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1 Introduction

Subexponential distributions are a special class of heavy-tailed distributions which have

been prominent in applied probability, whenever samples have to be modelled, where large

values appear with non-negligible probability. Such pattern is often seen in insurance data,

e.g. in fire, wind-storm or flood insurance, but also in queueing models - in particular in

telecommunication data.

First order approximations to ruin probabilities and waiting time distributions have

already been derived in the 1970/80s, this is by now folklore found in the relevant text-

books; e.g. Asmussen [2] and Embrechts, Klüppelberg and Mikosch [19]; see also the

review papers by Goldie and Klüppelberg [21], Greiner, Jobmann and Klüppelberg [22]

and Sigman [28].

The present paper concentrates on more recent research in the area, leading not only

to higher order approximations for the ruin probability and the waiting time distribution

in a queueing system, but in particular to approximations for the ruin probability in finite

time, the queue length and the busy period.

Mathematically, fine large deviations asymptotics are called for. Classical large devi-

ations theory uses a logarithmic approximation which is based on the existence of ex-

ponential moments. For subexponential distributions exponential moments do not exist.

Consequently, large deviations theory as introduced by Nagaev [26] in 1977 has always

been technically very demanding. Nevertheless, in this paper we try to make such large de-

viations concepts transparent and show some of their applications in the area of insurance

and queueing.

The applications we have in mind can be embedded in a random walk setting. For an

i.i.d. sequence (Zk)k∈N define the random walk

S0 = 0 , Sn =
n∑
k=1

Zk , n ∈ N . (1.1)

Throughout we denote by F the distribution function (d.f.) of Z1 and assume that EZ1 =

µ < 0. Then the random walk (Sn)n∈N drifts to −∞ and

B̃ =
∞∑
n=1

1

n
P (Sn > 0) <∞ ; (1.2)

see e.g. Feller [20], Chapter XII.7, Theorem 2. Obviously, pn = P (Sn > 0)/n → 0 as

n→∞, moreover, in the heavy-tailed case the sequence (pn)n∈N decreases like the tail of

Z1. A finer analysis leads to a large deviations result for (Sn)n≥0 as well as to a result on

first passage times of (Sn)n≥0. These results are applied to derive the asymptotic behaviour

of finite time ruin probabilities in insurance as well as that of the busy period in queueing.
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The aim of this paper is to show the intrinsic similarity of the problems. Related results

and proofs can be found in Baltrūnas [10] and in Baltrūnas, Daley and Klüppelberg [11].

2 Subexponential distributions

We start by recalling some definitions concerning subexponential d.f.s and subexponential

sequences. Throughout this section, B denotes the d.f. of a nonnegative random variables

(r.v.) X.

Definition 2.1. (a) B is subexponential (B ∈ S) if

lim
t→∞

B2∗(t)

B(t)
= 2. (2.1)

(b) If B has finite mean, it belongs to the class S∗ if

lim
t→∞

∫ t

0

B(t− u)

B(t)
B(u) du = 2

∫ ∞
0

B(u) du. (2.2)

As shown in Klüppelberg [24], when B ∈ S∗ it follows that B ∈ S and hence B ∈ L,

i.e.

lim
x→∞

B(x+ y)

B(x)
= 1 locally uniformly in y ∈ R. (2.3)

A discrete analogue of S∗ is the following class.

Definition 2.2. The summable nonnegative sequence (hn)n≥0 is in the class S∗D if both

lim
n→∞

hn+1/hn = 1 (2.4)

and the terms h2⊕
n :=

∑n
i=0 hihn−i, n ∈ N, of its second convolution power satisfy

lim
n→∞

h2⊕
n /hn = 2

∞∑
i=0

hi <∞. (2.5)

Lemma 2.3. (Baltrūnas et al. [11])

If the d.f. B ∈ S∗, then the sequence (B(cn))n∈N ∈ S∗D for every c > 0 .

The following result plays an important role in our investigations.

