
Non-parametric Estimation of Elliptical Copulae With

Application to Credit Risk

Krassimir Kostadinov ∗

Abstract

This paper develops a method for statistical estimation of the dependence struc-
ture of financial assets. As we are interested mainly in applications to credit risk,
our approach focuses directly on the copula function of a random vector and works
independently of any marginal assumptions. We use the class of elliptical copulas,
which provide a natural extension to the standard for the practice Gaussian copula
and a flexible model for joint extreme events. We calibrate the linear correlation
coefficients using the whole sample of observations and the non-linear (tail) depen-
dence coefficients using only the extreme observations. We provide theoretical as
well as numerical support for our method.
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1 Introduction

During the last decade, the dependencies between the financial assets have increased due

to globalization effects and relaxed market regulation. The standard industrial method-

ologies like RiskMetrics (see [27]) and CreditMetrics (see [19]) model the dependence

structure in the derivatives or credit portfolio by assuming multivariate normality of the

underlying risk factors. It has been well recognized (see Mandelbrot [26] for a classical, or

Cont [5] for a recent study), that many financial assets exhibit a number of features which

contradict the normality assumption – namely asymmetry, skewness and heavy tails. How-

ever, asset return data suggests also a dependence structure which is quite different from

the Gaussian (see Fortin and Kuzmics [12]). In particular, empirical studies like Junker

and May [22] and Malevergne and Sornette [25] indicate that especially during highly

volatile and bear markets the probability for joint extreme events leading to simultaneous

losses in a portfolio could be seriously underestimated under the normality assumption.

Theoretically, Embrechts et al. [10] show that the traditional dependence measure (linear

correlation) is not always suited for a proper understanding of dependency in financial

markets. When it comes to measuring the dependence between extreme losses, other mea-

sures (e.g. the tail dependence) are more appropriate. In the credit risk framework, Frey

et al. [16] provide examples and insight on the impact of a violated Gaussian assumption

on the tail of the credit portfolio loss distribution. Holding the marginal loss distributions

of the individual credits fixed and introducing tail dependence through heavy-tailed risk

factors, Frey et al. [16] conclude that the overall portfolio risk increases drastically com-

pared to the Gaussian (tail-independent) case. Clearly, appropriate multivariate models

and corresponding estimation methods suited for extreme events are needed.

This paper focuses on the statistical estimation of the dependence structure of finan-

cial assets. We are interested mainly in applications to portfolio credit risk, where the

observable financial assets (for instance stock returns) enter the model only to introduce

dependency between the credits. Mathematically, the whole information for the depen-

dence in a random vector is in its copula function.

Definition 1.1. For d ≥ 2 a d-dimensional distribution function with marginals uniformly

distributed on [0, 1] is called a copula.

By means of Sklar’s theorem (see Sklar [32]), if H is a d-dimensional distribution

function (d.f.) with continuous marginals F1, . . . , Fd, then there exists a unique copula C

such that for all y = (y1, . . . , yd) ∈ Rd

H(y1, . . . , yd) = C(F1(y1), . . . , Fd(yd)) .

Conversely, if C is a copula and F1, . . . , Fd are d.f.s, then the function H defined as above

is a d-dimensional d.f. with marginals F1, . . . , Fd.
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The problem we want to analyse in this paper can be formulated as follows:

given a sample (Y
(k)

1 , . . . , Y
(k)
d ), k = 1, . . . , n, of i.i.d. observations with d.f. H, estimate

the copula C regardless of the marginals F1, . . . , Fd.

We use the class of elliptical copulas, which provide a natural extension to the standard

for the practice Gaussian copula and, at the same time, a flexible model for joint extreme

events. In Section 2 we define these copulas and present some classical and more recent

results on them. The main estimation method is described in Section 3. We calibrate the

linear correlation coefficients using the whole sample of observations and the non-linear

(tail) dependence coefficients using only the extreme observations. In Section 4 we give

numerical examples and investigate the accuracy and robustness of the estimation. In

Section 5 we present a modification of the method which decreases the variance of the

estimates of the tail dependence matrix. In Section 6, we introduce a portfolio credit

risk model. We provide further results which enable the application of our method in the

estimation of some of the crucial parameters of the model. We conclude with a real data

example for a credit portfolio under the influence of business sector common factors.

2 Model and preliminary results

The copula most frequently used in practice is the Gaussian

CΣ(u1, . . . , ud) = NΣ(Φ−1(u1), . . . ,Φ−1(ud)) ,

which is the copula of the standard d-dimensional Gaussian distribution with correlation

matrix Σ. We use a more general class of copulas, generated from the class of ellipti-

cally distributed random vectors (see Fang et al. [11] for a detailed overview on elliptical

distributions).

Definition 2.1. If Y is a d-dimensional random vector and, for some vector µ ∈ Rd,
some non-negative definite symmetric d× d matrix Σ and some function φ : [0,∞)→ R,

the characteristic function ϕY−µ is of the form ϕY−µ(t) = φ(t′Σt), we say that Y has an

elliptical distribution with parameters µ, Σ and φ. The function φ is referred to as the

characteristic generator of Y .

When d = 1, the class of elliptical distributions coincides with the symmetric ones.

For elliptically distributed random vectors, we have the representation

Y = µ+RAU , (2.1)

where R is a non-negative random variable (r.v.), A is a deterministic d× k matrix with

AA′ = Σ (k := rankΣ) and U is a k-dimensional random vector uniformly distributed on
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the unit hyper-sphere Sk =
{
z ∈ Rk : z′z = 1

}
, independent of R. The r.v. R in (2.1) is

referred to as the spectral variable. When R2 ∈ χ2
d (chi-square distributed with d degrees

of freedom), we obtain the Gaussian distribution Y ∈ Nd(µ,Σ); when R2/d ∈ F (d, ν) (F -

distributed with d and ν degrees of freedom), we obtain the t-distribution with ν degrees

of freedom Y ∈ Td(ν, µ,Σ).

A useful fact about elliptical distributions is that their marginals of any dimension

k < d are also elliptical with the same characteristic generator, and so are any linear

combinations a+BY , a ∈ Rm, B ∈ Rm×Rd, see Fang et al. [11], Theorems 2.6 and 2.16.

Next we denote ρij =
Σij√
ΣiiΣjj

and we note that it is equal to the usual linear correlation

coefficient if var(Yi), var(Yj) < ∞. However, for elliptical distributions ρij is well defined

even when linear correlation is not (see Example 4.1 for such a model). In the sequel we

mean by correlation the constant ρij.

Using (2.1) one can show that the elliptical copula is uniquely determined by the d.f. of

the spectral variable R and the correlation matrix [ρij]i,j=1,...,d (see for instance Embrechts

et al. [9], Lemma 5.1 and the comments after). These are the parameters which we are

interested in.

Among the numerous possible statistical procedures for elliptical distributions in gen-

eral, only few are designed to work on elliptical copulas regardless of the marginals (see

Demarta and McNeil [7]). One of the possible methods is by means of pseudo - maximum

likelihood (see Genest et al. [17]), which is briefly explained in the sequel. Denote

U
(k)
j = FE

j (Y
(k)
j ), j = 1, . . . , d, k = 1, . . . , n ,

where FE
j , j = 1, . . . , d, is the empirical d.f.. Assume also that the d.f. of the spectral

r.v. R as in (2.1) belongs to some parametric family with parameter vector Ψ, i.e. P (R <

x) = F (x,Ψ) (for example, one may take the F -family with (ν, d) degrees of freedom,

leading to the t-copula). Then one may estimate the correlation matrix [ρij]i,j=1,...,d and

the parameter vector Ψ by maximizing the pseudo-log-likelihood

logL(Ψ, [ρij], U) =
n∑
k=1

logL(Ψ, [ρij], U
(k)
1 , . . . , U

(k)
d ) ,

where L is the likelihood function of the elliptical copula. As typically the likelihood

function is available in terms of d-dimensional integrals (see Demarta and McNeil [7]),

in practice some numerical issues arise, in particular when d > 2. A different approach

overcoming this problem is taken in Lindskog et al. [24]. It is based on the Kendall’s tau.

Definition 2.2. Kendall′s tau for a bivariate random vector (Y1, Y2) is defined as

τ := P ((Ŷ1 − Ỹ1)(Ŷ2 − Ỹ2) > 0)− P ((Ŷ1 − Ỹ1)(Ŷ2 − Ỹ2) < 0) , (2.2)

where (Ŷ1, Ŷ2) and (Ỹ1, Ỹ2) are independent copies of (Y1, Y2).
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Kendall’s tau is a copula property in the sense that it is invariant under increasing

transformations of the marginal random variables, see for instance Embrechts et al. [9],

Theorem 3.3. The relation between Kendall’s tau and the linear correlation coefficient is

well known for bivariate normally distributed random vectors. There is in fact a more

general relation between Kendall’s tau and the correlations ρij for elliptically distributed

random vectors with absolutely continuous marginals, namely

τ(Yi, Yj) =
2

π
arcsin ρij, i, j = 1, . . . , d , (2.3)

see Lindskog et al. [24] for a proof.

