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1 Introduction

1.1 From two-asset to multi-asset models

Consumption-investment problems for models with market friction, taking its origin
from the paper by Magill and Constantinides [21] and put on a firm theoretical
background by Davis and Norman [10] constitute now one of the most actively
growing branches of mathematical finance. It happens that the theory of viscosity
solutions developed in the early eighties by Crandall, Ishii, and Lions (see their
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famous guide [9] and the books by Fleming and Soner [16] and Bardi and Capuzzo-
Dolcetta [5]) can be successfully applied to portfolio selection under transaction
costs: Zariphopoulou [25,26], Davis, Panas, and Zariphopoulou [11], Tourin and
Zariphopoulou [23], Shreve and Soner [22], Fleming and Soner [16], Cadenillas [8],
and many others. A close look at the existing literature shows that nowadays the
“hot” subjects of current research in the field are multi-asset models of portfolio
optimization for markets with imperfections as well as models driven by Lévy price
processes, see, e.g., Akian, Menaldi, and Sulem [1], Akian, Sulem, and Taksar [2],
Benth, Karlsen, and Reikvam [6,7], Emmer and Klüppelberg [14], and Framstadt,
Øksendal, and Sulem [15]. Apparently, such models are more realistic compared
to the two-asset models studied at the early stage of the theory. Unfortunately,
available research papers on multidimensional models with market friction require
not only a good command of advanced mathematics but also a certain patience to
follow manipulations with rather cumbersome formulas. Moreover, known results
concern, basically, HARA (and logarithmic) utility functions and do not cover (at
least, directly) the interesting case of currency market models.

This note is aimed to show that convex analysis provides a natural language
to treat multi-asset investment-consumption models with transaction costs. As we
shall see, convex analysis allows us to replace tedious computations by appealing
to elementary geometric properties. We extend the geometric approach to markets
with transaction costs suggested for the hedging problem in Kabanov [17,18] (see
also Kabanov and Last [19], Kabanov and Stricker [20] for further development)
to models with consumption. Our presentation is, in fact, a study of a stochastic
utility optimization problem with infinite horizon, linear dynamics, and polyhedral
cone constraints.

Having in mind that our message is addressed to readers interested, principally,
in financial applications, we are looking for a compromise between generality and
“accessibility” of results and restrict ourselves to the framework which is adequate,
e.g., to cover a currency market model. The main results are assertions that the Bell-
man function is a viscosity solution of an HJB equation and that this equation has
a unique solution. Their proofs rely only on the basic definitions: a few facts from
the theory of viscosity solutions are used. We derive the HBJ equation following
traditional lines, on the basis of the dynamic programming principle establishing
the latter in an elementary and a self-contained way. We isolate the concept of the
Lyapunov function for the non-linear operator involved in the HJB equation. We
show in particular that the existence of such a function together with the monotonic-
ity of the dual of the utility function (with respect to the partial ordering induced
by the dual to the solvency cone) are the only properties needed to guarantee the
uniqueness result.

Our research is influenced by Akian et al. [1] and Shreve and Soner [22] which
are the starting point of the present study. Needed prerequisites from convex analysis
can be found in any textbook (e.g., in Aubin [3]).
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1.2 Notations

In our language “cone” means always (nontrivial) “closed convex cone”. For a cone
K ⊆ Rd we denote by intK its interior and by K∗ the dual positive cone, i.e.

K∗ := {y : yx ≥ 0 ∀x ∈ K}.

Here yx is the scalar product but in more complicate formulae we prefer to write
〈y, x〉; |x| stands for the Euclidean norm; Or(x) := {z : |z − x| < r} and
Ōr(x) := {z : |z − x| ≤ r} are, respectively, the open and closed balls in Rd of
radius r with center at x.

Usually, O will be a non-empty open subset of Rd. We denote by Cp(O) the
set of all real functions on O with continuous derivatives up to the order p.

For a concave function U : Rd → R ∪ {−∞}, we denote by U∗ the Fenchel
dual of −U(−.), i.e.

U∗(p) := sup
x

[U(x) − px].

Finally, ΣG is the support function of a set G ⊆ Rd; it is given by the relation
ΣG(p) := supx∈G px. We apologize for using of the capital letter Σ here, reserving
the standard notation σ for the diffusion coefficient.

For a function B : R+ → Rd, we denote by ||B||t the total variation of B
on the interval [0, t]. In this definition we use the convention that B0− = 0 and
||B||0 = |∆B0|. If B is of finite variation, then Ḃ := dB/d||B||.

2 The model

2.1 The dynamics

Let Y = (Yt) be an Rd-valued semimartingale on a stochastic basis (Ω, F ,F, P )
with the trivial initial σ-algebra. Let K and C be proper cones in Rd such that
C ⊆ intK �= ∅. Define the set A of controls π = (B, C) as the set of adapted
càdlàg processes of bounded variation such that, up to an evanescent set,

Ḃ ∈ −K, Ċ ∈ C. (1)

Let Aa be the set of controls with absolutely continuous C and ∆C0 = 0. For
the elements of Aa we have c := dC/dt ∈ C.

The controlled process V = V x,π is the solution of the linear system

dV i
t = V i

t−dY i
t + dBi

t − dCi
t , V i

0− = xi, i = 1, ..., d. (2)

For x ∈ intK we consider the subsets Ax and Ax
a of “admissible” controls

for which the processes V x,π never leave the set intK ∪ {0} and has zero as an
absorbing point. Thus, if Vs−(ω) ∈ ∂K, then ∆Bs(ω) = −Vs−(ω).

The important hypothesis that the cone K is proper, i.e. K ∩ (−K) = {0}, or
equivalently, intK∗ �= ∅, corresponds to a model with efficient friction, the notion
isolated in Kabanov [17] and discussed in detail in Delbaen, Kabanov, and Valkeila
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[13]. In a financial context K (usually containing Rd
+) is interpreted as the solvency

region and C = (Ct) as the consumption process; the process B = (Bt) describes
accumulated fund transfers.

