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Abstract

We give lower frame bounds for finite subfamilies of a frame of ex-
ponentials {eiλk(·)}k∈Z in L2(−π, π). We also present a method for ap-
proximation of the inverse frame operator corresponding to {eiλk(·)}k∈Z,
where knowledge of the frame bounds for finite subfamilies is crucial.

1 Introduction

A frame of exponentials allows every function in L2(−π, π) to be written
as a superposition of exponentials. Knowledge of the frame bounds (see
Section 1.1) is essential in many contexts, since the speed of convergence for
algorithms involving frames usually depends on the frame bounds.
Clearly, every ”real life” computation with exponentials has to be done with
a finite system. Therefore it is very important to have estimates for the
corresponding frame bounds. In the present paper, we present such estimates.
We also discuss a method for approximation of the inverse frame operator,
where knowledge of the lower frame bounds for finite sets of exponentials
plays a crucial role.
The rest of Section 1 consists of background material. Then in Section 2
we estimate the lower frame bound for a finite set of exponential functions
{eiλk(·)}Nk=1. Section 3 is devoted to the question of approximation of the
inverse frame operator using finite subsets of the frame. We show that the
best performance is achieved if the frame contains a subfamily which is a
Riesz basis.

1
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1.1 Frames and Riesz bases

Let H be a separable Hilbert space and I a countable or finite index set. A
family Φ = {ϕk}k∈I ⊆ H is a frame for H, if

∃A,B > 0 : A||f ||2 ≤
∑
k∈I

| < f, ϕk > |2 ≤ B||f ||2, ∀f ∈ H. (1)

In particular, every finite set of elements in H is a frame for its span. The
numbers A,B in (1) are called lower and upper frame bounds. The supremum
of all lower frame bounds is again a frame bound, which will be denoted by
AoptI .

If Φ is a frame, the frame operator

S : H → H, Sf =
∑
k∈I

< f, ϕk > ϕk

is bounded, positive, and invertible. Thus each f ∈ H has an expansion

f = SS−1f =
∑
k∈I

< f, S−1ϕk > ϕk. (2)

Recall that Φ = {ϕk}k∈I is a Riesz basis for H if Φ is complete and

∃A,B > 0 : A
∑
|ck|2 ≤ ||

∑
ckϕk||2 ≤ B

∑
|ck|2 (3)

for all finite sequences {ck} of complex scalars. Note in particular, that if
{ϕk}k∈I is a Riesz basis, then each subfamily is a Riesz basis for its closed
linear span, with the same constants as bounds.

A Riesz basis is a frame, and the numbers A,B appearing in (3) and the
frame bounds coincide. On the other hand, a frame Φ = {ϕk}k∈I is a Riesz
basis if and only if Φ is ω-independent, meaning that∑

ckϕk = 0, {ck} ∈ `2(I)⇒ ck = 0, ∀k.

We shall give another characterization of Riesz bases:

Proposition 1.1 Let Φ = {ϕk}k∈I ⊆ H be a frame, and let {In}∞n=1 be a
family of finite subsets of I such that

I1 ⊆ I2 ⊆ · · · ↑ I.

Then the following are equivalent:
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(a) Φ is a Riesz basis for H.

(b) Φ is linearly independent and infn∈NA
opt
In

> 0.

(c) Φ is linearly independent and limn→∞A
opt
In

exists and is positive.

Proof: It is well known that (a) ⇒ (b). That (b) ⇒ (a) is proved by
Kim and Lim [9] as a consequence of a series of Theorems. For the readers
convenience, we include a short direct proof. If (b) is satisfied, then, for
each n ∈ N, {ϕk}k∈In is a Riesz basis for its span with lower bound A :=
infn∈NA

opt
In

, meaning that

A
∑
|ck|2 ≤ ||

∑
ckϕk||2 (4)

for all sequences {ck}k∈In . Thus {ϕk}k∈I is a Riesz basis for H. That
(b) ⇔ (c) follows from the fact that the sequence of bounds AoptIn

, n ∈ N, is
decreasing by definition. 2

In the rest of this section we discuss a method for approximation of the
inverse frame operator S−1 associated to a frame {ϕk}k∈I . The idea is to
approximate S−1 using finite subsets {ϕk}k∈In of the frame. We will consider
two ways of choosing the finite index sets In:

(i) In general, we just consider any set of finite index sets In for which

I1 ⊆ I2 ⊆ ... ⊆ In ↑ I. (5)

(ii) In the special case where {ϕk}k∈I contains a Riesz basis {ϕk}k∈J we
also consider a choice of finite index sets In for which

I1 ⊆ I2 ⊆ ... ⊆ In ↑ J. (6)

In both cases, we define

Hn := span{ϕk}k∈In and Pn : orthogonal projection of H onto Hn. (7)

Now we have:
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Theorem 1.2 Let {ϕk}k∈I be a frame. Choose the index sets In as in (5) or
- if {ϕk}k∈I contains a Riesz basis - as in (6). Given n ∈ N, let An denote a
lower frame bound for {ϕk}k∈In and choose a finite set Jn containing In such
that ∑

k/∈Jn

| < ϕj, ϕk > |2 ≤
An

n · |In|
, ∀j ∈ In. (8)

Let Vn : Hn → Hn denote the frame operator for the finite family {Pnϕk}k∈Jn.
Then

V −1
n Pnf → S−1f as n→∞, ∀f ∈ H.

Proof: For the case where the index set is chosen as in (5) the proof is given
in [4]. The proof in the second case is similar, so we only sketch it. Suppose
that {ϕk}k∈I contains a Riesz basis {ϕk}k∈J with lower bound A and choose
the index sets In as in (6). Let n ∈ N. First, it can be proved that (8) implies
that for all f ∈ Hn,

∑
k/∈Jn

| < f, ϕk > |2 ≤ 1
n
||f ||2.

and

< (PnS − Vn)f, f >=
∑
k/∈Jn

| < f, ϕk > |2.

So PnS − Vn is a positive operator on Hn and ||(PnS − Vn)|Hn|| ≤ 1
n
.

We leave it to the reader to prove that A − 1
n

is a lower frame bound for
{Pnϕk}i∈Jn ; this implies that ||V −1

n || ≤ 1
A− 1

n

. Now, for f ∈ H we obtain that
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||S−1f − V −1
n Pnf ||

≤ ||(I − Pn)S−1f ||+ ||PnS−1f − V −1
n Pnf ||

≤ ||(I − Pn)S−1f ||+ ||V −1
n || · ||VnPnS−1f − Pnf ||

≤ ||(I − Pn)S−1f ||+ 1

A− 1
n

(||VnPnS−1f − PnSPnS−1f ||+ ||PnSPnS−1f − Pnf ||)

≤ ||(I − Pn)S−1f ||+ 1

A− 1
n

(||(Vn − PnS)PnS
−1f ||+ ||SPnS−1f − f ||)

≤ ||(I − Pn)S−1f ||+ 1

A− 1
n

(
1

n
· ||PnS−1f ||+ ||S|| · ||PnS−1f − S−1f ||)

≤ 1

nA(A− 1
n
)
· ||f ||+ (

B

A− 1
n

+ 1)||(I − Pn)S−1f ||.

2

Remark: Theorem 1.2 allows us to approximate the inverse frame operator
using finite dimensional linear algebra. For a frame containing a Riesz basis,
the choice (6) of index sets is much better than (5). The reason is that as we
have seen in Proposition 1.1, the lower bound An for a frame which is not
a Riesz basis will converge to zero as n → ∞; this forces the index sets Jn
to be large in order to satisfy (8). But if {ϕk}k∈J is a Riesz basis, a lower
bound A for {ϕk}k∈J will also be a lower bound for each subfamily {ϕk}k∈In .
That is, for each n ∈ N we can choose An = A.

In order to be able to apply Theorem 1.2 we need estimates for the lower
frame bounds of finite subsets of the given frame. In the following sections we
estimate the lower frame bounds for a finite set of exponentials. Estimates
for the lower bounds for finite wavelet systems can be found in [6].

1.2 Frames of exponentials

From now on we specialize to frames {eiλk(·)}k∈I of exponentials in L2(−π, π),
where {λk}k∈I ⊆ R and L2(−π, π) is equipped with the inner product

< f, g >=

∫ π

−π
f(x)g(x)dx, f, g ∈ L2(−π, π).