The result (2.3) provides a robust method to determine the correlations in random

vectors with arbitrary continuous marginals and elliptical copula. Using the observa-

tions for each pair (Y
(k)
i , Y

(k)
j ), k = 1, . . . , n, i, j = 1, . . . , d, from such a random vector

(Y1, . . . , Yd), one may consistently estimate Kendall’s tau matrix by

τ̂ij
n =

(
n

2

)−1∑
k>l

sign[(Y
(k)
i − Y (l)

i )(Y
(k)
j − Y (l)

j )], i, j = 1, . . . ,m , (2.4)

and then use ρ̂ij
n = sin(π

2
τ̂ij

n), i, j = 1, . . . , d, see Lindskog et al. [24] for asymptotic

properties and numerical examples. Then, in order to estimate the remaining parameters

Ψ in the distribution of the spectral variable R, one maximizes the pseudo-log-likelihood

logL(Ψ, [ρ̂ij
n], U) =

n∑
k=1

logL(Ψ, [ρ̂ij
n], U

(k)
1 , . . . , U

(k)
d ).

As already discussed, the main reason why we are interested in copulas different from

the Gaussian in that we need better models for the dependency between extreme events.

In this sense both of the above mentioned statistical approaches have the drawback that

they infer the parameters using the whole sample of observations. Thus, they provide a

good fit on the empirical copula for the center of the distribution, but they might be

misleading when it comes to joint extreme events.

The tail dependence coefficient relates to the amount of dependence in the lower-left-

quadrant tail of a bivariate distribution, i.e. it is relevant for the study of dependence

between extreme events.

Definition 2.3. The lower tail dependence coefficient for a bivariate random vector (Y1, Y2)

with marginals F1 and F1 and copula C12 is given by

λ(Y1, Y2) := lim
u→0

P (Y1 < F−1
1 (u) |Y2 < F−1

2 (u)) = lim
u→0

C12(u, u)

u
, (2.5)

if the limit exists. When λ = 0, we speak of tail− independence, otherwise 0 < λ ≤ 1 and

we speak of tail− dependence.
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From (2.5) we see that the coefficient is a copula property and hence invariant under

strictly increasing transformations of the marginals Y1 and Y2. There are various statistical

methods for detection and estimation of tail dependence (see Frahm et al. [13], also

Schlather and Tawn [30]). For instance,

λ̂12

n,s
= 2− 1

s

n∑
k=1

1{
FE1 (Y

(k)
1 )< s

n

}⋃{
FE2 (Y

(k)
2 )< s

n

}, 1 < s < n , (2.6)

where (Y
(k)

1 , Y
(k)

2 ), k = 1, . . . , n are i.i.d. observations from (Y1, Y2), FE
1 and FE

2 denote

the empirical d.f.s, s = s(n)→∞ and s(n)
n
→ 0 as n→∞ is a consistent estimate of the

tail dependence coefficient, see Schmidt and Stadtmüller [29].

The next proposition relates the tail dependence coefficient for an elliptical random

vector to the tail behaviour of the spectral r.v. R as given in (2.1).

Proposition 2.4. Let Y = µ + RAU be a d-dimensional elliptically distributed random

vector with absolutely continuous marginals with support on the whole of R. The following

statements are equivalent

(1) For some α > 0, all pairs (Yi, Yj) are tail-dependent with coefficient

λ(Yi, Yj) =

∫ π
2
π
4

(1−τ(Yi,Yj))
cosα t dt∫ π

2

0
cosα t dt

, i, j = 1, . . . , d, (2.7)

where τ(Yi, Yj) denotes Kendall’s tau.

(2) The tail of the spectral variable R is regularly varying at infinity with index α > 0,

i.e.

lim
x→∞

P (R > qx)

P (R > x)
= q−α

for every q > 0. In this case the the pairwise tail dependence coefficients are given by

(2.7).

Proof. See Hult and Lindskog [20], Theorem 4.3.

From the proposition above we may conclude that the bivariate marginals of an ellipti-

cally distributed random vector Y have tail dependence if and only if the spectral r.v. R in

(2.1) is regularly varying. Kendall’s tau τij only affects the magnitude of tail dependence.

As a consequence of this proposition, r.v.s with a Gaussian copula are tail-independent,

whereas the t-copula with ν degrees of freedom leads to tail dependence with α = ν.

3 Estimation methodology

In the next lemma we analyze further the function on the right-hand side of (2.7).
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Lemma 3.1. Setting x = π
2
(1− τ) in (2.7), we define

λ(α, x) =

∫ π
2

x
cosα t dt∫ π

2

0
cosα t dt

, α ≥ 0, x ∈ [0,
π

2
] .

It satisfies the following properties.

(1) λ(α, x) is continuous and differentiable in α > 0, x ∈ (0, π
2
).

(2) 0 < λ(α, x) < 1.

(3) Let x ∈ (0, π
2
) be fixed. Then λ(α, x) is strictly decreasing in α > 0. Furthermore,

lim
α→0

λ(α, x) = 1− 2x

π
, lim

α→∞
λ(α, x) = 0 .

(4) Let α > 0 be fixed. Then λ(α, x) is strictly decreasing in x ∈ (0, π
2
).

Proof. The function cosα t for t ∈ (0, π
2
) is continuous and differentiable, and so are∫ π

2

x
cosα t dt and

∫ π
2

0
cosα t dt as functions of α > 0 and of x ∈ (0, π

2
). Furthermore, cosα t >

0 for t ∈ (0, π
2
), hence 0 <

∫ π
2

x
cosα t dt <

∫ π
2

0
cosα t dt, therefore we obtain (2).

To prove (3) we differentiate with respect to α

∂

∂α
λ(α, x) =

∫ π
2

0
cosα t dt

∫ π
2

x
log (cos t) cosα t dt−

∫ π
2

x
cosα t dt

∫ π
2

0
log (cos t) cosα t dt(∫ π

2

0
cosα t dt

)2

=
D(α, x)(∫ π

2

0
cosα t dt

)2 .

We will prove that D(α, x) < 0 for any fixed 0 < x < π
2

and α > 0.

First we note that D(α, 0) = D(α, π
2
) = 0. Then we differentiate with respect to x:

∂

∂x
D(α, x) = − log (cos x) cosα x

∫ π
2

0

cosα t dt+ cosα x

∫ π
2

0

log (cos t) cosα t dt

= cosα x

(
− log (cos x)

∫ π
2

0

cosα t dt+

∫ π
2

0

log (cos t) cosα t dt

)
= C(α, x) cosα x .

Note that

C(α, 0) =

∫ π
2

0

log (cos t) cosα t dt < 0

and that

lim
x→π

2

C(α, x) =∞

and that C(α, x) is strictly increasing in x for x ∈ (0, π
2
), as − log (cos x) is strictly increas-

ing. Therefore there exists a unique point y, 0 < y < π
2
, such that C(α, y) = 0. Further-

more, ∂
∂x
D(α, x) = C(α, x) cosα x < 0 for x ∈ (0, y) and ∂

∂x
D(α, x) = C(α, x) cosα x > 0
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for x ∈ (y, π
2
), so D(α, x) is strictly decreasing for x ∈ (0, y) (i.e decreasing from D(α, 0) =

0 to D(α, y) < 0) and D(α, x) is strictly increasing for x ∈ (y, π
2
) (i.e. increasing from

D(α, y) < 0 to D(α, π
2
) = 0). Therefore D(α, x) < 0 for any x ∈ (0, π

2
) and α > 0.

Therefore ∂
∂α
λ(α, x) < 0 for any x ∈ (0, π

2
) and α > 0, which proves that λ(α, x) is strictly

decreasing. Furthermore,

lim
α→0

λ(α, x) = lim
α→0

∫ π
2

x
cosα t dt∫ π

2

0
cosα t dt

= 1− 2x

π
.

Taking some 0 < ε < x and using the fact that cosα t is strictly decreasing in t for every

α > 0 we obtain

1

λ(α, x)
=

∫ π
2

0
cosα t dt∫ π

2

x
cosα t dt

=

∫ ε
0

cosα t dt∫ π
2

x
cosα t dt

+

∫ π
2

ε
cosα t dt∫ π

2

x
cosα t dt

≥ ε cosα ε

(π
2
− x) cosα x

+ 1 .

Since
(

cos ε
cosx

)α →∞, α→∞, we obtain

lim
α→∞

λ(α, x) = 0 .

As cosα t > 0 for t ∈ (0, π
2
), we have also the monotonicity of

∫ π
2

x
cosα t dt, i.e. (4).

Let X = (X1, . . . , Xd) be a random vector with absolutely continuous marginals with

support on the whole of R and an elliptical copula equal to the copula of the random vector

Y = µ + RAU . Assume that the spectral random variable R has a regularly varying tail

at infinity with index 0 < α∗ <∞ as in Proposition 2.4 (2).

Let || · || be the L2 norm defined on the space Rd × Rd, i.e.

||A|| = ||[Aij]|| =
d∑

i,j=1

A2
ij, A ∈ Rd × Rd .

Denote Λ̂n = [λ̂ij
n
]i,j=1,...,d ∈ Rd×Rd, where (λ̂ij

n
)n∈N, for i, j = 1, . . . , d, is a sequence

of (weakly) consistent estimates of the pairwise tail-dependence coefficients λ∗ij of Xi and

Xj, i.e.

λ̂ij
n P→ λ∗ij, n→∞ . (3.1)

For example, (2.6) provides such a sequence, see e.g. Schmidt and Stadtmüller [29]. Denote

the true tail dependence coefficients matrix Λ∗ = [λ∗ij] ∈ Rd × Rd.
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Denote τ̂n = [τ̂ij
n]i,j=1,...,d ∈ Rd ×Rd, where (τ̂ij

n)n∈N, for i, j = 1, . . . , d, is a sequence

of consistent estimates of the Kendall’s tau coefficients τ ∗ij of Xi and Xj, i.e.

