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1 Introdu
tionA game 
ontingent 
laim (GCC) is a 
ontra
t between a seller A and a buyer B whi
henables A to terminate it and B to exer
ise it at any time t 2 ft0; : : : ; tkg up to a maturitydate T = tk when the 
ontra
t is terminated anyway.More pre
isely, let (
;F ; P; (Ft)t2[0;T ℄) be a �ltered probability spa
e satisfying theusual 
onditions of right-
ontinuity and 
ompleteness, and let (Xti)i=0;::: ;k, (Yti)i=0;::: ;k,(Wti)i=0;::: ;k be sequen
es of real-valued random variables adapted to (Fti)i=0;::: ;k withYti � Wti � Xti for i = 0; : : : ; k� 1 and Ytk = Wtk = Xtk . If A terminates the 
ontra
t attime ti before B exer
ises then A should pay B the amount Xti . The other way around,A should pay B only Yti . If A terminates and B exer
ises at the same time, then A paysB the amount Wti .De�nition 1.1. Let Si, i = 0; : : : ; k, be the sets of all stopping times resp. (Ft)t2[0;T ℄ withvalues in fti; : : : ; tkg.The above 
ontra
t 
an be formulated as follows. If A sele
ts a 
an
ellation time � 2 S0and B sele
ts an exer
ise time � 2 S0, then A pledges to pay B at time � ^ � the amountR(�; �) = X�I(� < �) + Y�I(� < �) +W�I(� = �):The fri
tionless �nan
ial market 
onsists of d risky assets whose dis
ounted pri
e pro
essesare modeled by the Rd -valued semimartingale S and one riskless asset with dis
ountedpri
e pro
ess equal to 1. We denote by � a suitable spa
e of admissible trading strategiesto be spe
i�ed later.Example 1.2 (Israeli 
all option). An Ameri
an style 
all option with strike pri
e Kwhere also the seller 
an terminate the 
ontra
t, but at the expense of a penalty Æti � 0,i.e. Yti = (S(1)ti �K)+, Xti = (S(1)ti �K)+ + Æti, and Wti = (S(1)ti �K)+ + Æti=2.Su
h a game version of an Ameri
an option is safer for an investment 
ompany whi
hissues it, and so it 
an be sold 
heaper than the 
orresponding Ameri
an option. Aspointed out in Kifer [8℄, essentially any 
ontra
t in modern life presumes expli
itly or im-pli
itly a 
an
ellation option by ea
h side whi
h then has to pay some penalty, and so it2



is natural to introdu
e a buyba
k option to 
ontingent 
laims, as well. An example whi
hhas already been traded on real markets is a Liquid Yield Option Note (LYON). It isdis
ussed in M
Connell and S
hwarz [10℄ - on a rather heuristi
al level without indi
atinga 
onne
tion to a Dynkin game.In a 
omplete market (i.e. Y;W;X are repli
able by trading in S) one 
an solveour problem without letting enter the agents' preferen
es: A just wants to minimizeEQ (R(�; �)) whereas B wants to maximize the same expression (Q is the unique equiv-alent martingale measure). Thus, we have a zero-sum Dynkin stopping game. It is well-known that su
h a game has a unique value, 
f. Ohtsubo [12℄. Kifer [8℄ shows by hedging-arguments that this value is also the unique no-arbitrage pri
e of the GCC. In other words,the expe
tation of the (dis
ounted) payo� under the unique equivalent martingale mea-sure is the variable to be maximized resp. minimized, and this ensures 
onsisten
y withthe prin
iple of no-arbitrage. Consequently, one has to solve a 
lassi
al Dynkin game.In in
omplete markets this argument fails be
ause there is more than one equivalentmartingale measure. It is possible to superhedge the 
laim and get an interval of no-arbitrage pri
es, but then the feature of a sto
hasti
 game gets lost.We suggest a utility maximization approa
h that takes trading possibilities expli
itlyinto 
onsideration. This approa
h is very popular for valuating European style 
ontingent
laims in the 
ontext of in
omplete markets; see e.g. Hodges and Neuberger [5℄, Delbaenet al. [3℄, or Davis [1℄. For Ameri
an style 
ontingent 
laims see Davis and Zariphopoulou[2℄. Let U1; U2 : R �! R be nonde
reasing and 
on
ave; they are the utility fun
tions ofthe seller resp. the buyer. Ea
h \player" 
hooses a stopping time � 2 S0 (resp. � 2 S0) anda trading strategy # 2 �, whose i-th 
omponent #it, i = 1; : : : ; d, represents the numberof shares of asset i held in the portfolio at time t 2 [0; T ℄. The seller wants to maximizeEP �U1�C1 � R(�; �) + Z T0 #t dSt�� ; (1.1)while the buyer wants to maximizeEP �U2�C2 +R(�; �) + Z T0 #t dSt�� : (1.2)3