Let G := (−K) ∩ ∂Ō1(0). It is a compact closed set, and −K = cone G.
In this paper we shall work using the following assumption:
H1. The process Y is a continuous process with independent increments, mean

EYt = αt, and variance DYt = At.
To facilitate references we formulate also a more specific hypothesis (frequent

in the literature) where the matrix A is diagonal with aii = (σi)2.
H2. The components of Y are of the form dY i

t = αidt + σidwi
t where w is a

standard Wiener process in Rd.
In our proof of the dynamic programming principle (needed to derive the HJB

equation) we shall assume that the stochastic basis is a canonical one, that is the
set of continuous functions with the Wiener measure.

2.2 Goal functionals

Let U : C → R+ be a concave function such that U(0) = 0 and U(x)/|x| → 0 as
|x| → ∞. With every π = (B, C) ∈ Ax

a we associate the “utility process”

Jπ
t :=

∫ t

0
e−βsU(cs)ds , t ≥ 0 ,

where β > 0. We consider the problem with infinite horizon and the goal functional
EJπ

∞ and define the Bellman function W by

W (x) := sup
π∈Ax

a

EJπ
∞ , x ∈ intK . (3)

If πi, i = 1, 2, are admissible strategies for the initial points xi, then the strategy
λπ1 + (1 − λ)π2 is an admissible strategy for the initial point λx1 + (1 − λ)x2
for any λ ∈ [0, 1], and the corresponding absorbing time is the maximum of the
absorbing times for both πi. It follows that the function W is concave on intK.
Since Ax1 ⊆ Ax2 when x2 − x1 ∈ K, the function W is increasing with respect
to partial ordering ≥K generated by the cone K. It is convenient to put W equal
to zero on the boundary of K and extend it to the whole space Rd as a concave
function just by putting W := −∞ outside K.

Remark. In this paper we consider a model with mixed “regular-singular” controls.
In fact, the assumption that the consumption process has an intensity c = (ct)
and the agent’s utility depends on this intensity is far from being realistic. Modern
models allow an intertemporal substitution and the consumption by “gulps”, i.e. they
deal with “singular” controls of the class Ax and suitably modified goal functionals,
see, e.g., Bank and Riedel [4] and references wherein. We shall not discuss this issue
here.
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2.3 Examples

Now we present, in a chronological order, several consumption–investment prob-
lems under transaction costs covered by the above setting.

Example 1 (One bond, one stock)
The price dynamics is given by

dS1
t = 0,

dS2
t = S2

t (αdt + σdwt),

where w is a Wiener process, σ > 0. The first relation means that the first asset
(“bond”,“money”, or “bank account”) is chosen as the numéraire. The price of the
risky asset follows a geometric Brownian motion. The portfolio values evolve as

dV 1
t = dL21

t − (1 + λ12)dL12
t − c1

t dt,

dV 2
t = V 2

t (αdt + σdwt) + dL12
t − (1 + λ21)dL21

t − c2
t dt,

where L12 and L21 are adapted right-continuous increasing processes, the solvency
cone K is defined in an obvious way via the transaction costs coefficients (K is
proper if λ12 + λ21 > 0). Here the consumption process C is constrained to be
absolutely continuous; typically, it is also assumed that c2 = 0.

The optimization problem is of the form

E

∫ ∞

0
e−βtu(c1

t )dt → max (4)

where u : R+ → R+ is a utility function. The maximum is taken over the set of
strategies for which the value process evolves in the solvency cone K.

The problem was solved for the power utility u(c) = cγ/γ, γ ∈]0, 1[, (and also
for logarithmic utility) by Davis and Norman [10]. This was a remarkable achieve-
ment: a special problem with transaction costs allows for an explicit solution. Not
surprisingly, many authors contributed to a further study of this model; see the
comments in the survey paper by Cadenillas [8].

Between a number of related works it is worth to mention the extensive memoir
by Shreve and Soner [22], where a complete solution also for γ < 0 was given
and the properties of the Bellman function were studied in great details using the
techniques of viscosity solutions.

Example 2 (One bond, many stocks)
This more realistic case is considered in Akian et al. [1] (see also Akian et al. [2]
for the optimization of the long-term growth rate). The price dynamics is given by

dS1
t = 0,

dSi
t = Si

t(α
idt + σidwi

t),

where wi are independent Wiener processes, σi > 0, i = 2, . . . , d.
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It is assumed that all operations are monetary ones, i.e. the investor may sell
or buy stocks paying proportional transaction costs. The portfolio dynamics is
described by the system

dV 1
t =

d∑
j=1

[dLj1
t − (1 + λ1j)dL1j

t ] − c1
t dt,

dV i
t = V i

t (αidt + σidwi
t) + dL1i

t − (1 + λi1)dLi1
t , i ≥ 2.

The solvency region in Akian et al. [1] is described as follows:

K = {x ∈ Rd : W(x) ≥ 0}, (5)

where

W(x) := x1 +
d∑

i=2

min
{
(1 + λ1i)xi, (1 + λi1)−1xi

}

represents the net wealth, that is, the amount of money in the bank account after
performing transactions that bring the holdings in the risky assets to zero.

As in the previous model, an admissible strategy (defined by 2(d−1)+1 finite
increasing processes Li1, L1i, and C1, where the last one is absolutely continuous)
is such that the corresponding value process does not exit the solvency region. It is
assumed that λ1i + λi1 > 0 for all i = 1, . . . , d, and, hence, the solvency cone is
proper.

