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omSummary: The AR{ARCH and AR{GARCH models, whi
h allow for 
onditional het-eroskedasti
ity and autoregression, redu
e to random walk or white noise for some val-ues of the parameters. We 
onsider generalised versions of the AR-ARCH(1) and AR{GARCH(1,1) models, and, under mild assumptions, 
al
ulate the asymptoti
 distributionsof pseudo-likelihood ratio statisti
s for testing hypotheses that re
e
t these redu
tions.These hypotheses are of two kinds: the 
onditional volatility parameters may take theirboundary values of zero, or the autoregressive 
omponent may take the form of a unit rootpro
ess or not in fa
t be present. The limiting distributions of the resulting test statisti
s
an be expressed in terms of fun
tionals of Brownian motion related to the Di
key-Fullerstatisti
, together with independent 
hi-square 
omponents. The �nite sample perfor-man
es of the test statisti
s are assessed by simulations, and per
entiles are tabulated.The results have appli
ations in the analysis of �nan
ial time series and random 
oeÆ
ientmodels.Keywords: AR{ARCH and AR{GARCH models, 
onditional heteroskedasti
ity, autore-gression, unit root, Di
key{Fuller test, pseudo-likelihood ratio test.JEL Subje
t Classi�
ations: C12, C13, C22
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1. INTRODUCTIONThis paper derives the large-sample distribution of pseudo-likelihood ratio tests foran autoregressive (AR) model whi
h exhibits generalised autoregressive 
onditional het-eroskedasti
ity (GARCH) type behaviour. The null hypotheses 
onsidered are:(i) the AR stru
ture has a unit root; or(ii) the model has no autoregressive stru
ture; and(iii) there is no heteroskedasti
ity.Simulation experiments show the asymptoti
 theory to be fairly a

urate on
e the samplesize ex
eeds 100 or so.The pro
esses we 
onsider are of spe
ial interest for asset pri
e modelling, or, moregenerally, for e
onometri
 data modelling. They take the formXi = �Xi�1 + "i�i; i = 2; 3; : : : ; n; (1:1)where the residuals "i are i.i.d. with expe
tation 0, varian
e 1 and a �nite fourth moment(we assume only this throughout), and the varian
e fun
tion satis�es�2i = � + �gi�1 + Æ�2i�1; i = 2; 3; : : : ; n (1:2)(with �1 = �). In (1.1) and (1.2), �, �, � and Æ are parameters with � > 0, � � 0 andÆ � 0, and gi�1 is a non-negative, measurable fun
tion of fXi�1; Xi�2; : : : ; X1g alone. Wewill analyse in detail the versions:gi�1 = "2i�1�2i�1 = (Xi�1 � �Xi�2)2 (1:3)and gi�1 = X2i�1; (1:4)and a further version, gi�1 = "2i�1; (1:5)will be in
luded in the simulations. (1.1) { (1.3) spe
ify the well known AR{GARCH(1,1)model (if Æ > 0; otherwise an AR{ARCH(1) model). Thus the model 
an be thought of asa generalised autoregression, possibly with unit root, and with GARCH e�e
t in
luded. Inthe unit root 
ase the spe
i�
ation (1.3) de�nes a GARCH(1,1) pro
ess in the di�eren
edseries Xi � Xi�1. On the other hand, (1.4) or some other formulation of the 
onditionalvarian
e may be indi
ated by the data. Ni
holls and Pagan (1985, p. 444) suggest thismodel in 
onne
tion with varying 
oeÆ
ient regressions. We give a uni�ed approa
h totesting hypotheses 
on
erning (1.1) and (1.2), 
on�ning ourselves mainly to (1.3) and (1.4)for illustration throughout.The 
ases when � = 1 or � = 0 in (1.1) are of spe
ial interest, and we may wish to testthese hypotheses as a potential simpli�
ation of the data. A further useful simpli�
ationo

urs when � = Æ = 0 in (1.2), be
ause then (1.1) redu
es to random walk for Xi inthe 
ase � = 1, or to i.i.d. in
rements Xi (thus, to a random walk for X1 + � � � + Xi)in the 
ase � = 0. There is a strong motivation for su
h simpli�
ations in the pri
ing of
laims 
ontingent on the value of the asset, in parti
ular, be
ause option pri
ing models2



based on GARCH models are 
hallanging to implement whereas for a Gaussian randomwalk the well understood Bla
k-S
holes or binomial tree based pri
ing methodologies apply.Consequently it is worthwhile to 
onsider the following program. Fit the model (1.1){(1.2),with (1.3), (1.4), (1.5), or some other spe
i�
ation of gi�1, with a view to testing if thedata is unit root (� = 1), or has no autoregressive 
omponent (� = 0); or if there is in fa
tno 
onditional heteroskedasti
ity (� = Æ = 0), so the data is suÆ
iently well modelled byrandom walk, by i.i.d. white noise, or as an AR(1) model.In this paper we work out the asymptoti
 distributions, as sample size n tends to in�n-ity, of pseudo-likelihood ratio statisti
s for testing the above hypotheses, after 
onstru
tingestimating equations from a pseudo-likelihood under whi
h the "i are assumed i.i.d. with astandard normal distribution. The large-sample distributions are given as 
ombinations ofintegrals of a standard Brownian motion (SBM) (or, in one 
ase, as a mixture of 
hi-squareand trun
ated 
hi-square random variables), but are quite easy to use when the residualshave no skewness and kurtosis 3, for example.In the 
ase of ARCH, part of our program has been 
onsidered by Demos and Sentana(1998), who 
onje
tured a limiting result when gi�1 satis�es (1.3) and � = 0 (so the AR
omponent is not present), and when the "i are standard normal. (They also 
onsideredhigher order ARCH and GARCH models but we restri
t ourselves to the �rst order 
asessin
e the main ideas are apparent for them.) They draw attention to the extra poweravailable by taking into a

ount the \boundary hypothesis" nature of the tests, as ouranalysis does.A systemati
 investigation of a wide 
lass of boundary hypothesis tests is in Andrews(1999, 2001), and various of his earlier papers, but his results do not in
lude those givenhere, as we dis
uss in more detail in Se
tion 3 below. Our models are more generalin allowing the AR 
omponent, and also in allowing a general fun
tion gi�1 in (1.2).With emphasis on the AR rather than the ARCH/GARCH 
omponent, our results 
an beregarded as testing for ARCH/GARCH type e�e
ts in an autoregressive pro
ess, possiblywith unit root. Seo (1999) derives some large-sample results for t{ratios from this point ofview, but does not 
onsider the boundary hypotheses for redu
tion to random walk. Davisand Dunsmuir (1996) give an asymptoti
 analysis of the MA(1) pro
ess when it is in ornear the unit root 
ase, using related ideas (see also Davis and Mikos
h (1998)).For general ba
kground on ARCH and GARCH we refer to Engle (1982, 1995), Boller-slev, Chou, and Kroner (1992), Bollerslev, Engle and Nelson (1994) and Gouri�eroux (1997);see also Shephard (1996) for a good dis
ussion of statisti
al aspe
ts of the models.The remainder of the paper is laid out as follows. Se
tion 2 sets out the assumptionsmade and outlines the methods we will use. Se
tion 3 states the main results in the formof Theorem 3.1. To see how well the asymptoti
s work in �nite samples, we report somesimulations and tabulate per
entiles of the test statisti
s, in Se
tion 4. Some dis
ussion ofthe results and their appli
ations is in Se
tion 5. Proofs are in the appendi
es. We restri
tourselves throughout to an AR{ARCH type of alternative (Æ = 0 in (1.2)), sin
e, as forthe ARCH/GARCH 
ase, this will suÆ
e in general, as we show in Appendix C.2. MODEL ASSUMPTIONS AND METHODOLOGYIn (1.1), the "i depend on the values of the unknown parameters, though this is suppressed3