So, the agents are solely interested in terminal wealth. The rv Ci 2 FT (i = 1; 2) is theexogenous endowment of the i-th player. This randomness espe
ially makes sense for thebuyer, who perhaps buys the 
laim to hedge against another risk in his portfolio.In the whole paper, the spa
e � of admissible trading strategies has to satisfy theAssumption 1.3. All elements of � are (Ft)-predi
table and S-integrable. � is linear,and for all ti 2 ft1; : : : ; tk�1g, A 2 Fti the following impli
ation is valid:If #(1); #(2); #(3) 2 �, then the 
ompound strategy#t := 8>>><>>>: #(1)t : t � ti;#(2)t : t > ti and ! 2 A;#(3)t : t > ti and ! =2 A: (1.3)is also an element of �.The latter is essential as it allows a su

essive optimization, �rst over all stategies(#t)t2(ti ;T ℄ (�xing one strategy (#t)t2(0;ti℄), and then over all (#t)t2(0;ti ℄. So, it is a quitenatural assumption. But unfortunately, it is not as harmless as it looks like. For exam-ple, the set of all predi
table trading strategies su
h that the dis
ounted gain pro
essR t0 #u dSu is bounded from below (but not ne
essarily from above) does obviously notsatisfy Assumption 1.3.A permissible 
hoi
e of � is for example�1 = �# 2 L(S) ����Z t0 #u dSu is bounded uniformly in t and !� : (1.4)�1 is rather small, but in Delbaen et al. [3℄ resp. Kabanov and Stri
ker [7℄ it is shown forexponential utility that under the assumption that S is lo
ally bounded and admits anequivalent lo
al martingale measure with �nite entropy the maximization problems (1.1)and (1.2) with � = �1 have the same values as for mu
h bigger �. Another permissible
hoi
e is�2 = �# 2 L(S) j Z t0 #u dSu is a martingale w.r.t. a spe
ial set P of absolutely
ontinuous lo
al martingale measures�:4



Remark 1.4. Analogously to K�uhn [9℄, one 
an de�ne from the seller's point of view a\still fair premium" for the GCC whi
h 
oin
ides with the unique no-arbitrage pri
e if themarket is 
omplete. But the main aim of this paper is not to determine a \premium" or\pri
e" for the 
laim, but rather to des
ribe the \game", de�ned above, that takes pla
eafter the premium has been paid till maturity - and 
ompare the situations of 
ompleteand in
omplete markets.De�nition 1.5. We say that a pair (��; � �) 2 S0 � S0 is a Nash (or a non-
ooperative)equilibrium point, if for all (�; �) 2 S0 � S0sup#2�EP �U1 �C1 � R(��; � �) + Z T0 #t dSt�� � sup#2�EP �U1 �C1 � R(�; � �) + Z T0 #t dSt�� ;andsup#2�EP �U2 �C2 +R(��; � �) + Z T0 #t dSt�� � sup#2�EP �U2�C2 +R(��; �) + Z T0 #t dSt�� :Remark 1.6. To simplify the notation and to stress the point that the interdependen
ebetween the agents' de
isions only takes pla
e through the stopping times and not throughthe trading strategies, we have not expli
itly taken the 
hosen trading strategies into thede�nition of a Nash equilibrium. But of 
ourse, the out
ome would be the same.Without a �nan
ial market, i.e. � = f0g, we have a nonzero-sum extension of a Dynkingame. This has been thoroughly investigated by many authors, �rstly and independently ofea
h other by Ohtsubo [13℄ and Morimoto [11℄ for a dis
rete time spa
e. Their results 
anbe dire
tly transfered to our model (1.1)/(1.2), when � = f0g, and ensure the existen
eof equilibrium points. Nevertheless, the existen
e of a �nan
ial market makes things more
ompli
ated.2 The 
ase of exponential utilityIn this se
tion, we assume that both seller and buyer have an exponential utility fun
tion,i.e. U1(x) = 1� e��1x; (2.1)5



