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Abstract

It is well-known (see e.g. Tong, 1990, Gouri�eroux, 1997) that if X0

has the uniform distribution function U on [0; 1], then the sequence of
iterates fXn = g(Xn�1)g of the symmetric tent map g from [0; 1] onto
[0; 1], is a strictly stationary Markov process with marginal distribution
function U . It is also easy to show, using the symmetry of the map,
that fXng is white noise. In this note we show that if the symmetric
tent map is replaced by a skewed tent map, then the sequence fXng
is a strictly stationary autoregression of order 1 with coe�cient � =
(2=s)�1, where s 2 (1;1) is the right-derivative of the tent map at 0.
An AR(1) process with uniform marginal distributions and arbitrary
coe�cient � 2 (�1; 1) can thus be generated by computing the iterates
with s = 2=(�+ 1). For the symmetric map s = 2 and � = 0.

Keywords: Non-linear dynamical system, chaos, nonlinear time se-
ries, linear prediction.

1 Introduction

The tent map with parameter s 2 (1;1) is the function

g(x) = sxI[0;1=s](x) +
s

s� 1
(1� x)I[1=s;1](x); x 2 [0; 1]; (1)

where IA denotes the indicator function of the set A. It is easy to check
that if X0 has the uniform distribution on [0; 1] (denoted X0 � U) and if

Xn = g(Xn�1); n = 1; 2; : : : ; (2)
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then fXng is a Markov chain and Xn � U for all n 2 f0; 1; 2; : : : g, so that
fXng is strictly (and weakly) stationary. Equation (2) can also be expressed
as Xn = g(n)(X0), where g

(n) denotes the nth iterate of the function g.
We shall show that the sequence fXng is also an AR(1) process satisfying

the equations,
Xn � 0:5 = �(Xn�1 � 0:5) + Zn; (3)

where � = (2=s) � 1 and fZng is an uncorrelated sequence of random vari-
ables with mean zero and variance (1� �2)=12.

The minimum mean squared error linear predictor of Xn+h in terms of
1;X0; : : : ;Xn is thus 1=2 + �h(Xn � 1=2), with mean squared error (1 �
�2h)=12, while the corresponding minimum mean squared error predictor is
g(h)(Xn), with zero mean squared error.

2 Properties of the Iterated Tent Map

The tent map has derivatives g0(x) = s on (0; 1=s) and g0(x) = t = �s=(s�1)
on (1=s; 1). From the recursions

g(n)0(x) = g0(x)g(n�1)0(g(x))

(valid at points x where the derivatives exist) it follows that the graph of
y = g(k)(x) is piecewise linear, consisting of 2k lines, each joining points
with y = 0 and y = 1. This set of 2k lines is the union of disjoint subsets
Sj , j = 0; : : : ; k, with each of the

�k
j

�
lines in Sj having slope s

k�jtj. These

are the only properties of g(k) needed in the calculations which follow. Note
that 1=s � 1=t = 1 and 1=s + 1=t = (2=s) � 1 = �, with � de�ned as in
Section 1.

In order to establish (3), we �rst compute the orthogonal projection
P (hje) of the function h(x) = g(k)(x)�0:5 on the linear span of the function
e(x) = x � 0:5 (in the Hilbert space L2([0; 1];B; U), where B denotes the
Borel subsets of [0; 1].) To do this we need the following proposition. The
crucial (and somewhat surprising) feature of the result is that it depends
only on the slope parameter m and not on the location parameter a.

Proposition. If e and f are the functions in L2([0; 1];B; U) de�ned by

e(x) = x � 0:5 and f(x) = [�0:5 + m(x � a)]I[a;a+1=m], where 0 � a <
a+ 1=m � 1, then the orthogonal projection of f on the span of e is

P (f je) = e=m2:
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Proof. A straightforward calculation shows that
R 1
0 (f(x)�m

�2e(x))e(x)dx =
0.

Corollary. If f(x) = [0:5�m(x�a)]I[a;a+1=m], where 0 � a < a+1=m � 1,
then P (f je) = �e=m2.

Now consider the 2k lines which together constitute the graph of the
piecewise linear function g(k) on [0; 1]. The

�k
j

�
lines in Sj all have slope

sk�jtj; j = 0; : : : ; k. Corresponding to this decomposition of the graph of
g(k) we can express the function h = g(k) � 0:5 as the sum of 2k functions
having the form of f as in either the proposition or the corollary (depending
on whether the slope sk�jtj is positive or negative, i.e. on whether j is
even or odd). By the linearity of the projection operator, the projection of
the function h onto the span of e is the sum of the projections of these 2k

functions. But by the proposition and corollary these are e=(s2(k�j)t2j) for
j even and �e=(s2(k�j)t2j) for j odd. Hence

P (hje) =

2
4 kX
j=0

�
k

j

��
1

s2

�k�j �
�
1

t2

�j
3
5 e = (s�2 � t�2)ke:

Since 1=s� 1=t = 1, we conclude that

P (hje) = �ke; (4)

where � = 1=s+ 1=t = (2=s) � 1.

3 The Autoregression

From (4) it follows at once that if X0 � U and Xk = g(k)(X0); k = 1; 2; : : : ,
then

Xk � 0:5 = �k(X0 � 0:5) +Wk;

where E[Wk(X0 � 0:5)] = 0. Hence

cov(Xk;X0) = �kvar(X0) = �k=12; k = 0; 1; 2; : : : ; (5)

and, since fXng is weakly stationary, it has the autocorrelation function,

�(h) = corr(Xn+h;Xn) = �jhj; h = 0;�1;�2; : : : : (6)

The latter equation implies (see e.g. Brockwell and Davis, 1991) that the
best linear predictor of Xn+1 in terms of 1;X0; : : : ;Xn is 0:5 + �(Xn � 0:5)
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and hence that the sequence of prediction errors fXn+1�0:5��(Xn�0:5)g
is an uncorrelated, zero-mean sequence with constant variance. De�ning
Zn := Xn � 0:5 � �(Xn�1 � 0:5); n = 1; 2; : : : , we immediately obtain the
autoregressive representation,

Xn � 0:5 = �(Xn�1 � 0:5) + Zn; (7)

where fZng is an uncorrelated sequence of zero-mean random variables with
variance �2. Since the variance of the stationary process de�ned by (7) is
�2=(1 � �2) and var(Xn) = var(X0) = 1=12, the variance of Zn is �2 =
(1� �2)=12 as claimed in (3).
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