in the notation. When the parameters take their \true" values, denoted by a subs
ript 0,the ARCH version of the model will be written asXi = �0Xi�1 + eip�0 + �0gi�1; i = 2; 3; : : : ; n; (2:1)with X1 = e1. Here ei is the value of "i when the parameters take their true values. The eiare i.i.d. random variables (rvs) with expe
tation 0, varian
e 1 and �nite third and fourthmoments �3 and �4. Colle
t the parameters into a parameter ve
tor � = (�; �; �), with\true" value �0 = (�0; �0; �0). � and �0 lie in the parameter spa
e � = IR�(0;1)� [0;1).The �rst hypothesis we 
onsider isH(1)0 : �0 2 
(1) := f1g � (0;1)� f0g; i:e:; �0 = 1; �0 > 0; �0 = 0: (2:2)Under H(1)0 , the pro
ess Xi is a mean zero random walk, whatever the 
hoi
e of gi. As the\maintained" hypothesis, we takeH1 : �0 2 � := IR� (0;1)� [0;1); i:e:; �0 2 IR; �0 > 0; �0 � 0: (2:3)(2.2) is a boundary hypothesis relative to (2.3), as dis
ussed in Vu and Zhou (1997),Demos and Sentana (1998) and Andrews (1999, 2001). However, the results and methodsin the latter papers do not apply dire
tly to our problem, as we dis
uss in detail later. Wepro
eed by modifying the methods of Vu and Zhou (1997) (hereafter, \VZ"), whose generalformulation and method of approa
h lends itself easily to the further generalisation requiredhere. We will show that, with probability approa
hing 1 as n ! 1 (WPA1), there existmaximisers �̂(1)n and �̂n in 
(1) and � of the log-pseudo-likelihood fun
tion Ln(�) (taken
onditional on X1) whi
h are 
onsistent for �0, and we derive the asymptoti
 distribution(as n!1) of the \devian
e" (minus twi
e log-pseudo-likelihood ratio) statisti
d(1)n := �2(Ln(�̂(1)n )� Ln(�̂n)) (2:4)for testing H(1)0 versus H1. This deals with the unit root (random walk) aspe
t. For thewhite noise version, we 
onsider instead the null hypothesisH(2)0 : �0 2 
(2) := f0g � (0;1)� f0g; i:e:; �0 = 0; �0 > 0; �0 = 0; (2:5)under whi
h the Xi be
ome the in
rements of a random walk (i.e., i.i.d. rvs), to be testedagainst H1. A similar analysis 
an be made in this 
ase, resulting in maximisers �̂(2)n and�̂n of Ln(�) under H(2)0 and H1. Again, under the assumptions made so far, we 
an derivethe asymptoti
 distribution ofd(2)n = �2(Ln(�̂(2)n )� Ln(�̂n)); (2:6)the devian
e statisti
 for testing H(2)0 versus H1. These results are stated next.4



3. MAIN THEORETICAL RESULTSOur results 
an be summarised as:Theorem 3.1. Suppose the Xi satisfy (2.1) for i.i.d. ei with expe
tation 0, varian
e 1and �nite third and fourth moments, and that gi�1 satis�es (1.3).(i) Suppose further that H(1)0 as spe
i�ed in (2.2) holds. Then d(1)n as de�ned in (2.4)satis�es d(1)n D! (W 2(1)� 1)24 R 10 W 2(y)dy + Z2I(Z � 0); as n!1; (3:1)where W (�) is an SBM on [0; 1℄, Z = p�4 � 1N=p2, with N a standard normal randomvariable independent of W (�), and I(Z � 0) is 1 if Z � 0 and 0 otherwise.(ii) Suppose instead that H(2)0 as spe
i�ed in (2.5) holds. Then the devian
e statisti
d(2)n for testing H(2)0 versus H1 satis�esd(2)n D! N21 + Z2I(Z � 0); as n!1; (3:2)where Z = �23p2(�4 � 1)N1 +s (�4 � 1)2 � �432(�4 � 1) N2;and N1 and N2 are independent standard normal rvs.(iii) Alternatively, suppose gi�1 satis�es (1.4). Then, under H(2)0 , (3.2) remains trueas stated, while, under H(1)0 ,d(1)n D! (W 21 (1)� 1)24 R 10 W 21 (y)dy + Z2I(Z � 0); as n!1; (3:3)where Z = 1p2(J4 � J22 ) ��J2 ��3W1(1) +q�4 � 1� �23 W2(1)�+�3 Z 10 W 21 (y)dW1(y) +q�4 � 1� �23 Z 10 W 21 (y)dW2(y)� ; (3:4)with (W1(�);W2(�)) an SBM in two dimensions, and Jk := R 10 W k1 (y)dy, k � 1.When �3 = 0 and �4 = 3, as is the 
ase for example when the ei are N(0; 1), andgi�1 satis�es (1.3) or (1.4), Z in (3.1), (3.2) and (3.4) is standard normal. In this 
ased(2)n D! N21 +N22 I(N2 � 0); as n!1; (3:5)where N1 and N2 are independent standard normal rvs.Remarks. (i) In (3.1) and elsewhere, \D!" means 
onvergen
e in distribution.5



(ii) We show in Appendix C below that the results of Theorem 3.1 remain true asstated for the GARCH(1,1) model.(iii) Andrews (1999, 2001) gives a very extensive and intensive analysis of the boundaryhypothesis testing problem for a wide 
lass of models. While our approa
h is similar in somerespe
ts to his, there are some 
ru
ial di�eren
es in the models we treat, and our results arequite di�erent. In both 
ases (his Assumption 3, our (B.5) below) an important 
al
ulationis to establish the joint 
onvergen
e of the normed �rst and se
ond derivative matri
es ofthe log-pseudo-likelihood to a limiting random ve
tor. One of our main 
ontributions, anddiÆ
ulties, is to �nd this limit for the 
ases we 
onsider. (A somewhat similar approa
his used by Davis and Dunsmuir (1996) in the MA(1) model.) Andrews (2001) 
onsidersa GARCH(1,1) model and gives a result 
omparable to (3.5) (but without the 
hi-square
omponent 
orresponding to �, the AR parameter). Andrews, like us, forms a pseudo-likelihood from i.i.d. N(0; 1) rvs. He does not in
lude the unit root 
ase (3.1) or (3.3),and this extension to the non-stationary 
ase requires signi�
antly di�erent 
al
ulations.One point of distin
tion is that the limit of the normed se
ond derivative matrix for anordinary GARCH model is non-random, whi
h allows the use of Andrews' Assumption 3�.But this is not general enough for (3.1) and (3.3), and we need to bring in extra theory {we use results 
on
erning 
onvergen
e of sto
hasti
 integrals of Kurtz and Protter (1991){ to handle it. Andrews' 
al
ulations for the ordinary GARCH model rely heavily on thestationarity assumption.To keep the paper mostly self-
ontained we give a separate development whi
h, fur-thermore, for our spe
i�
 setup, avoids some of the restri
tions Andrews and others in thisarea have to apply in general. A 
ommon assumption, for example, whi
h seems essentialto approa
hes su
h as that of Andrews, is that the parameters be restri
ted to a 
ompa
tparameter spa
e. Our analysis avoids this requirement, whi
h in e�e
t introdu
es further,unne
essary bounding parameters whi
h may be quite arti�
ial in some situations. Weallow the extra generality of the gi�1 in (1.2). On the other hand Andrews' model ismore general in some respe
ts; he in
ludes a stationary sequen
e of regressor variables inthe mean equation of the model, and the innovations are required only to be stationarymartingale di�eren
es, whereas ours are assumed i.i.d. In this regard, our assumptionsare kept simple so as to give a 
lear development but our methods 
an be generalised tothese situations. Andrews also allows for an extra GARCH-AR parameter (i.e., in the vari-an
e, rather than the mean, equation), �, whi
h disappears under the null and is handledby methods of Davies (1977, 1987). He 
onsiders test statisti
s other than log-pseudo-likelihood ratio statisti
s (Wald and s
ore tests) and again obtains quite general results.No doubt our methods 
ould be applied similarly for these 
ases too.4. SIMULATIONS OF AR{ARCH AND AR{GARCH MODELSTo assess the asymptoti
 results, we evaluated the �nite sample per
entiles of the devian
estatisti
 for various sample sizes, for various models, by 
ondu
ting a Monte Carlo study.Simulations were done with the software pa
kage Mathemati
a (Wolfram Resear
h (1999)),using all the standard pa
kages, with the ex
eption of the routine used to maximise thelog-pseudo-likelihood. For this we used the pa
kage Global Optimization (Loehl (1999)).A detailed des
ription of our experiment is in Van De Vyver (2001). Brie
y, for ea
h of6



the two series satisfying (2.1) with ei � N(0; 1), and for ea
h of 3 
hoi
es of gi�1, namely,(1.3), (1.4), and (1.5), we simulated 1000 series of length n, where n = 100; 500; 1000,a

ording to the two null hypotheses:H(1)0 : Random Walk; i.e., a partial sum of i.i.d. N(0; 1) rvs;H(2)0 : Gaussian white noise, i.e., a sequen
e of i.i.d. N(0; 1) rvs.Thus, for H(1)0 the true parameter values were �0 = 1 and �0 = 1, and for H(2)0 theywere �0 = 0 and �0 = 1 (with �0 = Æ0 = 0 in both 
ases). For ea
h series the likelihoodwas maximised under the null and alternate models and the value of the devian
e statisti

