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Abstract

A novel representation of functions, called generalized Taylor form, is applied
to the filtering of white noise processes. It is shown that every Gaussian colored
noise can be expressed as the output of a set of linear fractional stochastic differ-
ential equation whose solution is a weighted sum of fractional Brownian motions.
The exact form of the weighting coefficients is given and it is shown that it is
related to the fractional moments of the target spectral density of the colored
noise.

1 Introduction

In this paper a novel procedure to represent a stationary Gaussian process by filtering a
Gaussian white noise process is reported.

Linear stochastic differential equation excited by a Gaussian white noise process acts as
a filter, returning an output that is a Gaussian process with Power Spectral Density (PSD),
or correlation function, related to the equation’s parameters. The system linearity, of course,
implies the normality of the output process. Depending on the structure and on the coefficients
of the filter equation, processes with different PSD might, at least theoretically, be obtained.
In practice, such a task is not simple at all, and many papers in literature deal with the
characterization of filter in order to fit some target PSD.

Such a spread interest depends on the fact that many real phenomena of engineering and
physical interest are indeed modeled as stationary Gaussian processes with PSD that is known
from experimental works. To cite just fews, the most used in the fields of earthquake, wind
and ocean engineering are the Tajimi-Kanai [20], the Davenport and the Kaimal [6], [10] and
the Pierson-Moskowitz [14] spectra, respectively. Representation of such processes as output
to linear differential equations excited by white noises is a key issue in dynamical analysis
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of single and multi degree of freedom systems. In earthquake engineering readers can find
some example in [2], [8], [7] while in the context of offshore design, shaping filters for random
response analysis are studied in [21]. Auto Regressive (AR), Moving Average (MA) and their
combination (ARMA) models have been extensively used by many authors to represent colored
processes. In [18] the applicability of AR, MA and ARMA algorithms to represent the wave
motion following a Pierson-Moskowitz spectrum is discussed. Further, in [19] an analog filter
approximation is presented for the Jonswap spectrum.

In a spectral fitting problem, a common issue of such spectrum approximations is that the
determination of filter parameters defining the PSD digital model, relies on some optimization
criterion. Indeed, once the AR, MA or ARMA model is selected, the coefficients defining the
pulse transfer function that must fit the target PSD lack of any further interpretation.

Recently, the first two authors introduced the fractional calculus and the generalized Taylor
expansion involving Fractional Spectral Moments (FSM) to describe both PSD and correlation
function in the whole domains | — 0o < w < oo and | — 0o < 7 < oo[. That is, the spectral
fitting problem is easily recast in finding integrals of the target function, which have the
meaning of complex moments, and represent the coefficients of a series representation. This
approach based on fractional calculus is of great generality and has also been presented for
density estimation in probability in [3] and [5].

The new issue presented in this paper, extensively based on the latter concepts, is to find
out the differential equation coupled to the spectral representation based on complex moments.
In particular, it will be assumed to deal with some spectral data coming from experiments,
i.e. the target PSD. Then, by the fractional spectral moments two results will be presented.

The first result is a representation of the stationary Gaussian process. Indeed, it is shown
that a process with assigned target density can be represented once the FSM are known, by
means of an expression that involves fractional derivative of a Gaussian noise. Such processes
have been recently shown to be fractional Brownian motions (fBm) [13]. Then, every Gaus-
sian colored noise can be thought as superpositions of weighted fBm, and the weights are
determined by the FSM.

From this result a further second very remarkable result is achieved. Indeed, by proper
application of the fractional calculus, a linear fractional stochastic differential equation, whose
solution is the colored noise process with target density, is found.

2 A new representation formula for Fourier pair
functions

In this section, some preliminary concepts and definitions on fractional operators are summa-
rized for clarity’s sake as well as to introduce appropriate notations.