A set {λk}k∈I ⊆ R is separated, if there is some δ > 0 such that for all
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k, j ∈ I, k 6= j,
|λk − λj| ≥ δ.

The constant δ is called a separation constant. If {λk}k∈I is a finite union of
separated sets, i.e., if

{λk}k∈I = ∪Kn=1{λk}k∈In , (9)

where each set {λk}k∈In is separated, we say that {λk}k∈I is relatively sep-
arated. Usually we need to keep track of the number K of separated sets
and the separation constants for the sets {λk}k∈In : if δ ∈ R+ is a separation
constant for all the sets {λk}k∈In , we say that {λk}k∈I is (K, δ)-relatively
separated.

Given a relatively separated sequence Λ = {λk}k∈I , we define for r > 0,

n−(r) := min
r0∈R

card {k ∈ I : λk ∈ (r0, r0 + r)}.

Thus n−(r) is the smallest number of points from Λ to be found in an interval
of length r. The lower density of Λ is defined as

D−(Λ) := lim
r→∞

n−(r)

r
.

It is well known that {eiλk(·)}k∈I satisfies the upper frame condition if and
only if {λk}k∈I is relatively separated. Seip proved that under this condi-
tion, {eiλk(·)}k∈I is a frame if D−(Λ) > 1, and furthermore that in this case
{eiλk(·)}k∈I contains a subsequence which is a Riesz basis, cf. [12]. Seip’s
paper also shows that there exist frames {eiλk(·)}k∈I for which no subfamily
{eiλk(·)}k∈J , J ⊆ I, is a Riesz basis.

If {λk}k∈Z is close to k for all k ∈ Z, Kadec’s celebrated 1/4 theorem can be
used to prove that {eiλk(·)}k∈Z is a Riesz basis for L2(−π, π). The extension
below to frames was proven independently by Balan [2] and Christensen [5].

Theorem 1.3 Let {λk}k∈Z, {µk}k∈Z ⊆ R. Suppose that {eiµkx}k∈Z is a frame
for L2(−π, π) with bounds A,B. If there exists a constant L < 1/4 such that

|µn − λn| ≤ L and 1− cosπL+ sinπL <

√
A

B
,
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then {eiλkx}k∈Z is a frame for L2(−π, π) with bounds

A(1−
√
B

A
(1− cosπL+ sinπL))2, B(2− cosπL+ sinπL)2

Typically, Theorem 1.3 is used with µk = k, k ∈ Z.

2 Lower bounds for finite exponential frames

Let λ1, . . . , λN be a finite sequence of distinct real numbers. Then, {eiλk(·)}Nk=1

is a Riesz basis for its linear span in L2(−π, π). The purpose of this section
is to obtain a lower frame bound for this frame.

The assumption that λ1, . . . , λN consists of distinct numbers is not a re-
striction: if λ1, . . . , λN contains repetitions, then the lower frame bound for
{eiλk(·)}Nk=1 is at least as big as the lower bound for the corresponding family
without repetitions. Our asumption implies that λ1, . . . , λN is separated; we
will choose a separation constant δ ≤ 1.

In the proof, a special class of entire functions plays an important role.
An entire function Φ of exponential type is called sine type function, if its
zeroes are simple and separated and there are positive constants C1, C2 and
τ such that

C1 · eπ|y| ≤ |Φ(x+ iy)| ≤ C2 · eπ|y| ∀ x, y ∈ R : |y| ≥ τ

holds. We shall say that Φ has growth constants (C1, C2, τ). For example,
sin π(·) is a sine-type-function with growth constants (1/4, 1, 1), which follows
easily from the triangle inequality.

Levin and Golovin have shown that the family of exponentials, derived
from the zero set of a sine type function, is a Riesz basis for L2(−π, π) (cf.
Young [17, Ch. 4, Th. 2]). The following lemma gives an estimate for the
lower bound, involving an additional constant C3 appearing in (10). However,
Levin has shown that for any sine type function there is some C3 > 0 such
that inequality (10) holds (cf. Young [17, Ch. 4, Cor. 1 to Th. 10]).