U2(x) = 1� e��2x; (2.2)for some risk aversion parameters �1; �2 > 0. Now, we de�ne stopping times (�0; �0) 2S0 � S0 that will turn out to be equilibrium points.De�ne, for 0 = t0 < t1 < � � � < tk = T re
ursively (in reverse order of time):�k = tk; �k = tk; (2.3)�i�1 := 8<: ti�1 : ! 2 Ai�1;�i : otherwise; (2.4)
�i�1 := 8<: ti�1 : ! 2 Bi�1;�i : otherwise; (2.5)where Ai�1 and Bi�1 have to satisfyAi�1 = �e�1Xti�1 ess inf#2�EP �e��1�C1+R(ti�1;T ℄ #t dSt� ��Fti�1�� ess inf#2�EP �e��1�C1�R(�i;�i)+R(ti�1;T ℄ #t dSt� ��Fti�1�� nBi�1; (2.6)and Bi�1 = �e��2Yti�1ess inf#2�EP �e��2�C2+R(ti�1;T ℄ #t dSt� ��Fti�1�� ess inf#2�EP �e��2�C2+R(�i;�i)+R(ti�1;T ℄ #t dSt� ��Fti�1�� n Ai�1: (2.7)Remark 2.1. We have Ai�1\Bi�1 = ; (i.e. the players never stop at the same time) andthe system (2.6)/(2.7) has at least one solution.Remark 2.2. Due to Yti�1 � Xti�1 , for the seller it would be better that the buyer wouldstop the game as if he did it himself (and vi
e versa). This tends to result in a negativeattitude towards stopping.Theorem 2.3. Let U1, U2 be the exponential utility fun
tions (2.1) resp. (2.2), Yti ; Xti 2L1(
;F ; P ), i = 0; : : : ; k, andEP �U1�C1 + Z T0 #(1)t dSt�� > �1; (2.8)6



resp. EP �U2�C2 + Z T0 #(2)t dSt�� > �1; (2.9)for some strategies #(1); #(2) 2 �. Then, ea
h pair (�0; �0) 2 S0�S0 satisfying (2.3)-(2.7)is a Nash equilibrium in the sense of De�nition 1.5.Proof. Let (�i)i=0;::: ;k and (�i)i=0;::: ;k satisfy (2.3)-(2.7). To proof the optimality of �0 (for�0 the argumentation is analogous and therefore omitted) it is suÆ
ient to show that forall i = 0; : : : ; k and � 2 Si P -a.s.ess inf#2�EP �e��1�C1�R(�i ;�i)+R(ti;T ℄ #t dSt� jFti� � ess inf#2�EP �e��1�C1�R(�;�i)+R(ti;T ℄ #t dSt� jFti� :This is done by ba
kward indu
tion: for i = k we have � = tk = �k. i ; i � 1: for allA 2 Fti�1 we have by de�nition of �i�1 and �i�1ZA ess inf#2�EP �e��1�C1�R(�i�1;�i�1)+R(ti�1;T ℄ #t dSt� ��Fti�1� dP= ZA\f�i�1=ti�1g ess inf#2�EP �e��1�C1�Yi�1+R(ti�1;T ℄ #t dSt� ��Fti�1� dP+ ZA\f�i�1>ti�1g min�ess inf#2�EP �e��1�C1�Xti�1+R(ti�1;T ℄ #t dSt� ��Fti�1� ;ess inf#2�EP �e��1�C1�R(�i;�i)+R(ti�1;T ℄ #t dSt� ��Fti�1�� dP� ZA\f�i�1=ti�1g ess inf#2�EP �e��1�C1�Yti�1+R(ti�1;T ℄ #t dSt� ��Fti�1� dP (2.10)+ ZA\f�i�1>ti�1g\f�=ti�1g ess inf#2�EP �e��1�C1�Xi�1+R(ti�1;T ℄ #t dSt� ��Fti�1� dP+ ZA\f�i�1>ti�1g\f�>ti�1g ess inf#2�EP �e��1�C1�R(�i;�i)+R(ti�1;T ℄ #t dSt� ��Fti�1� dP:Furthermore, we haveess inf#2�EP �e��1�C1�R(�i;�i)+R(ti�1;T ℄ #t dSt� ��Fti�1� (2.11)= ess inf#2�0EP �e��1 R(ti�1;ti℄ #t dStess inf~#2�EP �e��1�C1�R(�i ;�i)+R(ti;T ℄ ~#t dSt� jFti� ��Fti�1 �7