al
ulated. Per
entiles of the �nite-sample distributions of the dn were then found.Our experien
e 
on�rmed others' observations, that maximisation of the log-pseudo-likelihood for ARCH/GARCH type models is very sensitive to the initial parameter esti-mates used. To minimise the e�e
t of this, for ea
h repli
ation the parameter ve
tor wasestimated �ve times, ea
h time from a randomly generated set of starting parameter esti-mates. The null and alternative models were simultaneously estimated for ea
h startingvalue.The only 
onstraints imposed on the optimization routine were the non-negativity of �,� and Æ (where appli
able), and a 
onditional varian
e stationarity 
onstraint (�+ Æ � 1)in the 
ase of the GARCH model. Additional initial values of � and " are required in
al
ulating the varian
e equation. Two 
andidates for the initial varian
e estimate are thesample varian
e and the theoreti
al expe
ted value, �=(1 � � � Æ). For series of lengthn = 100 and 1000 we found no di�eren
e in the devian
e statisti
s or parameter estimatesobtained using either starting method (to at least the tenth de
imal pla
e).From the 1000 repli
ations, we estimated the 90th, 95th and 99th per
entiles of theempiri
al distribution of the devian
es from the appropriate order statisti
s, and these aregiven in Table 4.1, along with the asymptoti
 values 
al
ulated from (3.1), (3.2) or (3.3)(in the \1" row) for 
omparison. We report in Table 4.1 results also for the 
hoi
e of giin (1.5); the theory for this 
an be developed by methods similar to those in Se
tion 6.Consistent with other reports in the literature, we found the \standard" Mathemati
aTime Series pa
kage to have some diÆ
ulty in �nding the maximum of the likelihood fun
-tion, for some samples. This is apparently intrinsi
. For details related to spe
i�
 softwareissues see Fiorentini, Calozari and Panattoni (1996), M
Cullough and Renfro (1998), Jer-rell (2000) and Brooks, Burke and Persand (2001). Zumba
h (2000) shows analyti
ally, viaa 
hange of 
o-ordinates, that the diÆ
ulties evident in pra
ti
al appli
ations of (1.3) aredue to a nearly degenerate property of the model. However, our pro
edure always resultedin reasonable estimates. For users of other programs, we mention here that some of our\diÆ
ult" samples were handled straightforwardly by E-Views, or SAS, or both, while weoften found samples whi
h our pro
edure handled but were not dealt with 
orre
tly byone or another of these programs. Some forms of (1.1) and (1.2) were more diÆ
ult toestimate than others. This suggests that the impli
ations of Zumba
h's (2000) analysismay depend on the form of the (G)ARCH model assumed. The optimization algorithm weemploy seems well suited to these types of models and may usefully be employed in other,similar, situations. INSERT TABLE 4.17



5. DISCUSSIONSimulation ResultsThe per
entiles given in Table 4.1 suÆ
e for our purposes, but are for illustrative ratherthan for testing purposes; while the individual devian
es were determined to three-�gurea

ura
y by the program, the per
entiles are not estimated to that order of pre
ision. Theywere estimated dire
tly from the empiri
al distribution fun
tion, but sin
e the models under
onsideration are heavy-tailed, the high quantiles will be strongly in
uen
ed by extremepeaks of the time series. An alternative estimation pro
edure using extreme value theoryand taking the size of the peaks into a

ount would be preferable for general use. For apresentation and dis
ussion of this kind of methodology for stationary time series we referto Borkove
 (2000), Embre
hts et al. (1997, Chapter 6 and Se
tion 8.1), and referen
estherein. Fuller simulations and estimations for our setup are reported in Van De Vyver(2001). (See also Beletski, May and Szimayer (2001) and Gleisberg (2001).) The standarderrors of the estimated per
entiles in Table 4.1, 
al
ulated using normal approximations,vary from about 10% of the tabulated values for the 90th and 95th to about 20% of thevalues for the 99th per
entiles.Perhaps the most striking 
on
lusion to be drawn from the table is that when theinnovations are normally distributed, the form of gi makes little di�eren
e to the per
entilesof the distribution of the devian
e statisti
 either in �nite series of length greater than about100, or asymptoti
ally, at least when the underlying distribution of the series is given bythe null: random walk or white noise. (The form of gi may well be of importan
e in thenon-null 
ase and/or when the residuals do not have �3 = 0 and �4 = 3.)We note a somewhat 
loser 
orresponden
e between �nite sample and asymptoti
results, for the series lengths 
onsidered, for ARCH than for GARCH models, as might beexpe
ted. The length of the series, n, plays the expe
ted role, with the results for n = 1000somewhat 
loser to the asymptoti
 values than for n = 100, in most 
ases.Calibrating Time SeriesTypi
al appli
ations to �nan
ial data sets of our models would take theXi to be ln(Si),or ln(Si=Si�1), where Si is an asset pri
e or ex
hange rate series. (1.1) { (1.2) with � = 0and gi = X2i = (ln(Si=Si�1))2 represents the GARCH(1,1) model intensively studied in thee
onometri
s and sto
hasti
s literature. The tail behaviour of the stationary distribution,the extremal behaviour and the limiting behaviour of the AR-ARCH(1) model have beeninvestigated in Borkove
 and Kl�uppelberg (2001), Borkove
 (2000,2001) and Embre
hts etal. (1997, Se
tion 8.4). Bollerslev, Engle and Nelson (1994) provide an interesting surveyof some time series analyses that use e
onomi
 and �nan
ial data sets, illustrating thetypes of data properties that the various models are intended to 
apture. Pagan (1996,Se
tion 5) provides an informative dis
ussion of 
onsiderations needed in establishing thatthe alternate as well as the null model is e
onomi
ally sensible. Our methods are able toa

omodate these kinds of models; for example, the models of Duan (1995) and Rit
hkenand Trevor (1999).StationarityStationarity of the pro
esses we 
onsider is not an issue in the 
ontext of this paper asour working makes 
lear. But in pra
ti
e, if the null hypothesis is reje
ted and a 
onditional8



heteroskedasti
ity model of the AR-ARCH or AR-GARCH type is thought appropriatefor the data, then the pre
ision of parameter estimation and questions of stationarity orotherwise be
ome important. Parameter estimation in these models has been 
onsideredfor example in Ling and Li (1998) and their referen
es, and the stationarity of the modelshas been resolved for the AR(1) pro
ess with ARCH(1) errors in Borkove
 and Kl�uppelberg(2001).Dependen
e on ParametersThe distributions in (3.1), (3.2) and (3.3) in general depend on the parameters �3 and�4, whi
h must be estimated from data if the result is to be used in this generality. The�rst summand on the righthand side of (3.1) is the square of the Di
key-Fuller \t"{statisti
for testing the unit root (random walk) hypothesis in an autoregressive pro
ess. This of
ourse is the 
ontribution of the AR in the AR{ARCH type setup. When the distributionof the underlying residuals is normal, or, more generally, �3 = 0 and �4 = 3, we get forthe righthand side of (3.2) a �21 rv plus an independent 50{50 mixture of �21 and a pointmass at 0, 
onsistent with the 
onje
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tion 2, we follow the VZ approa
h to prove Theorem 3.1. Under
ertain 
onditions on the model and a \maximising fun
tion" (whi
h in our 
ase will bethe log-pseudo{likelihood fun
tion Ln(�)), VZ show that, WPA1 as n ! 1, there existunique maximisers of Ln(�) in the null and alternate spa
es whi
h are 
onsistent for �0,and derive the asymptoti
 distribution of the devian
e statisti
. The VZ \A" 
onditions,spe
i�
ally: (A1), existen
e and 
ontinuity of �rst and se
ond derivatives of Ln(�), takento be one-sided at boundary points, and (A2), there is a 
losed 
one C
(1) with vertex at�0 su
h that C
(1) \N = 
(1)\N for a 
losed neighbourhood N in IR3 of �0, and similarlyfor 
(2) and � , are satis�ed for our setup. However, some of the \B" 
onditions are notsatis�ed, so we must modify their methods. The approa
h given here 
an be used in other,similar, situations as well, so we keep the exposition general for as long as possible, onlyresorting to the spe
i�
s of the models when ne
essary.Proofs are 
olle
ted in the following four appendi
es. Appendix A lists the derivativesof the log-pseudo-likelihood, and some related quantities, Appendix B 
ontains basi
 lem-mas, Appendix C has the main parts of the proof of Theorem 3.1 and Appendix D veri�es
ondition (B.6) of Lemma B.1 for H(1)0 and gi�1 satisfying (1.3).APPENDIX A: DERIVATIVES.11



