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Abstract
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1 Introduction

A game contingent claim (GCC) is a contract between a seller A and a buyer B which
enables A to terminate it and B to exercise it at any time ¢t € {¢y, ..., ¢} up to a maturity
date T" = t;, when the contract is terminated anyway.

More precisely, let (2, F, P, (F¢)ico,r]) be a filtered probability space satisfying the
usual conditions of right-continuity and completeness, and let (Xy,)i—o, .k, (Y% )iz0... &
(W4, )i=o,... k. be sequences of real-valued random variables adapted to (Fi,)i=o,.. , with
Y, <W, <X, fori=0,..., k—1and Y, =W, =X, .If Aterminates the contract at
time ¢; before B exercises then A should pay B the amount X;,. The other way around,
A should pay B only Y;,. If A terminates and B exercises at the same time, then A pays
B the amount W,.

Definition 1.1. Let S;, i = 0,... , k, be the sets of all stopping times resp. (Fy)ejo,r] with

values in {t;,... ,t}.

The above contract can be formulated as follows. If A selects a cancellation time o € &

and B selects an exercise time 7 € Sy, then A pledges to pay B at time o A 7 the amount
R(o,7)=Xol(o <7)+ Y I(T <o)+ W (T =0).

The frictionless financial market consists of d risky assets whose discounted price processes
are modeled by the R%-valued semimartingale S and one riskless asset with discounted
price process equal to 1. We denote by O a suitable space of admissible trading strategies

to be specified later.

Example 1.2 (Israeli call option). An American style call option with strike price K

where also the seller can terminate the contract, but at the expense of a penalty 6, > 0,

ie. Y, = (SN —K), Xy, = (S — K)Y 46, and Wy, = (S — K)* +6,,/2.

Such a game version of an American option is safer for an investment company which
issues it, and so it can be sold cheaper than the corresponding American option. As
pointed out in Kifer [8], essentially any contract in modern life presumes explicitly or im-

plicitly a cancellation option by each side which then has to pay some penalty, and so it



is natural to introduce a buyback option to contingent claims, as well. An example which
has already been traded on real markets is a Liquid Yield Option Note (LYON). It is
discussed in McConnell and Schwarz [10] - on a rather heuristical level without indicating

a connection to a Dynkin game.

In a complete market (i.e. Y;W, X are replicable by trading in S) one can solve
our problem without letting enter the agents’ preferences: A just wants to minimize
E¢g (R(o,7)) whereas B wants to maximize the same expression () is the unique equiv-
alent martingale measure). Thus, we have a zero-sum Dynkin stopping game. It is well-
known that such a game has a unique value, cf. Ohtsubo [12]. Kifer [8] shows by hedging-
arguments that this value is also the unique no-arbitrage price of the GCC. In other words,
the expectation of the (discounted) payoff under the unique equivalent martingale mea-
sure is the variable to be maximized resp. minimized, and this ensures consistency with
the principle of no-arbitrage. Consequently, one has to solve a classical Dynkin game.

In incomplete markets this argument fails because there is more than one equivalent
martingale measure. It is possible to superhedge the claim and get an interval of no-
arbitrage prices, but then the feature of a stochastic game gets lost.

We suggest a utility maximization approach that takes trading possibilities explicitly
into consideration. This approach is very popular for valuating European style contingent
claims in the context of incomplete markets; see e.g. Hodges and Neuberger [5], Delbaen
et al. [3], or Davis [1]. For American style contingent claims see Davis and Zariphopoulou
[2].

Let Uy, Us; : R — R be nondecreasing and concave; they are the utility functions of
the seller resp. the buyer. Each “player” chooses a stopping time o € Sy (resp. 7 € Sp) and
a trading strategy ¥ € ©, whose i-th component 9, i = 1,... ,d, represents the number

of shares of asset 7 held in the portfolio at time ¢ € [0,7']. The seller wants to maximize

Ep (U1 (01 ~ R(o,7) + /OT 9, dSt>> | (1.1)

while the buyer wants to maximize

Ep <U2 ((12 + R(o,7) + /0 9, dSt>> | (12)
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So, the agents are solely interested in terminal wealth. The rv C; € Fp (i = 1,2) is the
exogenous endowment of the ¢-th player. This randomness especially makes sense for the
buyer, who perhaps buys the claim to hedge against another risk in his portfolio.

