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Abstract—In this paper the compound broadcast channel with
confidential messages is studied, where it is only known to the
transmitter and receivers that the actual channel realization is
fixed and from a pre-specified set of channels. An achievable
rate region for the strong secrecy criterion is derived. Further,
a multi-letter outer bound is given, which establishes, together
with the achievable rate region, a multi-letter expression of the
strong secrecy capacity region.

I. INTRODUCTION

Operators of wireless networks are confronted with an
inherent problem: a transmitted signal is received by its
intended users but can also easily be eavesdropped by non-
legitimate receivers due to the open nature of the wireless
channel. To meet this challenge, current systems usually
apply cryptographic techniques to keep information secret.
These techniques are based on the assumption of insufficient
computational capabilities of non-legitimate receivers, but
due to increasing computational power, recent advances in
number theory, and improved algorithms, these techniques are
becoming more and more insecure.

Information theoretic, or physical layer, security solely uses
the physical properties of the wireless channel to establish
a higher level of security. Thus, whatever transformation is
applied to the signals at the eavesdroppers, the original mes-
sage cannot be reproduced with high probability. Information
theoretic security was initiated by Wyner, who introduced the
wiretap channel [1], and later generalized by Csiszár and
Körner to the broadcast channel with confidential messages
[2]. Recently, there is growing interest in information theoretic
security; for instance see [3, 4] and references therein.

However, usually the criterion of weak secrecy is applied,
which is heuristic in nature in that no operational meaning has
been given to it yet. This means that even if this criterion holds,
it is not clear what an eavesdropper can or cannot do to decode
the confidential message. But recently, an operational meaning
has been given to the strong secrecy criterion introduced by
Maurer and Wolf [5]: it was established in [6, 7] for the
wiretap channel that the strong secrecy criterion implies that
the average decoding error at the eavesdropper tends to one
for any decoder it may use.
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Another challenge for operators of wireless networks is the
provision of sufficient channel state information at transmitter
and receivers. In practical systems there is always uncertainty
in channel state information due to the nature of the wireless
medium. A reasonable model is to assume that the exact
channel realization is not known; rather, it is only known that
it belongs to a pre-specified set of channels. If this channel
remains fixed during the whole transmission of a codeword,
this corresponds to the concept of compound channels [8, 9].

To date, there is only little work that incorporates both tasks:
information theoretic security in interaction with channel un-
certainty. The compound wiretap channel is analyzed in [6, 7,
10]. The MIMO compound wiretap channel is studied in [11]
and the MIMO compound broadcast channel with confidential
messages in [12].

In this paper we consider the compound broadcast channel
with confidential messages where the sender transmits not only
a confidential message to a legitimate receiver with strong
secrecy, but also an additional common message to both,
the legitimate and non-legitimate receiver. Thus, it is related
to [2] and extends it in two ways: first, it takes channel
uncertainty into account and, second, it employs the strong
secrecy criterion.1

II. COMPOUND BROADCAST CHANNEL WITH
CONFIDENTIAL MESSAGES

Let X , Y , and Z be finite input and output sets and
S = {1, ..., S} be an index set. Then for fixed s ∈ S
and input and output sequences xn ∈ Xn, yn ∈ Yn, and
zn ∈ Zn, the discrete memoryless broadcast channel is given
by W⊗ns (yn, zn|xn) :=

∏n
i=1Ws(yi, zi|xi). We denote its

marginal channels by W⊗nY,s(y
n|xn) and W⊗nZ,s(z

n|xn).
Definition 1: The discrete memoryless compound broad-

cast channel W is given by W := {(WY,s,WZ,s) : s ∈ S}.
We consider the standard model with a block code of

arbitrary but fixed length n. Let M0 := {1, ...,M0,n} and
M1 := {1, ...,M1,n} be the sets of common and confidential
messages. Further we use the abbreviation M :=M0 ×M1.