P -a.s., where�0 = �# 2 � ����EP �e��1�C1+R(ti�1;T ℄ #t dSt� ��Fti�1� <1 P -a.s.� :The restri
tion to �0 ensures dominated 
onvergen
e and is possible due to (2.8) (noti
ethat R(�i; �i) is bounded), 
f. the proof of Theorem A.2. We 
an now apply the indu
tionassumption for �0 = � _ ti 2 Si to the last expression in (2.10). Then, we again make useof (2.11) for �0 instead of �i. Finally, we obtain as Yti�1 � Wti�1 thatZA ess inf#2�EP �e��1�C1�R(�i�1;�i�1)+R(ti�1;T ℄ #t dSt� ��Fti�1� dP� ZA ess inf#2�EP �e��1�C1�R(�;�i�1)+R(ti�1;T ℄ #t dSt� ��Fti�1� dP:
Remark 2.4. We want to 
onstru
t an example for whi
h no Nash equilibrium exists. Wetake logarithmi
 utility fun
tions, i.e. Ui = log (i=1,2), and a dis
rete two-period binomialmodel. There are a riskless bond with value identi
al to 1, a tradeable risky asset withS0 = 1 and S2 = S1 = 8<: 3 : with probability 1=20 : with probability 1=2(so trading in the se
ond period 
an be ignored and the trading strategy 
onsists of thenumber # 2 R of risky assets held in the �rst period), and another random sour
e H,sto
hasti
ally independent of S, withH = 8<: 1:7522 : with probability 1=20 : with probability 1=2X2 = Y2 = H is the �nal payo�. If A 
an
els at time 1 before B he has to pay a 
onstantamount X1 = 1 and vi
e versa B gets the smaller 
onstant payo� Y1 = 0:9 (stopping attime 0 is ex
luded by prohibitive disadvantageous payo�s). A has initial 
apital 
1 = 5whereas B has the random endowment 
2 = 10:692�H.At time 1, having the information S1, both players 
an de
ide whether to stop or not.As S1 
an take two di�erent values, ea
h player 
an 
hoose between four possible stopping8



times, symbolized by fÆ11; Æ12; Æ21; Æ22g resp. f"11; "12; "21; "22g (where \ij" means: stoppingat time i if S1 = 3 and at time j if S1 = 0).The example is 
onstru
ted in su
h a way that no stopping-strategy Æij, i; j = 1; 2 
anbe part of an equilibrium: given Æij, there are uniquely determined optimal responses "i0j0and Æi00j00. And, we always have Æij 6= Æi00j00, indeed:Æ11 ; "22 ; Æ21; Æ12 ; "22 ; Æ21; Æ21 ; "12 ; Æ22; Æ22 ; "22 ; Æ21:Remark 2.5. Why does Theorem 2.3 fail in Remark 2.4 ?The exponential utility fun
tion has for every initial 
apital x 2 R the same riskaversion � = �U 00(x)=U 0(x). Therefore, for ea
h player there exists - given the \state ofthe world" at time 1 (here: S1 = 3 resp. S1 = 0) and the 
hosen stopping de
ision of theother player - an optimal stopping de
ision that is independent of the 
apital #(S1 � S0)gained until 1, and thus independent of his trading strategy # 2 R. As a 
onsequen
e,the optimal stopping de
ision for one \state of the world" does not depend on things thathappen on other \states of the world". That is in 
ontrast to other utility fun
tions: dueto the varying risk aversion the interdependen
e arises through the 
hoi
e of #.To 
onstru
t a Nash equilibrium for exponential utility let (for example) the sellerdetermine his optimal 
an
ellation strategy assuming that the buyer never stops. Then,on the set A1 where the seller 
an
els the optimal responding buyer does not terminate(as W1 � X1). Here the seller's hypothesis is self-ful�lling. On the set 
 n A1 wherethe seller does not 
an
el the optimal responding buyer 
an terminate (
ross the seller'shypothesis), but asW1 � Y1 this does not motivate the seller to 
hange his initial strategyand to stop on this set, as well. As for the exponential utility the optimal de
ision forone \state of the world" does not depend on things that happen on other \states of theworld", this \state-wise" argumentation is valid. Therefore, the seller need not 
hange hisstopping strategy at all and we have an equilibrium. For over utility fun
tion this \state-wise" argumentation fails and the seller 
ould 
hange his stopping-stategy on anotherstate where his hypothesis was a
tually right. This is visible in Remark 2.4:"22 ; Æ21 ; "12 ; Æ22:9