Let us consider a Fourier transformable function f(t) and let us denote p(w) its Fourier
transform,that is
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Let us recall the definitions of the Riesz fractional integrals and derivatives as follows
L[> f)
3a ") (t) = / dr; > 0, 1,3,5, ...
(3a) IH® =55 T p>0,p#



= f-m) - (),

(3b) (D7) (8) -

.
7]

where v(y) = I'(y)cos(yn/2) with ' (e) is the Euler gamma function and v = p+in,p > 0,1 €
R. Their Fourier transforms, in case 0 < p < 1, ([15], p.217) are
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Comparing eqs.(4a)-(4b) it can be simply verified that the relation (D7 f) (t) = (I77f) (t)
holds true. Readers should keep in mind that such condition is valid at least for Fourier
transformable functions here considered. This property allows to calculate the fractional
integral in eq.(3a) by simply changing the sign inside the definition of eq.(3b) and vice-versa.
It is to be stressed that this fact is not trivial at all. Indeed, dealing with functions that
are not Fourier transformable, in general (D7 f) (¢t) # (I77f) (t) (see [15], p.214 and p.112-3,
Lemma 5.2).

For brevity’s sake, definitions of the other fractional operators as Riemann-Liouville (RL)
fractional integral and derivative and of the Marchaud fractional derivative, with their Fourier
transforms are provided in Appendix Al. Readers can find a complete theory on such operators
in the excellent monograph of Samko et al. [15].

For functions that are Fourier pairs, as those considered in this paper, the eqs.(4) are
very useful to calculate the fractional operators in an easier way with respect to definitions in
egs.(3). Indeed, by applying inverse Fourier transform to egs.(4), it leads to
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From the above equation it can be observed that the convolution integrals (3a) and (3b)
may be evaluated by making firstly the Fourier transform of f(¢), namely ¢ (w) and then
making the Fourier transform of |w|™” ¢ (w). This remark is very suitable especially when the
Fourier transformation of f(¢) is known in analytical form.
Eq.(5) evaluated in ¢ = 0 assumes the particular meaning of fractional moments of p(w)
in the form
def e _
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It has been recently shown [3], that the quantities in eq.(6) are able to represent both
the function f(¢) and ¢(w) for symmetric real function. Since the goal of the paper is to
represent univariate processes as output of filtered white noise and the Gaussian process is
fully characterized in the probabilistic setting by the (symmetric) PSD, in the following, for
readability’s sake we suppose that f(t) is symmetric. This leads to simplifications, as the
Riesz integral definition in eq.(3) can be rewritten in the form
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and directly interpreted as Mellin transform (see Appendix A2). In this paper we will deal
exclusively with f(¢) € R and symmetric and consequently ¢(w) € R is also symmetric.
Extension to more general conditions is given in Appendix Al. Then, the corresponding
representations of the symmetric functions f(¢) and ¢(w) are given by
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Both the integrals are performed along the imaginary axis with fixed real part p belonging
to the so-called fundamental strip of the Mellin transform. A deeper insight on Mellin trans-
form related concepts and more information on the application to fractional derivatives, here
omitted for readability’s sake, are reported in Appendices Al and A2.

Keeping in mind eq.(6), egs.(8) can be understood as a Taylor integral expansion, because
by the knowledge of the fractional integrals (or derivatives) in ¢ = 0, it may fully reconstruct
the function in the whole domain. For this reason, eqs.(8) will be indicated as generalized
Taylor integral forms. This particular form involving fractional moments of Fourier transform
of f(t) is entirely new at our best knowledge. It is to be remarked the p(—7v) is able to
represent both f(¢) and its Fourier transform in the whole domains.

Eq.(6) assigns further a geometrical and physical meaning to fractional operators in the
Taylor integral form, relating them with the concept of complex moments of the function
¢(w). Applications of egs.(8) for the case of correlation functions and PSD may be found
in [4], where the fractional moments of the power spectral density assume the meaning of
fractional spectral moments and were labeled by A(7).

