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THE TAIL OF THE STATIONARY DISTRIBUTION OF A RANDOM
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Munich University of Technology and Université de Rouen

We investigate a stationary random coefficient autoregressive process.
Using renewal type arguments tailor-made for such processes, we show that
the stationary distribution has a power-law tail. When the model is normal, we
show that the model is in distribution equivalent to an autoregressive process
with ARCH errors. Hence, we obtain the tail behavior of any such model of
arbitrary order.

1. Introduction. We consider the following random coefficient autoregres-
sive model:

(L.1) Yn =®pYn—1+ -+ AgnYn—q +&n, neN,

with random variables (r.v.’s) «;, = a; + 0;1;,,, Where a; € R and g; > 0. Set

Op :(Ollna---aaqn)/a Nn =(n1na---anqn)/,

where throughout the paper all vectors are column vectors and “’” denotes
transposition. We suppose that the sequences of coefficient vectors (1, ),en and
noise variables (&,),cn are independent and both sequences are i.i.d. with

(1.2) Et =En; =0 and E& =Enp’ =1, i=1,...,q.

We are interested in the existence of a stationary version of the process (y,)neN,
represented by a r.v. y, and its properties. In this paper we investigate the
tail behavior

(1.3) P(yoo > 1) ast — oo.

This is, in particular, the first step for an investigation of the extremal behavior
of the corresponding stationary process, which we will study in a forthcoming
paper. Stationarity of (1.1) is guaranteed by condition (D0) below. To obtain the
asymptotic behavior of the tail of y,, we embed (y,), N into a multivariate setup.
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Set Y, = (v, ..., yn_q+1)/ . Then the multivariate process (¥;) can be consid-
ered in the much wider context of random recurrence equations of the type
(1.4) Yy =AYy—1+Cn, neN,

where (A, &n)neN 18 an i.i.d. sequence, the A, are i.i.d. random (g X g)-matrices
and the ¢, are i.i.d. g-dimensional vectors. Moreover, for every n, the vector ¥,
is independent of (A, &,).

Such equations play an important role in many applications as, for example, in
queueing; see [4] and in financial time series; see [8]. See also [5] for an interesting
review article with a wealth of examples.

If the Markov process defined in (1.4) has a stationary distribution and Y has
this stationary distribution, then certain results are known on the tail behavior of Y.
In the one-dimensional case (¢ = 1), Goldie [10] has derived the tail behavior of Y
in a very elegant way by a renewal type argument: the tail decreases like a power-
law. For the multivariate model, Kesten [14] and Le Page [17] show—under certain
conditions on the matrices A,—that t* P(x'Y > t) is asymptotically equivalent to
a renewal function, that is,

o
(1.5) t)‘P(x/Y>t)~G(x,t)=ExZg(x,,,t—vn) ast — o0,

n=0
where “~” means that the quotient of both sides tends to a positive constant. Note
that if we set x’ = (1,0, ..., 0), then we obtain again (1.3). Here g(-, -) is some
continuous function satisfying condition (4.1), (x,),>0 and (v, ),>0 are stochastic
processes, defined in (1.10) and (1.11).

In model (1.1) we have ¢, = (£,,0,...,0) and

_ A1 aqn
(1.6) Ay = <1q—1 0 ), neN,

where 1,1 denotes the identity matrix of order g — 1.
Standard conditions for the existence of a stationary solution to (1.4) are given
in [15] (see also [11]) and require that

(1.7) Elogt|Aj] <oo and Elogt|¢(| < oo
and that the top Lyapunov exponent
(1.8) )7=nl_i)rgon_1 log|A;---A,] <O.

In our case, conditions (1.7) are satisfied. Moreover, we can replace (1.8) by the
following simpler condition; see, for example, [20].

(DO0) The eigenvalues of the matrix
(1.9) EAI® Ay

have moduli less than one, where “®” denotes the Kronecker product
of matrices.
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In the context of model (1.1) under the assumption that, for any n > 1,
det(A,) # 0 a.s., the processes (x,),>0 and (v,), >0 are defined as
xr/z—lAn X/Al An

(1.10) xp=x€S8, X = = , neN,
ox,_jAnl IXAL-- Ay

and

n
vo =0, va= Y uj=log|x'Aj - Ayl,
i=1

(1.11)
up =log|x,_,Anl, nelN.

Here | - | denotes the Euclidean norm in R? and |A|> = tr A A’ is the corresponding
matrix norm; we denote, furthermore, § = {z € R?:|z|] = 1} and ¥ = x/|x]|
for x # 0.

Since GARCH models are commonly used as volatility models, modelling
the (positive) standard deviation of a financial time series, Kesten’s work can be
applied to such models; see, for example, [6]. Kesten [14, 15] proved and applied
a key renewal theorem to the right-hand side of (1.5) under certain conditions
on the function g, the Markov chain (x,),>0 and the stochastic process (v;).>0;
a special case is the random recurrence model (1.4) with P(A4, > 0) = 1, for
all n € N. By completely different, namely, point process methods, Basrak, Davis
and Mikosch [1] show that for a stationary model (1.4)—again with positive
matrices A,—the stationary distribution has a (multivariate) regularly varying tail.
Some special examples have been worked out as ARCH(1) and GARCH(1, 1);
see [10, 12, 19].

The random coefficient model (1.1), however, does not necessarily satisfy the
positivity condition on the matrices A,; see Section 2 for examples. On the other
hand, it is a special case within Kesten’s very general framework. Consequently,
we derived a new key renewal theorem in the spirit of Kesten’s results, but
tailor-made for Markov chains with compact state space, general matrices A,
and functions g satisfying condition (4.1) (see [16], Theorem 2.1). We apply this
theorem to the random coefficient model (1.1).

The paper is organized as follows. Our main results are stated in Section 2.
We give weak conditions implying a power-law tail for the stationary distribution
of the random coefficient model (1.1). For the Gaussian model (all random
coefficients and noise variables are Gaussian) we show that model (1.1) is in
distribution equivalent to an autoregressive model with ARCH errors of the same
order as the random coefficient model. Since the limit variable of the random
recurrence model (1.6) is obtained by iteration, products of random matrices have
to be investigated. This is done in Section 3. In Section 4 we check the sufficient
conditions and apply the key renewal theorem from [16] to model (1.1). Some
auxiliary results are summarized in the Appendix.
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2. Main results. Our first result concerns stationarity of the multivariate
process (Y;)n,en given by (1.4). We need some notions from Markov process
theory, which can be found, for example, in [18]. The following result is an
immediate consequence of Theorem 3 of [9].

THEOREM 2.1. Consider model (1.1) with A, given by (1.6), and ¢, =
(44,0, ...,0). We assume that the independent sequences {n;,,1 <i <g,n € N}
and (&,),eN are both i.i.d. satisfying (1.2) and that & has a positive density on R.
If (DO) holds, then Y, = (yn, ..., Yn—q+1)" converges in distribution to

2.1 Y=0+) A A
k=2

Moreover, (Y,)neN is uniformly geometric ergodic.

REMARK 2.2. (i) From (2.1) we obtain
(2.2) YéA1Y1+§1,

where Y1 =0 + ) 703 Az Ap—18k 4 Y and Y is independent of (Ay, ¢1).
(i) Since E((A1---A;) ® (A1---A,) = (E(A; ® Ap))" condition (DO0)
guarantees that

(2.3) ElA; - Ap|> <ce "

for some constants ¢, y > 0. From this follows that the series in (2.1) converges
a.s. and the second moment of Y is finite; see Theorem 4 of [9].

We require the following additional conditions for the distributions of the
coefficient vectors (n,),cn and the noise variables (&,),en in model (1.1).

(D1) The r.v’s {niy,1 <i < g,n € N} are i.i.d. with symmetric continuous
positive density ¢(-), which is nonincreasing on R, and moments of all
order exist.

(D2) For some m € N we assume that E(a;; — a1)?" = af’"En%{” € (1, 00).
In particular, o1 > 0.

(D3) Ther.v.’s (&,),en are i.i.d. and E|&;|" < oo for all m > 2.

(D4) For every real sequence (ci)ren With 0 < 322, |ck| < oo, the r.v. 7 =
Y12 ckéx has a symmetric density, which is nonincreasing on R

Condition (D4) looks rather awkward and complicated to verify. Therefore,
we give a simple sufficient condition, which is satisfied by many distributions.
The proof is given in Section Al.

PROPOSITION 2.3. If the rv. & has bounded, symmetric density f, which
is continuously differentiable with bounded derivative ' < 0 on [0, c0), then
condition (D4) holds.
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The following is our main result.