The principal theoretical result of Akian et al. [1] is a theorem which asserts that
the Bellman function of the problem with the power utility function (for γ ∈]0, 1[) is
the unique viscosity solution of a HJB equation with zero boundary condition. For
the reader’s convenience we write this equation in the form of the aforementioned
paper:

max
{

AW + u∗(Wx1), max
2≤i≤d

LiW, max
2≤i≤d

MiW

}
= 0, (6)

where

AW =
1
2

d∑
i=2

σ2
i x2

i Wxixi
+

d∑
i=1

αixiWxi
− δW,

LiW = −(1 + λ1i)Wx1 + Wxi ,

MiW = (1 + λi1)−1Wx1 − Wxi
,

u∗(p) =
(

1
γ

− 1
)

pγ/(γ−1)

(for esthetic reasons we replaced in the above formulae superscripts by subscripts).
The next model of a general currency market motivated our study.

Example 3 (Currency market)
The model has exactly the form described at the beginning of this section with the
cone K (assumed to be proper) having the following specific structure:

K :=
{

x : ∃m ∈ Md
+ such that xi ≥

d∑
j=1

[(1 + λij)mij − mji], i = 1, . . . , d
}

.
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Here Md
+ is the set of matrices with non-negative entries and zero diagonal. The

transaction costs coefficients are given by the matrix Λ ∈ Md
+. This reflects the fact

that any asset can be, in principle, exchanged directly for any other asset. It is easily
seen that the solvency region is a polyhedral cone admitting the representation

K = cone {(1 + λij)ei − ej , 1 ≤ i, j ≤ d} ,

where ei is the ith unit vector of the canonical base in Rd, and

K∗ = {w ∈ Rd : (1 + λij)wi − wj ≥ 0, 1 ≤ i, j ≤ d}.

Of course, Example 1 is a particular case. In Example 2 the whole matrix Λ of
transaction costs coefficients is not specified: only its first row and column are given.
It is assumed that the direct transfers of the wealth between the “risky” assets are
prohibited. However, the model can be imbedded into the setting of Example 3 if we
complete the matrix of coefficients to make these direct transfers more expensive
by choosing the other coefficients to meet the condition

1 + λij ≥ (1 + λi1)(1 + λ1j), ∀ i, j ≥ 2.

In the literature one can also find a stock market model with direct exchanges
organized in such a way that transactions charge only the money account, see
Kabanov and Stricker [20]. This model, having a polyhedral solvency cone, falls
into the scope of our general framework.

2.4 The Hamilton-Jacobi-Bellman equation

Assume that H1 holds. Put

F (X, p, W, x) := max{F0(X, p, W, x) + U∗(p), ΣG(p)},

where X belongs to Sd, the set of d × d symmetric matrices, p, x ∈ Rd, W ∈ R,

F0(X, p, W, x) :=
1
2
tr A(x)X + α(x)p − βW

where Aij(x) := aijxixj , αi(x) := αixi, 1 ≤ i, j ≤ d.
If φ is a smooth function, we put

Lφ(x) := F (φ′′(x), φ′(x), φ(x), x).

In a similar way, L0 corresponds to the function F0.
We show, under mild hypotheses, that W is the unique viscosity solution of the

Dirichlet problem for the HJB equation

F (W ′′(x), W ′(x), W (x), x) = 0, x ∈ intK, (7)

W (x) = 0, x ∈ ∂K, (8)

with the boundary condition understood in the usual classical sense.
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2.5 Viscosity solutions

Since, in general, W may have no derivatives at some points x ∈ intK, the notation
(7) needs to be interpreted. The idea of viscosity solutions is to plug into F the
derivatives and Hessians of quadratic functions touching W from above and below.
Formal definitions (adapted to the case we are interested in) are as follows.

Let f and g be functions defined in a neighborhood of zero. We shall write
f(.) � g(.) if f(h) ≤ g(h) + o(|h|2) as |h| → 0, the notations f(.) � g(.) and
f(.) ≈ g(.) have the obvious meaning.

For p ∈ Rd and X ∈ Sd we consider the quadratic function

Qp,X(z) := pz + (1/2)〈Xz, z〉 , z ∈ Rd ,

and define the super- and subjets of a function v at point x:

J+v(x) := {(p, X) : v(x + .) � v(x) + Qp,X(.)},

J−v(x) := {(p, X) : v(x + .) � v(x) + Qp,X(.)}.

In other words, J+v(x) (resp. J−v(x)) is the family of all quadratic func-
tions (parameterized by their coefficients) locally dominating the function v (resp.
dominated by this function) at point x up to the second order.

A function v ∈ C(K) is called viscosity supersolution of (7) if

F (X, p, v(x), x) ≤ 0 ∀ (p, X) ∈ J−v(x), x ∈ intK.

A function v ∈ C(K) is called viscosity subsolution of (7) if

F (X, p, v(x), x) ≥ 0 ∀ (p, X) ∈ J+v(x), x ∈ intK.

A function v ∈ C(K) is a viscosity solution of (7) if it is a viscosity super- and
subsolution of (7).

A function v ∈ C(K) is called classical supersolution of (7) if v ∈ C2(intK)
and Lv ≤ 0 on intK. We add the adjective strict when Lv < 0 on intK.

The next well-known criterion gives a flexibility to manipulate with the above
concepts. It allows us to use smooth local majorants/minorants of a function, which
is the supposed viscosity solution, as test functions (to be inserted with their deriva-
tives into the operator). For the reader’s convenience we recall it with a proof.

Lemma 1 Let v ∈ C(K). Then the following conditions are equivalent:
(a) the function v is a viscosity supersolution of (7);
(b) for any ball Or(x) ⊆ K and any f ∈ C2(Or(x)), such that v(x) = f(x)

and v ≥ f on Or(x), the inequality Lf(x) ≤ 0 holds.

Proof. (a) ⇒ (b) Obvious: the pair (f ′(x), f ′′(x)) is in J−v(x).
(b) ⇒ (a) Take (p, X) in J−v(x). To conclude, we construct a smooth function

f with f ′(x) = p, f ′′(x) = X satisfying the requirements of (b).
By definition,

v(x + h) − v(x) − Qp,X(h) ≥ |h|2ϕ(|h|),
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where ϕ(u) → 0 as u ↓ 0. We consider on ]0, r[ the non-decreasing continuous
function

δ(u) := sup
{h: |h|≤u}

|h|−2(v(x + h) − v(x) − Qp,X(h))− ≤ sup
{y: 0≤y≤u}

(ϕ(y))−.

