived by analyzing existing industrial robots23. 

Rule (a) is the first rule to be applied. It uses the starting symbol in the LHS to start from no 
geometry and adds a segment consisting of a parametric joint as well as the first part of the 
robot arm with a specified interface. Additionally a ‘default’ 3D label is defined in the RHS 
so that further rules can be applied. The radius, r, is defined to be within a range of 30 to 40 
mm, so that the diameter of the joint can be adapted, e.g. depending on the load the arm has to 
resist. The translation, translateY, of the joint depicts the offset of the joint’s centre from the 
label and is set depending on the radius. Rules (b)-(e) and (h) can be applied after this first 
rule because they all have a ‘default’ label in the LHS. The RHS of rule (b) consists of a 
bridge-segment that extends the length of the robot arm. It is based on an extrusion in the y-
direction, dirYb, which is restricted to a range between 30 and 100 mm. Additionally, it 
contains a stiffener that is positioned in the middle of the extruded part (translateYs) and can 
be rotated within a range of +/-15° around the x-axis (rolls) depending on the main direction 
of the force application on the robot arm. A second stiffener on the backside of the part is 
positioned according to the first one. Rule (c) adds another bridge-segment that includes a 
narrowed cross-section in the middle. It can help in cases where the weight of the robot arm 
has to be reduced or the load on the arm is not high. The length of this middle part of the 
segment is parametric and restricted by a range. Rule (d) allows for extrusions in three 
different directions, dirX, dirY and dirZ that are all restricted to certain ranges. In cases where 
dirX and dirZ are zero, the rule is identical to rule (a) except with the addition of stiffeners. 
Application of the rule results in a deviation of the main robot arm direction from the y-axis. 
This can be needed in cases where the available space for the robot arm is restricted, for 
example to avoid collisions with other obstacles. 

                                                 
23 See http://www.fanucrobotics.de/ (accessed January 14th 2012) 
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Rule (e) is geometrically and parametrically identical to rule (b). The difference is that it 
introduces a new kind of label that carries a different color and the name ‘split’ and therefore 
also changes the state. Additionally, not only one single label, but two of these labels are 
defined in the RHS of this rule. After applying this rule, none of the previously described 
rules or rule (h) can be applied, because the ‘default’ label in the LHSs, i.e. its name and 
color, can no longer be matched. Instead only the two rules (f) and (g) are applicable. The first 
one adds a smaller, non-parametric segment with a different interface, which nonetheless 
geometrically fits the interface used in the other rules. Application of this rule results in the 

 

Figure 6-9: Spatial grammar for the generation of robot arm concepts 
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creation of a cutout in the robot arm. This can help to reduce weight or create space for 
attachment parts or electrical motors. Repeated application of this rule creates longer holes. 
When rule (g) is applied, the generation of a hole is terminated. Rule (g) is an abstract rule 
because it does not result in any geometrical changes, but instead substitutes two ‘split’ labels 
with a distance of 50 mm to each other by one ‘default’ label that is positioned in the center of 
the locations of the two ‘split’ labels. After rule (g) is applied, the rules with ‘default’ labels 
in the LHS can be applied again. To end the generation of a robot arm, a further abstract rule 
(h) is defined. It substitutes a ‘default’ label by a ‘finish’ label, again changing the state but 
also specifying the transformation for the next segment. The ‘finish’ label is a state label that 
restricts further application to one of the rules (i)-(m). Additionally, no 3D label exists in the 
RHSs of these rules, so that the generation process terminates after their application. Rule (i) 
finishes a robot arm with a joint that is the counterpart to the joint added by rule (a). Instead 
of a hole, it consists of a shaft in the centre. Similarly, rule (k) consists of a shaft with an axis 
twisted by 90° in comparison to the start joint in rule (a) to allow for the generation of robot 
arms with different kinematic characteristics. Rule (l) also adds a shaft but in this case axially 
aligned to the longitudinal direction of the robot arm. The last rule (m) inserts a joint with a 
hole instead of a shaft in the axial direction of the robot arm. It has a 3D label in the RHS 
carrying the non-geometric information that it should only be assembled to a particular axial 
shaft, i.e. only to the joint inserted by rule (l) and not the ones introduced by (i) or (k). The 
combination of these two parts realizes a joint that can rotate a robot arm around its own 
longitudinal axis. This is often needed to position the gripper on the top of the robot to reach 
an intended location. Figure 6-10 shows a selection of different robot arm designs 
automatically generated using the rules defined above. 

