
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Steuerungs- und Regelungstechnik

Fachgebiet Informationstechnische Regelung

Dynamic Models of Human Perception and Action
and Their Application in Telepresence

E. Markus Rank

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. habil. Gerhard Rigoll

Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. Sandra Hirche

2. Univ.-Prof. Dr. phil. habil. Hermann Müller
Ludwig-Maximilians-Universität München

Die Dissertation wurde am 11. Juni 2012 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 6. November
2012 angenommen.





Foreword

This thesis summarizes work I have been doing during the last 4 years at the Institute of
Automatic Control Engineering (LSR) at Technische Universität München. During this time,
I had the pleasure to meet and work with a number of excellent researchers who influenced,
inspired, and supported me. I would like to express my gratitude to these people, as without
their invaluable help this thesis would not have been possible. First of all I want to thank
my advisor Prof. Sandra Hirche for the discussions we had, the discourses about the most
promising research directions, and for making me aim at nothing less than the optimum
that can be achieved in every aspect of scientific life. In addition, I want to thank Prof.
Martin Buss for leading an institute that allows a rich and multidisciplinary scientific ex-
change between a large group of PhD students, PostDocs, visitors, and guests. Among the
guests I enjoyed working with most is Prof. Roberta L. Klatzky (Carnegie Mellon University,
Pittsburgh) who helped in the development of the experiments investigating haptic masking
discussed in Chapter 5. The collision avoidance algorithm presented in Chapter 6 founds
on a method developed by Dr. Matthias Althoff who provided me with MATLAB codes and
supported my efforts in this complex field with helpful advices.

The thesis discusses problems arising in the context of telepresence systems which is the
main theme of the collaborative research center SFB 453 I was allowed to work in, funded by
the Deutsche Forschungsgemeinschaft (DFG). I deeply enjoyed the interdisciplinary work on
perceptual phenomena I did together with Prof. Hermann Müller, Dr. Zhuanghua Shi, Heng
Zhou, Lihan Chen and other researchers and doctoral students at the General and Experi-
mental Psychology Institute at Ludwig-Maximilians-Universität München. In the follow-up
project, the partners I was working with were Dr. Angelika Peer, Dr. Jörg Reisinger, Ken
Friedl and Wenliang Zhou – it was a pleasure working with you.

During my PhD times I had the opportunity to visit the labs of Dr. Mandayam Srinivasan
(Massachusetts Institute of Technology, Cambridge), and Hong Z. Tan (Purdue University,
West Lafayette). This exchange was a valuable step in the development of the main ideas
for the thesis as it is now, and I am grateful for the hospitality I was allowed to experience.

I want to thank colleagues and friends which not only helped in scientific questions, but
made life at LSR an enjoyable and diverting one. Thomas Schauß, Iason Vittorias, Raphaela
Groten, Georg Bätz, Ulrich Unterhinninghofen, Daniel Althoff, Bernhard Weber, Daniela
Feth, and my roommates Stefan Klare and Sheraz Khan – thank you for your friendship.

The biggest thanks go to my wife Sophia, my parents and siblings for their loving and
enduring support in all concerns.

Munich, December 2012 Markus Rank

iii





to my family...





Abstract

Haptic telepresence systems extend the human workspace to locations that are normally in-
accessible, such as under water or in space. For this purpose the operator of a telepresence
system physically interacts with a robotic human-system interface capturing his/her actions.
Those are transmitted over a communication channel to a remote environment where a
second robotic device, the teleoperator, performs the action and collects haptic informa-
tion. Sent back to the human side, the information is displayed to the human operator by
the human-system interface. For ideal telepresence, the human should not be able to tell if
he/she interacts directly with a physical environment, or uses a telepresence system. Achiev-
ing this ultimate goal requires haptic control technology meeting the human perceptual and
motor capabilities exactly enough to keep inevitable imperfectness in sensory feedback im-
perceptible and natural physical interaction capabilities unaffected. For the development of
haptic interaction devices, control and communication algorithms capable of achieving these
requirements, the operator’s perceptual limits and his/her motor capabilities must be known
in the form of quantitative models. Most current perception models are static, neglecting the
fact that the characteristics of interaction movement and force can influence the perception
limits significantly. In this way, their validity is proven only for the experimental conditions
they were determined for. Because one fundamental goal of telepresence is to enable the
human operator to freely move and interact, static human models are insufficient to reliably
design, parametrize and evaluate haptic telepresence systems in a human-centered way.

In this thesis, dynamic models of human perception and action and their application in
telepresence systems are investigated. The prediction capabilities of these novel human
models are not limited to static mappings, but can take the physical interaction with the
human-system interface explicitly into consideration for the prediction of perceptual limits
as differential equations are taken as a modeling form. An innovative mathematical frame-
work allows a systematic development of quantitative dynamic models being suited for a
direct application in technical systems. On the basis of this framework, two dynamic per-
ception models are developed. Firstly, the temporal combination of movement and force
feedback into a percept of a haptic property, such as inertia or stiffness is investigated in a
large number of psychophysical experiments. This process is found to significantly depend
on the characteristics of physical interaction. Secondly, haptic masking effects are consid-
ered, revealing that perception limits of a haptic property can be influenced by an unrelated
haptic stimulus. In both cases, dynamic perception models capture the observed effects with
a superior accuracy compared to static mappings. The utilization of dynamic human models
in the optimization of a telepresence system’s control is demonstrated by means of a novel
communication quality control algorithm. An optimal online-regulation scheme of commu-
nication time delay is developed, based on a stochastic human behavior model. In extensive
user studies, the benefit of this approach for the human operator in terms of improved task
performance is demonstrated.
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Zusammenfassung

Haptische Telepräsenzsysteme erlauben es einem menschlichen Bediener, Aufgaben in an-
sonsten unzugänglichen Umgebungen auszuführen, zum Beispiel unter Wasser oder im Welt-
raum. Im Gegensatz zu einer direkten Interaktion mit der Umgebung operiert der/die Be-
nutzer/in eines Telepräsenzsystems ein robotisches haptisches Eingabegerät, welches sei-
ne/ihre Aktionen registriert und über einen Kommunikationskanal in die entfernte Umge-
bung überträgt. Dort führt ein zweiter robotischer Manipulator die gewünschte Aktion aus
und sendet Sensorinformation zurück, welche dem Menschen über die Mensch-Maschine
Schnittstelle dargeboten werden. Für ein ideales Telepräsenzerlebnis darf der Mensch nicht
mehr unterscheiden können, ob er direkt oder über das Telepräsenzsystem mit der Um-
gebung verbunden ist. Zum Erreichen dieses Ziels muss das technische System sehr exakt
auf die menschlichen Bedürfnisse abgestimmt sein. Einerseits müssen unvermeidbare Stö-
rungen in den sensorischen Informationen unterhalb der Wahrnehmungsschwellen bleiben,
andererseit muss die natürliche Interaktionsfähigkeit des Operators in vollem Umfang erhal-
ten bleiben. Die meisten heute verfügbaren mathematischen Perzeptionsmodelle, welche die
Anforderungen des Menschen an das System quantifizieren können, bestehen lediglich aus
statischen Abbildungen von Umgebungsparametern zu einer einfachen Wahrnehmungsgrö-
ße. Dadurch bleibt unberücksichtigt, auf welche Weise mit der Umgebung physikalisch inter-
agiert wird, was erwiesenermaßen einen signifikanten Einfluss auf die Wahrnehmung selbst
haben kann. Der Geltungsbereich existierender Perzeptionsmodelle ist somit auf spezielle
Interaktionsbedingungen limitiert – eine Einschränkung, die für eine zuverlässige und quan-
titative Berücksichtigung des Menschen in Entwurf, Parametrierung und Evaluation hapti-
scher Telepräsenzsysteme nicht hinnehmbar ist.

Die vorliegende Arbeit befasst sich mit der Beschreibung menschlicher Wahrnehmung und
Interaktion durch eine dynamische Modellierungsform, die auf Differentialgleichungen ba-
siert. Dadurch ist die Aussagekraft der neu entwickelten Modelle nicht mehr auf statische Ab-
bildungen limitiert, sondern kann die tatsächliche physikalische Interaktion mit der Umge-
bung bei der Bestimmung von Wahrnehmungscharakteristika berücksichtigen. Ein innovati-
ves mathematisches Rahmenkonzept wird präsentiert, das die praxisorientierte Entwicklung
dynamischer, quantitativer Wahrnehmungs- und Verhaltensmodelle methodisch unterstützt.
Auf dieser Basis und untermauert durch zahlreiche psychophysische Untersuchungen am
Menschen werden zwei konkrete Wahrnehmungsphänomene untersucht: Zunächst steht die
Beschreibung des Kombinationsprozesses von Kraft und Bewegung in das haptische Empfin-
den eines Umgebungseindrucks von z.B. Trägheit oder Steifigkeit im Vordergrund. Anschlie-
ßend werden Maskierungseffekte untersucht, die die Verdeckung eines bestimmten hapti-
schen Eindrucks durch einen zweiten Reiz, der in keinem Zusammenhang zum eigentlichen
Stimulus steht, modelliert. Beide Phänomene werden durch die neu entwickelten dynami-
schen Modellen besser und genauer erfasst als durch statische Abbildungen. Die Anwendbar-
keit dynamischer Menschmodelle zur Optimierung haptischer Telepräsenzsysteme wird im
Zusammenhang mit der Entwicklung eines innovativen Kommunikationskonzepts demons-
triert, das die Regulierung der Kanalqualität im laufenden Betrieb erlaubt. Ein dynamisches
Optimierungsverfahren, basierend auf einem stochastischen Verhaltensmodell bestimmt die
zeitvarianten Kommunikationsparameter, welche es dem/der Bediener/in ermöglichen, eine
hohe Leistungsfähigkeit zu erreichen. Dies wird durch ausführliche Nutzerstudien gezeigt.
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“engineering, the application of science
to the optimum conversion of the
resources of nature to the uses of
humankind.”

ENCYCLOPÆDIA BRITTANICA [19]
1 Introduction

Engineering, as defined by the renowned Encyclopædia Britannica, is a discipline directed
towards a specific goal: All efforts serve the usefulness for humans. In a related way, the
sociologist Read Bain in 1937 defined “technology” to include “all tools, machines, uten-
sils, [...] and the skills by which we produce and use them.” [2]. Both definitions imply that
technology as the product of engineering must suit the human that uses it. In return, the
best way to engineer new technology is to include knowledge about the human user into
the design of technical systems in order to meet the physical, sensory and cognitive abilities
enabling him/her to use the device in the desired manner.

While a human-centered design is essential for all technical systems, telepresence systems
take an exceptional position which is discussed in the following.
Telepresence systems enable the human operator to transfer his/her skills to a remote,
scaled, or otherwise inaccessible area. This transfer is achieved by operating a robotic
human-system interface (HSI) capturing the user actions, transmitting them to a second
robotic device, the teleoperator (TO), performing commanded actions and collecting sen-
sory data. These are sent back to the operator and are displayed via the HSI. The design
and control of telepresence systems has been subject to optimization towards a significant
number of objectives, including the mechanical design [3], transparency [4, 5] and band-
width [6]. First attempts have been made to include general findings about human percep-
tual and motor capabilities into account in the design and evaluation of such systems [7,8].
For a fully user-centered system design, however, accurate knowledge about the human per-
ceptual, physical, and cognitive processes involved in the interaction with the telepresence
system, is required.

In general, interactions with our surrounding are characterized by an exchange of infor-
mation between the perceptual system, the motor system and the environment, as summa-
rized in the well-known action-perception loop [9] (see, e.g., Figure 1.1). While the sensory
signal exchange is multimodal in principle, we will restrict our considerations mostly to the
haptic modality and add visual information where needed. We do so respecting the fact that
most current multimodal telepresence systems provide visual and haptic feedback, where
latter is still underdeveloped and subject to current research in many different aspects.

It was recognized a long time ago [9, 10] that the information flow between all com-
ponents of the action-perception loop is continuous and perception as well as action must
process time-varying sensor signals in order to perceive and react. Up to now, little is known
about the dynamics of these processes, where we refer to the term “dynamics” in the sense of
a differential equation. Instead, most effort has been spent on characterizing sensory range
and resolution [7, 11–17]. Those measures determine the steady-state of the perception
system, and thus neglect the time-varying processes that lead to a specific percept. Most
haptic environmental factors, such as stiffness or inertia must be manually interacted with
in order to perceive them as their magnitude and properties can be captured only indirectly,
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1 Introduction

by combining the time-varying movement and force feedback together. We will refer to
models that include an excitation with the motor system as sensorimotor process models, to
emphasize the tight coupling between the perceptual and motor domain. In current, static
perception models, the influence of this exploratory movement is largely neglected, implic-
itly assuming that the environment is sufficiently well excited to reveal all of its properties.
When a telepresence system becomes part of the action-perception loop, this fundamental
assumption is challenged due to multiple reasons: First, the primary goal during the usage
of telepresence systems is the achievement of a specific task in many cases, which requires
a certain action pattern, and may not be geared to perceiving the environment properly.
Second, the telepresence system may not allow for certain interaction patterns, e.g., due to
limitations in mechatronic and control design, or communication effects such as time de-
lay [8, 18]. As a consequence, the validity of static perception models is challenged due to
a violation of the fundamental assumption. One solution to explicitly take the interaction
movement into account when predicting the human perceptual state is modeling perception
with its dynamic properties. A second motivation for the development of dynamic models
for sensorimotor processes is the tradeoff between fidelity and performance of a telepresence
system on the one side, and the costs for achieving these goals on the other hand which has
to be made in every design process for a technical system. Naturally, systems with feed-
back in higher resolution, more accurate timing, and other high-qualitative features come
along with a high price for hardware and associated services, such as a high-performance
communication channel. Dimensioning hardware and service quality based on a tradeoff
coming from static perceptual and sensorimotor considerations may result in a poor design
choice due to the inaccuracy of the model in a real telepresence operation. Dynamic models
describe not only the steady-state behavior of perception and motor control, but allow for a
time-continuous prediction of perceptual limits, to which the system may adapt online. In
this way, algorithms can be developed that provide a good service quality only in situations,
where the operator benefits from it and allow a lower quality in the meantime, potentially
saving costs.

1.1 Problem Definitions and Challenges

The ultimate goal for the realization of a human-centered design of technical systems is
the development of a detailed, quantitative, dynamic model of all processes involved in
the sensorimotor loop. Working towards this goal requires solving certain key challenges
which arise when multiple research fields come together: Methods from system theory are
adopted for describing a biological process which is usually investigated with psychophysical
approaches. In return, the application of such models to technical systems is not straight-
forward as their validity is usually limited to specific operating conditions. Challenges ad-
dressed in this thesis are summarized in the following.

Dynamic Modeling of Sensorimotor Processes

The dynamics in mechanical, mechatronic or electronic systems are generally determined
by their physical properties. Even if their design is not known a priori, reverse engineering
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1.1 Problem Definitions and Challenges

helps for the development of an initial model which can be refined iteratively later on. For
perceptual and sensorimotor processes, such methods fail as the human brain consists of
billions to trillions of synapses [20] potentially contributing to the dynamic behavior of the
processes under consideration here. Psychological models which are able to address per-
ceptual processes are on the other hand often limited to qualitative statements about the
impact of a certain environmental property on the perceptual state, and their applicability
in the development of technical systems is limited. In addition, only static relations between
the physical world and its perceptual equivalent are usually investigated. The mathematical
and methodological foundations for the development of dynamic perceptual and sensori-
motor process models applicable to the design of technical systems is missing in current
literature.

Parameter Identification of Sensorimotor Models

Many standard methods have been developed for the identification of dynamic technical
systems, based on time-series analysis or frequency-domain considerations [21–23]. All
these methods require, however, that the input- and output signals can be recorded with
a sampling frequency and measuring accuracy sufficient to reveal the underlying dynamic
properties. The input signal to the motor system and the output from perception, however,
is a perceptual variable which exists only in the brain, thus it is hardly accessible. Even
with sophisticated techniques such as electroencephalography (EEG) or functional magnetic
resonance imaging (fMRI) allowing to record brain potentials and activations, the mean-
ing of these recordings are hard to interpret till now. Research on perceptual processes
thus often must get by with discrete observations of cognitive variables by requesting the
human to give responses about the current state at a specific time instance. This strong
limitation makes a direct parameter identification of the dynamic sensorimotor system un-
feasible but necessitates the development of novel experimental procedures and tools for
data analysis. A major problem for these new experimental methods is the relatively low
information content of human feedback in a perception task, typically a binary answer in a
paired comparison (“difference perceived”/“not perceived”). A careful design of experimen-
tal conditions to maximize the information using as less conditions as possible is amongst
the most challenging steps in this context.

Application of Dynamic Sensorimotor Models to Telepresence Systems

The declared purpose behind developing and identifying dynamic perceptual and sensori-
motor models is to utilize them in the design and evaluation of telepresence systems. Nearly
all models of psychological processes are valid only in certain operating conditions. In the
development of perceptual and sensorimotor models, a tradeoff between the generality of
its prediction capabilities on the one hand and the validity for a specific application on the
other must be made. A co-design of application and the dynamic sensorimotor model is thus
essential for a successful combination of the two. The problem here lies in a careful review of
the essential requirements for an application, and the reduction of the sensorimotor model
complexity to a practically feasible degree.
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1 Introduction

1.2 Main Contributions and Outline of the Thesis

This work provides first, fundamental steps towards the ultimate goal of a dynamic model for
the human sensorimotor loop, including human perception. The application of quantitative
dynamic models to describe haptic perceptual processes is so far unique. With this contribu-
tion, a common language between psychological mechanisms and engineering applications
is found which makes an application of such models in technical haptic applications easier.
On the one hand, these methods make a significant contribution to the field of engineering,
as knowledge about processes within the human operator can be included into the design,
optimization, and evaluation of technical systems. On the other hand, a contribution to the
psychophysical community is made by introducing novel experimental techniques, models,
and experimental design tools from system theory. The focus of this work lies on the haptic
modality, as it is the only one that allows physical interaction with the environment, and
contains sensory feedback predominantly caused by the reaction to one’s own motor behav-
ior. In this way, haptic perception and sensorimotor control are coupled together in the form
of a closed control loop, emphasizing the need of a dynamic representation of cognitive and
motor processes for an adequate representation of perceptual and task performance. The
structure of the thesis can be illustrated around the action-perception loop, as depicted in
Figure 1.1.

act
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Chapter 3: Dynamic Modeling of Sensorimotor Processes
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Figure 1.1: The thesis is structured along the action-perception loop.

Dynamic Modeling of Sensorimotor Processes

A successful integration of models describing human sensorimotor and perceptual processes
into technical systems requires the establishment of a common modeling language. This
motivation in mind, a novel mathematical framework is established in Chapter 3, founding
on the notion that all processes within the body are dynamic. This generic tool is introduced
as an extension to the currently existing modeling concepts for perception, which statically
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relate a physical stimulus to a corresponding percept. The relation between the new con-
cept and the state of the art is discussed, and new application fields utilizing the dynamic
formalism are outlined.