Obviously, δ is continuous, non-decreasing and δ(u) → 0 as u ↓ 0. The function

∆(u) :=
2
3

∫ 2u

u

∫ 2η

η

δ(ξ)dξdη

vanishes at zero with its two right derivatives; u2δ(u) ≤ ∆(u) ≤ u2δ(2u). Thus,

v(x + h) − v(x) − Qp,X(h) ≥ −|h|2δ(|h|) ≥ −∆(|h|)

and f(y) := v(x) + Qp,X(y − x) − ∆(|y − x|) is a needed function. ��

For subsolutions we have a similar result with the inverse inequalities.

2.6 Ishii’s lemma

The only result we need from the theory of viscosity solutions (or, better to say, from
convex analysis) is the following simplified version of Ishii’s lemma, see Crandall
et al. [9] or Fleming and Soner [16].

Lemma 2 Let v and ṽ be two continuous functions on O. Consider the function
∆(x, y) := v(x) − ṽ(y) − 1

2n|x − y|2 with n > 0. Suppose that ∆ attains a local
maximum at (x̂, ŷ). Then there are symmetric matrices X and Y such that

(n(x̂ − ŷ), X) ∈ J̄+v(x̂), (n(x̂ − ŷ), Y ) ∈ J̄−ṽ(ŷ),

and (
X 0
0 −Y

)
≤ 3n

(
I −I

−I I

)
. (9)

In this statement I is the identity matrix and J̄+v(x) and J̄−v(x) are values
of the set-valued mappings whose graphs are closures of graphs of J+v and J−v,
respectively.

Of course, if v is smooth, the claim follows directly from the necessary condi-
tions of a local maximum (with X = v′′(x̂), Y = ṽ′′(ŷ) and the constant 1 instead
of 3 in inequality (9)).
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3 Uniqueness of the solution and Lyapunov functions

3.1 Uniqueness theorem

The following concept plays the crucial role in the proof of the purely analytic
result on the uniqueness of the viscosity solution which we establish by a classical
method of doubling variables, making use of Ishii’s lemma.

Definition We say that a non-negative function � ∈ C(K) ∩ C2(intK) is the
Lyapunov function if �′ ∈ intK∗ and L0� ≤ 0 on intK and �(x) → ∞ as
|x| → ∞.

Theorem 1 Suppose that there exists a Lyapunov function �. Assume also that
U∗(p) ≤ U∗(q) if p − q ∈ K∗. Then the Dirichlet problem (7), (8) has at most
one viscosity solution in the class of continuous functions satisfying the growth
condition

W (x)/�(x) → 0, |x| → ∞. (10)

Proof. Let W and W̃ be viscosity solutions of (7) coinciding on ∂K. Suppose that
W (z) > W̃ (z) for some z ∈ K. Take ε > 0 such that W (z)−W̃ (z)−2ε�(z) > 0.
Put

∆n(x, y) := W (x) − W̃ (y) − 1
2
n|x − y|2 − ε[�(x) + �(y)].

Since ∆n(x, y) → −∞ as |x| + |y| → ∞, there exists (xn, yn) ∈ K × K such
that

∆n(xn, yn) = ∆̄n := sup
(x,y)∈K×K

∆n(x, y) ≥ ∆̄ := sup
x∈K

∆0(x, x) > 0.

All (xn, yn) belong to the bounded set {(x, y) : ∆0(x, y) ≥ 0}. It follows that
the sequence n|xn − yn|2 is bounded. We continue to argue (without introducing
new notations) with a subsequence along which (xn, yn) converge to some limit
(x̂, x̂). Necessarily, n|xn − yn|2 → 0 (otherwise we would have ∆0(x̂, x̂) > ∆̄).
It is easily seen that ∆̄n → ∆0(x̂, x̂) = ∆̄. Thus, x̂ is an interior point of K and
so are xn and yn for sufficiently large n.

By Ishii’s lemma applied to the functions v := W − ε� and ṽ := W̃ + ε� at the
point (xn, yn) there exist matrices X and Y satisfying (9) such that

(n(xn − yn), X) ∈ J̄+v(xn), (n(xn − yn), Y ) ∈ J̄−ṽ(yn).

Using the notations pn := n(xn − yn) + ε�′(xn), qn := n(xn − yn) − ε�′(yn),
Xn := X + ε�′′(xn), Yn := Y − ε�′′(yn), we may rewrite the last relations in the
following equivalent form:

(pn, Xn) ∈ J̄+W (xn), (qn, Yn) ∈ J̄−W̃ (yn). (11)

Since W and W̃ are viscosity sub- and supersolutions,

F (Xn, pn, W (xn), xn) ≥ 0 ≥ F (Yn, qn, W̃ (yn), yn).
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The second inequality implies that mqn ≤ 0 for each m ∈ G. By our assumption
�′(x) ∈ intK∗ for x ∈ intK and, therefore,

mpn = mqn + εm(�′(xn) + �′(yn)) < 0.

Since G compact, ΣG(pn) < 0. It follows that

F0(Xn, pn, W (xn), xn) + U∗(pn) ≥ 0 ≥ F0(Yn, qn, W̃ (yn), yn) + U∗(qn).

Taking into account that U∗(pn) ≤ U∗(qn), we obtain the inequality

bn := F0(Xn, pn, W (xn), xn) − F0(Yn, qn, W̃ (yn), yn) ≥ 0.

Clearly,

bn =
1
2

d∑
i,j=1

(aijxi
nxj

nXij − aijyi
nyj

nYij) + n

d∑
i=1

αi(xi
n − yi

n)2

+
1
2
βn|xn − yn|2 − β∆n(xn, yn) + ε(L0�(xn) + L0�(yn)).