1Notation: Discrete random variables are denoted by non-italic capital
letters and their realizations and ranges by lower case and script letters, re-
spectively; H(·) and I(·; ·) are the traditional entropy and mutual information;
X−Y−Z denotes a Markov chain of random variables X, Y, and Z in this
order; P(·) denotes the set of all probability distributions; E[·] and P{·} are
the expectation and probability.



Definition 2: An (n,M0,n,M1,n)-code for the compound
broadcast channel W with confidential messages consists of a
stochastic encoder

E :M0 ×M1 → P(Xn) (1)

specified by its transition probabilities, and decoders

ϕ1 : Yn →M0 ×M1 and ϕ2 : Zn →M0. (2)

The average probability of errors at the receivers 1 and 2
are then given by

ē1,n := max
s∈S

1

|M|
∑
m∈M

∑
xn∈Xn

∑
yn∈Yn:

ϕ1(y
n)6=(m0,m1)

E(xn|m)W⊗nY,s(y
n|xn)

ē2,n := max
s∈S

1

|M|
∑
m∈M

∑
xn∈Xn

∑
zn∈Zn:

ϕ2(z
n) 6=m0

E(xn|m)W⊗nZ,s(z
n|xn).

To ensure that the confidential message is kept secret
from non-legitimate receiver 2 for all s ∈ S, we require
maxs∈S I(M1; Zns ) ≤ εn for some (small) εn > 0 with M1

the random variable uniformly distributed over the confidential
message set M1 and Zn = (Z1,Z2, ...,Zn) the output at
receiver 2. This criterion is known as strong secrecy [5].

Definition 3: A rate pair (R0, R1) ∈ R2
+ is said to be

achievable for the compound broadcast channel with confi-
dential messages if for any δ > 0 there is an n(δ) ∈ N and a
sequence of (n,M0,n,M1,n)-codes such that for all n ≥ n(δ)
we have 1

n logM0,n ≥ R0 − δ, 1
n logM1,n ≥ R1 − δ, and

max
s∈S

I(M1; Zns ) ≤ εn

while ē1,n, ē2,n, εn → 0 as n→∞. The closure of the set of
all achievable rate pairs is the strong secrecy capacity region of
the compound broadcast channel with confidential messages.

Theorem 1: An achievable strong secrecy rate region for
the compound broadcast channel with confidential messages
is given by the set of all rate pairs (R0, R1) ∈ R2

+ that satisfy

R0 ≤ min
s∈S

min
{
I(U; Ys), I(U; Zs)

}
(3a)

R1 ≤ min
s∈S

I(V; Ys|U)−max
s∈S

I(V; Zs|U) (3b)

for random variables U−V −X− (Ys,Zs).
Remark 1: Since receiver 2 is a legitimate receiver for

the common message and at the same time a non-legitimate
receiver for the confidential message, we have made different
assumptions on its channel. Accordingly, we have to assume
the worst channel in (3a) for the common message and the
best channel in (3b) for the confidential message.

III. KEY IDEA FOR STRONG SECRECY

In this paper we extend Devetak’s approach [13] introduced
for the wiretap channel to the compound broadcast channel
with confidential messages. This approach establishes strong
secrecy using only the noisy channel. We start with a basic
observation concerning the relationship of total variation dis-
tance and mutual information.

Lemma 1: Let A and B be finite sets and let A and B be
corresponding random variables. If ‖PA⊗PB−PAB‖ ≤ ε ≤ 1

2 ,
then

I(A; B) ≤ −ε log
ε

|A||B|
with PA ⊗ PB(a, b) = PA(a)PB(b).