Proposition 2.4. (Chover, Ney and Wainger [14]).

Let the probability distribution (νn)n≥0 with generating function ν̂(z) =
∑∞

n=1 νnz
n, |z| ≤

1, satisfy the conditions
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(i) limn→∞ ν
2⊕
n /νn = c exists and is finite,

(ii) limn→∞ νn+1/νn = 1/R for some 1 ≤ R <∞, and

(iii) d = ν̂(R) is finite.

Assume that the function Ψ(w) is analytic in a region containing the range of ν̂(z) for

|z| ≤ R. Then c = 2d and there exists a sequence of real numbers Ψν ≡ ((Ψν)n)n≥0

satisfying

Ψ̂ν(z) ≡
∞∑
n=0

(Ψν)nz
n = Ψ

(
ν̂(z)

)
, |z| ≤ R, (2.6)

and such that

lim
n→∞

(Ψν)n/νn = Ψ′(d). (2.7)

If in fact Ψ(w) =
∑∞

n=0 ckw
k for |w| ≤ 1, where

∑∞
n=0 |ck| <∞, then

Ψ̂ν(z) =
∞∑
n=0

( ∞∑
k=1

ckν
k⊕
n

)
zn. (2.8)

As a weak condition in the class L we require the existence of a density b. Then the

hazard function Q = − logB has a density q = b/B, which is called the hazard rate. We

define the hazard ratio index

r := lim sup
t→∞

tq(t)

Q(t)
. (2.9)

The following result provides a simple sufficient condition for B ∈ S∗. It is the ex-

tension of the result which was proved in Lemma 2.3 of Baltrunas [10] for eventually

decreasing hazard rate q.

Proposition 2.5. Suppose that

(i) r < 1,

(ii) for some ε > 0 such that rε = r + ε < 1 the function B
2−2rε

is integrable over R+.

Then B ∈ S∗.

Proof. For 0 < v < u < t/2 write∫ t

0

B(t− u)

B(t)
B(u) du = 2

( ∫ v

0

+

∫ t/2

v

)B(t− u)

B(t)
B(u) du =: 2(I + II) .
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Then we estimate

II =

∫ t/2

v

exp
(
Q(t)−Q(t− u)−Q(u)

)
du .

As shown in Baltrunas et al. [11] for all t ≥ v and y ≥ 1, Q(ty) ≤ yrεQ(t). From this we

conclude

Q(t)−Q(t− u) ≤
(

1−
(

1− u

t

)rε)
Q(t)

≤
(

1−
(

1− u

t

)rε)( t
u

)rε
Q(u)

= (trε − (t− u)rε)u−rεQ(u)

≤ ((2u)rε − urε)u−rεQ(u)

= (2rε − 1)Q(u) .

Hence,

II ≤
∫ t/2

v

exp((2rε − 2)Q(u))du <∞ .

The result follows now from dominated convergence and the fact that B ∈ L. �

3 Large deviations results

In this section we present a large deviations result for the random walk (Sn)n≥0 whose

increments have subexponential right tail. For the situation of nonnegative r.v.s (Xk)k∈N

with d.f. B as in the previous section B ∈ S is equivalent to

P (
n∑
k=1

Xk > t) ∼ P ( max
1≤k≤n

Xk > t) , t→∞ , ∀n ∈ N .

Thus, for any d.f. B ∈ S there exists a positive sequence (tn)n∈N such that uniformly

in t ∈ (tn,∞)

P (
n∑
k=1

Xk > t) ∼ P ( max
1≤k≤n

Xk > t) , n→∞ .

In the investigation of precise large deviations for subexponential distributions the

main problem becomes finding the sequences (tn)n∈N. First results of this kind are due to

Nagaev [26]; see also Pinelis [27] and Baltrūnas [9].

Coming back to the situation in the introduction, the increments (Zk)k∈N of the random

walk (Sn)n∈N have support R, i.e. are not subexponential in the sense of Definition 2.1.