By virtue of (9) the first sum is dominated by const × n|xn − yn|2; a similar
bound for the second sum is obvious; the last term is negative. It follows that
lim sup bn ≤ −β∆̄ < 0 and we get a contradiction arising from the assumption
W (z) > W̃ (z). ��

Remarks (a) The definition of the Lyapunov function does not depend on U (it is
a property of the operator with U∗ = 0) and we have the uniqueness for all utility
function U for which U∗ is decreasing with respect to the partial ordering induced
on K∗. But to apply the theorem we should know that W is not growing faster than
a certain Lyapunov function.

(b) Notice that, if U is defined on C and increasing with respect to the partial
ordering ≥C , then U∗ is decreasing with respect to ≥C∗ , hence, ≥K∗ , see Deelstra,
Pham, and Touzi [12].

3.2 Existence of Lyapunov functions and classical supersolutions

Results on the uniqueness of a solution to the HJB equation are all based on work
with specific Lyapunov functions. The following general considerations explain
how the latter can be constructed.

Let u ∈ C(R+) be an increasing strictly concave function, smooth on R+\{0}
with u(0) = 0 and u(∞) = ∞. Introduce the function R := −u′2/(u′′u). Assume
that R̄ := supz>0 R(z) < ∞.

For p ∈ K∗ we define the function f(x) = fp(x) := u(px) on K. If y ∈ G and
x �= 0, then yf ′(x) = (py)u′(px) ≤ 0. The inequality is strict when p ∈ intK∗.
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Recall that A(x) is the matrix with Aij(x) = Aijxixj and the vector α(x) has
components αixi. Suppose that 〈A(x)p, p〉 �= 0. Putting z := px for brevity, we
obtain by obvious transformations,

L0f(x) =
1
2

[
〈A(x)p, p〉u′′(z) + 2〈α(x), p〉u′(z) +

〈α(x), p〉2
〈A(x)p, p〉

u′2(z)
u′′(z)

]

+
1
2

〈α(x), p〉2
〈A(x)p, p〉R(z)u(z) − βu(z). (12)

Since we have [...] ≤ 0 in the above formula, its left-hand side is non-positive if
β ≥ η(p)R̄ where

η(p) :=
1
2

sup
x∈G

〈α(x), p〉2
〈A(x)p, p〉 .

This simple observation leads to the following existence result for Lyapunov
functions:

Proposition 3 Let p ∈ intK∗. Suppose that 〈A(x)p, p〉 �= 0 for all x ∈ intK. If
β ≥ η(p)R̄, then fp is a Lyapunov function.

It is easily seen that the same conclusion holds if 〈α(x), p〉 vanishes on the set
{x ∈ intK : 〈A(x)p, p〉 = 0}.

Let η̄ := supp∈K∗ η(p). Continuity considerations show that this quantity is
finite if 〈A(x)p, p〉 �= 0 for all nontrivial x ∈ K and p ∈ K∗. Obviously, if β ≥ η̄R̄,
then fp is a Lyapunov function for p ∈ intK∗.

The representation (12) is useful also in the search of classical supersolutions
for the operator L. Since L(f) = L0(f) + U∗(f ′), it is natural to choose u related
to U . For a particular case, where C = Rd

+ and U(c) = u(e1c), with u satisfy-
ing the postulated properties (except, maybe, unboundedness) and, where also the
inequality

u∗(au′(z)) ≤ g(a)u(z) (13)

holds, we get (using the homogeneity of L0) the following result.

Proposition 4 Assume that 〈A(x)p, p〉 �= 0 for all x ∈ intK and p ∈ K∗. Suppose
that (13) holds for every a, z > 0 with g(a) = o(a) as a → ∞. If β > η̄R̄, then there
exists a0 such that for every a ≥ a0 the function afp is a classical supersolution of
(7), whatever p ∈ K∗ with p1 �= 0 is. Moreover, if p ∈ intK∗, then afp is a strict
supersolution on any compact subset of intK.

For the power utility function u(z) = zγ/γ, γ ∈]0, 1[, we have

R(z) = γ/(1 − γ) = R̄

and u∗(au′(z)) = (1 − γ)aγ/(γ−1)u(z).
If Y satisfies H2 with σ1 = 0, α1 = 0 (i.e. the first asset is the numéraire) and

σi �= 0 for i �= 1, then, by the Cauchy–Schwarz inequality applied to 〈α(x), p〉,

η(p) ≤ 1
2

d∑
i=2

(
αi

σi

)2

.
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The inequality

β >
γ

1 − γ

1
2

d∑
i=2

(
αi

σi

)2

(14)

(implying the relation β > η̄R̄) is a standing assumption in many studies on the
consumption-investment problem under transaction costs, see Akian et al. [1] and
Davis and Norman [10].

As we shall see in the next section, the existence of supersolutions has important
implications for the Bellman function.

4 Supersolutions and properties of the Bellman function

4.1 When is W finite on K?

We first present sufficient conditions for W to be finite.
Let Φ be the set of continuous functions f : K → R+ increasing with respect

to the partial ordering ≥K and such that for every x ∈ intK and π ∈ Ax
a the

non-negative process Xf = Xf,x,π with representation

Xf
t := e−βtf(Vt) + Jπ

t , (15)

where V = V x,π , is a supermartingale.
The set Φ of f with this property is convex, stable under the operation ∧ (recall

that the minimum of two supermartingales is a supermartingale). Any continuous
function which is a monotone limit (increasing or decreasing) of functions in Φ
also belongs to Φ.

Lemma 5 (a) If f ∈ Φ, then W ≤ f ;
(b) if for any y ∈ ∂K there exists some f ∈ Φ such that f(y) = 0, then W is

continuous on K.

Proof. (a) Using the positivity of f , the supermartingale property Xf , and, finally,
the monotonicity of f we have that

EJπ
t ≤ EXf

t ≤ f(V0) ≤ f(x).