Proof: A proof can be found in [14, Lemma 1.2.7].
Thus, for I(M1; Zns ) to be small, it suffices to find for every

ε > 0 a code that satisfies∥∥PZns
⊗ PM1 − PZnsM1

∥∥ ≤ ε.
From PZns

= 1
|M0||M1|

∑
m0,m1

PZns |M0=m0,M1=m1
, and the

triangle inequality follows that it is sufficient to find for every
s ∈ S and every (m0,m1) ∈M0 ×M1 a measure ϑs,m0 on
Zn such that∥∥PZns |M0=m0,M1=m1

− ϑs,m0

∥∥ ≤ ε. (4)

IV. ACHIEVABILITY

Here we prove Theorem 1, i.e., the achievability of (3)
with strong secrecy. Therefore, we construct a codebook
that enables reliable communication of all messages, while
ensuring the secrecy of the confidential message. Additionally
to the key observation in (4), we need two ingredients.

The first one ensures reliable communication of the common
message m0 to both receivers and of the confidential message
m1 to receiver 1. Let us drop the security requirement on m1

for a moment, i.e., m1 need not be be kept secret from non-
legitimate receiver 2. Then this scenario corresponds to the
broadcast channel with degraded message sets [15].

Lemma 2: An achievable rate region for the compound
broadcast channel with degraded message sets is given by all
rate pairs (R0, R1) ∈ R2

+ that satisfy

R0 ≤ min
s∈S

min
{
I(U; Ys), I(U; Zs)

}
(5a)

R1 ≤ min
s∈S

I(X; Ys|U) (5b)

for random variables U−X−(Ys,Zs) with average probability
of errors ē1,n, ē2,n ≤ 2−nγ for some γ > 0.

Sketch of Proof: The region can be proved using random
coding arguments. More precisely, a superposition of code-
words for the common message and for the private message
according to the chosen input distributions (6) and (7) will
allow to prove the result in a similar way as for example in
[16] for the compound bidirectional broadcast channel. The
details are omitted due to lack of space.

Remark 2: For |S| = 1 the region (5) reduces to a
subregion of [15]. More precisely, the sum constraint on
receiver 1 of the form R0 + R1 ≤ I(X; Ys) in [15] is
replaced by individual constraints on R0 ≤ I(U; Ys) and
R1 ≤ I(X; Ys|U) which makes the region smaller. However,
(5) will be sufficient to establish the desired result in (3).

The second ingredient will be used to incorporate the strong
secrecy requirement on m1. In more detail, we will exploit the
concentration of sums of i.i.d. random variables around their
expectation as given in the following lemma which is due to
Chernoff and Hoeffding [17].



Lemma 3: Let b > 0 and Z1,Z2, ...,ZL be i.i.d. random
variables with values in [0, b]. Further, let µ = E[Z1] be the
expectation of Z1. Then

P

{
1

L

L∑
l=1

Zl /∈ [(1± ε)µ]

}
≤ 2 exp

(
−L · ε2µ

2b ln 2

)
where [(1± ε)µ] denotes the interval [(1− ε)µ, (1 + ε)µ].

After these preliminary considerations we come to the
coding part. For probability distribution PU ∈ P(U) and
δ > 0, let T nU,δ be the set of δ-typical sequences on Un, cf.
for example [14]. We define

P ′Un(un) :=
P⊗nU (un)

P⊗nU (T nU,δ)
(6)

if un ∈ T nU,δ and P ′Un(un) = 0 else, where P⊗nU (un) =∏n
i=1 PU(ui). Similarly, for PX|U : U → P(X ) we define

P ′Xn|Un(xn|un) :=
P⊗nX|U(xn|un)

P⊗nX|U(T nX|U,δ(un)|un)
(7)

if xn ∈ T nX|U,δ(u
n) and P ′Xn|Un(xn|un) = 0 else.