Dynamic Combination of Movement and Force

The perception of haptic environmental properties essentially requires the combination of
multiple haptic information sources, namely movement and force. Knowledge about the
required accuracy with respect to the temporal consistency of these sources is indispensable
for a human-centered design of, e.g., communication strategies in telepresence systems. A
model for the discrimination of temporal lags in haptic information is developed in Chap-
ter 4, on the basis of the new conceptual framework presented in Chapter 3. A dynamic
model realizing a dynamic state observer captures the perception thresholds over several
conditions significantly better than static modeling approaches.

Dynamic Masking in Haptic Discrimination

Static perceptual limits for simple environments, consisting of only stiffness, damping, or
inertia, are sufficiently known and serve in applications for telepresence systems, e.g., a
human-centered transparency analysis [24]. Limits in the perception of more complex en-
vironments, consisting of either two or more “components”, is though largely unknown. An
analysis of the perceptual performance in discriminating damping which is masked with an
additional environmental factor – stiffness or inertia – is presented in Chapter 5. Six percep-
tual models, founded on the mathematical foundation presented in Chapter 3 are proposed
to explain the observed discrimination performance. Again, models with an explicitly consid-
eration of a dynamic process are found to resemble human perceptual characteristics better
compared to static models. These findings can be utilized for enhancing current approaches
for storing and communicating haptic data.

Application of Dynamic Performance Models to Visual-Haptic
Telepresence Systems

As an example for the successful integration of dynamic models capturing sensorimotor
processes into a technical application, communication quality control as a novel concept in
haptic telepresence is considered in Chapter 6. An online-adaptation scheme for the commu-
nication channel time delay is proposed on the basis of a dynamic model predicting human
task performance in a navigation task, developed by means of the dynamic mathematical
framework in Chapter 3. A positive effect of the communication quality control scheme on
human task performance can be observed. It should be noted that the online adaptation
requires a dynamic model formulation, and can not operate reliably on the basis of a static
model, emphasizing the need for a dynamic formulation of sensorimotor processes.
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2 Perceptual and Behavioral Models with
Application in Technical Systems

Summary. Developing system theoretic models for sensorimotor processes is a highly
interdisciplinary endeavor. The fundamental concepts from system theory and psy-
chophysics are introduced here. Aside from basic principles, more specific topics in-
clude

• quantitative static models of human perception,

• technical perception models for dynamic systems,

• dynamic models in human motor control.

The innovative concept of modeling perceptual processes with system theoretic tools is in-
terdisciplinary between system theory and psychophysics. As the audience of this thesis may
come from both disciplines, fundamental concepts from each disciplines must be reviewed
before topics related to the specific aim of this work can be introduced. A brief introduction
to system theoretic modeling forms is presented in Section 2.1. On this basis, haptic environ-
ment models are introduced in Section 2.2, along with methods to artificially render a haptic
impression using a robotic interface. Haptic telepresence systems as the main application
for the methods developed throughout this work are targeted in Section 2.3, where an un-
derstanding of the goals and challenges that need to be solved in this context are reviewed
and discussed. Existing perception models and experimental techniques for the quantization
of these are presented in Section 2.4. While these models are of static nature and methods
for the dynamic characterization of perception processes are missing, technical processes
can be identified with respect to their dynamics easily. Methods from system theory serving
this purpose are given in Section 2.5. Additional inspiration for the development of novel,
dynamic models for perception and task performance can be drawn from existing dynamic
sensorimotor control models, as reviewed in Section 2.6. The chapter is concluded in Sec-
tion 2.7 with a discussion of the state-of-the-art, identifying missing pieces that are needed
for a truly human-centered design of technical systems, and especially telepresence systems.

2.1 System Theoretic Foundations

In this work, the dynamic properties of human perception and sensorimotor control are in-
vestigated. Dynamic systems’ behavior can require a formulation of the input-output relation
in the form of an ordinary differential equation. In this section, three representation forms of
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2 Perceptual and Behavioral Models with Application in Technical Systems

dynamic systems are introduced – the ordinary differential equation, the state space model,
and the transfer function.

2.1.1 Ordinary Differential Equation

The fundamental formulation of a dynamic system as we will use it in this thesis is an
ordinary differential equation

γ(u(t), u̇(t), . . . ,u(m)(t),y(t), ẏ(t), . . . ,y(n)(t), t) = 0 (2.1)

where u(t) ∈ U is a vector of input values, y(t) ∈ Y is a vector of output values. The notation
of a superscripted (n) and (m) denotes the nth and mth derivative with respect to time. In
contrast to static systems, modeled by

γstat(u(t),y(t), t) = 0, (2.2)

a dynamic systems’ output at time t, determined by the solution of (2.1) depends not
only on the current input u(t), but on the history of inputs u(τ), t0 ≤ τ < t and out-
puts y(τ), t0 ≤ τ < t. Applied to modeling the perceptual system, a dynamic perceptual
model can be interpreted as one that takes sensory information of the actual time instance
and past sensory information into account for determining a perceptual response.

2.1.2 State-Space Formulation

In the case of m ≤ n, the ordinary differential equation in (2.1) can be transformed into a
system of ordinary differential equations of order 1. The resulting system is denoted as state
space formulation

x(t) =ψ(x(t),u(t), t), x(0) = x0, (2.3)

y(t) = φ(x(t),u(t), t), (2.4)

where x(t) is called “state vector”. In the case of a linear, time-invariant (LTI) sys-
tem, (2.3)-(2.4) can be written in matrix form, where

x(t) = Ax(t) + Bu(t), x(0) = x0, (2.5)

y(t) = Cx(t) + Du(t). (2.6)

Here, A is the “state matrix”, B is the “input matrix”, C is the “output matrix”, and D is the
“feedthrough (or feedforward) matrix”.

The state space formulation of dynamic system is appealing from a modeling perspective,
as it separates the dynamic part (2.5), containing information about time constants and
stability, from the output equation (2.6), (statically) determining the information which is
extracted from the state and the input vector.
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2.2 Haptic Environment Models

2.1.3 Transfer Function

In the case of a fully observable and controllable LTI dynamic system with a single input
and a single output (the definitions of controllability and observability will be given in Sec-
tion 2.5.1), all dynamic behavior is captured by its transfer function G(s), where

G(s) =
Y (s)
U(s)

=
L{y(t)}
L {u(t)} , (2.7)

and L{·} is the Laplace transform. In the case of a stable system, G(s) can be replaced by
the Fourier transform G( jω), resulting in an equivalence

G( jω) = G(s). (2.8)

The function G( jω) is commonly denoted as frequency-domain representation.

2.2 Haptic Environment Models

The haptic modality consists of four sub-modalities: Tactile, kinaesthetic, temperature and
pain sensing contributes to the haptic impression of an environment. Besides temperature
receptors, humans can make use of position, force, movement, and pressure sensors to per-
ceive the physical world [25]. Tactile sensations include high-frequently changing forces
and positions of small amplitude that arise, e.g., in texture perception, as well as shape
perception of objects. The kinaesthetic sense is predominantly determining the impression
of large-scale movements and forces [26]. Most haptic interfaces, especially those used in
current telepresence systems, are not capable of giving thermal and tactile feedback about
the environment at the teleoperator’s location. Another restriction for the further discussion
is to limit our view to single-point contacts between human and the environment. This pre-
vents the precise perception of object shapes that often requires multi-fingered interaction
with the environment. As a consequence, the focus of this thesis is on the perception and
control of haptic environments that appeal to the kinaesthetic sub-modality.

Definition 2.1 (Dynamic Haptic Environment). A dynamic haptic environment is modeled
by a dynamic system defining the relation between interaction forces fenv(t) ∈ R3 and a
translation movement xh(t) ∈ R3.

Two formulations of this definition are possible [27]: The first, using mechanical
impedances to describe the force feedback resulting from a specific translation in space,
which can be written as

fenv(t) = ζ(xh(t), ẋh(t), . . . , fenv(t), ḟenv(t), . . . , t) (2.9)

Where ζ(·) is a mapping function R3 → R3. An inverse formulation using an admittance
formulation, relating the input forces and torques to a resulting motion, is the second for-
mulation.

9



2 Perceptual and Behavioral Models with Application in Technical Systems

We want to discuss the important case of haptic environments, namely linear, time-
invariant, spatially homogeneous (LTIH) haptic environments on the example of impedance-
type environments. We do so, respecting that in general all haptic environments exhibit
nonlinear characteristics, but many practically relevant cases are well-described by linear
approximations of them. While equation (2.9) was defined for three-dimensional forces
and movement, we will limit our consideration to a one-dimensional translational move-
ment xh(t) ∈ R and a resulting force fh(t) ∈ R in the following for the ease of presentation
and notation

fenv = ζ(xh(t), ẋh(t), . . . , ḟenv, . . . , t). (2.10)

However, the concepts presented in the following are easily extensible to higher dimensions.
As a second constraint, only stable environments are taken into consideration as unstable
haptic environments do not arise in nature. Although instability can occur in haptic telepres-
ence, as discussed in Section 2.3, haptic interaction with an unstable system is not feasible
due to, e.g., safety reasons. Thus, appropriate measures have to be taken to ensure the
stability of the haptic environment the human operator is interacting with.

2.2.1 Linear, Time-invariant, Spatially Homogeneous Haptic
Environments

LTIH environments are fully described by a linear differential equation with constant param-
eters.

Remark 2.1. The meaning of the employed term “spatially homogeneous” is that the system
behavior does not change with the location it is interacted with, which distinguishes it from
the attribute “homogeneous” used for nonlinear systems to state that f (αx) = α f (x).

Due to the linearity of the differential equation, equation (2.10) can be described in the
frequency domain, namely

Fenv( jω) = Zenv( jω)Xh( jω) (2.11)

with Fenv( jω), Xh( jω) ∈ Z being the Fourier-transform of fenv(t), xh(t), respectively. An
important special case of LTIH haptic environments are mass-spring-damper models

fenv(t) = mẍh(t) + d ẋh(t) + kxh(t) (2.12)

with m being the inertia, d the damping coefficient and k the spring coefficient. The prop-
erties of the system’s mechanical impedance

Zenv( jω) =
Fenv( jω)

Ẋh( jω)
=

1

jω

�
( jω)2m+ jωd + k

�
(2.13)

can be easily divided into a magnitude |Z( jω)| and phase component ∠Z( jω) by using
Euler’s formula to

Zenv( jω) = |Zenv( jω)|e j∠Zenv( jω). (2.14)
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Figure 2.1: An exemplary Bode diagram for a mass-spring-damping system in impedance
form. The effect of mass is shown dashed, damping dotted, spring dash-dotted
and the overall system in bold solid lines.

While the magnitude states how large the reaction force to the exciting position is, the phase
determines the frequency-dependent time delay between input and output. The Bode dia-
gram is a visualization commonly used to visualize amplitude and phase over the logarith-
mic frequency axis, an example for a mass-spring-damper system is depicted in Figure 2.1. A
specific property of LTIH haptic environments is the frequency range of excitation and feed-
back signal to be in the same order of magnitude, determined by the human force control
bandwidth, which is on the order of 10 to 30 Hz [6, 7]. This property is due to the fact
that changing environmental features, such as an impact into a stiff wall from free-space is
excluded by the limitation to spatially homogeneous environments.

2.2.2 Haptic Rendering

Haptic environments are experiential for humans either by interacting with natural objects,
or by emulating an artificial environment using a robotic haptic interface. The methods that
are suited for the control of the interface to result in an impression of a haptic environment
are called haptic rendering. Two control schemes shall be introduced here, serving as haptic
rendering algorithms in the experiments presented in this work. One challenge for the
rendering with respect to stability and transparency lies in the realistic simulation of stiff
contacts, especially during impact situations [28], and sophisticated methods have been
developed for this problem. However, the focus of this is on the rendering of continuous and
spatially homogeneous environments without considering impacts. All rendering algorithms
are discussed for the case of a single motor with one deegree-of-freedom (1DoF). Extensions
in more directions in space are possible.

Force Control

A force control scheme capable of displaying an environmental impedance Zenv( jω) to the
human operator is depicted in Figure 2.2. Because of the high noise level that is inherent to
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−

Fenv( jω)

Fc( jω)

Fh( jω)

Ẋh( jω)

Zh( jω)

Zenv( jω)

Kp haptic interface

human operator

Figure 2.2: Force control can be used to render the desired environment impedance
Zenv( jω) =

Fenv( jω)
Ẋh( jω)

. Due to imperfect compensation of the device dynamics, the
actually rendered impedance that is displayed to the human operator Zh( jω) can
differ.

force sensors, a proportional controller Kp is used to regulate the motor, and no derivative
component is considered in the control concept. As a reference force trajectory, the environ-
ment force Fenv is computed, based on the desired environment impedance Zenv( jω) and the
velocity Ẋh. Ideally, all dynamical properties of the haptic interface can be compensated by
the force controller, such that only the environment impedance is displayed to the human
operator, Zh( jω) = Zenv( jω). In real systems, uncompensated device dynamics, e.g. due
to limitations in the controller gain because of existing sensor noise, the impedance Zh( jω)
which is displayed to the human may differ from Zenv( jω). An exemplary analysis of the
uncompensated device dynamics is sketched in Appendix A.1.

Position-Based Admittance Control

A position-based admittance control scheme for the rendering of haptic environments is de-
picted in Figure 2.3. It differs from the force control scheme in several aspects: Firstly,
the haptic environment representation to be rendered is given in admittance form Yenv( jω).
Secondly, the low-level controller underlying the position-based admittance control scheme
is a position controller instead of the force controller in 2.2.2. Because the device posi-
tion (or joint angle) is measurable with a high resolution (∼ (2π)/105 rad rotatory, ∼ 10−6

m translatory) without significant measurement noise, a carefully tuned PD-controller can
compensate the device dynamics better compared to the force controller. As a consequence,
the rendered environment admittance equals the desired characteristics almost exactly, al-
lowing the stable rendering of a higher stiffness, compared to the force control scheme.
However, the formulation of the environment dynamics in admittance form comes along
with a disadvantage: Reconsidering a mass-spring-damper system in admittance form trans-
forming an input force into a velocity

ẍh(t) =
1

m
( fh(t)− d ẋh(t)− kxh(t)),
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Figure 2.3: The position-based admittance control scheme to render the haptic interface can
normally suppress device dynamics better compared to the force control scheme,
thus Zh( jω)≈ Zenv( jω). However, a minimum inertia must be always present.

a minimal inertia must be present at all times, as the acceleration can rise to infinity other-
wise.

2.3 Haptic Telepresence Systems

Telepresence systems, also known as teleoperation systems [29–38] in the literature, teler-
obotic [6,39,40], or telemanipulation systems [41,42] enable a human operator to perform
tasks in environments he/she can not access directly with his natural capabilities. While
telerobotics and teleoperation are often used synonymously for the principal idea to connect
a human to a robotic device which provides arbitrary feedback in the visual, haptic, and/or
auditive modality, telemanipulation emphasizes on the haptic aspect of intention transmis-
sion and feedback modality. The term telepresence, as we will use it throughout this thesis,
points out the substantial integration of the robotic system into the human perception/action
loop by emphasizing that the operator should feel “present” in the remote environment [43].
The meaning of “presence” shall be discussed briefly besides other topics related to telepres-
ence systems such as the system architecture, control- and operator-related issues.

2.3.1 System Architecture

A prototypical telepresence system is depicted in Figure 2.4. The human operator interacts
with a robotic human-system interface (HSI) instead of interacting directly with the envi-
ronment, as the target location of his actions is located out of reach. The user intention,
represented exemplary by the hand velocity ẋh(t) is transmitted over a communication chan-
nel, which can include some kind of communication network, such as the Internet. The
teleoperator (TO) receives the transmitted velocity, and drives on the desired interaction tra-
jectory ẋ t(t). The resulting reaction force with the environment fenv(t) is measured and
transmitted back to the human-system interface where they are displayed to the human
operator ( fh(t)).
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human
operator

haptic
environment

human-system
interface teleoperatorcommunication channel

ẋh(t)

fh(t)

ẋ t(t)

fenv(t)

Figure 2.4: A telepresence system with haptic feedback consists of mainly three components:
Human-system interface, communication channel, and teleoperator

Remark 2.2. A telepresence system using a two-channel velocity-force control architecture
is shown here. There are other approaches using a four-channel architecture, transmitting
both velocity and force, or, position and force from HSI to TO and from TO to HSI which
are known to have some superior properties. For a review on two- and four-channel control
architectures, the reader is referred to the seminal work of Lawrence [5] and a summary of
different approaches in [44].

2.3.2 Goals and Challenges

Current telepresence applications include search-and-rescue tasks [45], on-orbit servicing
of satellites in space, underwater teleoperation [46] and telesurgery [47](for a survey
see [43]). Common to all telepresence applications are three fundamental goals to be
achieved – transparency, the feeling of presence, and stability.

Transparency

The original definition of transparency was introduced by Raju in 1989: “An ideal telema-
nipulator is one that provides complete transparency of the interface. In other words the
operator feels as if the task object were being handled directly.” [48]. Later, objective mea-
sures for transparency have been developed, based on the exact imitation of environment
force and teleoperator position at the human-system interface side [49]. A telepresence
system is transparent if following conditions hold:

∀t : xh(t) = x t(t), fh(t) = fenv(t). (2.15)

An alternative transparency measure in the case of a linear, time-invariant environment
impedance Zenv( jω) is the comparison of the latter to the impedance displayed by the HSI
to the human operator Zh( jω) [5], where

Zenv( jω) =
Fenv( jω)

Ẋ t( jω)
, Zh( jω) =

Fh( jω)

Ẋh( jω)
. (2.16)

Ideal transparency is achieved if

Zenv( jω) = Zh( jω). (2.17)
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2.3 Haptic Telepresence Systems

Problematic for both transparency definitions is their lacking interpretable meaning with
respect to the effect on the human operator. To overcome this problem, transparency mea-
sures in the parameter space have been proposed [18,35]: Based on approximations of the
environment impedance as a mass-spring-damper system, mismatches between Zenv( jω)
and Zh( jω) can be expressed as differences in mass, spring constant, and damping coeffi-
cient.

It is worth noting that the objective definitions of transparency given in equations (2.15)
and (2.17) are somewhat more restrictive than the original definition of Raju [48]. This
comes from the fact that humans do not perceive arbitrary small differences between two
impedances, forces, or positions. Thus, the operator could have a perfectly transparent
feeling of the remote environment even if conditions (2.15) and (2.17) are violated. This
mismatch between objective and subjective transparency was accounted for by defining a
“perceived transparency” measure [50] that takes perceptual limits into account. However,
all perceptual limits taken into consideration for the perceived transparency definition are
currently determined statically, e.g., without considering the operator’s exploration move-
ment or dynamic properties of the perceptual system. Without knowledge about the percep-
tual dynamics, it is unclear whether the static perception limits are overly conservative, too
liberal, or equivalently applicable to dynamic interactions.