THEOREM 2.4. Consider model (1.1), with A, given by (1.6), and
Cn = (£,,0,...,0). We assume that the sequences {n;,,1 <i < q,n € N} and
{&,, n € N} are independent, that conditions (D0)—(D4) hold and that ag + 042 > 0.
Then the distribution of the vector (2.1) satisfies

lim #P'Y > 1) = h(x), xeSs.
— 00

The function h(-) is strictly positive and continuous on S and the parameter A is
given as the unique positive solution of

2.4 k() =1,
where for some probability measure v on S
(2.5) k(L) := lim (E|A;---A, /)" = / Elx'A[*v(dx),
n—oo S

and the solution of (2.4) satisfies A > 2.

The following model describes an important special case.

DEFINITION 2.5. Ifin model (1.1) all coefficients and the noise are Gaussian;
that is, nj; ~ N (0,1) fori =1,...,9 and & ~ N (0, 1), we call the model (1.1)
a Gaussian linear random coefficient model.

The proof of the following result is given in Section A2.

PROPOSITION 2.6. We assume the Gaussian model (1.1) with o; > 0.
This process satisfies conditions (D1)—(D4). Furthermore, under condition (D0),
the conditional correlation matrix of Y is given by

o
(26) R=EXY'|A;, i>1)=B+ ) A|--- A |BA_|--- A},

k=2
where
1 0 0
=[O
O 0 - 0

Moreover, R is positive definite a.s., that is, the vector Y is conditionally
nondegenerate Gaussian and E|Y |* < oo.

We show that the Gaussian model is in distribution equivalent to an autore-
gressive model with uncorrelated Gaussian errors, which we specify as an autore-
gressive process with ARCH errors, an often used class of models for financial
time series.
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LEMMA 2.7. Define for the same g € N, a; € R, 0; > 0 as in model (1.1),

Q7)) xp=a1xp_1+--+agx,— q+\/1+01xn 1t +a n —¢n; neN,

with the same initial values (xo,...,x_g41) = (Y0, ..., Y—q+1) as for the pro-
cess (1.1). Furthermore, let (e,)neNn be iid. N(0,1) rv.’s with initial val-
ues (xq,...,X_qy1) independent of the sequence (&,)nen. Then the stochastic
processes (x,)n>0 and the Gaussian linear random coefficient model (1.1) have
the same distribution.

PROOF. We can rewrite model (1.1) in the form

(28)  yu=a1yuct o+ agyn—g + 1+ 0LV o+ 02V Ea nEN,
where
~ En +O1Yn—1Mn + -+ + OqY¥Yn—qllgn

" 2.2 2 ’ nen,
\/1+01yn—1+"'+‘7qzyn—q

are i.i.d. N (0, 1). This can be seen by calculating characteristic functions. [

REMARK 2.8. (i) Since det(A,) = oy, = aq + 0¢ngn, the condition
ag + an > (0 and condition (D1) guarantee that det(A,) # 0 a.s.

(i) For g =1, model (2.7) was investigated in [3] by different, purely analytic
methods. Stationarity of the model was shown for a% —I—alz < 1. Under quite general
conditions on the noise variables, defining

(2.9) k() =Ela; +oye]*,

the equation « (-) = 1 has a unique positive solution A and the tail of the stationary
I.V. Xoo Satisfies

lim #*P(xeo > 1) =c.
—00

Moreover, this also covers infinite variance cases, that is, A can be any posi-
tive value.

(iii) Kesten proved a result similar to Theorem 2.4 for the process (1.4)
(see [14], Theorem 6) under the following condition: There exists m > 0 such
that E(A,)™ > 1, where A, = Amin(A1A}) is the minimal eigenvalue of AjA].
However, for the matrix of the form (1.6) we calculate

Ay = 1‘nf Z A1A1z
Z =
g—1 q
= inf Z(a]m—zjﬂ) +agiz Z

|z|=1

\.l\)

a.s.,
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g—1 -1
Ay < (1 + Z aJ2-1> “51 a.s.
j=1

In the Gaussian case, when the #;,, are all i.i.d. N (0, 1) with o7 > 0 the second
inequality implies P(A, < 1) > 0. Therefore E(1,)" < 1 for any m > 0. This
means, however, that Kesten’s Theorem 6 does not apply to the Gaussian linear
random coefficient model.

3. Products of random matrices. In this section we investigate the func-
tion « (A) as defined in (2.5) for matrices (A ;) jen presented in (1.6) derived from

model (1.1). Notice that Ay --- A, 4 Ay ---Aqforall n € N, since the A; are i.i.d.
Furthermore, for any function f:R? — R, we write f(x") = f(x) for all x € RY.
For the following lemma we adapted the corresponding proof from [17].

LEMMA 3.1. Assume that conditions (D1) and (D2) are satisfied and
ag + o*q2 > 0. Then there exists some probability measure v on S such that for
every A > 0,

k(L) ::nlingo<E|A1---An|k)1/":fSEp/AlMu(dx) - 0.

PROOF. Denote by B(S) the set of bounded measurable functions and by C(S)
the set of continuous functions on S. Define, for A > 0,

3.1 0,:B(S) =~ B(S) by Ou(f)(x) =Elx'A1|* f(XA))

for x € S and f € B(S), where v = v/|v| for v # 0. Notice that, if f is continuous,
then also Q, (f) is continuous, that is, 9, : C(S) — C(S). Denote by £ (S) the
set of probability measures on S. Since S is compact in R?, £ (S) is a compact
convex set with respect to the weak topology. Furthermore, for every probability
measure o € P (S), we define the measure 7, € P(S) by

Js Ox(f)(x)o (dx)

Js Qa(e)(x)o(dx)’

where e(x) = 1, f € B(S). The operator T, : P (S) — £(S) is continuous with
respect to the weak topology and, by the Schauder—Tykhonov theorem (see [7],

page 450), there exists a fixpoint v € P (S) such that T\, = v, thatis, T, (f) = v(f)
for all £ € B(S). This implies that

/ 05 (/) )v(dx) =k () / Fvdx),
S S

(32) T, (f) = /S FO Ty (dx) =

where

k(h) = /S 03.(e) (x)v(dx).
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Notice that for all n e N,
(3.3) /SQin)(f)(X)v(dX)=K"(K)/Sf(X)v(dX)-

Here Q™ is the nth power of the operator Q. From (3.1) follows for every
f €B(S)

(3.4) 0" (F)(x)=EX'A;-- A,/ fF(TAL---A,),  x€S.

Therefore, by (3.3) k(1) = [ O (e)(x)v(dx) = [{E[x'A; - - A, *v(dx). This
implies that k" (1) < E|A1--- A, |*. On the other hand, we have

(3.5) (1) =E|A; - Ay / ' Bal*v(dx),
S
where B, = A|--- A, /|A1--- A,|. We show that

(3.6) ¢, = inf f ' BI*v(dx) > 0.
B1=1 Js

Indeed [taking into account that [¢|x’ B|*v(dx) is a continuous function of B],
if ¢, = 0, there exists B with |B| = 1 such that [|x'B[*v(dx) = 0, which
means that v{x € S:x’B#0} =0.Set N ={x € S:x'B =0} and g(x) = xwe,
where N ¢ = S\ N and x4 denotes the indicator function of a set A. If N # &,
there exist vectors b1 #0, ..., b; # 0 with 1 <[ < g, such that

NC{xeRI:xXB=0)={xeR?:x'b; =0,...,x'b; =0}.
Furthermore, by (3.3), we obtain, for all n € N,
[ el @ =Gy [ g =o.

By (3.4) this implies forn =2q + 1
E [[1¥'A1- g g (7AT Aag ) v(d)

- /N XAy Agg i g(TAT - Azgr)v(dx)
=0.

Since v(N) = 1, there exists some x € N such that x’Ay--- A,y € N as., that
is, forall 1 < j <I,

P(x'Ay - Aggp1bj =0) = 1.
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By Lemma A.5 this is only possibleif b; =0, forall 1 < j </; thatis, if B =0.
But this contradicts | B| = 1. Thus we obtained (3.6). Consequently,
E|A, - Al]" = k" (L)

=E|An---A1|A/S|x/Bn|*v<dx>

> c,E|A, - Ay,
that is,

1/ k(L)
€)= ®lAy - A" = S
and from this inequality Lemma 3.1 follows by taking the limit as n — co. [

LEMMA 3.2.  Assume that conditions (D0)—(D2) are satisfied and ag + o*q2 > 0.
Then equation (2.4) has a unique positive solution.