 

Figure 6-10: Several solutions for robot arms generated using the rules shown in Figure 6-9 
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A few examples for manually assembled robot arms are illustrated in Figure 6-11. The rotary 
base and the gripper are always identical and therefore designed manually and inserted after 
generation.

6.5 Gear systems 
Parts of the approach evaluated in this example: Boolean operations, part collision 
avoidance, parametric rules (parametric relations and ranges with parametric limits) 
including advanced mathematical functions 

Gear systems exist in different forms in a variety of products. STARLING & SHEA (2002) 
presented gear systems as an example for using grammar-based synthesis to generate gear 
systems in clocks, power drills, winding mechanisms in photo cameras and automotive gear 
boxes. Based on this approach LIN et al. (2009) developed a refined method for automated 
gearbox synthesis incorporating simulated annealing. Gear systems have to fulfill several 
requirements concerning, for example, weight, available space or the number of output shafts 
as well as the related speed and torque. Further, the design of a gear system must include 
many constraints to ensure its validity. For example, it has to be ensured that gear pairs 
interact with each other but they must not overlap or a newly inserted gear has to sit on a shaft 
and both have to be coaxial. The manual design of gear systems is a tedious and time 
consuming task. Due to the numerous constraints often only very few alternative designs can 
be created and the best solution(s) might not be found. Therefore, gear systems are a suitable 
example for the use of a grammar approach, especially in early design phases where it is 
sufficient to use a simplified representation of gear disks in the form of plain cylinders (cf. 
STARLING & SHEA 2002). 

Unlike the original system by STARLING & SHEA (2002) that additionally included an analysis 
of the performance of the created gear systems, the example presented here focuses on the 
synthesis of the geometry of gear system solutions. The rules for the original examples are all 
hard-coded, making them difficult to change, whereas the prototype spatial grammar system 
here allows for the flexible, visual definition of the gear rules. 

 

Figure 6-11: Examples for robot arms assembled using the concepts shown in Figure 6-10 
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In comparison to the grammar examples presented so far in this chapter, which all generate 
solutions consisting of a single part, this example acts on the assembly level treating the 
different geometric objects as separate parts that are not allowed to overlap. This requires the 
collision detection (cf. 4.5.1) to be activated for the application of the rules. 

The initial set of the grammar consists of the starting symbol to allow for a greater variety of 
solutions. The first rule (Figure 6-12) inserts the first shaft of the gear system that can have a 
height, hR0, of 100 to 350 mm and decisively influences the outer measurements of the gear 
system in z-direction. The radius of the shaft, rR0, can be set within a range of 10 to 20 mm. 

The second rule (Figure 6-13(a)) adds a further shaft to an already existing one and inserts an 
interacting pair of gear disks. The height and radius parameters of the shaft in the LHS are set 
as unrestricted to be able to detect any shaft. The two shafts in the RHS, R0 and R1, are 
defined to be equal to the values of height and radius in the LHS; for clarity these parameters 
are not shown in the figure. R1 is additionally translated within a range of -300 to 300 mm in 
x- and y-direction in relation to the position of R0. The rule further inserts a pair of gear disks 
to connect the two shafts with each other. To avoid the detection of collisions between the 
gear disks and the shafts they are allocated to, the disks must not consist of a cylinder 
primitive only but have to contain a hole in the center. Consequently, they are created based 
on a Boolean difference operation of two cylinders (Figure 6-13(b)). The free parameters are 
defined on the basis of the underlying primitives. The first cylinder, R2a, can have a height 
between 15 and 50 mm to be able to represent gear disks of different thicknesses. The radius, 
rR2a, of the cylinder is defined to be at least 3 mm larger than the radius of the shaft, rR0, it is 
attached to. The maximum limit is set to 200 mm. To ensure that the cylinder is positioned on 
the shaft, i.e. not above or under it, its translation in the z-direction is restricted to positive 
values with a maximum of the shaft’s height minus its own height, 0 ≤ transZR2a ≤ hR0 - hR2a 
(see RHS of the rule in Figure 6-13(a)). 