(b)The concave function W is locally Lipschitz continuous on its domain intK.
The continuity at the point y ∈ ∂K follows because 0 ≤ W ≤ f . ��

Lemma 6 Let f : K → R+ be a function in C(K) ∩ C2(intK) increasing with
respect to the partial ordering ≥K . If f is a classical supersolution of (7), then
f ∈ Φ, i.e. Xf is a supermartingale.

Proof. In order to be able to apply Itô’s formula in a comfortable way we introduce
the process Ṽ = V σ−, where σ is the first hitting time of zero by the process V .
This process coincides with V on [0, σ[ but, in contrast to the latter, either always
remains in intK (due to the stopping at σ if Vσ− ∈ intK) or exits to the boundary
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in a continuous way and stops there. Let X̃f be defined by (15) with V replaced
by Ṽ . Since

Xf = X̃f + e−βσ(f(Vσ− + ∆Bσ) − f(Vσ−))I[σ,∞[,

by the assumed monotonicity of f it is sufficient to verify that X̃f is a supermartin-
gale.

Applying Itô’s formula to e−βtf(Ṽt) we obtain on [0, σ[ the representation

X̃f
t = f(x) +

∫ t

0
e−βs[L0f(Vs) − csf

′(Vs) + U(cs)]ds + Rt + mt, (16)

where m is a process such that mσn are continuous martingales, σn are stopping
times increasing to σ, and

Rt :=
∫ t

0
e−βsf ′(Ṽs−)dBc

s +
∑
s≤t

e−βs[f(Ṽs− + ∆Bs) − f(Ṽs−)]. (17)

By definition of a supersolution, for any x ∈ intK,

L0f(x) ≤ −U∗(f ′(x)) ≤ cf ′(x) − U(c) ∀ c ∈ K.

Thus, the integral in (16) is a decreasing process. By the finite increments formula

f(Ṽs− + ∆Bs) − f(Ṽs−) = f ′(Ṽs− + θs∆Bs)∆Bs, (18)

where θs takes values in [0, 1] and, therefore,

Rt =
∫ t

0
e−βsf ′(Ṽs− + θs∆Bs)Ḃsd||B||s. (19)

This makes clear that the process R is also decreasing because Ḃ ∈ −K and for a
classical supersolution of (7) we have f ′(x)c ≥ 0 whenever c ∈ K. Since X̃f ≥ 0,
it follows easily that each process X̃f

t∧σn
is a supermartingale and, hence, by Fatou’s

lemma, X̃f is a supermartingale as well. ��

Lemma 6 implies that the existence of a smooth non-negative supersolution f
of (7) ensures the finiteness of W on K. Sometimes, e.g., in the case of power
utility, it is possible to find such a function in a rather explicit form, see Sect. 7.

4.2 Strict local supersolutions

The next more technical result, which is also based on an analysis of (16), will be
used to show that W is a subsolution of the HJB equation.

We fix a ball Ōr(x) ⊆ intK. Define τπ as the exit time of V π,x from Ōr(x)
and consider the set Ax,r

a ⊆ Ax
a consisting of strategies for which the stopped

processes (V π,x
t∧τπ ) evolve in Ōr(x).
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Lemma 7 Let f ∈ C2(Ōr(x)) be such that Lf ≤ −ε < 0 on Ōr(x). Then there
exists a function η :]0, ∞[→ R+, strictly positive on a certain interval ]0, t0[ and
such that on this interval

sup
π∈Ax,r

a

EXf,x,π
t∧τπ ≤ f(x) − ηt.

Proof. Since the strategyπ is fixed in the arguments below, we omit it in the notations
of this proof. As in the proof of Lemma 6, we apply Itô’s formula (but now directly
to the process Vt∧τ , because we suppose that f is smooth in a ball larger than Or(x)
and which the process never leaves). Using the bound L0(Vs) ≤ −ε − U∗(Vs) for
s ≤ τ as well as (19), we infer the inequality

Xf,x
t∧τ ≤ f(x) − e−βtNt + mt,

where m is a martingale and

Nt := ε(t ∧ τ) +
∫ t∧τ

0
H(cs, f

′(Vs))ds +
∫ t∧τ

0
(−f ′(Vs− + θs∆Bs)Ḃs)d||B||s

with H(c, y) := U∗(y) + cy − U(c) ≥ 0. It remains to verify that ENt dominate,
on a certain interval ]0, t0], a strictly positive function (independent on π).

Let us introduce the compact set Γ := f ′(Ōr(x)) ⊆ K∗. For y ∈ Γ and c ∈ C
we have that (c/|c|)y ≥ ε and U(c)/|c| → 0 as c → ∞. Thus, there are constants
κ (“large”) and κ1 (“small”) such that the following inequality holds:

inf
y∈Γ

H(c, y) ≥ κ1|c|, |c| ≥ κ, c ∈ C.

It follows that one can check the domination property for EÑt with the simpler
processes

Ñt := t ∧ τ +
∫ t∧τ

0
I{|cs|≥κ}|cs|ds + ||B||t∧τ . (20)

Take δ > 1. By the stochastic Cauchy formula the solution of the linear equation
(2) can be written as

V i
t = Et(Y i)x + Et(Y i)

∫ t

0
E−1

s (Y i)d(Bi
s − Ci

s), i = 1, . . . , d,

with the Girsanov exponential

Et(Y i) := eY i
t −(1/2)〈Y i〉t .

