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Abstract

Three classes of models for time series on acyclic directed graphs are considered. At first a
review of tree-structured models constructed from a nested partitioning of the observation interval
is given. This nested partitioning leads to several resolution scales. The concept of mass balance
allowing to interpret the average over an interval as the sum of averages over the sub-intervals implies
linear restrictions in the tree-structured model. Under a white noise assumption for transition and
observation noise there is an change-of-resolution Kalman filter for linear least squares prediction of
interval averages (Chou 1991). This class of models is generalized by modeling transition noise on
the same scale in linear state space form. The third class deals with models on a more general class
of directed acyclic graphs where nodes are allowed to have two parents. We show that these models
have a linear state space representation with white system and coloured observation noise.

Key words: linear least squares prediction, tree-structured model, mass-balance, acyclic directed graph,

linear state space model, linear Kalman filter, score vector.
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1 Introduction

The main problem considered in this paper is the optimal prediction and smoothing of stochastic pro-
cesses based on irregularly time-spaced observations for large or even huge data sets. Here optimality
means minimal linear least square errors. It is assumed that the data is generated by a continuous time
stochastic process. Distorted observations are made in discrete time points, where the distance between
them may very short compared to the length of the observation interval. It is also allowed that the time
points are irregularly spaced in time. Dacorogna et al. (2001) refer to such time series as irregular time
series. As they point out, most methods in time series analysis rely on homogeneously time spaced time
series. If the data is observed in irregularly spaced time points then a homogeneous time series has to be
constructed from the raw data. For this they propose linear interpolation, previous-value interpolation or
other operators such as the moving average operator. One drawback of these methods is that the length
of the homogeneous intervals between two time points has to be chosen carefully and some information
contained in the data may be lost. After making the time series homogeneous standard time series tech-

niques can be applied.

We review and introduce models that are formulated by averages over different time horizons, where
we do not need to construct homogeneous time series. The observation interval is divided on several
resolution scales into sub-intervals where these sub-intervals become shorter from resolution scale to
resolution scale. At the finest resolution scale therefore there are only short intervals that contain either
no observation, one or just a few observations. The aim of these models is to allow for fast summaries for
different time resolutions that are estimated by linear least squares prediction and smoothing. Another

matter of interest may be the relationship between the averages for different time resolutions.

Three classes of models are discussed in this paper. At first a review of models of Huang et al. (2002)
is given, which was formulated for spatial data. The spatial region is divided by nested partitioning into
sub-regions on several resolution scales. Corresponding to the nested partitioning they define a tree-
structured autoregressive stochastic process. Due to their application of nested partitioning they need
and introduce the concept of mass balance. In their model they assume the transition and the observation
noise to be independent, serially and mutually. In this case we speak of white noise otherwise the noise
is coloured. They also develop an algorithm for linear least square prediction of the averages over the
sub-regions which is connected to a tree-structure. Their algorithm is based on results of Chou (1991).
Formulation of these models for time series is straightforward. Hence we consider these models as a

starting point for modeling interval averages.

We first generalize these models by modeling transition noise on the same resolution scale in linear



state space form. The observation noise is treated in the same manner. The concept of nested partition-

ing and mass balance was retained.

Due to restrictions implied by mass balance these models imply an artificial structure of the correla-
tion matrix of the given data. So we formulate a third class of models where mass balance is omitted. As
a consequence the concept of nested partitioning is no longer applicable and replaced by an overlapping
interval arrangement. The tree-structure is no longer maintained when overlapping intervals are used so

we formulate models on a more general class of acyclic directed graphs.

Autoregressive stochastic processes on acyclic directed graphs with white transition and observation
noise and a corresponding algorithm are discussed by Huang and Cressie (2001). Again we generalize

these models by allowing a linear state space model for the transition and observation noise.

Since the algorithm proposed by Chou (1991) and Huang and Cressie (2001) is no longer applicable
for models on graphs with coloured noise we show how to find a linear state space representation with
white system noise and coloured observation noise for these models. Therefore we give a brief review
of these linear state space models. A Kalman filter (Chui and Chen 1999) is applicable and an exist-
ing Kalman fixed point smoothing algorithm (Durbin and Koopman 2001) was modified to allow for

coloured transition noise in the state space domain. With regard to maximum likelihood estimation of

the unknown model parameters we derive an analytical representation of the score vector.

2 Linear Least Squares Prediction of Interval Averages in an Additive
Error Model

Huang et al. (2002) consider a continuous time stochastic procéss= p.(s) + n(s) over an spatial
regionG. Since we are interested in models for time series we replace the spatial region by the ob-
servation intervall. u(s) is assumed a deterministic mean process#rgl a stochastic process with
finite variance and zero mean. We assume that distorted observat{ohsf the processY are made

at discrete time pointg which are irregularly spaced in time, i.e.
Z(ti) = X(t:) +e(ts) (¢ €1),

wheree(t;) is a random error variable with zero mean and finite variance.

As in Huang et al. (2002) we are interested in fast summaries of the pradggsover sub-intervals

of I with different lengths. For this
1),
Y = — [ n(s)ds
1 /,"
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is considered as the average valueyaiver the intervall. Here|I| denotes the length of the interval
1. In particular! is divided on a first scale into several sub-intervals. These sub-intervals are divided
into shorter sub-intervals on following scales. Latenote the scale. On each scale the sub-intervals are

numbered starting with = 1 from the left to the right.

The goal is to find linear least square estimates in terms of the complete dataXeuftor

1

1) Yig ==
Lkl J1,

n(s)ds.

Let L(Y'|Z) denote the linear least square prediction operator of a random vaYiagpleen dataZ and

A" the generalized inverse of the matdik Then linear least square estimates are given by
2) L(Yj 4| Z) = B(Y) + cov(Y; x, Z)57(Z — E(Z),

whereX z := var(Z). Formula (2) can be found e.g. in Hamilton (1994), Section 4.1.

For application of (2) one has to know the complete covariance-structldgg ahd Z and has to invert
the matrixXz. For big or even massive data-s&fsthis may be very consuming of computation time.

Thus we introduce in the following sections algorithms for recursive computation.

3 Tree-structured Models with White Noise

Chou (1991) introduces tree-structured models with white system and observation noise. He derives
a tree-structured Kalman filter and smoother for calculation of linear least squares prediction. In this
section we review this model including the notion of mass balance, since we will consider this model
as a first model for interval averag®s;, defined in (1). Huang et al. (2002) partition the observation
interval I into nested sub-intervalg ;.. This means, they allow for no overlapping of intervals, and each

sub-interval has just one parent. A precise formulation is given in the following definition

Definition 3.1. (Nested Partitioning (Huang et al. 2002):)
Let a real interval I with length |I| > 0, a natural number J € N and a family of natural numbers

(Nj)j:1 with Nj.; > N; (j = 1,...,J) be given. A collection of sub-intervals {I;, C I : j =



1L,...,J, k=1,...,N;} iscalled a nested partitioning on I, if the following conditions hold:

0] |Ij,k|>0(jZl,...,J;k:1,...,Nj),
N;
k=1
Nj
(iii) ULk=1G=1,...,7),
k=1
(iv) VI]’k (j:2,...,J, kzl,...,Nj)Elk’ € {1,...,Nj_1}

suchthat I, C Ij_q .
3.1 TheTreestructure

Huang et al. (2002) consider a (univariate or multivariate) random process indexed by the nodes of a tree
(T,E). T denotes the set of the nodes and E the set of the directed edges. For the tree (T,E) we introduce

the following notation:

J : finest scale
j : scale, withj =0,...,.J.
Nj : number of nodes on the scale(j =0,...,J).
(7, k) : k' root on the scalg, counted from the left to the right.
pa(j, k) : parent node ofj, k).
an(i, j, k) : ancestor node on the scalef the node(y, k).
ng : humber of children of the root node.
nj - number of children of the nodg, &).
ch(j, k1) : 1™ child of the nod€(j, k).
de(i, j, k) : the descendants on the scalef the node(y, k).
Example 1. As an example we show a tree with the finest scale J = 3,and n;;, =3 (j = 0,...,J —
I;k=1,...N;) inFigure 1. For example take the node (2, 1). Then the following relations hold:
parent node of (2,1) : pa(2,1) = (1,1),
ancestor node of (2,1) onthescalej =1: an(1,2,1) = (1,1),
first child of (2,1) : ch(2,1,1) = (3,1),
descendants of (2,1) onthescalej =3 : de(3,2,1) = ((3,1),(3,2),(3,3)).
Together with the nested partitioning from Definition 3.1 we immediately get a tree of intervals, where

the original interval I is assigned to the root. The interval I ;, from Definition 3.1(iv) could then be

called achild of interval I,y (j = 1,2,3;k = 1,..., N).
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Figure 1: Tree-structure of Example 1

It is assumed that the process evolves from parents to children in an autoregressive manner. The process
itself is considered as hidden. The corresponding observations are connected with the random variables

on the finest scale by observation equations. Thus Chou (1991) considers the following model:

Definition 3.2. (Univariate Tree-structured Model:)
Let atree (E, T') with thefinest scale J and n; ;. children (j = 0,...,J -1,k =1,...,N;) begiven. A

tree-structured stochastic process can then be defined as follows:

Root: Yo,
3) Transition equation: Yie = Youiip) T Wik G=1,...,J; k=1,...,Nj),
4) Observation equation: Zr =Y +Qr (k=1,...,Ny).

We restrict ourselves to the special case where observations 7, are available only at the finest scale J.

Then we can index themwith a single index k. W} ;. is called transition noise and (), observation noise.

Let X 1 Y denote that random variables X and Y are uncorrelated. If normal joint distribution of
the random variables is assumed this is equivalent to independence. Chou (1991) makes the following

white noise assumptions.
E(Yy) = 0, B(YY) < oo,
E(Wjk) =0,0%, = E(W?) < oo,
(5) E(Qk) = 0,73 := B(Q}) < 0,
Wik LYo, Wig L Wiy (5 #4),
Wik L Q, Qr LY.

Further assumptions necessary for the transition and observation noise will be given in the following

subsection.