5



It does, however, suffice that the right tail of Z1 is subexponential, in combination with

certain conditions on the left tail behaviour, which we formulate now. Define

α = sup{k : E[Zk
1 ; Z1 > 0] <∞} ,

β = sup{k : E[|Z1|k ; Z1 < 0] <∞} .

Denote for the hazard rate index r < 1 as defined in (2.9)

a(r) =

{
2 , if r = 0,

4/(1− r) , if r 6= 0,
(3.1)

We require the following conditions:

Conditions C

(i) r < 1/2;

(ii) lim inf
t→∞

tq(t) > a(r);

(iii) β > 2.

Condition (i) is satisfied for all d.f.s whose right tail is heavier than a Weibull tail with

exponent 1/2, i.e. Q(t) = o(1)
√
t as t → ∞. Condition (iii) requires the existence of a

finite second moment of the negative part of the increment. Lemma 3.6 of Baltrunas et

al. [11] and (ii) imply that α = lim inft→∞Q(t)/ log t > a(r). Hence, (ii) is a moment con-

dition on the positive part of the increment and limits the pathological cases, which have

been prominent in the subexponential area. In non-pathological cases (if e.g. limt→∞ tq(t)

exists), the case r 6= 0 corresponds to d.f.s with moments of all order, hence (ii) is satis-

fied, whereas such d.f.s with infinite moments correspond to r = 0 and then (ii) requires

a finite second moment.

With this notation we can formulate the following result, which is an obvious extension

of Theorem 4.1 of [11].

Theorem 3.1. (Large deviations property for r.v.s with subexponential tail).

Let (Zk)k∈N be i.i.d. r.v.s with d.f. F , hazard function Q and assume that the hazard rate

q exists such that the hazard ratio index (2.9) satisfies r < 1. Assume furthermore that

conditions C(ii) and (iii) hold. Then for any sequence (tn)n∈N satisfying

lim sup
n→∞

√
nQ(tn)/tn <∞ , (3.2)

the random walk (Sn)n∈N, satisfies

lim
n→∞

sup
t≥tn

∣∣∣∣P (Sn − ESn > t)

nF (t)
− 1

∣∣∣∣ = 0. (3.3)
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4 Applications

4.1 Transient random walks

Define the first passage time Ñ0 of the random walk (Sn)n∈N to (−∞, 0] by

Ñ0 = inf{n ≥ 1 : Sn ≤ 0} .

Setting

mn = min
1≤k≤n

Sk , n ∈ N ,

we have

P (Ñ0 > n) = P (mn > 0) , n ∈ N .

The key to the next result is the Baxter-Spitzer identity in combination with Proposi-

tion 2.4 and Theorem 3.1. The Baxter-Spitzer identity for Ñ0 is given by

∞∑
n=0

znP (Ñ0 > n) = exp

(
∞∑
n=1

zn
P (Sn > 0)

n

)
, |z| < 1 .

Since P (Sn > 0) = P (Sn − µn > |µ|n), we set tn = |µ|n. Then condition (3.2) holds for

(tn)n∈N if r < 1/2.

The next result follows from Theorem 3.1.

Proposition 4.1. (Baltrūnas [10])

If conditions C hold, then

1

n
P (Sn > 0) ∼ P (Z1 > |µ|n) , n→∞ . (4.1)

By Proposition 2.5, under conditions C, the right tail FI[0,∞) of F belongs to S∗.
Hence by Lemma 2.3 the sequence (P (Sn > 0)/n)n∈N belongs to S∗D. Setting Ψ(w) = ew,

Proposition 2.4 implies for B̃ as defined in (1.2)

P (Ñ0 > n) ∼ eB̃
P (Sn > 0)

n
, n ∈ N . (4.2)

From this we obtain the next result.