In the whole paper, the space © of admissible trading strategies has to satisfy the

Assumption 1.3. All elements of © are (F;)-predictable and S-integrable. © is linear,
and for all t; € {t1,... ,tx_1}, A € F, the following implication is valid:
If 9 9@ 9B € O, then the compound strategy

o<,
Uy = 19,(52) o t>t and we A, (1.3)
19,(53) ot>t and w ¢ A

s also an element of O.

The latter is essential as it allows a successive optimization, first over all stategies
(V¢)ieq,,r) (fixing one strategy (9;)ic(o,,)), and then over all (¥;)ic(0,,)- S0, it is a quite
natural assumption. But unfortunately, it is not as harmless as it looks like. For exam-
ple, the set of all predictable trading strategies such that the discounted gain process
fot ¥, dS, is bounded from below (but not necessarily from above) does obviously not
satisfy Assumption 1.3.

A permissible choice of O is for example

t
0, = {19 € L(S) / 9, dS, is bounded uniformly in ¢ and w} ) (1.4)
0

© is rather small, but in Delbaen et al. [3] resp. Kabanov and Stricker [7] it is shown for
exponential utility that under the assumption that S is locally bounded and admits an
equivalent local martingale measure with finite entropy the maximization problems (1.1)
and (1.2) with © = ©; have the same values as for much bigger ©. Another permissible

choice is
t
O, = {19 e L(S) | / Y, dS, is a martingale w.r.t. a special set P of absolutely
0

continuous local martingale measures}.



Remark 1.4. Analogously to Kiihn [9], one can define from the seller’s point of view a
“still fair premium” for the GCC which coincides with the unique no-arbitrage price if the
market is complete. But the main aim of this paper is not to determine a “premium” or
“price” for the claim, but rather to describe the “game”, defined above, that takes place
after the premium has been paid till maturity - and compare the situations of complete

and incomplete markets.

Definition 1.5. We say that a pair (0*,7%) € Sg X Sy is a Nash (or a non-cooperative)

equilibrium point, if for all (o,7) € Sy x Sp

T T
sup Ep <U1 <C’1 — R(o",T") +/ Iy dSt>> > sup Ep <U1 <C’1 — R(o,77) +/ Iy d5t>> ,
9E€O 0 9€O 0

and

T T
sup Ep <U2 <C’g + R(o™, T7) +/ Iy dSt>> > sup Ep <U2 <C’g + R(o",T) +/ Iy d5t>> )
9€0 0 e 0

Remark 1.6. To simplify the notation and to stress the point that the interdependence
between the agents’ decisions only takes place through the stopping times and not through
the trading strategies, we have not explicitly taken the chosen trading strategies into the

definition of a Nash equilibrium. But of course, the outcome would be the same.

Without a financial market, i.e. © = {0}, we have a nonzero-sum extension of a Dynkin
game. This has been thoroughly investigated by many authors, firstly and independently of
each other by Ohtsubo [13] and Morimoto [11] for a discrete time space. Their results can
be directly transfered to our model (1.1)/(1.2), when © = {0}, and ensure the existence
of equilibrium points. Nevertheless, the existence of a financial market makes things more

complicated.

2 The case of exponential utility

In this section, we assume that both seller and buyer have an exponential utility function,

i.e.

Up(z) =1—e 47, (2.1)



Uy(z) =1—e *7, (2.2)

for some risk aversion parameters oy, s > 0. Now, we define stopping times (o9, 79) €
Sy X 8y that will turn out to be equilibrium points.

Define, for 0 =ty < t; < --- <ty = T recursively (in reverse order of time):

Op = tg, Tk = Tk, (2.3)

ti_ D weE A ,
O;—1 :— . ' (24)

O; :  otherwise,

tiin @ we€ By,
Tiol = (2.5)

T; . otherwise,

where A; 1 and B;_; have to satisfy

Ay = {eo‘lxti—l ess inf Ep <e_a1(cl+f(ti—l,T] deds:) |7, 1)
deO i—
< ess inf Ep <€—a1 (CI—R(Ui;Ti)‘Ff(tiil’T] V¢ dSt) ‘ft 1 > } \Bifl, (26)
- JeO i—
and

o . —az(Ca+ Y dS,
B, | = {e @2Yt; 1 ess inf Ep (e 2( 2,y t) ‘fti1>
JeO

S ess égg EP <ea2 (02+R(0'i,7'i)+f(ti,1,T] o dSt) ‘fti_l> } \Ai_l. (27)

Remark 2.1. We have A;_; N B;_; = 0 (i.e. the players never stop at the same time) and
the system (2.6)/(2.7) has at least one solution.