τ̂ij
n P→ τ ∗ij, n→∞ . (3.2)

For example, (2.4) provides such a sequence, see e.g. Lindskog et al. [24]. Denote the true

Kendall’s tau matrix by τ ∗ = [τ ∗ij] ∈ Rd × Rd.
Furthermore, for α > 0 and τ ∈ Rd × Rd with τij ∈ (−1, 1) denote by

L(α, τ) = [λ(α,
π

4
(1− τij))] ∈ Rd × Rd , (3.3)

where λ(α, x) is the function from Lemma 3.1.

Proposition 3.2. Let X = (X1, . . . , Xd) be a random vector with absolutely continuous

marginals with support on the whole of R and an elliptical copula such that the spectral

random variable R in (2.1) has a regularly varying tail with index 0 < α∗ < ∞. Let

Λ̂n = [λ̂ij
n
] ∈ Rd × Rd and τ̂n = [τ̂ij

n] ∈ Rd × Rd satisfy (3.1) and (3.2). In addition, let

τ̂ij
n = τ̂ji

n ∈ (−1, 1) a.s. and λ̂ij
n

= λ̂ji
n
∈ (0,

1+τ̂ij
n

2
) a.s. for every n ∈ N, i, j = 1, . . . , d

(we set τ̂ij
n = λ̂ii

n
= 1). Denote

α̂n = arg min
α>0
||L(α, τ̂n)− Λ̂n||. (3.4)

Then

(1) α̂n exists and is unique a.s. for every n ∈ N.

(2) α̂n is a consistent estimate of α∗, i.e.

α̂n
P→ α∗, n→∞.

(3) Denote by θ̂n the vector, composed of all τ̂ij
n, λ̂ij

n
, i = 1, . . . , d, j = i+1, . . . , d and

by θ∗ the corresponding vector with the true Kendall’s tau and tail dependence coefficients.

If √
n
(
θ̂n − θ∗

)
d→ N(0,Σ), n→∞,

for some non-degenerate 2d(d− 1)× 2d(d− 1) covariance matrix Σ, then

√
n (α̂n − α∗) d→ N(0, σ), n→∞, (3.5)

where σ > 0 is explicitly specified in (3.9).

Proof. (1) The following arguements are valid a.s. We note that by means of Lemma 3.1

(2), for every α > 0 we have

0 ≤ ||L(α, τ̂n)− Λ̂n|| ≤ 4d2.
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Also, using Lemma 3.1 (3) and the fact that

lim
α→0

λ(α,
π

4
(1− τ̂ijn)) =

1 + τ̂ij
n

2
> λ̂ij

n

and

lim
α→∞

λ(α,
π

4
(1− τ̂ijn)) = 0 < λ̂ij

n

we have for i, j = 1, . . . , d and for any n ∈ N a unique solution of the equation

λ(α,
π

4
(1− τ̂ijn)) = λ̂ij

n
,

which we denote by αij ≥ 0. Let

αmax = max
i,j=1,...,d

αij, αmin = min
i,j=1,...,d

αij.

Due to the monotonicity of λ(α, π
4
(1− τ̂ijn)) as a function of α (Lemma 3.1 (3)), for any

α > αmax we have

λ(α,
π

4
(1− τ̂ijn))− λ̂ij

n
< λ(αmax,

π

4
(1− τ̂ijn))− λ̂ij

n

≤ λ(αij,
π

4
(1− τ̂ijn))− λ̂ij

n
= 0 ,

therefore |λ(α, π
4
(1− τ̂ijn))− λ̂ij

n
| > |λ(αmax,

π
4
(1− τ̂ijn))− λ̂ij

n
| and hence

||L(α, τ̂n)− Λ̂n|| > ||L(αmax, τ̂
n)− Λ̂n|| .

By analogy for any α < αmin

||L(α, τ̂n)− Λ̂n|| > ||L(αmin, τ̂
n)− Λ̂n|| .

Therefore, either α̂n = αmin = αmax or ||L(α, τ̂n) − Λ̂n|| is bounded on the compact

interval [αmin, αmax], hence α̂n exists.

To prove uniqueness, assume for some n ∈ N that there are α1 6= α2 which are both

minimizers of ||L(α, τ̂n)−Λ̂n||. As L(α, τ̂n)−Λ̂n is a symmetric matrix, we may concentrate

on the upper triangle of the matrix, i.e. the same α1, α2 minimize also

G(α) =

d(d−1)∑
k=1

(gk(α))2 , (3.6)

where

gk(α) = λ(α,
π

4
(1− τ̂ijn))− λ̂ij

n
, i = 1, . . . , d, j = i+ 1, . . . , d,

i.e. k = 1, . . . , d(d− 1). Next define

H(α, w) =

d(d−1)∑
k=1

wkgk(α)
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where w is a d(d− 1)-dimensional non-random vector with non-negative components.

Without loss of generality assume that α1 < α2, which implies by 3.1 (3) that gk(α1) >

gk(α2), k = 1, . . . , d(d− 1). From the fact that α2 is a minimizer of G(α) we obtain

d(d−1)∑
k=1

(
∂

∂α
gk(α2)

)
gk(α2) = 0

Since ∂
∂α
gk(α2) are all negative (Lemma 3.1 (3)), there are only two cases (a) and (b).

(a) gk(α2) = 0, k = 1, . . . , d(d− 1). From this we obtain immediately that G(α2) = 0.

However, as gk(α1) > 0, k = 1, . . . , d(d − 1), we have G(α1) > 0 = G(α2), which is a

contradiction.

(b) There exists some index j for which gj(α2) > 0. Therefore we have also gj(α1) >

gj(α2) > 0, and, for every wj ≥ 0, R(wj) = wj(gj(α1)−gj(α2)) is a positive and increasing

function in wj. Therefore we may always find a vector w such that

H(α1, w) > H(α2, w)

by selecting its j-th component sufficiently large.

Fix an ε > 0 such that α2 − α1 > ε. As H(α, w) is continuous in α (Lemma 3.1 (1)),

we may find w such that

H(α, w) > H(α2, w) (3.7)

for every α1 − ε < α < α1 + ε. We define a function

F (α) =

{
(1−Q(α)G(α) +Q(α)H(α, w)

H(α, w)

α1 − ε < α < α1 + ε ,

α > α1 + ε ,

where

Q(α) = 2

(
α− α1

ε

)4

−
(
α− α1

ε

)8

.

Note that F (α) is continuous on its domain, as Q(α1 + ε) = 1. The derivative of F (α) for

α < α1 + ε is given by

F ′(α) = Q′(α)(H(α, w)−G(α)) + (1−Q(α))G′(α) +Q(α)H ′(α, w) .

Since Q′(α1 +ε) = 0, F (α) is also differentiable on its domain. Note also that α1 is a strict

local minimizer of F , because F ′(α1) = G′(α1) = 0 and

F ′′(α) = Q′′(α)(H(α, w)−G(α)) + 2Q′(α)(H ′(α, w)−G′(α)) +

+Q(α)H ′′(α, w) + (1−Q(α))G′′(α) ,

therefore F ′′(α1) = G′′(α1) > 0. Therefore, for a sufficiently small ε we have F (α) is

increasing in α ∈ (α1, α1 + ε]. On the other hand, by (3.7) we have F (α1 + ε) > F (α2),

11



which implies that there exists a point α3 ∈ [α1 + ε, α2) such that F ′(α3) = 0, therefore

we have
∑d(d−1)

k=1 wk
∂
∂α
gk(α3) = 0, which is a contradiction to the monotonicity of gk, k =

1, . . . , d(d− 1) (Lemma 3.1 (3)). This proves (1).

(2) As λ(α, π
4
(1− τ)) is continuous in τ (Lemma 3.1 (1)) by the continuous mapping

theorem we have for every α > 0

L(α, τ̂n)
P→ L(α, τ ∗), n→∞.

On the other hand Λ̂n P→ Λ∗, hence, by Proposition 2.4 we have

L(α∗, τ̂n)− Λ̂n P→ 0, n→∞ ,

where 0 ∈ Rd × Rd is the zero matrix. By monotonicity of λ(α, x) in α (Lemma 3.1 (3)),

for every α 6= α∗ we have

L(α, τn)− Λn
P→ A(α) ∈ Rd × Rd, n→∞ ,

where A(α) 6= 0, therefore ||A(α)|| > 0. Hence we have

α̂n = arg min
α>0
||L(α, τ̂n)− Λ̂n|| P→ α∗, n→∞ .

(3) To prove asymptotic normality, we use the delta method. We consider the function

G(α) = G(α, θ̂n) defined in (3.6). By the definition of α̂n, we have

0 =
∂

∂α
G(α̂n, θ̂n).

By Taylor expansion of ∂
∂α
G(α̂n, θ̂n) around α∗ and we get

0 =
∂

∂α
G(α∗, θ̂n) +

∂2

∂α2
G(α̃n, θ̂n)(α̂n − α∗)

where α̃n lies between α̂n and α∗ a.s. for every n ∈ N. Therefore

α̂n − α∗ = −
(
∂2

∂α2
G(α̃n, θ̂n)

)−1
∂

∂α
G(α∗, θ̂n). (3.8)

As α̃n lies between α̂n and α∗, by Lemma 3.1 (1), the definition of G and the continuous

mapping theorem we have

∂2

∂α2
G(α̃n, θ̂n)

P→ ∂2

∂α2
G(α∗, θ∗), n→∞.