It follows that there exists a number t0 > 0 and a set Γ with P (Γ ) > 0 on which

|V x,π − x| ≤ r/2 + δ(||B|| + ||C||) on [0, t0]

whatever the control π = (B, C) is. Of course, diminishing t0, we may assume
without loss of generality that κt0 ≤ r/(4δ). For any t ≤ t0 we have on the set
Γ ∩{τ ≤ t} the inequality ||B||τ + ||C||τ ≥ r/(2δ). Thus, the expectation of EÑt

on [0, t0] dominates the piecewise linear function (t ∧ (r/(4δ))P (Γ ). ��
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5 Dynamic programming principle

The following property of the Bellman function is usually referred to as the (weak)
“dynamic programming principle”:

Theorem 2 Assume that W (x) < ∞ for x ∈ intK. Then for any finite stopping
time τ

W (x) = sup
π∈Ax

a

E
(
Jπ

τ + e−βτW (V x,π
τ− )

)
. (21)

We work on the canonical filtered space of continuous functions equipped with
the Wiener measure. The generic point ω = ω. of this space is a continuous function
on R+, zero at the origin. Let F◦

t := σ{ωs, s ≤ t} and Ft := ∩ε>0Ft+ε. We
add the superscript P to denote σ-algebras augmented by all P -null sets from
Ω. Recall that F◦,P

t coincides with FP
t (this assertion follows easily from the

predictable representation theorem).
A particular structure of Ω allows us to consider such operators as the stopping

ω. �→ ωs
. , s ≥ 0, where ωs

. = ωs∧. and the translation ω. �→ ωs+. − ωs. Taking
Doob’s theorem into account, one can describe F◦

s -measurable random variables
as those of the form g(w.) = g(ws

. ) where g is a measurable function on Ω.
We define also the “concatenation” operator as the measurable mapping

g : R+ × Ω × Ω → Ω

with gt(s, ω., ω̃.) = ωtI[0,s[(t) + (ω̃t−s + ωs)I[s,∞[(t).
Notice that

gt(s, ωs
. , ω.+s − ωs) = ωt.

Thus, π(ω) = π(g(s, ωs
. , ω.+s − ωs)).

Let π be a fixed strategy from Ax
a and let ϑ = ϑx,π be a hitting time of zero for

the process V x,π .
We need the following general fact on conditional distributions.
Let ξ and η be two random variables taking values in Polish spaces X and Y

equipped with their Borel σ-algebras X and Y . Then ξ admits a regular conditional
distribution given η = y which we shall denote by pξ|η(Γ, y) and

E(f(ξ, η)|η) =
∫

f(x, y)pξ|y(dx, y)
∣∣∣∣
y=η

(a.s.)

for any measurable function f(x, y) ≥ 0.
We shall apply the above relation to the random variables ξ = (ω.+τ −ωτ ) and

η = (τ, ωτ ). In this case, according to the Dynkin–Hunt theorem, the conditional
distribution pξ|η(Γ, y) admits a version which is independent of y and coincides
with the Wiener measure P .

At last, for fixed s and ws, the shifted control π(g(s, ωs
. , ω̃.), s + dr) is admis-

sible for the initial condition V x,π
s− (ω). Here we denote by ω̃. a generic point of the

canonical space.
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Lemma 8 Let Tf be the set of all finite stopping time. Then

W (x) ≤ sup
π∈Ax

a

inf
τ∈Tf

E
(
Jπ

τ + e−βτW (V x,π
τ− )

)
. (22)

Proof. For arbitrary π ∈ Ax
a and Tf we have that

EJπ,x
∞ = EJπ,x

τ + Ee−βτ

∫ ∞

0
e−βru(cr+τ )dr.

According to the above discussion we can rewrite the second term of the right-hand
side as

Ee−βτ

∫ (∫ ∞

0
e−βru(cr+τ (g(τ, ωτ , ω̃)))dr

)
P (dω̃)

and dominate it by Ee−βτW (V x,π
τ− ). This leads to the desired inequality. ��

The proof of the opposite inequality is based on different ideas.

Lemma 9 Assume that W (x) < ∞ for x ∈ intK. Then for any finite stopping
time τ

W (x) ≥ sup
π∈Ax

a

E
(
Jπ

τ + e−βτW (V x,π
τ− )

)
. (23)

Proof. Fix ε > 0. Being concave, the function W is continuous on intK. For every
x ∈ intK we can find an open ball Or(x) = x + Or(0) with r = r(ε, x) < ε
containing the intersection of intK and the open set {y : |W (y) − W (x)| < ε}.
Moreover, we can find a smaller ball Or̃(x) contained in the set y(x) + K with
y(x) ∈ Or(x). Indeed, take a ball x0 + Oδ(0) ⊆ K. Since K is a cone,

x + Oλδ(0) ⊆ x − λx0 + K

for every λ > 0. Clearly, the requirement is met for y(x) = x − λx0 and r̃ = λδ
when λ|x0| < ε and λδ < r. The family of sets Or̃(x)(x), x ∈ intK, is an open
covering of intK. But any open covering of a separable metric space contains a
countable subcovering (this is the Lindelöf property; in our case, where intK is a
countable union of compacts, it is obvious). Take a countable subcovering indexed
by points xn. For simplicity, we shall denote its elements by On and y(xn) by yn.
Put A1 := O1, and An = On \ ∩k<nOk. The sets An are disjoint and their union
is intK.

Let πn = (Bn, Cn) ∈ Ayn
a be an ε-optimal strategy for the initial point yn, i.e.

such that
EJyn,πn ≥ W (yn) − ε.

Let π ∈ Ax
a be an arbitrary strategy. We consider the strategy π̃ ∈ Ax

a defined by
the relation

π̃ = πI[0,τ [ +
∞∑

n=1

[(yn − V x,π
τ− , 0) + π̄n]I[τ,∞[IAnI{τ<ϑ}

where π̄n is the translation of the strategy πn: for a point ω. with τ(ω) = s < ∞

π̄n
t (ω.) := πn

t−s(ω.+s − ωs).
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In other words, the measure dπ̃ coincides with dπ on [0, τ [ and with the shift of
dπn on ]τ, ∞[ when V x,π

τ− is a subset of An; the correction term guarantees that in
the latter case the trajectory of the control system corresponding to the control π̃
passes at time τ through the point yn.