 

Figure 6-12: First rule for the generation of gear systems 
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To position the second disk correctly, the translation in the x- and y-direction of its underlying 
cylinder, R3a, is set to be equal to the translation of the shaft R1. The height, hR3a, of the 
cylinder is defined within a range from 60% of the height of the first disk (Figure 6-13(b)). 
The translation in z-direction is calculated so that it is ‘centered’ with respect to the first disk 
according to the equation transZR3a = transZR2a + (hR2a - hR3a) / 2. To ensure that the two 
disks interact, the radius of the underlying cylinder of the second disk has to be equal to the 
absolute value of the distance between the two shafts minus the radius of the first disk: 

rR3a
 = transX 2

R1
 + transY 2

R1
 - rR2a

 

The cylinders R2b and R3b are subtracted from the other two cylinders to create the holes in the 
center of the disks. The heights as well as the translations in z-direction are set to be equal to 
the heights and the translations of the cylinders R2a and R3a, the radii are set to be equal to the 
radii of the related shafts. R3b is additionally translated in the x- and y-direction in accordance 
with the translation of the shaft R1. For clarity, all of these parameters are not shown in the 
figure above. 

 

Figure 6-13: Second rule for the generation of gear systems 
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A further rule is defined that is similar to the previous one. The main difference is that the 
LHS does not only contain a shaft but also a gear disk (Figure 6-14). The effect of applying 
the rule in comparison to the previous one is that no additional disk is inserted to the detected 
shaft, but the existing disk is connected to a new disk including a new shaft. 

The disk, L1, is generated the same way as the gear disks in Figure 6-13(b). To be able to 
detect any gear disk, the height, radius and transZ of the two underlying cylinders, L1a and 
L1b, are all set as unrestricted. The same applies to the height and radius parameters of the 
shaft L0. As it is an additive rule, the values for these parameters are taken over for the 
geometric primitives R0, R2a and R2b in the RHS. All remaining parameters are defined in 
exactly the same way as in the rule described above (Figure 6-13). 

 

Figure 6-14: Third rule for the generation of gear systems 

 

Figure 6-15: Solutions for gear systems generated using the rules shown in Figure 6-12 to Figure 6-14 

L1 R2

R3



88 6. Examples 

Figure 6-15 shows several solutions generated automatically using the three rules and the 
starting symbol as the initial set. Any values that have to be assigned to free parameters are 
randomly selected by the system. The number of rule applications is manually chosen to 
generate solutions with different numbers of shafts. Some solutions, e.g. the first one, result in 
very flat designs. The second example is made of a simple chain of disks. Others, for example 
the fourth solution, contain a ‘central’ shaft that has several disks attached to serve several 
output shafts at the same time. 

The rules defined so far as well as the ones originally used by STARLING & SHEA (2002) use 
parallel shafts only. With the visual approach developed in this thesis, it is easy to define rules 
that include shafts and gear disks whose axes are rotated with respect to each other, resulting 
in entirely three-dimensional gear systems.  

 

Figure 6-16: Rule for the creation of a pair of bevel gears 
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An example for such a rule is shown in Figure 6-16. In addition, it introduces cones as a 
further type of primitive to be able to represent bevel gears. The LHS of the rule contains a 
shaft with unrestricted height and radius. In the RHS this shaft is recreated assigning the same 
values to the height and radius of the cylinder R0. The first bevel gear is added to this shaft. 
Like the other gears, it is created using a Boolean difference operation (Figure 6-16(b)). The 
gear’s height, hR2a, can range between 10 and 30 mm. Its lower radius, r1R2a, has to be at least 
3 mm larger than the radius of the shaft and can be set to a maximum of 200 mm. The 
operating angle of the bevel gear in this example is chosen to be 45 degrees, achieved by 
defining the upper radius r2R2a= r1R2a - hR2a. The gear is positioned slightly below the upper 
top of the shaft using the equation transZR2a = hR0 - hR2a - 3. The second bevel gear is inserted 
rotated by 90 degrees around the y-axis. Its upper and lower radii are defined in the same way 
as described for the first gear; its height is set to be equal to the height of the first gear. To 
establish the correct interaction between the two gear disks, the second disk is translated by 
the value of the lower radius of the first disk, r1R2a, in the x-direction and by the position of 
the first disk plus its own lower radius, transZR2a + r1R3a, in the z-direction. 