Lemma 2.1 Let {λk}k∈Z be a δ-separated sequence of real numbers, which
is the zero set of a sine type function Φ with growth constants (C1, C2, τ).
Let C3 be a positive constant such that

|Φ′(λk)| ≥ C3 ∀ k ∈ Z. (10)
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Then {eiλk(·)}k∈Z is a Riesz basis for L2(−π, π) with lower bound

δC2
1C

2
3

8C4
2

e−8πτ−δπ. (11)

Proof: The proof follows by explicating the proof of Lemma 7 of Katsnel’son
[8]: Denoty by PW the Paley–Wiener–space, consisting of all entire functions
of exponential type at most π, whose restriction to R belongs to L2(R).
Katsnel’son’s proof of Lemma 7 in [8] shows that ∀F ∈ PW :

∫ ∞
−∞
|F (t− iτ)|2 dt ≤ 2πC2

2

C1C3

(
∞∑

k=−∞

|F (λk)|2
)1/2( ∞∑

k=−∞

|F (λk − 2iτ)|2
)1/2

.

(12)
By two theorems of Plancherel and Pólya (cf. Boas [1, Th. 6.7.15, Th.
6.7.18]), we have(

∞∑
k=−∞

|F (λk − 2iτ)|2
)1/2

≤ 2

√
eπδ

πδ

(∫ ∞
−∞
|F (t− 2iτ)|2 dt

)1/2

≤

≤ 2e2πτ

√
eπδ

πδ

(∫ ∞
−∞
|F (t)|2 dt

)1/2

(13)

and ∫ ∞
−∞
|F (t)|2 dt ≤ e2πτ

∫ ∞
−∞
|F (t− iτ)|2 dt. (14)

Combining (12), (13) and (14) shows(∫ ∞
−∞
|F (t)|2 dt

)1/2

≤ 2e4πτ

√
eπδ

πδ
· 2πC2

2

C1C3

(
∞∑

k=−∞

|F (λk)|2
)1/2

.

By the Paley–Wiener–theorem, it hence follows that {eiλk(·)}k∈Z is a frame
for L2(−π, π) with lower bound given by (11). For the proof that L2(−π, π)
is in fact a Riesz basis, we refer to Katsnel’son [8]. 2

Return to the given finite δ-separated sequence λ1, . . . , λN of real numbers,
where 0 < δ ≤ 1. We shall construct a sequence {λk}k∈Z\{1,...,N} of real
numbers, such that {λk}k∈Z is the zero set of some sine type function Φ.
Furthermore, we shall obtain the growth constants of Φ and some C3 occuring
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in inequality (10). An application of Lemma 2.1 will give a Riesz basis
{eiλk(·)}k∈Z for L2(−π, π) and a lower frame bound. By restriction, we shall
then obtain a lower bound for {eiλk(·)}Nk=1 in HN .
For the construction of {λk}k∈Z\{1,...,N}, we proceed as follows:
W.l.o.g., we may suppose

dist (λ1,Z) ≤ dist (λ2,Z) ≤ . . . ≤ dist (λN ,Z).

Construct inductively a sequence µ1, . . . , µN of different integers, such that

|λk − µk| = inf
µ∈Z\{µ1,...,µk−1}

|λk − µ|, ∀ k = 1, . . . , N.

We then have
|λk − µk| ≤ k − 1/2 ∀ k ∈ {1, . . . , N}. (15)

Define a sequence {λk}k∈Z\{1,...,N} such that

{λk}k∈Z\{1,...,N} = Z \ {µ1, . . . , µN}

and no element in the sequence {λk}k∈Z\{1,...,N} occurs twice. Put

Φ(z) := sin πz ·
N∏
n=1

z − λn
z − µn

.

Lemma 2.2 The function Φ constructed above is a sine type function with
growth constants

C1 :=
1

4(N + 1)!
, C2 := (N + 1)!, τ := 1.

The sequence {λk}k∈Z is δ/2-separated and the zero-set of Φ. Furthermore,
inequality (10) holds with

C3 :=
2(δ/2)N

(N + 1)!
.