The log-pseudo-likelihood of the observables Xn; Xn�1; : : : ; X2, 
onditional on X1, isLn(�) = �12 nXi=2 ln(�2i )� 12 nXi=2 "2i � 12(n� 1) ln(2�) (A:1)where �2i = � + �gi�1; i = 2; 3; : : : ; (A:2)and, throughout, we use the relation "i = (Xi��Xi�1)=�i. Straightforward di�erentiation,allowing for gi�1 to depend on �, � and/or � in general, gives�"2i�� = �2Xi�1"i�i � "2i�2i ��2i�� ; �"2i�� = � "2i�2i ��2i�� ; and �"2i�� = � "2i�2i ��2i�� : (A:3)Let Sn(�) = �Ln(�)�� and Fn(�) = ��2Ln(�)��2be the �rst derivative ve
tor and negative se
ond derivative matrix of Ln(�). From (A.1){ (A.3) we get for the elements of Sn(�):�Ln�� = 12 nXi=2 �2Xi�1"i�i + ("2i � 1)�2i ��2i�� � ; �Ln�� = 12 nXi=2 ("2i � 1)�2i ��2i�� (A:4a)and �Ln�� = 12 nXi=2 ("2i � 1)�2i ��2i�� : (A:4b)Noting that ��� �"2i � 1�2i � = �2Xi�1"i�3i � (2"2i � 1)�4i ��2i�� ; (A:5a)��� �"2i � 1�2i � = � (2"2i � 1)�4i ��2i�� and ��� �"2i � 1�2i � = � (2"2i � 1)�4i ��2i�� ; (A:5b)and with Fn(�) = [Frsn (�)℄, r; s;= 1; 2; 3, we then get from (A.4)F11n (�) = ��2Ln��2 = 12 nXi=2 �2X2i�1�2i + �4Xi�1"i�3i + (2"2i � 1)�4i ��2i�� � ��2i�� � ("2i � 1)�2i �2�2i��2 �(A:6a)F12n (�) = � �2Ln���� = 12 nXi=2 ��2"iXi�1�3i + (2"2i � 1)�4i ��2i�� � ��2i�� � ("2i � 1)�2i �2�2i����� ;(A:6b)F13n (�) = � �2Ln���� = 12 nXi=2 ��2"iXi�1�3i + (2"2i � 1)�4i ��2i�� � ��2i�� � ("2i � 1)�2i �2�2i����� ;(A:6
)12



F22n (�) = ��2Ln��2 = 12 nXi=2 �(2"2i � 1)�4i (��2i�� )2 � ("2i � 1)�2i �2�2i��2 � ; (A:6d)F23n (�) = � �2Ln���� = 12 nXi=2 � (2"2i � 1)�4i ��2i�� ��2i�� � ("2i � 1)�2i �2�2i����� ; (A:6e)and F33n (�) = ��2Ln��2 = 12 nXi=2 � (2"2i � 1)�4i (��2i�� )2 � ("2i � 1)�2i �2�2i��2 � : (A:6f)Also, from (A.2)��2i�� ����0 = ��gi�1�� ����0 = 0 = �2�2i��2 ����0 = �2�2i���� ����0 ; �2�2i���� ����0 = �gi�1;0�� ; (A:7a)��2i�� ����0 = (1 + ��gi�1�� )����0 = 1; ��2i�� ����0 = (gi�1 + ��gi�1�� )����0 = gi�1;0; (A:7b)�2�2i��2 ����0 = 0; �2�2i���� ����0 = �gi�1;0�� ; and �2�2i��2 ����0 = 2�gi�1;0�� : (A:7
)APPENDIX B: BASIC LEMMAS.The next lemma provides the basis for Theorem 3.1. In what follows, OP (1) denotes arandom variable bounded in probability (relatively 
ompa
t) as n!1, and oP (1) denotesa random variable whi
h tends to 0 in probability as n!1. �min(M) (�max(M)) denotesthe minimum (maximum) eigenvalue, and M1=2 denotes the left Cholesky square root, ofa positive de�nite matrix M . \T" denotes a transpose. For n � 1 and A > 0, Nn(A)denotes the neighbourhoodNn(A) = �� : (� � �0)TGn(� � �0) � A2	 : (B:1)In Lemma B.1, we write 
 for 
(1) or 
(2) and dn for d(1)n or d(2)n .Lemma B.1. (i) Suppose there is a deterministi
 diagonal nonsingular matrix Gn with�min(Gn)!1 (n!1) su
h thatG�1=2n Sn(�0) = OP (1) (B:2)and lim
!0+ lim supA!1 lim supn!1 Pf inf�2Nn(A)�min(G�1=2n Fn(�0)G�1=2n ) � 
g = 0: (B:3)Then there are pseudo-maximum likelihood estimators (pseudo-MLEs) �̂(1)n and �̂n whi
hfor ea
h A > 0 uniquely maximise Ln(�) on Nn(A)\
 and Nn(A)\ � , respe
tively, on anevent whi
h has probability approa
hing 1 as n ! 1 and A ! 1. These estimators are
onsistent for �0. 13



(ii) Suppose in addition thatG�1=2n F1=2n (�0) = Yn + oP (1); (B:4)where Yn is a lower triangular matrix with positive diagonal elements, having, apart fromthe diagonal element, zeroes in the �rst 
olumn; that�G�1=2n Sn(�0); Yn� D! (S; Y ); (B:5)as n!1, for some a.s. �nite random ve
tor S and a.s. �nite, nonsingular, matrix Y (in(B.5), joint 
onvergen
e of all elements is required); and that, as n!1, for ea
h A > 0,sup�2Nn(A) 


G�1=2n (Fn(�)� Fn(�0))G�1=2n 


 P! 0: (B:6)Then, as n!1, F�1=2n (�0)Sn(�0) D! Y �1S = Z; (B:7)for a �nite random ve
tor Z = (Z1; Z2; Z3), anddn = 2(Ln(�̂n)� Ln(�̂(1)n )) D! Z21 + Z23I(Z3 � 0): (B:8)Proof of Lemma B.1: As mentioned, we follow the proof of Theorem 2.1 of VZ, repla
ing(B3') of VZ (note that VZ do not use their (B1) in the proof of their Theorem 2.1), whi
hdoes not hold here, with the weaker 
ondition (B.6). The proof of Theorem 2.1 of VZ 
anthen be 
arried through with minor modi�
ations to �nd �̂(1)n . Potentially, �̂(1)n dependson A but a standard argument in analysis allows us to 
hoose �̂(1)n not depending on A,still with �̂(1)n 2 Nn(A), on an event whi
h has probability approa
hing 1 as n ! 1 andA!1. This is our pseudo-MLE of �0 in 
. Similarly, we 
an get a pseudo-MLE �̂n in � ,and these are 
learly 
onsistent for �0. This establishes Part (i) of Lemma B.1.For Part (ii), (B.7) follows immediately from (B.4) and (B.5). To prove (B.8), write2(Ln(�̂(1)n )� Ln(�0)) = 2(�̂(1)n � �0)TSn(�0)� (�̂(1)n � �0)TFn(e�n)(�̂(1)n � �0)= hn(�̂(1)n ) + rn(�̂(1)n ); (B:9)where e�n = a�0 + (1� a)�̂(1)n for some 0 � a � 1,hn(�) = �jF�1=2n (�0)Sn(�0)� FT=2n (�0)(� � �0)j2 + STn (�0)F�1n (�0)Sn(�0) (B:10)and rn(�) = (� � �0)T �Fn(�0)�Fn(e�n)� (� � �0):14



In view of the pre
eding, given " > 0, we 
an take A � A0(") and n � n0("; A) su
h thatthe eventEn := f�̂(1)n 2 Nn(A); �̂n 2 Nn(A); jF�1=2n (�0)Sn(�0)j2 � A2�min(Y Tn Yn)=4ghas probability at least 1 � ". Suppose En o

urs. In (B.9) we then have e�n 2 Nn(A)WPA1, and 
onsequently from (B.1) and (B.6) we get rn(�̂(1)n ) P! 0. (B.9) then gives2(Ln(�̂(1)n )� Ln(�0)) = hn(�̂(1)n ) + oP (1): (B:11)If � 2 Nn(A), so that jG1=2n (� � �0)j � A, we have from (B.4) thatFT=2n (�0)(� � �0) = Y Tn G1=2n (� � �0) + op(1):As in VZ we then get from (B.11)2(Ln(�̂(1)n )� Ln(�0))= � inf�2Nn(A)\
 jF�1=2n (�0)Sn(�0)�FT=2n (�0)(� � �0)j+ STn (�0)F�1n (�0)Sn(�0) + oP (1)= � inf�2Nn(A)\
 jF�1=2n (�0)Sn(�0)� Y Tn G1=2n (� � �0)j+ STn (�0)F�1n (�0)Sn(�0) + oP (1):(B:12)(B.12) di�ers from VZ in that the norming is by random matri
es Fn(�0) and Yn ratherthan by Gn. Nevertheless, pro
eeding, we transform from � to �0 = Y Tn G1=2n (� � �0), sothat Nn(A) transforms to N 0n(A), say. Now (A2) of VZ requires a 
one C
 with vertex at�0 2 
 whi
h 
oin
ides with 
 on a neighbourhood of �0, i.e, C
 \ Nn(A) = 
 \Nn(A).We 
an take C
 = �0 + f0g � IR� f0g;whi
h transforms via �0 tofY Tn G1=2n (� � �0) : � 2 C
g = f0g � IR� f0g = eC
; say:This holds be
ause of the 
onformation of Yn; apart from the positive diagonal elements,only the (3; 2) element of Yn may be nonzero; and Gn is diagonal with positive elements.Note further that if j�0j2 � A2�min(Y Tn Yn);then � su
h that �0 = Y Tn G1=2n (� � �0) satis�es(� � �0)TGn(� � �0) = (� � �0)TG1=2n Yn(Y Tn Yn)�1Y Tn G1=2n (� � �0)= (�0)T (Y Tn Yn)�1�0 � j�0j2�max(Y Tn Yn)�1 � A2;so � 2 Nn(A). Thus �0 2 N 0n(A), soN 0n(A) � f�0 : j�0j2 � A2�min(Y Tn Yn)g: (B:13)15



