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Abstract

It is well-known (see e.g. Tong, 1990, Gouriéroux, 1997) that if X
has the uniform distribution function U on [0, 1], then the sequence of
iterates {X,, = g(X,_1)} of the symmetric tent map g from [0, 1] onto
[0, 1], is a strictly stationary Markov process with marginal distribution
function U. It is also easy to show, using the symmetry of the map,
that {X,} is white noise. In this note we show that if the symmetric
tent map is replaced by a skewed tent map, then the sequence {X,,}
is a strictly stationary autoregression of order 1 with coefficient ¢ =
(2/s) — 1, where s € (1, 00) is the right-derivative of the tent map at 0.
An AR(1) process with uniform marginal distributions and arbitrary
coefficient ¢ € (—1,1) can thus be generated by computing the iterates
with s =2/(¢ + 1). For the symmetric map s = 2 and ¢ = 0.

Keywords: Non-linear dynamical system, chaos, nonlinear time se-
ries, linear prediction.

Introduction

The tent map with parameter s € (1, 00) is the function

g9(z) = szl /5 () + (1 —2)1/s1(z), z€l0,1],

s—1

where I, denotes the indicator function of the set A. It is easy to check
that if X has the uniform distribution on [0,1] (denoted Xy ~ U) and if

Xn = g(anl)a n=12...



then {X,} is a Markov chain and X,, ~ U for all n € {0,1,2,... }, so that
{X,} is strictly (and weakly) stationary. Equation (2) can also be expressed
as X,, = g™ (Xy), where g™ denotes the n'" iterate of the function g.
We shall show that the sequence { X, } is also an AR(1) process satisfying
the equations,
Xp — 0.5 = (X1 — 0.5) + Zy, (3)

where ¢ = (2/s) — 1 and {Z,} is an uncorrelated sequence of random vari-
ables with mean zero and variance (1 — ¢?)/12.

The minimum mean squared error linear predictor of X, in terms of
1,Xy,...,X, is thus 1/2 + ¢*(X,, — 1/2), with mean squared error (1 —
$?")/12, while the corresponding minimum mean squared error predictor is
g™ (X,), with zero mean squared error.

2 Properties of the Iterated Tent Map

The tent map has derivatives ¢'(z) = son (0,1/s) and ¢'(z) =t = —s/(s—1)
on (1/s,1). From the recursions

g™ (@) = ¢'(z)g" " (g())

(valid at points 2 where the derivatives exist) it follows that the graph of
y = ¢g¥) () is piecewise linear, consisting of 2¥ lines, each joining points
with ¥ = 0 and y = 1. This set of 2¥ lines is the union of disjoint subsets
Sj,7=0,...,k, with each of the (];) lines in S} having slope sk=ItJ. These
are the only properties of ¢*) needed in the calculations which follow. Note
that 1/s — 1/t = 1 and 1/s + 1/t = (2/s) — 1 = ¢, with ¢ defined as in
Section 1.

In order to establish (3), we first compute the orthogonal projection
P(hle) of the function h(z) = ¢*) () —0.5 on the linear span of the function
e(z) = x — 0.5 (in the Hilbert space L?([0,1],B,U), where B denotes the
Borel subsets of [0,1].) To do this we need the following proposition. The
crucial (and somewhat surprising) feature of the result is that it depends
only on the slope parameter m and not on the location parameter a.

Proposition. If e and f are the functions in L?([0,1],B,U) defined by
e(z) = 2 — 0.5 and f(z) = [-0.5 + m(z — a)lljgq41/m], where 0 < a <
a+ 1/m <1, then the orthogonal projection of f on the span of e is

P(fle) = e/m>.



Proof. A straightforward calculation shows that fol (f(z)—m2e(z))e(x)dr =
0.

Corollary. If f(z) = [0.5—m(z—a)ll[4,a41/m], where 0 <a <a+1/m <1,
then P(fle) = —e/m?2.

Now consider the 2* lines which together constitute the graph of the
piecewise linear function ¢*) on [0,1]. The (’;) lines in S; all have slope
sk=iti, j =0,...,k. Corresponding to this decomposition of the graph of
g®) we can express the function h = ¢g¥) — 0.5 as the sum of 2¥ functions
having the form of f as in either the proposition or the corollary (depending
on whether the slope s¥7Jt/ is positive or negative, i.e. on whether j is
even or odd). By the linearity of the projection operator, the projection of
the function h onto the span of e is the sum of the projections of these 2*
functions. But by the proposition and corollary these are e/(s2(:=7)¢%7) for
j even and —e/(s**=7)¢27) for j odd. Hence

SR (1T 1Y 2 _ -2k
P(hle) = ]z:% <]> (S—2> (-t—2> e=(s"2—t2)Fe.
Since 1/s — 1/t = 1, we conclude that
P(hle) = ¢"e, (4)

where ¢ =1/s 4+ 1/t = (2/s) — 1.

3 The Autoregression

From (4) it follows at once that if Xo ~ U and X}, = ¢ (X,), k=1,2,...,
then
X, — 0.5 = ¢F(Xy — 0.5) + Wy,

where E[Wy(Xo — 0.5)] = 0. Hence
cov(Xy, Xo) = ¢Fvar(Xo) = ¢¥/12, k£ =0,1,2,..., (5)
and, since {X,,} is weakly stationary, it has the autocorrelation function,
p(h) = corr(Xpn, X,) = ¢l h=0,+1,£2,... . (6)

The latter equation implies (see e.g. Brockwell and Davis, 1991) that the
best linear predictor of X, 41 in terms of 1, Xg,... , X, is 0.5 4+ ¢(X,, — 0.5)



and hence that the sequence of prediction errors { X, 11 —0.5— (X, —0.5)}
is an uncorrelated, zero-mean sequence with constant variance. Defining
Zp = Xp — 05— (X1 —0.5), n=1,2,..., we immediately obtain the
autoregressive representation,

Xp — 0.5 =¢(Xp—1 —0.5) + Z,, (7)
where {Z,} is an uncorrelated sequence of zero-mean random variables with
variance o2. Since the variance of the stationary process defined by (7) is

0?/(1 — ¢?) and var(X,) = var(Xy) = 1/12, the variance of Z, is 0? =
(1 — ¢?)/12 as claimed in (3).

Acknowledgements This work was partially supported by NSF Grant
DMS 9972015 while the author was von Neumann Guest Professor in the
Zentrum Mathematik, Technische Universitat, Miinchen. Thanks are also
due to Sandra Hayes for valuable discussions in connection with the work.

References

[1] Brockwell P.J., and Davis R.A. (1991), Time Series: Theory and
Methods, 2nd ed., New York: Springer-Verlag.

[2] Gouriéroux, C. (1997). ARCH Models and Financial Applications,
New York: Springer-Verlag.

[3] Tong, H. (1990). Non-linear Time Series : A Dynamical System
Approach. Clarendon Press, Oxford.