The last new object added is the second shaft, R1, which is also rotated 90 degrees around the 
y-axis. The translation in the z-direction has to be equal to the translation of the second bevel 
gear. To create the correct spatial relation between gear and shaft, the shaft is additionally 
translated in the x-direction according to the equation transXR1 = transXR3a + hR1 - hR3a - 3. 

 

Figure 6-17: Solutions for gear systems including bevel gears 



90 6. Examples 

Heights and translations of the two cylinders, R2b and R3b, that are subtracted from the cones, 
R2a and R3a, are set to be equal to the heights and translations of the cone parameters; the radii 
of the two cylinders are set to be equal to the radii of the shafts R0 and R1. Figure 6-17 shows 
three gear systems solutions including bevel gears generated automatically using the rules 
presented in this example. 

6.6 Summary 
Five different examples for mechanical engineering grammars were developed to evaluate the 
approach and the prototype system. The examples cover all parts of the spatial grammar 
approach presented in this thesis. The rules were described in this chapter and different 
solutions generated by each of the grammars were shown. The system proved to be a general 
platform that allows for the development of different grammars without programming. 

The rim and the cooling fin grammars were used to test the basics of the approach and semi-
automatic rule application. They are based on rather unrestricted rules. This allows for a wide 
range of solutions to be generated. However, they can also generate invalid solutions, for 
example, if none of the spokes in a rim is connected to the felly or if cooling fins are created 
that are not connected to the cylinder or any other cooling fins. For that reason the grammar 
rules were applied in a semi-automatic mode. Introduction of further constraints, e.g. using 
labels, or the definition of further rules could help to ensure valid solutions if the rule 
application is performed automatically. While the application of the remaining three 
grammars results in geometrically valid solutions, the meaningfulness of the solutions must 
be further verified in terms of mechanical engineering requirements. 
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7. Discussion and future work 

The approach for a spatial grammar interpreter presented in this thesis comprises different 
aspects of the visual, interactive development and application of three-dimensional spatial 
grammar rules. In the following the contributions of this approach to the research area of 
spatial grammars are summarized. In addition, its limitations as well as ideas for 
improvements and future work are discussed. 

7.1 Research contributions 
Integrated into a single system, the approach for the presented 3D spatial grammar interpreter 
has several advantages over existing 3D implementations: 

 the possibility to visually, i.e. without programming, define and modify three-
dimensional rules of 

o arbitrary rule format, i.e. additive, subtractive and replacing rules, which can 

o make use of a wide range of solid, parameterized primitives including Boolean 
and sweeping operations in rule definition; 

 development and application of both non-parametric and parametric rules; 

 definition of an unrestricted number of rules, shapes in rules and applications of rules; 

 a concept for the consolidated use of labels; 

 automatic matching of the LHS of a rule in a CWS, including checking of parametric 
relations 

 the interactive application of rules (automatic, semi-automatic, manual) in 
combination with adhering to defined parametric relations; 

 integration into a CAD system including a user-friendly user interface; 

 and, collision detection for the restriction of the design space and to avoid collisions of 
parts. 

Combining all features, the approach provides a general platform for the development and 
application of spatial grammars and is not restricted to or implemented for one specific 
example. Integrated in a CAD system, it helps to make CAD a more active design partner 
through computational design synthesis. With regard to engineering design, this work is a step 
towards supporting engineers in formalizing their knowledge about design while they work in 
a familiar software environment, i.e. a CAD tool. Even when using automated design 
generation, the approach does not intend to replace the designer but rather to support time-
consuming, tedious design tasks and the generation of a wider variety of alternative design 
solutions. While the approach is limited to the use of a set grammar formulation of spatial 
grammars, a wide range of designs can be rapidly generated yielding some creative and 
unexpected outcomes. 
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The approach is not a substitution for but an enhancement of CAD systems. The prototype is 
implemented as a plug-in providing an additional, specialized workbench within a CAD 
system. It can be used in cases that are amenable to grammatical generation, for example, for 
designs that contain several recurring subparts or patterns. After the grammatical generation 
process is finished, the designer is able to change to other CAD workbenches to go on 
working with the created solutions. 

7.2 Limitations and potential for improvement 
Despite the advantages the presented approach provides, the method and implementation have 
some limitations. These and potential for improvement are discussed in the following. 