3.2 The Concept of Mass Balance

The concept of mass balance was introduced by Huang et al. (2002). In (1) the average vgl)e of

was defined by
1
Yip == |I— n(s)ds.

It is natural to assume that the average value of the progigover the intervall ;. is the sum of the

average values of(s) over the sub-interval§,,; ), = 1,...,n; . Thatis, it is assumed that
gk

(6) Yie =Y Yeriipp
=1

holds forj =0,...,J -1,k =1,..., N;. This assumption was denoted by Huang et al. (2002) as mass
balance. This is equivalent to requiring

njk

/ n(s)ds = Z/ n(s)ds.
I g Teh(kn

7 =1
It can easily be shown that mass balance in (6) can be characterized by

Tj,k

@ Z |Ich(j,k,l)|Wch(j,k,z) =0, or
I=1

nj k
8 var (Z e Wen(i l)> =0

forj=0,...,J-1Lk=1,...,N;,l =1,...,n;, We can solve EquatiofV) for a choseW,; r.,):

gk
1 Js
WenGirn = =11 > Men(ie | Wen(i
(9) ch(g.k.0)I 24

AL
(G=0,....,J =1 k=1,...,N;, [=1,...,n;4).

I [ Leniien| = Hengenl (0=1,...,n5%), i.e. for(l = 1,...,n;,) the sub-intervals have equal length
Equation (9) simplifies to

’I'ij

(10) Wen(j k) ZWch (k)

A;ﬁl
3.3 Vectorized Tree-structured Models

Since the mass balance of a particular node involves conditions on all children of this node, it is con-
venient to combine these children in a vector. Together with Definition 3.2 this yields the following

vectorization (see Huang et al. (2002), Subsection 3.2):



Definition 3.3. Given a tree-structured model asin Definition 3.2. For j =0,...,J—-1,k=1,...

Huang et al. (2002) define

(11) Y (k) = (Yen(ik,1)s Yen(ik,2)s - -0 Yen(ikoms ) s

(12) W enik) = Wengi1)s WenGk2)s - - s WenGiskg 1)

(13) Z1, = (Zeh(pa(sk),1)» Zeh(pa(dik),2)s - - - » Leh(pa(dik)rsg))
(14) = (Qch(pa(1k),1)» Qeh(pa( k) 2) - - - » Qeh(pa(Tk)rsp)) -

(G=0,....,J —1L;k=1,...,N;).
We introduce some additional notation:

K; : Number of nodes on the scale j in the vectorized tree-structured model

ik : Number of elements in the random vecds;, (j=1,...,J; k=1,...,Kj).
With this notation the following relations hold
K;=Nj1 (j=1,...,J),
Tk :npa(jyk) (] = 1,...,]; k= 1,...,Kj),

Wineg=Weuir G=2,...,J -1 k=1,...,N;).
We illustrate this vectorization by the following Example:

Example 2. For thetreein Figure 1 we define

Yiq Wi

=1 Yi1:= (Yo Wii=|Wip
Yi3 Wiz

Yo Wa 1

=2 Yoi:= | Yoo Woy = | Wap
Yo 3 Waz

Yo, Wau

Yoo :=| Y5 Woo = | Ways

Yo Wag

Yo7 Wa.z

Yo3:= | Yog Wy = | Wag

Yoq Wag

Y31 W31

j=3: Y3,1 = Y372 W371 = W3,2
Y33 W33

Y305 W3 .25

Ys3o9:= | Y32 W39 := | W36

Y397 W3 27
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e
(2,1) (2,2) (2,3)

Figure 2: Tree for vectorized nodes in Example 2

This vectorized tree is shown in Figure 2.

We now consider the variance matrixW; ;, 7 = 1,...,J, k = 1,..., N;, under mass balance. For
this let
EW o = 0ar(Wenir)
E(Wgh(j’k,l)) EWenGieyWenik2) -+ EWenGrnyWenikong i)
EWenk2)Wen(jk,1)) (th(] k) o BEWenk2)Weniikng i)

EWen(ien; ) WenGie,1)  EWen(ikng ) Wen(ik,2) - EWZ k)
(G=0,....0-1,k=1,....K;).

Using Equation (9) the elementts=1,...,n;; — 1 of the last column oEw, ., have to satisfy:
’I’Lj,kfl

=1 ch(jkmj 1)

[ Len(j e, 0|
‘—JLLL——LTVVaMmmAﬂ

(15)

njr—1

I E Woris
[ Len(j ke i) /\z:; | Lok MV E (Wen (o) Wen(i k)

B 1

and the last element of the last columnFgiv2 SinceXw , ; ., Is symmetric, the last row

ch(j,k,mn;, ))

of EW i is simply the transponse of the last column3af, Huang et al. (2002) proposed a

ch(j,k)’

simple method for constructing positive semi-definite matrices satisfying mass balance which are used

as variance matriceSw,, (j =1,...,J,k=1,..., K;). They assume that the condition
- 2 2 2 2 2 2
mind | Ten(i e ) Tenjpny Hen(ik2)| Uch(j,kg)a"'auch G )| O en(seom, ) >
(16) <X

2
E |ch]kl Och(j,k,l
n]k(n]k_l hiGiksl)

11



is satisfied. Recall thaut]?’k =wvar(W;y)forj=1,...,J,k =1,...,N;. Further they define

1 /
Fch(j,lc) = Tk — 1 (nIn]k - ]'nj,k ln]-,k)a
1 1
Goniig) = (1—7>1n. o 1,1
(4.) (njk —1)2) TR (g — 1) T
2\/
Tch(j,k) (|Ich (4,k,1) 7 R |Ich(j,k,nch(]-,k))| ) )
2 2 2 2 /
Qch(j,k ch(j,k,1) | W Teh(Gk, 1) |ICh(j7k7nch(j,k'))| UCh(jak:nch(j,k))) ’

= (1
Cch(jk) ‘= G h(4,k) Tch(j,k)»
then the matrix defined by

A7) ZBwyg = (diagragr) " Fongrdiog(eon i) Fengr (diag(renr) ™

is semi positive-definite and can be used as variance matrix. If for a (yo&lg in a univariate tree-

structured modedr ) (1 =2,...,n5,) and| Ly x| = [Lenk,1)l holds, (17) reduces

o2
h(Gikd) = Teh(jk,1

to

1 1
2 o
Ewch(j,k-) = O-]+1(ITLJ +n]—1InJ _—'n/]—]_ln]l;bj) (] —]_,,J—]_)

Transition Equation (3) and Observation Equation (4) can be rewritten for the vectorized model given by

Definition 3.3 as follows:

(18) Transition equation: Yj+1,lc = 1nj,k)/}',k + Wj+1,lca

(29) Observation equation: Zy=Y,+Qy (k=1,...,Ky).

The white noise assumptions (5) for the univariate model imply ferl,...,J,k =1,... K]
(20) Wir LYy, Q LY,

and{W,;,j=1,....,J)k=1...,K;} and{Q,,k = 1,..., K} are families of mutually and seri-

ally orthogonal random vectors.

Chou (1991) introduced an efficient tree-structured Kalman filter and smoother for these models. The
algorithm has the advantage that, in case of a huge number of obsentidrean be easily performed

in parallel problems of smaller dimensions. Estimation of unknown variance parameters of the transition
noise can be done by an EM algorithm, as formulated in Huang et al. (2002). They assumed the variance
of the observation noise to be known, for instance by information available for the measuring device or

from independent experiments.

The most severe drawback of this setup in our opinion is the fact, that the model given by (18) and

12



(19) implies an artificial block structure of the correlation matrixbf In Appendix A we give an Ex-

ample that demonstrates this behavior. It is not possible to generate a stationary correlation function for
Z. As a possible solution Huang et al. (2002) suggested to compute the estimates as an average over a
number of mass balanced, tree-structured models with different tree branches. They also pointed out, that
the estimation variances and covariances will be considerably more complicated and the computational

complexity will increase with the number of trees used.

4 Tree-structured Modelswith Coloured Transition and Observation Noise

In order to smooth the block structure of the implied correlatio® afe relax the white noise assumption
while maintaining the orthogonality of transition noise on different scales and the orthogonality on the

observation noise, i.e.
Wi LW, forj#iandW;;, L Q,forj=1,...,J k,l=1,...,Kj.

But we now allow for correlation of the transition noise on the same scale. For this we note that there is
only one node on the first scale of the vectorized tree. Further we assume for a given=sale. ., J

andk =1,..., K; — 1 the vectorized transition noise to be a vector AR(1)-process (see for example Wei
(1990), Section 14.3) given by

(21) Wiki1=BjiWr+ Vg,

whereV ; ;. is a zero-mean random variable and all of its components have finite variance. Furthermore

we assumé’; ;. L W andV, LV, for k # [. This implies

LW, p1lWii,...,Wji) = LW p41|W k) = coo(W jq1, Wj,k)zljvj,k Wik
Therefore,B; ;. = E(ijkHW}’k)E;Vj’k.
Let w;; be a realization of the random vectW; .. The Mass Balance Equatid®), which is still

assumed to hold, states that a single elemeni;ipis uniquely determined by the other elements. This

implies a restriction on the covariance matiXW ., W', ;). More precisely, from Equatio(8) it

follows that forhA = 1,...,m;; — 1
. 1 nj k411

22) B(Wen(aettng oy Wenen)) eT— > Wen (k41,0 EWen G k41,0 Wen (i k0
_ 1 gk

(23) E(Wen(,k+1,0Weh (G, kn; ) T MenGikang )] 220 MenG k) BEOWen( k41, Weh(ikon 1)

1
(24)  BEWen(ikrimj ) WenGokan; 1) = enG kM EWenGoht1m 1) Wen(k.n)-

_ 1 Z"]ak‘
‘ICh(jak+l,nj,k-+1)| A=l

Note thatE(Wen(j i+ 1, 410) Weniikny) fOr A =1,...,n; . is computed in Equation (22).