This allows us to define the random coding scheme as
follows. Let M0 be the set of common messages where its
size M0,n is determined by (5a), cf. Lemma 2. LetM1 be the
set of confidential messages and further L := {1, ..., Ln} with
M1,n and Ln to be determined later. Let {Un

m0
: m0 ∈ M0}

be i.i.d. random variables with values in Un according to P ′Un ,
cf. (6). Then for each m0 ∈ M0 we define random variables
{Xn

lm1m0
: (l,m1) ∈ L×M1} with values in Xn, which are

i.i.d. conditional on Un
m0

according to P ′Xn|Un , cf. (7).
Now we come to the application of Lemma 3. We note that

the channel WZ,s can also be regarded as a channel with inputs
in U × X where the U-inputs do not make any difference.
Moreover, it will be sufficient to concentrate only on those
outputs that are typical; the probability of all other outputs
will be of no consequence as we will see later. Therefore, we
define for every channel s ∈ S , message triple (l,m1,m0),
and zn ∈ Zn the random variable

Qn
s (zn|Xn

lm1m0
,Un

m0
)

:= W⊗nZ,s(z
n|Xn

lm1m0
)1T n

Zs|XU,δ
(Xnlm1m0

,Unm0
)(z

n),
(8)

where for any set A ⊂ Zn, we let 1A(zn) = 1 if zn ∈ A
and 1A(zn) = 0 else. Conditional on Un

m0
, these random

variables are i.i.d. Moreover, as the input (Xn
lm1m0

,Un
m0

) is
jointly δ-typical with respect to the joint distribution PXU, and
the outputs of Qn

s are δ-typical conditional on the inputs, it is
well known that (8) is bounded from above by

Qn
s (zn|Xn

lm1m0
,Un

m0
) ≤ 2−n(H(Zs|X,U)−δ1) (9)

for some δ1 = δ1(δ), see e.g. [14]. Now let

ϑ′s,Unm0
(zn) = E

[
Qn
s (zn|Xn

lm1m0
,Un

m0
)|Un

m0

]
be the expectation of (8) conditional on Un

m0
. For any εn > 0

we define
Fs,Unm0

:=
{
zn ∈ T nZs|U,2|X |δ(U

n
m0

) :

ϑ′s,Unm0
(zn) ≥ εn|T nZs|U,2|X |δ(U

n
m0

)|−1
}
.

(10)

Finally, we set ϑs,Unm0
(zn) := ϑ′s,Unm0

(zn)1Fs,Unm0
(zn)

and similarly Q̃n
s,Unm0

(zn|Xn
lm1m0

,Un
m0

) =

Qn
s,Unm0

(zn|Xn
lm1m0

,Un
m0

)1Fs,Unm0
(zn). Then we define

the event Q(zn) as

1

Ln

Ln∑
l=1

Q̃n
s,Unm0

(zn|Xn
lm1m0

,Un
m0

) ∈
[
(1± εn)ϑs,Unm0

(zn)
]
.

(11)
Now let zn ∈ Zn. Then for the complement of Q(zn) we get

P
{

(Q(zn))c
}

=
∑

un∈Un
P{Un

m0
= un}P

{
(Q(zn))c|unm0

}
≤ 2 exp

(
−Ln ·

ε2n2n(H(Zs|X,U)−δ1)ϑs,Unm0
(zn)

2 ln 2

)

≤ 2 exp

(
−Ln ·

ε3n2−n(I(X;Zs|U)+δ1+δ2)

2 ln 2

)
(12)

where the steps follow from the law of total probability, from
Lemma 3 and (9), and from (10) and∣∣T nZs|U,2|X |δ(Un

m0
)
∣∣ ≤ 2n(H(Zs|U)+δ2)

for some δ2 = δ2(δ), see e.g. [14], since Un
m0

is δ-typical. Note
that if we choose εn = 2−nβ for some β ≤ 1

4 min{γ, δ1+δ2},
then (12) tends to zero doubly-exponentially for

Ln ≥ 2n(maxs∈S I(X;Zs|U)+2(δ1+δ2)). (13)

This provides the basis for the proof of (4). Note that we have
to choose the maximum in (13) to ensure that (12) tends to
zero doubly-exponentially for all channel realizations s ∈ S.

Next, we determine the sizes of the remaining sets for the
confidential message. For maxs′∈S I(X; Zs′ |U) < I(X; Ys|U)
for all s ∈ S, we choose δ (and therewith also δ1 and δ2) small
enough such that (13) is satisfied and at the same time

Ln ≤ 2n(maxs∈S I(X;Zs|U)+3(δ1+δ2)) ≤ 2nI(X;Ys|U).