Transformations and LHS matching 

Unlike the original grammar formalism, the current approach does not consider scaling and 
reflection transformations for matching the LHS of a rule. The use of scaling transformations 
can be problematic in combination with parametric rules. This is especially the case when 
parametric relations between objects are defined that include mathematical operators and 
static values since these would not be ‘scaled’ in the equations in accordance to the geometry. 
Besides, parametric rules as described in this thesis can also be used to recognize scaled 
versions of an object (see 4.2.2). This allows the user to explicitly decide whether scaled 
versions should be matched or not. 

The approach for matching the LHS relies on the local coordinate systems of the geometric 
objects defined in the rules. This makes it easy to determine the transformation under which a 
rule applies to the CWS. However, it also prevents from matching shapes under several 
symmetry transformations, especially concerning reflections. This is due to the fact that the 
local coordinate system of each shape acts as an implicit label that unambiguously determines 
the transformation for the rule application. In the broader context, this is related to the issue of 
symmetries of objects, the automatic detection of symmetry- or reflection planes, as well as 
the question of how to deal with rotationally symmetric objects, as they match under an 
infinite number of reflection or rotation transformations. Symmetries help to generate a wider 
variety of solutions with only one rule, where labels are often used to restrict the application 
to a few specific symmetries. Due to the neglecting symmetries, with the current approach it 
is sometimes necessary to define more rules to be able to generate certain design solutions. 
From a usability point of view, defining a rule for every single symmetry case is often more 
transparent, since spatial thinking can be very challenging with rules that rely on symmetries, 
especially in 3D. 

Taking a longer term perspective, alternative possibilities for resolving the LHS matching 
problem need to be investigated. The current approach can automatically match parametric 
rules based on primitives and Boolean or simple swept objects. On this basis, a wide range of 
geometries can be created. Further, 3D labels allow circumventing the matching problem to 
generate complex geometries. However, using the 3D label concept, only rules that add 
geometry to a CWS can be defined. Once a segment is added to the CWS, there is no 
possibility to replace it anymore, unless parts of it are based on parameterized primitives or 
objects based on Boolean or simple sweeping operations. Complex geometry in the LHS 
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cannot be matched so far and even for simple geometry the matching can fail if the ‘internal’ 
structure of two objects is not identical. For example, an L-shaped block could be designed 
using sweeping, Boolean difference or Boolean union operations. Even if the resulting 
geometry is visually identical in all three cases, the objects are built in different ways and can 
therefore not be matched with each other. 

In the generalization of the approach, it may be promising to investigate the incorporation of 
more general existing three-dimensional shape searching methods that are based on the 
comparison of, for example, voxels and boundary representations (see e.g. IYER et al. 2005). 
Concepts stemming from tools to compare 3D CAD models could also prove helpful since 
they provide the possibility to compare very complex solids. Such tools, which can be found 
as proprietary software24 or within commercial CAD packages25, are most often used to 
calculate the deviations between two versions of one and the same part. The checks they 
perform include, for example, comparisons of the number of lines and faces of objects and the 
angles between all surface normals. To deliver meaningful results, the two parts that are 
compared, usually have to be properly positioned and oriented with respect to each other so 
that their common areas overlap. Comparing geometry without knowing the transformation 
information upfront or at least a reference like the local coordinate system can result in very 
complex and time intensive calculations. In any case, the tools to compare 3D CAD models 
cannot be used for parametric grammar rules, since they would only enable non-parametric 
matching of the LHS. 

Sweeping operations 

Using sweeping operations based on 2D cross-sections that are defined using straight lines is 
generally possible but restricted in the current state of the approach. The user has to design a 
cross-section carefully in accordance with the instructions given in Chapter 4.3.2. Otherwise 
the matching might fail or deliver wrong results. The approach for matching cross-sections 
has to be enhanced in this regard to become more general. In comparison to cross-sections 
that are based on plane primitives and modified using Boolean operations, it is easier to create 
more complex cross-sections using the line-based approach. However, the lines in the cross-
sections are not parameterized and therefore cannot be incorporated in the definition of 
parametric rules. The approach could be enhanced in that regard based on using a sketcher 
that enables the definition of parameterized lines. As an extension, the cross-sections could 
also be created based on a 2D grammar approach and subsequently used in 3D grammar rules. 

Further, it would also be interesting to use sweeping operations based on a trajectory. 
However, this is difficult to be incorporated in the grammar approach as curvilinear matching 
remains an open issue. 
  