PROOF. Denote V(n) = A, ---A1 = (\Ill‘j (n)). Then W1 (n) = (@1, — ay) x
Wi(n—1)+pn, where iy = a1 ¥ii(n—1)+az, ¥o1(n— 1)+ +ag, Vg1 (n—1)
independent of 71,. By the binomial formula and condition (D1) (which implies
that all odd moments of n are equal to zero) we have for arbitrary m € N

with C5,, ] (2;"),

E(W11(n)° chm (1 (2) — ar) ™ YE((¥11 (n — 1)) u20m=D)

> s(mE(W11(n — 1)),

where by condition (D2) s(m) = E(a1, — a;)®" > 1 for some m > 1. Thus
E(W11(n)*" = s(m)", that is, E|W(n)[*" > E(W11(n))*" > s(m)", which im-
plies that

K (2m) =nli)rrgo(E|\If(n)|2m)1/" > s(m) > 1.

We show now that log « (A) is convex for all A > 0 and, hence, continuous on R .
To see the convexity, set

1
cn(A) = —log E|W (n)|*, A >0,
n

and recall that logk (A) = limy,_, o 4 (A). Then for « € (0,1) and B =1 — «
we obtain by Holder’s inequality, for A, u > 0,

Sn(ad +Bu) <ag,(A) + Bgu(u).

By Remark 2.2(ii) condition (DO0) implies (2.3), which ensures that « (u) < 1 for
all 0 < p < 2. Therefore equation (2.4) has a unique positive root. []
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The proof of the following lemma is a simplification of Step 2 of Theorem 3
of [15] adapted to model (1.1); see also [17], Step 2 of Proposition 1.2.

LEMMA 3.3. Assume that conditions (D1) and (D2) are satisfied and
ag +<7q2 > 0. For every A > 0 there exists a continuous function h(-) > 0 such

that for Q; as defined in (3.2),
(3.7) O,(h)(x) =cM)h(x), xes.

The function h is unique up to a positive constant. Moreover, for ¢ = 1, it is
independent of x.

PROOF. For ¢ =1 we have S = {1, —1} and it is easy to deduce that any
solution of (3.7) is constant on S. For ¢ > 2 we first recall the notation of the proof
of Lemma 3.1, in particular (3.5) and (3.6). Set, for A > 0,

sp(x) = Qin)(e)(x) _ E|x'A;---A,*
! B Kn()\.) - Kn()\‘)

Using (3.5) and (3.6), we obtain sup, . ¢ 5, (x) < 1/cy.
Notice that for any (¢ x g)-matrix A and A > 0, choosing A, = min(A, 1),

[lx"A* — |y’ A < max(1, M)|x — y*|A]*, x,y€ES,

, xes.

which implies |[s,(x) — s,(¥)| < (max(1,X)/cy)|x — y|*. By the principle
of Arzéla—Ascoli there exists a sequence (ny)xen With ny — oo as k — oo and
a continuous function A(-), such that i (x) := ;”‘: 18j(x)/ng — h(x) uniformly
for x € § and

1 &
0x()() = lim Q3 (h)(x) = lim > | Qi(s)(x)
j=1

n
= lim &2) ZSjJrl(x) =kM)h(x).
j=1

k—oc0 n

If h(x) =0, for some x € S, then Q;n)(h)(x) =0 forall n € N, that is,
Elx'Aj - Ap*h(x,) =0,

where x), = x’A; --- A,, which means that h(x,) = 0, P-a.s., for all n € N. From
Lemma A.9, where 7(-) denotes the invariant measure of the Markov chain
(Xn)n>0, we conclude

E h(x,) =0 VneN — nli)ngoExh(xn) = / h(z)m(dz) =0
S

= lim /S he (D)7 (dz) = /S h(z)m(dz) = 0.
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But on the other hand,

n

1 k
/hk(z)n(dz) KJOL)/QRJ)(e)(z)JT(dZ)

1”k 1 Ay A
=—Z E|A,-- Al'/u (d2)

ni KJ()») A;l*
S E|A; - A
>c1— § >
Clnk — kJ(X) =

where ¢ = infig|=1 [ |Z/B|*7(dz). Assume that ¢; = 0. Then there exists
a matrix B with |B| = 1, such that 7(N° N S) =0 for &N ={x e R?:x'B =0}.
Denote by A(-) the Lebesgue measure on S, then A(N N §) = 0 because N
is a linear subspace of RY. By Lemma A.9 7w is equivalent to Aj; that is,
7(N NS)=0. This implies that 7(S) = 7 (N N S) + 7 (N N §) = 0, which
contradicts 7 (S) = 1. Hence, ¢; > 0 and A(x) > O for all x € S.

Now assume that there exists some positive function g # h satisfying equa-
tion (3.7). Define I1, = Ay - - - A,,. Then for every n € N, we have

0" ()  EXTLIPg@TL)  h(x) -
SO==G0 T em e /@) xeS,

where f(z) = g(z)/h(Z), and for every n € N,

E,f(x'TI,) = %Eu M, (T, f(x'T,),  xeS,

that is, E, denotes expectation with respect to the measure defined in (4.7). Since
the representation for g holds for all n (therefore for n = 2¢g + 1), the function g is
continuous by Lemma A.7. Define
g (x) _ g(xo)
p=su
res h(x) ~ h(x)

Notice that [(x) > 0 and /(x¢) = 0. Next set

and [(x) = ph(x) — g(x), xes.

) 00 000 oML k)
L) == == . yes.
h(y)  «(R)h(y) K"OVh() k" O)h(y)
We write
0" (hL)(y0)

L(y)=L
igg (») =L(yo) = OO0

equivalently, for x, = yjI1,, E|yjI1,|*h(xs)L(x,) = L(yo)h(yo)x"(%). More-
over, (3.7) implies that E|y(/)l'I,,|Ah(xn) = k"' (M)h(yp) for this sequence (x,)n>0
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and therefore E|y6H,,|Ah(xn)(L(yo) — L(x;)) = 0. Thus, for all neN,

L(x,) = L(yo) P-a.s. and therefore Ey L(x,) = EL(yyI1,) = L(yo). By Lem-
ma A.9, with 7 (-) the invariant measure of (x,),>0, we get

| L@@z = lim By L) = LGo)

Since L(-) is continuous and the measure 7 (-) is equivalent to Lebesgue measure,
we have

I(x0)
h(xo)
Thus /(z) =0 for all z € S and Lemma 3.3 follows. []

L(yo) = L(z) = L(x0) =

0, z€eS.

4. Renewal theorem for the associated Markov chain. The next result is
based on the renewal theorem in [16] for the stationary Markov chain (x,),>0
and the processes (v,),>0 and (u,),>1 as defined in (1.10) and (1.11), re-
spectively. Some general properties of (x,),>0 are summarized in Section A4.
Let g: S x R — R be a continuous bounded function satisfying

o0

4.1) Z sup sup |g(x,1)] <oo.

|=—o0o XESI<t=<I+1
The renewal theorem in [16] gives the asymptotic behavior of the renewal function
o
Gx,0)=E; ) g, 1 — )
k=0
under the following conditions:

(C1) For the processes (x,),>0 and (u,),>1 define the o-algebras
Fo = o {xo0}, Fn=0{xg, X1,U1,...,Xp, Un}, neN.

Here the initial value x¢ is a r.v.,, which is independent of (A,),eN.
For every bounded measurable function f :[]72(S x R) — R and for every
Fn-measurable r.v. o,

E(f(Q7 xn-H’ Mﬂ-‘r17 .. '7x}’l+l7 Mﬂ+l7 .. ')|J¢ﬂ)
4.2)

=Ex,,f(Qa xn—i—l»”n—i—la ---axn—l—l»”n—l-la ) = q)(xn» Q)’

that is, ®(x,a) = E, f(a, x(,uy,...,x;,u;,...) for all x € § and a € R.
Moreover, if for m € N the function f: (S x R)” — R is continuous, then
O (x)=E, f(x1,u1,...,Xn, uy) is continuous on S.
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(C2) There exists a probability measure 7 () on S, which is equivalent to Lebesgue
measure such that

”P;(cn)(') —n ()| =0, n— 00,

for all x € S, where || u|| = Sup| <1 [s f(y)u(dy) denotes total variation of
any measures i on S. Moreover, there exists a constant 8 > 0 such that for
allx e S

. Un
lim — = 8, P,-a.s.
n—oo p

(C3) There exists some number m € N such that for all v € R and for all § > 0
there exist y, s € § and g9 = gp(v, §) > O such that VO < ¢ < g9
inf Py (|xy, — yus| <& |vm —v| <8) >0,
X€Bs,y
where Bs , ={x € S:|x — y, 5| <3d}.
(C4) There exists some / € N such that the function ®(x,t) = E, ®(x;, v, 1)
satisfies

sup sup [P (x, 1) — P1(y, )] — 0, e —>0,

|x—y|<eteR

for every bounded measurable function ®:§ x R x R — R.