Remark 2.2. Due to Y;, | < X, |, for the seller it would be better that the buyer would
stop the game as if he did it himself (and vice versa). This tends to result in a negative

attitude towards stopping.

Theorem 2.3. Let Uy, Uy be the exponential utility functions (2.1) resp. (2.2), Y, Xy, €
L>*(Q,F,P),i=0,...,k, and

T
Ep (U1 (01 +/ e dSt>> > —00, (2.8)
0
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resp.

T
Ep <U2 (02+ / 9 dSt>> > —00, (2.9)
0

for some strategies 9V, 9 € ©. Then, each pair (0y, 7o) € Sy x Sy satisfying (2.3)-(2.7)

s a Nash equilibrium in the sense of Definition 1.5.

Proof. Let (0;)i=o,... x and (7;)i=o,... & satisfy (2.3)-(2.7). To proof the optimality of oq (for
7p the argumentation is analogous and therefore omitted) it is sufficient to show that for

alli =0,...,k and 0 € §; P-a.s.
ess inf Ep e_al(cl_R(Ui’Ti)+f(ti’T] e dsi) |Fi. | <essinf Ep e_al(cl_R(a’n)Jrf(ti’T] e ds:) | Fi, ) -
Ve ) 9EO ‘

This is done by backward induction: for ¢ = k we have 0 = t, = o}. i ~ ¢ — 1: for all

A € F,,_, we have by definition of 7;,_; and o; 4

ess inf Ep (e (O REmmm o,y n0eds) |F. . | dP
JeO
A

. —ar(CL—Yii4 [, .9:dS
= essinf Ep | e H(Or=Yimit iy 90 d5e) ‘fti—l dP
e
Aﬂ{’l’i_lzti_l}

. . —a1 (C1—Xe, |+ 9¢ dS
+ / mln{ess inf Ep <e 1 (X 4y om0 ‘fti1> ,

ISLC)]
Aﬁ{’l‘ifl >ti,1}

ess Q%Ielg) Ep (eal(clR(”“”Hf(ti_l,T] vt dSt) ‘fti—l> } w

< / ess inf Ep (e‘“l(cl‘“i—ﬁf@i—m deds:) \ftH) P (2.10)
AN{risi=ti1} v

+ / ess inf Ep (e_al(cl_Xi_lJrf(til*T] edse) ‘ft“) dP
AN{7i 1>t 1 3n{o=t; 1} ’ee

- / ess inf Ep (eal(clR(”i’””f(ti—m 91dsi) \ftH) dP.
AN{7i 1>t 1 In{o>t 1} vee

Furthermore, we have
o 1;2(1; By <ea1(C’1R(0i,Ti)+f(ti1,T] 9¢ dSt) ‘fti—1> (2.11)

. —ai [, ,.9:dS . —a1(C1=R(cs 7))+ [, 7 0¢dS
=ess inf Ep |e oy 095t ggg g Eple o1 (Cr=R(os,13)+ [y, 7 D1 45¢) | Fe. ‘fti—l
9eo’ 9co



P-a.s., where
o' = {19 €0 ‘Ep (e_al(clJrf(ti—l’T] e dst) ‘ft“) < oo P-as. } :

The restriction to ©' ensures dominated convergence and is possible due to (2.8) (notice
that R(o;,7;) is bounded), cf. the proof of Theorem A.2. We can now apply the induction
assumption for o’ = oV t; € §; to the last expression in (2.10). Then, we again make use

of (2.11) for o' instead of ;. Finally, we obtain as Y;, | < W,,_| that

ess inf Ep 6*0‘1(CI*R(Uz‘A,Ti71)+f(ti_l,T] 9t dSt) ‘ft AP
Y€ i—1

< /ess inf Ep <€a1 (CI*R(U,Ti71)+f(ti71,T] It dSt) ‘ft 1> dP.
B CEC) i

O

Remark 2.4. We want to construct an example for which no Nash equilibrium exists. We
take logarithmic utility functions, i.e. U; = log (i=1,2), and a discrete two-period binomial
model. There are a riskless bond with value identical to 1, a tradeable risky asset with

S() =1 and

3 : with probability 1/2
0 : with probability 1/2

52251:

(so trading in the second period can be ignored and the trading strategy consists of the
number ¥ € R of risky assets held in the first period), and another random source H,

stochastically independent of S, with

1.7522 : with probability 1/2
0 . with probability 1/2

Xy =Y, = H is the final payoff. If A cancels at time 1 before B he has to pay a constant
amount X; = 1 and vice versa B gets the smaller constant payoff Y; = 0.9 (stopping at
time 0 is excluded by prohibitive disadvantageous payoffs). A has initial capital ¢; = 5
whereas B has the random endowment ¢, = 10.692 — H.