Since α∗ = arg minαG(α, θ∗), we obtain ∂2

∂α2G(α∗, θ∗) < 0.

12



Next we use a Taylor expansion around θ∗ of the function ∂
∂α
G(α∗, θ):

∂

∂α
G(α∗, θ̂n) =

∂

∂α
G(α∗, θ∗) +∇θ

(
∂

∂α
G(α∗, θ̃n)

)
(θ̂n − θ∗)T,

where θ̃n lies componentwise between θ̂n and θ∗. Since ∂
∂α
G(α∗, θ∗) = 0 and

∇θ

(
∂

∂α
G(α∗, θ̃n)

)
P→ ∇θ

(
∂

∂α
G(α∗, θ∗)

)
, n→∞,

by the continuous mapping theorem we have

√
n
∂

∂α
G(α∗, θ̂n)

d→ N(0,∇θ

(
∂

∂α
G(α∗, θ∗)

)
Σ∇θ

(
∂

∂α
G(α∗, θ∗)

)T

).

Going back to (3.8) we obtain

√
n (α̂n − α∗) d→ N(0, σ), n→∞,

where

σ =
∇θ

(
∂
∂α
G(α∗, θ∗)

)
Σ∇θ

(
∂
∂α
G(α∗, θ∗)

)T

∂2

∂α2G(α∗, θ∗)
. (3.9)

We return to our original problem for copula parameter estimation of a random vector

X = (X1, . . . , Xd) with arbitrary continuous marginals and elliptical copula, equal to

the copula of the elliptical vector Y = RAU as in (2.1). Recall that the parameters

of the copula which we are interested in are the correlation matrix [ρij]i,j=1,...,d and the

distribution of the spectral r.v. R. Due to Proposition 2.4, the only parameter in the

distribution of R which has significant influence on the joint extremes is the tail index

α. Therefore we focus on [ρij]i,j=1,...,d and α only. Proposition 3.2 suggests the following

algorithm for estimation of these parameters.

Algorithm 3.3. (1) Estimate Kendall’s tau matrix by τ̂n = [τ̂i,j
n]i,j=1,...,d as in (2.4).

(2) Estimate the correlation matrix by [ρ̂ij
n]i,j=1,...,d using (2.3) and Kendall’s tau

estimates τ̂n.

(3) Estimate the lower tail dependence coefficients by Λ̂n = [λ̂ij
n
]i,j=1,...,d as in (2.6),

i.e. using only the extreme observations.

(4) Estimate the tail index of the spectral r.v. R by α̂n as in (3.4).

(5) In order to quantify the extremal dependence implied by the estimated τ̂n and α,

compute the implied tail dependence matrix L(α̂n, τ̂n), where L ∈ Rd × Rd is defined in

(3.3).
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mean estimate true value m.s.e. std

α 5.0366 5 22.1086 4.7042

ρ12 0.3001 0.3 0.0010 0.0321

ρ13 0.3969 0.4 0.0009 0.0301

ρ23 0.6002 0.6 0.0005 0.0226

λ12(implied by α) 0.1618 0.1224 0.0092 0.0877

λ13(implied by α) 0.1983 0.1559 0.0108 0.0950

λ23(implied by α) 0.3031 0.2666 0.0125 0.1059

Table 1: Estimation of the t-copula for the model from Example 4.1 with sample size n = 1000. The estimators of correlation

and tail dependence perform equally well across the different marginals. The correlation estimates are accurate (low empirical

standard deviation (std) and mean square errors (m.s.e.)). The estimators of the tail index α of the copula and the tail

dependence coefficents have high empirical variance and m.s.e.

4 Numerical examples

In a simulation study we examine the accuracy of the copula estimation when the marginals

are heavy-tailed and / or non-symmetric.

Example 4.1. We consider the following model: The random vector (X1, X2, X3) has

t-copula with ν = 5 degrees of freedom and a correlation matrix ρ12 = 0.3, ρ13 = 0.4,

ρ23 = 0.6. The tail index for this copula is α = ν, see Daul et al. [6], Section 1. For the

marginals we use X1 ∈ N(2, 4) (normal with mean 2 and variance 4), X2 ∈ GPD(0.3, 10)

(generalized Pareto distribution with shape parameter ξ = 0.3 and scale parameter 10, see

Embrechts et al. [8], Definition 3.4.9), and X3 ∈ t(1) (t-distribution with ν = 1 degrees of

freedom (Cauchy distribution)). Note that the d.f. of X2 is not symmetric (not elliptical)

and the covariance matrix does not exist as varX3 =∞.

Our goal is to assess the performance of Algorithm 3.3 when applied to this model. For

this reason we simulate n = 1000 i.i.d copies of the vector (X1, X2, X3) and estimate the

copula parameters using the algorithm. The simulation is repeated 1000 times. In Table

1 we summarize the results.

In Figure 1 we present the results on Kendall’s tau matrix estimated by (2.4). We

observe that the estimation is accurate even in the cases of asymmetric / heavy-tailed

marginals, i.e. we obtain narrow confidence bounds and the histograms of the estimates are

symmetric around the true values. This accuracy transfers also to the estimated correlation

matrix, see Figure 1.

In Figure 2 we present the results on the tail dependence matrix estimated by (2.6). We

observe that the estimation is not very accurate (high empirical variance, wide confidence

bounds), which is due to the small sample of observations (1000) on which it is based.
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Figure 1: Left column (τ12, τ13, τ23): the histograms of the Kendall’s tau estimates compared to the true values for Example

4.1 with sample size n = 1000. The histograms are symmetric arround the true values and the empirical variance is low.

Right column (ρ12, ρ13, ρ23): the histograms of correlation estimates compared to the true values for Example 4.1 with

sample size n = 1000. Again, histograms are symmetric arround the true values and the estimation is accurate even in cases

when the covariance does not exist (ρ13, ρ23).
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Figure 2: Upper row and bottom row, left (λ12, λ13, λ23): The histograms of the direct estimates for tail dependence by

(2.6), compared to the implied (by the estimated α and Kendall’s tau) estimates for tail dependence and to the true values

for Example 4.1 with sample size n = 1000. The implied estimates are more centered around the true values, and have less

empirical variance. Bottom row, right: the histogram of the estimates for the tail index α of the copula compared to the

true value α∗ = ν = 5 for Example 4.1 with sample size n = 1000. The histogram is not symmetric around the true value 5.

On the other hand, most of its mass is in the region [2,8], which includes the true value 5, and the empirical mean is 5.0003.
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Figure 3: The empirical standard deviation of the estimator (3.4) for the tail index α of the copula in Example 4.1, as a

function of the sample size.

Note that (2.6) uses only the extreme observations, which further increases the variance

of the estimators (see Frahm et al. [13] for a detailed discussion).

In Figure 2 we present the results on the tail index α estimated by (3.4). Most of the

realizations are in the region [2,8] which includes the true value 5. The empirical mean

of the estimate is equal to the true value. Furthermore, taking the estimated α and the

estimated Kendall’s tau matrix, we compute also the implied tail dependence coefficients

as in step (5) of Algorithm 3.3. We observe that in this way the estimates are improved as

compared to the direct estimates using (2.6). However, the histogram of the estimated α is

not centered around its mean, it is very skewed and there are cases when the estimate α̂n

takes very large values compared to the true one. This makes the asymptotic confidence

bounds derived through (3.5) mainly of theoretical interest, at least for smaller samples.

In order to assess the accuracy of the method when applied to larger samples, we

increase gradually the sample size to n = 10000 and at each step apply Algorithm 3.3. In

Figure 3 we observe that the empirical standard deviation of the estimator (3.4) of the

tail index α is quite satisfactory at sample size n = 10000. �

In the next example we use simulated data to examine the robustness of the estimation

when the copula is not elliptical.

Example 4.2. We consider the following model: The marginals of the random vector

(X1, X2) are standard normal N(0, 1). The copula of (X1, X2) is the 2-dimensional Clayton
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mean estimate true value m.s.e. std

τ 0.3336 1/3 0.0003 0.0196

λ 0.4765 0.5 0.0235 0.1549

α 1.6482 1 9.5512 1.6306

Table 2: Application of Algorithm 3.3 to a sample of n = 1000 i.i.d. vectors with Clayton copula and standard normal

margins as in Example 4.2. The estimates for Kendall’s tau are accurate (low empirical standard deviation (std) and mean

square error (m.s.e)). The estimates for the tail dependence have high empirical variance. This results in high variance in

the estimation of the tail index α. The ’true value’ of the copula parameter α is chosen such that the elliptical copula has

the same tail dependence as the Clayton copula.

copula

C(u, v) = (u−θ + v−θ − 1)−1/θ

with θ = 1.

This copula is not elliptical, and in particular it is not radially symmetric, see Figure

4. It has a tail dependence coefficient λ = 2−1/θ = 0.5 and Kendall’s tau τ = θ
θ+2

= 1
3
.