3 The 
ase of a 
omplete marketIf the �nan
ial market is 
omplete, i.e. there exists a unique equivalent martingale measureQ, we get for general utility fun
tions a result similar to Theorem 2.3. In addition, thevalues of the game for seller and buyer are unique. So, we have a similar property as in azero-sum stopping game.We 
an de�ne a 
orresponding zero-sum stopping game whi
h has the unique value V0V0 = inf�2S0 sup�2S0EQ (R(�; �)) = sup�2S0 inf�2S0 EQ (R(�; �)) : (3.1)Analogously to Kifer [8℄, it turns out that (�0; �0) 2 S0�S0, de�ned as in (2.3)-(2.7), buttaking Ai�1 = �Xti�1 � EQ �R(�i; �i) ��Fti�1 �	 ; (3.2)and Bi�1 = �Yti�1 � EQ �R(�i; �i) ��Fti�1 �	 ; (3.3)is a saddlepoint of (3.1).Lemma 3.1. Let � = �2 with P = fQg, let U be a utility fun
tion, H 2 L1(
;F ; Q),and C 2 FT , then we havesup#2�EP �U �C +H + Z T0 #t dSt�� = sup#2�EP �U �C + EQ (H) + Z T0 #t dSt�� :Proof. Due to the 
ompleteness (
f. e.g. Ja
ka [6℄), H 
an be represented by a 
onstantplus a sto
hasti
 integral, i.e. there exists a b# 2 � su
h that P -a.s.H = EQ (H) + Z(0;T ℄ b#t dSt;and due to the linearity of �, the mapping # 7! # + b# is a bije
tion of � into itself.Theorem 3.2. Let Yti ; Xti 2 L1(
;F ; Q), i=0, : : : ,k, and � = �2 with P = fQg. Then(i) the pair (�0; �0) a

ording to (3.2)/(3.3) is a Nash equilibrium in the sense of De�-nition 1.5, and 10



(ii) if in addition�1 < sup#2�EP �U1 �C1 � V0 + Z T0 #t dSt�� < U1 (1) ; (3.4)and �1 < sup#2�EP �U2�C2 + V0 + Z T0 #t dSt�� < U2 (1) ; (3.5)then all other Nash equilibria (��; � �) have the same pair of values, i.e.sup#2�EP �U1 �C1 � R(��; � �) + Z T0 #t dSt�� = sup#2�EP �U1�C1 �R(�0; �0) + Z T0 #t dSt�� ;andsup#2�EP �U2 �C2 +R(��; � �) + Z T0 #t dSt�� = sup#2�EP �U2�C2 +R(�0; �0) + Z T0 #t dSt�� :Proof. (i) follows immediately from the respe
tive assertions for the zero-sum game (3.1)and Lemma 3.1. For (ii) one needs in addition the fa
t that the mappingsui : R �! R [ f�1g; x 7! sup#2�EP �Ui�Ci + x + Z T0 #t dSt�� ; i = 1; 2;satisfy u1(x) < u1(�V0), for x < �V0, resp. u2(x) < u2(V0), for x < V0. So (��; � �) is anequilibrium for (1.1)/(1.2) if and only if it is an equilibrium for (3.1).This stri
t monotoni
ity 
an be derived as follows: the monotoni
ity and 
on
avity ofUi imply the respe
tive properties of ui (for the latter impli
ation one makes use of thefa
t that a 
onvex 
ombination of admissible strategies is again an admissible strategy).By u1(�V0) > �1 resp. u2(V0) > �1 and dominated 
onvergen
e we 
on
lude thatui(1) = Ui(1). Therefore, (3.4) resp. (3.5) implies the required stri
t monotoni
ity.Remark 3.3. The uniqueness of the values is due to the fa
t that in the 
omplete marketthere is never an in
entive for both players to stop. Only if both A and B are indi�erent,i.e. on fXti�1 = EQ �R(�i; �i)jFti�1� = Yti�1g the behaviour 
an be di�erent for di�erentNash equilibria, but that has no in
uen
e on the expe
ted utility.So, we have a 
hara
teristi
 of a zero-sum game. In a 
ertain sense, this gives a di�erentargument for Kifer's approa
h in [8℄. 11