Proof: Since

|Φ(z)| = | sin πz| ·
N∏
n=1

∣∣∣∣1 +
µn − λn
z − µn

∣∣∣∣ ,
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we have for |=z| ≥ 1 from the growth constants for sin π(·) and from (15):

|Φ(z)| ≤ eπ|=z|
N∏
n=1

(
1 +

n− 1/2

1

)
≤ eπ|=z| (N + 1)!.

Similarly,

|Φ(z)| ≥ 1

4
eπ|=z|

N∏
n=1

∣∣∣∣1 +
λn − µn
z − λn

∣∣∣∣−1

≥ eπ|=z|

4(N + 1)!
.

Hence, Φ is a sine-type-function with growth constants (C1, C2, τ).

That {λk}k∈Z is the zero sequence of Φ and δ/2-separated follows easily
from the construction and from δ ≤ 1. Let k ∈ Z. To estimate |Φ′(λk)| from
below, we distinguish between two cases:
Case 1: λk ∈ Z.
In particular, this is fulfilled if k 6∈ {1, . . . , N}. If k ∈ {1, . . . , N} and λk ∈ Z,
then µk = λk, and the occuring factor λk−λk

λk−µk
in the following calculation is

to be interpreted as 1. We have, using sin πλk = 0,

Φ′(λk) = πcos πλk

N∏
n=1

λk − λn
λk − µn

= ±π
N∏
n=1

λk − λn
λk − µn

.

From ∣∣∣∣λk − µnλk − λn

∣∣∣∣ =

∣∣∣∣1 +
λn − µn
λk − λn

∣∣∣∣ ≤ 1 +
n− 1/2

δ/2
≤ n+ 1/2

δ/2

we conclude

|Φ′(λk)| ≥ π
(δ/2)N

(N + 1)!
,

hence (10) for λk ∈ Z with C3 as defined.
Case 2: λk 6∈ Z.
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In this case, we must have k ∈ {1, . . . , N}. Taking derivates, we obtain

Φ′(λk) = π cos πλk

N∏
n=1

λk − λn
λk − µn︸ ︷︷ ︸

=0

+ sin πλk

(
N∏
n=1

z − λn
z − µn

)′∣∣∣∣∣
z=λk

= sin πλk
∏

n∈{1,...,N}\{k}

λk − λn
λk − µn

· 1

λk − µk

= ±π sin π(λk − µk)
π(λk − µk)

∏
n∈{1,...,N}\{k}

λk − λn
λk − µn

.

As in the first case, we obtain

|Φ′(λk)| ≥ π ·
∣∣∣∣sin π(λk − µk)
π(λk − µk)

∣∣∣∣ · ∏
n∈{1,...,N}\{k}

(
δ/2

n+ 1/2

)
.

Now, if dist (λk,Z) < δ/2, then we have (since δ ≤ 1)

|µk − λk| = dist (λk,Z) ≤ δ

2
≤ 1

2
,

and from ∣∣∣∣sin xx
∣∣∣∣ ≥ sin π/2

π/2
=

2

π
for x ∈ [−π/2, π/2],

we obtain ∣∣∣∣sin π(λk − µk)
π(λk − µk)

∣∣∣∣ ≥ 2

π
.

On the other hand, if dist (λk,Z) ≥ δ/2, then∣∣∣∣sin π(λk − µk)
π(λk − µk)

∣∣∣∣ ≥ sin πδ/2

π(k − 1/2)
=

sin πδ/2

πδ/2
· δ/2

k − 1/2
≥ 2

π
· δ/2

k − 1/2
.

Thus, we obtain in the case λk 6∈ Z:

|Φ′(λk)| ≥ π · 2

π
· δ/2

k − 1/2
·

∏
n∈{1,...,N}\{k}

δ/2

n+ 1/2
≥ 2 · (δ/2)N

(N + 1)!
= C3. 2

With the sequence {λk}k∈Z\{1,...,N} constructed above, it follows:
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Proposition 2.3 {eiλk(·)}k∈Z is a Riesz basis for L2(−π, π) with lower frame
bound

AN := 1.6 · 10−14 · (δ/2)2N+1 · ((N + 1)!)−8.