THEOREM 4.1 ([16]). Assume that conditions (C1)—(C4) are satisfied. Then
for any function g satisfying (4.1),

. . i 1 o0
tl_l)n;oG(x,t):tl_l)n;OEka(:)g(xk,t—vk)zg/sn(dx)/_oog(x,t)dt.

We apply this renewal theorem to

t

1 e
G(x,t):—t/ WPE'Y > u)du, xeS, teR,
e Jo

where the vector Y is given by (2.1) and A is the unique positive solution of (2.4).

This definition corresponds to an exponential change of measure, equivalently,
to an exponential tilting of the bivariate Markov process (x,, v;),>0 as follows.
Denote by E, the expectation with respect to the probability measure P,., which is
defined by

EXF()Cl,Ml, ---»xnaun)
4.3)

1
= —E[x'A; - A [*h () F(x1, ur, - .o, X, )
h(x)



984 C. KLUPPELBERG AND S. PERGAMENCHTCHIKOV

for each measurable function F. Then by Kolmogorov’s extension P and E are
the corresponding quantities [as P and E are for (x,, v,),>0] of the Markov
chain (X,, V,)n>0 defined by the n-step transition densities

e*h(y)
)
e)\'vh(x) px}:lu(dy’ dw)a

BV (dy. dw) =
where p}({n?} (dy,dw) is the n-step transition density of the original Markov
chain (x,,, Vn)n>0.

In order to apply Theorem 4.1 we need to check conditions (C1)—(C4).
However, before we treat the general case for arbitrary dimension g, we con-
sider the case g = 1 in the next example.

EXAMPLE 4.2. Consider model (1.1) for ¢ = 1 and 0 < a} + of < 1,
then condition (DO) holds. Define (x,)n>0, (Vn)n>0 and (un)nen as in (1.10)
and (1.11), respectively. Assume that conditions (D1) and (D2) are satisfied.
In this case the function «(-) is defined by (2.9), and Lemma 3.2 implies that
equation k(1) = 1 has a unique positive solution. From Lemma 3.3 we conclude
that only constant functions satisfy equation (3.7), and we simply set h(x) = 1
in (4.3). This case is special in the sense that § = {1, —1}, that is, the sphere
degenerates to two points, and we define the “Lebesgue measure” on S as any
point measure with A(1) > 0 and A(—1) > 0. By the ergodic theorem for finite
Markov chains one can directly (without Lemma A.9) conclude that the Markov
chain (x,),>1 [defined in (1.10)] is uniformly geometric ergodic with unique
invariant distribution 7 =7 = (1/2, 1/2) with respect to both measures P and P,
that is, the condition (C2) (with respect to 13) holds with g = Elalllklog loeqt],
which is positive (cf. [10], Lemma 2.2). 3

To show condition (C3) for the measure P, set m =1 and y, s =1 for v >0
and 6 > 0. Therefore, taking into account that by condition (D1) the r.v. @11 has a
positive density, we obtain the inequality in condition (C3) for any 0 < ¢ < 1.

PROPOSITION 4.3.  Consider model (1.1) with (Xn)n>0, (Vn)n>0 and (Un)neN
defined in (1.10) and (1.11), respectively. Assume that conditions (D0)-(D2) are
satisfied and aé + aqz > 0. Then conditions (C1)—(C4) hold with respect to the
measure Py generated by the finite-dimensional distributions (4.3).

PROOF. Firstrecall [T, = A --- A, and x/, = x'T1,, = x'T1,, /|x'T1,,| and v, =
log |x'T1,|. For every bounded measurable function ®(x,,v,,t) = f(x'Tl,, 1),
with f(z,t) = ®(Z,log|z],t), we have by Lemma A.7 immediately that condi-
tion (C4) holds.

Next we check (C1). For n,[ € N we have

’
¥ = X Apg1- Anpi
nt |x;;An+1 T An+l|

= hl(xn, An+17 R Aﬂ-‘rl)
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and
XpAngi—1 - Angl
|x;zAn+l—1 te An+1|

/
Un+1 =10g|x, 1)1 Anti| =log Apyi

= gl(xm An—i-l, ceey An—i—l)'

Now for every function f:[]72,(S x R) — R and some ¢ — ¥, measurable r.v. ¢
we calculate

SO, Xnt1s Unt1s+ ooy Xkl Untls - - )
= f(0 h1(xn, Ant1)s 81(Xns Ang1)s -
hins Angts oo Angt), 81Xy Angts ooy Ang), )
= 100, Xns An+1s -+ Antis -+ 2)-

Therefore, E(f (0, Xn+1, Un+1, - - )| Fn) =E(f1(0, Xn, Ant1s - - )| Fn) = @ (xn, 0)
where [notice that (g, x,,) is independent of (A, 41, ..., Apyi,-..)]

O(x,a)=Efi(a,x,Ans1,...)=Efi(a,x, Ay, ...)
=Ef(a,hi(x, A1), g1(x,Ay),...)=E, f(a,x1,ui,...).

This and (4.3) implies for every m € N and every bounded function f;,, : R x (S x
R)" — R,

4.4) I~4:x(fm (0, Xn41, Unt1s - oy Xngms Mn—i—m)l?n) =&, (x4, 0),

where @, (x, @) = Ex(fn(a, X1, 11, ..., X, ).
Denote by . the measure on the cylindric o-algebra B in [[72)(S x
R) generated by the finite-dimensional distributions of (x,u1, ..., xx, ur) [de-

fined by (4.3) with initial value x] on B, where By is the Borel o-algebra
on (S x R)* and 8 = o {32, Bi}. Let furthermore w7, be the conditional
(on #;) infinite-dimensional distribution of (X;41, Unt1, - Xntks Untks - --)-
Equality (4.4) implies that the finite-dimensional distributions of the mea-
sure (g, coincide with the finite-dimensional distributions of the measure fiy,;
that is, py|5, = py, on B. This implies (4.2) for the measure defined in (4.3).
Furthermore, the definitions of (x,),en and (vy)nen imply that for every continu-
ous f also ®(x) =E, f(x1,v1,..., Xm, Uy) is continuous in x € S. Hence condi-
tion (C1) holds.

Next we check condition (C2) for ¢ > 2. The case ¢ = 1 has been treated
in Example 4.2. We first show
(4.5) supE, (log |x'A1])? < 0.

xeS§
To see this notice that for every A > 0,
|x|* (log |x])*

*
— =!C < Q.
xeR 1+ |x|)\+1
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Hence for every x € S,

E, (log|x'A 2—LE’AM "AD(log |x'A{])?
x(log |x"Aq]) =W |x"A1|*h(x’A1)(log|x A1)

h*
=c-a +E[A") < oo,

sk
where h, =infycsh(x) and h* = sup,.. ¢ A (x). This implies (4.5).
Define
1 - .
f) = mmxw log [x'A1|h(x"A}) = E, log |xA],
X

and my =log |x;_; Ax| — f(xk—1), then

v 1 & 1 & 1 &
(4.6) — ==Y fOr-D+ =Y mpi=cu+— Yy my.
noon; Lt =i

By the strong law of large numbers for square integrable martingales and (4.5) the
last term in (4.6) converges to zero P,-a.s. for any x € S. By Lemma A.9 (x,,)eN

is positive Harris recurrent with respect to the measure f’x as defined in (4.3).
Hence we can apply the ergodic theorem to the first term of the right-hand side
of (4.6) (see Theorem 17.0.1, page 411 in [18]). This term then converges to the
expectation of f with respect to the invariant measure 7:

. 3 1 _ i
@) Jlim 6= p= [ 7@ B log FAIMGAD.  Feas

This implies

/f’x<lim U—":,B)ﬁ(dx):/f’x<lim g,,:ﬂ)fr(dx):l.
s n—o0o p S n—00

By Lemma A.9 the measure 7 is equivalent to Lebesgue measure, hence

438) 13x< lim 2 — ﬂ) 1

n—-oo n

for A-almost all x € S. From condition (C1) we conclude

13)6( lim v_n :/3) =Exf(-xlv vl)v

n—00 p

where [ =2¢g + 1, and

f(x,v)=13x< lim 2 )
n—oo

By condition (C4) the function I~’x(lim,,_>oo ’;l—” = f) is continuous on § and
therefore (4.8) holds for all x € §.
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It remains to show that the constant 8 in (4.7) is positive. By (2.3) there
exist ¢ >0 and y > 0 such that E|IT,|> < ce™”". Choose § > 0 such that
d =y — 26 > 0. Then by Chebyshev’s inequality,

P(x'TL,| = e < ®"Elx'TL, > < [T, [* < ce™ "
Moreover, for every 0 < p < d /A and x,, = x'T1,,, we have
P (1x'TL,| < e”) = h™ (ORI TL, [ h(x0) X{1'm, <o)
< e+ B Tl X (-t <jvrm, | <ern))
e 4 MPP(IX'TT, | > e 7))
e MM 4 cem(dromy

where ¢* = h*/h,, h* = maxh and h, = minh. By the lemma of Borel-Cantelli
we conclude that for all x € S,

IA

IA

. Un
lim —>p>0 P,-a.s.
n—-o0 n

This verifies condition (C2).