However, all elliptical copulas with Kendall’s tau τ = 1
3

and tail index α = 1 have

the same tail dependence coefficient. In Figure 4 we compare C(p, p) with Ct(p, p), a 2-

dimensional t-copula with ν = α = 1 degrees of freedom and Kendall’s tau τ = 1
3
. We

focus on the small values of p (in the region [0.0001, 0.025]). We observe that C(p, p) and

Ct(p, p) are practically indistinguishable. Therefore, even if we assume a wrong elliptical

copula model, we would obtain comparatively similar results with respect to joint extreme

event probabilities, provided that the parameters of the elliptical copula are selected

appropriately.

Our goal is to assess the performance of Algorithm 3.3 when applied to data, which

is coming from a non-elliptical copula model. For this reason we simulate n = 1000 i.i.d

copies of (X1, X2). We apply Algorithm 3.3 to estimate Kendall’s tau, tail dependence and

tail index α. We repeat the simulation 1000 times. In Table 2 we summarize the results.

In Figure 5 we present the results on Kendall’s tau estimated as in (2.4). We observe

that the estimation is accurate (low empirical variance, histogram symmetric arround

the true value). We present also the results on the tail dependence coeffient estimated as

in (2.6). As in Example 4.1, we observe that the estimation has a rather high empirical

variance. Furthermore, the estimator (3.4) of the tail index α inherits the errors from

(2.6). The histogram of the estimates of α is not centered around its mean, it is skewed

and there are cases when the estimate α̂n takes very large values. On the other hand,

its mode is exactly equal to 1, and most of the mass is in the region [0,5]. Hence the

estimation method seems robust with respect to joint extreme event probabilities. �

18



−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Clayton copula

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

T−copula

10
−4

10
−3

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

Default probability

Jo
in

t d
ef

au
lt 

pr
ob

ab
ili

ty

Clayton copula
t−copula

Figure 4: Upper row, left figure: 1000 realizations of the random vector (X1, X2) from Example 4.2. Upper row, right figure:

1000 realizations of the random vector (Y1, Y2) with standard normal N(0, 1) marginals and 2-dimensional t-copula with

ν = α = 1 degrees of freedom and Kendall’s tau τ = 1
3

. Both vectors have the same marginals, same Kendall’s tau and same

tail dependence coefficients. The plots are quite different in the center, i.e. the two copulas are different close to the mean

values. Bottom row: C(p, p) = P (X1 < Φ−1(p), X2 < Φ−1(p)) compared to Ct(p, p) = P (Y1 < Φ−1(p), Y2 < Φ−1(p)). The

two joint probabilities are practically indistinguishable. This is particularly important in view of the credit risk model in

Section 6, where C(p, p) is interpreted as joint default probabiliy of two credits, see formula (6.3).

19



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Tail dependence

D
en

si
ty

0.25 0.3 0.35 0.4 0.45
0

2

4

6

8

10

12

14

16

18

20

Kendall’s tau
D

en
si

ty

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Alpha

D
en

si
ty

Figure 5: Upper row, left figure: The histogram of the tail dependence estimates for a sample of n = 1000 copies of the

random vector (X1, X2) from Example 4.2. The estimate has high empirical variance. Upper row, right figure: The histogram

of Kendall’s tau estimates for the same sample. The estimate has low empirical variance. Bottom row: The histogram of

the estimated tail index α of the (incorreclty assumed) elliptical copula. The mode is exacly equal to 1, which is the value

for which the elliptical copula is closest to the true copula with respect to joint extremes, see Figure 4. Most of the mass is

in the region [0,8], however, the histogram is not symmetric.
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5 Alternative tail dependence estimation

The examples in the previous section show that the main problem in the proposed method

comes from the high variance in the estimation of the tail dependence coefficients by (2.6).

This is expected to happen and is due to the small number of observations on which the

estimation is based (only the extreme observations are taken into account). In this section

we suggest an alternative method for the estimation of the tail dependence coefficients.

We prove consistency of the proposed estimator. Note that Proposition 3.2 works for any

consistent estimates of the tail dependence coefficients, hence step (3) of Algorithm 3.3

can be applied with any consistent tail dependence estimator.

It is sufficient to consider a 2-dimensional random vector (X1, X2) with arbitrary

continuous marginals and elliptical copula, equal to the copula of the elliptical random

vector Y = RAU , where the spectral r.v. R has tail index α. Due to Proposition 2.4, this

means that X1 and X2 are tail dependent with coefficient which we denote by λ∗.

The tail dependence estimator (2.6) is a simple empirical estimator based on the

extreme observations, i.e. denoting

U
(k)
j = FE

j (X
(k)
j ), j = 1, 2, k = 1, . . . , n , (5.1)

where FE
j is the empirical d.f. of Xj,

λ̂n,u =
1

n

n∑
k=1

1

u
1{U(k)

1 <u,U
(k)
2 <u} ,

where u is some small threshold. We consider the extremes in a different set and use a

weighted empirical estimator with weights proportional to the distance to the diagonal

U1 = U2. To this end, we transform further (Uk
1 , U

k
2 ), k = 1, . . . , n, into polar coordinates

U
(k)
1 = Q(k) sinφ(k), U

(k)
2 = Q(k) cosφ(k), k = 1, . . . , n, (5.2)

where the r.v.s (Q(k), φ(k)) satisfy 0 ≤ Q(k) ≤ 1 and 0 ≤ φ(k) ≤ π
2
. Then we select a small

0 < r < 1 and we suggest the following estimator

λ̃n,r =
1

n

n∑
k=1

√
2

r
1{Q(k)<r} sin(2φ(k)). (5.3)

In the following proposition we prove consistency of estimator (5.3).

Proposition 5.1. For n ∈ N let X(k) = (X
(k)
1 , X

(k)
2 ), k = 1, . . . , n, be a sequence of i.i.d

random vectors with elliptical copula C and arbitrary continuous marginals F1, F2. Let

also (Q(k), φ(k)), k = 1, . . . , n, be the r.v.s in (5.2). Let s = s(n) be a sequence of positive

constants such that s(n)→∞ and s(n)
n
→ 0, n→∞. Then

λ̃n, s/n
P→ λ∗, n→∞, (5.4)
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where λ∗ is the tail dependence coefficient of (X1, X2).

Proof. Denote by

U
(k)

j = Fj(X
(k)
j ), j = 1, 2, k = 1, . . . , n ,

where Fj is the true d.f. of Yj, and the corresponding (Q
(k)
, φ

(k)
)k=1,...,n as in (5.2) and

note that this is an i.i.d sequence, since (X
(k)
1 , X

(k)
2 )k=1,...,n is i.i.d. Denote also by λ

n,s/n

the corresponding r.v. as in (5.3). Since Fj, j = 1, 2, is a monotone function, we have for

the copula C
U

(k)
1 ,U

(k)
2

= C, k = 1, . . . , n. Fix k ∈ {1, . . . , n} and denote Q = Q
(k)

, φ = φ
(k)

,

Uj = U
(k)

j , j = 1, 2. We have

1{Q<r} sin(2φ) = 1{Q<r}2 sinφ cosφ

= 1{Q<r}
2(Q sinφ)(Q cosφ)

Q2

d
= 1{

√
U2

1 +U2
2<r}

2U1U2

U2
1 + U2

2

.

Therefore

E[1{Q<r} sin(2φ)] =

∫ ∫
D={
√
u2

1+u2
2<r}

2u1u2

u2
1 + u2

2

dC(u1, u2).

Changing variables by z =
√
u2

1 + u2
2, t =

√
2u1u2 we obtain

E[1{Q<r} sin(2φ)] =

∫ r

0

∫ r

0

t2

z2
dC

(√
z2 + t2 +

√
z2 − t2

2
,

√
z2 + t2 −

√
z2 − t2

2

)
Therefore, applying L’Hopital’s rule

lim
r→0

√
2

r
E[1{R<r} sin(2φ)] = lim

r→0

∂

∂u1

C(u1, u2)|u1=u2=r + lim
r→0

∂

∂u2

C(u1, u2)|u1=u2=r . (5.5)

However, by definition,

λ∗ = lim
u→0

C(u, u)

u
= lim

r→0

∂

∂u1

C(u1, u2)|u1=u2=r + lim
r→0

∂

∂u2

C(u1, u2)|u1=u2=r.

Then (5.4) follows from Chebishev’s inequality. More precisely, we have for every ε > 0,

P
(∣∣∣λ̃n,s/n − λ∗∣∣∣ > ε

)
≤ 1

ε

(
E
∣∣∣λ̃n,s/n − λn,s/n∣∣∣+ E

∣∣∣λn,s/n − Eλn,s/n∣∣∣+ E
∣∣∣Eλn,s/n − λ∗∣∣∣) .

From (5.5) we have that Eλ
n,s/n → λ∗, n → ∞. By the SLLN we have λ

n,s/n a.s.→
Eλ

n,s/n
, n→∞. Finally, since FE

j (X(k))
a.s.→ Fj(X

(k)) we have also (Qk, φk)
a.s.→ (Q

k
, φ

k
), k =

1, . . . , n, and hence E
∣∣∣λ̃n,s/n − λn,s/n∣∣∣→ 0, n→∞. This leads to the required result.
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mean estimate true value m.s.e std

α 4.9488 5 5.8749 2.4293

λ12 direct

λ12 new

λ12 implied

0.1560

0.1440

0.1454

0.1224

0.1224

0.1224

0.0151

0.0090

0.0052

0.1213

0.1022

0.0771

λ13 direct

λ13 new

λ13 implied

0.1955

0.1808

0.1817

0.1559

0.1559

0.1559

0.0192

0.0108

0.0063

0.1357

0.1268

0.0991

λ23 direct

λ23 new

λ23 implied

0.3145

0.2919

0.2874

0.2666

0.2666

0.2666

0.0259

0.0166

0.0074

0.1536

0.1352

0.1238

Table 3: Estimation of the t-copula with different marginals model from Example 4.1, sample size n = 1000. We observe that

the new method (5.3) for estimation of the tail dependence coefficients improves the empirical variance and mean square

error (m.s.e.), as compared to the direct estimator (2.6). This results immediatelly through Algorithm 5.2 in improved

estimates of the tail index α (see Table 1 for comparison). Then the implied tail dependence coefficients estimates (step (5)

of the Algorithm 5.2) have also quite satisfactory empirical variance and m.s.e.