Proposition 4.2. (Baltrūnas et al. [11])

Assume that conditions C hold. Then

P (Ñ0 > n) ∼ eB̃P (Z1 > |µ|n) , n→∞ . (4.3)
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Define the first passage time T̃x to [x,∞) by

T̃x = inf{n ∈ N : Sn > x} , x ≥ 0 . (4.4)

Setting

Mn = max
1≤k≤n

Sk , n ∈ N ,

we have for all x ≥ 0

P (T̃x > n) = P (Mn ≤ x) , n ≥ 0 . (4.5)

Denote

L0 = 0 and Ln = min{r ≥ 0 : Sr = Mn} , n ∈ N ;

and set

V (x) =
∞∑
n=0

P (Ln = n, 0 ≤ Sn ≤ x) , x ≥ 0 ,

the renewal function of the strict ladder heights of (Sn)n≥0.

Lemma 4.3. (Baltrūnas [10])

If the sequence (P (Sn > 0)/n)n∈N belongs to S∗D, then

lim
n→∞

P (∞ > T̃x > n)

P (∞ > T̃0 > n)
= V (x) <∞ (4.6)

for each continuity point x ≥ 0 of V.

Lemma 4.3 shows that it suffices to investigate only the case x = 0. We have

∞∑
n=0

znP (T̃0 = n) = 1− exp

(
−
∞∑
n=1

zn
P (Sn > 0)

n

)
, |z| < 1 .

Using the fact that (P (Sn > 0)/n)n∈N belongs to S∗D, setting Ψ(w) = 1 − e−w, Proposi-

tion 2.4 implies

P (∞ > T̃0 > n) ∼ e−B̃
∞∑

k=n+1

P (Sk > 0)

k
, n→∞ .

Combining this with Proposition 4.1 yields the following result, which can be found in

Baltrunas [10] for d.f.s with eventually decreasing hazard rates. A careful analysis shows,

however, that this condition can be avoided.
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Theorem 4.4. Let (Zk)k∈N be i.i.d. r.v.s with d.f. F , hazard function Q and hazard rate

q. Assume that conditions C hold. Set Z+ = Z1 ∨ 0 and

F 1(t) =
1

E[Z+]

∫ ∞
t

F (u)du , t > 0 .

Then

P (∞ > T0 > n) ∼ e−B̃
E[Z+]

|µ|
F 1(|µ|n) =

e−B̃

|µ|

∫ ∞
|µn|

F (u)du , n→∞ .

Using different methods, similar results have been derived by Asmussen; see [1], [2]

and [3].

The following applications are based on the discrete skeleton of a Lévy process, which is

nothing else but a renewal reward process with positive rewards. Consequently we replace

conditions C by two separate sets of conditions, one on the renewal process with i.i.d.

inter-arrival times (Yk)k∈N with d.f. A, and another one on the (independent of (Yk)k∈N)

i.i.d. sequence (Xk)k∈N of rewards with d.f. B.

Condition A The inter-arrival time d.f. A is such that for every increasing function g(n)

satisfying g(n)/n→ 0 and g(n)/
√
n→∞ as n→∞, there is a positive constant cA and

an integer ng such that for n ≥ ng,

P
(
|SYn − nEY | > g(n)

)
≤ exp

(
− cAg2(n)/n

)
. (4.7)

Condition A is for instance satisfied when Y has any finite exponential moment.

Conditions B The reward d.f. B is absolutely continuous with density b so that its hazard

function Q = − logB has a hazard rate q = Q′ = b/B satisfying

(i) r := lim supt→∞ tq(t)/Q(t) < 1/2;

(ii) lim inf
t→∞

tq(t) > a(r) given in (3.1).

The conditions imply that X1 has at least a finite second moment and that B ∈ S∗.
The increments of the corresponding random walk are then

Zk = Xk − Yk , k ∈ N ,

with d.f.

F (t) =

∫ ∞
0

B(t+ u)dA(u) , t ≥ 0 .