                                                 
24 e.g. CompareVidia, http://www.capvidia.com/products/comparevidia/ (accessed January 14th 2012) 

25 e.g. CATIA V5 workbench ‘Healing Assistant‘ 
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3D labels 

3D labels do not have any geometric parameters, but their translation or rotation parameters 
can be used for the definition of parametric spatial relations. The remaining parameters, color 
and name, can only be set and matched statically. Making colors and label names also 
available as parametric properties would enable a generalization with regard to matching a 
wider range of different labels. For example, the color of a label could be restricted by a range 
of colors where the upper and lower limits are defined by certain color values. Using numbers 
as label names would further allow for the definition of equations. Assume, for example, that 
the match of a rule’s LHS delivers a label with name ‘2’ and the currently applied rule 
contains an equation adding ‘3’ to the detected name. This would mean that the next rule that 
can be applied would have to contain a label with name ‘5’ in its LHS. This opens up further 
possibilities especially with regard to state labels. On an even more general level, the use of 
regular expressions could be considered to not only match numbers but also strings and 
substrings. 

In the long term perspective examples using the 3D labels approach to circumvent the LHS 
matching problem could be developed using other, more advanced 3D modeling techniques 
for the design of parametric segments. Especially UDFs (cf. 2.5) are interesting for further 
investigation. They have also the potential to be used in the LHS of a rule as parameterized 
geometry to enable the definition of more complex parametric subtractive or replacing rules. 
Assigning a unique internal ‘name’ or rather ‘object type’ to every UDF that is created, UDFs 
could be treated the same way as any of the parameterized primitives for LHS matching, i.e. 
checking the type, the free parameters and the relative transformation. This would be an 
enhanced concept for conventional set grammar rules. This concept could also be seen as an 
enhancement of the UDF concept in CAD as the UDFs do not have to be placed manually 
anymore but ‘know’ where they can be inserted in an existing design, thus enabling a higher 
degree of design automation. 

Constraints 

The generation of meaningful or valid designs often requires the introduction of different 
constraints to a grammar. The current approach provides three different possibilities to 
constrain rule application without requiring programming: (1) the definition of parametric 
relations or restriction of parameters to values within a certain range, (2) the use of labels and 
(3) collision detection of objects including obstacles and design space restrictions. These, 
however, are not sufficient to cover all possible cases of constraints that might be required. 
What if, for example, only symmetrical design solutions are supposed to be generated or a 
certain kind of object is not allowed to be positioned within a certain distance to another 
object, but others are? Further mechanisms for constraint incorporation or ideally a concept to 
define constraints on a more general level are therefore needed. 

Prototype implementation 

In addition to the issues discussed so far, improvements to the software prototype are also 
needed. For example, in the current version of the system it is possible that the same solution 
is generated more than once during the application of a grammar. This should be avoided in 
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future versions. Detecting identical solutions that are generated by the exact same rule 
sequence is easier than those generated using different rule sequences. Further, in the current 
implementation collision detection is based on Boolean operations which are generally 
computationally intensive. Using a more advanced algorithm could help speeding up rule 
application that uses collision detection. Another functionality that would increase the 
usability of the system is the direct visualization of free parameters in the graphical 
representation of a rule. So far, they can only be seen by opening the dialog window for the 
free parameter definition. Finally, in manual or semi-automatic rule application modes, a 
helpful feature for the user would be a preview of the resulting design before finally applying 
a rule or the possibility to backtrack, i.e. to return to previous states in the rule application 
sequence or undo a rule application. 

7.3 Future extensions 
Taking a longer term perspective, more general extensions to the approach and the 
implementation are envisioned. 

Automatic derivation of a script from the visual definition of a grammar rule using a scripting 
language, such as Python, would allow for the potential editing of the ‘rule’ code by designers 
for enhanced rule definition and customization, especially for the incorporation of constraints. 
This could be based, for example, on the macro-recording mechanism that is available for 
conventional designs in the underlying CAD system. 