Presence

“Presence is defined as the subjective experience of being in one place or environment, even
when one is physically situated in another” [51]. Following this definition, the human opera-
tor must not perceive the telepresence system in any aspect of sensory feedback or limitation
in interaction. Presence could thus be looked at as a generalization of transparency to all
sensory and motor domains. Two approaches for measuring presence are established in the
literature: Subjective measures usually rely on questionnaire data to determine the level
of achieved presence, e.g., in [51]. Objective measures focus on a similarity assessment of
physiological, psychological, and behavioral responses [52]. The hypothesis there is that
the differences between direct environment interaction and telepresent interaction becomes
smaller the more the operator feels present. For understanding and enhancing presence
in telepresence systems, knowledge about the dynamics of perceptual and behavioral pro-
cesses is beneficial, as perceptual differences between direct environment interactions and
telepresent impressions in tangible interaction situations can be predicted accurately. For a
comprehensive summary of approaches, the interested reader is referred to [53].

Stability

By means of the haptic modality, a control loop over the human operator, HSI, communica-
tion channel, TO and the environment is closed, exchanging energy in terms of force and
movement. Time delay and packet loss, inherent to communication in wide-range teleoper-
ation or and communication channels near their capacity limit, challenge the stability of this
control loop. Multiple methods for ensuring stability over communication channels with con-
stant time delay have been developed over the past decades [27, 29–32, 34, 36, 37, 54, 55].
Extensions for time-varying time delay [54] and packet loss [56] have been proposed as
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2 Perceptual and Behavioral Models with Application in Technical Systems

well. The most popular methods for ensuring stability are based on the concept of passivity.
A passive system has a negative energy balance, meaning that it produces less energy than it
consumes. Taking the energy contained in the system as a Lyapunov function, the passivity
criterion ensures that a passive system is stable in the sense of Lyapunov. Furthermore, a
connected series of passive systems leads to a globally passive system. In this way, stabil-
ity can be guaranteed, if it can be ensured that the HSI, communication channel and TO
behave passively and the haptic environment and human operator are inherently passive.
Widely-used techniques founded on passivity are time-domain passivity [55] and the wave
variable transformation [29], which shall be briefly introduced here. The wave variable
transformation is defined as

ul(t) =
f d
h (t) + bẋh(t)p

2b
, ur(t) =

fenv(t) + bẋ d
t (t)p

2b

vl(t) =
f d
h (t)− bẋh(t)p

2b
, vr(t) =

fenv(t)− bẋ d
t (t)p

2b

(2.18)

where ul(t), ur(t), vl(t), vr(t) ∈ R are denoted wave variables. fh(t) and fenv(t) are the
forces displayed to the human operator and the force reflected from the remote environ-
ment, respectively. The wave impedance b > 0 is a tuning factor and must be chosen
in agreement with environment and application. A superscripted d stands for the desired
value of a variable that must be enforced by a local controller either on the human-system
interface or the telerobot.

In the case that no time delay and packet loss is present in the telepresence system,
the communication channel is transparent in the sense of [49], that means ẋ d

t (t) = ẋh(t)
and f d

h (t) = fenv(t)∀t. In the case of time delay and/or packet loss, the wave variable
transformation on the one hand guarantees safe operation, but results in a change of the
haptic environmental properties that are displayed to the human operator, thus a decreased
transparency.

2.4 Quantitative Models of Human Perception

The discipline describing the perceptual reaction to a physical stimulus is called psy-
chophysics [57]. Within the discipline, two directions can be distinguished: Inner psy-
chophysics aims for quantizing the relation between a physiological, neural signal within
the body, and the perceptual cause of it. In contrast, outer psychophysics, directly relates
the physical quantity and the perceptual response. As engineers usually do not have ac-
cess to biofeedback signals that would allow the application of inner psychophysical models,
we will restrict our view to outer psychophysics in the following. Amongst the perceptual
phenomena which are of greatest interest to engineers developing technical systems in a
human-centered way are those that capture the perceptual thresholds. Two types are to be
distinguished: The absolute threshold, capturing the minimal intensity of a stimulus that is
required to be perceived at all, and the difference threshold, also called just noticeable differ-
ence which denotes the minimal amount that two physical quantities have to differ from each
other to be distinguishable. Some available measurement techniques and their underlying
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Figure 2.5: The psychometric function relates the difference between a control condition Ic

and the target condition It to the proportion of “It greater” responses. From
the psychometric function, the point of subjective equality PSE and the just no-
ticeable difference JND as valuable perceptual performance measures can be
deducted.

psychological principles will be outlined before some practically relevant perceptual laws
are reviewed which describe the evolving of perceptual thresholds over multiple conditions.

2.4.1 Static Psychophysical Methods

Determining perceptual thresholds requires a toolkit of techniques that allows the extraction
of model parameters and threshold values from experimental data. The classical approach
for determining these key measures is measuring the psychometric function which captures
the statistics of perceptual responses over a range of physical quantities. Two classes of
methods that can estimate the absolute and differential thresholds from the psychometric
function are discussed – the method of constant stimuli and staircase threshold estimation
techniques. We name these methods static as the mapping between the physical quantity
and the perceptual response statistics is described by a algebraic function, not considering
any dynamics.

The Psychometric Function

The accuracy of human perception is limited, thus physical properties can not be distin-
guished if they differ too little from each other. In addition, perception is inherently proba-
bilistic, meaning that even if two stimuli It > Ic and this difference can normally be perceived
correctly, the answer to the question “Is It larger than Ic?” is answered incorrectly with “no”,
e.g., due to a lack of attention. However, with increasing difference, the probability to cor-
rectly determine the distinctness p(“It greater” ) increases [57].

17
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Definition 2.2 (Psychometric Function [58]). The psychometric function (PF)

P(I) : ΩI → [0, 1] (2.19)

relates the proportion of responses in a sensory task to a physical stimulus value I ∈ ΩI . The
PF P(I) is centrically symmetric, S-shaped and monotonously increasing.

An exemplary psychometric function is depicted in Figure 2.5. It starts from an off-
set pchance denoting the chance level and asymptotically approaches 1. The value for pchance

is determined by the nature of the experimental task.

Example 2.1. A thought experiment for a perceptual task for the discrimination of tactile
stimulus intensity shall be discussed. Consider an experiment where two vibratory stimuli
are sequentially applied to the human fingertip. These sequential presentations will be called
experimental conditions, one is the control condition, the other is the target condition. Both
conditions form one experimental trial. The vibration intensity in the target condition It

varies from trial to trial, the vibration intensity in the control condition Ic is always at the
same level. After each trial, the participant is confronted with a question in which two
alternative response possibilities are given, e.g. “Did you experience higher amplitude in
the second interval?”. In case the target condition with a very low vibration amplitude
compared to the control condition, the answer will most likely be ”no“. The chance level
in an experimental task where the target stimuli range from an intensity near zero to a
high intensity compared to the control stimulus is pchance = 0. In contrast, in the case
of a minimum target condition that equals the control condition results in pchance = 0.5.
The presented experimental procedure introduced here is denoted a 2-interval 2-alternative
forced choice (2I2AFC) task.

Two quantities that are particularly important for the design and evaluation of technical
systems are the point of subjective simultaneity (PSE) and the just noticeable difference
(JND). The PSE is usually defined as the difference between two intensities in the physical
quantity that lead to an equal number of correct and incorrect answers, thus pPSE = 0.5. The
JND denotes human’s ability to discriminate between two perceivable stimuli. It is defined
as a symmetrical range around the PSE, normally corresponding to the values in intensity
differences leading to a probability on the ordinate scale from 0.25 to 0.75.

Remark 2.3. In most cases, the PSE coincides with a difference It − Ic = 0, however there
are exceptions. As an example the point of subjective simultaneity (PSS) that captures the
difference in presentation time between two stimuli is nonzero for the case of a visual, and
tactile stimulus. Indeed, a probability of 0.5 for responding “simultaneous” is achieved when
the visual stimulus is presented approximately 20 ms earlier than the tactile [59].

Remark 2.4. A similar procedure as presented here is the determination of the absolute
threshold, also denoted as detection threshold (DT). In this case, the perceptual question is
“Did you perceive a stimulus?” and the psychometric function measures the DT instead of
the PSE.
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Method of Constant Stimuli

The classical method for measuring the psychometric function which is still used nowadays
is the method of constant stimuli [57]. In this experimental procedure, typically five to nine
target conditions are selected, distributed usually symmetrically around Ic and covering the
whole psychometric function. The range is usually determined using preliminary prestudies,
or prior knowledge, e.g., from the literature. A repeated presentation of all conditions over
usually 100 or more times allows an estimation of p(“It greater” ) from the fraction

p(“It greater” )
��
I∗t
≈ N“It greater”

N∆I1

�����
I∗t

where N∆I1
is the number of presentations of the target condition I∗t . The overall psycho-

metric function is then usually fit towards the experimental data by using a least squares
estimation technique. Multiple parametric forms are available as PF candidates. The best fit
is usually subject to optimization or known from prior experience.

Staircase Threshold Estimation

Staircase estimation procedures are known as adaptive methods to experimentally estimate
perceptual thresholds. Their main advantage over the method of constant stimuli is that
thresholds can be estimated using less trials. The idea of staircase procedures is the stepwise
approximation of the JND, by adapting the target condition based on the perceptual response
of the last presented target stimulus and all prior responses. As an example, the participant
in an experiment should judge if an intensity It is higher or lower in the target condition
compared to a control condition Ic. This judgment is easy if the difference ∆I between
stimulus and control condition is large, see Figure 2.6 for an example. Subsequently, if
the answer was correct, the difference between stimulus and control condition is reduced.
Coming to the discrimination threshold, the participant starts to guess which one is the
higher-damped condition. In the case of a wrong answer, the difference between conditions
is again increased such that it becomes perceivable again. After a certain number of staircase
direction reversals, the procedure terminates and the perception threshold is obtained by
taking a weighted average of the last stimulus conditions.

Two variants of staircase procedures are utilized in this thesis – a single staircase proce-
dure to estimate the discrimination thresholds of damping in Section 5.3 [60] and a double-
staircase procedure to estimate the time delay detection threshold in Section 4.4.2.

In Section 5.3, the single staircase procedure is combined with an unforced choice
paradigm, introducing the possibility to answer “I don’t know” in case no difference between
control condition and stimulus condition is perceived. For this procedure, one starts from a
surely detectable difference ∆I1 and the stimulus difference of the following trial N + 1 is
adjusted following the rule

∆Ii+1 =




∆Ii −δI in the case of a correct answer

∆Ii +δI in the case of a “don’t know” answer

∆Ii + 3δI in the case of a wrong answer

(2.20)
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Figure 2.6: (a) The estimation procedure of detection thresholds using a staircase procedure
adapts the stimulus condition to be presented in the next trial i+1 based on the
actual perceptual response (correct/incorrect) and all prior responses. (b) The
difference detection threshold is obtained by averaging over the last stimulus
conditions.

where δI is an initial step size chosen by the experiment designer. In order to increase
the measurement resolution and speeding up the detection threshold estimation procedure,
the step size δI can be adapted during the experiment: We halved the step size after the
second and forth reversal of the staircase direction, such that the final resolution was four
times higher than the initial resolution. The detection threshold is calculated by taking the
mean of all δIi where i takes values between the fourth and eighth reversal of the staircase
direction.

The double-staircase procedure utilized in Section 4.4.2 uses two staircases instead of
one, where one staircase starts from a surely detectable stimulus difference ∆I1 and one
starts from the control condition, thus ∆I1 = 0. From which staircase the stimulus condi-
tion ∆IN+1 is taken is randomly chosen. In contrast to the unforced choice in the single
staircase procedure, the participants in this study were required to choose between “differ-
ence detected” and “no difference detected”. A modified version of the accelerated stochastic
approximation method was implemented for each staircase sequence [61]. Following this
procedure, the stimulus difference ∆I within the same staircase sequence is calculated ac-
cording to the adaptation rule

∆Ii+1 =∆Ii −
δI

1+ Nrev
(Zi − 0.5), (2.21)

where Nrev denotes the number of reversals between the response categories. Zi encodes the
user’s response on trial number i that was performed on the respective staircase as Zi = 1
for a “differences detected” judgment and Zi = 0 for a “no difference detected’ decision. The
procedure stops when (i) both staircases have converged after 5 response reversals and (ii)
the mean difference of the last three trials between two sequences is less than δI . Otherwise,
the sequence terminates after a total of 40 trials. The detection threshold is estimated by
taking the average over the last six trials, 3 trials for each staircase sequence.
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2.4.2 Perceptual Laws

Knowing the perceptual limit of one environment property in one specific condition is usu-
ally of limited practical relevance. Instead, the change in perception thresholds, e.g., with
a shift in the control condition is of greater interest especially for engineers who want to
optimize a technical application with respect to human characteristics. Many of these quan-
titative relations, describing the relation between a specific haptic property and a perceptual
response, such as the JND or the intensity of the percept, are available in the literature.
In fact, every regression analysis on the results of a psychophysical experiment could be
accounted for as a perceptual law. However, two classical laws that were successful in ex-
plaining a large number of different psychophysical phenomena should be discussed: The
Weber-Fechner law and Stevens’ power law.

Two of the recognized founders of the research field of psychophysics, E.H. Weber and T.
Fechner were amongst the first formulating a relation between a physical stimulus and the
perceptual response of it - the well-known Weber-Fechner Law [62]. It states that the just
noticeable difference increases proportional to the magnitude of the stimulus, namely

∆I

I
=W = const.

where ∆I is the JND, I the stimulus intensity and W the so-called “Weber fraction”. The
Weber-Fechner Law successfully describes a magnitude of JNDs, e.g., mass/inertia [14,63],
damping/viscosity [12, 14], stiffness [11] as well as stimuli in other sensory domains.
The law proved its usefulness for technical applications, e.g., in lossy data compression
schemes [64] where the amount of haptic data to be transmitted over a telepresence sys-
tem’s communication channel can be significantly reduced without affecting perceived trans-
parency.

Stevens’ power law [65] states that the perceived magnitude of a physical stimulus is a
power law of the actual magnitude,

S = kIα,

where S is the perceived stimulus magnitude, I the real stimulus intensity, k an arbitrary
constant, and α a stimulus-specific exponent. The empirical law was confirmed over a large
number of stimuli and domains, e.g., loudness in auditive perception, brightness in visual
perception, and muscle force in the haptic domain. A technical application of this law was
reported e.g. for the design process of auditive warning signals [66].

2.4.3 Dynamic Diffusion Models

Perceptual laws come short in capturing a) the influence of time-varying sensory signals, e.g.,
due to different manual exploration, b) accurately predicting the humans’ perceptual state
over time, e.g., during the operation of a telepresence system. Diffusion models overcome
this deficit and have been successfully applied to capture the characteristics of response time
and accuracy in modalities other than haptics [67–69]. A diffusion process can be under-
stood as a linear, stochastic dynamical system, as depicted in Figure 2.7. It consists of three
parts: The information encoding stage with the dynamical properties of a linear transfer
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s(t) µ(t)
µ(t) Genc( jω)

ξ(t)

t t

Gacc( jω) xperc(t)
xperc(t) yperc(t)

yperc(t) =







a1 if xperc(t)> b1

a2 if xperc(t)< b2

? otherwise

Figure 2.7: A diffusion model for dynamic perceptual processes, consisting of an encoding
stage Genc( jω), transforming the raw sensory information s(t) into relevant in-
formation µ(t), a noise term ξ(t), an information accumulation process Gacc( jω)
producing the continuous (scalar) perceptual state xperc(t) and the decision
stage thereafter, leading to a perceptual response yperc(t).

function Genc( jω) extracts relevant information µ(t) from the sensory signal s(t). The pre-
cision of sensory information is limited by a noise process ξ(t) before it is accumulated by
an integrator function Gacc( jω) to the scalar perceptual state variable xperc(t). In the case of
a perfect integrator, it can be calculated as

xperc(t) =

∫ t

0

µ(τ) + ξ(τ)dτ. (2.22)

The human detects whether the accumulated information xperc(t) exceeds one of two cri-
teria b1 and b2 and chooses between two alternative responses a1 and a2. If xperc(t) ends
between both boundaries, he/she makes a guess.

Classical psychophysical studies, e.g. the ones concerned with the measurement of JNDs,
can be interpreted in the framework of diffusion processes as well. Methods such as the
method of constant stimuli, or staircase methods, allow the participant to respond at a fixed
time instance t resp. The value for xperc(t resp) is thus, taking (2.22) into account,

xperc(t resp) =

∫ tresp

0

µ(τ)dτ+

∫ tresp

0

ξ(τ)dτ.

Repeating the measurement several time minimizes the influence of the second part as

E

¨∫ tresp

0

ξ(τ)dτ

«
= 0,

where E{} is the expected value operator. Thus, the classical approach with a fixed response
time captures the a measure with is related to the mean information content in the stimu-
lus, µ̄ [69].

2.5 Technical Perception Models

While the dynamic modeling of perceptual and sensorimotor processes is a novel concept,
diverse methods and techniques to characterize the dynamics of technical system have been
developed in the past. When trying to find an analogy between the human perceptual sys-
tem on the one, and measurement and estimation techniques for technical systems on the
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Figure 2.8: A Luenberger observer takes system inputs and outputs into account to compute
a state estimate x̂(t) of the real system state x.

other side, two problem classes can be distinguished: First, the observation of time varying
signals, which transport energy and are not necessarily directly measurable. Second, the
quantification problem of specific features within the environment or technical system under
investigation, relating two or more signals together. The first class is referred to as state
observation problem, the second as system identification problem.

2.5.1 Dynamic State Observation

Definition 2.3 (Dynamic State Observer). A dynamic process or algorithm that allows re-
constructing non-measurable states and associate measures of a dynamic system based on a
system model is defined as dynamic state observer.

A well-known observer structure for linear systems that shall be introduced here is the
Luenberger observer [70] which requires measurements of input- and output signals to re-
construct the underlying, non-measurable state vector of the plant system. The observer
structure is depicted in Figure 2.8.

The state estimation principle of a Luenberger observer founds on the existence of an
internal model of the plant dynamics.

˙̂x(t) = Âx̂(t) + B̂u(t) (2.23)

ŷ(t) = Ĉ x̂(t). (2.24)

By feeding back the error between the real, measured system output and the output predic-
tion from the internal model 2.23-2.24, the state estimation asymptotically converges to the
true state of the physical system. Given that the system matrices A, B, and C are known with
sufficient accuracy, such that

Â≈ A, B̂ ≈ B, Ĉ ≈ C , (2.25)
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the state estimation is the solution of the differential equation

˙̂x= Ax̂+ Bu+ K(y− C x̂). (2.26)

In technical systems, the feedback matrix K is chosen by the system designer. In this way,
it can be ensured that the observer behaves stably, and with a desired behavior in terms of
transient behavior.