It is important to observe that in the generalized Taylor expansions (8), the integral is
performed along the imaginary axis and, under the hypothesis that the direct Mellin transform
in eq.(6) exists, such integrals do not diverge in virtue of the Mellin inverse theorem. Moreover
it has to be stressed that the integration does not depend on the particular choice of p except
for the limitation, as previously outlined, that p shall belong to the fundamental strip of the
Mellin transform. This may be explained by the fact that the integrand in the fundamental
strip is holomorphic. More information on this topic may be found in [3].

Hereinafter, taking full advantage of the results presented in this section, the fractional
filter representing a given target PSD will be found.

3 Transfer function representation by H-Fractional
Spectral Moments

Objective of this paper is to represent a normal stationary process with assigned power spectral
density as the output of a fractional differential equation. To this aim, let us consider a
Gaussian white noise process, W (t) with zero mean and correlation function E[W (¢)W (¢t +
7)] = q (t), and power spectral density Sy = ¢/(27), where ¢ is the intensity parameter. Let
us indicate the ideal linear system as

(9) LY (1) = W(t)

where L (o) is a linear differential operator applied to the response Y (¢). The solution to
eq.(9) can be characterized by the impulse response function h(¢) and its Fourier transform
H(w) namely the transfer function, and can be expressed by Duhamel integral

t
(10) Y(t):/ h(t—7)W (r)dr
Indicating by Sy (w) and Sy (w) the power spectral density of the output and the input,

respectively, from the linearity of the system it follows

(11) Sy () = |H @) Sw ) = 5= |H @)/

where Sy (w) is the target spectrum. Eq.(9) may be considered as a filter of the white noise
process. Let us now suppose that the differential operator £ (e) is such that Sy (w) overlaps
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an assigned PSD arising from a physical phenomenon. In order to find the unknown operator
L (o) we assume Arg (H (w)) = 0, that is, from eq.(11) the transfer function can be expressed
as

2
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Correspondingly, as the transfer function is assumed to be real, the impulse response
function of the linear system £(Y (¢)) remains symmetric. That is, by enforcing the condition
Im (H (w)) = 0 we get a non causal differential equation. In spite of the causality condition is
violated, the output of eq.(9) remains a strictly stationary Gaussian process. In the following,
we will firstly introduce the fractional moments of the function H(w); then we will represent
H(w) as sum of fractional moments and finally the expression of the process Y (t) with target
PSD Sy (w) will be given in terms of the fractional moments of H(w). As first step, in order
to represent the transfer function H(w), let us define the fractional moment of H(w) labeled
in the following as Iy (—v) € C, that in virtue of eq.(6) is written as

(13) Imew@/ W H (@) dw,  Rey> 0

that will be called H-Fractional Spectral Moment (H-FSM) function. By means of eq.(8), the
H-FSM function allows us to fully reconstruct both the function H(w) and h(t) in the whole
domains. The H-FSM are fractional integrals and derivatives of h(t) evaluated in zero (as
given in eq.(6)), that is

(14) 21 (Ih) (0) = 27(DVh)(0) = Il (—), Rey > 0

Specifying the eq.(8), previously written for two general Fourier pair, we obtain the rep-
resentation of the impulse response in the time domain as

1 p+100
pP—100
and the transfer function in the form
1 pFi00 N
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479, p—i0o

It might be useful to consider the H-FSM as a third representation in the + variable of the
response of the dynamical system under study.

The integrals involved in (15) and (16) can be approximated in discrete form, operating
a truncation in the n axis. Indeed, calculating the integral up to a certain value, called 7,
dividing [—7,7] in 2m intervals of amplitude An = 77/m, with m € N and evaluating the
integrals at the values v = p + ikAn, egs.(15) and (16) can be approximated in the form

(17) % 2 Z ’Yk HH 'Yk:) + 0k
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A wider discussion on the truncation of the integrals performed along the imaginary axis
may be found in [3].

Now, having represented the transfer function both in exact and approximated form in
terms of H-FSM we are ready to infer an analytic expression for the process Y (t) with target
PSD.