Finally, we check condition (C3) for ¢ > 2. The case ¢ = 1 has already been
treated in Example 4.2. We shall show that form =2g 4+ 1 and Vv e R, V§ > 0,
VyeS,Ve>0,

(4.9) inf Py (Jxn — y| < &, |um — ] < 8) > 0.
xes

Indeed, with L(z) = z/|z|, consider
Po(lxm — yl <& |vm —v| <8) =P, (x'TT,, €Ty ),

where I'y . s = {z € R7\ {0}:|L(z) — y| <&, |log|z| — v| < 8}. Forevery y € S
and every v € R, this set is a nonempty open set in R?, because the vector
zp=e"yel s (YveR,Vé>0,VyeS, Ve > 0). This implies that the
Lebesgue measure of I'y ¢ s is positive. By Lemma A.6 we conclude that

inf Py (x'TL,, € Ty ¢ 5) > 0.

xes

This ensures (4.9), which implies condition (C3). O

Define G(x, t) = G(x,t)/h(x), where h(-) > O satisfies equation (3.7) with
positive A for which k(1) = 1. Further, recall that by Remark 2.2 Y 4 ArY1 + ¢,
where ¥) = & + Y0°5 Ay -+ A_1 is independent of (A1, ¢;) and ¥y £ Y.
Therefore,

t

- e
G(x,1) = / WP’ ALY + X't > u)du
0

h(x)et

(4.10) B
=:Gox,1) +g(x,1),
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where, setting 71 = x’ A Y] and 75 = x'¢y,

t

~ . e A
Golx,t) = e '/0 u*P(t; > u)du,
4.11) )
__ Lo
glx, 1) = h(x)ef/o u 'y (x,u)du

with ¥ (x, u) =P(r1 + 10 > u) — P(r1 > u).

PROPOSITION 4.4. Assume that conditions (D0)—(D2) are satisfied and
ag + an > 0. Then

(4.12) Gx,t)= Ergxnt—uvy).
n=0

PROOF. Lemmas 3.1-3.3 ensure the existence of positive solutions of equa-
tions (2.4) and (3.7) which are used in the definition of the measure P in 4.3).
Now consider first Go(x, ). Mapping u > u/|x’A1| and using xp=x"A1/|x"Aql,
we obtain

Ix" A el /I Al
h(x)eloe AT Jy

=E,G(x1,t —log|x'A)).

Go(x,t) =E uWP(x|Y > u)du

Let B(S x R) be a linear space of bounded measurable functions S x R — R.
Define the linear operator ® : B(S x R) — B(S x R) by

O(f)(x, 1) =E, f(x1,1 —v1),

where we have used that vi = u; = log |x’A1|. Next, recall that by Proposition 4.3,
condition (C1) holds for the measure (4.3). This implies that the nth power of the
operator ® is defined by e ( i, 1) = Ex f(xu,t — vy). Then equation (4.10)
translates into the renewal equation G(x, t) = ®(G) (x,t) + g(x, t) and we obtain
for all n € N iteratively,

G(x,1) =0 (G)(x, 1)+ g(x, 1) + O (x, 1) + -+ 0" V() (x, ).
Moreover, condition (D0) implies lim,,_, o, E|I1,| = 0, giving

O (G)(x,1) =E,G(xn, 1 — vy)

e
/ WP(x'TL,Y > u)du — 0, n— oo.
0

- h(x)et
This implies (4.12). O
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LEMMA 4.5. Assume the conditions of Theorem 2.4. Then for every x € S,

=h(x)y*>0.

Here h(-) > 0 satisfies equation (3.7) with positive A for which k(L) =1, 8 >0 is
defined in (4.7) and 7 (-) is the stationary measure of the Markov process (Xn)n>0
under the distribution P as defined in (4.3).

PROOF. We apply Theorem 4.1 to (4.12). Conditions (C1)—(C4) hold for g > 1
by Example 4.2 and Proposition 4.3. It remains to show that the function g given
by (4.11) satisfies condition (4.1). By Lemma A.10 follows that g(x,¢) > 0 and
therefore

|
lg(x, )| =g(x,1) < h—(gi"(x, 1+ g5(x, 1)),

where hy = min,cg h(x) and, with n(¢) = e*! for some p > 0,
! !

1 e 1 re
gi(x, 1) = —/ u'P(t) > u —n(t))du — —t/ WP(t) > u)du,
e Jo

e’ Jo
At
S(x, 1) = P 1).
& (x,1) P (2> n(@)
We show that these functions satisfy for sufficiently large ¢ > 0 the inequality
(4.13) gi(x,1) <ce

for constants c, ¢; > 0. First notice that it follows immediately from Lemma 3.2
that k(6) < 1 for every 1 < 6 < A. Hence by the defintion of «(#) in (2.5), for
every v € (k(0), 1), there exists some C = C,, > 0 such that for all n € N,

E|A;---A,° <CV.
From this and Holder’s inequality we obtain, for arbitrary p > 0,

Et|” <E|A||°E1,|°

o [%
529—1E|A1|9(E|s1|9+E<Z|A2'“Ak—l”fk') )

k=3

o
<2’ 'E|A,[’ (E|a I’ +CElg1|” Y p 0D
k=3

. 6—1
X(zpe(k—z)/(e—n) )

k=3
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Now choose in the last term p = v!/%) Then for every 1 < 6 < A, there exists
some m(0) > 0 such that

(4.14) supE|7|? =supE|x'A1Y1]® < m(8) < oo.

x€eS xes

We study now the function g} (x, ). Indeed, for sufficiently large # > 0, we have

1 e'—n(t) 2
gin = [0 (a0 +u) P = wydu
et Jo

1 e 1)1
- — ukP(rl >u)du + WL
et Jo et
A+1
- c(n(f))
Se— i
1 re—n@®
+ = (1 +n@u™") = )Pt > u)du

e Jnw
n(t)) ! n(t) [e—n
< c( (®)) LM ()
el el Juo

@) m(@)n ()
fEC———;T——'+'A4 ii;Tzﬁr

I duE|In |0

*
< ce~(=nOAD | M m(9)e—(1_a_ﬂ)z’

where

M* = sup ((1+x))‘—1)/x, §=X—0 and c=2"+1.
O0<x<l1
To obtain (4.13) for the function g7 (x, 7), choose the parameters § and x such that
S§4+pu<landO<p< (1+21)~L
The function g7 (x,?) satisfies inequality (4.13), because for every m > 0 by
condition (D3),

supE|z2|" = supE[{x)1&1|" <E|&|" < oo,

xeS xes
where (x); denotes the first coordinate of x € S. On the other hand, if t — —o0,
we have immediately from definition (4.11),

et

1 A 1 A
1) < — du < —e*
8x )_h*ef/o A=

*

and, hence, condition (4.1) holds.
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Furthermore, taking into account that 77 is equivalent to Lebesgue measure A
on § (see Lemma A.9), by Theorem 4.1 and Lemma A.10 we conclude

G(x,t .~
lim > )=11m G(x,t)

t—o0o  h(x) t—00

_ é/sﬁ(dz) /_;oog&’ s)ds

L [
_,3 Sn’(dz)h(z) A u* " Yz, u)du

=y*>0. O

The proof of the following lemma is an immediate consequence of the monotone
density theorem in regular variation (see, e.g., [2], Theorem 1.7.2).

LEMMA 4.6. Assume the conditions of Theorem 2.4. Then for every x € S,
there exists
tlim *"P(x'Y > 1) =y*h(x) > 0,
—00
with h(-) and y* as in Lemma 4.5.

EXAMPLE 4.7 (Continuation of Example 4.2). Lemmas 4.5 and 4.6 imply
Theorem 2.4 with the limiting constant

w_ L o (Wdw) + ¥ (=1, u)
14 _,3/(; u > du.