13



Let Wlh(j,k) . As seen from Equation
28 EWen(jk+1,m;400) Wen(i ks 1)) 1S @ Weighted sum of all of the elements in the maE()W} HIW}',C).
Since|cov(X1, X2)| < y/var(X;)var(Xs) holds for two random variableX;, X,

(25)

denote the vectoW ,,(; ) Without its last eIemeanh(j,k,nj,k)

nj k=1

1
|I . | ‘ Z |ICh(]ak7)‘)|E(W0h(]ak+17n],k+l)WCh’(]:kaA))‘ S O-Ch(jak+17nj,k+l)O-Ch(jakznj,k‘)
ch(jk+1mje+1)l N4

has to hold. In simulations with several covariance matrEeﬁfj,kHW}’k) Condition (25) turned out

to be just a necessary but not a sufficient condition to obtain a positive semidefinite matrix
var(Vjx) = var(Wig — BjuWik) = Sw, ., — BjxZw, Bl

SinceB;; = E(W ;11 W))Zy,  holds, the matriwar(V;x) depends ot (W .41 W7 ). Thus
one problem of this model is to find sufficient conditions for the maﬁ(m,k+1W9,k) to obtain a

positive semidefinite matrixar(V; ;) such that mass balance is satisfied.

For the observation noise we proceed in a similar manner:

Qi1 = DiQy + Uy,

with E(U) =0,U L Q, andU;, L U,. Since we do not require mass balance for the observations,

the problems discussed for the transition noise don’t occur here.

Since the derivation of the tree-structured Kalman filter and smoother mentioned in the previous sec-
tion make distinct use of the orthogonality of the noise it doesn’'t apply to Model (18),(19) and (21).
But this model has a state space representation with white system noise and coloured observation noise.
This state space representation will be derived in Section 6 for more general models defined on acyclic
directed graphs which allow several parents of a node. Chui and Chen (1999) derived a Kalman filter
for such state space models. A Kalman smoothing algorithm, as in Durbin and Koopman (2001) can be
modified for such state space models. Estimation of the unknown parameters can again be carried out by

an EM-Algorithm.

Forcor(Z) the vector AR(1)-structure of the observation noise seems to have no great effect. The major
effect is brought in by the vector AR(1)-structure of the transition noise. The structuse (&) depends

on the specification of the covariance matriﬂE(Wj,kHW"j,k) forj=2,...,Jandk =1,...,K;—1.

But stationarity of the correlation function & was still not obtained. The correlation matrix Bfnow
depends also on specification E(Wj,kJer}’k) or B, respectively. Example 6 given in Appendix

A illustrates this. On the other side we have to speﬂwj,HlWQ’k) carefully and therefore have

more parameters to estimate than in the tree-structured model with white noise. Thus it is questionable,

14



whether the model with coloured noise is really an improvement for the desired inference of time series
data. It seems that these problems are the result from using the concept of mass balance. In the next

section we therefore introduce a model, where no mass balance is assumed.

5 Extensionsof White Noise Linear State Space Models

In the next section we will derive a linear state space representation for an autoregressive stochastic
process indexed by the nodes of an acyclic directed graph. For this reason we give in this section a
short review about extensions of linear state space models. For a detailed discussion see e.g. Chui
and Chen (1999). This section is arranged into several subsections. At first, we discuss linear state
space models with coloured observation noise which are needed in Section 6 for autoregressive models
on acyclic directed graphs. Then we give a brief summary of the Kalman filter and Kalman one step

predictor for these state space models. These two subsections refer to Chui and Chen (1999). In the
next subsections we state smoothing algorithms, where we follow the approach in Durbin and Koopman

(2001) for white noise linear state space models. Since we consider linear state space models with
white system and coloured observation noise some modifications have to be made. Then we discuss
the treatment of missing observations, which are necessary to consider for the models in Section 6. For
maximum likelihood estimation of model parameters we then derive an analytical representation of the

score statistic in the last subsection where we assume additionally normal distribution.

5.1 Linear State Space M odel with White System Noise and Coloured Observation Noise

Chui and Chen (1999), Chapter 5, considered the following class of linear state space models with white

system noise and coloured observation noise:

(26) Transition equation: X1 = Ap Xy +Th€,,
(27) Observation equation: Zy = C1L X} +ny,
whereX ), € R™ , ¢, € R™, Z € R™ . Thereforen, € R™ , A), € Rmk+1<mk Ty € RMk+1 XMy

= Z . . . . . .
andC\ € R™: *™k, T is assumed to be either a selection matrix, i.e. only some diagonal elements are

equal to one, as all the other elements are equal to zero, or to be a matrix of the form

block 1
Fk: = )
block p
wherep € N andblock m is a selection matrixi;m € {1,...,p}, andblock I = 0forl =1,...,m —

1,m + 1,...,p. In the latter case we say thB}, is a block selection matrix. For the transition noise
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{¢,,k > 1} and the observation noigey,., k£ > 1} Chui and Chen (1999) assume
E(&) =0, var(€) < oo, E(ny) = 0, var(ny) < oo,

€ L Xi & LE (kK#1), & Ly (k1 >1),m, L X (k1 >1).

For the observation noisg, they additionally assume

(28)

(29) e = Ni_ime_1 +vp (K>2), withy, Loy, v, L, (k#1).

Ny 1 isam? x m# | real matrix. If Ny_; = 0 Chui and Chen (1999) speak of white observation
noise, and if on the other ha¥,_; # 0 they say that the observation noise is coloured. Of course
all their derivations and our derivations given below hold for both cases. So we can regard the case of

coloured observation noise as a more general case than white observation noise.

The state vectorsX; are assumed to be unobserved. Thus they have to be estimated from the data.

For this we denote fok > 1

Yz, :=var(Zy),

Zk = (ZlaZQa-"aZk:)la

~

X := L(X 1| Z").

The estimation error is defined by
Xy = Xp — X

The Kalman filter is a recursion for calculating the linear least square estiﬁigg@and the correspond-

ing mean square error mati3,, := var(Xy).
Kalman one step prediction deals with the computation of
ch+1|k = L(Xk+1|Zk)a

§~31~c+1|k = UGT(Xk+1|k),
whereX‘HHk = Xgy1 — X'H”k denotes the one step prediction errorfor 1.
Let N denote the number of state vectdss, ..., X y. Further definez" := (Z,,...,Zy)". The
Kalman fixed point smoother is a recursion algorithm for the computation of

X = L(Xk|Z"),

f3k\N = WT(XMN),

wheref(,dN =Xy — Xkuv denotes the estimation error &, in terms of ZY fork =1,..., N.
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Kalman filtering, prediction and fixed point smoothing rely on decomposition of the data \@&dtdo

so called innovation@ which are defined fok > 2 as linear least squares prediction errors
(30) Ok = Zy — L(Z| 2" ),

whereZ*~! denotes the vectdiZ,, ..., Z,_,)’. With Schneider (1986) (Satz (2-15)) the relatinL
Z*=! holds and thus{ek,kz > 2} is serially orthogonal. Similarly to Chui and Chen (1999) we can
derive two representations fég. Using the Observation Equation (27) and the Transition Equation (26)

wegetfork=1,..., N

Zy=CpXp+my =CiXp + Npoimp 1+
= Cr(Ap—1 Xp1 +Tpoi€m1) + Nio1(Zo1 — Cro1 X o)+
= (CrAy1 — N 1Cr )X 1+ N1 Z  + CrhTi&p 1 + s
(31) =H, 1 Xy 1+ Ny 1Zp 1+ CpT_1&,_1 + v, With

(32) Hj_1:=CAj_1 — Ny_1Chy.

Since¢;, L X and§, L v, we conclude thaf/(¢,Z),) = 0 and thusL(&,|Z*) = 0. From Assump-
tion (29) it follows thatL(vy,|Z* ') = 0. Substitution of (31) into (30) yields

33 O0r =2y — L(Hp1 X1+ Ng1Zp—1 + CrTho1&, 1+, 257
=Zy - chle-k—Hk—l — Ny 1Z .
Further substitution leads to
(34) 0r =H) 1 X1+ Ny 1Zp 1 +CrTro1€y y +v, — Hi 1 X1 — Ni1Zy1
=Hp (X1 — Xpoqpe-1) + Cule—1€1 + 7

Note thatX"k,”k,l is a linear function ofX;_; and Z*~'. ThereforeE(Xk,Hk,lgg_l) = 0 and

E(Xj 1k 17)) = 0holds fork = 2,...,N. Thus
(35) Ay :=var(0) = Hp 1 Sy_y 1 H}, | + CiTi_var(&,_)T,Cy + var(vy).

5.2 Kalman Filter and One Step Predictor for State Space Models with White System
and Coloured Observation Noise

In Chui and Chen (1999) the Kalman filter is initialized by
X1 = B(X1) —var(X1)C\ 2, C1(B(X1) - Z1),

(36) - _ _
Y = var(X1) — var(Xl)C’IIEZC’war(Xl).
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Then the following recursion formulas hold for the Mod26), (27) with & > 2 (Chui and Chen (1999),
(5.21), page 73):

(37) G = (A1 Zy 1 1 Hj_y + Tpyvar(€,_)Tp_ Ch) - ALY

(38) Fi:= A, —G.Hj_,,
(39) Sik = FuSp_ijp—1Ay_1 + (I, — GrCr)Th_1var(€, )Th_y,
X = A1 X151 + Giby.

In Equation (39) the Representation (33) is used. Note that the Representation (34) contains unobserved

components. These are the filtering equations. With Transition Equation (26) we get for the one step

predictions fork > 1

X1 = ApX gy,
(40) ) o
ik = ArBpp1 kA

sinceL (¢, Z%) = 0.