The input-output relation for linear system in Fourier domain is written as Y (w,T) =
H (w)W (w,T), where T" > 0 is a truncation bound. Of course this relies on the fact that
W (t) is a stationary noise. Thus, bearing in mind eq.(16) one obtains

AT ) ) ioo

1 p+ico
(19) VD)= g [ () el W @ ) dy
P
due to the linearity of the operator L (o). Applying an inverse Fourier transform, the response

to the linear system assumes the form
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By recalling eq.(4a), it follows that Tlim F1 {\ww_l W(w,T) ;t} = (I'""W) (), that
—00
introduced in the latter, gives
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with p > 0 as already found by means of the impulse response function, that is the new exact
representation of the stationary process with assigned PSD.

Some comments are necessary to highlight the peculiar aspects of this new representation
of a stationary process. i) The resulting process Y () is reconstructed by the knowledge of the
H-FSM previously defined in eqs.(13), calculated on the transfer function given by eq.(12),
through the target power spectral density Sy (w). There is no need of using optimization
criteria like in ARM A, or similar models, because the coefficients figuring in the representation
have the meaning of being complex moments of the H(w). ii) Eq.(21) is an integral along
the imaginary axis with fixed real part p, belonging to the interval [0,1]. The choice of p
inside this interval does not influence the integral because the integrand is holomorphic inside
such a interval. ii7) Fractional integrals of white noise processes have recently attracted many
authors. In fact, such operators are connected with the so called Fractional Brownian noises
and motions as reported in [1], [9]. Although white noise processes have nowhere differentiable
path, the operation of fractional integration and derivation is indeed meaningful. To get a clue
on this, it suffices to recall the definitions in egs.(3a)-(3b) which stress the convolution nature
of the fractional operators. The kernel of the integral smooths the singularity of the process
path in a such a way that it is therefore well-defined. In (][22], pp.65-70) very interesting
results on a class of nowhere differential function (the Weierstrass function) is also presented.
iv) The process Y (t) as expressed in eq.(21) is suited to be computed by proper discretization
of the integral involved. Indeed, truncating the integral up to a certain value, called 7, and
dividing [—7, 7] in 2m intervals of amplitude An = 77/m, the integral can be approximated by
the sum

m
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k=—m

with v = p+ikAn (0 < p < 1). This approximation carries out a truncation and discretization
error, that can be made arbitrarily small. Eq.(21), or its discretized counterpart given in
eq.(22), are the new representation of the process Y (t) whose PSD matches the target one. In
particular eq.(22) shows that the Y'(¢) may be obtained as the superposition of the fractional
integrals of the white noise process.

In order to validate eq.(22), we will show that with some simple steps it coincides with
the well-known Shinozuka’s representation [16]. Let us consider a band limited white noise
process with one-side PSD

(23) GW(w):{Q/W 0<w<w

0 otherwise



where @ is some cut-off frequency and let be Aw a discretization of the w axis such that
Aw = @/n, then the spectral representation theorem [16]

(24) W (t) = lim Z V2Aw g/ sin (wit + ¢;)
Aw—0 j=1

holds true, where ¢; are realizations of a random variable uniformly distributed in [0, 27]. The
fractional integral (I 1= W) (t) can be directly computed by Mathematica and is

(25) (I W) (t) = Jim Z\/QAW(]/TI’ ;| sin (wjt 4 ¢;)

Aw—>0 j=1

Introduction of the latter in eq.(21) leads to

1 p+ioco
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that, bearing in mind eqs.(12) and (16), is simplified in the form
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where Gy (w) = 2Sy (w)U(w) is the target unilateral power spectral density. Eq.(27) is the
well known Shinozuka’s representation [16] for a process with assigned spectrum, and then
the process reconstruction by eq.(22) is proved.