We consider a modification of Algorith 3.3, where instead of using (2.6) at step (3) we

apply the new estimator (5.3).

Algorithm 5.2. (1) Estimate Kendall’s tau matrix by τ̂n = [τ̂i,j
n]i,j=1,...,d as in (2.4).

(2) Estimate the correlation matrix by [ρ̂ij
n]i,j=1,...,d using (2.3) and Kendall’s tau

estimates τ̂n.

(3) Estimate the lower tail dependence coefficients by Λ̃n = [λ̃ij
n
]i,j=1,...,d as in (5.3),

i.e. using only the extreme observations.

(4) Estimate the tail index of the spectral r.v. R by α̂n as in (3.4).

(5) In order to quantify the extremal dependence implied by the estimated τ̂n and α,

compute the implied tail dependence matrix L(α̂n, τ̂n), where L ∈ Rd × Rd is defined in

(3.3).

Example 5.3. (continuation of Example 4.1) Using the simulated data from Example

4.1, we apply Algorithm 5.2. Recall that we consider samples of size n = 1000 i.i.d copies

of the vector (X1, X2, X3) with t-copula and various marginals. Since steps (1) and (2) of

Algorithms 3.3 and 5.2 are the same, we consider the differences only with respect to the

estimated tail dependence coefficients and tail index α.

In Table 3 we summarize the results, see also Figure 6. We observe that the new tail

dependence estimator has smaller emprical variance than (2.6). This results immediatelly

in improved estimation of the tail index α by (3.4). Furthermore, the histogram of the
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Figure 6: Upper row and bottom row, left (λ12, λ13, λ23): The histograms of the direct estimates of tail dependence by

(2.6), compared to the estimates by the new method (5.3) and to the implied (by the estimated Kendall’s tau and tail index

α by algorithm 5.2) estimates for tail dependence and to the true values. The direct estimates have the highest empirical

variance. The new method (5.3) reduces the variance. The implied estimates improve further (5.3). Bottom row, right: the

histograms of the estimates for the index α using the direct tail dependece estimates (2.6) as in Algorithm 3.3 and the new

method (5.3) as in Algorithm 5.2. By the new method, the histogram is more centered arround the true value.
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Figure 7: The empirical standard deviation of the estimator (3.4) for the tail index α, as a function of the sample size, using

the direct tail dependence estimator (2.6) as in Algorithm 3.3 and the new method (5.3) as in Algorithm 5.2 for the model

in Example 4.1. In all cases the new method provides lower empirical variance.

estimated α by Algorithm 5.2 is more centered arround the true value, i.e. applying (3.5) in

order to obtain confidence bounds is now possible. Besides, the implied (by the estimated

α and Kendall’s tau matrix as in step (5) of Algorithm 5.2) tail dependence coefficients

have also quite a low empirical variance.

In order to assess the accuracy of the method when applied to larger samples, we increase

gradually the sample size to n = 10000 and at each step apply Algorithm 5.2 and compare

it to Algorithm 3.3. In Figure 7 we observe that the new method reduces the empirical

standard deviation of the estimator of the tail index α also for larger samples. �

6 Application to credit risk

We consider a portfolio credit risk model in the spirit of CreditMetrics [19] and investigate

the loss distribution over fixed time horizon T . The dependence structure in the portfolio

is given through a set of underlying risk factors which we model by a general multivariate

elliptical distribution with heavy-tailed marginals, introducing tail-dependence.

For m ∈ N let X = (X1, . . . , Xm) be a random vector with discrete marginals, all

having the same range {1, 2, . . . , K} – the unknown rating (the credit quality) of the

credits at the time horizon T . The loss of a portfolio of m credit risks (loans, bonds or
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credit derivatives) is modelled by the r.v.

L =
m∑
j=1

ejLj, (6.1)

where for j = 1, . . . ,m:

- ej is a known positive constant: the exposure;

- Lj is a real-valued r.v., defined on the probability space (Ω,F , P (· |Xj)), where

P (· |Xj) denotes the conditional probability measure: the loss given rating.

Most of the credit risk models used in practice fit within (6.1). For instance, when

K = 2 (default and non-default rating) and Lj = I{Xj=1}, L is the loss of a credit portfolio

under the so called ’actuarial valuation’ (see Gordy [18], Section 1). With the actuarial

valuation one takes care only of the default risk, and the uncertainty in the recovery of a

credit in the event of default is ignored. An extension to random recovery rates has been

considered by various authors, see for example Bluhm et al. [2], Section 1.1.3. A further

extension to multiple ratings is necessary for the so called ’mark-to-market’ valuation, see

Gordy [18], Section 3, or CreditMetrics [19].

The complexity of model (6.1) is in the joint distribution of X = (X1, . . . , Xm). Usually

the marginals of (X1, . . . , Xm) are calibrated to historical default and rating transition

data, see Lando and Skodeberg [23] and Cantor and Hamilton [4] for some recent methods.

We denote these probabilities by P (Xj = k) = pj,k and

P (Xj ≤ s) =
s∑

k=1

pj,k = psj , s = 1, . . . , K, j = 1, . . . ,m.

In order to model the dependence structure of X = (X1, . . . , Xm) we introduce the random

vector Y = (Y1, . . . , Ym) with continuous marginal distributions Gj and a copula C, i.e.

the multivariate d.f. of Y is given by

GY (y1, . . . , ym) = C(G1(y1), . . . , Gm(ym)). (6.2)

The r.v. Yj, j = 1, . . . ,m, is interpreted as asset return (wealth return) of the company

standing behind credit j in the portfolio.

Following the approach in CreditMetrics [19], we set for j = 1, . . . ,m

Xj = k ⇐⇒ G−1
j (pk−1

j ) < Yj ≤ G−1
j (pkj ), k = 1, . . . , K, (6.3)

where we interpret G−1
j (p0

j) = −∞ and G−1
j (pKj ) =∞.

Thus we reduce the calibration of the distribution of X = (X1, . . . , Xm) to the calibra-

tion of the marginal default and transition probabilities and the copula of Y = (Y1, . . . , Ym)
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(see Frey and McNeil [14], Proposition 3.3). Assuming that the marginal parameters are

given, we focus on the dependence structure of the asset returns Y1, . . . , Ym.

We assume that Y = (Y1, . . . , Ym) has an elliptical copula. If we had a sample of i.i.d

copies Y (k) =
(
Y

(k)
1 , . . . , Y

(k)
m

)
, k = 1, . . . , n, of asset returns, we could apply Algorithm

5.2 and estimate the parameters of the copula. Unfortunately, in practice such sample is

not available. Instead, we assume that we observe only S(k,s) = (S
(k,s)
1 , . . . , S

(k,s)
m ), k, s =

1, . . . , n, where

S
(k,s)
j = sign[Y

(k)
j − Y (s)

j ] , j = 1, . . . ,m, k, s = 1, . . . , n, (6.4)

i.e. we observe only whether the asset returns in a given period are higher or lower than

the returns in the other periods.

Additionally we have the problem of multidimensionality (m is large in the contempo-

rary credit portfolios). We simplify the situation by assuming that the assets Y1, . . . , Ym

follow a factor model:

Yj =
d∑
l=1

αj,lWZl + σjWεj, j = 1, . . . ,m, (6.5)

where:

- Z = (Z1, . . . , Zd) is d-dimensional multivariate normal with standard normal N(0, 1)

marginals and with correlation matrix Σ;

- W is a positive r.v., independent of Z;

- εj, j = 1, . . . ,m, are i.i.d N(0, 1), independent of W and Z;

- the loadings αj,l ∈ R and σj > 0, j = 1, . . . ,m, l = 1, . . . , d, are normalized so that

var [Yj |W ] = W .

Given (6.5), Y ∈ Nm(0,WΣY ) (multivariate normal variance mixture with mixing

variable W or, otherwise, substituting R = W
√
χ2
m in (2.1) we obtain a multivariate

elliptical distribution. The marginal distributions of Yj are all one-dimensional normal

variance mixtures, i.e. Yj
d
= WZ0, where W is defined as above and Z0 ∈ N(0, 1), Z0⊥W .

Note that the assumption on the marginal distributions in not restrictive, as we are

interested only in the copula of Y = (Y1, . . . , Ym).

The part
∑d

l=1 αj,lWZl of (6.5) is frequently referred to as the systematic part and

σjWεj as the the specific part for credit j. Note that, unlike in other models, the specific

parts in our case are no longer independent of the systematic part, nor between each other.

They are uncorrelated, but depend through the r.v. W . We interpret W as a common

shock affecting simultaneously all companies across countries and industries.