To obtainX’kW andf)kw fork =1,..., N we have to apply a Kalman fixed point smoothing algorithm.
Since the algorithm makes use of the innovati@psrather than of the data vecta#., we can replace

Z . by 0. successively to save memory space. The matmcjgk and Gy have to be stored. It may be

the case, that these matrices are not different fok etnIthA,;1 = Al‘l holds for somd = 2,..., N

and G, = G, for somem = 2,..., N. Then only the different matrices have to be stored, together
with the information to which indices they correspond. The matr{dég,k =2,... ,N} need not

to be stored, if sufficient memory space is a problem. It may be the case, that there are as well only
a relative small number of different matric#. On the other hand, they could be computed in the
smoothing step again. In our applicatioAg andC},, k = 1,..., N — 1 happen to be sparse matrices

of simple structure, where matric®&; have relatively small dimensions and may be only a small num-
ber of differentN, for k = 1,...,N — 1. ThusA,, C}, and N, need not much memory space and
computation ofF’;, and H;, can be done without much effort. Matric€%, are needed anyway for the
computation OEMN andvar(ékw). Matrices{T';,k = 1,...,N —1} are also needed in the smoothing
step. {Fk, kE=1,...,N — 1} are sparse selection matrices. For smoothing we need also the matrices
{var(y;),k = 2,...,N} and{var(&;),k = 1,...,N — 1}. Again, there may be only a relatively

small number of differentar (v, ) andvar(&;,).
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5.3 Kalman Fixed Point Smoother for Linear State Space Models with White System
and Coloured Observation Noise

Similarly to Durbin and Koopman (2001) (4.25) and (4.30) we define recursively forv, . .., 2

(41) Py :=H, A, 'Hy_ + F}P,Fy,

(42) Ry 1 :=H)_ A;'0) + F}Ry,

wherePy = 0andRy = 0. Ifindexk = N — 1,...,1 is interpreted as a time index thd®, is a
linear function of the inverse variance matrices of innovations occurring afterktimed R, is a linear
function of innovations occurring after timle Then we compute fok = N —1,...,1 using X;; and
Sk from the Kalman filtering (36) - (39)

Xy = Xk + SppRe,
(43) 8 . . .

YN = Vg — Vg Prepk-
Note thatf(MN and i)N‘N were already computed by the filtering step (36) - (39). The derivation of
(43) is given in Appendix B.

For the derivation of the score vector we need the smoothed disturbgfjges= L(v;|ZN), k =
N,...,2 andém‘N = L(gm‘N|ZN), m = N —1,...,1. The corresponding smoothed estimation

errors are denoted by

Y =1k — Lyl ZV),

£m|N =&, — L(£m|N|ZN)

The mean squared error matrices (;y) and var(émw) are also needed for the derivation of the
score vector. Computation of the smoothed disturbances and the corresponding mean squared error

matrices can be done using the following recursion formulas:

YN = var(v;) (A, 60r — GLRy),
(44)

var(Fy ) = var(yy) — var(v,) (Ap ' — GLPLGy)var(vy),
Exiv = var ()T Cl ALl 041 +var(€) (T, — Giy1Crit) Riy,
(45) var(€yy) = var (&) —var(€p)TCl i Ar ), Cria Trvar (&)
—var (&) (T — Gi11Cki1) Pryt (T — Gr1Crya Jvar(€y).-

In Appendix C the derivation of the equations i andékw and in Appendix D the derivation of

the equations fovar (Y ) andvar(ékw) are given.
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54 Missing Observations

In our applications of Kalman filter and smoother algorithms for linear state space models with white
system and coloured observation noise we might have to allow for missing observations, that is there is
no observation connected with the state ve&grfor somek = 1, ..., N. In this case we defin€, to

be a zero matrix of appropriate dimension and we re-define (27), (29) and (32) more generally as:

7. . C_'ka+77k ,fOfC_'k;AO
ke Z_ , for C_'k =0,
Nk_ N1t ,forC_J’k;éO
(46) 0 :={ e 2
Np_1 ,forCy =0,

He o e CrAj—1— Np_1Cpqy forCp #0
k—1:= _
0 ,forC,. = 0.

For C}, = 0 (46) impliesN;_; = I and~, = 0. There is no new information related #, and the
innovation8, = Z,; — L(Zk|Z’“‘1) is a zero vector with variance matrix, = 0. But derivations of

Kalman filter and smoother algorithms hold also for the case, when the inverse variance matrices that
occur are replaced by their generalized inverse (see e.g. Hamilton (1994), Section 4.2, +o00

the generalized inverse matrix 48, = 0, implying for (37) and (38)G), = 0 andF, = A;_;. The

filtering and the smoothing equations can then be applied in both cases when observations connected to

a specific state vector are observed or not.

5.5 Derivation of the Score Statistic

Since often model parameters are unknown in practice they have to be estimated. For linear state space
models maximum likelihood estimation is commonly used, see e.g. Durbin and Koopman (2001) and
Harvey (1987). Here the score statistic becomes important for the application of an EM algorithm or for
numerical maximization. For this reason we give in this section a derivation of an analytic representation
of the score statistic for linear state space models with white transition noise and coloured observation

noise.

Let ¢ denote the vector of the unknown parameters in a parameter $pacehe parameter vector

1) might consist of unknown variance and covariance parameters and some nonnegative weights. There-
fore we assume th& C R} xR" with ¢, € N. The likelihood function o) formed from the observed

data is given by

L(p; ZV) = p(Z";4p),

wherep(Z";4)) denotes the probability density function 8t in terms of the parametegs. Similarly

the likelihood function ofy formed from the complete set of the unobserved state vectdrs:=
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(X1,...,X )" and the observed da@" is given by
Lip; XN, ZN) = p(XN, Z7;4p),

wherep(X", ZV; ) is the joint density ofX"¥ and Z" in terms of the parametes.

As in McLachlan and Krishnan (1997) we define the score statistic based on the observefl data

as
N
S(ZN ;) = %j’z), and corresponding to the complete da®", ZV) by
47 N N
S(XY,2¥) = PO I,

Under regularity conditions like continuity, the interchange of integration and differentiation is valid. For
this case McLachlan and Krishnan (1997) show that for a fixed valgeQ S(Z” ;) can be written

as

— 0
(48) S(ZN; ) = %E{, [log L(Tﬁ;XNaZN)Hw:&

We use (48) for the derivation of the analytic representation. For this we assuni¥ttemid Z" are
jointly normally distributed in addition to assumption (28). Furthery(&,) andwvar(sy,,) are either
non-singular or zero matrice8,= 0,..., N —1,m = 1,..., N. In the latter case the termar(&,) ",

var(y,)~" in equations below have to be replaceddy

We will need the following result (see e.g. Kailath et al. (2000), Appendix 3.C):ILEV be two

jointly normally distributed random vectors. Then

LU|V) = E[U|V),
(49)
var[U — L(U|V)] = var(U|V),
whereE (U |V') denotes the conditional expectation and (U |V') the conditional variance di given
V. Furthermore, the random vectbi| V' conditioned orV is normally distributed with mea®' (U |V')
and variance matrixar(U|V').

Applying Bayes Theorem yields
(50) p(XN,ZN3p)=p(X V;90)p(ZN | X N i9p) =p(X 13%) [Tjy P(X k| X1, Xk 159).

Using (26), (28) and (49) we get

1) L(Xp| X1, Xp1) = Xk Xpm1) = B(Xg| X 1) = Ap1 X,
var(X | Xg_1) = var[ Xy — E(X | Xk_1)] = Tr_1var(&,_1)Th_;.
In addition we have

N N

52)  p(XNiy) =p(X 1) [[ p(Xil X1, Xpo139) = p(X159) [[ (X8 X i—159),
k=2 k=2
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wherep(X 1| X x_1; ) is a multivariate normal density with meat),_; X ;,_; and variance matrix

Ty_jvar(&, ;)T,_,. Using again Bayes Theorem we have

N

p(ZN| XN ) = p(Z1| XV 9) [[ p(211 251, X5 4p).
k=2

Applying (27) and (28) together with (49) it follows
E(Zl|X1) = C_'lE(X1|X1) + E(n1|X1) = C_'l.Xl,
var(Z1|X1) =var|Z, — E(Z,|X1)] = var(n,),
E(Zp| 2", XN) = CLE(X | 2", XY) + E(ny| 2", X)

(53) - k-1 N k-1 N
= CLE(Xy|X )+ N 1 E(mp_|Z°7, X7) + E(y| 2", X)
= C_'kE(Xk|Xk) -+ Nk—lE(nk71|Zk—1,Xk—1) +0
=FE(Zp|Zy 1, X1, Xk),

sincen,_, = Zy_ — C_1X;_1 is alinear function ofZ;_, and X ;_;, and~, L Z*¥~1 X" This
MNk—1 Yk

yields

E(Zy|ZF 1L, XN)=Cr X+ Np_1m4_1,
&Y var(Zy| Z8 1, XN) = var[Z), — E(Zy| 251, XN)] = var(y,,).
We define

Sincel'; is a selection matrix or a block selection matrix the relafiph;, = I holds and it follows that
€ =TTy = Ty (X1 — T X ).

The complete log likelihood can now be calculated as follows

(55)
log L(yp; XN ,ZN) =log p(XN,ZN yp)=log p(X ") +log p(ZN | XN ;2p)

=log p(X 1;%)+ 31 log p(X | X p—150)+log p(Z1| X 1;9)+ 3 s log P(Zk|Zr—1, X -1, X 3)

=const-— 3 | log(|var (&,))+&pvar(§o) ™" &p+Hog(lvar(v1) ) +yivar(v1) ™"y,

+ N, [log(jvar (€, 1)) +€)_ yvar(€_y)~ 5y +log(lvar (v ))+v4var (ve) = vk
= const—1 SN, [log(|var(€;,_ 1)) +og(Jvar(v;,) )+, _ var (€, ,) = &, +v4var(v) = vy

Since for a random vectdr of sizen and M € R"*" symmetric

(56) E(VMV) = tr[Mvar(V) + E(V)E(V)']
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(Seber (1977), Theorem 1.7) holds we havego« 1)

(57)
S(ZN )= g [log L(ws X" . ZV)] ‘¢=1/7

=12 N {1og(var(g, 1)) Hog(jvar(v) )+ By [€h_yvar(€s 1) &, 112V |+ B [vjvar(v) 1y, 2V }
=1 2 5N, [1og(var (& —))Hog(lvar(y))+tr (€ oy n Elm s v +oar (€ —y)~ var (€1 Z™))

ttr (5 Fy Frar(vi) " var (v, 2V)) |
Pp=1p

Note thatF(¢;,_,|Z") = ék—uN andE (v, Z") = Yk|N- Sinceék_lw, var(§p_11Z") = WT(E};—HN)
and4y, . var(v,|ZV) = var (Y y) Were computed in (44) and (45), respectively, under the assump-
tion +p = 1) these terms do not vary with. Thus in (57) only the terms inar(§) andvar(~) require

differentiation with respect tep.