2.5.2 System Identification

In practical applications, the mathematical description of a physical system which is to be
controlled, is often unknown. However, this knowledge is crucial for the design of control
algorithms, or for the verification of a design process. In certain cases, the dynamic system
model can be developed purely on the basis of physical considerations, such models are
called white-box models. The class of problem where this kind of modeling technique is
suitable is limited in practice, as purely physical models tend to exhibit high complexity.
In addition, the system structure must be known, and all parameters either measurable or
obtainable from other sources. This is a strong limitation in, e.g., biological systems whose
working principles are barely comprehended. Alternatively, system identification techniques
allow the development of such mathematical models on the basis of measuring the input
and the output to the system under consideration [21]. Two classes of methods can be
distinguished: Black-box identification techniques do not assume any prior knowledge such
as a fundamental physical structure, or initial guesses for parameters to be identified. In
contrast, gray-box models have some basic knowledge how the system behaves in principle,
but no knowledge about the parameters determining the quantitative behavior. We restrict
ourselves to the identification of black-box and gray-box models in the following, and some
fundamental concepts are reviewed. For a deeper insight into the complex field of system
identification, the interested reader is referred to [21–23], and the references therein.

Identification Procedure

For simplicity reasons, all basic concepts will be discussed on the basis of a single-input,
single-output, linear, time-invariant, stable dynamic system. Following the notation in [21],
three basic entities are required for a successful identification of a given dynamic system:

• A set of data, denoted ZN ,

• a model structure,

• a technique for addressing the model structures with respect to the data.

Due to the fact that system identification is usually accomplished using a computer-aided
procedure, all signals contained in the dataset ZN are available in discrete time steps, thus

ZN =
�
u(1), y(1), . . . , u(N), y(N)

	
, (2.27)
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where u(i) ∈ R, i = 1 . . . N is a sequence of input values, and y(i) ∈ R, i = 1 . . . N the corre-
sponding sequence of output values. Input and output sequence are assumed to be station-
ary random processes. The choice of model structure differentiates black-box models from
gray-box models. In the case of a black-box model identification, so-called non-parametric
models, e.g., the frequency response of the system, or the impulse response, are considered.
In contrast, gray-box models utilize prior knowledge about the process and propose para-
metric models, e.g., a mass-spring-damper system with unknown mass, spring and damping
parameter. The coefficients describing the impulse (or frequency) response, or alternatively
the model parameters can be collected in a parameter vector θ which is to be determined
by an appropriate identification technique. One exemplary identification method which is
practically relevant for this thesis is discussed in the following.

Covariance Method for Black-Box Identification

Considering a dynamic system with impulse response g0(t) ∈ R, the response to a discrete-
time input signal u(t) ∈ R is computed as

y(t) =
∞∑

k=1

g0(k)u(t − k) + v(t). (2.28)

where v(t) is a noise term accounting for measurement noise [21]. assume the input to be
quasi-stationary with

E{u(t)u(t −τ)}= Ru(τ) (2.29)

and

E{u(t)v(t −τ)} ≡ 0,

where Ru(τ) is called the autocovariance function of the input u(t), and τ is denoted as time
shift operator. It can be shown [21] that the crosscovariance function between input u(t)
and output y(t) is computed as

E{u(t)y(t −τ)}= R yu(τ) =
∞∑

k=1

g0(k)Ru(k−τ). (2.30)

In reality, the amount of data samples taken into consideration for the estimation of Ru(τ)
and R yu(τ) is finite, thus the expected value operator in (2.29) and (2.30) is replaced by the
mean, and the sum in (2.28) is finite, namely

R̂N
yu(τ) =

N∑
k=1

ĝ(k)R̂N
u (k−τ), (2.31)

where N ∈ N is the number of samples taken into consideration for the estimation of autoco-
variance R̂N

u (τ) and crosscovariance R̂N
yu(τ). An optimization technique, e.g., a least squares

algorithm, can be used to find the impulse response function ĝ(t) from (2.31).

Remark 2.5. The estimation accuracy for ĝ(t) depends on the number of samples N taken
to estimate RN

u (τ) and RN
yu(τ), respectively. This is evident from the fact that the mean value

approximates the expected value only for large N . In addition, N limits the maximum length
of the impulse response which can be estimated.
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2.6 Quantitative Behavior and Task Performance Models

Everyday-life encounters tell us that humans behavior is not random in many situations,
but often tasks are performed stereotypically. This repeatability in motor behavior has in-
spired researchers to develop behavioral models on the one hand, and models describing the
performance in the given task on the other hand.

2.6.1 Empirical Models

One of the first models describing reaching movements towards a specific goal is Fitt’s
Law [71], describing a tradeoff between the movement speed and the achievable accuracy of
the reached destination. Many extensions for the model, e.g. for 2-dimensional [72] and 3-
dimensional [73] reaching movements, and for pointing under different feedback conditions
such as time-delayed visual feedback [74] have been proposed. A similar tradeoff between
the curvature of a trajectory and the angular velocity was found in the 2/3 Power Law [75].
A control theoretic model for the human operator following a trajectory using different in-
put devices was proposed by McRuer and Jex [76] who were seeking for a possibility to
describe the human steering behavior of an aircraft. However, the model proved its useful-
ness in a number of tracking tasks different to steering as well. A model that takes certain
physiological properties of the movement apparatus into account is the equilibrium point
hypothesis [77, 78], modeling the muscles attached to a moving limb as nonlinear springs.
In a resting posture, all springs are in their equilibrium position; movements are caused
by voluntarily changing the spring characteristics of an individual “muscle”. Although the
equilibrium point hypothesis is able to successfully describe certain aspects of human motor
control, such as arm stiffness during multi-joint movement [79], one of the main criticism
against it is the lack of physiological plausibility for the spring model being representative
for a real muscle.

2.6.2 Optimal Control Models

Instead of searching for an empirical law that describes the stereotypical behavior of humans
controlling their body and the environment surrounding them, optimal control models try
to capture the underlying "biological idea" that leads to a specific task-dependent human
behavior. The underlying assumption is that all biological processes converge to a some-
how optimal stage, an idea first formulated by Darwin and Spence in 1864 by the concept
of the “survival of the fittest” [80]. The optimal control approach is more general than
empirical modeling since it is not limited to a specific control law in a certain task under
certain circumstances, but can result in different control laws with different parametriza-
tion, depending on task, environment, and situation. An optimal control law is though only
meaningful with respect to a certain criterion J(xh) that is minimized, denoted by

argmin
xh

J(xh). (2.32)
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A diversity of costs have been proposed, explaining movement stereotypes differently well
in different tasks. Among the first criteria introduced as an optimization function for sen-
sorimotor control was energy, proposed by Chow & Jacobsen [81], which is able to explain
especially walking patterns well. Another popular optimization functions is the “jerk” as
the time-derivative of acceleration, introduced by Hogan [82], or joint torque change [83].
For comprehensive reviews over additional task-specific optimization criteria, and further
investigations and generalizations of the presented cost functions, see references [84,85].

The optimization criteria can be used to explain average observed human behaviors post-
hoc on the one hand, and for pre-planning an optimal muscle action pattern in advance on
the other hand. These cases are referred to as open-loop optimal control. Such algorithms
have the disadvantage that changing task conditions, or unexpected events can not be taken
into consideration for the execution of a certain task. Furthermore, the sensorimotor control
loop is corrupted by noise on many different levels [86]. Noise and other stochastic uncer-
tainties make open-loop control infeasible but require the feedback of sensory data. Con-
trollers minimizing the expected variance of the hand’s final position in a reaching task were
proposed to explain human stereotypical behavior and reaction to disturbances [87,88].

2.6.3 Dynamic Models in Sensorimotor Control

Optimal feedback control algorithms inevitably require dynamic knowledge of the plant to
be controlled in order to predict the consequences of a certain control action and choose the
appropriate one for optimally achieving a desired goal. The existence of dynamic models of
the human body represented internally in the human brain was identified by Ito in 1970 to
take place in the cerebellum [89]. The idea that these internal models could be used for mo-
tor control was first proposed by Kawato et al. in 1987 [90]. Their motivation of introducing
such models in the first place was to find an explanation for highly dynamic human move-
ments facing significant neural and sensory delay. Therefore, they postulated that an inverse
model of the human body dynamics, calculating the required motor commands in order to
achieve a certain control goal is used, combined with a feedback control law accounting for
model uncertainties and changing environment conditions. The resulting structure for the
sensorimotor control loop is depicted in Figure 2.9. Such a control concept is indeed able to
increase control bandwidth significantly. Although inverse models are difficult to learn from
a computational point of view, efficient algorithms utilizing the neural structure of the cere-
bellum were found that can support their existence [90, 91]. With the help of feedforward
and feedback control, a number of findings on motor control [92] and eye movements [93]
can be well explained.

Another way to use dynamic models in sensorimotor control is by using forward mod-
els, predicting the state of the human body, based on the actual and past motor commands,
available in the form of an efference copy. Inspired from optimal control theory with noisy
measurements, the Kalman filter theory became popular in recent years to describe the hu-
man’s ability to estimate his/her internal body state [84, 88, 94–97] and base their control
actions upon this estimate. In the case where the human controls a haptic environment or
a tool, there are indications that the tool dynamics are also represented in the cerebellum
and can be used for motor control as well [98, 99]. A sensorimotor control model based
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Figure 2.9: A sensorimotor control model including feedforward and feedback control, mak-
ing use of a forward model of the human body dynamics.

on the Kalman filter approach is depicted in Figure 2.10. Two internal dynamic models are
used in the Kalman filter: The first contains a forward model of the human body dynamics
to make state predictions about the future state of the body x∗h. Therefore, a neural copy
of the actual motor commands, the efference copy, is used. Because this state estimate is
purely based on a feedforward-estimation it is prone to external disturbances and model-
ing uncertainties. Thus, a second dynamic sensor model is introduced, mimicking the real
sensory system Gsense( jω) and leading to a prediction of the sensory signal ûsense. By compar-
ing ûsense with the real, measured sensory feedback usense, mismatches between feedforward-
prediction and the actual sensor feedback are taken into consideration using the Kalman
gain to correct the actual state estimate x̂h towards the noise-optimal estimate of the actual
body state xh. This state feedback can be used for a control law Gcont( jω), driving the body
dynamics Gbod y( jω) to achieve the given control goal.

Whether or not inverse dynamic models, the Kalman filter or any kind of model-based
control approach is actually encoded in neural substrate and utilized for human sensori-
motor control can not be answered with certainty. Proving the secure existence of such
dynamic models and their role in motor control requires a much deeper understanding of
the organizational processes within the brain, and advanced imaging techniques. However,
the fact that the presented models are plausible from an evolutionary point of view and
make accurate predictions in multiple experimental and real-life situations justifies further
investigations.

2.6.4 Task Performance Models

A task performance model describes the influence of specific environmental properties on the
human ability to achieve a specific goal. A comprehensive overview over a number of dif-
ferent performance metrics for task-oriented human-robot interaction is provided in [100].
Although every task aims for a slightly different goal and thus could be evaluated with re-
spect to measures tailored to the specific scenario, some performance measures are used
more common than others: The number of failures [101,102], accuracy [76,103], and task
completion time, also known as time-to-complete [37, 71, 101, 102, 104]. A failure in the
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Figure 2.10: A sensorimotor control model based on a Kalman Filter model.

operation of a human-system interface could be characterized, e.g., by a collision with an
obstacle, or a damage to a workpiece to be handled. As a failure is characterized by an
event, the number of failures is discrete. In contrast, accuracy characterizes a continuous
measure for the precision that was achieved in the task, e.g., the tracking accuracy in a path
following task, measured by the mean squared error. Those performance measures can be
used in a variety of telepresence systems and tasks. To just name a few examples, navigation
tasks should be performed fast without collisions, pick-and-place tasks are usually required
to be accomplished with a high accuracy in little time, and telesurgery needs to be performed
precisely.

Task performance is currently primarily described in terms of static relations between an
environment property such as the communication time delay [37], or task difficulty [71],
and the performance measure. One drawback of this approach is that quantitative conclu-
sions about the performance can be only made after task completion. Static models thus
qualify for an application in the optimization of telepresence systems with respect to the av-
erage task performance that can be achieved under certain environmental conditions. They
can, however, not be used to optimize a telepresence system online, that means, during task
execution, to achieve a higher task performance, given the momentary manual interaction
and task situation.

2.7 Discussion

Telepresence systems aim for extending the workspace of a human operator to locations that
are not accessible to the human by his/her capabilities otherwise, e.g., due to distance, size,
or harmful environmental conditions. Because of the strong integration of the technical
system into the action-perception loop, the technical system must be designed to suit the
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operator’s perceptual and motor capabilities. Attempts to include quantitative knowledge
about the operator’s perceptual and sensorimotor characteristics into a human-centered de-
sign of telepresence systems have been made earlier: A perception-optimized design of a
data compression algorithm was proposed for communication between human-system in-
terface and teleoperator, transmitting haptic information about movement and force feed-
back [8,64,105,106]. Not every change in these quantities can be perceived by the human
operator. Thus, data packets that contain irrelevant data for the human perceptual system
are not transmitted. A selection algorithm based on Weber’s law was used to separate rel-
evant from irrelevant data. If all irrelevant packets are discarded, the required amount of
data can be reduced significantly without affecting perceptual fidelity. A second example is
an algorithm that can decrease task completion time in a telepresent reaching movement
with time-delayed visual feedback, based on a minimum-jerk movement model to predict
the future movement trajectory [107]. Instead of the actual movement, the prediction is
transferred over the communication channel, which virtually decreases the time delay in the
case of an accurate trajectory prediction.

These exemplary applications are different in several aspects: First, one application is
targeting a perception-optimized and the other a performance-optimized telepresence expe-
rience. Furthermore, Weber’s Law is a static approximation of the dynamic perceptual ap-
paratus, meaning it can only relate a momentary sensory input to a momentary perceptual
response. In contrast, the minimum-jerk model contains the dynamics of the sensorimo-
tor process and results in a prediction of the time series data of the movement trajectory,
founded on the momentary and past recordings of the movement. Third, the data compres-
sion algorithm continuously adjusts its strategy according to the optimization objective – the
perceptual fidelity of the haptic environment. Such continuous adjustments are especially
important when a tradeoff has to be made, in this case between the amount of transmitted
data and perceptual fidelity. In comparison, the trajectory prediction algorithm does not
take the objective of a performance enhancement into direct account for online-adjustments
but aims for an increased average task performance. the last difference to be mentioned
here lies in the information quantity of each observation: While the perceptual model can
predict a discrete, binary decision about the perceptual state (difference detected/not de-
tected), the minimum jerk trajectory is continuous in its values, thus is able to provide richer
information, such as position and velocity.

Taking together the advantages of both application examples, an ideal way to design, con-
trol, and enhance telepresence systems with respect to the capabilities of the human operator
can be outlined: Taking the dynamic characteristics of perception and sensorimotor control
into consideration to optimize perceptual fidelity and task performance online, founded on a
continuous estimate of the perceptual and performance state. Comparing these requirements
with the capabilities of today’s perceptual laws and performance measures, summarized in
Table 2.1, reveals their shortcomings: Due to the fact that static perception models can not
take the influence of movement on the perceptual thresholds into account, their online-
prediction capabilities are limited and may be inaccurate. Continuous information about
perceptual processes is furthermore limited to static laws such as Steven’s Power Law [65],
relating stimulus intensity to the equivalent intensity of the percept. This quantity, however,
may have only limited practical meaning in the design process of technical systems. On the
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model type model predictions information quantity
static dynamic average online discrete continuous

Ideal perception & Ø Ø Ø
performance model

Perception laws Ø Ø (Ø) Ø (Ø)
Task performance measures Ø Ø Ø Ø
Diffusion models Ø Ø Ø Ø Ø
Sensorimotor control Ø Ø Ø Ø Ø
models

Tabular 2.1: Overview of the requirements for perceptual and task performance models to
be suitable for the optimization of telepresence systems. Current perception
laws and task performance measures do not meet the ideal model structure;
diffusion processes and sensorimotor control models serve as a starting point
for the development of suitable model candidates.

other side, most task performance measures are quantifiable post-hoc, limiting their appli-
cability to an optimization of average task performance. Dynamic task performance models
that allow online-predictions of task performance on the basis of current and past inputs and
feedback could overcome this shortcoming.

Inspiration for the development of novel dynamic human perception and task perfor-
mance models can be drawn from diffusion models and sensorimotor control models on the
one hand, and technical perception methods on the other: Respecting the three stages in
the diffusion model, namely information encoding, accumulation, and decision stage, dy-
namic models in perception must capture two dynamic aspects as well – the information
encoding dynamic and the accumulation dynamics. Models describing sensorimotor control
processes make use of internal models, representing the dynamics of body and environment.
Such internal models may play a role in perception as well. Task performance results from
human behavior, given a certain environment with a specific task setting. The dynamics of
the environment, technical system, and the task itself are thus not only to be contained in
the sensorimotor control model, but can additionally enhance task performance models, to
make performance predictions based on the current and past interactions more accurate.

This thesis aims for starting off a new, dynamic view on haptic perception and task
performance, based on the fundamentals presented in this chapter. Two dynamic aspects
of haptic perception are developed – the dynamic combination mechanism of movement
and force feedback, and masking effects between different environmental properties. For a
performance-optimal design of telepresence systems, dynamic performance models are fur-
thermore developed, founded on the environment dynamics and human motor capabilities.
These contributions are significant steps towards a fully human-centered design of tech-
nical systems that take dynamic perceptual and behavioral properties of the operator into
account.
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Summary. Describing dynamic properties of haptic perceptual and sensorimotor pro-
cesses requires a system theoretic view on the sensorimotor loop of information ex-
change within the human, and with the environment. A mathematical framework on
the basis of coupled dynamic systems is proposed as a foundation for the development
of such models. This framework allows a

• systematic development of dynamic perception and behavioral models,

• consideration of existing static perception and action models as a special case of
a dynamic sensorimotor process,

• direct integration of the developed models into technical applications.