Hence for B ∈ L we obtain by dominated convergence

F (t) ∼ B(t) , t→∞ ,

which implies in particular that F ∈ S or F ∈ S∗, whenever B is.
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4.2 Finite time ruin probabilities

We consider the Sparre-Andersen model, which is defined by the following quantities:

(i) The claim times constitute a renewal process, i.e. the interclaim times (Tn)n∈N are

i.i.d. r.v.s and we assume that they have finite second moment.

(ii) The claim sizes (Xk)k∈N are i.i.d. r.v.s with common d.f. B with EX1 = m < ∞.

The claim sizes and interclaim times are independent.

(iii) We denote by R0 = x the initial risk reserve and by c > 0 the premium rate. We

also assume that µ = EX1 − cET1 = m− c/λ < 0.

Define the risk process

R(x, t) = x+ ct−
N(t)∑
k=1

Xk , t ≥ 0 , (4.8)

where

N(t) = sup{k ≥ 0 :
k∑
i=1

Ti ≤ t} .

Defining by Rn the level of the risk process immediately after the n-th payoff, the embed-

ded random walk structure becomes visible. Note that

Rn+1 = Rn + cTn+1 −Xn+1 , n ≥ 0 . (4.9)

Then setting

Zk = Xk − cTk , k ∈ N ,

S0 = 0 and Sn = x−Rn, n ∈ N, defines a random walk with mean µ < 0.

Define in this discrete time setting the ruin time

T̃x = inf{n ∈ N : Rn < 0} = inf{n ∈ N : Sn > x} . (4.10)

Then the ruin probability before the n-th payoff is given by

Ψ(x, n) = P (T̃x ≤ n) ,

and the infinite time ruin probability is

Ψ(x) = Ψ(x,∞) = P (T̃x <∞) .

The following result is an immediate consequence of Theorem 4.4 and the fact that by

l’Hospital F 1(t) ∼ B1(t) as t→∞.

Note that ST and SY only differ by the factor c, so condition A is satisfied for (Yk)k∈N,

whenever it is satisfied for (Tk)k∈N.
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Proposition 4.5. (Baltrūnas [10])

Under conditions A and B,

P (∞ > T̃x > n) ∼ P (∞ > T̃0 > n)V (x) ∼ e−B̃(m/|µ|)B1(|µ|n)V (x) , n→∞

where V (x) is the renewal function of the strictly increasing ladder heights of (Sn)n≥0.

We are interested in the ruin time

τx = inf{t ≥ 0 : R(x, t) < 0} .

Using the discrete skeleton above we obtain the following result. We give a proof of this

result, since the proof in (Baltrūnas [10]), though correct, is somewhat obscure.

Proposition 4.6. Under conditions A and B,

P (∞ > τx > t) ∼ P (∞ > τ0 > t)V (x) ∼
∞∑
n=0

B1(|µ|n)P (N(t) = n)V (x) , t→∞

where V (x) is the renewal function of the strictly increasing ladder heights of (Sn)n≥0.

Proof. We have

P(∞ > T̃0 > N(t) + 1) ≤ P(∞ > τ0 > t) ≤ P(∞ > T̃0 > N(t)).

Define

Zn =
P (∞ > T̃0 > n)

B1(|µ|n)
→ e−B̃

m

|µ|
, n→∞ .

Since (N(t))t≥0 is ergodic with rate λ > 0, Anscombe’s theorem (see e.g. Embrechts et

al. [19], Lemma 2.5.8) applies giving

ZN(t) =
P (∞ > T̃0 > N(t))

B1(|µ|N(t))
→ e−B̃

m

|µ|
, t→∞ .

Hence,

P (∞ > T̃0 > N(t)) ∼ e−B̃
m

|µ|
B1(|µ|N(t)) , t→∞ .

Next, we use the fact that the integrated tail distribution B1 of X1 is independent of

(N(t))t≥0. We obtain by conditioning

B1(|µ|N(t)) =
∞∑
n=0

B1(|µ|n)P (N(t) = n) .