In the case of missing observations in the state space model the number of state Mgdoggeater
than the number of observatio®z. We have augmented the original data vecd®¥ by some vec-
tors Z,, = Z;_, when there was no observation connected with the state v&gtok = 1,..., Nx.
Let ZVx denote the augmented data vectt2. Then for the likelihoodL(vy; XV, ZNx) =
L(v; XVx ZNz) holds. Thus we can skip the corresponding terms in Equation (57) #henZ,_;.

Therefore we write Equation (57) as

(58)
- 10 Nx ~ N
S(ZN7 ;) = 20 Z[ZOQ(|UW(§/¢71)|) +tr (€1 g Erotyng + var(€y_1) " var (€11 ZV7))]
k=
Nz 1
+ Z [Log(var (v4)|Nz) + tr (Ypn, Tiin, + var(yy) 'var(vg| ZV7))||
k=1 P=1

6 Autoregressive Modelson Acyclic Directed Graphs

6.1 Introduction

Huang and Cressie (2001) relaxed the tree-structure and allowed for structures on more general acyclic
directed graphs. As Huang et al. (2002) they assume white system and observation noise. For these
models they derive so-called junction trees. The tree-structured Kalman filter and smoother work now
on these junction trees. We took these models as a starting point to formulate a model for time series,
omitting mass balance. For this we drop the assumption of nested partitioning and use an overlapping
arrangement of sub-intervals instead. We will now define directed acyclic graphs and required additional
notation. Finally we define stochastic processes, indexed by nodes of a specific class of acyclic directed
graphs. System noise and observation noise are then modeled in linear state space form where we do not

require white noise but can allow for coloured noise.
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6.2 Overlapping Interval Arrangement and Acyclic Directed Graphs

Definition 6.1. Overlapping Interval Arrangement
Let interval I C R with length |I| > 0, a natural number J € N and a family of natural numbers

(Nj)j:1 with Nj.; > N; (j = 1,...,J) be given. A collection of sub-intervals {I;, C I : j =

1,...,J, k=1,...,N;} iscalled an overlapping interval arrangement on I, if the following conditions
hold:
0] |Ij,]§|>0(jZl,...,J;k:1,...,Nj),
(i) Ij’kﬂIj,kJrl?é@(jzl,...,J;kZl,...,Nj—l),
N;j
(iii) ULk=IG=1....J),
k=1

We consider the indices of these sub-intervals as nodes in a directed acyclic graph, which is defined in

graph theory as follows:

Definition 6.2. Let afinite set of nodes 7" and a set of edges £ € V x V begiven. If for all (v,d) € E it
follows that (v',v) ¢ E, then the pair (T, V') is called an acyclic graph. A path of length £ > 1 from«
to v, € T isa sequence of nodes v, vy, . . ., v, such that (v;, v;41) isanedgefor each: =0,...,k — 1.
Acycleoflength £ > 1isapath vy, v1,..., v, Suchthat vy = v;. Anacyclic directed graph isadirected
graph that has no cyclesin it. For a directed edge (v, /), vissaid to be a parent of +/, and ' is said to
be a child of v. A node v of a directed graph is said to be a root, if it has no parent, and it is called a

terminal node, if it has no children.

These definitions were used by Huang and Cressie (2001). Note that with this definition a graph can have
more than one root. For the models we consider we make additional definitions:

We say that a node is on scalej = 1 if a root is the parent of. Roots are then nodes on scgle- 0.

The further scales are defined recursively: We say that a node is onjseald its parent or parents are

on scalej. We call the scalg with only terminal nodes on it the finest scale. The number of nodes on a
scalej = 0,...,J is denoted byV;. The numbering of nodes on a scalstarts withl at the left and pro-

ceeds to the right up t;. Thus thekth node on the scalg= 0, ..., J can be denoted by the paij, k).

The nodes are allowed to have up to two parents:

A node (4, k) is called a left parent of the nodg + 1,¥) if (j, %) is the only parent or ifj, k) is a
parent of(j + 1, ') and if there is a nodgj, k£ + 1) that is also a parent ¢fi + 1, /). We denote the left
parent of(j + 1, ") by Ipa(j + 1,k"). Anode(j, k) is called a right parent fj + 1, ), if (5, k) is the
only parent or if(4, k) is a parent of j + 1, ) and if there is a nodéj, k — 1) that is also a parent of
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(4 + 1,k"). We denote the right parent 6f + 1, %) by rpa(j + 1, %').

A path from the root to the terminal nodd, k) is called the left path from the root 1o/, k) if only
(J,k) and left parents of nodes of the path are on the path. A path from the root to the terminal node
(J, k) is called the right path from the root {0, k) if only (J, k) and right parents of nodes of the path

are on the path.

Let P; denote the number of nodes on scalthat are left parents fof = 0,...,J — 1 and N the
number of nodes on scajej =0,...,J. Forj =1,...,J we can specify; € N, P;_; < K; < N;
andl; g, rj € Nwith ;. < r;,.fork =1,..., K; such that the nodeg, /; ), ..., (j,7;) have the

same left parent. We sef, :== {(j,x),---,(j, ;) } and denote the cardinal number:gf, by n; .

For the models discussed below we will consider only acyclic directed graphs with one root and where
all the terminal nodes are on the finest scalenly. Furthermore we assume that the nodes of scale
j = 2,...,J have up to two parents. For easier reference we call such graphs two-parent-terminal

graphs.
The whole observation interval and the sub-intervals obtained by overlapping interval arrangement can
now be indexed by the nodes of an acyclic directed graph.

Example 3. To illustrate these notations we give an example with J = 2 and three sub-intervals on the

scale j = 1 and six sub-intervals on the scale j = 2, see Figure 3.

© 0 /’\

11 13 1.1) 1.2) X1,3
(1) w2 (L3) .

2,1 2,3 2,5
) o —BF — o —B e o,

(21 22y (23) (24 (25 (@2

(a) (b)

Figure 3: Overlapping Interval Arrangement (a) and Corresponding Acyclic Directed Graph (b) for
Example 3

Since we have no nested partitioning as in Definition 3.1 but overlapping sub-intervals we don't have to
pay attention to the linearity of the integral and thus no mass balance is needed. One possible acyclic
directed graph, corresponding to this overlapping interval arrangement is given in Figure 3(b). The nodes
onj = 1 have only one parent, the root, while each nodg en2. ..., J has a left parenfp and a right

parentrp.
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Following Huang and Cressie (2001) we define a stochastic prdcess {Yo,Yj,k, {j,k} € T} in-

dexed by the nodé€g of a two-parent-terminal graph, starting withat the root:
(59) Transition Eqj =1: Yip=Yo+Wi (k=1,...,N).

(60) TransitionEq.j =2,...,J: Yie = kYipik) + BikYepih) + Wik (K =1,...,N;).

(61) Observation Eq.: Z, = e, Yy + Qk,
wherecis a real number an@,, a random variable fok = 1,..., N;. We also say thaY} ;, is a child
of Yipa(jk) @ndY,pq(j k) @and thatyy,q iy, Yepa(j k) @re parents ot forj =2,...,J,k=1,..., K;.

Note that if we sety; . = 0V 7,k and consider e. g. right parents as the only parents in the graph, we

are back to trees discussed in Chapter 4.

In this model observations again are only associated with the finest.&cBlether assumptions are:
Yo, Wj i, Qi are zero mean random variables with finite variangg, 8, € Ry := {z € R: 2 > 0}
with ok + Bj,k =1, Wj,k 1 Yy, Wj,k €L Ql’ Ql 1Yy ande,k € Wz’,la (j #* Z)

For j fixed, the transition nois€W; .,k = 1,...n;} is modeled in linear state space form:
(62) Wj,k+1 :Bj,ij,k+Vj,ka k= 1,...,Kj -1

where the elements of the random vectt ;. are the elements of the sgiiV; \ : (j,A) € v}, and
Bj; € R%Wk+17mk andV ;. is a zero mean random vector with ., ; elements. Further we assume
{Vjrk=1,...,K;} to be a family of uncorrelated random vectors, also uncorrelatd®tp. The

state space representation (62) implies
(63) LW iks1Wia, .o, Wik) = LW i1 [Wjig).

Kailath et al. (2000) call this weak Markov property, since in general the Markov property is defined by

conditional independence rather then by covariance.

The observation nois@Qm, m=1,... ,NJ} is modeled in a similar manner with
(64) Qi1 =DQ,+Uy, kE=1,..., K;—1.

where the elements of the random veadf@)r are the elements of the s{a@A s (J,A) € yJ,k}, Dy e

Rrk+1 %05k andU ), @ zero mean random vector with, L Q, andUy, L U, for k # [.