Further, for the confidential messages we set

M1,n ≤ 2n(mins∈S I(X;Ys|U)−maxs∈S I(X;Zs|U)−3(δ1+δ2)).

From (12)-(13) we know that (11) is satisfied for every s ∈
S, (m0,m1), and zn ∈ Zn with probability close to one.
Further, with M0,n,M1,n, Ln as defined above it follows from
Lemma 2 that the random codewords we have chosen are the
codewords of a deterministic code achieving ē1,n, ē2,n ≤ 2−nγ

for some γ > 0 with probability close to one. Thus, there must
be realizations of (Un

m0
,Xn

lm1m0
) and ϑs,Unm0

with both these
properties, which we denote by (unm0

, xnlm1m0
) and ϑs,m0 .

From this we construct an appropriate code with a stochastic
encoder. Therefore, each message pair (m0,m1) ∈M0×M1

is mapped into the codeword xnlm1m0
∈ Xn with probability

1/Ln which defines a stochastic encoder. The decoder at
legitimate receiver 1 decodes all indices, i.e., (l,m1,m0),
while the decoder at non-legitimate receiver 2 only decodes the
common message m0. From Lemma 2 we know that this code
is suitable for reliable transmission of all messages to their
respective receivers. It remains to prove that (4) is satisfied.



From the triangle inequality we obtain for every s ∈ S and
(m0,m1) ∈M0 ×M1∥∥PZns |M0=m0,M1=m1

− ϑs,m0

∥∥
≤
∥∥∥∥PZns |M0=m0,M1=m1

− 1

Ln

Ln∑
l=1

Qn
s (·|xnlm1m0

, unm0
)

∥∥∥∥
+

∥∥∥∥ 1

Ln

Ln∑
l=1

Qn
s (·|xnlm1m0

, unm0
)(1− 1Fs,m0

)

∥∥∥∥
+

∥∥∥∥ 1

Ln

Ln∑
l=1

Qn
s (·|xnlm1m0

, unm0
)1Fs,m0

− ϑs,m0

∥∥∥∥.
In the following we bound all three parts individually which

we denote by I , II , and III . Since all codewords satisfy (11),
we have for the third term III ≤ ε.

For the first term I we have

1

Ln

Ln∑
l=1

W⊗nZ,s(Z
n\T nZs|XU,δ(x

n
lm1m0

,unm0
)|xnlm1m0

) ≤ 2−ncδ
2

for some constant c > 0, where we again interpret WZ,s as a
channel from U ×X to Z and use the fact that the probability
that the output of a channel is not δ-typical conditional on the
inputs is exponentially small, cf. for example [14].

Finally, the second term II can be rewritten as

1− 1

Ln

Ln∑
l=1

Qn
s (Fs,m0

|xnlm1m0
, unm0

)

which is at most 1− (1− ε)ϑ′s,m0
(Fs,m0

) by (11). Note that
if zn is δ-typical conditional on (xnlm1m0

, unm0
), then it is

2|X |δ-typical conditional on unm0
, so that ϑ′s,m0

(zn) 6= 0 only
for zn ∈ T nZs|U,2|X |δ(u

n
m0

). With the definition of Fs,m0 , this
implies

ϑ′s,m0
(Fs,m0) ≥ ϑ′s,m0

(Zn)− εn
= E

[
W⊗nZ,s(T

n
Zs|XU,δ(X

n
11m0

,Un
m0

)|Xn
11m0

)|Un
m0

]
− εn

≥ 1− 2−ncδ
2

− εn

by the same argument as for term I . Thus, in total we can
bound the second term from above as

II ≤ 2εn + 2−ncδ
2

.