3.1 Two Relevant Examples

3.1.1 Pierson-Moskowitz spectrum

Consider the unilateral Pierson-Moskowitz (PM) spectrum [14] Gpys given by
5/4

5 .
98 a _ 5 exp( 44), w >0
(28) Py (@) { 0; w <0

with assigned parameter c. Let us study the linear system excited by a Gaussian white noise
process as indicated in eq.(9) such that Y (¢) has a power spectral density with the assigned
form Sy(+w) = 1Gppy(w), with w > 0. It follows from the definition in eq.(13) that the
H-FSM can be easily evaluated by Mathematica and assume the form

1
(29) Mg (—v) = 2é+?’1531c5/8\/%\[r [2 + Z]
q

having introduced Hpps(w) = /7 |Gpar (w)| /g, as given by eq.(11).

The approximated impulse response function hpjps(t) and the transfer function H(w) of
the system under exam have been found by applying eqs.(17) and (18) and plotted in Fig.(1)
and Fig.(2), respectively. The parameters used are: ¢ = 2.72, p = 0.5, m = 25, Anp = 0.6
(7 =15). It can be noted that the comparison between the exact functions (continuous line)
and the approximated one (dotted line) is very good. As confirmed by the log-log plot in
Fig.(3), the two functions coincide in a very wide interval. Although in Fig.(1) the impulse
response function is plotted only for ¢ > 0, it is a symmetric function because the differential
equation associated to eq.(17) is non causal.
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Figure 1: Approximate form of hpy,(t) (dotted) contrasted with F~1H (w)
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Figure 2: Approximate Hpy(w) (dotted) contrasted with the exact one

3.1.2 Davenport’s spectrum

In wind engineering, the Davenport’s spectrum

_ ArkoV;? ap (w)*

- T e 73
] (1 +4qp (w)Z)

is widely used to represent wind fluctuation, where V,. is the mean wind speed at the reference
level, kg is a roughness characteristic of the analyzed site and gp(w) = 1200w/ (27V;.). For this
application we selected kg = 0.01, Vir = 15m/s, ¢ = 1 as spectrum parameters and p = 0.7,
m = 30, An = 0.5 (7 = 15). In fig.(4) the approximated transfer function Hp(w) is contrasted
with the exact one defined from eq.(30). With this further example we want to stress that the
spectrum behavior in the neighborhood of the zero has no influence on the applicability and
the efficiency of the method. Indeed both the flat and the steep behavior of the PM and the
Davenport spectra, are very good approximated by H-FSM.

(30) Sp (w)

4 Fractional differential equations of the linear filter

The method presented in the previous section characterizes the process Y (¢) with assigned
spectrum, by the exact expression in eq.(21) or by the approximated one in eq.(22). In this
section, the differential equation whose response is Y (¢) will be found in approximated form,



5.00

1.00
0.50

Loglht)

0.10
0.05

0.001 0.01 0.1 1
Log(®)

Figure 3: Log-Log plot of the approximate form of hpy(t) (dotted) contrasted with
F1H (w)
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Figure 4: Approximate Hp(w) (dotted) contrasted with the exact one

making extensive use of composition properties of fractional operators reported in Appendix

m
A3. Firstly, let us rewrite eq.(22) in the form Y (¢) = > Y} (f) where
k=—m

(31) Vi (t) = g (1'% W) (1)

with ap = Anlly (—yk) / (47). Applying to both sides of the latter equation the operator
D' and exploiting the composition rule reported in Appendix A3 leading to eq.(71), we
obtain

(32) (DY) (1) = a W (2)

Each component of Y () is therefore the solution of a linear fractional stochastic differential
equation excited by a Gaussian white noise. As the noise is the same for each Yj(t), the k
components are dependent each other. For a complete description of the whole process Y (¢), it

suffices to perform a time derivative of the first order to eq.(31) and summing for k = —m, ..., m
obtaining
v &
o Vi
(%) i = 2 @0
o

that is the linear fractional stochastic differential equation searched.