Proof: From Lemmas 2.1 and 2.2 follows that {eiλk(·)}k∈Z is a Riesz basis
for L2(−π, π) with lower bound

δ

16
· 1

42
· ((N + 1)!)−8 · 4 · (δ/2)2N · e−9π

≥ 1.6 · 10−14 · (δ/2)2N+1 · ((N + 1)!)−8. 2

By restriction, we now obtain:

Theorem 2.4 Let λ1, . . . , λN be a finite sequence of distinct real numbers.
Choose a separation constant δ ≤ 1. Then {eiλk(·)}Nk=1 is a Riesz basis for its
linear span in L2(−π, π) with lower frame bound

AN = 1.6 · 10−14 · (δ/2)2N+1 · ((N + 1)!)−8.

Thus, the lower bound can be expressed entirely in terms of the number
of elements in the set and the separation constant. Also, observe that the
bound does not reflect how the sequence {λk} is ordered. That is, in the
following we can use Theorem 2.4 for arbitrary orderings of {λk}Nk=1. Note,
however, that the bounds are very small. In special cases, better estimates
can be obtained using Theorem 1.3:

Example: Given {λk}k∈Z, suppose that for a certain N ,

|λk − k| ≤ L <
1

4
, k = 1, . . . , N.

Let µk = k, k ∈ Z. By Theorem 1.3 the family {eiλk(·)}Nk=1∪{eik(·)}k∈Z\{1,...,N}
is a Riesz basis for L2(−π, π) with lower bound A = 2π(cosπL− sin πL)2 =
2π(1− sin 2πL). Thus {eiλk(·)}Nk=1 is a Riesz sequence (i.e., a Riesz basis for
its span) with lower frame bound 2π(1− sin 2πL).

Consider in particular the case where λk = kδ, k ∈ Z. For N ∈ N chosen
such that L := |N−Nδ| < 1

4
, we conclude that {eiλk(·)}Nk=1 is a Riesz sequence

with lower bound 2π(1 − sin 2πL). For example, if δ = 0.96, we can choose
N = 6. Then L = 0.24, and we conclude that {ei0.96k(·)}6

k=1 has the lower
frame bound 2π(1− sin(2π · 0.96)) > 0.012.
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3 Approximation of S−1

In this section we assume that {eiλk(·)}k∈Z is a frame for L2(−π, π). Thus
{λk}k∈Z is (K, δ)-relatively separated for appropriate choices of K, δ. We
suppose that {λk}k∈Z is ordered such that

· · ·λ−1 ≤ λ0 ≤ λ1 ≤ · · ·
The purpose of the section is to obtain more concrete versions of Theorem
1.2 for exponential frames. First, we need a Lemma:

Lemma 3.1 Let n ∈ N. For m ∈ N,m ≥ K, and all j ∈ {−n,−n+1, ..., n},
we have ∑

|k|>n+m

| < eiλk(·), eiλj(·) > |2 ≤ 8K2

δ2(m−K + 1)
.

Proof: When λk 6= λj,

| < eiλk(·), eiλj(·) > | = |
∫ π

−π
ei(λk−λj)xdx|

=
1

|λk − λj|
· |ei(λk−λj)π − e−i(λk−λj)π|

≤ 2

|λk − λj|
.

In case {λk}k∈Z is δ-separated, we immediately get that

|λk − λj| ≥ δ|k − j|, ∀k, j.
If {λk}k∈Z is (K, δ)-relatively separated, the same idea gives that when
|k − j| ≥ K, then

|λk − λj| ≥
δ

K
(|k − j| −K + 1), ∀k, j.

Thus, if j ∈ {−n,−n+ 1, ..., n} and m ≥ K,∑
|k|>n+m

| < eiλk(·), eiλj(·) > |2 ≤
∑

|k|>n+m

4

|λk − λj|2

≤ 8K2

δ2

∞∑
k=n+m+1

1

(|k − j| −K + 1)2

≤ 8K2

δ2

∞∑
k=m−K+2

1

k2
.
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By the integral criteria,

∞∑
k=m−K+2

1

k2
≤
∫ ∞
m−K+1

1

x2
dx =

1

m−K + 1
,

from which the lemma follows. 2

Now consider the general choice of index set (5). For n ∈ N, let In :=
{−n,−n+ 1, ..., n} and define Hn and Pn as in (7). Note that |In| = 2n+ 1.
Applying Theorem 1.2 we now have:

Theorem 3.2 For n ∈ N, let An denote a lower frame bound for {eiλk(·)}nk=−n,
and choose

m(n) ≥ 8K2n(2n+ 1)

δ2An
+K − 1.