Putting all three terms together, we can bound the total
variation distance as∥∥PZns |M0=m0,M1=m1

− ϑs,m0

∥∥ ≤ 3εn + 2 · 2−ncδ
2

(14)

which proves (4). Note that (14) becomes exponentially small
since we chose εn = 2−nβ . Thus, the mutual information
between the confidential message M1 and the corresponding
output Zns at the non-legitimate receiver is exponentially small
for every s ∈ S, cf. Section III.

This proves the achievability of the desired rate region but
only for random variables U − X − (Ys,Zs). To obtain the
whole region given in (3), note that the transmitter can prefix
an artificial channel PX|V : V → P(X ) with finite V to

Ws = (WY,s,WZ,s). Then the whole construction above can
similarly be done for the channel

(PX|VWs)(y, z|v) :=
∑
x∈X

Ws(y, z|x)PX|V(x|v)

which completes the proof of Theorem 1.
Remark 3: Note that the effect of the prefix channel can be

integrated in the stochastic encoder, cf. Definition 2.

V. CONVERSE

Here we consider the converse of Theorem 1, where we
establish a multi-letter characterization of an outer bound
on the strong secrecy capacity region. For this we need the
following lemma.

Lemma 4: Let W := {(WY,s,WZ,s) : s ∈ S} be an
arbitrary compound broadcast channel. Then

lim
n→∞

1
n

(
inf
s∈S

I(V; Yn
s |U)− sup

s∈S
I(V; Zns |U)

)
exists and equals supn∈N

1
n (infs∈S I(V; Yn

s |U) −
sups∈S I(V; Zns |U)) for random variables U − V − Xn −
(Yn

s ,Z
n
s ).

Proof: We follow [7] and use Fekete’s lemma [18] to
prove the desired result. We have to show that the sequence
(an)n∈N with

an := inf
s∈S

I(V; Yn
s |U)− sup

s∈S
I(V; Zns |U)

satisfies
an+m ≥ an + am

for all n,m ∈ N. Therefore, we define Markov chains U1 −
V1 − Xn − (Yn

s ,Z
n
s ) and U2 − V2 − X̃m − (Ỹm

s , Z̃
m
s ) and

set U := (U1,U2), V := (V1,V2), Xn+m := (Xn, X̃m), and
(Yn+m

s ,Zn+ms ) := ((Yn
s , Ỹ

m
s ), (Zns , Z̃

m
s )). By the definition

of an we have

an+m = inf
s∈S

I(V; Yn+m
s |U)− sup

s∈S
I(V; Zn+ms |U)

≥ inf
s∈S

I(V1; Yn
s |U1) + inf

s∈S
I(V2; Ỹm

s |U2)

− sup
s∈S

I(V1; Zns |U1)− sup
s∈S

I(V2; Z̃ms |U2)

which follows from the independence of the two Markov
chains. Since these Markov chains can be arbitrary, we con-
clude an+m ≥ an + am for all n,m ∈ N.

Theorem 2: An outer bound on the strong secrecy capacity
region of the compound broadcast channel with confidential
messages is given by all rate pairs (R0, R1) ∈ R2

+ that satisfy

R0 ≤ lim
n→∞

1
n inf
s∈S

min
{
I(U; Yn

s ), I(U; Zns )
}

(15a)

R1 ≤ lim
n→∞

1
n

(
inf
s∈S

I(V; Yn
s |U)− sup

s∈S
I(V; Zns |U)

)
(15b)

for random variables U−V −Xn − (Yn
s ,Z

n
s ).

Proof: For any given sequence of (n,M0,n,M1,n)-codes
of Definition 2 with ē1,n, ē2,n → 0 and

sup
s∈S

I(M1; Zns ) = H(M1)− inf
s∈S

H(M1|Zns ) =: εc,n (16)



with εc,n → 0, there exist U− V − Xn − (Yn
s ,Z

n
s ) such that

all rate tuples (R0, R1) ∈ R2
+ are bounded by (15).