In order to provide the probabilistic characterization of the response process Y (¢) let us
consider the truncated Fourier transform of eq.(32) yielding

(34) W'Y (w0, T) = oW (w, T)
or in terms of PSD
(35) Syi (@) = Jag* w7V Sy = |a)? [w]* TV (g/2n)

while the cross spectral density takes the form
(36) Sviv; (@) = aga | (e 7") " (a/2m)

where the symbol * means complex conjugate.
It follows from eq.(36) that the PSD of the target process Y (¢) is written as

(37) Sy =Y Y Sy, W

k=—mj=—m

Therefore, the cross-spectral density between the dependent components Y characterizes
the target power spectral density Sy (w). We want to stress that each component Sy, gives
a contribute in defining the total power spectral density Sy (w) and that only the whole
ensemble returns a very good approximation. This fact is highlighted in Fig.(5) where the
approximation of a Pierson-Moskowitz spectral density, Sy (w), by components’ cross-spectral

m T
densities Sy (w) = > > Syy; (w), varying  is plotted. This figure shows in particular
k=—mj=—m
that every single component Yj(¢) in eq.(31) gives a contribution, because the convergence is
attained only when r = m. Summing up, every component Y3 weights in the reconstruction
of the target PSD.

0.5

Figure 5: Approximation of the Pierson-Moskowitz spectrum Sy (w), by components’

m T
cross-spectral densities Sy (w) = > > Syy, (w), varying r
k=—m j=—m
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5 Comparison with time series models

The processes Y (t) and W (t) up to now considered are continuous in time. In this section we
show how to express the process Y (¢) with target spectral density in a sampled time space.
To this aim, let us discretize the time axis in equally spaced intervals of amplitude At > 0.
With the notation Y, ;, j € N we denote Y}, (¢ — jAt) and consequently Y} ; is the process at
the instant of time ¢. The same notation applies to the noise such that W;_; = W (t — jAt).

The discretization of the Riesz operator can be tackled by the Griinwald-Letnikov approach
as reported in [15] that reads

(38) DPY, = Alil_{lo Z Aj (B) Yi—j+ Z Aj (B) Y+
§=0 5=0
with
c (7))
(39) Ai (8) = 2AtP cos (B /2)

Eq.(38) is very useful in numerical applications because for a small value of At > 0 gives
an approximation formula of the first order. For our scope eq.(38) is extremely useful because
gives the possibility to interpret the fractional filter equation in eq.(32) also in the discrete
time domain in order to make a fruitful comparison with other well-known time series model.

Then, by means of the discretization in step of small At > 0 and substituting the approx-
imated Riesz operator of eq.(38) in eq. (32), the following time series is obtained

[e.9]

(40) Aj (L= 76) {Yit—j + Yipj b = aWe
5=0

This representation highlights that this fractional time series model is determined by the
knowledge of the past of the process in the first term and the future of the process in the
second term. This happens because the filter is non-causal. From eq.(40) it is possible to
find the transfer function by applying the z-transform. Remanding to the textbook of [12] on
details concerning the z-transform, it can be proved that the pulse transfer function for the
single component Y}, is
(41) Hy. () =

S e )
7=0

The fractional filter characterized by eq.(40) and (41) is suitable to be compared with the
classical Auto Regressive model of order p € N, denoted as AR(p), whose time series has the
form

P
(42) Yt + Z QjYt—j = GW;
j=1
and pulse transfer function given by the equation

G

P .
14+ > ajz7
i=1

(43) Hagp) (2) =

Comparing the pulse transfer function in eq.(41) and in eq.(43) it is worth to note that
both expressions present the z variable only in the denominator, sharing the same algebraic
structure. Remarkable difference is that the coefficients in the fractional filter are evaluated
by the H-FSM in exact form while in the AR model a Jule-Walker scheme must be adapted
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for finding the coefficients a;; by contrast once the H-FSM are evaluated, all the coefficients
in the fractional differential equation are readily found.
Same kind of analogy can be pursued starting from eq.(31) that assumes the form

(44) Yir = ag Z Aj (=B){Wi—j + Wiy}

in the discrete time model and with transfer function
(45) Hy. (2) :akZ)\j (=B) {277 + 27}
=0

Indeed it is easy to recognize that eq.(45) is conceptually similar to a Moving Average model
of order ¢ € N indicated by M A(q), characterized by the temporal series

q
(46) ye=> bW,
j=0

and transfer function

(47) Hyra) (2 Zb z7

Comparison between M A model and digital ﬁlter obtained by the proposed procedure also
in this case reveals the same structure. It is to be stressed that for M A model, the coefficients
b; are evaluated by some optimization criteria while in eq.(45) the coefficients o, are evaluated
by H-FSM.