Now, using the same considerations as in the previous lemma, we have:

W (x) ≥ EJ π̃
∞ = EJπ

τ +
∞∑

n=1

EIAn
(V x,π

τ− )I{τ<ϑ}

∫ ∞

τ

e−βsu(c̄n
s )ds

≥ EJπ
τ +

∞∑
n=1

EIAn
(V x,π

τ− )I{τ<ϑ}e
−βτ (W (yn) − ε)

≥ EJπ
τ + Ee−βτW (V x,π

τ− ) − 2ε.

Since π and ε are arbitrary, the result follows. ��

Remarks It is easily seen that the above proof goes well when also the driving
noise is a Lévy process (the canonical basis in this case is the Skorohod space of
regular functions), see Benth et al. [6] where the claimed property is taken as an
assumption. Notice also that the previous lemmas imply the identity

W (x) = sup
π∈Ax

a

inf
τ∈Tf

E
(
Jπ

τ + e−βτW (V x,π
τ− )

)
.

Comment The dynamic programming principle (DPP) has a clear intuitive meaning.
However, there is a difference between universal “principles” and specific theorems:
the latter require precise formulations and proofs. By an abuse of terminology such
theorems are often also referred to as DPP.

Our analysis of the literature reveals that it is rather difficult to find a paper with
a self-contained and complete proof even if the model of interest is of the simplest
class, for instance, with a linear dynamics. Typically, some “formal” arguments
are given indicating that “rigorous” proofs can be found elsewhere, preferably
in treatises on controlled Markov processes. Tracking further references, one can
observe that they often deal with slightly different models, other definitions of
optimality, “regular” controls and so on. For instance, in Fleming and Soner [16]
and Yong and Zhou [24], the concept of control involves a choice of a stochastic
basis. Furthermore, often proofs rely on specific properties of the utility function
or use methods from PDEs which can hardly be generalized for driving processes
other than diffusions. Since we aim at future generalizations to Lévy processes,
we provide a complete proof of DPP for our simple model, which requires only
elementary prerequisites. We hope that a complete understanding of this simple
situation allows us the generalization to more general driving processes.

6 The Bellman function and the HJB equation

Theorem 10 Assume that the Bellman function W is in C(K). Then W is a vis-
cosity solution of (7).
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Proof. The claim follows from the two lemmas below. ��
Lemma 11 If (23) holds then W is a viscosity supersolution of (7).

Proof. Let x ∈ O ⊆ intK. Let φ ∈ C2(O) be such that φ(x) = W (x) and W ≥ φ
in O. Fix m ∈ K and take ε > 0 small enough to ensure that x − εm ∈ O. The
function W is increasing with respect to the partial ordering generated by K. Thus,
φ(x) = W (x) ≥ W (x − εm) ≥ φ(x − εm). It follows that −mφ′(x) ≤ 0.

Take now π with Bt = 0 and ct = c ∈ C. Let τr be the exit time for the process
V = V x,π from a small ball Ōr(x) ⊆ intK. Applying (23) we have, using Itô’s
formula (16), that

0 ≥ E

(∫ t∧τr

0
e−βsU(cs)ds + e−β(t∧τr)W (Vt∧τr )

)
− φ(x)

≥ E

∫ t∧τr

0
e−βs[L0φ(Vs) − cφ′(Vs) + U(c)]ds

≥ min
y∈Br(x)

[L0φ(y) − cφ′(y) + U(c)]E
[

1
β

(1 − exp(−β(t ∧ τr)))
]

.

Dividing by t and taking successively the limits as t and r converge to zero we get
that L0φ(x) − cφ′(x) + U(c) ≤ 0. Thus, L0φ(x) + U∗(φ′(x)) ≤ 0. ��
Lemma 12 If (22) holds then W is a viscosity subsolution of (7).

Proof. Let x ∈ O ⊆ intK. Let φ ∈ C2(O) be a function such that φ(x) = W (x)
and W ≤ φ on O. Assume that the subsolution inequality for φ fails at x. Thus,
there exists ε > 0 such that Lφ ≤ −ε on some ball Ōr(x) ⊆ O. Fix t > 0 such
that ηt > 0 where η is as in Lemma 7. Take π ∈ Ax

a such that

W (x) ≤ E
(
Jπ

t∧τ + e−βτW (V x,π
t∧τ )

)
+

1
2
ηt, (24)

where τ is the exit time of V x,π from Ōr(x). Since W is increasing with respect to
the partial ordering induced by K, we may assume without loss of generality that
π ∈ Ax,r

a . Using the inequality W ≤ φ and applying Lemma 7 we obtain from
(24) that W (x) = φ(x) − (1/2)ηt. A contradiction. ��

7 Power utility functions

Summarizing the previous discussions we arrive at the following result for the
Bellman function W in our basic stochastic control model for the utility function
U(c) = (e1c)γ/γ, γ ∈]0, 1[.

Theorem 13 Assume that 〈A(x)p, p〉 �= 0 for all x ∈ intK and p ∈ K∗ and

β >
γ

1 − γ
η̄ =

γ

1 − γ

1
2

sup
x∈G

sup
p∈K∗

〈α(x), p〉2
〈A(x)p, p〉 . (25)

Then the Dirichlet problem (7), (8) has a unique viscosity solution in the class
of functions whose growth rates are strictly less than γ′ := β/(β + η̄), and this
solution is the Bellman function W having growth rate γ.
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Proof. According to Proposition 3 the function l(x) = (px)γ′
, p ∈ intK∗, is a Lya-

punov function having γ′ as its growth rate. Theorem 1 guarantees the uniqueness
of the Dirichlet problem in the class of functions whose growth rates are strictly
smaller than that of l, i.e. γ′.

By virtue of Proposition 4 for sufficiently large a the function f(x) = a u(px)
is a classical supersolution of (7) whatever p ∈ K∗ with p1 �= 0 is. It follows from
Lemmas 5 and 6 that W has growth rate γ, vanishes on the boundary of K, and
belongs to C(K). The latter property allows us to apply Theorem 10 which claims
that the Bellman function is a viscosity solution of (7). ��
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