A AppendixWe want to give full details about the iterative appli
ation of the essential in�mum in(2.11).De�nition A.1. Let (
;F ; P ) be a probability spa
e and let X be a nonempty family ofrandom variables de�ned on (
;F ; P ). The essential in�mum of X , denoted by ess inf X ,is a random variable X� satisfying(i) 8X 2 X , X� � X P -a.s., and(ii) if Y is a random variable satisfying Y � X P -a.s. for all X 2 X , then Y � X�P -a.s.The essential in�mum exists (for a proof see Gihman and Skorohod [4℄) and is obviouslyunique P -a.s.Theorem A.2. Under the 
onditions of Theorem 2.3, we have for every (�; �) 2 S0�S0,i = 1; : : : ; kess inf#2�EP �e��1�C1�R(�;�)+R(ti�1;T ℄ #t dSt� ��Fti�1� (1.6)= ess inf#2�0EP �e��1 R(ti�1;ti℄ #t dStess infe#2�EP �e��1�C1�R(�;�)+R(ti;T ℄ e#t dSt� jFti� ��Fti�1 �P -a.s., where�0 := �# 2 � ����EP �e��1�C1+R(ti�1;T ℄ #t dSt� ��Fti�1� <1 P -a.s.� :Proof. Due to Assumption 1.3 one 
an rewrite � as a produ
t spa
e 
onsisting of strategies# 2 � 
oming into e�e
t on (ti�1; ti℄ and strategies e# 2 � 
oming into e�e
t on (ti; T ℄, i.e.ess inf#2�EP �e��1�C1�R(�;�)+R(ti�1;T ℄ #t dSt� ��Fti�1� (1.7)= ess inf(#;e#)2���EP �e��1�C1�R(�;�)+R(ti�1;ti℄ #t dSt+R(ti;T ℄ e#t dSt� ��Fti�1� P -a.s.Then, one 
an split the essential in�mum over the produ
t spa
e into two essential in�ma(using the same arguments as for the in�mum in R):ess inf(#;e#)2���EP �e��1�C1�R(�;�)+R(ti�1;ti℄ #t dSt+R(ti;T ℄ e#t dSt� ��Fti�1� (1.8)= ess inf#2� ess infe#2�EP �e��1�C1�R(�;�)+R(ti�1;ti℄ #t dSt+R(ti;T ℄ e#t dSt� ��Fti�1� P -a.s.12