At time 1, having the information S;, both players can decide whether to stop or not.

As S; can take two different values, each player can choose between four possible stopping
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times, symbolized by {§'!,6'2, 6%, 622} resp. {e',&!?,&2!, €22} (where “ij” means: stopping
at time ¢ if S} = 3 and at time j if S; = 0).

The example is constructed in such a way that no stopping-strategy 6%, 7,7 = 1,2 can
be part of an equilibrium: given ¢, there are uniquely determined optimal responses %7

NI NI

and 07", And, we always have 6% # 67", indeed:
S s 622 s G2 G120, g2y 62 G, 12, 622 G2, G222

Remark 2.5. Why does Theorem 2.3 fail in Remark 2.4 ¢

The exponential utility function has for every initial capital x € R the same risk
aversion a = —U"(z)/U'(z). Therefore, for each player there exists - given the “state of
the world” at time 1 (here: S; = 3 resp. S; = 0) and the chosen stopping decision of the
other player - an optimal stopping decision that is independent of the capital J(S; — Sp)
gained until 1, and thus independent of his trading strategy 9 € R. As a consequence,
the optimal stopping decision for one “state of the world” does not depend on things that
happen on other “states of the world”. That is in contrast to other utility functions: due
to the varying risk aversion the interdependence arises through the choice of 9.

To construct a Nash equilibrium for exponential utility let (for example) the seller
determine his optimal cancellation strategy assuming that the buyer never stops. Then,
on the set A; where the seller cancels the optimal responding buyer does not terminate
(as Wi < Xj). Here the seller’s hypothesis is self-fulfilling. On the set Q \ A; where
the seller does not cancel the optimal responding buyer can terminate (cross the seller’s
hypothesis), but as W7 > Y] this does not motivate the seller to change his initial strategy
and to stop on this set, as well. As for the exponential utility the optimal decision for
one “state of the world” does not depend on things that happen on other “states of the
world”, this “state-wise” argumentation is valid. Therefore, the seller need not change his
stopping strategy at all and we have an equilibrium. For over utility function this “state-
wise” argumentation fails and the seller could change his stopping-stategy on another

state where his hypothesis was actually right. This is visible in Remark 2.4:

522 ~s 521 ~s 512 ~s 522.



3 The case of a complete market

If the financial market is complete, i.e. there exists a unique equivalent martingale measure
@, we get for general utility functions a result similar to Theorem 2.3. In addition, the
values of the game for seller and buyer are unique. So, we have a similar property as in a
zero-sum stopping game.

We can define a corresponding zero-sum stopping game which has the unique value V}

Vo = inf sup Eg (R(o,7)) = sup inf Eg (R(o, 7)) . (3.1)

o€Sy T7E€SH TESo 0€Sy
Analogously to Kifer [8], it turns out that (o9, 79) € Sy X Sy, defined as in (2.3)-(2.7), but

taking

A ={Xi,, < Eq (R(oi,m) | Fii 1) } s (3.2)
and

Bioy ={Y,_, > Eq (R(os, 1) |Fii_)) } (3.3)
is a saddlepoint of (3.1).

Lemma 3.1. Let © = O, with P = {Q}, let U be a utility function, H € L'(Q, F,Q),

and C' € Fr, then we have

T T
sup Ep <U(C+H+/ ﬁtdSt>>:supEp <U(C+EQ(H)+/ ﬁtdSt>>.
HeO 0 HeO 0

Proof. Due to the completeness (cf. e.g. Jacka [6]), H can be represented by a constant

plus a stochastic integral, i.e. there exists a J € © such that P-a.s.

H = Eg (H) +/ 9, dS,,
(0.7]

and due to the linearity of ©, the mapping v — 0 + Jis a bijection of © into itself. [
Theorem 3.2. Let Y;,, X, € L'(Q, F,Q), i=0, ... ,k, and © = Oy with P = {Q}. Then

(i) the pair (o9, T9) according to (3.2)/(3.3) is a Nash equilibrium in the sense of Defi-

nition 1.5, and
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(i1) if in addition

T
— 00 < sup Ep <U1 <C’1 -V +/ Iy dSt>> < U (00), (3.4)
i) 0
and
T
— oo < sup Ep (UQ (OQ + W —|—/ W dSt>> < Uy (OO), (35)
) 0

then all other Nash equilibria (o*,7*) have the same pair of values, i.e.