Symmetry of the distribution of & implies that ¥ (1, u) = ¥ (—1, u), hence

1 o0
lim *P(xY > 1) = —/ NP > u) —P(ay Yy > u))du
t—00 B Jo

forany x € S ={1, —1}.
Note that this special case is already covered by Theorem 2.3 of [10].

APPENDIX
Al. A simple sufficient condition for (D4).

PROOF OF PROPOSITION 2.3. Let [ = inf{k > 1:|ct| > 0}. For n > I,
set 7, = ) p_; ck&k. If |ck| > O, then by the condition of this proposition cx&; has
a symmetric density pg(-), continuously differentiable with derivative p,’((-) <0
on [0, 00). Therefore 1; has a symmetric density, which is nonincreasing on [0, 00).
We proceed by induction. Suppose that 7,,_; has a symmetric density ¢, ,(-),
nonincreasing on [0, co). We show that 7, has a density with these properties.
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Indeed, if ¢, = 0, then 1, = 7,1 and we have the same distribution for 7.
Consider now the case |c,| > 0. By the properties of p,(-) and of ¢, ,(-), we can
write the density ¢, () of 7, in the following form:

¢, (2) = /0 Pn(z+u)pr, (u)du + /0 palz — ), (u)du

o
+/ Pn(u — 2)@q,_, (u)du, z>0.
Z

Therefore the derivative of this function equals

0@ = [ P =) = gr,_, (u+2) du

Z
+ /0 po)(pr, (z—u)— ¢, (u+2))du <0, z>0,

since p,(-) <0 and ¢, ,(-) is nonincreasing on [0, 00). Therefore we obtained
that for all n > [, the r.v. 7, has a symmetric continuously differentiable density,
which is nonincreasing on [0, 0c0). Moreover, since t = lim,_, 7, a.s. and
the sequence (¢, (-)),> is uniformly bounded, that is,

sup @, (2) < ¢4(0) < o0,

z€R,n>1

we have that for every bounded measurable function g with finite support in R

Jim [~ @ @dz= [ g@pdz

where ¢ () is the density of t. Since & has a continuous density, ¢, is also
continuous. Therefore, for 0 <a < b, we have forall0 < § < a,

b+48 a+s
f ¢ (2) dz—/ ¢ (2)dz
b—6 a—35

b+ a+s
= lim (/b . wfn(z)dz—/ 5 (Prn(Z)dZ)

n—o0 _
<0.
Since ¢ (-) is continuous, we conclude
) 1 b+6 a+8
o) =@ =lim ([ Cge@az= [@az) 0.

A2. Gaussian linear random coefficient models.

PROOF OF PROPOSITION 2.6. It is evident that conditions (D1)—(D4) hold
for this model with o1 > 0, which implies condition (D2).
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To show that the conditional correlation matrix (2.6) is positive definite a.s.
take some x € R such that x’Rx = 0. Then for [Ty = A; --- A, k € N, and B as
defined in (2.6),

o0
x'Bx + Y x'TIxBIjx =0.
k=1
If we denote by (x); the ith coordinate of x € RY, the equality above means

that (IT;x); = O for all k € N. Set 6 (x) = (IT}x); for k € N and 6p(x) = (x)1.
Because of the special form of the matrices (1.6) one can show by induction that

a1 (x) + -+ o {x) + (x)y1, if 1<k <gq,
(A1) 6(x)= .
a1kOk—1(x) + - + Agk—g+1)0k—g(x), if k>gq.

Consequenly, if 0;(x) =0 for all 0 < k < g, then (x); =--- = (x), = 0. From

this we, conclude that x’Rx = 0 implies x = 0, which means that R is positive
definite a.s. [J

A3. Auxiliary properties of IT,, = Ay ---A,. We study the asymptotic prop-
erties of O (x) as defined in (A.1). First recall the classical Anderson inequality;
see [13], page 214.

LEMMA A.1 (Anderson’s inequality). Let ¢ be a r.v. with symmetric continu-
ous density, which is nonincreasing on [0, 00). Then for every c € R and a > 0,

P(lg +c| <a) <P(lg| <a).

LEMMA A.2. Assume model (1.1), such that conditions (D1) and (D2) hold
and ag + o*q2 > 0. Then for every u > 0 and k € N,

(A.2) lim sup P(|6c(x)| <8)=0.

820 (x) > p

Furthermore, for k = q we have

(A.3) lin%) sup P(|6,(x)| <8) =0, alin%)supf’x(leq(x)l <8)=0,

=0 |x|>pn —Uxes

where P is defined in (4.3).

PROOF. We show first that for 1 < j < g and for every € > 0 such
that §/e - 0as§ — 0,

(A.4) lim sup P(|60;(x)| <8,|0;,—1(x)| =€) =0.

—YxeR4
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Recall that 6p(x) = (x)1. To prove (A.4) notice first that by (A.1)

0j(x) =n1;010;-1(x) +m;(x),
mj(x) =a10;_1(x) +o2j—nfj2(x) + - +aji{x) + (X) 11X <q)-
Moreover, condition (D2) implies that o1 > 0 and therefore by Anderson’s

inequality, [taking into account that n;; is independent of 6;_;(x) and m (x)]
we obtain

P(10;(x)] <8,10j—1(x)| > €)
=P(In1;010,-1(x) +m;(x)| <8,|6;_1(x)| > €)
<P(In1,l <8/(eor)).
From this and condition (D1) we obtain (A.4). Then (A.2) follows by induction.
Next we show (A.3). Introduce for§d > O0and 1 < j < g thesets ['s = ﬂ?zl L,
where I'j s = {|0;(x)| < €;} fore; =€;(8) = 87/ Notice that (A.4) implies
lim sup P(I"; 5 N 1"5_1’3) =0.

3—0 y cRe
Set o* = max;y j<g4 |o;j| and define F), = {|ag1| = v}, By = {a* < N}. Take for
any fixed v > 0, N > 0 the set I's N F,, N By. The definition of 6;(x) in (A.1)
implies that on this set |x] — 0 as § — 0. Hence, if—as in (A.3)—|x| > u, there
exists 89 = 8o(w, v, N) > 0 such that I's N F, N By = @ for all § < §y. Therefore
for this 6 > 0 and for x € R? with |x| > x, we obtain

P(10,(x)] <é)

q
<P[s) + Z P(T;sN F;_l,a)
j=2
q
<P(lag(D)] <v) +P@*>N)+ > P(IsNT;_15)
j=2

EOl* q
N +ZP(FJ',50FJ'_1,3).
j=2

<P(lag +ogng1l <v) +

Notice that the conditions ag + aq2 > (0 and (D1) guarantee that the first term in

the last line tends to zero as v — 0. Hence, we obtain the first limiting equality
in (A.3). The second equality follows from the first and the definition (4.3). [

In the following lemma we compute the conditional density of H’zq 41X in RY
with respect to the random vector p = p(x) = H;x.
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LEMMA A.3. Assume that (D1) and (D2) hold, ag + %2 > 0 and x #0. Then
the random vector H’2q+1x has conditional P-density p1(z|p(x)) = f(z, p(x))
with respect to p(x). The function f(-,-):R? x R? — [0, c0) is given by

A5 .y)=E 'T=1 ),
(A.S5) [z y) |detﬂpo(z y)
where
Alg+1)  C2(g+1) 0 Qg(g+)
(A.6) T — 0
Kg-1)3 g3 0
a2 0 0

andforz=(z1,...,2q) €RL, y=(y1,...,yq) €R?

q
po. ) =[] ei@lzj-1,-- 21, ¥),
j=1

1 (Zj—mj(z,y)),

AT @i (Zjlzj—1,--2 21, Y) = X{jz;11>0E
i) 0%z, iz

mi(z,y) =ary1 + y2, and for j > 1,
mj(z,y) =aizj—1+az-nzj—2-+aj1y1 + Yj+1X{j<q}>

where zo = y| and the density ¢ is defined in condition (D1).