For the systematic part, we assume that

WZl = Hl(Il), l = 1, . . . , d , (6.6)
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where Hl : R → R are some continuous and strictly increasing functions and I =

(I1, . . . , Id) are observable macroeconomic factors. In practice, I = (I1, . . . , Id) are taken

to be the log-returns of regional / industry stock indices. A similar assumption is taken in

CreditMetrics [19], see also Daul et al. [6]. Note that, again, we do not impose any further

restrictions on the mapping functions Hl, l = 1, . . . , d, hence I = (I1, . . . , Id) is a random

vector with elliptical copula and arbitrary marginals.

Remark 6.1. The simplest special case of (6.5) is the one-factor Gaussian model, obtained

when W = 1 a.s. and d = 1. This model is used extensively in regulatory capital allocation,

see BIS [1]. It is calibrated for homogeneous portfolios (α1,1 = α2,1 = . . . = αm,1) or for

portfolios consisting of homogeneous groups by fitting the historical default rate only, see

Bluhm et al. [2], Section 2.5.1, Gordy [18], or Frey and McNeil [15]. As we are interested

in non-homogeneous portfolios and on measuring the diversification of such into countries

/ industries, we have d > 1 in (6.5) and these methods are not applicable. �

Remark 6.2. The popular in practice model CreditMetrics [19] can be obtained from

(6.5) by setting W = 1 a.s. However, in this paper we are particularly interested in

model (6.5), when W belongs to the class of distributions with regularly varying tail at

infinity. In this case we have also that the r.v. R = W
√
χ2
m in representation (2.1) of

Y = (Y1, . . . , Ym) is also regulary varying with the same index α, see Breiman [3]. By

means of Proposition 2.4, only in this case Yi and Yj, i 6= j, exhibit tail dependence, i.e.

lim
p→0

P
(
Yi < G−1

i (p), Yj < G−1
j (p)

)
p

> 0 .

Note that by (6.3) the probability of joint defaults is given by

P (Xi = 1, Xj = 1) = P
(
Yi < G−1

i (p1
i ), Yj < G−1

j (p1
j)
)

and, taking into account that usually the default probabilities p1
i and p1

j are small, the

pairwise tail dependence of assets Yi and Yj results in an increased likelihood for simul-

taneous defaults in the credit portfolio, thus having an important impact on the credit

loss distribution, in particular on its tail (see Frey and McNeil [14] for some numerical

examples). �

The parameter space of model (6.5) with (6.6) consists of:

(a) The correlation matrix Σ of the common factors WZ1, . . . ,WZd, which, due to (6.6)

is equal to the correlation matrix of the observable market indices I = (I1, . . . , Id)

(b) The d.f. of W . As seen in Remark 6.2, the only parameter in the d.f. of W with

significant influence on the joint extremes of the asset returns Y1, . . . , Ym is the tail index

α. Due to (6.6) this tail index is equal to the corresponding parameter of the copula of
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the observable market indices I = (I1, . . . , Id). From now on we consider the tail index α

to be the only parameter in the d.f. of W , and we denote the d.f. of WZ0, Z0 ∈ N(0, 1),

Z0 independent of W , by Fα(x), x ∈ R.

(c) The factor loadings αj,l and σj, l = 1, . . . , d, j = 1, . . . ,m as in (6.5). Due to the

assumption that var[Yj |W ] = W in (6.5), for j = 1, . . . ,m we have the following relation

between the loadings:
d∑

l,p=1

αj,lΣlpαj,p = 1− σ2
j , (6.7)

where Σ = [Σlp]l,p=1,...,d is the correlation matrix of (WZ1, . . . ,WZd), i.e. the parameters

(a).

In order to estimate the parameters (a) and (b), it is sufficient to apply Algorithm

5.2 to the available data for the market indices I = (I1, . . . , Id). We suggest two principle

approaches to estimate the factor loadings (c):

Method I: Estimate αj,l, j = 1, . . . ,m, l = 1, . . . , d and then use (6.7) to obtain σj, j =

1, . . . ,m.

Method II: Assume a special functional form of αj,l, j = 1, . . . ,m, l = 1, . . . , d, namely

αj,l =

√
1− σ2

j√∑d
l,p=1 wjlwjpΣlp

wjl , j = 1, . . . ,m, l = 1, . . . , d, (6.8)

where wj,l > 0, j = 1, . . . ,m, l = 1, . . . , d, are known quantities. Then we are left only with

the parameters σj, j = 1, . . . ,m, to specify. Note that (6.8) is consistent with (6.7). This

method is similar to the approach in CreditMetrics [19], where wj,l > 0, j = 1, . . . ,m, l =

1, . . . , d, are called country / industry participations.

We need the following proposition, parts (1) and (2) are for Method I and parts (3) and

(4) are for Method II. In part (1) we show that αj,l, j = 1, . . . ,m, l = 1, . . . , d, satisfy a

system of linear equations. In part (2) we suggest an estimate for the unknown coefficients

of the system. In part (3) we show that σj, j = 1, . . . ,m, can be expresses as a function

of Kendall’s tau of the marginal asset return Yj and a particular transformation of the

observable market risk factors I = (I1, . . . , Id). Based on that, in part (4) we suggest an

estimate for σj, j = 1, . . . ,m.

Proposition 6.3. Let Y = (Y1, . . . , Ym), S = (S1, . . . , Sm) and I = (I1, . . . , Id) satisfy

(6.4), (6.5) and (6.6) and αj,l, σj, j = 1, . . . ,m, l = 1, . . . , d satisfy (6.7). Then, for

j = 1, . . . ,m:

(1) The random vector (Yj, αj,1WZ1, . . . , αj,dWZd, σjWεj) is elliptical and we have
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d∑
l=1

αj,pαj,lΣlp = sin
(π

2
τ(Yj, Ip)

)
, p = 1, . . . , d.

(2) Denoting

τ̂j,p
n =

(
n

2

)−1∑
k>s

S
(k,s)
j sign

[
I(k)
p − I(s)

p

]
, p = 1, . . . , d ,

where I(k) = (I
(k)
1 , . . . , I

(k)
d ), k = 1, . . . , n are i.i.d copies of I, we have

τ̂j,p
n P→ τ(Yj, Ip), n→∞.

(3) If additionally (6.8) holds, then we have√
1− σ2

j = sin
(π

2
τ(Yj, Aj)

)
, (6.9)

where

Aj =
d∑
l=1

γj,lF
−1
α (Fl(Il)) ,

γj,l =
wjl√∑d

l,p=1 wjlwjpΣlp

,

Fl(x) is the d.f. of Il, l = 1, . . . , d, and Fα is the d.f. of WZ0, Z0 ∈ N(0, 1), independent

of W , where W is from (6.5).

(4) Furthermore, denoting

τ̂j
n =

(
n

2

)−1∑
k>s

S
(k,s)
j sign

[
Â

(k)
j (n)− Â(s)

j (n)
]
,

where

Â
(k)
j (n) =

d∑
l=1

γj,lF
−1
α (FE

l (I
(k)
l )) , k = 1, . . . , n,

FE
l (x) is the empirical d.f. of Il, l = 1, . . . , d, we have

τ̂j
n P→ τ (Yj, Aj) , n→∞. (6.10)

Proof. Fix j ∈ {1, . . . ,m}. By (6.5), the random vector (Yj, αj,1WZ1, . . . , αj,dWZd, σjWεj)

can be obtained by a linear transformation of the elliptical random vector

(αj,1WZ1, . . . , αj,dWZd, σjWεj). For the correlation we have ρ(Yj, αj,pWZp) =
∑d

l=1 αj,pαj,lΣlp,

and, applying (2.3) we obtain

d∑
l=1

αj,pαj,lΣlp = sin(
π

2
τ(Yj, αj,pWZp)), p = 1, . . . , d .
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As Kendall’s tau is invariant under strictly increasing marginal transformations, we get

by means of (6.6) τ(Yj, αj,pWZp) = τ(Yj, Ip), i.e. (1).

(2) follows directly from (1) and (2.4).

To prove (3), we note that the random vector (Yj,
∑d

l=1 αj,lWZl) = (Yj,
∑d

l=1
γj,l√
1−σ2

j

WZl)

has elliptical distribution and correlation ρ(Yj,
∑d

l=1 αj,lWZl) =
√

1− σ2
j . By means of

(2.3), √
1− σ2

j = sin

π
2
τ

Yj, d∑
l=1

γj,l√
1− σ2

j

WZl

 .

As Kendall’s tau is invariant under strictly increasing transformation of the marginals,

we have

τ

Yj, d∑
l=1

γj,l√
1− σ2

j

WZl

 = τ

(
Yj,

d∑
l=1

γj,lWZl

)
.

By means of Theorem 3.1. in Embrechts et al. [9], as WZl is comonotone with Il, l =

1, . . . , d, we have

(WZ1, . . . ,WZd)
d
= (F−1

α (F1(I1)), . . . , F−1
α (Fd(Id))) ,

hence we obtain (6.9).

To prove (6.10) note that for k, s = 1, . . . , n

E
[
S

(k,s)
j sign

[
Â

(k)
j (n)− Â(s)

j (n)
]]

= P ((Y
(k)
j − Y (s)

j )(Â
(k)
j (n)− Â(s)

j (n)) > 0)

−P ((Y
(k)
j − Y (s)

j )(Â
(k)
j (n)− Â(s)

j (n)) < 0) .