The spatial grammar interpreter can be used for examples where hundreds or even more 
design solutions are generated. In these cases, the system can only be beneficial for the 
designer if it also supports the possibility to automatically find good, or ideally the best, 
solution(s). Manual investigation of hundreds of solutions would take too long. Therefore, it 
is important to provide an interface to simulation in order to evaluate generated designs 
according to certain requirements, e.g. stresses in the vehicle wheel rims or cooling 
performance of the cooling fin designs (cf. examples in 6.1 and 6.2). Also, more difficult 
evaluation questions like fulfilling certain functionality with the least number of parts, the 
least complex parts or finding the least expensive solution could be subject to investigation in 
future work. 

Using synthesis and analysis, or simulation, in a closed loop can also provide for more 
intelligent automatic rule selection and parameter definition enabling the incorporation of 
optimization and search methods to generate optimally directed designs using a generative 
grammar (see e.g. STARLING & SHEA 2005). 

With regard to downstream processes like manufacturing, the spatial grammar approach can 
be combined with automated machining planning approaches to completely automate the 
design-to-fabrication process for customized products (see e.g. SHEA et al. 2010), and it can 
be investigated to what extent labels can be used to encode fabrication information and act as 
the connection to hand over additional information to the downstream fabrication system. 

Another important issue is the further validation of the approach and the prototype 
implementation. So far it has only been used by a few students with CAD background. 
However, more tests of the system are needed including CAD designers to evaluate its 
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acceptance and to what extent it helps to effectively use spatial grammars in mechanical 
design. Also the spatial grammar examples that were developed based on the theoretical 
inspection of existing products have to be further validated, ideally in case studies in 
collaboration with industry partners to discuss the significance of the rules and the generated 
solutions and to further refine them. On a more general level, mechanisms to validate the set 
of rules in a grammar, e.g. to avoid contradicting rules, or to ensure that the evaluation of 
parametric equations delivers valid result, e.g. to avoid negative values for size parameters, 
should be investigated. 

Finally, besides the discussed limitations and the proposed extensions, an important question 
remains how to conceive grammar rules in general (see also CHAKRABARTI et al. 2011 and 
MCKAY et al. 2012). The development of a general theoretical method to support designers in 
the process of defining ‘useful’ grammar rules is required. ‘Useful’ rules are defined if their 
application results in meaningful solutions, generating not only one or few solutions but 
solution spaces that ideally comprise creative, new solutions. This is a difficult issue that has 
not sufficiently been addressed in literature yet. Existing examples, also the ones in this 
thesis, are developed intuitively and in a generate and test manner, i.e. rules are defined and 
applied to check the outcome and subsequently the rules are adapted to reach the intended 
solution. This issue needs more investigation also to answer the question whether the 
development of grammars is systematically learnable or whether it is up to the intuition and 
experience of the user. 
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8. Conclusion 

Spatial grammars have been successfully applied in various domains to describe languages of 
shapes and generate alternative designs. For increased use and acceptance of spatial grammar 
systems, the development of visual, interactive grammar interpreters that are designer friendly 
is crucial. In an intuitive way, they allow designers to define their own rules and apply them 
interactively to generate different design alternatives. This is important as the design of spatial 
grammars is most often an iterative process where the language and full impact of the rules is 
often not known until they are applied. Further, integration of spatial grammars into CAD 
systems, including all of their functionality, is important to help encourage designers to utilize 
and benefit from grammatical design methods. 

This thesis presents a new approach for a three-dimensional spatial grammar interpreter. The 
main contribution of this approach is that it provides a flexible platform supporting designers 
with visual, interactive definition and application of their own spatial grammar rules in a 
familiar CAD environment without programming. It puts the creation and use of three-
dimensional spatial grammars on a more general level and enables their usability in 
mechanical engineering CAD systems to provide for more ‘active’ support of the engineering 
designer. For the rule development phase, this includes the creation and positioning of 
geometric objects and labels in 3D space for the definition of non-parametric and parametric 
rules. Geometric objects can consist of parameterized primitives that can be combined to 
more complex objects using Boolean and sweeping operations. For the rule application phase, 
automatic matching of the left hand side of a rule in a current working shape is carried out 
along with the calculation of the positions and sizes of the objects in the right hand side 
according to the defined parametric relations. 

While the main research goals of the thesis are achieved, several improvements to the 
developed approach are possible, for example, the generalization of the automatic LHS 
matching or further mechanisms to incorporate constraints into grammar rules. Future work 
towards more general extensions should include issues like the automatic derivation of a 
script from the visual definition of a grammar rule and linking the system with simulation and 
optimization software. 
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