Let Vn : Hn → Hn denote the frame operator for the finite family {Pneiλk(·)}|k|≤n+m(n).
Then for all f ∈ L2(−π, π),

V −1
n Pnf → S−1f, as n→∞.

Unfortunately, m(n) is forced to be large when An is small. We now show how
a better result can be obtained when the choice of index set (6) is available.
Suppose that {eiλk(·)}k∈Z contains a subfamily {eiλk(·)}k∈J which is a Riesz
basis for L2(−π, π) with lower bound A. By choosing the subfamilies {In}∞n=1

as in (6) we obtain that each family {eiλk(·)}k∈In is a Riesz basis for its span
with lower frame bound A. For n ∈ N, define again Hn and Pn as in (7).
Also, let ñ := maxk∈In|k| and let

Jn = {λk}|k|≤m(n)+ñ;

herem(n) is a natural number, which has to be chosen such that the condition
(8) is satisfied.

With the above definitions we have

Theorem 3.3 Suppose that the frame {eiλk(·)}k∈Z contains a Riesz basis
{eiλk(·)}k∈J with lower bound A. Choose

m(n) ≥ 8K2 · n · |In|
δ2A

+K − 1
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and let Vn : Hn → Hn denote the frame operator for the finite family
{Pneiλk(·)}k∈Jn . Then for all f ∈ L2(−π, π),

V −1
n Pnf → S−1f, as n→∞.

The proof of Theorem 3.3 follows by Lemma 3.1 and Theorem 1.2 .

Example: Let δ ∈]0, 1
2
[ and consider

λk := δk, k ∈ Z.

Then {eiλk(·)}k∈Z is a frame for L2(−π, π), cf. [13]. For each k ∈ Z, there
exists l(k) ∈ Z such that

|λl(k) − k| ≤
1

2
δ <

1

4
.

By Theorem 1.3, {eiλl(k)(·)}k∈Z is a Riesz basis for L2(−π, π) with lower frame
bound

2π(1− sin(2π
1

2
δ)) = 2π(1− sin πδ).

Given n, let In = {l(k)}nk=−n and choose

m(n) ≥ 4n(2n+ 1)

πδ2(1− sin πδ)
.

Then by Theorem 3.3 we conclude that for all f ∈ L2(−π, π),

V −1
n Pnf → S−1f, as n→∞.

Note, that the example easily can be generalized to cover all frames {eiλk(·)}k∈Z
for which {λk}k∈Z has a subsequence {λl(k)}k∈Z such that

|λl(k) − k| ≤ L <
1

4
, ∀k ∈ Z.

Remark: As mentioned before, Seip showed that for a relatively separated
sequence Λ = {λk}k∈Z, D−(Λ) > 1 is a sufficient condition for {eiλk(·)}k∈Z to
contain a Riesz basis {eiλk(·)}k∈J , where J ⊂ Z. Thus, Theorem 3.3 can in
principle be used for all frames satisfying his conditions. However, we need
to know an estimate for the lower bound for the Riesz basis, which is not



Exponential frames 16

included in Seip’s article. As far as we know, the only bounds for {eiλk(·)}k∈J
that are given so far are by Lindner [11],[10]. They apply if Λ is separated
and if there exist ρ > 1 and L ≥ 0 such that |λk−k/ρ| ≤ L ∀ k ∈ Z; this is a
classical condition by Duffin and Schaeffer, that can be found already in the
paper [7]. It should be observed that any lower frame bound for {eiλk(·)}k∈J is
also a lower bound for {eiλk(·)}k∈Z, so the bounds in [11],[10] are also bounds
for the whole sequence {eiλk(·)}k∈Z. However, for the latter sequence better
bounds have been obtained by Voß [16],[15],[14].
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