The last step we develop regards the ARM A model and follows plainly. First of all, let
us exploit the composition rule given in Appendix in eq.(54b) into eq.(32), applying D7~ to
both sides of eq.(32). In this way the filter equation reads

(48) (D"Y) (t) = ay (D 'W) (2)

that in the discrete time form is

(49) Z A (Vs = W) {Ykyi—j + Yauas} = g Z Aj (1 =) {Wij + Wiy}
7=0

and whose transfer function is

aki)\J(l—%){z I+ 27}
(50) Hy (2) = ——
2 A (s =) {7 + 27}

The latter should be compared with the ARM A model, that is characterized by the time
series model

P q
=0 =0
and transfer function

(52) Hapma (z) = Z Zd 2~
7=0

Also in this case direct comparison between eq.(50) and eq.(52) shows the correspondence
between the two representations.
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6 Conclusions

This paper sheds a new light in the representation of stationary Gaussian colored noises. It
is shown that every stationary Gaussian process with assigned power spectral density is equal
to an integral involving the H-Fractional Spectral Moments (H-FSM) and Riesz Fractional
integrals of the Gaussian white noise process. In this sense, the first result of this paper is a
new exact representation for stationary processes.

It has been further shown that the H-FSM can be easily evaluated, and two pathological
applications like the Pierson-Moskowitz and the Davenport density spectra have been reported.

Moreover, properly approximating the exact integral representation in to a series form, a
set of fractional stochastic differential equations excited by an external white noise process
has been provided. Its solution has the desired target power spectral density. It has also
been shown that every stationary Gaussian process is approximated by a fractional stochastic
differential equations, that is a stochastic differential equation excited by fractional derivatives
of a Gaussian white noise.

The representation proposed has been rewritten in time series form and compared with
AR, M A and ARM A time series.

A Appendix

The generalized Taylor form applied in the paper to symmetric functions expressed in terms of
Riesz operators is valid also once this condition is dropped, as reported in [3]. For readability’s
sake we report the main results, introducing the proper operator of Riemann-Liouville and
Marchaud.

A.1 Riemann-Liouville (RL) and Marchaud fractional opera-
tors

We recall the definitions of the Riemann-Liouville (RL) fractional integral and derivative,
(I1f) (t) and (DLf) (t), respectively, and of the Marchaud fractional derivative, (D1 f) (t),
given by

def 1 > -
(53a) GRS /0 OV f (1 ) de
(530) (01 f)()difr(fiwi [Teriesode

(53¢) (DLf) (1)" /s“ (tF6) - 1 (1) de

where I' (o) is the Euler gamma function and v = p+in, p > 0, € R. The Marchaud definition
of the fractional derivatives is more convenient with respect to the Riemann-Liouville in the
sense that they exist also for function that do not vanish at infinity, and for this reason it will
be preferred.