Let M0 and M1 be random variables uniformly distributed
over the message sets M0 and M1. We have the Markov
chains (M0,M1) − Xn − Yn

s − (M̂0,1, M̂1) and (M0,M1) −
Xn − Zns − M̂0,2 where the first transition is governed by
the stochastic encoder E, cf. (1), the second by the channels
W⊗nY,s ,W

⊗n
Z,s, and last one by the corresponding decoder, cf.

(2). Then we have for all s ∈ S at receiver 1 for the common
rate

nR0 = H(M0) = I(M0; Yn
s ) +H(M0|Yn

s )

≤ I(M0; Yn
s ) + nε1,n (17)

where the last inequality follows from Fano’s inequality, i.e.,
H(M0|Yn

s ) ≤ H(M0,M1|Yn
s ) ≤ nε1,n, and similarly for all

s ∈ S at receiver 2

nR0 = H(M0) ≤ I(M0; Zns ) + nε2,n (18)

by using Fano’s inequality H(M0|Zns ) ≤ nε2,n.
Next, we follow [2] and make use of the definition of mutual

information. Rewriting (16) we get for the confidential rate

nR1 = H(M1) = inf
s∈S

H(M1|Zns ) + εc,n

= inf
s∈S

(
H(M1|Zns ,M0) + I(M1; M0|Zns )

)
+ εc,n

≤ H(M1|M0)− sup
s∈S

I(M1; Zns |M0) + nε2,n+ εc,n

≤ I(M1; Yn
s |M0)− sup

s′∈S
I(M1; Zns′ |M0) +nε12,n+εc,n (19)

with ε12,n = ε1,n + ε2,n where the first inequality fol-
lows from I(M1; M0|Zns ) = H(M0|Zns ) − H(M0|Zns ,M1) ≤
H(M0|Zns ) ≤ ε2,n and the second inequality from
H(M1|Yn

s ,M0) ≤ H(M1,M0|Yn
s ) ≤ ε1,n.

With I(M1; Yn
s |M0) = I(M0,M1; Yn

s |M0) and
I(M1; Zns |M0) = I(M0,M1; Zns |M0), (17)-(19) imply
that the rates are bounded by

nR0 ≤ inf
s∈S

min
{
I(M0; Yn

s ), I(M0; Zns )
}

nR1 ≤ inf
s∈S

I(M0,M1; Yn
s |M0)− sup

s∈S
I(M0,M1; Zns |M0).

Recall that the transition between the messages (M0,M1) and
the input Xn is governed by a stochastic encoder, which allows
us to introduce arbitrary auxiliary random variables U and V
which satisfy the Markov chain U− V − Xn − (Yn

s ,Z
n
s ), cf.

also Remark 3. Dividing by n and taking the limit yields

R0 ≤ lim
n→∞

1
n inf
s∈S

min
{
I(U; Yn

s ), I(U; Zns )
}

R1 ≤ lim
n→∞

1
n

(
inf
s∈S

I(V; Yn
s |U)− sup

s∈S
I(V; Zns |U)

)
where Lemma 4 guarantees that the quantities exist and are
well defined. This concludes the proof.

Remark 4: Applying the achievability result given in Theo-
rem 1 to the channels W⊗nY,s and W⊗nZ,s yields the achievability
result for the corresponding multi-letter case. Together with
the converse result given in Theorem 2 we conclude on the
following.

Corollary 1: A multi-letter description of the strong secrecy
capacity region of the compound broadcast channel with
confidential messages is given by all rate pairs (R0, R1) ∈ R2

+

that satisfy

R0 ≤ lim
n→∞

1
n inf
s∈S

min
{
I(U; Yn

s ), I(U; Zns )
}

R1 ≤ lim
n→∞

1
n

(
inf
s∈S

I(V; Yn
s |U)− sup

s∈S
I(V; Zns |U)

)
for random variables U−V −Xn − (Yn

s ,Z
n
s ).

VI. CONCLUSION

In this paper we derived an achievable strong secrecy rate
region for the compound broadcast channel with confidential
messages. We further presented a multi-letter outer bound
which establishes a multi-letter expression of the correspond-
ing strong secrecy capacity region.
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