6.3 Linear State Space Representation for Models on Acyclic Directed Graphs

We explain how to find a linear state space representation with white system and coloured observation

noise by a simple example.
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Figure 4: Two-parent-terminal Graph for Example 4

Example 4. Consider the graph shown in Figure 4. On the finest scale J = 3 the nodes (3, 1) and (3, 2)
have both parents in common. Thuswe set 15 ; := {(3,1),(3,2)}, Y31 := (Y3,1,Y32) and W3 :=
(W3,1,W32)". Proceeding in the same manner on scale 3 we get random vectors Y3 1, ..., Y 35 and

Wisi,...,Wss. Observations Z,,, m = 1,..., 10, are similarly compounded into vectors:
Z = (Zla Z?),a R Z5 = (Zg, ZIO),a
Ql = (Qla QQ)Iv ) Q5 = (an Qlo)l‘

On scale j = 2 we get the random vectors Wy 1 := (Wo,1, Wa2)', W 1= (Wa3, Wa4)', Wa 3 :=
(Wos, Wag) and Yo := (Y2,1,Y22), Yoo := (Yo3,Y24), Yo 3 := (Ya5,Y26)". The nodes on scale
j = 1 have the root as parent. Therefore we define Wy := (W11, Wip2), Wig = (Wis, Wia)
and Y = (Y1,1,Y12), Yi2 := (Y13, Y14). Using Transition Equations (59) and (60) yields the
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transition equations for the vectorized model:

Y11 Yo+Wi1 1
Yin = = =Yo +
Yi,2 Yo+Wi,2 1

-

,1

55

% Yo+Wi, 1\ (w

Yio = 13) _ o+Wis —v, N 1,3
Y14 Yo+Wi,a 1 Wi,4

S Yo\  [aeaYii+B2,1Yi24Wa

2,1 = =

Yoo a22Y1,1+B2,2Y1,2+Wa 2 2,2 P22
Ya3 a2,3Y1,2+62,3Y1,3+Wa 3 0 B23 0

Yoo = = Yi:1+ Yi2+Wop
Yo.4 a2,4Y1,2+52,4Y1,3+Wa 4 0 B2,4 0O

2,5

1
= ( >Y1,1+W2,1:A2,1Y1,1+W2,1,

(a2,5Y1,3+/32,5Y1,4+W2,5

Ya5
Y23 = ’ Yi20+W23=:A423Y12+Wo 3,
(65) (Y2,6 a2,6Y1,3+02,6Y1,4+Wae 2,6 B2, 6)

:ZA12’2Y1,1+A5,2Y1,2+W2,27

Y- a3 1Y2 1+ Yo o+ W: a
Yoi = 31 _ 3,1Y2,14+83,1Y2,2+ W31 _ 3,1 P31 Yot WanmiAs1YartWar,
Y32 a32Y2 1+63,2Y22+W3 2 3,2 3,2
Y3,3 0 ﬂg,g 0 ! »
Y32 = v = 0 Yo+ 8 0 Yo22+W30=1A4; ,Y21+A5 Y22+ W32,
3.4 3,4
Y35 53 5
Y33 = = Yo,2+Wi33=:1A33Y22+W3 3,
Y36
Y37 Bar 0
Y34 = (Y > = ( >Y2 + (ﬂ 0 Y2,3+W3,4=:A§,,4Y2,2+A§,4Y2,3+W3,4,
3,8 3,7
Y30 39 B39
Yas = = Y2 3+W35=:435Y23+W35.
Y310 az,0 B30

For the observation equations in the vectorized model we get with Equation (61):

VA Y31+ Q1>
Z = = (¢ =: (: ’ ;
1 <%> (- )(%2+Q2 Wit @

(66)

Zy Y39+ Q9
Zs <Z1o> = (co c10) (Y3,10 0w C5Y 35+ Q5.

Thisisa model on a new directed acyclic graph shown in Figure 5.

Transition noise vectors on the same scale are modeled as a vector AR(1) model, i.e.
Wia=B11Wi1+ Vi,
Wsoo=By 1Wa1+ Vo,
W3z =B2s2Woo+ Vo,

(67)
Wi3o=B3 1 W31+ Vs,

W35 =B3,W34+ V3.
Modeling the observation noise vectors as vector AR(1) model yields
Q,=D.Q, +U,y,
(68)
Q; =D4Q,+Uy.
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Figure 5: Graph for Vectorized Nodes for Example 4

To put the vectorized model (65)-(68) into linear state space form we specify the initial state vector such
that Y, and all Y';; and W ; ; indexed by nodes (j,1), j = 1,...,J, on the left path from the root to

(J, 1) of the vectorized graph are elements of X;. In our example
X :=(Yo,Y11,Y2., Y31, Wi 1,Wo1, Ws,)

We will denote the observations in (26) and (27) by Z,, to distinguish them from the observations in the

acyclic graph model. The first observation equation can therefore be written as
Z,=C X1 +mn,

with p, := Q, and C; := (025 Ci 035), where 0, , denotes a zero (p x ¢) matrix and I, the

identity matrix of dimension p. Smilarly, let 0, denote the zero matrix of dimension p x p.

In model (65)-(68) the data vector Z, is connected with Y ;5 by (66). SnceY ;o ¢ X theY
and W ; ;, indexed by the nodes on the right path from the root to (J, 2) have to be successively inte-
grated into state vectors. Snce Y, » = Yyl,, + W 2, where 1, denotes a column vector of p ones,
the first step is to update from W ; to W o in X, using (67). Generally, before integrating Y.,
i=1,...,J,m = 1,..., K;, into a state vector we have to integrate W, ,,, into the state vector. All
Wirni=1,...,J,k=1,...,K;,inthe actual state vector that are not needed for the integration of
W .m into the next state vector are retained in the next state vector aslongask < K, j = 1,...,J.
TheY ;; in the actual state vector are retained in the next state vector as long as not all their children
are either in the actual state vector, have been in previous state vectors or will be in the next state vector.
Y ;1 has no child and therefore “ all children of Y;;” arein X, implying Y ;; is not needed in X,.

The transition matrix

block(1,1) ...  block(1,en)
A = : : :
block(ems1,1) ... block(emi1,em)
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consists of block matrices denoted by block(r,c), r = 1,...,ept1, ¢ = 1,..., €y, Where e, denotes
the number of sub-vectorsin X,,, m > 1. Inour examplee; = 7. Wy ; isthefifth sub-vector of X in
our example and W » will be the fourth sub-vector of X,. Thusin A, we have block(4, 5) defined to
be B, ;. If the n;th sub-vector of X; will be the nyth sub-vector of X5, we define block(ng, n) to be

the identity matrix of appropriate dimension. In our example we get

Yo I 01p 012 012 012 012 099
Yi 020 I, 0 02 02 0o 0o 05
Yo 027 0 I, 0y 02 0 O ’ =
Xy = ’ = ’ X I =: A1 X {+T&,.
2 W 0s1 0, 0o 0, By, 0, 0 1+ . 2 | Via 1 X1+
Waa 0217 02 0 02 0y I O 42
Wi 0217 02 02 02 02 0 Ip

No observation is connected with state vector X5 since there is no terminal node element of X,.
We interprete this as a case of missing observation and defineCy := 0211, Z3 := Z, = Z; and

Ny =1, = Q. Likein (46) thisimpliess Ny = I and v, = 02,;.

Now we can integrate Y'; » into X3 using (65). For this we note that Yj is the first sub-vector and
W 2 is the fourth sub-vector in X,. Yo will be the third sub-vector in X3. Thusin Ay we set
block(3,1) := 15 and block(3,4) := I, where 1, , isa (p x ¢) matrix of ones. We further update
fromW,; to W, . Sncethereisno W 3 wecan skip W » in X3. The other sub-vectors of X, are

retained in X5.

Yo I 01p 012 01 012 093
Yi 021 I, 02 02 02 0o 0y
| Yi2 | 121 02 02 I, 0, 09 ’ oz
X3:= Yoo | |02 00 I, 0, 0, 0 X+ g; Vi =: Ap X9+ T,
Wao 021 02 02 02 By; 0
Wi 021 02 02 02 02 Ip

Again there is no observation connected with X; and thuswe set Cs := 04,11, Z3 := Z5 = Z; and

N3 =1y = @y, implying that Ny = Iy andv; = 0y ;.

Going down the right path from the root to (/,2) the next step is done by integrating Y3 » into X .
Using (65) we note that Y’ ; isthe second sub-vector, Y 5 is the third sub-vector and W » isthe fifth
sub-vector of X3. Y5 will be the third sub-vector in X,. Thusin A4 we define block(3,2) := A,
block(3,3) := Ay o and block(3,5) := I,. Wefurther update from W3 ; to W3,. Yoand Y ; areno
longer needed in the state vector since all their children are, already have been or will be in the state

vectors X ; to X 4.

Yio 021 0, I, 0y 02 O
Yo 021 0 02 Iy 02 0o 0 ~
Xy= Yoz [ =021 Aby Afy 0 I 0y | X3+ (I8’2> Vi1 =1 A3 X3 + ¢
Wao 021y 02 0 0y Ip 09 2
Wi 021 02 0 0y 02 Bj,

)
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Again this is treated as a case of missing observations, settingCy := 095, Z4 := Z3 = Z; and

N, =13 = Q. Thisimplies N3 = I, and v, = 02;.

Now we can easily put Y3 » into X5, noting that Y3 » has the parents Y, ; and Y, » which are sub-
vectors of X 4. Then all the children of Y, ; are, already have been or will be in the state vectors X to
X 5 and thuswe can omit Y, ; in X' 5. Wealso update from W3 » to W3 3. In Equation (66) observation

Z 5 is connected with Y3 5 and thus connected with X5. In particular we have

Yio I, 0, 0> 02 O
Yoo 0, 0, I, 0 O 0 B
X5 = Y3,2 = |0y Aé,2 5,2 0, I2 X3 + < ;’2> V3,2 = A4-X4 + I‘4£4-
W272 02 02 02 I2 02 ?
Wss 0, 09 0, 0, B372

The corresponding observation equation is given by
Zs:=Zy= (024 C3y 034) X5+ Q5=:C5X5+ s,

and we set for the observation noise N4 := Dy and v; := Uj.

In the next state vector we integrate Y'3 3 and update from W 5 to W 3. Y 3 5 is omitted in X5 since

it has no child. Therefore we define

Yio I, 0y 02 02 09

Yoo 0 I, 02 02 09 06,2 ~
Xe:=|Y33 | =02 Az3 02 02 Ip| X5+ | Io | Voo =:AsX5+TI5¢;5,

W3 02 02 02 Bys 09 02

W3 0 02 02 02 Ip

together with the observation equation
Zﬁ =273 = (02,4 C; 0274) Xg + Q3 =: C_'6X6 + ng-

For the observation noise we set N'5 := D5 and 4 := Us.