Since B ∈ L, we have that for t large enough

P(∞ > τ0 > t) ∼
∞∑
n=0

B1(|µ|n)P (N(t) = n) .

The left-hand asymptotic equivalence follows from a similar argument and Proposition 4.5.
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Theorem 4.7. (Baltrūnas [10])

Assume that conditions A and B are satisfied and that the hazard rate q1 of B1 satisfies

q1(t) = O(1)q(t), then

P (∞ > τ0 > t) ∼ e−B̃
m

|µ|
B1(|µ|(λ/c)t) = e−B̃

m

|µ|
B1

((
1− EX1

cET1

)
t

)
, t→∞ .

This section was based on Baltrūnas [10]. Further relevant work in this area can be

found in particular in Asmussen’s work, also with various collaborators, see [2, 3, 6].

Klüppelberg, Kyprianou and Maller [25] extend the results of [6] to the infinite mean

setting within the context of Lévy processes.

4.3 The busy period

In this section we study the busy period T̃ in a stable GI/G/1 queue under condition A

on the inter-arrival times represented by a r.v. Y and conditions B on the service times

represented by the r.v. X and we assume that EX = ρEY for some ρ ∈ (0, 1).

Denote the number of customers served in a busy period by

Ñ = Ñ0 = inf{n ∈ N : Sn ≤ 0} ,

Proposition 4.1 with (4.2) yields

P (Sn > 0) ∼ nP (Z1 > |µ|n) ∼ nP (X1 > |µ|n) , n→∞ .

Moreover, the busy period satisfies

T̃ = SX
Ñ
. (4.11)

Furthermore, by definition T̃ is the first index such that SXn ≤ SYn giving

SY
Ñ−1

< SX
Ñ

= T̃ ≤ SY
Ñ
.

Thus

P (T̃ ≥ SYn ) = P (Ñ ≥ n+ 1) , n ∈ N . (4.12)

Putting all this together gives the following result.

Theorem 4.8. (Baltrūnas et al. [11])

Under conditions B,

P (T̃ ≥ SYn ) = P (Ñ ≥ n+ 1) ∼ eB̃B(|µ|n) , n→∞ . (4.13)

12



Now define

N(t) = sup{k ≥ 0 :
k∑
i=1

Yi ≤ t} , t ≥ 0 .

Then

SYN(t) ≤ t < SYN(t)+1 , t ≥ 0 , a.s. . (4.14)

Define

Zn =
P (T̃ ≥ SYn )

P (X1 > |µ|n)
→ eB̃ , n→∞ .

By ergodicity of (N(t))t≥0 we can apply again Anscombe’s theorem and conclude

ZN(t) =
P (T̃ ≥ SYN(t))

P (X1 > |µ|N(t))
→ eB̃ , t→∞ .

Since B ∈ L, we obtain by (4.14)

P (T̃ > t) ∼ eB̃P (X1 > |µ|N(t)) = eB̃
∞∑
n=0

B(|µ|n)P (N(t) = n) , t→∞ ,

where the last identity comes from the independence of X1 and N(t).

Estimating the final sum on the r.h.s. making use of conditions A and B yields the

final result.

Theorem 4.9. Assume that conditions A and B hold and EX = ρEY for some ρ ∈ (0, 1),

then

P (T̃ > t) ∼ eB̃P (X > (1− ρ)t) , t→∞ .

This section was based on Baltrūnas et al. [11]. Jelenković and Momc̆ilović solved

the problem for subexponential service time distributions with log-concave tails and all

moments finite. The busy period asymptotics in the realm of regular variation has been

solved by de Meyer and Teugels [18], Boxma [12, 13] and Zwart [29]. Daley and collabo-

rators have studied related problems in GI/G/k queues including k =∞, see [15, 16, 17].

Further relevant work in this area can be found in particular in Asmussen’s work, also

with various collaborators, see [1, 4, 5, 7, 8].
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