From (B.12)2(Ln(�̂(1)n )� Ln(�0))= � inf�02N 0n(A)\eC
 jF�1=2n (�0)Sn(�0)� �0j+ STn (�0)F�1n (�0)Sn(�0) + oP (1): (B:14)Let _�n 2 eC
 be su
h thatjF�1=2n (�0)Sn(�0)� _�nj = inf�02eC
 jF�1=2n (�0)Sn(�0)� �0j:Sin
e eC
 
ontains 0,inf�02eC
 jF�1=2n (�0)Sn(�0)� �0j2 � jF�1=2n (�0)Sn(�0)j2 � A2�min(Y Tn Yn)=4;on En. It follows that j _�nj2 � A2�min(Y Tn Yn), so _�n 2 N 0n(A). Thus from (B.14)2(Ln(�̂(1)n )� Ln(�0))= � inf�02eC
 jF�1=2n (�0)Sn(�0)� �0j+ STn (�0)F�1n (�0)Sn(�0) + oP (1): (B:15)A similar analysis for �̂n gives2(Ln(�̂n)� Ln(�0))= � inf�02eC� jF�1=2n (�0)Sn(�0)� �0j+ STn (�0)F�1n (�0)Sn(�0) + oP (1); (B:16)where eC� = IR2 � [0;1); noti
e that C� = �0 + IR2 � [0;1) transforms to eC� via �0 =Y Tn G1=2n (���0), again be
ause of the 
onformation of Yn and Gn. Subtra
ting (B.15) from(B.16) we getdn = inf�2eC
 jF�1=2n (�0)Sn(�0)� �j2 � inf�2eC� jF�1=2n (�0)Sn(�0)� �j2 + oP (1)D! inf�2eC
 jZ � �j2 � inf�2eC� jZ � �j2 (B:17)with Z = (Z1; Z2; Z3) as in (B.7). Hen
edn D! inf�2f0g�IR�f0g jZ � �j2 � inf�2IR2�[0;1) jZ � �j2= Z21 + Z23 � Z23I(Z3 < 0) = Z21 + Z23I(Z3 � 0): (B:18)This is (B.8), and 
ompletes the proof of Lemma B.1.The method of proof of Theorem 3.1 will be to verify the 
onditions of Lemma B.1 forthe model version and null hypothesis 
urrently assumed. Now (B.2) follows from (B.5),16



and (B.3) follows from (B.4), (B.5) and (B.6) be
ause Y , as a positive de�nite matrix, hasno mass at 0. The veri�
ation of (B.6) under the assumptions of Theorem 3.1 
onsists ofroutine but tedious 
al
ulations and is relegated to Appendix D. It then only remains todemonstrate (B.4) and (B.5).Before embarking on these 
al
ulations, we �nd a simpli�ed asymptoti
 representationfor G�1=2n Fn(�0)G�1=2n whi
h holds for all the versions we 
onsider. Inspe
tion of thederivatives listed in Appendix A suggests taking for Gn a diagonal matrix of the formGn = diag(an; n; bn); (B:19)where an ! 1 and bn ! 1 are deterministi
 sequen
es whose de�nitions will dependon the 
hoi
e of H0, and on the 
hoi
e of the sequen
e gi�1 in (1.2). For H(1)0 we takean = n2, and for H(2)0 , an = n. Under (1.3), take bn = n, while bn = n3 is appropriateunder (1.4), as we will see. With these 
hoi
es, the following will be shown to hold:Lemma B.2. Assume H(1)0 or H(2)0 for either model spe
i�
ation (1.3) or (1.4), andsuppose that, as n!1, ea
h of1pnbn nXi=2(e2i � 1)gi�1;0; 1bn nXi=2(e2i � 1)g2i�1;0; (B:20a)1panbn nXi=2(e2i � 1)�gi�1;0�� ; 1pnbn nXi=2(e2i � 1)�gi�1;0�� ; 1bn nXi=2(e2i � 1)�gi�1;0�� (B:20b)and 1panbn nXi=2 eiXi�1gi�1;0 (B:20
)is oP (1), where gi�1;0 is the value of gi�1 under the 
urrent null hypothesis. Then
G�1=2n Fn(�0)G�1=2n = 26666666664

1�0an nXi=2X2i�1 0 012�20 12�20pnbn nXi=2 gi�1;012�20bn nXi=2 g2i�1;0
37777777775+ oP (1) (B:21)

(with the remaining elements �lled in by symmetry).Proof of Lemma B.2: Pre{ and post{ multiplying Fn(�) by G�1=2n , where Gn is given17



in (B.19), gives
G�1=2n Fn(�)G�1=2n = 26666666664

F11n (�)an F12n (�)pnan F13n (�)panbnF22n (�)n F23n (�)pnbnF33n (�)bn
37777777775 (B:22)

(with the remaining elements �lled in by symmetry).Now, (A.6a) and (A.7a) mean that, in all 
ases,F11n (�0)an = 1�0an nXi=2X2i�1;as required for (B.21).Under H(1)0 , Xi�1 is a mean 0 �nite varian
e random walk and we take an = n2, soby (A.6b), (A.7a) and (A.7b)F12n (�0)pnan = 1�3=20 n3=2 nXi=2 eiXi�1 = OP (1=pn) = oP (1): (B:23a)This follows by noting that eiXi�1 is a martingale di�eren
e sequen
e with respe
t to Hi,the �{�eld generated by the sequen
e fei; ei�1; : : : ; e1g, having varian
e Var(eiXi�1) =EX2i�1 = (i � 1)�0. Alternatively, under H(2)0 , Xi�1 = p�0ei�1, eiei�1 is a mean 0stationary sequen
e, and we take an = n, so by the ergodi
 theorem,F12n (�0)pnan = 1�0n nXi=2 eiei�1 = oP (1); (B:23b)again. This deals with the (1; 2) element in (B.21).Now assume (B.20). From (A.6
), (A.7), (B.20a) and (B.20
) we have in all 
asesF13n (�0)panbn = 1�3=20 panbn nXi=2 eiXi�1gi�1;0 � 12�0panbn nXi=2(e2i � 1)�gi�1;0�� = oP (1): (B:24)Next use 2e2i � 1 = 1 + (2e2i � 2) and the ergodi
 theorem in (A.6d) to getF22n (�0)n = 12�20n nXi=2(2e2i � 1) = n� 12�20n + 1�20n nXi=2(e2i � 1) = 12�20 + oP (1); (B:25)18



and similarly, using (A.6e) and (A.7),F23n (�0)pnbn = 12�20pnbn nXi=2 gi�1;0 + 1�20pnbn nXi=2(e2i � 1)gi�1;0 � 12�0pnbn nXi=2(e2i � 1)�gi�1;0��= 12�20pnbn nXi=2 gi�1;0 + oP (1) (by (B:20a) and (B:20b)): (B:26)Using (A.6f),F33n (�0)bn = 12�20bn nXi=2 g2i�1;0 + 1�20bn nXi=2(e2i � 1)g2i�1;0 � 12�0bn nXi=2(e2i � 1)�gi�1;0��= 12�20bn nXi=2 g2i�1 + oP (1) (by (B:20a) and (B:20b)): (B:27)Substituting (B.23) { (B.27) in (B.22) gives (B.21).APPENDIX C: PROOF OF THEOREM 3.1.Case 1: Suppose (1.3) holds, so gi�1;0 = e2i�1�2i�1 = (Xi�1��Xi�2)2, and supposeCase 1(a): H(1)0 : �0 = 1; �0 = 0.Under H(1)0 we have �2i = �2i0 = �0 and Xi is a random walk whose in
rements haveexpe
tation 0, varian
e �0 and �nite third and fourth moments �3 and �4. Take an = n2and bn = n. First we 
he
k (B.20). For (B.20a),1n nXi=2(e2i � 1)e2i�1 P! 0 and 1n nXi=2(e2i � 1)e4i�1 P! 0 (C:1)hold by the ergodi
 theorem, as f(e2i � 1)e2i�1g and f(e2i � 1)e4i�1g are mean 0 stationarysequen
es. Next, we have�gi�1�� ����0 = �2Xi�2(Xi�1 � �Xi�2)����0 = �2Xi�2ei�1p�0 and �gi�1�� ����0 = 0 = �gi�1�� ����0 ;so for (B.20b) we need 1n3=2 nXi=2(e2i � 1)Xi�2ei�1 = oP (1): (C:2)The sum in (C.2) is a martingale with respe
t to Hi, and an easy 
al
ulation of its varian
eestablishes the required 
onvergen
e via Cheby
hev's inequality. For (B.20
), we use:Lemma C.1. Assume ei are i.i.d. rvs with expe
tation 0, varian
e 1 and �nite fourthmoments, and Xi =Pi1 ej . Then 1n3=2 nXi=2 eiXi�1e2i�1 P! 0: (C:3)19