Considering human knowledge in the design, evaluation and optimization of telepresence
systems requires the formulation of quantitative relations between measurable physical
quantities and hardly-observable reactions within the human operator. Most currently avail-
able perception laws utilized for this purpose (see Section 2.4.2) are limited to a direct,
static mapping to describe the perceptual equivalent of a physical property. Perception of
haptic environments is though more complex in many cases and such simple models are
not suitable for describing human perception sufficiently well: As an example, the just no-
ticeable difference of a mechanical impedance, such as stiffness, is commonly modeled as
following Weber’s Law, see Section 2.4.2. However, stiffness is not perceived directly since
the human lacks receptors for this physical property. Instead, stiffness can only be inferred
by exciting the object, e.g., applying a certain force, and observing the deformation. These
information are transmitted to the brain where cognitive processes reason about the abstract
quantity “stiffness” by combining force and movement together. In this sense, the percep-
tual equivalent for the physical stiffness estimation does not only depend on the physical
stiffness but additionally on the excitation, biological factors such as sensor accuracy, and
the performance of the cognitive system to extract the original environmental feature from
the available information. Most considerations in this thesis are given to human models
describing the direct mapping between haptic stimuli and human perception and behavior.
However, different quantitative human models are required in other technical applications:
In the development of novel neuroprosthesis, biofeedback is utilized to infer an intended
movement which is carried out by the actuated prosthetic limb [108]. For doing so, physi-
ological models describing the mapping between neural information and motor commands
must be available. With regard to human perception, inner psychophysical models mapping
physical stimuli to neural signals, and the neural response further to a perceptual equiva-
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lent [57, 109] are of interest to the haptic community. Physiological knowledge is so taken
into consideration for the development of inner psychophysical models.

A physiologically inspired mathematical framework for the systematic development of
quantitative human models is proposed in the following. The structure of the framework is
flexible enough to capture physiological, perceptual, and behavioral phenomena on different
detail levels. While modeling human perception as a set of static mathematical mappings
was proposed earlier [110], the fact that human haptic perception is closely linked to the
motor system and is indeed a dynamic process [111,112] was so far neglected. The frame-
work proposed here for a quantitative modeling of processes within the human sensorimotor
control loop is able to include dynamics by modeling the closed action-perception loop as a
set of coupled differential equations.

This chapter is organized as follows: In Section 3.1, the sensorimotor loop is modeled
taking inspiration from the physiological system into consideration, and dynamic behavior
is identified on all levels of information transmission and processing required for haptic en-
vironment interaction. An abstraction of this physiological view is presented in Section 3.2
where a mathematical framework is introduced in the form of sensorimotor domains, sets,
transformations, and observations. The relation between quantitative models based upon
the framework introduced here and existing models for perceptual processes and perfor-
mance models are detailed in Section 3.3 and 3.4. A discussion of the framework’s properties
with respect to the prediction abilities of the resulting human models and the advantages
compared to other approaches concludes the chapter in Section 3.5.

3.1 Dynamic Action-Perception Loop

Modeling processes in human perception and behavior requires a basic understanding of the
involved physiological, cognitive, and physical processes. A schematic diagram depicting
the exchange of information and energy within the action-perception loop and with the
haptic environment is depicted in Figure 3.1. For the benefit of presentation clarity, all
dependencies on time and frequency are omitted in the Figure but will be mentioned in the
text.

Remark 3.1. All discussions of sensorimotor processes will be discussed in a simplified ver-
sion using one pair of agonistic/antagonistic muscles acting on a single limb. In reality, the
motor apparatus consists of a multitude of muscles acting on different limbs. The discus-
sions in this Section could be extended to the more general case of multiple muscles for one
limb by using the forward kinematics of the musculoskeletal apparatus, see e.g. [113].

Six domains and classes of signals and blocks are traditionally distinguished: Physical
stimuli from the environment are measured by the human senses and encoded into sensory
signals which are transmitted over neural pathways to the brain utilizing them for cogni-
tive actions, namely perception and motor control. New motor commands are generated,
based upon sensory signals and cognitive processes, sent back via neural signals to the mo-
tor system, where they cause a physical reaction in the environment. Tangible for the haptic
modality, the physical environment is modeled in impedance form, transforming the position
of the interacting limb xh(t) into a reaction force fh(t). This force is not only recorded by
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Figure 3.1: A schematic, non-complete information flow diagram of human sensorimotor
control processes.

the sensory system but additionally acts physically upon the physiological structure of the
body, affecting the effective force that accelerates the body admittance Ybody( jω). The trans-
fer function modeling tissue dynamics Gtissue( jω) is part of the body admittance, but plays
a particular role in the context of determining the amount of environment force that inter-
feres with the motor actions. In the case of a high interaction force and/or a rigid coupling
of environment and body, such as the operation of a kinesthetic haptic interface, the influ-
ence of Gtissue( jω) is negligible, as the tissue is compressed and can be modeled in the com-
pressed state as (quasi-)rigid. In the case of small interaction forces and fast-varying position
or force changes, such as in the case of tactile exploration, the tissue dynamics Gtissue( jω)
with its elastic properties reduces the environment force acting back on the bone structure
significantly.

Sensors and actors are afflicted with dynamics, represented by transfer func-
tions Gm1( jω), Gm2( jω) for the muscle dynamics, Gh( jω), Gv( jω) and Ga( jω) for the
dynamics of haptic, visual, and auditive sensing dynamics, respectively. While only three
sensor blocks are depicted, the actual number of receptory cells is tremendously higher. Be-
sides these simplifications, the remaining senses of taste and smell are omitted as they play
a subordinate role in telepresence. Physiologically inspired models have been developed for
describing the dynamics of receptors in the auditory [114], visual [115], and haptic [116]
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3 Dynamic Modeling of Sensorimotor Processes

domain, and muscle activity [117]. Transmission over neural pathways comes with trans-
portation delays Td{h,v,a} and Td{m1,m2}, coming from electrochemical communication. In ad-
dition, noise corrupts the signal transfers and processes at various stages [86], accounting
for the variability in behavior and perception. We will name the individual noise terms ξ
with subscripted noise source and the superscripted sensor modality or involved muscle. We
distinguish between sensory noise ξse which comes from the mechanical (e.g. tactile and
audition) or electrical (e.g. optical) transduction and the signal amplification thereafter,
cellular and electric noise ξel due to timing variability of action potentials, and synaptic
noise ξs y that arises at the interface to the brain. For consistency reasons, synaptic and elec-
tric noise are subsumed together in the term ξne for neural noise. In the motor system, motor
noise ξm limits the achievable accuracy for an action which is to be performed. In contrast
to the other noise sources, this noise intensity is linearly related to the signal level [118],
explainable by the number of muscle fibers to be recruited for higher muscle force.

Perception and motor control are closely coupled [111]. There are indications that arti-
facts such as the attention that is paid to a given task has an influence on both cognitive parts
of the sensorimotor loop discussed here [119]. In the field of neurophysiology, the existence
of so-called “mirror neurons” is postulated as a common neural substrate for perception and
motor action [120]. However, other studies suggest that human behavior is sometimes af-
fected by a distortion in the sensory feedback even if the distortion is below the perception
threshold [121]. Due to this inconsistency, the perceptual and motor control system will
be treated as individual mechanisms in the following, while we respect explicitly that they
interact in many situations. As an additional source of information to the perceptual and
motor control system, a neural copy of the commanded motor commands, the so-called ef-
ference copy is available [84–88, 122, 123]. In contrast to the sensory feedback about the
exerted muscle force, the efference copy is nearly undelayed, and assumed to be available
without significant noise.

Remark 3.2. All sensory, motor, and body dynamics are depicted and discussed as linear
approximations of the nonlinear characteristics of those systems. However, the drawn con-
clusions and statements made remain valid even if the exact nonlinear behavior is taken into
consideration.

3.2 Mathematical Modeling Framework

From a mathematical point of view, the information exchange between the different systems
involved in the sensorimotor loop can be expressed as mappings between different sets
of parameters and variables, as illustrated in Figure 3.2. Accordingly, the sensorimotor
control loop is divided into six sensorimotor domains: The physical, sensory, neural, control,
perceptual, and motor domain1.

Definition 3.1. A sensorimotor domain a ∈
¦

phy se ne con perc mo
©

is defined by a
triplet (Sa,ψa,φa) where Sa is denoted as sensorimotor set, ψa : Sa → Sa contains the
domain dynamics, and φa : Sa→ Sa is named sensorimotor observation.

1The domains are abbreviated phy, se, ne, con, perc, mo, respectively.
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Figure 3.2: Representation of the sensorimotor control loop as a series of mappings between
sets of features and states. As a specialty, the perceptual system receives infor-
mation from the control mechanism about the commanded motor signals – the
efference copy uec.

Definition 3.2. A sensorimotor set Sa, a ∈
¦

phy se ne con perc mo
©

is defined as

Sa =
n�

xT
a θ T

a uT
a yT

a ξT
a

�T ∈ Xa ×Θa × Ua × Ya ×χa

o
(3.1)

where xa ∈ Xa is a state vector, θa ∈ Θa is a feature vector, ua ∈ Ua is an vector of input
items, ya ∈ Ya contains quantities that are measurable externally, and ξa ∈ χa contains noise
terms and uncertainty in the sensorimotor domain a.

An overview of the different sensorimotor domains can help for an intuitive understand-
ing of their meaning and relevance: The physical world describes the environment surround-
ing us with its mechanical, optical, acoustic, and other properties. Sensory processes happen
within the body, where an accurate modeling is more difficult due to the complexity of the
biological system [114–116]. Neural communication is responsible for the signal transmis-
sion of sensory signals to the brain. The signal transportation is characterized by spiking
electrochemical potentials, varying in intensity and shape. Perceptual and control processes
within the human brain are only indirectly measurable by imaging techniques such as EEG
and fMRI or observable by verbal responses about the environment perception, which makes
it difficult to develop dynamic models of such processes. The motor system contains the actu-
ating muscles as well as the body dynamics. Practical examples for the measures introduced
in Definition 3.2 are presented in Table 3.1.

Remark 3.3. Sensorimotor processes are afflicted with time delay. For keeping the notation
simple, the time delayed system behavior is not made explicit here, instead we define

xa(t) =
�

xa,und(t)T xa,und(t − Td,1)T xa,und(t − Td,1)T · · · xa,und(t − Td,n)T
�T

(3.2)

θa(t) =
�
θa,und(t)T θa,und(t − Td,1)T θa,und(t − Td,1)T · · · θa,und(t − Td,n)T

�T
(3.3)

ua(t) =
�

ua,und(t)T ua,und(t − Td,1)T ua,und(t − Td,1)T · · · ua,und(t − Td,n)T
�T

(3.4)

ξa(t) =
�
ξa,und(t)T ξa,und(t − Td,1)T ξa,und(t − Td,1)T · · · ξa,und(t − Td,n)T

�T
(3.5)

where xa,und , θa,und , ua,und , ξa,und is the undelayed state, feature, input, and noise vector,
and Td,i, i = 1 . . . n are time delays within the sensorimotor loop.

The processes within each sensorimotor domain are generally dynamic, requiring a de-
scription in the form of a stochastic differential equation.

37



3 Dynamic Modeling of Sensorimotor Processes
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x position,
velocity

lowpass
filter
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brain
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attention task
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muscle
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u limb position skin
pressure
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patterns

muscle
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EMG
signals
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verbal
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transduction
noise

neural
noise

neural
noise

neural
noise

activation
noise

Tabular 3.1: Examples for domain inputs, state variables, features, uncertainty sources, and
domain outputs in the six sensorimotor domains.

Definition 3.3. Sensorimotor dynamics in sensorimotor domain a are captured by a set of
nonlinear, first-order stochastic differential equations in the state vector xa as

ẋa(t) =ψa
�
xa(t),θa(t),ua(t),ξa(t), t

�
, xa(0) = xa,0, (3.6)

where xa ∈ Xa, θa ∈Θa, ua ∈ Ua, ξa(t) ∈ χa.

For sensorimotor control and perception, information must be exchanged between differ-
ent sensorimotor domains. This communication is abstracted by sensorimotor transforma-
tions νa,b.

Definition 3.4. A sensorimotor transformation

νa,b : Sa→ Ub

between the sensorimotor sets Sa and Ub realizing the sensorimotor domains
a, b ∈

¦
phy se ne con perc mo

©
is defined as a static mapping function νa,b

ub(t) = νa,b
�
xa(t),θa(t),ua(t),ξa(t), t

�
, (3.7)

where ub ∈ Ub, xa ∈ Xa, θa ∈Θa, ua ∈ Ua, ξa(t) ∈ χa.

Developing quantitative models crucially requires the measurement of body-internal vari-
ables, e.g., the sensorimotor state xa(t). This measurement is not always possible by apply-
ing an objective, sensor-based method, as technical sensors for specific information may not
be available. An example is the perceptual system whose output to the outer world generally
is a verbal response, providing only sparse information about the actual process happening
in the brain. With respect to this behavior, a sensorimotor observation function is defined
that transforms internal variables from the sensorimotor loop into measurable quantities
that are available outside of the body.
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3.2 Mathematical Modeling Framework

Definition 3.5. A sensorimotor observation

φa : Sa→ Ya

of a sensorimotor domain a ∈
¦

phy se ne con perc mo
©

is defined as a differential
equation

ya(t) = φa
�
xa(t), ẋa(t), . . . ,θa(t),ua(t), u̇a(t), . . . ,ξa(t), t

�
, (3.8)

where xa ∈ Xa, θa ∈Θa, ua,∈ Ua, ξa ∈ χa. The state vector xa(t) is influenced by the domain
dynamics in (3.6). The output vector ya ∈ Ya contains all information that can be objectively
obtained by measurements from domain a.

Remark 3.4. The standard formulation of state-space models, concentrating all dynamic pro-
cesses into one differential equation and modeling the output function as a static mapping
is limited to modeling causal system behavior. This means that the actual value of any vari-
able depends only on the present and past values of other variables and itself. While this
is a valid restriction for closed-loop control processes, captured by sensorimotor transfor-
mations, it is too restrictive for the definition of sensorimotor observations, which include
the verbal response from the perceptual system. As an example, an anticausal behavior in
auditory masking shall be mentioned here: It was found that a sound of low intensity can
eventually not be perceived if it is followed by a loud masking stimulus [1, 124]. Thus, the
perception of a current stimulus may depend on the future of the sensory input which is
an anticausal behavior. Another, more practical reason for choosing a differential equation
for φa(·) is a potentially useful non-causal offline-processing for a measured ya(t), such as
zero-phase filtering.

Remark 3.5. The mathematical transformations ψa and φa, realizing the domain dynam-
ics and sensorimotor observation, were introduced as mappings from Sa into Sa in Defini-
tion 3.1. The subsequent Definitions in 3.3 and 3.5 refine the mappings between domain
and codomain to Xa → Xa for the domain dynamics, and Sa → Ya for the sensorimotor ob-
servation, respectively. These refinements are not contradictory to the original statement in
Definition 3.1 since Xa, Ya ⊂ Sa.

Example 3.1. The sensorimotor set, dynamics, observation and transformation functions of
the physical domain to the sensory domain shall be discussed for a deterministic haptic
mass-spring-damper environment with inertia m, damping d, and stiffness k in admittance
form. The state vector xphy consists of position xh(t) and velocity ẋh(t) where we will limit

our consideration to a unidirectional movement, such that xphy(t) =
�

xh(t) ẋh(t)
�T∈ R2.

From the definition of an admittance, the input to the environment is the human inter-
action force uphy(t) = fh(t) ∈ R. Assuming a deterministic behavior, no noise and un-
certainty terms are required, ξphy(t) ∈ {}. The feature vector θphy contains all proper-
ties that are needed to describe the sensorimotor domain. In this example it contains
the admittance parameters θphy =

�
m d k

�T ∈ R3. The sensorimotor observation of
the physical model gathers all quantities that are objectively measurable into an obser-
vation vector, assuming that we can measure every state and every environment fea-
ture yphy(t) =

�
xh(t) ẋh(t) fh(t) m d k

�T ∈ R6. Information from the physical do-
main is gathered by the human senses. The input vector to the sensory domain use ∈ Use
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3 Dynamic Modeling of Sensorimotor Processes

must match human capabilities. In our example, position xh(t), velocity ẋh(t), and envi-
ronment force fh(t) can be acquired, see Section 2.2. The sensorimotor set for the physical

domain Sphy is thus Sphy =
n�

xphy(t)T θ T
phy uphy(t) yT

phy(t)
�T ∈ R12

o
. Based upon these

considerations, the functions ψphy(·), νphy,se(·), and φphy(·) can be formulated as

ẋphy(t) =

�
ẋh(t)
ẍh(t)

�
=

�
0 1
− k

m
− d

m

�
xphy(t) +

�
0
1
m

�
fh(t)

︸ ︷︷ ︸
ψphy(·)

, xphy(0) =

�
xh,0

ẋh,0

�
,

use =




1 0
0 1
0 0


xphy(t) +




0
0
1


 fh(t)

︸ ︷︷ ︸
νphy,se(·)

, yphy(t) =




xh(t)
fh(t)
θphy




︸ ︷︷ ︸
φphy(·)

,

where xh,0 and ẋh,0 are constant initial values.

Remark 3.6. The definition of sensorimotor transformations as given in Definition 3.4 re-
stricts the domain dynamics to a state-space formulation of time-continuous differential
equations with time-varying parameters. Other modeling forms, such as hybrid models
with switching dynamics, are principally valid candidates for sensorimotor transformations
as well, but omitted here to reduce the number of model parameters and complexity, thus
enhance readability.

3.2.1 Joint Sensorimotor Transformations and Observations

Modeling all components of the sensorimotor loop depicted in Figure 3.1, or the individual
transformations and domain dynamics in the dynamic mapping framework depicted in Fig-
ure 3.2 is hardly realizable. This is due to the fact that the set of observations is generally
only a subset of the full sensorimotor set in domain a: Ya ⊂ Sa. In the case of an un-
known model structure and/or the lack of observability, the full model may not be inferable
from the input-output relationship. As a consequence, experimental techniques and meth-
ods emerged describing the input-output relation over multiple domains without explicitly
considering all intermediate processes. To account for such simplified modeling forms, joint
sensorimotor transformations are introduced.

Definition 3.6. A joint sensorimotor transformation

νa,b,c : Sa→ Uc (3.9)

describes the mapping of a sensorimotor set in the sensorimotor domain a into the set of
input vectors to the sensorimotor c which is connected to domain a indirectly over a senso-
rimotor domain b.

It follows that

uc = νb,c
�
xb(t),θb(t),ub(t),ξb(t), t

�

= νb,c

�
xb(t),θb(t),νa,b(xa(t),θa(t),ua(t),ξa(t), t),ξb(t), t

�

= νa,b,c
�
xa(t),xb(t),θa(t),θb(t),ξa(t),ξb(t), t

�

= νa,b,c

�
xa,b(t),θa,b(t),ξa,b(t), t

�
(3.10)

40



3.3 Haptic Perception Models

with

xa,b(t) =
�

xa(t)T xb(t)T
�T ∈ Xa × X b, θa,b(t) =

�
θa(t)T θb(t)T

�T ∈Θa ×Θb,

ξa,b(t) =
�
ξa(t)T ξb(t)T

�T ∈ χa ×χb.

Equivalently,

ψa,b : Xa × X b→ Xa × X b (3.11)

can be formulated as

ẋa,b(t) =ψa,b

�
xa,b(t),θa,b(t),ua(t),ξa,b(t), t

�
, xa,b(0) = xa,b,0 (3.12)

with ψa,b(·) containing dynamic processes which can come from sensorimotor domains a
and b.