PROOF. Let x = (xl,...,xq)’ € R? such that x, # 0. We show that the
vector H; X has density f(-,x) as defined in (A.5). To this end we show
first that x'TI,41 = 6(x)'T, where the matrix T is defined in (A.6) and
9(x)=(Gq(x),...,91(x))’eR‘1. By the definition of A; in (1.6) we have
(x'Mgq1)g = (x'TIgAg41)g = agg+1)(x'TIg)1and for 1 < j <g —1,

(X'Tgt1)j = (X' TlAg11) j = @jg+1) (X TIg)1 + (x'TIg) j1
= = g+)0g () + - o1+ 0+1 () + g+ (X).
This gives x'TT, 1 = 6(x)'T. Next note that ag + qu > 0 implies

q q
|detT| =[] log (G + DI =[] lag + oqng(j + DI >0, P-as.
j=1 j=1

Immediately by (A.1) the vector 6(x) is measurable with respect to o {ak, 1 <
i <q,1 <k<gq,i+k<gqg+ 1}. Hence, T is independent of 0(x). Therefore
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to prove that the vector I'I; 41X has density f(-, x), it suffices to prove that 6 (x)
has density pg(-, x) as in (A.7). Indeed, if x; # 0, then condition (D2) guaran-
tees 012 > 0 and 01 (x) = «y1x1 +x2 has positive density ¢ (-|x) as defined in (A.7).
This implies that 6;(x) # 0 a.s., and therefore 6,(x) = 1201 (x) + a21x1 + x3
has conditional density pg, (22|01 (x)) = ¢2(22101(x), x), where the function ¢, is
also defined in (A.7). Similarly, we can show that po; (zj10j—1(x),...,01(x)) =
@j(zjl0j-1(x),...,01(x), x) for every 2 < j < q. Therefore 0(x) = (6,(x), ...,
01(x))’ has density (A.7) in R? provided x| # 0.

To complete the proof we recall that (A.3) implies (p(x))1 = 0,(x) # 0 a.s. for
every vector x # 0. Therefore, taking into account that the A,, are i.i.d. and p(x)
independent of {A;11,..., A2g4+1}, we obtain that the conditional [with respect
to p(x)] density of the vector H’2q+1x = (Ag+1---Azg+1) p(x) equals f(-, p(x))
as. forx#0. O

The following result is an immediate consequence of the definition of Pin 4.3)
and Lemma A.5.

COROLLARY A.4. Under the conditions of Lemma A.3, the random vec-
tor IT) g+1% has a conditional P-density with respect to p(x) given by

) R @) .
(AS) PI(ZV)):TPI(ZV)), Z’IOER ,2750,/0750,
lo1*h(p)
for p1(z|x) as defined in Lemma A.3.
LEMMA A.5. Assume that conditions (D1) and (D2) hold and ag + %2 > 0.
Then for b, x € R? and x # 0,

P(x/nzq_Hb:O) >0 = b=0.

PROOF. Lemma A.3 implies that
P(x'TIrg41b = 0) = EP(x'TI, 410 = 0]p(x))

=E pi(zlp(x))dz.
{zeRY : 7/b=0}

If this probability is positive, then there exists a vector p € R? with (p); # 0,
such that

/ pi(zlp)dz > 0.
{zeRY : 7/b=0}

This is possible if and only if » = 0 since the Lebesgue measure of the set
{z e R?:b'z =0} equals to zero forall b #0. O

Denote by mes(-) the Lebesgue measure in RY.
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LEMMA A.6. Assume that conditions (D1) and (D2) hold, g > 2 and
ag + o*q2 > 0. Then there exists some 8y > 0 such that for all 0 < § < &g,

;EEP(X’quH € B) > p.«(8)us(B),
(A.9) . o
;Ielng(x [Myy41 € B) = p«(8)fis(B),

for every measurable set B C R9. Here p,(5), px(6) > 0 and

ws(B) =E/Q x5(Z'T)dz,

(A.10) jis(B)=E /Q 2TV x5 T) dz,
S

Q={y=01....,y)) €eRI:5<|yjl <8 j=1,....q)

and the matrix T is defined in (A.6). Moreover, if mes(B) > 0, then there exists
some g > 0 such that us(B) > 0 and jis(B) > 0 for all 0 < § < &.

PROOF. From Lemma A.3 we know that forasome 0 <6 < 1,

P(x'Tlyg11 € B) =EP(x'TIg11 € Blp(x))= Ex{pmeks) (0 (X)),
where K5 = {y = (y1,...,¥,) € R7:8 <|y| and |y| <5 '} and

I5(p) = /R @ Elp)dz
= E/ x8 (@' T)po(z, p)dz
R4

> E/Q x8(Z'T)po(z, p)dz.
S

Next we show for Kg =R? \ K,
gim supP(p(x) € K§) =0,

—VUxes

(A.11) -
ir% supPy (p(x) € K§) =0.

S
Indeed, we have
P(p(x) € K§) < P([{p(x))1] < 8) +P(lp(x)| > 67"
< supP(16, (x)| < 8) + (E|A; ).

xeS
(A.3) gives the limits in (A.11).
Notice that (A.7) implies that M.(§) = inf,cq; rck; Po(z, x) > 0 for every
8 > 0, which yields P(x/quH € B) = M,(6§)P(p(x) € Ks)us(B). From this
and (A.11) we obtain the first inequality in (A.9). Similarly, we prove the second.
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Let B be a measurable set in R?. By the monotone convergence theorem
we have

lim ps(B) = mes(B)E|detT| ™",
§—0

lim fis(B) = f 2 x5(2) dz E|det T| .
§—0 R4

Since |detT'| < oo a.s., this implies the second part of the lemma. [
The following lemma is needed to verify condition (C4).

LEMMA A.7. Assume that conditions (D1) and (D2) hold and ag + 042 > 0.
Then

O (x,1) =E f (x'Tlag41,1), xeS,teR,

is uniformly continuous on S for every measurable bounded function f:S X
R — R; that is,

lim sup sup|®(x,t) — D(y,1)|=0.

=0 |x—y|<e reR

PROOF. Let V:R? — [0, 00) be a continuous function such that V(z) =0
for |z] > 1 and [p, V(2)dz = 1. For some € € (0,1), define K. = {y €
R7:[(y)1] = € y] = 1/e), ve = €/4 and ge() = i1 Xk, (x + vey)V () dy.
Then g : R? — [0, 1] is continuous, such that g.(x) < xk, /4 (x) and g.(x) =
I —gcx) < XKS. (x) for every x € R?. We can represent the function & in
the following form:

D(x, 1) =B, f(x'Tlag i1, 1) = Exge (p(x) £ (x'Tlag 11, 1) + Ac(x),

where A (x) = E;g.(p(x)) f (x'Tlag41,1). By (A.11), setting f* = sup|f],
we obtain

AF =sup|Ac(x)| < f*supPy(p(x) €KS) =0,  €—0.

xes xes

From the definition of E in (4.3) we obtain

1

E g (p(x) f (x'Tlagy1, 1) = %Ege(p()d)fl (x'Tlag+1, 1),

where f1(z,1) = |z|*h(Z) f(z, ). By Lemma A.3 we can represent this term as
Egc(p() i3 Ty, ) =E [ Fi(z.0ve(z p()) dz

=EV, (p(x), 1)
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with fi(z,1) = Efi(Z'T,1) and ¥e(z, p) = po(z, p)ge(p). Here W allows
the representation

Ve = [ FiGove o dz+ [ Ficove o dz
8 )

(A.12)
= We (0, 1) + Acs(p, 1),

where Qs ={y e R7:6 < [{y);] < 8§71, j=1,...,q}). Next we show that for
every € > 0,

(A.13) lim sup P(0(p) € Qf) =0.
5_)0,061(5/4

To this end note

sup P(0(p) € )
PEK /4

q
Z sup P(10;(p)| <8) + sup P(l6(p)| > 1/9)

—11{p)1|=€/4 |pl<4/e

q
< sup P(8;(p)| <8)+8 sup El6(p)l.
ONE ll<d/e

By the definition of 8(p) in (A.1) we find for every m > 0 some constant ¢, > 0
such that

sup E|0(p)|" < cim/€e" < o0,
|pl<4/e

Therefore the limit relation (A.2) implies (A.13). Moreover, notice that the last
inequality yields

lim sup Exgan=n0(0)* =0.

N—00|p|<d/e

Next we estimate A s(p,t) as defined in (A.12). Taking into account that
F1@ 0l < fAREIT |z = filzl,

we obtain for p € R? and N > 0,

B0 = fgeo) [ IV poz. p)dz
§

= [1"8c(OEIO ()" xi0(pyesas)
< fi Xipek ) (N*P(0(0) € Q) + Exqio(o) =m0 (0)I*).
This together with (A.13) ensures for every € > 0,

fs= sup |Acs(p, )] =0 as 8§ — 0.
' peRY teR
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From this we conclude for x, y € S such that |[x — y| <7 and for £ > 0,
[P (x, 1) — P(y, 1)
<E[R7 ) Wes(p(),1) =A™ () Wes(0(y), 1) +2A7 +2A% 5
< Wi ) — T () + 24 +2A%

’

- i mes(R)E sup [y (2. () = Ve (2. p (1)

7€
where \If:’a = sup |We s|. Since (-, -) and p(-) are uniformly continuous

on Qs x R? and on S, respectively, taking the limits lim¢_,¢lims_,olim,_.¢
implies Lemma A.7. [J

A4. General Markov properties of (x,),en. We consider now the Markov
chain (x,),en as defined in (1.10). Criteria for uniform ergodicity are based on
“small” sets. A set I € B(S) is called a small set if there exists an m € N and
a nontrivial measure v,, on B(S) [i.e., v, (S) > 0] such that P"(x, A) > v,,(A)
forall x e I" and A € B(S). As a general reference on Markov processes, we refer
to [18].