By the continuous mapping theorem we have for any k = 1, . . . , n

Â
(k)
j (n)

a.s.→ A
(k)
j , n→∞ ,

therefore

lim
n→∞

E
[
S

(k,s)
j sign

[
(Â

(k)
j (n)− Â(s)

j (n))
]]

= τ (Yj, Aj) .

Then (6.10) follows directly from Chebishev’s inequality.

In the final example we consider a real data sample, consisting of monthly log-returns

of 8 German stock indices. In view of (6.6), this data represents a sample of i.i.d. copies of

the market index vector I = (I1, . . . , I8) as in (6.6). We apply Algorithm 5.2 to estimate

the parameters of copula of I. For more examples with high-dimensional market risk

vectors, as well as for a simulation study of the impact of the heavy-tailed risk factors on

credit portfolio risk measures like Value-at-Risk (VaR) see Schwarz [31].
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Figure 8: Log-returns of the indices Banking / Automobiles and Software / Transport. In both plots the point in the lower

left quadrant represents the returns in the week of the 11/9’th terrorist attacks. However, even if we ignore this extreme

point, we observe significant dependence in the extremely small values.

Example 6.4. Our data consists of weekly log-returns of the stock indices: I1 Automobiles

(CXKAX), I2 Banking (CXKBX), I3 Chemicals (CXKCX), I4 Construction (CXKOX),

I5 Insurance (CXPIX), I6 Media (CXKDX), I7 Software (CXKSX) and I8 Transport

(CXKTX). By standard time series analysis we conclude that the hypothesis that the

data are i.i.d. cannot be rejected at sufficiently high confidence level. Plotting the bivariate

marginals (see Figure 8) we detect that there is a significant dependence in the extremes.

In order to quantify this dependence we apply the Algorithm 5.2.

In Table 4 we present results on the estimation of Kendall’s tau matrix and the cor-

relation matrix. The estimated correlations are positive, and the hypothesis for zero or

negative correlation can be rejected with high significance. In Table 5 we present results

on the estimation of the tail dependence coefficients. We obtain positive tail dependence

estimates. However, due to the small sample size (n = 300), we cannot reject the hy-

pothesis for tail-independence at confidence levels higher than 90%. Finally, we estimate

the tail index α̂ = 4.05 and by means of (3.5) we obtain also a 90% confidence interval

α ∈ [2.98, 5.12]. �

7 Conclusions

In this paper we estimate the dependence structure of a multivariate random vector re-

gardless of its marginals. We use the class of elliptical copulas, which generalize the stan-

dard for the practice Gaussian copula, and provide flexible models for the joint extremes.

Our results indicate that:

(1) The elliptical copula model retains some of the advantages of the Gaussian model.

In particular, besides the correlation matrix determining the linear dependence, every
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CXKAX CXKBX CXKCX CXKOX CXPIX CXKDX CXKSX CXKTX

I1

τij

90%CI

ρij

90%CI

0.47

[.39 .55]

0.67

[.57 .76]

0.44

[.34 .54]

0.64

[.51 .75]

0.26

[.11 .41]

0.40

[.18 .60]

0.36

[.24 .48]

0.54

[.37 .69]

0.18

[.04 .32]

0.28

[.06 .49]

0.34

[.22 .48]

0.52

[.34 .68]

0.44

[.34 .55]

0.64

[.50 .76]

I2

0.47

[.39 .55]

0.67

[.57 .76]

τij

90%CI

ρij

90%CI

0.46

[.36 .56]

0.66

[.53 .77]

0.27

[.11 .44]

0.42

[.17 .63]

0.51

[.41 .60]

0.72

[.60 .81]

0.23

[.10 .36]

0.35

[.15 .54]

0.38

[.26 .50]

0.56

[.39 .71]

0.48

[.39 .57]

0.68

[.57 .78]

I3

0.44

[.34 .54]

0.64

[.51 .75]

0.46

[.36 .56]

0.66

[.53 .77]

τij

90%CI

ρij

90%CI

0.24

[.08 .40]

0.37

[.13 .59]

0.43

[.32 .53]

0.62

[.49 .74]

0.17

[.03 .32]

0.27

[.05 .48]

0.28

[.12 .43]

0.42

[.19 .62]

0.47

[.38 .57]

0.69

[.56 .78]

I4

0.26

[.11 .41]

0.40

[.18 .60]

0.27

[.11 .44]

0.42

[.17 .63]

0.24

[.08 .40]

0.37

[.13 .59]

τij

90%CI

ρij

90%CI

0.28

[.13 .43]

0.43

[.20 .63]

0.17

[.02 .32]

0.27

[.03 .49]

0.17

[.00 .34]

0.26

[.00 .50]

0.30

[.14 .46]

0.46

[.22 .66]

I5

0.36

[.24 .48]

0.54

[.37 .69]

0.51

[.41 .60]

0.72

[.60 .81]

0.43

[.32 .53]

0.62

[.49 .74]

0.28

[.13 .43]

0.43

[.20 .63]

τij

90%CI

ρij

90%CI

0.21

[.08 .34]

0.33

[.13 .51]

0.35

[.22 .48]

0.52

[.34 .68]

0.42

[.29 .54]

0.61

[.45 .75]

I6

0.18

[.04 .32]

0.28

[.06 .49]

0.23

[.10 .36]

0.35

[.15 .54]

0.17

[.03 .32]

0.27

[.05 .48]

0.17

[.02 .32]

0.27

[.03 .49]

0.21

[.08 .34]

0.33

[.13 .51]

τij

90%CI

ρij

90%CI

0.31

[.17 .44]

0.46

[.27 .64]

0.27

[.15 .40]

0.42

[.23 .59]

I7

0.34

[.22 .48]

0.52

[.34 .68]

0.38

[.26 .50]

0.56

[.39 .71]

0.28

[.12 .43]

0.42

[.19 .62]

0.17

[.00 .34]

0.26

[.00 .50]

0.35

[.22 .48]

0.52

[.34 .68]

0.31

[.17 .44]

0.46

[.27 .64]

τij

90%CI

ρij

90%CI

0.40

[.28 0.53]

0.59

[.42 .74]

I8

0.44

[.34 .55]

0.64

[.50 .76]

0.48

[.39 .57]

0.68

[.57 .78]

0.47

[.38 .57]

0.69

[.56 .78]

0.30

[.14 .46]

0.46

[.22 .66]

0.42

[.29 .54]

0.61

[.45 .75]

0.27

[.15 .40]

0.42

[.23 .59]

0.40

[.28 .53]

0.59

[.42 .74]

τij

90%CI

ρij

90%CI

Table 4: Estimation of Kendall’s tau and correlation for the German stock index data. In brackets are given the 90%

confidence intervals, based on the empirical variance.

33



CXKAX CXKBX CXKCX CXKOX CXPIX CXKDX CXKSX CXKTX

I1

λij

90%UB

λIij

.28

.64

.36

.16

.36

.34

.16

.35

.20

.13

.29

.27

.25

.57

.15

.27

.60

.26

.25

.56

.34

I2

.28

.64

.36

λij

90%UB

λIij

.16

.36

.35

.46

.99

.20

.42

.95

.40

.16

.36

.18

.16

.36

.28

.40

.90

.37

I3

.16

.36

.34

.16

.36

.35

λij

90%UB

λIij

.16

.36

.19

.13

.29

.32

.16

.36

.15

.25

.58

.20

.25

.58

.37

I4

.16

.35

.20

.46

.99

.20

.16

.36

.19

λij

90%UB

λIij

.32

.72

.21

.16

.35

.15

.16

.37

.15

.43

.98

.23

I5

.13

.29

.27

.42

.95

.40

.13

.29

.32

.32

.72

.21

λij

90%UB

λIij

.12

.29

.17

.21

.48

.26

.57

.99

.31

I6

.25

.57

.15

.16

.36

.18

.16

.36

.15

.16

.35

.15

.12

.29

.17

λij

90%UB

λIij

.31

.71

.23

.31

.72

.20

I7

.27

.60

.26

.16

.36

.28

.25

.58

.20

.16

.37

.15

.21

.48

.26

.31

.71

.23

λij

90%UB

λIij

.47

.99

.30

I8

.25

.56

.34

.40

.90

.37

.25

.58

.37

.43

.98

.23

.57

.99

.31

.31

.72

.20

.47

.99

.30

λij

90%UB

λIij

Table 5: Estimated tail dependence matrix and implied tail dependence matrix (step (5) of Algorithm 5.2) for the German

stock indices. In the second rows are given the 90% upper confidence bounds, based on the empirical variance.
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elliptical copula has only one important additional parameter (the tail index α, which

determines the dependence in the extremes). Our main results in Section 3 concern the

estimation of these parameters.

(2) The proposed estimation method is based on the joint extremes in the data. On

the one hand, this makes the method robust, see Example 4.2. On the other hand, as

any statistical method based on rare events, it is subject to high variance. The way to

decrease the variance is to consider all possible sources of infomation. The modification

of our main method developed in Section 5 is a step in this direction.

(3) The relative simplicity of the elliptical model makes it applicable to high-dimensional

cases which are typical in credit risk, see Section 6.

(4) Real data often exhibits greater dependence in the extremes than the implied

dependence by the Gaussian copula, see Example 6.4. Since modelling the dependence

structure in a credit portfolio by copulas with tail-dependence property instead by the

standard Gaussian copula affects dramatically portfolio risk measures like VaR, accurate

and robust in the extremes statistical methods are important for precise estimation of

VaR.
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