Outer psychophysical models are an example of founding on joint sensorimotor trans-
formations. The relation between a physical stimulus and the verbal response about
a subjective impression of it, e.g., if a force difference (∆ fh ∈ Sphy) can be per-
ceived (yperc ∈ Yperc =

¦
“yes” “no”

©
) is modeled directly, without considering sensory and

neural processes [57]. Quantitative relations between environment and a percept can be
captured by the transformation yperc = φ(νphy,se,ne,perc(·), ·). Another example is the develop-
ment of task performance models, where joint sensorimotor transformations are involved in
modeling closed-loop interactions with a physical environment. These exemplary but prac-
tically relevant models are detailed out in the following. Since the focus of this thesis is on
the haptic modality, only perceptual and task performance models including haptic feedback
are targeted.

Remark 3.7. For simplicity and readability reasons, the notation νa,b,c(·) and νa,c(·) is used
interchangeable.

3.3 Haptic Perception Models

A perception model relates a specific quantity in the physical world, either a physical state
variable x∗phy(t) ∈ xphy(t), or a specific feature θ ∗phy(t) ∈ θphy, to a response about its percep-
tual equivalent,

x∗phy(t) ∈ Xphy 7→ yperc(t) ∈ Yperc,

θ ∗phy(t) ∈Θphy 7→ yperc(t) ∈ Yperc. (3.13)

Using the formalism of sensorimotor dynamics, transformations and observations, this rela-
tion can be expressed as

ẋphy,se,ne,perc(t) =ψphy,se,ne,perc

�
xphy,se,ne,perc(t),θphy,se,ne,perc(t),uphy(t),uec(t),ξphy,se,ne,perc(t), t

�
,

(3.14)

xphy,se,ne,perc(0) = xphy,se,ne,perc,0,

yperc(t) = φperc

�
ẏperc(t), . . . ,xperc(t), . . . ,θperc(t),νphy,perc(·),uec(t), . . . ,ξperc(t), t

�

(3.15)
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where

νphy,perc(·) = νphy,perc

�
xphy,se,ne(t),θphy,se,ne(t),uphy(t),ξphy,se,ne(t), t

�
. (3.16)

A specialty of the perceptual system is direct access to the efference copy uec from the cog-
nitive motor control process, determining the activation of muscles, as discussed in Sec-
tions 3.1 and 3.2. Furthermore, the perceptual system may be aware of the human intention
to achieve a certain motor task. Typically, the physical world containing haptic states and
features is excited from the motor system. In this way, the input uphy(t) to the physical sen-
sorimotor domain is determined by the motor system, which itself receives neural signals
driven from the cognitive controller mechanism in the brain. Thus, the sensorimotor loop is
closed over the haptic environment and described by a closed-loop dynamic process instead,

ẋ�(t) =ψ�
�
x�(t),θ�(t),une(t),ξ�(t), t

�
, (3.17)

x�(0) = x�,0

where

ψ�(·) :=ψne,mo,phy,se,ne,con(·),
x�(t) := xne,mo,phy,se,ne,con(t), θ�(t) := θne,mo,phy,se,ne,con(t), ξ�(t) := ξne,mo,phy,se,ne,con(t)

and x�,0 is a constant initial value. Subsequently, equation (3.15) can be rewritten as

uperc(t) = ν�,perc(x�(t),θ�(t),une(t),ξ�, t), (3.18)

ẋperc(t) =ψperc

�
xperc(t),θperc(t), [uperc(t)

T , uec(t)
T]T ,ξperc(t), t

�
, (3.19)

yperc(t) = φperc

�
ẏperc(t), . . . ,xperc(t), . . . ,θperc(t), [uperc(t)

T , . . . , uec(t)
T , . . .]T ,ξperc(t), t

�
.

(3.20)

Remark 3.8. The closed-loop sensorimotor dynamics in equations (3.17) are defined as tak-
ing the efferent neural signal une(t) as input to the global closed-loop system. This choice
reflects the fact that the independent input to the control loop is actually defined by the cog-
nitive control law, taking the intention for a certain motor action and the sensory feedback
from the environment into account.

In the following, our focus will be on the dynamic perception mechanism (3.18)-(3.20).
The dynamic perception mechanism (3.18)-(3.20) fulfills two main tasks: The first task is
extracting information from the perceptual input signals uperc(t) and uec(t) which is neces-
sary for the percept of the physical world. The second task is formulating a perceptual re-
sponse yperc. For the extraction of information, two types of problems can be distinguished:
Perceiving a physical environment state variable x∗phy(t) 7→ yperc(t) requires a reconstruction
of x∗phy(t) based on the information available to the perceptual system. Reconsidering from
equation (3.20) that x∗phy(t) is encoded into uec(t) and uperc(t), the perception process can
be interpreted in a system theoretic sense as a state estimation problem. One solution to state
estimation problems is a state observer.

In the case of perceiving a physical environment feature θ ∗phy(t) 7→ yperc(t), sensory and
motor information must be combined together to infer the environmental property. In sys-
tem theory, this is referred to as a parameter identification problem.
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3.4 Task Performance Models

3.3.1 Relation to the Diffusion Model

The diffusion model was introduced in Section 2.4.3 as a powerful framework to describe
perceptual processes dynamically. Indeed, it can be easily fit into the sensorimotor frame-
work introduced here: The input s(t) to the diffusion model denotes information avail-
able to the sensory system. The information being required for the perceptual judgment
is extracted by the information encoding stage Genc( jω), or using terms from the dynamic
perception framework, the perceptual dynamics. The following information accumulation
stage Gacc( jω) is easily included into the perceptual dynamics in the form of an integrator.
The decision stage, leading to the perceptual response yperc is one example of a perceptual
observation function yperc = φperc(·).

3.3.2 Relation to Quantitative Perceptual Laws

Static perceptual laws as discussed in Section 2.4.2 directly map features or states in the
physical world to their perceptual equivalent. A simplification is made by modeling only the
steady state of the perceptual system and neglecting all time-varying influence factors, such
as changes in the interaction movement characteristics. In terms of the dynamic sensori-
motor framework proposed in this chapter, the steady-state description corresponds to the
case ẋ�(t) =ψ�(·) = 0, such that the mappings

x∗phy ∈ Xphy 7→ yperc ∈ Yperc,

θ ∗phy ∈Θphy 7→ yperc ∈ Yperc.

are static.

3.4 Task Performance Models

Task performance describes human’s ability to accomplish a certain goal under given circum-
stances. Classically, it is measured by task performance indexes, such as the task completion
time, or the accuracy in achieving a certain goal (see Section 2.6.4). Such static task perfor-
mance measures are unsuited for an application in algorithms where a prediction about the
operator’s performance during the execution of a task is required. This could be necessary
to proactively assist the operator and increase his/her task performance. An example for
an online-adaptation of communication parameters requiring a prediction of the operator’s
task performance during task execution is discussed in Chapter 6. Predicting the task perfor-
mance prior to task completion generally requires knowledge about the underlying factors
leading to a specific behavior, including

• the given task, represented by a task parameter vector θT .

• the dynamic response characteristics of the sensorimotor loop, ψ�(·), closed over the
physical environment.

• a performance state xperf for capturing cumulative performance measures.
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3 Dynamic Modeling of Sensorimotor Processes

As an example for θT , one could think of an obstacle course’s length in the context of a
navigation task, or the size of the target area in a pick-and-place exercise. Exemplary for
the influence of the dynamic response characteristics of ψ�(·) stands an object’s inertia
which is to be carried from one place to another and decreases the responsiveness of the
sensorimotor loop – a higher inertia requires more time to accelerate and decelerate, thus
decreasing performance in the sense of task completion time. An example for the need of a
performance state xperf is the accumulated number of failures in an assembly task that can
not be accounted for in a static way.

In the mathematical modeling framework, introduced in Section 3.2, task performance
can be considered similarly to a sensorimotor domain, abbreviated perf . Equivalently to a
dynamic perceptual model (3.19)-(3.20), dynamic task performance can be modeled as

uperf(t) = ν�,perf(x�,θ�,une,ξ�, t)

ẋperf(t) =ψperf

�
xperf(t),θperf(t),uperf(t), t

�
, xperc(0) = xperc,0,

yperf(t) = φperf

�
ẏperf(t), . . . ,xperf(t), . . . ,θperf(t),uperf(t), . . . , t

�
.

In a similar manner as for other sensorimotor domains, ψperf(·) captures the performance
dynamics, while φperf(·) is the performance observation, resulting in a continuous task per-
formance observation yperf(t). Because the task performance model is defined by the system
designer, noise terms are not considered, as those constitute no additional benefit.

3.4.1 Relation to Static Performance Measures

Most classical performance measures capture the task performance after the completion
of a task. Thus, these measures correspond to the value yperf(tcom) where tcom is the task
completion time.

3.5 Discussion

The biggest progress beyond the state of the art in the mathematical framework for senso-
rimotor processes presented in this chapter is the consideration of dynamic processes in the
description of sensorimotor processes. As a consequence, haptic perception and task perfor-
mance can be modeled with a greater reliability and with a higher accuracy in a larger variety
of experimental conditions. The framework is founded on a set of coupled differential equa-
tions, modeling behavior in the physical, sensory, neural, cognitive, and motor sensorimotor
domain. The measurable quantities of each sensorimotor domain are contained in sensori-
motor observations, formulated as filter functions with respect to all available information
in this domain.

The fundamental advantages of this dynamic framework compared to static perceptual
laws and performance measures are:

1. Physiological factors, e.g., the availability of sensors for capturing physical properties,
can be taken into account for explaining perceptual characteristics and task perfor-
mance.
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2. Models on different abstraction levels can be developed using the same formalism, e.g.,
physiological muscle models, inner psychophysics models, and input-output models
for outer psychophysics.

3. Not only perceptual responses and task performance indexes can be modeled, but
also hidden measures which are not measurable otherwise, such as the perceptual
state xperc(t) and the task performance state xperf(t). Based on these measures, the
perception of a specific scene and the performance in a specific task can be potentially
predicted even before completion.

These properties are useful when systematically developing quantitative perceptual and task
performance models which are applicable not only in a static, human-centered evaluation
and optimization of technical systems, but even in algorithms capable of online-optimizing
these goals.

3.6 Conclusions and Open Problems

We presented a mathematical framework for the dynamic description of sensorimotor pro-
cesses, specifically perception and task performance models. As the fundamental structure
of the framework is based on stochastic differential equations in the form of state space
models, the models developed on this foundation can be easily applied to a model-based ex-
perimental design and a utilization in human-centered control algorithms, interface design,
and evaluation of telepresence systems.

An open issue is a simple and intuitive representation of such models in a form that can be
accepted not only by engineers familiar with differential equations but also for psychologists,
experts in quantifying human perceptual phenomena.
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Summary. Perception of a haptic feature such as stiffness, damping, or inertia requires
the combination of movement and force information. Temporal limits of this combi-
nation process are investigated, and modeled quantitatively in the form of a dynamic
process. Comparing the predictions of multiple model candidates with respect to their
ability to capture the perception thresholds of time delay between movement and force,
we find that

• movement characteristics significantly influence the perception threshold,

• dynamic models capture the perception threshold better than static models,

• differences between two environments may be discriminated by a comparison of
feedback force or limb movement rather than the actual environment feature.

Haptic telepresence systems are designed to convey a specific environmental impression to
the human operating the system. Usually, this impression is not directly measurable by
mechanoreceptors, e.g., limb movement and force feedback, but is encoded into an envi-
ronmental property such as a mechanical impedance (see Sec. 2.2). To perceive such a
feature, information from the interaction movement must be related to a specific force feed-
back. In telepresence systems, haptic information from the remote side are often affected
by the technical system, e.g., due to communication unreliabilities such as time delay in
the communication channel of a telepresence system, where the temporal relation between
movement and force is distorted. For the design of high-fidelity telepresence systems that
aim for perfect haptic transparency, it is crucial to know the precision which is required for
the presentation of interaction movement and force feedback in order to not affect haptic
perception.

In this chapter, three different mechanisms are introduced that are suited for combin-
ing movement and force into a unified percept. These hypothetical mechanisms are both
motivated from a system theoretic point of view, and from findings in the sensorimotor con-
trol literature and perceptual models from other domains than haptics. Conceptually new
compared to existing models in the literature for the perception of haptic environments, we
include dynamic models of body and environment to describe the combination process of
limb movement and force. A series of three experiments measuring the detection thresholds
of time delay in the haptic feedback is presented, where the participants’ sinusoidal inter-
action movement, the magnitude of force feedback, and the type of haptic environment is
varied systematically. A parameter comparison mechanism, a matched filter model, and a
state observer model of body and environment are evaluated with respect to their capabil-
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4 Dynamic Combination of Movement and Force

ity to reflect the observed perceptual behavior. From these candidates, the observer model
shows superior prediction properties in comparison to its alternatives.

Theoretical models for the combination of interaction movement and feedback force are
discussed in Section 4.1. Dynamic model candidates predicting perception thresholds for
temporal misalignment between limb movement and force feedback are introduced in Sec-
tion 4.2. The model-guided experimental design of three psychophysical studies for haptic
time delay perception, explicitly considering the different model predictions in the choice
of experimental conditions, is described in Section 4.3. Experimental methods and results
are presented in Section 4.4. A general discussion of the summarized results from all ex-
periments with respect to their applicability to haptic telepresence systems in Section 4.5
finishes the chapter.

4.1 Background

Investigations on perceptual limits of haptic environments, determining the relation between
an interaction movement and the force feedback, have a long tradition in psychophysical re-
search. Indeed, many perceptual laws discussed in Section 2.4.2 describe humans’ abilities
to detect variations in haptic environment features, such as stiffness, damping, or inertia.
As an example, Weber’s Law originally describes the just noticeable difference of weight and
its dependency on the weight magnitude [62]. The quantization of perceptual thresholds
in terms of discriminable environmental features is appealing from an engineering point
of view due to its practicability. As an example from a telepresence application, the dif-
ference between the haptic environment impedance Zenv( jω) on the remote side and the
impedance Zh( jω) which is actually displayed to the human operator can be determined
analytically [18, 35]. Using perceptual thresholds of these specific environment features,
it can be assessed if the difference between the two stimuli can be perceived, thus if the
telepresence system is judged as transparent or not. A fundamental problem of percep-
tion models for environment impedances is that the human does not possess receptors for
impedances. Instead, haptic properties such as stiffness, inertia, or damping are inferred
indirectly by extracting temporal and magnitude information from the sensed interaction
movement and force feedback. Most current perception laws are static with respect to the
exploration actions. It is though known, that limb movement can significantly influence the
perception of a haptic environment, e.g., the perception of hardness. Instead of an object’s
stiffness, a movement-dependent measure, the "rate-hardness" determines how hard an ob-
ject is felt [125]. Another example for the dependencies between movement and haptic
environment perception is estimation of a moved mass that was found to depend on factors
such as movement amplitude and frequency [126].

One solution to overcome this modeling inaccuracy is to take the time series data of move-
ment and force directly into account to explain the perceptual performance of environment
features. For spring environments, such models have been proposed earlier: Stiffness differ-
ence perception can be modeled by a simple comparison mechanism of the maximum forces
that are generated in an instructed interaction movement up to a specified position, explor-
ing a virtual spring [16, 127]. A direct comparison of time-series sensory signals, sensed in
two successive comparison trials is though problematic. Slight changes in the interaction
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movement, result in a in a difference of the force signal, which can lead to potentially wrong
conclusions. Instead, an internal representation of the haptic characteristics could be used
to predict the force of the memorized environment on-line and, perception of differences
can be detected based on the simulated time series.

Reconsider from Section 3.3 that the problem of perceiving an environment feature is a
parameter identification problem from a system theoretic point of view. Against this back-
ground, a decision whether two environments are perceived as the being the same or dif-
ferent can be made in at least two ways: Either, two independent parameter identification
processes can be performed, and the results are compared to each other. Perceptual limits
can so be explained with uncertainties in the identification result, e.g., due to a limited ex-
posure time, and internal noise processes. Alternatively, a model verification procedure can
be used to judge whether two environments are the same or different. This approach founds
on the assessment of how good new sensory data is explained with an internal, previously
identified model. The model can be learned, e.g., by previous encounters with a haptic
characteristic of a certain type, or by directly comparing two environments successively.

In the following, we want to introduce three alternative hypothetical mechanisms, princi-
pally capable of capturing the limits in the combination process of movement and force into
a percept of an environmental feature. In contrast to existing perception models, dynamic
models are utilized to capture perceptual phenomena, allowing the explicitly consideration
of varying movement conditions. As a result, extensions to the classical, static view on
perception thresholds to dynamic threshold models are made. The models found on the sen-
sorimotor framework introduced in Chapter 3 and are used for a model-based experimental
design of a psychophysical study.

4.2 Perception Model Representations

Models for the combination process of movement and force into an estimate of an envi-
ronment feature can be embedded into the mathematical formalism of perception processes
proposed in Chapter 3 as

yperc(t) = φperc

�
xperc(t), . . . ,θperc(t),uperc(t), . . . ,uec(t), . . . ,ξperc(t), t

�
, (4.1)

see equation (3.15). Here, yperc(t) ∈ Yperc is the perceptual response, taking the perceptual
state variable xperc(t) ∈ Xperc, the input information available from the sensory feedback (and
transmitted over neural pathways) uperc(t) ∈ Uperc, and the efference copy uec(t) ∈ Uec into
account. The parameter vector θperc(t) ∈Θperc influences the characteristics of the (generally
time-varying) perceptual model. The nature of the perceptual response yperc(t) is diverse and
depends on the specific perceptual task: In the case of a free response about the perception
of a specific environment, yperc could be “perceiving feature x with intensity y”. Technical
applications though often require only human’s difference discrimination abilities. These
abilities could be captured by a perception model that models the response if two stimuli
can be discriminated or not as

yperc(t resp) =

(
“different” if ∃0≤ t ≤ t resp : |δ(·)|> ε,
“same” if ∀0≤ t ≤ t resp : |δ(·)|< ε, (4.2)
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where

δ(·) = δ
�

xperc(t), . . . ,θperc(t),uperc(t), . . . ,uec(t), . . . ,ξperc(t), t
�

and t resp is the time instance where the response is given. The function δ(·) is denoted as
decision criterion, and ε as decision threshold, determining the maximum allowable value
for δ(·) to be not perceivable.

Remark 4.1. This model assumes the existence of a specific, constant threshold value εwhich
determines the perceptual response based on noisy perceptual input information. While de-
terministic threshold models are inappropriate for the modeling of perceptual phenomena,
the existence of a decision threshold in the context of a stochastic decision variable δ(·)
is common in psychophysical modeling, e.g., in signal detection theory [128], or diffusion
models [68,69].