Proof of Lemma C.1: Using Cheby
hev's inequality, we see that the normed martingalePn2 eiXi�1=n is OP (1) (i.e., sto
hasti
ally bounded), hen
e1n3=2 nXi=2 eiXi�1e2i�1 = 1n3=2 nXi=2 eiXi�1(e2i�1 � 1) + 1n3=2 nXi=2 eiXi�1= 1n3=2 nXi=2 ei(Xi�2 + ei�1)(e2i�1 � 1) + OP (1=pn)= 1n3=2 nXi=2 eiXi�2(e2i�1 � 1) + 1n3=2 nXi=2 eiei�1(e2i�1 � 1) + oP (1)= 1n3=2 nXi=2 eiXi�2(e2i�1 � 1) + oP (1):The last equality follows from the ergodi
 theorem, sin
e the sequen
e feiei�1(e2i�1 � 1)gis stationary with mean 0. Now the sequen
e feiXi�2(e2i�1 � 1);Hi�1g is a martingaledi�eren
e sequen
e with varian
e proportional to i� 2, so the last term is oP (1), and thus(C.3) holds.From (C.1) { (C.3), (B.20) and thus (B.21) follows by Lemma B.2.Now we demonstrate (B.4). With an appli
ation of the weak law of large numbers,(B.21) leads in the present 
ase to
G�1=2n Fn(�0)G�1=2n = 2666666664

1�0n2 nXi=2X2i�1 0 00 12�20 12�00 12�0 �42
3777777775+ oP (1): (C:4)

Taking the Cholesky square root we get
G�1=2n F1=2n (�0) = 26666666664

vuut 1�0n2 nXi=2X2i�1 0 00 1�0p2 00 1p2 r�4 � 12
37777777775+ oP (1); (C:5)

whi
h is of the form required in (B.4). 20



Finally we 
he
k (B.5). From (A.4) and (A.7) of Appendix A we obtain
G�1=2n Sn(�0) = nXi=2

266666664
eiXi�1np�0e2i � 12�0pn(e2i � 1)e2i�12pn

377777775 : (C:6)
From this and (C.5) we see that it will suÆ
e to �nd the joint limiting distribution of 1np�0 nXi=2 eiXi�1; 12�0pn nXi=2(e2i � 1); 12pn nXi=2(e2i � 1)e2i�1; 1�0n2 nXi=2X2i�1! : (C:7)To deal with (C.7), 
onsider the matrix produ
t26666666664

Xi�1pn�0 0 00 12�0 00 0 12
37777777775
266666664 ei=pn(e2i � 1)=pn(e2i � 1)e2i�1=pn

377777775 = AinBin; say; (C:8)
whi
h forms the summand in (C.6). For 0 � t � 1 letAn(t) = A[nt℄;n and Bn(t) = [nt℄Xi=1 Bin([�℄ denotes the integer part), then, with A11n (t) as the (1; 1) element of An(t),G�1=2n Sn(�0) = Z 12=nAn(t)dBn(t) and 1�0n2 nXi=2X2i�1 = Z 11=n(A11n (t))2dt: (C:9)Now fBing1�i�n are the terms of a martingale triangular array with respe
t to fHig, soby Theorem 2.2 of Kurtz and Protter (1991), from the joint 
onvergen
e of (An(t); Bn(t))to a limit pro
ess, (A(t); B(t)), say, we 
an dedu
e the joint 
onvergen
e in the Skorohodtopology on [0; 1℄ of�An(t); Bn(t); Z t0 An(s)dBn(s)� to �A(t); B(t); Z t0 A(s)dB(s)� : (C:10)21



This will give the required joint 
onvergen
e in (C.7). Sin
e Xi =Pi1 ej , the joint 
onver-gen
e of An(�) and Bn(�) will follow from that of0� 1pn [nt℄Xi=2 ei; 1pn [nt℄Xi=2(e2i � 1); 1pn [nt℄Xi=2(e2i � 1)e2i�11A ; (C:11)in D3[0; 1℄, and we dedu
e this from a martingale invarian
e prin
iple (e.g., Durrett (1991,p. 374)) as follows. Take a linear 
ombinationYi = u1ei + u2(e2i � 1) + u3(e2i � 1)e2i�1; (C:12)where u = (u1; u2; u3) are 
onstants with u21 + u22 + u23 = 1. Yi is a martingale di�eren
esequen
e with respe
t to Hi, and by the weak law of large numbers1n nXi=2 E(Y 2i jHi�1) = 1n nXi=2 �u21Ee21 + u22E(e21 � 1)2 + 2u1u2E(e1(e21 � 1))+u23E(e21 � 1)2e4i�1 + 2u1u3E(e1(e21 � 1))e2i�1 + 2u2u3E(e21 � 1)2e2i�1	= 1n nXi=2 �u21 + u22(�4 � 1) + 2u1u2�3 + u23(�4 � 1)e4i�1 + 2u1u3�3e2i�1 + 2u2u3(�4 � 1)e2i�1	P! u21 + u22(�4 � 1) + 2u1u2�3 + u23(�4 � 1)�4 + 2u1u3�3 + 2u2u3(�4 � 1): (C:13)The last expression is uTM3u, whereM3 = 24 1 �3 �3�3 �4 � 1 �4 � 1�3 �4 � 1 �4(�4 � 1)35 : (C:14)We need also to 
he
k the Lindeberg 
ondition in the form1n nXi=2 E(Y 2i I(jYij > "pn)jHi�1) P! 0; for ea
h " > 0;and this follows easily by similar 
al
ulation as in (C.13). We 
on
lude that the ve
tor in(C.11) has asymptoti
 distribution that of M1=23 fW3(t), where fW3(t) is SBM in 3 dimen-sions, fW3(t) = (W1(t);W2(t);W3(t)), say. Consequently, 
al
ulating the Cholesky squareroot of M3, we see that G�1=2n Sn(�0) 
onverges in distribution toZ 10 A(t)M1=23 dfW3(t) = 266666664
Z 10 W1(y)dW1(y)�32�0W1(1) + p�4 � 1� �232�0 W2(1)�32 W2(1) + p�4 � 1� �232 W2(1) + ��4 � 12 �W3(1)

377777775 :(C:15)22



Sin
e A11n (t) 
onverges weakly to W1(t) (see (C.9)), the limit in distribution of (C.5)is given by repla
ing the (1; 1) element of the matrix with pJ2, whereJk = Z 10 W k1 (y)dy (C:16)(as in (3.4)). Taking the inverse of the limit of the matrix in (C.5) gives�G�1=2n F1=2n (�0)��1 D! 266666664
1pJ2 0 00 p2�0 00 ��0p2p�4 � 1 r 2�4 � 1

377777775 : (C:17)
Pre-multiplying the matrix in (C.15) by the one in (C.17) gives (sin
e we have joint 
on-vergen
e of all elements)

F�1=2n (�0)Sn(�0) D! 266666664
Z 10 W1(y)dW1(y)=pJ2�3p2W1(1) +r�4 � 1� �232 W2(1)r�4 � 12 W3(1)

377777775 = 26664Z1Z2Z3
37775 ; (C:18)

from whi
h we identify the Z3 needed in (B.8) asZ3 =p�4 � 1W3(1)=p2: (C:19)This is distributed independently of Z1, the �rst element in (C.18). Thus the limitingdistribution of d(1)n 
an be found from (B.8) as�R 10 W1(y)dW1(y)�2R 10 W 21 (y)dy + 12(�4 � 1)W 23 (1)I(W3(1) � 0); (C:20)whi
h is of the form required in (3.1). This proves (3.1), subje
t to verifying (B.6), whi
his done in Appendix D.Case 1: Suppose (1.3) holds, so gi�1;0 = e2i�1�2i�1 = (Xi�1��Xi�2)2, and supposeCase 1(b): H(2)0 : �0 = 0 = �0.Next assume (1.3) and (2.5), so that Xi = ei�i0 = eip�0 is now an i.i.d. sequen
e.Only some minor modi�
ations to the previous analysis are needed. Again take bn = n,23



but this time let an = n. (B.20a) holds as before. (B.20b) requires, instead of (C.3),Pn2 (e2i � 1)ei�2e3i�1=n P! 0, and (B.20
) requires Pn2 eie3i�1=n P! 0. These hold by theergodi
 theorem. Instead of (C.6), useG�1=2n Sn(�0) = 1pn nXi=2 26664 eiei�1(e2i � 1)=2�0(e2i � 1)e2i�1=2
37775 ; (C:21)and, from (B.21), in pla
e of (C.4) write, by virtue of the weak law of large numbers,G�1=2n Fn(�0)G�1=2n = 24 1 00 F2 35+ oP (1) (C:22)where F2 is the lower right 2 � 2 blo
k in (C.4). Again, the Cholesky square root of thisis of the form required in (B.4). In pla
e of (C.12) use the martingale di�eren
e sequen
eYi = u1eiei�1 + u22�0 (e2i � 1) + 12u3(e2i � 1)e2i�1;and with an analysis similar to (C.13) we obtainG�1=2n Sn(�0) D! fM1=23 fW3(1);where fM3 = 26666664 1 0 �2320 �4 � 14�20 �4 � 14�0�232 �4 � 14�0 �4(�4 � 1)4