Fourier transforms of the fractional derivatives and integrals above defined are

(54a) FUILL) () sw} = (Fiw) T F{f (t);w}

(54b) FUDLS) 05wy = (Fiw) F{Sf (1) 0}
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Applying same reasoning reported in section 1 for the Riesz operators, comparing eqs.(54a)-
(54b) it can be simply verified that for functions that are Fourier transformable (D7 f) (t) =

(.Tj?Y f) (), although not valid in general. Then, by making an inverse Fourier transform of

the eq.(54) the following representations

_ 1 e Lo i
(5) (IL1) () = DTNO =5 [ (Fiw) T p@)e
— 00
holds true. Moreover, eq.(55) evaluated in ¢ = 0 assumes the particular meaning of fractional
moments of ¢(w) in the form

def OO . oN—
(56) pe () Zom (1) 0) = [ Fiw) 7o ) do
— 00
Once the fractional moments have been introduced, let us interpret the fractional operators
in eq.(56) as Mellin transform of the function f(t)

(57) (I15) ()T (7) = / T e (e)a

as suggested in [15]. Then, making an inverse Mellin transform, the following representation

of the function f(t)
p+ioco

(58) f(Ft) = / L (7) (I1F) (0) £ 7dy
P

B % —100
holds true, where the integral is performed along the imaginary axis with fixed real part p
where p belongs to the fundamental strip of the Mellin transform.
By inserting eq.(56) in eq.(58), the integral representation for both f(¢) and its Fourier
transform may be written as

+i00
(592) f(¢t)=$ /,, pioo FQ(;)MqE(—V) tdy
+100
390 (@) = o | TR = 1) e () )7 s () (i)
T™) 1 Jp—ioco

A.2 Some concepts on Mellin transform
The Mellin transform ([15], p.25; [17], p.41) of a function f (z), x > 0, s € C is defined as

(60) o) = M{f (@)ish = [T r© e tae
along the inverse operator

1 c+ioco
(61) fla)= M p()iah = @m) [ (s o

with ¢ = Re (s)
From the definition, it follows that the convergence of the Mellin transform depends on
the behavior of the function f(z) at zero and infinity, that is, assuming

O(zP), x —0
f(w)—{ O (z%), x — oo

the complex function ¢ (s) is analytic inside the so called fundamental strip —p < Res < —q.
The inverse Mellin transform must be calculated selecting ¢ = Res inside the fundamental
strip. Tables of Mellin transforms of commonly used functions are given in ([17], p.527), while
for a complete theory readers are referred to [11].

(62)
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A.3 Compositions rules for Riesz fractional derivatives

By manipulating the definition of the Riesz fractional operators, it can be proved that the
following identities

(632) (Iﬂf> () = 2003(,16’71/2) {<L€f> )+ (Igf) (t)}

(63b) (D6f> ) = 2 cos (1B7r/2) {(Dﬁf> )+ <D€f> (t)}

in terms of RL fractional integrals and Marchaud derivatives hold true.
The left handed (I Jﬁr f) (t) and the right handed (I A f) (t) operators, are connected by
the equations

(64a) (Iﬁ f> (t) = cos (B7) (I_f f) (1) + sin (B7) H { (If f) (s) ;t}
(64b) (If f> (t) = cos (Br) (IE f) (t) — sin (B7) H { (1@ f) (s) ;t}
where H is the Hilbert transform defined as

(65) His @ = [ Has

The eqs.(64) are useful to find the so called composition rules of fractional operators,
which allow to simplify forms of the type Di[ﬁ f- In particular, applying Df_ and D” , to
eq.(64a) and eq.(64b), respectively, and taking into account

(66) (Dirir)m=r (D2rff) = f ()
it follows

(67a) (DYI7F) (t) = cos (Br) £ (1) + sin (B) HAS (5)51}
(67b) (D2ELF) (#) = cos (8m) £ (t) — sin (Bm) HAS (s) 31}

having used the property
(68) w(12f) () = (12mr) (1)

Composition rules involving the Riesz operators can now be worked out based on the
previous properties, showing that DT f = f. Indeed, from the definitions in eq.(63)

(69) DEIBf — (2(:08(;7r/2))2 (Dﬁ]ﬁf+D§I€f+D§I§f+D€1{if)
that using eq.(66), (67) and
(70) 2 4 2cos (fBm) _1
(2cos (B/2))°
gives the result searched
(71) D°I°f = f

Other compositions rules and applicability criteria of the formulas in this appendix are
adapted from ([15], Chapter 3).
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