In the following, three candidates for the decision criterion δ(·) in (4.2) are proposed
and embedded into a reduced and simplified version of the sensorimotor loop sketched in
Figure 4.1a. Body admittance Ybod y( jω) and environment impedance Zenv( jω) are linearly
approximated and only a single limb is moved, actuated by a single force fm,res(t) ∈ R from
the muscles acting on that limb in one direction, see also Chapter 3. The tissue dynamics,
filtering the environment force acting on the moved limb are neglected, assuming that the
tissue is in a compressed state for the time of interaction, thus approximately rigid. In the
following, we will discuss perception models which take a single human limb’s state

xh(t) =
�

xh(t) ẋh(t)
�T ∈ R2, (4.3)

moving in a haptic environment as an input, provoking a environmental force fh(t) ∈ R
reacting back on the motor force fm,res(t). While the interpretation of force and state in
terms of input and output variables is interchangeable, we will limit our considerations to
the aforementioned case. We do not make assumptions about the structure of the control
mechanism responsible for the specific movement but assume that desired trajectories can
be executed with sufficient accuracy. The noise terms, transmission time delay, and sensor
transfer functions mentioned in Figure 3.1 are not depicted and assumed to be compensated
for in the control algorithm, but their influence will be discussed in the subsequent sections.

Different hypothetical perception processes are presented in the following. Evidence from
psychophysical and sensorimotor literature for the validity of the model candidates are pro-
vided.

4.2.1 Feature Comparison

Current perception models capturing the discrimination abilities of a human perceiving a
haptic environment assume the existence of a threshold in terms of environmental proper-
ties [11,12,62,63]. A decision criterion based on differences in the environment features is
proposed as a representative of this classical view. For comparing two haptic environments
with physical features θ1 and θ2, respectively, perceptual estimates θ̂1, θ̂2 must be obtained
by haptic exploration. Based upon, a perception mechanism following equation (4.2) can be
formulated as

δ(·) = δθ
�
θ̂1, θ̂2

�
, ε= εθ . (4.4)
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xdes fm,res xh fhGC( jω) Gm( jω) Ybod y( jω) Zenv( jω)

...
(a) A subset of the sensorimotor control loop, abstracting a position-controlled limb.

xdes fm,res xh fh
...

δθ (·) yperc

parameter identification: θ̂env

(b) Difference perception model by comparing identification results.

fm,res xh

f̂m,res

...

Ĝinv( jω)δ f (·)yperc

(c) Difference detection using model validation, based on a matched filter.

...fmuscle xh

B̂
∫
(·) Â

K
−

x̂h δx(·) yperc

(d) Difference detection using model validation, based on a state observer.

Figure 4.1: Three alternative discrimination mechanisms to detect differences between two
haptic environment features.
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From a control theoretic point of view, the perceptual process of determining the perceptual
estimates θ̂phy,1,2(t) requires a parameter identification method which is to be encoded into
the perceptual apparatus.

One specific black-box system identification technique, based on the estimation of the
input-output covariance matrix and the autocovariance matrix of the input has been dis-
cussed in Section 2.5.2. In studies on monkeys’ brains, correlation methods as a normalized
form of covariance methods have been found to explain brain activity in selected regions
well if the animal attends to a certain visual stimulus [129]. This could be taken as evi-
dence for the existence of a neural substrate for performing correlations efficiently in certain
perceptual brain regions. Correlation mechanisms can furthermore explain humans’ perfor-
mance in detecting temporal differences in audio-visual signals [130]. A perceptual model
on the basis of a parameter identification technique is depicted in Figure 4.1b.

4.2.2 Model Verification Using Matched Filtering

An alternative approach to judge whether two haptic environments have the same or dif-
ferent properties is the usage of a model verification technique. In practical system iden-
tification procedures, verification methods are a standard procedure to check whether an
identified has good generalization capabilities. A model of the first haptic environment is
identified on the informational basis of the first exploration. During the exploration of the
comparison environment, sensory information is gathered and compared to a prediction of
the sensory output, using an internal model of the first environment’s property. If predic-
tion and sensory evidence matches, the environments are the same. If there is a mismatch
between prediction and feedback, the two environments are classified as different. Diverse
verification methods are utilized in various technical applications, differing in the criterion
which is taken into consideration for classification [131].

Here, a verification problem utilizing a comparison of the input information is proposed,
namely

δ(·) = δ f

�
fm,res(t), f̂m,res(t)

�
, ε= ε f , (4.5)

where f̂m,res(t) is a prediction of the force to move in the previously identified haptic envi-
ronment, and fm,res(t) is the measured force. The optimal solution for the reconstruction
with respect to the signal-to-noise ration is the usage of a matched filter model. The opti-
mal filter that reconstructs the motor action from measuring the state xh(t) is a dynamic
model containing the inverse body dynamics and the environment impedance, denoted by
its transfer function Ginv( jω).

There is experimental evidence for the usage of inverse dynamic models in sensorimotor
control by predicting the motor actions from the sensed state of the body, see Section 2.6.3.
Similarly, the model Ĝinv( jω) capturing body dynamics, sensor- and environmental dynam-
ics potentially plays a role in perception as well, see Figure 4.1c. The aforementioned stiff-
ness estimation model on the basis of comparing the maximum forces can be seen as a
representative of a perception model using inverse dynamics [16,127].
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4.2.3 Model Verification Using State Observers

Instead of the exerted force, the body state xh(t) can be taken into consideration for model
veification, equivalent to a perceptual model candidate

δ(·) = δx

�
x̂h(t),xh(t)

�
, ε= εx. (4.6)

In contrast to matched filters, predicting the motor action from a sensory estimate of the
body state, state-space observers use a forward model of body and environment dynamics
to predict the body state based on the current motor action. The Luenberger observer, a
representative of linear state observers, is depicted in Figure 4.1d. The state matrix Â∈ R2×2

contains all dynamic processes of body and environment, the input matrix B̂ ∈ R2 defines
the impact of the input to each state. The error between the feedforward prediction of limb
state x̂h(t) and the measured limb state xh(t) is taken into consideration to correct the state
estimate by multiplication with the gain matrix K ∈ R2×2. The influence of the gain matrix K
should be briefly discussed in the following: First, the case of K = 0 is considered: If Â and B̂
capture the body and environment behavior exactly and the initial state estimate x̂h(0) is
correct, the state estimate over time x̂h(t) equals the real state xh(t). If the model is imper-
fect, the estimated state deviates from the real state. This error is attenuated by choosing an
appropriate K 6= 0, however, it does not vanish. In technical applications, K is used to assign
arbitrary dynamics to the observer’s behavior, depending on the application’s demands, see
Section 2.5.1. In the case of white noise affecting the output measurement and states, the
noise-optimal choice for K is the Kalman Gain. This choice turns the Luenberger observer
into a stationary Kalman filter. Kalman filters were indeed found to describe sensorimotor
control processes well, see Section 2.6.3. This is a motivation to consider such a structure as
a candidate for perceptual processes as well.

4.3 Model-Guided Experimental Design

Two haptic environments which are discriminable from each other can differ in various
ways: On the one hand, differences in the magnitude of the force feedback, given a spe-
cific exploration movement can be noticed. Such differences can be due to a variation in
the spring constant, damping, or inertia. On the other hand, temporal distortions such as
time delay between movement and force feedback is capable of changing the impression
of the environment. Although time delay in haptic feedback is not a natural phenomenon
in everyday-life haptic interactions, it is a problem in the operation of telepresence systems
over large distances [42, 132], space [37], or under water [46]. We will focus on the in-
vestigation of distortions in the haptic combination process due to temporal faults for two
reasons: First, perception of time delay in haptic interaction with an environment is poorly
researched, but such knowledge is helpful to provide guidelines and specifications of haptic
telepresence systems. Second, temporal distortions are better suited to dissociate between
the three model candidates proposed in Sections 4.2.1 - 4.2.3, as will be detailed out later.

Three hypothetical perception mechanisms that could lead to detecting time delay in the
haptic feedback have been proposed by the author in earlier work [133, 134]: An internal
clock and a perceptual mechanism sensitive to the force discrepancy between the real sensory
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(a) Crosscovariance with white noise signals.
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(b) Crosscovariance with sinusoidal signals.

Figure 4.2: The crosscovariance function Ruy of two discrete-time signals with y(k) = u(k−
10), depicted for the cases of white noise (a) and sinusoidal signals (b). Both
have a peak at the lag corresponding to the time delay.

force feedback and a predicted, non-delayed force reference have been considered. Fur-
thermore, a perception mechanism of the own exploration action has been proposed. These
model candidates for time delay detection are related to the hypothesized combination mod-
els for movement and force, derived in Section 4.2 and their predictions are compared in
the following.

Remark 4.2. For simplicity reasons, and as commonly done in the literature [49, 135, 136],
the different approaches are discussed using a reduced dynamic model of the human motor
apparatus, with a single joint and one muscle pair attached, approximated by a mass-damper
system with human-like parameters (mh = 2kg, dh = 2Ns/m), taken from [49].

4.3.1 Feature Comparison and the Internal Clock

A discrimination mechanism for time delay can be based on an identification procedure.
We will limit our considerations to methods founding on the covariance between input and
output data. The crosscovariance function between a white noise input signal u(t) and an
output signal y(t) which is the time-delayed version of u(t) has a peak at the location of
the time delay, see Figure 4.2. In the case of autocorrelated input signals, or non-equally-
shaped input and output signals, e.g. the input and output of a dynamic system, the cross-
covariance function is non-zero for lags others than the time delay as well, the example of
sinusoidal signals is illustrated in Figure 4.2b. Crosscovariance estimates for the time de-
lay T̂d,{1,2} ∈ θ̂phy,{1,2} are a standard tool for identifying the amount of time-delay in system
theory [137].

For the perception of haptic time delay, it was hypothesized in [134] that the time be-
tween a limb movement and the resulting time-delayed environment force may be perceived
using an internal clock mechanism. The origins of this hypothesis lie in temporal perception
theory [138], according to which time delay, as a special type of duration, is estimated from
an internal clock. Assuming that a simple manual movement does not influence the internal
clock, the detection threshold T θd,thresh of time delay in haptic feedback is independent of the
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operator’s manual movement and force feedback, that is, it is constant.

Td,thresh = const.

In this way, the predictions from the clock mechanism hypothesized in [134] coinci-
dent with a perceptual threshold model founding on identified estimates of the time de-
lay T̂d,{1,2} ∈ θ̂phy,{1,2}

yperc(tresp) =

(
“different” if |T̂d,1− T̂d,2|> T θd,thresh

“same” if |T̂d,1− T̂d,2|< T θd,thresh

. (4.7)

4.3.2 Matched Filter Model and Force Discrepancy

Instead of a direct comparison between identified estimates, differences in the environmen-
tal time delay can be perceived through prediction errors, e.g., by using a matched filter.
Matched filter predictions found on a sensory measurement of the current body and envi-
ronment state xh(t) and estimate the motor command that is needed to move in a haptic
environment. In the frequency domain, this mechanism is given by

F̂m,res( jω) = ĜinvXh( jω),

where F̂m,res( jω) and Xh( jω) are the Fourier-transforms of f̂m,res(t) and xh(t). Considering
the sensorimotor system abstracted in Figure 4.1a, Ĝinv( jω) can be easily calculated to

Ĝinv( jω) = Ẑenv( jω) +
1

Ybod y( jω)
, (4.8)

where Ẑenv( jω) is a previously identified environment impedance which is to be verified
with the actual sensory and motor data. We assume the body admittance Ybod y(t) to be suf-
ficiently well-known from everyday-experience, thus no estimation of this dynamic system is
needed in every sensory experience of the environment. If the filter model is not exact, e.g.,
due to the fact that Zenv( jω) is afflicted with time delay but the internal model representa-
tion Ẑenv( jω) is not, the actual resulting muscle force fm,res(t) that is required to move the
limb, differs from the prediction. The required force fm,res(t) to move in a haptic environ-
ment with time delay, the filter prediction f̂m,res(t) without considering the time delay, and
the error between both, is exemplary depicted in Figure 4.3.

Perceiving the time delay Td in haptic feedback over the difference in environmental force
feedback and predicted, non-delayed force feedback is also the second hypothesis proposed
in [134], named as “force discrepancy model”. It is inspired from experiments reporting
that stiff environments are perceived softer in the case of time-delayed force feedback [127,
139, 140]. The mechanism proposed in [127] capturing the observed stiffness estimation
behavior best, relies on the force at the maximum position, which is smaller with increasing
time delay. The model in the form of equation (4.2) can be formulated as

yperc(tresp) =

(
“different” if ∃0≤ t ≤ tresp : | f̂m,res(t)− fm,res(t)|>∆ fthresh

“same” if ∀0≤ t ≤ tresp : | f̂m,res(t)− fm,res(t)|<∆ fthresh

. (4.9)
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Figure 4.3: The force which is required to move in a haptic environment with time delay
fm,res(t) (solid) differs from the filter prediction f̂m,res(t) (dashed) that does not
consider time delays in the filter dynamics. The resulting force error (dash-
dotted) is the decision criterion in the second perception model.

In addition, we propose a prediction model based on Weber’s Law, as force difference
detection was found to follow these characteristics [7]. In this case, time delay can be
perceived if the fraction of force error and force magnitude exceeds the Weber fraction W :

yperc(tresp) =





“different” if ∃0≤ t ≤ tresp :
| f̂m,res(t)− fm,res(t)|

fm,res(t)
>W

“same” if ∀0≤ t ≤ tresp :
| f̂m,res(t)− fm,res(t)|

fm,res(t)
<W

. (4.10)

Remark 4.3. The perceptual model candidates formulated in equations 4.9 and 4.10 do not
make the time delay detection threshold explicit. The dependency is instead encoded into
the difference in force feedback: While the actual force comes from the exploration of a time-
delayed environment, the “reference force” f̂m,res(t) contains the non-delayed environment
dynamics. In the following, the amount of time delay resulting in a difference in force is
referred to as T f

d,thresh. The equivalent for the Weber fraction is denoted as T W
d,thresh.

4.3.3 State Observer and Active Exploration Model

Instead of differences in the exerted force, the body’s state could affect the discrimination of
time delay as well, resulting in a perception model candidate

yperc(tresp) =

(
“different” if ∃0≤ t ≤ tresp : |x̂h(t)− xh(t)|>∆xthresh

“same” if ∀0≤ t ≤ tresp : |x̂h(t)− xh(t)|<∆xthresh

. (4.11)

In this model, the state estimate x̂h(t) come from a dynamic state observer. Compared to the
inverse model simulation, the state observer has one more degree of freedom – the feedback
matrix K . In our case, where the state vector consisting of the limb position and velocity
is completely measurable since the human has receptors for those quantities, K ∈ R2×2 has
four entries ki j, with i, j = 1, 2. The observer behavior is described by

˙̂xh(t) = Âx̂h(t) + B̂ fm,res + K(xh(t)− x̂h(t)), (4.12)
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4.3 Model-Guided Experimental Design

thus the magnitude of the observation error depends on the feedback matrix K and the
exploration pattern xh(t).

The application of forward models was implicitly considered in [134] by the hypothetical
time delay perception mechanism in the form of an “active exploration model”. It states
that the detection of time delay in a haptic system depends on the characteristics of the
exploration movement xh(t) as one component of the state vector xh(t). The motivation
of this candidate is drawn from results reported for experiments in visual virtual environ-
ments using a head-mounted display. It has been demonstrated that the detection of asyn-
chrony between head motion and visual feedback is dependent on the turning speed of the
head [141]. Higher speeds result in lower detection thresholds for visual delays. The user of
such systems may infer latency in the head tracking system based on the spatial discrepancy
between the delayed and non-delayed object positions [142] that is, the displacement of an
object from its originally expected position introduced by the latency between head motion
and visual feedback. In impedance-type haptic environments, a similar mechanism based
on deviations of the limb and environment state xh(t) from the predicted state that is ob-
tained with non-delayed environment dynamics x̂h(t) may support the detection of delayed
feedback.

Remark 4.4. Equivalent to the force-dependent time delay discrimination thresholds dis-
cussed in Remark 4.3, the state-dependent time delay discrimination threshold is denoted
as T x

d,thresh.

4.3.4 Model-Guided Stimulus Selection

Testing the capabilities of the model structures described in Sections 4.3.1-4.3.3 to predict
the perceptual limits of the process combining movement and force together requires psy-
chophysical experiments measuring these limits under different conditions. To be able to
favor one hypothetical perception mechanism over another, the differences between the pre-
dicted perception limits should be maximized by an optimal selection of experimental con-
ditions. Many haptic environments are based on the simple haptic “building block” stiffness,
damping and inertia with their specific parameters k, d, and m. The individual components
are equivalently described by their mechanical impedance and by a differential equation
model,

Zenv( jω) =
Fh( jω)

Ẋh( jω)
=
n k

jω
, d, mjω

o
and fh(t) =

n
kxh(t), d ẋh(t), mẍh(t)

o
. (4.13)

In the following, we will discuss predictions for the time delay detection detection threshold
in force feedback from the environment on the example of a spring environment with spring
constant k. Without loss of generality, the equilibrium point of the spring is set to the position
xh = 0.

In contrast to the perception model candidate founding on parameter identification, the
predicted perception limits of time delay on the basis of the matched filter model and the
state observer model depend on the interaction with the haptic environment. To compare
latter hypothetical models and determine the one with superior accuracy, the influence of
movement characteristics on time delay detection shall be investigated explicitly here. The
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4 Dynamic Combination of Movement and Force

force feedback from a spring afflicted with time delay Td , is calculated by

fh(t) = kxh(t − Td). (4.14)

Respecting tissue dynamics which can be approximated by a mass-spring-damper model, the
overall motor action that is required to move the limb in contact with the environment is

fm,res(t) = mh ẍh(t) + dh ẋh(t) + kxh(t − Td). (4.15)

Without loss of generality, we consider the case that a non-delayed environment model
is learned and utilized in the matched filter and state observation models, and the delayed
feedback is perceived. Consequently, the predicted force feedback f̂m,res(t), utilizing a model
of body and environment without time delay is

f̂m,res(t) = mh ẍh(t) + dh ẋh(t) + k̂xh(t). (4.16)

Assuming further that the stiffness k is sufficiently accurately represented in the internal
model, thus k̂ ≈ k, the prediction error between model simulation and sensory feedback is
calculated to

∆ fm,res(t) = f̂m,res(t)− fm,res(t) = k(x(t)− x(t − Td)). (4.17)

With the same assumptions made for modeling time delay detection thresholds following
the state observer theory, the decision criterion is based on the state observation

x̂h(t) =
�

x̂h(t) ˙̂xh(t)
�T

, (4.18)

where a forward model of body and non-delayed environment dynamics is utilized. In the
case of a time-delayed spring force feedback, the state predictions are determined by the
system of differential equations
�
ˆ̇xh(t)
ˆ̈xh(t)

�
=

�
0 1
− dh

mh
− k

mh

��
x̂h(t)
ˆ̇xh(t)

�
+

�
0
1

mh

�
fm,res(t) +

�
k11 k12

k21 k22

���
xh(t)
ẋh(t)

�
−
�

x̂h(t)
ˆ̇xh(t)

��
.