37777775 ; (C:23)
and fW3 = (W1(t);W2(t);W3(t)) is SBM in 3 dimensions. We �nd that Z satis�esZ1 =W1(1); Z2 =p(�4 � 1)=2 W2(1); (C:24a)Z3 = �23p2(�4 � 1) W1(1) +s (�4 � 1)2 � �432(�4 � 1) W3(1): (C:24b)Hen
e (3.2) of Theorem 3.1 follows if we verify (B.6) for the present setup. We omit thedetails of this.Case 2: Suppose (1.4) holds, so gi�1 = X2i�1, and suppose24



Case 2(a): H(1)0 : �0 = 1; �0 = 0.The appropriate bn is bn = n3 and for H(1)0 we take an = n2, soGn = diag(n2; n; n3): (C:25)(B.20) holds here immediately as an appli
ation of the fun
tional 
entral limit theorem(note that the partial derivatives of gi�1 are 0 in this 
ase), so (B.21) holds and we have
G�1=2n Fn(�0)G�1=2n = 26666666664

1�0n2 nXi=2X2i�1 0 012�20 12�20n2 nXi=2X2i�112�20n3 nXi=2X4i�1
37777777775+ oP (1) (C:26)

(with the remaining elements �lled in by symmetry). Under H(1)0 the �rst derivativessatisfy G�1=2n Sn(�0) = nXi=2 26666664
eiXi�1np�0e2i � 12�0pn(e2i � 1)X2i�12�0n3=2

37777775 ; (C:27)
and di�er from (C.6) only in the third element. From (C.26) and (C.27) we see that weneed the joint asymptoti
 distribution of 1n nXi=2 eiXi�1; 1pn nXi=2(e2i � 1); 1n3=2 nXi=2(e2i � 1)X2i�1; 1n2 nXi=2X2i�1; 1n3 nXi=2X4i�1! :(C:28)Instead of (C.8), this time 
onsider26666666664

Xi�1p�0n 00 12�00 X2i�12�0n
37777777775
26664 ei=pn(e2i � 1)=pn37775 = eAin eBin; say: (C:29)

This 
an be written in the form R eAn(t)d eBn(t) in a similar way as before. On
e again therequired joint 
onvergen
e will be obtained if ( eAn; eBn) D! ( eA(t); eB(t)), say. But this is25



immediate from the 
onvergen
e of the normed martingale1pn [nt℄Xi=2(ei; e2i � 1) (C:30)to fM1=22 fW2(t), where fW2(t) = (W1(t);W2(t)) is an SBM in 2 dimensions and fM2 =Var(e1; e21 � 1) is the upper left 2� 2 blo
k in (C.14). Cal
ulations similar to (C.15) give
G�1=2n Sn(�0) D! 266666664

Z 10 W1(y)dW1(y)�32�0W1(1) + p�4 � 1� �232�0 W2(1)�32 Z 10 W 21 (y)dW1(y) + p�4 � 1� �232 Z 10 W 21 (y)dW2(y)
377777775 : (C:31)

On
e again we have the 
onvergen
e of the �rst 
omponent of F�1=2n (�0)Sn(�0) toZ1, as in (C.18). For the (2,3) 
omponents, note that the lower right 2 � 2 blo
k ofG�1=2n Fn(�0)G�1=2n in (C.26) 
onverges (jointly with the other quantities) to12 26664 1�20 1�0 Z 10 W 21 (y)dy1�0 Z 10 W 21 (y)dy Z 10 W 41 (y)dy 37775 = 12 26664 1�20 J2�0J2�0 J4 37775 ; (C:32)where Jk is given by (C.16). The matrix in (C.32) has inverse Cholesky square root2664 �0p2 0�p2�0J2pJ4 � J22 s 2J4 � J22 3775 ; (C:33)and 
onsequently�G�1=2n F1=2n (�0)��1 D! 2666666664
1pJ2 0 00 p2�0 00 ��0p2J2pJ4 � J22 s 2J4 � J22

3777777775 : (C:34)
Thus F�1=2n (�0)Sn(�0) 
onverges in distribution to (Z1; Z2; Z3), where Z1 is as in (C.18),Z2 = �3p2W1(1) +r�4 � 1� �232 W2(1) (C:35)26



and (with Jk as in (C.16))Z3 = 1p2(J4 � J22 ) ��J2 ��3W1(1) +q�4 � 1� �23 W2(1)�+�3 Z 10 W 21 (y)dW1(y) +q�4 � 1� �23 Z 10 W 21 (y)dW2(y)� : (C:36)From this we obtain Z1 and Z3 as required for (B.8) and then (3.3) follows.When �3 = 0 and �4 = 3, as they are in the simulations reported in Se
tion 5, Z3 isstandard normal. We leave this for the reader to 
he
k.Case 2: Suppose (1.4) holds, so gi�1 = X2i�1, and supposeCase 2(b): H(2)0 : �0 = 0 = �0.Under H(2)0 , Xi = eip�0, so gi�1 = X2i�1 = e2i�1�0 and this model is exa
tly the same asfor Case 1: gi�1 = e2i�1�0. So we again arrive at (3.2) for the limiting distribution.Remarks: The AR{GARCH Case. Lee (1991) observed that the Lagrange multipliertest, based on the log-pseudo-likelihood, for the hypothesis �0 = 0 = Æ0 in GARCH, is thesame as for the hypothesis �0 = 0 in ARCH. This is be
ause when the true model is randomwalk, a GARCH model is over-parameterised in that the � and Æ parameters 
annot beseparately identi�ed. The same is true for the general 
onditional heteroskedasti
ity modelin (1.2) (in
luding the AR{GARCH model) under the mild 
onditions we have imposed.For the model spe
i�ed by (1.1){(1.3) (now with Æ in
luded), and assuming (B.20), wehave instead of (B.21), for G�1=2n Fn(�0)G�1=2n the 4� 4 matrix
2
266666666666664

1�0an nXi=2X2i�1 0 0 01�20 1�20pnbn nXi=2 gi�1;0 1�01�20bn nXi=2 g2i�1;0 1�20pnbn nXi=2 gi�1;01
377777777777775+ oP (1)

(with the remaining elements �lled in by symmetry). In the limit as n!1 this is singular,WPA1, due to the asymptoti
 linear dependen
e between the � and Æ parameters. Just asin Lee (1991) we 
an now use the theory of Ait
hison and Silvey (1958) and Silvey (1959)to show that the limiting distributions of the dn statisti
s for testing H(1)0 : �0 = 1; �0 =0 = Æ0 or H(2)0 : �0 = 0 = �0 = Æ0 are still given by (3.1), (3.2), or (3.3), in the respe
tive
ases.APPENDIX D: VERIFYING (B.6) WHEN H(1)0 HOLDS AND gi�1 = "2i�1�2i�1.27



Let � 2 Nn(A) \ � (see (2.3) and (B.1)) with A > 0 and takeGn = diag(an; n; bn) = diag(n2; n; n): (D:1)Thus, using (B.1) and with �0 = (1; �0; 0),n2(�� 1)2 + n(� � �0)2 + n�2 � A2: (D:2)Now �2i = � + �gi�1 = � + �"2i�1�2i�1 = � + �(Xi�1 � �Xi�2)2; i = 3; 4; : : : (D:3)has ��2i�� = �2�Xi�2(Xi�1 � �Xi�2) = �2�Xi�2"i�1�i�1 and �2�2i��2 = 2�X2i�2:So we have from (A.6a)1n2 ���F11n (�)� F11n (�0)��� � 1n2 nXi=2 ���X2i�1�2i � X2i�1�2i0 ���+ �n2 ��� nXi=2 �4Xi�1"i�3i � 2�(2"2i � 1)Xi�2"i�1�i�1�4i �Xi�2"i�1�i�1���+ �n2 ��� nXi=2 ("2i � 1)X2i�2�2i ���:(D:4)By (D.2), j� � 1j � A=n, j� � �0j � A=pn, and � � A=pn. Assume n is so large thatA=pn � �0=2, then � � �0 � A=pn � �0=2, and so �2i � �0=2 (almost surely { we willomit this quali�er from now on). This means that any �i in a denominator is boundedaway from 0. As a mean 0 �nite varian
e random walk, the Xi satisfy max1�i�n jXij =OP (pn) as n ! 1, and as an i.i.d. sequen
e with �nite fourth moment, the ei satisfymax1�i�n e4i =n P! 0, thus max1�i�n jeij = oP (n1=4). Consequently"i�1�i�1 = Xi�1��Xi�2 =p�0ei�1 + (1��)Xi�2 =p�0ei�1+OP (1=pn) = oP (n1=4);(D:5)uniformly in 1 � i � n. This also shows that max1�i�n "2i = oP (pn). It follows from(D.5) that �2i � �2i0 = � � �0 + �"2i�1�2i�1 = OP (1=pn) + oP (1) = oP (1); (D:6)thus, also, ��� 1�2i � 1�2i0 ��� = j�2i � �2i0j�2i �2i0 � 2j�2i � �2i0j�20 = oP (1); (D:7)uniformly in 1 � i � n. These show that the �rst sum on the righthand side of (D.4) isoP (1). The se
ond and third sums on the righthand side of (D.4) are also oP (1), using theestimates obtained above. This deals with the (1; 1) term.28