LEMMA A.8. Assume that conditions (D1) and (D2) hold, g > 2 and
ag + aqz > 0. Then the following hold:

(@) The distribution of the random vector x4\ has the following properties:
let A be a measurable set in S and denote by A (-) the Lebesgue measure on B(S),
then:

(1) if A(A) > 0, then infycgPy(x2411 € A) > 0 and infyesf’y(xzq+1 €
A) > 0; -

(i) if A(A) =0, then Py(xyq41 € A) =0 and Py(xyq41 € A) =0 for
ally e S.

(b) The Markov chain (x;)nen (With respect to both measures P and f’) is
A-irreducible and aperiodic. Moreover, every measurable subset of S is small.
PROOF. (a) Recall that x;, = x'I1,/|x'I1,|. Note that for every x € S and
every measurable set A € §,
Py (x2g+1 € A) =P(x'TIay41 € Ba),
P (x2g41 € A) =P (x'Tlog11 € Ba),

where By = L~ 1(A) = {y e R1\ {0}:L(y) € A} and L(y) = y/|y|. From (A.9)
we obtain forsome 0 <6 < 1,

P2 (x, A) > p.(8)us(Ba) = v5(A),

P2 (x, A) = p.(8)jis(Ba) = Ts(A)
for positive constants p,(6) and p.(§).

(A.14)
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Next we show
(A.15) A(A)>0 =— mes(By)>0.

Recall that ¢ > 2, hence, if A(A) > 0, there exists a open set VC ACS
with A(V) > 0. Then L~1(V) C B4, but this set is open and nonempty
in R? [L(-) is a continuous function on R? \ {0} and V C L~Y(V)], therefore
mes(L~Y(V)) > 0, which gives (A.15). If mes(B,4) > 0, then, by Lemma A.6,
there exists some § > 0 such that ps(B4) > 0 and ji5(B4) > 0. Then (i) follows
from (A.14). Next we show that

(A.16) A(A)=0 — mes(By)=0.

Assume that mes(B4) > 0. Then there exists an open set V C By with
mes(V) > 0. By definition of B4 the image U = L(V) ={L(y) y € V} C A.
We show that U is an open set in S. Indeed, for zg € U there exists yg € V such
that zo = L(yo9) = yo/|yo|. Since V 1is open, there exists some § > O such that
{yeRY:|y —yo| <8} C V. Sete=23/|yo| and take z € S such that |z — zg| < &.
Note that for y, = |yg|z we have L(y,;) =z and

ly: — Yol = |yollz — zol < |yole =34.

Hence, y, € V and therefore z € U, that is, {z € S:|z — z0] < &} C U.
Consequently U = L(V) is an open set in S. For ¢ > 2, the Lebesgue measure
of any open nonempty set in S is positive. This is a contradiction to A(A) =0
and, hence, (A.14) holds. Furthermore, if mes(B4) = 0, then by Lemma A.3 and
Corollary A4,

Py (x2g+1 € A) =EP(y'Tlag 11 € Balp(y))
=E[ pi(lo()dz=0,
By
Py (g1 € A) =E,Py(yTlog 41 € Balo()

=E, [ hilclo)dz=0

(b) Note that (i) and (ii) immediately imply A-irreducibility and aperiodicity.
From inequalities (A.14) we conclude then that every measurable subset in S
is small. [

LEMMA A.9. Assume that conditions (D1) and (D2) hold, q > 2 and
ag -|—o*q2 > 0. Then the Markov chain (xp),>0 with state space S is positive
Harris recurrent and uniformly geometric ergodic with respect to P (and P).
It has invariant measure 7w (-) [and 7 (-), resp.], which is equivalent to Lebesgue
measure A(-) on S.
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PROOF. Define V:R? — [1,00) by V(y) =1+ [(y)1]. Then
E,V(x))=1+Eg(x)=L(x)V(x),

where ¢(x) = [(x’A1)1]|/|x’A1] and L(x) = (1+Eg(x))/V (x). Since ag —i—o*q2 >0
implies that 0‘51 > 0, P-a.s., we obtain

. 1 |0111|)
1 Lx)==—(1+E———
im s (x) 2( +

[(x)1]—1:x€ loeq ]

! ( jor | )
< N|1T+E——=| <.
2 NIRRT
Thus, there exist 7 > 0 and € < 1 such that sup(,y, |-,
that V (-) satisfiesonthe set ' ={x € S:[(x)1]| <r}:

L(x) < 1—¢€, and we obtain

sup | V(y)p(x,dy) <oo

xel'J§

and, for some € € (0, 1),
/ V) px, dy) <(1—¢€)V(x) for all x € T'°.
S

By the second part of Lemma A.8 every subset of S is small. Since (x),>0 is
aperiodic, (x;),>0 is uniformly geometric ergodic with respect to P (see [18],
page 355). In the same way uniform geometric ergodocity of (x,),>¢ with respect
to P can be shown. Therefore, (xn)n>0 has stationary distributions 7 (-) and 7 (-),
respectively. Next we use Lemma A.8(a) to show that m, respectively, 7 are
equivalent to Lebesgue measure on S. If w(A) = lim,— o Py (x;, € A) =0 and
A(A) > 0, then by Lemma A.8(a)(i), we obtain the following contradiction

7(A) = lim Py(xp429+1 € A) = lim fs Py (x2g+1 € AP (x,dy)
> inf Py (x2411 € A) > 0.
yes
Next, if A(A) =0, then by Lemma A.8(a)(ii),
7(A) = lim Pi(xyi24+1 € A)
= Jim | Py (g1 € AP (x,dy) =0.

Hence, m(-) and A(-) are equivalent on S. In the same way we obtain the
equivalence of 7 (-) and A(-) on S. [
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AS. A property of .

LEMMA A.10. If conditions (DO) and (D4) hold, then the function ¥ (x, u)
defined in (4.11) is nonnegative, and for all x = ({(x)y,..., (x)q)’ € S with
(x)1#0,

(A.17) mes({u >0:¥(x,u) > 0}) >0,
where mes(-) denotes Lebesgues measure on R.

PROOF. By definition we have ¥ (x,u) = P(t; + 10 > u) — P(r1 > u)
with 71 = x’A1Y; and 17, = xlé'l = (x)1&1. If {(x);1 =0, then p = 0, and

therefore o(x, u) = 0. We show that ¥o(x,u) > 0 if (x); # 0. By conditioning
on 7 we get

o

Y(x, u) ='/0 Pu—t<t<u)—Pu<t <u+1)p,t)dt

— /008(14, 1) pr, (t)dt,
0

where p,(-) is the density of 7, which is by condition (D4) symmetric and
nonincreasing on [0, 0o). Setting A = o {A;, i € N}, again by condition (D4), the
conditional density p, (-|#4) of 71 is symmetric and nonincreasing on Ry a.s.
Therefore the nonconditional density pr, (-) of 71 have the same properties. Thus
for 0 <t <u, we have

u u-+tt
S(M’t):/_; prl(a)da—/ pr(a)da

= /._t(prl (a) — pr,(a+1))da>0.

On the other hand, for ¢t > u, we get

0 u u+t
auht>=3/ tpn<a>da+—ﬁ;zH¢a>da——/' pe (@l A) da
u— u

—u
=A (o1 (@) — pey(a+2u)) da

+/0 (pr, (@) — pr(a+u))da
>0,

again since p¢ (:|#4) is nonincreasing on R, . This proves the first part of
the lemma.
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We show now (A.17). Let ap > 0 such that p; (ap — s) > py,(ap + s) for
every 0 < s < agp and 0 < f9 < ag such that P(ty > f9) > 0. Then for 1 <t < ag
and ag < u < ag + 1ty/2,

SGu. 1) = / (pe, (@) — e, (@ + 1)) da

—t
agp
> / (pr (@) — pr(a+19))da
ap—1t9/2
> 0.

This implies (A.17) immediately. [
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