T T
sup Ep <U1 (Cl - R(O'*,T*) —|—/ 19,5 dSt>> = sup Ep (Ul (Cl - R(O'(),To) +/ 19,5 dSt>> s
ISIC) 0 J€O 0

and

T T
sup Ep <U2 <C’g + R(o*,7%) + / Iy dSt>> =sup Ep (Ug <02 + R(09,70) + / Iy d5t>> )
9€O 0 e 0

Proof. (i) follows immediately from the respective assertions for the zero-sum game (3.1)
and Lemma 3.1. For (ii) one needs in addition the fact that the mappings

T
ui: R — RU{+oo}, x+—>supEp<Ui<Ci+x+/ 19tdSt>>, i=1,2,
9O 0

satisfy uj(x) < ui(=Vp), for x < =V, resp. ug(z) < uy(Vp), for x < V4. So (0%, 7%) is an
equilibrium for (1.1)/(1.2) if and only if it is an equilibrium for (3.1).

This strict monotonicity can be derived as follows: the monotonicity and concavity of
U; imply the respective properties of u; (for the latter implication one makes use of the
fact that a convex combination of admissible strategies is again an admissible strategy).
By ui(—Vy) > —oo resp. us(Vy) > —oo and dominated convergence we conclude that

u;(00) = U;(00). Therefore, (3.4) resp. (3.5) implies the required strict monotonicity. [

Remark 3.3. The uniqueness of the values is due to the fact that in the complete market
there is never an incentive for both players to stop. Only if both A and B are indifferent,
ie.on {X,_, = Eg (R(0;,7:)|Fi,_,) = Yi_,} the behaviour can be different for different
Nash equilibria, but that has no influence on the expected utility.

So, we have a characteristic of a zero-sum game. In a certain sense, this gives a different

argument for Kifer’s approach in [8].
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A Appendix

We want to give full details about the iterative application of the essential infimum in
(2.11).
Definition A.1. Let (2, F, P) be a probability space and let X be a nonempty family of

random variables defined on (2, F, P). The essential infimum of X, denoted by essinf X,

15 a random variable X* satisfying

(i) VX € X, X* <X P-a.s., and

(ii) if Y is a random variable satisfying Y < X P-a.s. for oll X € X, then Y < X*
P-a.s.

The essential infimum exists (for a proof see Gihman and Skorohod [4]) and is obviously

unique P-a.s.

Theorem A.2. Under the conditions of Theorem 2.3, we have for every (o,7) € Sy X Sp,
v=1,...,k

ess ,}23; Ep <€a1 (R4, 20 dst) ‘fti—l> (1.6)

. —a1 [, ,.9:dS . —aq (C1—R(o,7)+[,, . O¢dS
=ess inf Ep |e e 095 ogq inf Eple o (ChR@m) g my 1 d51) | F, ‘fti—l
deor Feo

P-a.s., where
@, — {19 co ‘Ep (eal (Cl‘i’f(ti_l,T] '19td5t) ‘fti—1> < oo P-a.s. } .

Proof. Due to Assumption 1.3 one can rewrite © as a product space consisting of strategies

¥ € © coming into effect on (f;_y, #;] and strategies 9 € © coming into effect on (¢;, 7], i.e.

) —ai (Ci=R(o;7)+ [, 94 dS
655525 Ep <€ 1( 1=R(o,7)+ [,y 170t t) ‘fti1> (1.7)
= ess inf Ep <€—a1 (CI_R(U’T)—i_f(tifl,ti]ﬂt dSt+f(ti,T] V¢ dst) ‘ft 1) P-a.s.
(9,0)e0x0

Then, one can split the essential infimum over the product space into two essential infima,

(using the same arguments as for the infimum in R):

ess inf  Ep (eal(clR(a,r)+f(ti_l,ti]m dSi+[jy. ry 1 dSt) | 7ti_1> (1)
(9,9)e©x0O
) ) —a1(Ci=R(e, )+ [, ,10¢dSe+[,, D¢ dS
=essinfessinf Ep | e (O RO gy 9045 sy 92 45) ‘ftH P-as.
V€O jeo
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For every fixed strategy J € © we have of course that
EP <€a1 (C’lfR(U,T)+f(ti’T] B¢ dSt) |ft ) > oss inf EP <6a1 (CI*R(U,T)‘Ff(ti,T] 04 dSt) |ft >
)T Je® '
P-a.s., and general properties of the essential infimum (cf. e.g. Gihman and Skorohod [4])
guarantee that the essential infimum can be approximated by a countable set of elements

of O, i.e. there exists a sequence (g(n))nEN C O s.t.