(D.3) shows that ��2i =�� = 1, so (A.6b) together with max1�i�n "2i = oP (pn) gives1n3=2 ���F12n (�)� F12n (�0)��� � 1n3=2 ��� nXi=2 �Xi � �Xi�1�4i � p�0ei�4i0 �Xi�1���+ �n3=2 ��� nXi=2 (2"2i � 1)Xi�2"i�1�i�1�4i ���� 1n3=2 ��� nXi=2Xi�1 (Xi � �Xi�1 �p�0ei)�4i ���+ p�0n3=2 ��� nXi=2Xi�1ei � 1�4i � 1�4i0� ���+ An2 ��� nXi=2 (2"2i � 1)Xi�2"i�1�i�1�4i ���: (D:8)From (D.7) we get ��� 1�4i � 1�4i0 ��� = oP (1); (D:9)uniformly in 1 � i � n, so the se
ond term on the righthand side of (D.8) isoP  nXi=2 jeij=n! = oP (1); (D:10)by the weak law of large numbers. For the �rst and third terms we need"i�i �p�0ei = Xi � �Xi�1 �p�0ei = (1� �)Xi�1 = OP (1=pn); (D:11)whi
h gives "i = eip�0=�i + oP (1). Thus the �rst term on the righthand side of (D.8) isOP (1=pn) = oP (1). The third term is OP (n�3=2Pni=2 e2i jei�1j), whi
h is OP (n�1=2) bythe ergodi
 theorem. This deals with the (1; 2) term.(D.3) shows that ��2i =�� = "2i�1�2i�1, so (A.6
) gives1n3=2 ���F13n (�)�F13n (�0)���� 1n3=2 ��� nXi=2 �"i"2i�1�2i�1�3i � eie2i�1�0�3i0 �Xi�1���+ �n3=2 ��� nXi=2 (2"2i � 1)Xi�2"3i�1�3i�1�4i ���+ 1n3=2 ��� nXi=2 � ("2i � 1)"i�1�i�1�2i � (e2i � 1)ei�1p�0�2i0 �Xi�2���� 1n3=2 ��� nXi=2 ("i"2i�1�2i�1 � eie2i�1�0)Xi�1�3i ���+ 1n3=2 ��� nXi=2Xi�1eie2i�1 � 1�3i � 1�3i0� ���+ An2 ��� nXi=2 (2"2i � 1)Xi�2"3i�1�3i�1�4i ���+ 1n3=2 ��� nXi=2 � ("2i � 1)"i�1�i�1�2i � (e2i � 1)ei�1p�0�2i0 �Xi�2���: (D:12)29



Note that "2i � e2i = ((Xi � �Xi�1)2 � �2i e2i )=�2i= (1� �)Xi�1(Xi � �Xi�1 +p�0ei)=�2i + (�2i0 � �2i )e2i =�2i= OP (1=pn)("i�i +p�0ei) + e2i oP (1) = oP (1)(1 + e2i ); (D:13)by (D.5). So "2i = (1+ oP (1))e2i + oP (1). In the �rst term on the righthand side of (D.12),use "i"2i�1�2i�1 � eie2i�1�0 = ("i"2i�1 � eie2i�1)�2i�1 + eie2i�1(�2i�1 � �0);(D.6), and, from (D.13),"i"2i�1 � eie2i�1 = ("i � ei)"2i�1 + ("2i�1 � e2i�1)ei= (Xi � �Xi�1 �p�0ei)"2i�1=�i + (�i0 � �i)ei"2i�1=�i + oP (1)(1 + e2i�1)jeij= OP (1=pn)oP (pn) + oP (1)(1 + oP (1))jeije2i + oP (1)(1 + e2i�1)jeij:Sin
e Xi�1 = OP (pn), uniformly in 1 � i � n, we 
an sum over 1 � i � n and divide byn3=2 to see that the �rst term on the righthand side of (D.12) is oP (1). The se
ond termon the righthand side of (D.12) is oP (1), by a similar analysis as in (D.9) and (D.10). Thethird term on the righthand side of (D.12) is oP (1) by (D.13). The fourth term on therighthand side of (D.12) 
an be handled similarly to the �rst and se
ond terms; note that("2i � 1)"i�1 � (e2i � 1)ei�1 = ("2i � e2i )"i�1 + (e2i � 1)("i�1 � ei�1);and use (D.13). Next, (D.3) shows that ��2i =�� = 1, so �2�2i =��2 = 0 and (A.6d) gives1n ���F22n (�)�F22n (�0)��� = 12n ��� nXi=2 � (2"2i � 1)�4i � (2e2i � 1)�4i0 � ���� 1n ��� nXi=2 ("2i � e2i )�4i ���+ 1n ��� nXi=2(2e2i � 1)� 1�4i � 1�4i0� ���: (D:14)The �rst term on the righthand side of (D.14) is oP (1), using (D.13). The se
ond term onthe righthand side of (D.14) is also oP (1), using (D.9).For the (2; 3) 
omponent use (A.6e) to get1n ���F23n (�)� F23n (�0)��� = 12n ��� nXi=2 � (2"2i � 1)"2i�1�2i�1�4i � (2e2i � 1)e2i �0�4i0 � ���� 1n ��� nXi=2 (2"2i � 1)"2i�1�2i�1 � (2e2i � 1)e2i�1�0�4i + �0n ��� nXi=2(2e2i � 1)e2i�1� 1�4i � 1�4i0� ���:(D:15)30



The se
ond term on the righthand side of (D.15) is oP (1), by (D.9). For the �rst,(2"2i � 1)"2i�1�2i�1 � (2e2i � 1)e2i�1�0 = 2("2i � e2i )"2i�1�2i�1 + (2e2i � 1)("2i�1�2i�1 � e2i�1�0)= �2("2i � e2i ) + (2e2i � 1)� ("2i�1�2i�1 � e2i�1�0) + 2("2i � e2i )e2i�1�0: (D:16)The last term is oP (1 + e2i�1) by (D.13), and this will give a term ofoP  1 + nXi=2 e2i�1=n! = oP (1); (D:17)in (D.15). Also, using (D.5) and (D.11),"2i�1�2i�1�e2i�1�0 = ("i�1�i�1�p�0ei)("i�1�i�1+p�0ei) = OP (1=pn)oP (n1=4) = oP (1):(D:18)Thus the �rst term in (D.16) is of order oP (1)(1 + e2i�1) and so gives rise to a oP (1) termas in (D.17).Finally for the (3; 3) 
omponent, (A.6f) gives1n ���F33n (�)� F33n (�0)��� = 12n ��� nXi=2 � (2"2i � 1)"4i�1�4i�1�4i � (2e2i � 1)e4i�1�20�4i0 � ���� 12n ��� nXi=2 (2"2i � 1)"4i�1�4i�1 � (2e2i � 1)e4i�1�20�4i + �202n ��� nXi=2(2e2i � 1)e4i�1 � 1�4i � 1�4i0� ���:(D:19)The se
ond term on the righthand side of (D.19) is treated as in (D.15), noting that1n nXi=2 j2e2i � 1je4i�1 P! E(j2e22 � 1je41)by the ergodi
 theorem. For the �rst,(2"2i � 1)"4i�1�4i�1 � (2e2i � 1)e4i�1�20 = 2("2i � e2i )"4i�1�4i�1 + (2e2i � 1)("4i�1�4i�1 � e4i�1�20)= �2("2i � e2i ) + (2e2i � 1)� ("4i�1�4i�1 � e4i�1�20) + ("2i � e2i )e4i�1�20 : (D:20)The last term is oP (e4i�1 + e2i e4i�1) by (D.14) whi
h will give an oP (1) 
ontribution to(D.19) when averaged over 1 � i � n. Next, "2i�1�2i�1 = e2i�1�0 + oP (1) by (D.5), so"4i�1�4i�1 � e4i�1�20 = ("2i�1�2i�1 � e2i�1�0)(oP (1) + e2i�1�0)= oP (1)(oP (1) + e2i�1�0);uniformly in 1 � i � n, using (D.18) again. This will also give an oP (1) 
ontribution to(D.19) when averaged over 1 � i � n. This 
ompletes the proof of (B.6) for this model.31