Now we have to integrate Y, 3 into the state vector since Y, 3 istheright parent of Y3 4. Weomit Y, »
because all of its children are or already have been or will be in the state vector. We update from W5 3

to W3 4. Snce thereisno W, 4 we do not need W, 3 in the state vector any more. This gives

Yoo 0, Iy 0 0 O Oin ~
X7 .= Y2,3 = A2’3 0, 0y Iy 05 X¢ + ( I; > V3,3 =: Ag X + F6€6-
W3 4 02 02 02 02 B3,3
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Again we have a case of missing observation and setCr := 034, Z7 := Zg = Zz andn; := ng = Q5.

It follows that N'g = I, and v; = 0 1.

Now we put Y 3 4 into the next state vector Xs. Y 7 o isnot needed any longer. Therefore we have

Yos 0 I, O O1s B
Xg:=|Y34 | = Ag,4 Az, I X7+ < I; > Vs = A7 X7 +T7€,.
W375 0, 0 B3,4

Zs:=2Z,= (02 Cy 02) X35+ ng,

whereng := Q,, N7 := D3 and~v4 := Us.

The last state vector X issimply given by

Xg = Y375 = (A375 02 I2) Xg =: Ang.

Zy:=Z5=C9yXg+mn,y,

Wherec_’g = C, Ng := Q5, Ng := D3 and Y9 = Uy,.

Let NX denote the number of state vectdts. Form = 1,..., NX we havet,, = 0 or there is g ¢
{1,...,J}and ak € {1,..., K;} suchthat,, = V; ;. From¢,, =V, it follows thatW ;. € X,,.
SinceV ;) L W we get¢,, L X,,. Furthermore, sincgV;;,j =1,...,J, k=1,...,K;}isa

family of uncorrelated random vecto{im, m=1... ,NX} is also a family of uncorrelated random
vectors. Similarly, forn, = 1..., NX we have set,, = Q, withk € {1,...,K;} andk < m. N, 1

was then defined either By ,,, | := I or N,,, | := D;_; and~,, was defined byy,, := 0 or,, :=

Ug_1. Since{Uy,k = 1,..., K} is a family of uncorrelated random vectdrs,,,,m = 1...,NX}

is also a family of uncorrelated random vectors. Wifh L Q,, k¥ = 1,..., K it also follows that

Ym L m.,,_1. Therefore we have a state space representation such that model equations (26), (28) and
(29) are satisfied. Though the state vectors have relatively big dimension the system matiteand

have a block structure such that calculation can be done efficiently. For the initialization of the Kalman
filter we have to deriverar(X ). This will be done element wise. Recall thag , L W;;, (j # ).

At first we notecov(Yy, W; ) = 0 andcov(Yj, W) =0forj =1,...,J -1,i =j5+1,...,J,

k,l =1,2. Using (59) and (60) yields fof = 1,2, 3:

(69) cov(Yj1, Wj1) = var(Wj1), cov(Yj2, Wj1) = cov(W;2, Wj1),
(70) cov(Yj1, Wj2) = cov(Wj1,Wj2),  cov(Yja, Wj2) = var(W;2).
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Forj = 1,2 we get

cov(Yjp1,1, Wja) = cov[(ajr11Yj1 + Bix11Y2 + Witi1), Wiia]
= ajyr100r(Wi1) + Biic00(Wia, Wia),

cov(Yjp1,1, Wj2) = ajp1,1c00(W;1, W;2) + Bj1,1var(W;2),

cov(Yji1,2, Wj1) = cov[(@j12Y51 + Bjr11Y52 + Wjt12), Wil
= aji1,20ar(Wii) + Bjt1,2c00(Wj2, Wi 1),

cov(Yji1,2, Wj2) = ajy1,2c00(Wj 1, Wj2) + Bjq1,20ar(Wj2).
Forj = 1 we get recursively

cov(Y3 1, Wi1) = covl(az1Ya1 + B31Yo0 + W31), Wii]
= az1cov(Yo 1, Wi 1) + B31c00(Ya 2, Wi1),
cov(Y3 1, Wi 2) = agcov(Yo1, Wi 2) + f31c00(Ya 2, W1 2),
cov(Y3 0, Wi 1) = cov[(a3 Yo + B32Y20 + W32), Wi ]
= azgcov(Yo 1, Wi 1) + B3 pcov(Yi 2, Wi),
cov(Yjro,1, Wj2) = ajyacov(Yjp1, Wia) + Bjy2c00(Yj1,2, Wia2).

Finally the quantitiesyar(Yj ;) andcov(Yj1,Y;2) can be computed recursively using (59) and (60)

starting at the root or at the first scale, respectively. In particular we obtain at the first sdale for2

var(Yy ) = var(Yy) +var(Wy ),

COU(YLl, Yl,g) = COU[(Y() + Wl,l), (Yo + Wl,g)] = Ua’I“(Y()) + COU(Wl,l, WLQ).
Forj = 2,3 andk = 1,2 we get
var(Yjr) = aikvar()’}_l,l) + ﬁikvar()’}_l,g) + 20 185 kcov(Yi—1,1, Yj—1,2) + var(Wj i),
cov(Y;1,Yj 2)=cov([oj, 1Y 1,1+B5,1Y; 1,1+ Wy 1],[e 2Yj—1,24+85,2Yj 1,2+ W 2])

=aj1aj,20ar(Yj—1,1)+B85,185,2var(Yj—1,2)+ (0,1 85,2 +0,285,1)cov(Yj—1,1,Yj—1,2)

+cov(Wj,1,Wj 2).

7 Discussion

We reviewed and presented three classes of models on acyclic directed graphs. The first class, introduced
by Chou (1991) and Huang et al. (2002) applies nested partitioning that makes the assumption of mass
balance necessary. The restrictions implied by mass balance together with the white noise assumption

for transition and observation noise imply an artificial block structure of the correlation matrix of the data

33



Z and thus it is not possible to obtain a stationary autocorrelation functio#.fétuang et al. (2002)
suggest as a possible solution of this problem to compute the predictions as an average over a number of
mass balanced, tree-structured models with different tree branches that represent children shifted to have
different parents. As they point out, the prediction variances and covariances will be more complicated
and the computational complexity will increase with the number of trees used. The models imply that
all average valueyj ;. have the same mean. The advantage of their models is that computation can be
done efficiently by a change-of-resolution Kalman filter in such a way that computations can be easily
performed in parallel problems of smaller dimensions. Furthermore, the number of parameters to be

estimated is smaller then in the models defined in Sections 4 and 6.

We generalized their models by modeling the transition noise on a same scale in linear state space form.
Mass-balance implies restrictions to the covariance ma#(iW; ., W', ;) that are, at least so far, not

easy to deal with. They also imply an artificial structure of the correlation matriZ stich that a sta-
tionary autocorrelation of cannot be obtained. Here there are not only variance parameters but also
covariance parameters to estimate. It is questionable if this way of modeling is an improvement to the
models by Chou (1991) and Huang et al. (2002).

The third class of models requires no mass balance. The observation interval is divided into sub-intervals
by overlapping interval arrangement. The stochastic process is indexed by the nodes of a directed acyclic
graph which allows the nodes to have up to two parents. Thus weighting parameters are additionally
needed, which also have to be estimated. These models on acyclic directed graphs have a linear state
space representation with white system and coloured observation noise. The linear least squares predic-
tion of interval averages was done by a Kalman filter and Kalman fixed point smoother. The advantage
of this model is that now dynamic structures in transition and in observation noise can be modeled, that

may be a matter of interest in themselves. Thus the zero mean assumption¥gr ta@ be relaxed.

Further topics for future research are incorporation of explanatory variables and terms to capture sea-
sonality and trend in the data. The score vector needed for parameter estimation depends on the value
of the initial state vectoX; which will often be unknown in practice. The approach in Koopman and
Durbin (2001) using so called diffuse initial state vector for linear state space models with white system
and observation noise should also work for state space models with coloured observation noise. A further
important topic is to find concepts to reduce the number of variance, covariance and weighting parame-
ters. For some applications one could model the observation noise process for itself and then integrate
this model into a model on an acyclic directed graph. Then the variance and covariance parameters of the
observation noise are not required to be estimated within the model on acyclic directed graphs. Finally,

we aim on applying these models to high frequency financial data.
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A Examplesfor Correlation Matrix of Z

Here we give examples of possible structuresaf Z) implied by tree structured models described in

Section 4.

Example 5. Figure 6 shows the correlation of the observed data vector Z arising from the following
tree-structured model: The finest scale is J = 3. The root has ny = 4 children. Each nodeon j = 1
has n;;, = 6 children, £ = 1,...,4 and each node on the second scale has also n, ;, = 6 children,
k=1,...,24. Thevariance of the univariate transition noiseisa§ = o3, = 1, E(W .1 W ;) = 0,
j=1,2,3,k=1,...,N;. The variance of the observation noise is given by 72, = 1 with E(Q,Q,) =
0,m,l=1,...,144, m # .

Example6. Figure 7 showsthe correlation of the observed data vector Z arising fromthetree-structured
model with finest scale J = 3. Theroot hasny = 4 children. Each node on thethefirst scalehasn ;, = 6
children, £ = 1,...,4 and each node on the second scale has also n, ;, = 6 children, £ = 1,...,24.

Forj =1,2,3and k = 1,..., N; we have chosen var(Wj ) := 05, = 1 and

=
=

1
-0.39 L
019 -
~0.13
0.09 -
~0.08 L
031 —0.08 0.

1=
=
W
W=

=

=
[
ol

M
=

1

-5
=

Rl

M

Sl= %
|

@l

E(W e Wiy) =

|.~
.
|.~
|.~

03]

=]
0o

1

I~ =

I~
)
=

|~

O =
wo
=)

S &
IS
B E-°

(=
—_

3 0.