inf Ep <e—oél (C1 (0,7 +f(t T] dSt) |f >

neN

. —a (C1—R(o, J¢ dS,
=ess inf Ep (e a1 (C1=R@7)+ [y, 2y 91 dS1) |-7:t¢> P-as.,
deo

where the inf is understood pointwise. For two strategies ) 19 € O define

;

1(t > tz){igl) . EP (eal (Cl R(o,T +f(t T] dSt) |ftz
{953) — S EP (e—al (Cl 0'7' +f(t T] dSt) |f )
1(t > ti){ﬁm . otherwise.

\

Due to Assumption 1.3 we have 93 € O, and in addition
Ep (6“"1(01 O r e, 017 d50) | 7, )

— min {EP (e—al (CI_R(UaT)'i'f(ti,T] dSt) |ft > (e—al (Cl—R(o‘,T)-i—f(ti’T] 5&2) dSt) |ft ) }
3 Y
and therefore inf-stability. Hence, there exists a sequence (J"),cy € © such that

Ep <€a1(01 R(o,7)+ [, 05 dSt) 3 >

) —an (C1—R(o, J¢ dS,
N\ ess inf Ep (e a1 (Cr= o)+ [, ry D dS1) |]-“ti> P-a.s., n — oo,
deo

resp.
e~ Jtimp P45t i {EP (6_0‘1(01 )+ m 91 45 |\ F ) )

Ep <€_a1(CI_R(U’T)+f(ti’T] & dSt) |ft'> }

- ¢ dS . —a1 (C1—R(o, ¢ dS
e ar [ 0 toss inf Ep (6 a1( 1=R(o,7)+ [, 7Vt t) |ftz> P-as., (19)
J€O
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as n — oo, where ¥ € ©'. Due to (2.8) © is nonempty and the sequence in (1.9) is

dominated by the random variable

which has P — a.s. finite P (o | F;,_, )-expectation (notice that R(o,7) is bounded). So, for
every ¥ € ©') we can apply the dominated convergence theorem for conditional expecta-

tions to (1.9). Then, we take the essential infimum over all ¥ € ©' on both sides:

) ) —a1 (Ci—R(o,r)+ [, 19:dSe+ [, . 0¢dS
ess inf ess inf Ep | e @1 (O ROy P 450+ S, ry e 451) . (1.10)
9EO jeo

. —a1 [, ,.0:dS ) —a1 (C1—R(o,7)+ J¢ dS
=ess inf Ep |e W e 095 ogq inf Eple o (1R, ry 91 d51) | F, ‘fti—l
deor jeo

P-a.s. It remains to show that it makes no difference whether the essential infimum in the

first expression of (1.10) is taken over all ¥ € © or only over all ¥ € ©'. Take at first an
arbitrary ¥ € © and define

s {ess inf B, <€—a1(CI—R(U;T)+f(til’ti]‘ﬂt AS+ J(y, 11 9 dSt) |7, 1) < oo} (1.11)
Jeo "

The essential infimum in (1.11) can be monotonously approximated by a sequence

(9™)en C ©. That implies
A {EP (eal(clR(a,r)+f(ti_l,ti]m dSi+ [ m 0¢" dSt) ‘]:tq) < OO} N A P-as.,

as n — 00. Let U € © # () and define

Uy - t<t; and we AW,
1/9\t :  otherwise.

9™ are by construction elements of ©'. Furthermore, A™ U (Q\ A) & Q, P-as., as
n — oo, and on A™ U (Q\ A) we have

_ _ (n) =
ess inf Fp (e a1 (Cr=R(o, )+, 0 0" dSet [y, oy D dSt) ‘ft”)
Jco

< ess inf Ep <€_a1(CI_R(U’T)—i—f(ti—lsti]ﬂt dst+f(ti,T] Ot dSt) ‘fti1> .
€O
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Therefore,

) . —a1(C1—R(e,7)+[,, ,10:dSe+[,, mD¢dS
ess inf ess inf Ep | e R AL ) |, (1.12)
9O jeo

. . —a1 (C1—R(o,7)+ [, 19:dSe+[,, D¢ dS
= ess inf ess inf Ep | e (RO S 1y 92 85ty 91 85 ‘fti—l P-as.
JeO® JeoO

Putting (1.7), (1.8), (1.10), and (1.12) together, this implies the assertion. O
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