For every �xed strategy b# 2 � we have of 
ourse thatEP �e��1�C1�R(�;�)+R(ti;T ℄ b#t dSt� jFti� � ess infe#2�EP �e��1�C1�R(�;�)+R(ti;T ℄ e#t dSt� jFti�P -a.s., and general properties of the essential in�mum (
f. e.g. Gihman and Skorohod [4℄)guarantee that the essential in�mum 
an be approximated by a 
ountable set of elementsof �, i.e. there exists a sequen
e (e#(n))n2N � � s.t.infn2NEP �e��1�C1�R(�;�)+R(ti;T ℄ e#(n)t dSt� jFti�= ess infe#2�EP �e��1�C1�R(�;�)+R(ti;T ℄ e#t dSt� jFti� P -a.s.;where the inf is understood pointwise. For two strategies e#(1); e#(2) 2 � de�nee#(3)t = 8>>>>><>>>>>: 1(t > ti)e#(1)t : EP �e��1�C1�R(�;�)+R(ti;T ℄ e#(1)t dSt� jFti�� EP �e��1�C1�R(�;�)+R(ti;T ℄ e#(2)t dSt� jFti� ;1(t > ti)e#(2)t : otherwise:Due to Assumption 1.3 we have e#(3) 2 �, and in additionEP �e��1�C1�R(�;�)+R(ti;T ℄ e#(3)t dSt� jFti�= min�EP �e��1�C1�R(�;�)+R(ti;T ℄ e#(1)t dSt� jFti� ; EP �e��1�C1�R(�;�)+R(ti;T ℄ e#(2)t dSt� jFti�� ;and therefore inf-stability. Hen
e, there exists a sequen
e (e#n)n2N 2 � su
h thatEP �e��1�C1�R(�;�)+R(ti;T ℄ e#(n)t dSt� jFti�& ess infe#2�EP �e��1�C1�R(�;�)+R(ti;T ℄ e#t dSt� jFti� P -a.s., n!1;resp. e��1 R(ti�1;ti℄ #t dSt min�EP �e��1�C1�R(�;�)+R(ti;T ℄ e#(n)t dSt� jFti� ;EP �e��1�C1�R(�;�)+R(ti;T ℄ #t dSt� jFti��& e��1 R(ti�1;ti℄ #t dStess infe#2�EP �e��1�C1�R(�;�)+R(ti;T ℄ e#t dSt� jFti� P -a.s.; (1.9)13



as n ! 1, where # 2 �0. Due to (2.8) �0 is nonempty and the sequen
e in (1.9) isdominated by the random variableEP �e��1�C1�R(�;�)+R(ti�1;T ℄ #t dSt� jFti� ;whi
h has P �a:s: �nite P �� ��Fti�1 �-expe
tation (noti
e that R(�; �) is bounded). So, forevery # 2 �0, we 
an apply the dominated 
onvergen
e theorem for 
onditional expe
ta-tions to (1.9). Then, we take the essential in�mum over all # 2 �0 on both sides:ess inf#2�0 ess infe#2�EP �e��1�C1�R(�;�)+R(ti�1;ti℄ #t dSt+R(ti;T ℄ e#t dSt� ��Fti�1� (1.10)= ess inf#2�0EP �e��1 R(ti�1;ti℄ #t dStess infe#2�EP �e��1�C1�R(�;�)+R(ti;T ℄ e#t dSt� jFti� ��Fti�1 �P -a.s. It remains to show that it makes no di�eren
e whether the essential in�mum in the�rst expression of (1.10) is taken over all # 2 � or only over all # 2 �0. Take at �rst anarbitrary # 2 � and de�neA = �ess infe#2�EP �e��1�C1�R(�;�)+R(ti�1;ti℄ #t dSt+R(ti;T ℄ e#t dSt� ��Fti�1� <1� (1.11)The essential in�mum in (1.11) 
an be monotonously approximated by a sequen
e(e#(n))n2N � �. That impliesA(n) := �EP �e��1�C1�R(�;�)+R(ti�1;ti℄ #t dSt+R(ti;T ℄ e#(n)t dSt� ��Fti�1� <1�% A P -a.s.;as n!1. Let b# 2 �0 6= ; and de�ne#(n)t := 8>>><>>>: #t : t � ti and ! 2 A(n);e#(n)t : t > ti and ! 2 A(n);b#t : otherwise:#(n) are by 
onstru
tion elements of �0. Furthermore, A(n) [ (
 n A) % 
, P -a.s., asn!1, and on A(n) [ (
 n A) we haveess infe#2�EP �e��1�C1�R(�;�)+R(ti�1;ti℄ #(n)t dSt+R(ti;T ℄ e#t dSt� ��Fti�1�� ess infe#2�EP �e��1�C1�R(�;�)+R(ti�1;ti℄ #t dSt+R(ti;T ℄ e#t dSt� ��Fti�1� :14



Therefore,ess inf#2�0 ess infe#2�EP �e��1�C1�R(�;�)+R(ti�1;ti℄ #t dSt+R(ti;T ℄ e#t dSt� ��Fti�1� (1.12)= ess inf#2� ess infe#2�EP �e��1�C1�R(�;�)+R(ti�1;ti℄ #t dSt+R(ti;T ℄ e#t dSt� ��Fti�1� P -a.s.Putting (1.7), (1.8), (1.10), and (1.12) together, this implies the assertion.
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