Furthermore, var(Qp,) =72, = 1and Qi1 = 0.5Qu, + Up,m = 1,...,144,

B Kalman Fixed Point Smoothing for Linear State Space Models with
White System and Coloured Observation Noise

Considering the model defined by (26), (28) and (29) we can modify the algorithm and the derivation
given in Durbin and Koopman (2001) for linear state space models with white system and white obser-
vation noise, using Lemma 2.13 in Durbin and Koopman (2001) where it is assumeX tiatd are

jointly distributed random vectors of arbitrary order wit{{f) = 0 and £(Z6) = 0. Defining

X-ZB =X - L(X|Za0)a

Xz :=X - L(X|Z)

then their Lemma 2.13 states that the following equations hold:

L(X|Z,0) = L(X|Z) + BE(X,0)var(6) 0,
(71) .

var(X z¢) = var(X z) — E(X, 0)var(0) ' E(0, X).
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Figure 6: Corg) of Example 5
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Figure 7: Corg) of Example 6

For N € N fixed and withz"¥ := (Z,,..., Z")" we can use Equation (71) together with (30) and (35)
togetfork=1,...,N

N
(72) Xy o= L(X4|ZY) = L(X 4| 25,0011, ...,08) = Xy + D E(Xi0)A'6,.
I=k+1
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Note thatE'(0y) = 0 for k = 2,..., N. Further we compute using (34)
7 E(X ) = E[Xk(f{z_lfczm +CiTmi€ 1 +7)']
= E(chXl—ul—l)HLr
Foril=k+1,...,N E(XkX’;_w_l) can be obtained recursively, starting witk £ + 1:

BIX (X — X)) = B(X X}) - BX(B(X:2")2 1 2")

(74) = var(Xy) — B(X; Z¥)2 L B(Z" X)) = Sy
Using Equation (74) together with (26), (39) and (34) we get

E[X o (X pi1p11)'] = BIX (A Xk + Ty — ApXpp — Grg10511)']
= B[X p(Ap X e — Gooa[Hp X s, + Cror Tl + vi41))']
~ / — ~ |
= E(Xkak)A;c — B(Xp X ) Hp Gl

~/ —
= E(Xk X o) (A, — Gr1 Hy)',
sinceE(X 1)) = 0 and E(X v}, ,) = 0. With (38) we can write
~ ~ ~

EX (X pi1p41) ] = BE(X kX i) Floi1 = ZppFlrs

E[X (X pi2642)] = ZpppFrs1 Flyos
(75) .
EX k(X n_in-1)]= Sk Flpr--- Fy_1.
For the computation of the smoothed state space véqgv we will now substitutg(74) and(75) into
(72), using(42):

(76) XN = X + SppRe

For computation of the mean squared error matrﬁg@ we proceed in a similar way. The starting
point is again Equatio(i72). Since the innovations are serially orthogonal we get using (71)

N
(77) Siv =i — Y B(Xi0)A]E(0,X}).
I=k+1

Using (74), (75) and (41) Equation (77) can be written as
(78) IV SPESS ST 25 S

C Disturbance Smoother for Linear State Space Models with Coloured
Observation Noise

The so called disturbance smoother (Durbin and Koopman (2001)) comjutes= L(v.|2Z") and

ék‘N = L(¢&,]Z"). We follow their approach for linear state space models with white system and
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coloured observation noise and modify it where needed. At first we need a recursive representation for

the state estimation errors. Using Equations (39) and (34) for the innovations gives:
Xitippr1 = X1 — Xpyrhs
= A X+ Trly — Ap Xy — Grar Ok
= A X pyp, + Tréy, — Get Hi X e — Grr1 Crn Tkl — Grn Vi
(79) = Fr1 Xy + (T — Grr1Cri1) €k — Grr1 Vi

whereF';, was defined in (38). With (71) we have
N

Ay = Ly ZN) = L(vg| 257, 0k, ..., On) = L, | 257 + ) E(v,0) A, 16,
I=k

Sincey, L Z¥"!andE(y,) = 0 we haveL(v,|Z* ') = 0. Thus

N

(80) Ye|v = ZE(’YkQE)Aflel-
I=k

Using Equation (34) we yield

E(v40}) = Elvp(Hy 1 Xy, 11+ Culi 1€y +12)']-

Since X,_y;_1 is a linear function ofZ* ' and X, it follows thatE('ka’;c_Hk_l) = 0. With

B(v,£;) = 0 we get
(81) E(7,,0},) = var(vy).
Noting thatE/(+y,~;) = 0 holds we getfol =k +1,..., N:
(82) E(v,0) = Elyp(Hi 1 X 11 + CiT 1€ + )] = E(’YkX;qu)HLr
Here we have used Equation (33). The recursion for the state estimation errors (79) yields
Xpp =FpXp 51+ (Tho1 — GuCr)€_y — Gy

SinceX ;_ijx—1 L v andg,, | L v we get
(83) B(40k11) = E(vi X i) Hy, = Elvi(~Givi) | H, = —var(v,) G H.
Further lags are now computed recursively:

E(7k0;c+2) = E(’YkX;c-}-l\k-i—l)H;chl = E(’Yk)z;c\k)F;cHH;cH

= —var(v,) G}, ;c-l—lH;s—l—la

~/ ~/
E(7k0;c+3) = E(7ka+2\k+2)H;c+2 = E(7ka+1\k+l)F;c+2H;c+2

= —”W(’Yk)G;c ;c+1F;c+2H;€+2a
~/ ~ !
E(’YkelN) = E(’YkXNfl\Nfl)Hlel = E(’YkXNfZ\NfQ)FINleINfl
= —UW(’YIC)G;@ ;c—l—l s IN—IH,N—I'
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Substitution into (80) yields
Yy = var(vg) Ay 0 — var(v,) Gy (H AL Ok + Froyp [ Hi AL L0k 0+ ...
Using (42) we can write

(84) Fiin = var(v) Ay 0 — var(v,) G Ry = var(v,) (A, 0, — Gy Ry)

Similarly it follows for &, that

N
Eriv = L& ZN) = L(&1 ZF, 041, ., 0n) = L1 ZF) + D E(£,0)A]'0
I=k+1
N
(85) = Y E(06)A; 0,
I=k+1
since¢, | Z"¥andE(¢,) = 0fork = 1,...,N — 1, which is a consequence of the assumptions (28).

Using Equation (34) we can write

E(€40).41) = Bl&,(H Xy ), + Cri Ty + 1)1
X, is a linear function ofX;, and Z* and thusE(¢, X)) = 0. SinceE(£,y]) = 0 for k =
1,...,N—=1,1=2,...,N this gives
(86) E(£,0411) = E[€,(Cri1Tr€1)'] = var (€,)T;Cl 1.
(34) yields
E(£40)40) = E[ﬁk(Hk+1Xk+1\k+1 + Cryolr1€ppr + Vi)'l
Sinceg,, L & for k # [ and using (79) this leads to
E(£40)12) = E[&(Hp1 Xy 1541)] = Elép(Fra1 Xy + (T — Gri1Cri1)€r)']

= var(€;)(Tx — Gr41Cra1) Hyy .
Proceeding recursively we get

E(€40)y3) = El€,(Hp 12X 1ok 12)] = Bl€p(Fro2X py1ps1) 1 Hlyo

=var(€,) (T — Ge1C k1) Fr o Hyo.

(87)

(88)
E(EkalN) = E[&c(HN—lXNfqu)I] = E[gk(FN—IXmeNfQ)I]HINfl

=var(€;)(Tk — Gr1Ch41) Floys ... Fiy | Hy .
Substitution into (85) yields

~ - 1 ~! —1
€y = var(§p)TLChL A0k
+var(€)(Ch—Gri1Crt) (Hyy A L0+ Fl  HY AL 0y 40+ Fly o Fly_ Hly_ A0y ).

Using Equation (42) we get

(89) £k|N = Uar(&k)r;cc_';c-i—lA];ilok—l—l + var (&) (T — Gr+1Ckt1) Ryt

39



D Smoothed Disturbance Variance Matricesfor Linear State Space M od-
elswith Coloured Observation Noise

Defining

Ye|N =Yk — VRN andékw =& — ék|Na
we want to derive an algorithm for recursive computationwef (4 ) and var(ékw) for £ > 1.
These are also needed for maximum likelihood parameter estimation. For the derivation of this al-
gorithm we can again follow Durbin and Koopman (2001), where the derivation for a linear state
space model with white system is shown. Using (2) we consider atfirsty,, 1) = var(vy;) —
E(v,Z2% V)var(Z2¥ )T E(ZY 'y)), wheredy, | =), — L(v;| 2" ') for k = 2,...,N. Since
v, L ZF it follows thatvar (5, ) = var(v). Thus Equation (71) yields

N

(90) var(Jy ) = var(yy) = > B(vi0) A7 E(01v})
1=k

By (81)-(84) we get

var(Fyn) = var(y) — (var(y,) Ay toar ()
—var(v;) Gy [Hp A HiGroar(v,) + Fi Hy AL H g Fry Groar (vy,) +
+Ffyy . . Fly_(Hy AV HN_1Fy_1 ... Fr1Grvar(v;)])
= var(yy,) — var(v,) Ay lvar(vy) + var(v,) Gy, [HkAk+1
+ F2+1H2+1A;i2HkHFk+1 ...+ Fi .. . Fy_ Hy Ay Hy_Fy_i...Fj 4]

Grvar(vy).

Using (41) we can write

var (Y n) = var(yg) — var(vy) Ay var () + var (v;) Gl PrGroar(v;,)
(91) = var(y;) — var(vy) (A, = GLPrGr)var(vy).

We deriveruar(ékw) analogously, starting by using again (71), recalling that Z* and thus;ar(ék‘k) =
var(&):

n

(92) var (g y) = var(€y) — Z E(£,0)A, 'E(0:€},).

I=k+1

Substitution of (86)-(88) into (92) yields

WT(Ek\N) = var (&) — ”W(Ek)rfkc_’;ﬁlA;;ilc_'kﬂrkva?"(ﬁk) —var (&) (T — Gr1Crin)"
. ( ;H-IA];I_QH/C-H + F;€+2H;€+2A1;i3Hk+2Fk+2 + ...

+ F;c+2 e IN_1HIN_1A]7\71HN_1FN_1 e Fk+2) (Fk — GkHC_’kH)var(&k).
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Using Definition (41) we get

Uar(gk\N) = var (&) — UC”“(Ek)I‘ZC;CHAELC%HFWW(&)

—var(&,)(Tk — Gk+1Ck41) Pii1 (Tk — Gr1Crpr)var(€y).

(93)
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