(4.19)

A sinusoidal movement

x(t) = Asin(ωt) (4.20)

with amplitude A and frequency ω is chosen as interaction pattern. This choice has the
following advantages: First, a sinusoidal movement it is easy to understand and perform
for participants in a psychophysical experiment. Second, by variations in the amplitude and
frequency, the predicted time delay detection thresholds vary with model hypotheses.

For the matched filter model, the error in the motor command for the case of a compliant
environment can be computed to

∆ fm,res(t) = kA(sin(ωt)− sin(ω(t − Td))). (4.21)
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Figure 4.4: Six pairs of movement amplitudes and frequencies were chosen in such a way
that ω, A and Aω have three different levels respectively.

Figure 4.3 depicts the time series of the filter result with non-delayed environment dynamics,
the actual motor command required to move in the desired way, given the delayed sensory
feedback, and the deviation between them. Analog to an “image slip” mechanism which
was found to model time delay in visual perception well [142], the maximum force differ-
ence between expected non-delayed system behavior and sensory feedback could be a key
factor in the detection of the time delay. It can be easily derived that the force difference
reaches its maximum at time 1

2
Td after the zero-crossings of the predicted (non-delayed)

force reference, which is expressed by

∆ fm,res,max =∆ fm,res(t)|t= 1
2

Td
= kA2sin(

1

2
ωTd)≈ kAωTd . (4.22)

The last step in the calculation holds for small values ofωTd , which is a valid assumption for
the practically relevant range of time delays in telepresence applications and the movement
frequencies considered in the experiments.

Similarly, the state observation error can be computed by solving equation (4.19) for
the specific interaction movement from equation (4.20) and the motor action from (4.15).
In contrast to the solution for the maximum force error in equation (4.22), the maximum
state error depends on the entries of the feedback matrix K . These values are not known a
priori. Thus, the experimental conditions are optimized for the matched filter model, and the
prediction capabilities of the state observer model are tested post-hoc with an appropriate
feedback matrix K that is identified based on experimental data.

Keeping time delay Td at a constant level, the maximum force error as the prediction
criterion for time delay detection is higher with a greater amplitude A, and/or higher move-
ment frequency ω. This means in return, that time delay needed to exceed a hypothesized
perception threshold on force error is smaller with larger A and/or higher ω. Notably, the
maximum force error as introduced in equation (4.22) depends on the product of A and ω,
predicting that choosing values of A and ω such that their product is constant (Aω= const.)
results in the same detection threshold. For testing the influence of movement amplitude,
frequency and their product, a systematic experimental design with three levels for A, three
levels for ω and three levels of Aω as depicted in Figure 4.4 is chosen.
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4 Dynamic Combination of Movement and Force

Another factor in the computation of the maximum force error according to equa-
tion (4.22) is the stiffness coefficient k. The perception model predicts a lower time delay
detection threshold in the case where stiffness is higher.

In order to test the prediction model for its generality with respect to other environments
than stiffness, the prediction capabilities in damping and inertia environments are tested as
well. The magnitude d1 of damping d, and the magnitude m1 of inertia m are chosen to
fulfill

∆ fm,res,max

fm,res(t)|∆ fm,res(t)=∆ fm,res,max

�����
d=d1

=
∆ fm,res,max

fm,res(t)|∆ fm,res(t)=∆ fm,res,max

�����
m=m1

,

such that the Weber fraction is equal in both conditions, resulting in a constant time delay
detection threshold in the case of a perception criterion based on Weber’s Law.

4.4 Experimental Investigations

Due to the large number of influence factors that help to determine a valid perception model
for the combination of movement and force into a percept of a time-delayed haptic feedback,
the measurement of detection levels of time delay in haptic feedback is divided into three
experiments. In the first experiment, a simple stiffness environment with constant spring
coefficient is used as haptic environment and the movement pattern is varied systematically,
using the conditions depicted in Figure 4.4. Second, the stiffness coefficient is varied while
the experimental idea of keeping the product of A and ω constant is kept. Third, the time
delay detection thresholds obtained for stiffness are compared to those in damping and
inertia environments, keeping the interaction movement constant.

4.4.1 Experimental Methods

A linear haptic interface with one degree of freedom was used in the experiments and de-
scribed in Appendix A.1. Visual information was displayed on a 22" LCD Monitor with a
refresh rate of 60 Hz. White noise was replayed as background sound during the experiment
via KOSS QZ99 Headphones to mask any auditive cues from the haptic device. Participants
were required to sit in an upright position centered towards the equilibrium point of the
virtual spring, and the forcefield was rendered in the participant’s transverse plane within a
comfortable manual reachable range. Participants’ perceptual responses were collected us-
ing a joystick. The force control scheme described in Section 2.2.2 was applied to render all
stimuli. Applying this algorithm, the environment characteristics are displayed imperfectly,
affected by the actuator dynamics. The deviation from the commanded and impedance is
discussed in Appendix A.1. All drawn conclusions in the following sections are based on the
actually rendered environment impedance, instead of the commanded impedances.

4.4.2 Variation of Movement

In order to examine the influence of the movement frequency ω, amplitude A, and force
discrepancy which is directly dependent on Aω, six experimental conditions were selected
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4.4 Experimental Investigations

as illustrated in Figure 4.4. The three movement amplitudes A1,2,3 were set to 11.25 cm, 15
cm, and 20 cm, the frequencies ω1,2,3 to 0.75 Hz, 1.0 Hz, and 1.33 Hz, respectively. The
spring stiffness k was kept constant at 65 N

m
.

Participants

Fifteen university students (3 male; age range 21 - 37 years) participated in the experi-
ment. All were right-handed and had normal or corrected-to-normal vision; none of them
reported any history of somato-sensory disorders. Informed consent was obtained from all
participants prior to the experiment.

Procedure

A 1-interval 2-alternative forced choice synchrony/asynchrony judgment was selected as the
experimental task. We applied an adaptive double staircase method to keep testing brief and
so avoid fatigue effects, as described in Section 2.4.1. One staircase started from an initial
time delay Td = 100ms, the second from Td = 0ms. The initial step size for time delay dif-
ferences between two conditions within one staircase was set to δTd = 20ms. The response
alternatives were “delayed haptic environment” and “non-delayed haptic environment”.

To train the participants’ memory of the non-delayed spring target environment,
a pre-experimental practice block was inserted, where the subjects could explore a
spring environment as long as they wanted. In addition, three different haptic laten-
cies (0, 70, and 100 ms) were presented randomly, along with the value of the latency on
the screen. In order to practice the experimental task, a dot on the screen moving in the de-
sired sinusoidal way with a given frequency and amplitude indicated the required movement
trajectory. The participant was asked to move the haptic device so as to follow the moving
visual dot. Two vertical bars marked the movement boundaries and rhythmic click sounds
indicated the reversal time of the dot. In the formal experiment, there was no indication
of the delay level and no visual guidance of the movement on the screen. The guidance
cue was removed since a pilot study had shown that tracking the visual movement was a
rather attention-demanding task, potentially interfering with the required perceptual judg-
ment. However, the click sounds were preserved to help users move in the right rhythm.
The experiment was divided into six blocks, each block contained one of the six experimen-
tal conditions shown in Figure 4.4. At the beginning of each block, 3 practice trials (without
visual guidance) with random latencies were presented before starting a double staircase
procedure. The participants explored the system for 10 s and then indicated whether or not
there was a force delay in the system by pushing the joystick to either the left (“delayed
system”) or the right (“undelayed system”). The whole experiment took approximately one
hour to complete.

Results

In total, 12 valid data sets were further analyzed; three participants’ data had to be ex-
cluded due to failure of convergence of the double staircase sequences in two or more
blocks. In 90% of all cases, the staircase procedure converged within 30 trials. An analysis of
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4 Dynamic Combination of Movement and Force

1
2π
·ω [1

s
]/A[cm] 1

2π
· ω̂/Â Td± SE [ms]

0.75/11.25 0.71/8.89 46 ± 4.5
0.75/15 0.70/10.45 47 ± 7.3
0.75/20 0.68/13.19 37 ± 6.3
1/11.25 0.93/8.62 41 ± 5.0

1/15 0.92/10.74 37 ± 4.2
1.33/11.25 1.24/8.65 36 ± 5.8

Tabular 4.1: Key measures of the actual movement and detection thresholds with the corre-
sponding standard errors observed in Experiment 1. In column 2, the mean of
the actually observed movement amplitude Â and frequency ω̂ are summarized;
the last column presents mean thresholds with standard errors.

the movement trajectories revealed that all participants in the experiment made reasonably
sinusoidal-shaped movements, although the amplitudes and frequencies deviated slightly
from the desired motion trajectory (see Figure 4.5a). Mean values of real amplitudes and
frequencies are summarized along with mean threshold values and standard errors in Ta-
ble 4.1.

The estimated mean thresholds for two factors are shown in Figure 4.5b. All datasets (i.e.,
threshold estimates) are examined by a univariate analysis of variance (ANOVA) with ampli-
tude A, frequency ω as fixed factors, and subjects as random factor. The analysis reveals the
main effects of amplitude A and frequency ω to be significant, F(2, 22) = 4.38, p < 0.05 and
F(2,22) = 4.79, p < 0.05, respectively. A further contrast test for the factor of amplitude
shows that the threshold is only significantly lower for A= 20 cm compared to the other two
amplitude levels, F(2, 56) = 3.83, p < 0.05. Another contrast test for the factor frequency
reveals that the thresholds decrease significantly when the movement frequency increases,
F(2,56) = 5.87, p < 0.01. A separate univariate ANOVA is conducted for the factor of Aω,
which reveals the main effect to be significant, F(2,22) = 6.42, p < 0.01. A contrast test
shows that the largest value of Aω results in the lowest threshold.

To further examine the relationship between detection thresholds and the actual move-
ments, we conduct a linear regression for the mean thresholds with Â and ω̂,

Td = 84.5− 2.32Â− 23.67ω̂, r2 = 0.833, (4.23)

and a linear regression for the mean thresholds with Âω̂,

Td = 63.75− 2.69Âω̂, r2 = 0.815. (4.24)

Both linear regressions suggest that the independent movement parameters Â and ω̂ and
their product Âω̂ are potentially influential factors for haptic feedback delay.

4.4.3 Variation of Environmental Stiffness

Participants of this experiment were required to move in a sinusoidal way similar to the
previous experimental task, described in Section 4.4.2 Two pairs of A and ω values were
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Figure 4.5: (a) An example of a manual movement with a given frequency and amplitude.
The dashed curve denotes the best sinusoidal fit to the actual movement which
is plotted solid. (b) Mean detection thresholds as a function of actual movement
amplitude Â and instructed frequency ω. Solid stars correspond to frequency
ω = 0.75 Hz, dashed circles to ω = 1 Hz, and the cross to ω = 1.33 Hz. Error
bars indicate 1 standard error.

selected: [A1 = 20 cm, ω1 = 0.75 Hz] and [A2 = 15 cm, ω2 = 1 Hz], thus the prod-
uct Aiωi, i ∈ {1, 2} was constant. In addition, three discriminable levels of spring stiffness
were examined: k1 = 40 N

m
, k2 = 50 N

m
, and k3 = 65 N

m
. k1 and k2 were selected to be lower

than k3 (used in Experiment 1) in order to avoid fatigue during the Experiment.

Participants

Ten participants took part in this experiment (two of them had taken part in the previous
experiment; 4 male; age range 21 - 29 years). All had normal or corrected-to-normal vision
and were right-handed; none of them reported any history of somato-sensory disorders.
Informed consent was obtained from all participants prior to the experiment.

Procedure

A 2-interval 2-alternative forced-choice (2I2AFC) paradigm was used here. We chose this
method because several participants in the previous experiment found it reportedly hard
to remember the baseline (“non-delayed”) condition, making them adopt a conservative
response strategy during the experiment. On each trial, two intervals were presented, one
standard interval with non-delayed force feedback and one comparison interval with delayed
force feedback. By providing a standard stimulus on each trial, the 2I2AFC procedure helps
to reduce response bias and variability among subjects. The order of the standard and
comparison (target) stimuli was randomized across trials. Each stimulus was presented
for 7 seconds, with a transition phase between them. In the transition phase, the system
latency was linearly transferred from one state to another to avoid cues arising from abrupt
changes of system latency. After participants explored the two stimuli, they were prompted
to respond to the question “In which interval of the trial did you experience a delayed
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1
2π
·ω [1

s
]/A[cm]/k [ N

m
] 1

2π
· ω̂/Â Td± SE [ms]

1/15/40 1.06/14.8 24 ± 4.5
1/15/50 1.08/14.8 25 ± 6.5
1/15/65 1.12/14.4 28 ± 9.3

0.75/20/40 0.84/18.5 34 ± 9.3
0.75/20/50 0.85/18.4 31 ± 4.5
0.75/20/65 0.84/18.7 37 ± 9.5

Tabular 4.2: Key measures of the actual movement and detection thresholds with the corre-
sponding standard errors observed in Experiment 2. In column 2, the actually
observed movement amplitude Â and frequency ω̂ are summarized; the last
column presents mean thresholds with standard errors.

force feedback?”, to which they made a 2I2AFC decision. The adaptive double-staircase
method described in Section 2.4.1 was modified according to the changed experimental
paradigm. While the detection threshold has been 50% in Experiment 1, it is raised to 75%
in the 2I2AFC paradigm of Experiment 2. Therefore, the adaption rule for the step size was
changed to

Td,i+1 = Td,i − 2
20 ms

1+ Nrev
(Zi − 0.75), (4.25)

with the same terms as in equation (2.21). After every 3 experimental blocks, there was a
break permitting participants to take a rest. The remaining procedure, including the famil-
iarization with time delay in the haptic feedback, was the same as in Experiment 1, and the
whole experiment took about 2 hours to complete.

Results

One data set was excluded from the further analysis due to the participant having failed to
follow the required movement frequency. The mean discrimination thresholds, along with
their standard errors are summarized in Table 4.2.

Estimated from the actual movements, the mean values of the product factor, Âω̂,
were 15.9 and 15.6 for two movement pairs [A1 = 20 cm, ω1 = 0.75 Hz]
and [A2 = 15 cm, ω2 = 1 Hz], respectively - that is, not significantly different from each
other (paired t-test: p > 0.1). The individual threshold estimates were further examined
by a univariate ANOVA with fixed factors ω (same as for A) and stiffness k and subjects
as random factor. This analysis revealed the factor ω (i.e., pair of Aω) to be signifi-
cant, F(1, 8) = 9.46, p < 0.05, while the factor k (stiffness) failed to reach significance,
F(2,16) = 0.798, p > 0.1. There was no significant interaction, F(2,16) = 0.245, p > 0.1.

4.4.4 Variation of Environment Type

Participants of this experiment were required to make sinusoidal arm movements of fixed
amplitude A= 15 cm and frequency ω= 2π rad/s. Three haptic environments were used as
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experimental stimuli: Besides the stiffness condition used in Sections 4.4.2-4.4.3, perceptual
limits for time delay discrimination were measured in a damping and inertia environment
additionally. The environment-specific constants were chosen to result in constant time
delay detection thresholds in case of the Weber-based prediction model. For comparison
reasons, the stiffness value is set equal to the previous conditions, k = 65 N

m
. The damping

condition is determined to d1 = 65/(2π)Ns
m

. As a pure inertia can not be rendered in a

stable way if time delay is added, the inertia m= 22/(2π)2 Ns2

m
≈ 560 g is combined with a

damping d2 = 43/(2π)Ns
m

.

Participants

Ten university students (7 male; age range 20-27 years; 9 right-handed) participated in the
experiment; they were paid at a rate of 10 Euros per hour. None of them reported any
history of somatosensory disorders. Informed consent was obtained from all participants
prior to the experiment.

Procedure

An odd-one-out 3-alternative forced-choice (3AFC) was used in this experiment. Each trial
was subdivided into three intervals of 3 seconds; one randomly chosen interval contained
the stimulus condition with a specific level of time delay introduced into the force feedback.
In the remaining two intervals, the system responded with a non-delayed force feedback.
In order to remove any abrupt-onset cues due to switching delay conditions, a transition
phase of 1.5 seconds was added between delayed and non-delayed force feedback inter-
vals. No feedback about the correctness of the answer was provided. Using the method
of constant stimuli, described in Section 2.4.1, seven levels of time delay Td , segmented
equally between 0 ms and 50 ms, were tested for the spring environment, and seven delays
between 0 ms and 80 ms for the mass and damping environments. These levels were deter-
mined in a pilot study and respected stability conditions for the experimental setup. Each
delay level was tested 21 times, yielding a total of 441 trials. The experiment was conducted
over three sessions, where each session contained 7 repetitions of all conditions in a random
order.

Results

Three participants failed to follow the movement instructions accurately enough, so their
data had to be excluded from further analysis. With the remaining data sets, an adjusted
logistic function [58]

P(Td) = γ+ (1− γ) ·
1

1+ e
α−Td
β

(4.26)
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Figure 4.6: (a) Estimated psychometric curves for the three environments for one typical
participant. (b) Mean thresholds (± standard error, n = 7) for the different
environments.

is used for estimating the psychometric function, where the guessing rate γ is set to 1/3
according to the 3AFC paradigm. Figure 4.6a shows typical correct responses, produced by
one participant, for the three different environments. Using equation (4.26), the discrimina-
tion threshold DT and the just noticeable difference JND at response level 67% can be easily
obtained as DT= α and JND= β log 3. In Figure 4.6b, the mean DTs and JNDs for spring,
damper and inertia are presented. The results indicate that the discrimination threshold is
the largest for the inertia, with a mean of 72 ms. The threshold associated with the damper
is the lowest, with a mean of 15 ms. In the spring condition, time delay can be discrim-
inated from a non-delayed spring starting at a threshold of 36 ms. A repeated-measures
ANOVA reveals the discrimination thresholds to be sensitive to the different environments,
F(2,12) = 14.17, p < 0.01. Follow-on comparison tests show the discrimination thresholds
to differ reliably from each other (p < 0.05). This indicates that the different environ-
ments do indeed influence the subjective judgment of haptic feedback time delay. A further
repeated-measures ANOVA for the JNDs of discrimination fails to reveal a significant effect
of the environment, F(2,12) = 1.03, p > 0.1.

4.5 Discussion

Four substantial findings can be summarized from the experiments described in Sec-
tions 4.4.2-4.4.4:

1. The detection thresholds for time delay in the force feedback are negatively correlated
with movement frequency and movement amplitude.

2. Movement amplitude and frequency influence the delay detection separately.
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3. Within a comfortable force range, scaling of stiffness does not affect discrimination of
time delay in force feedback.

4. Time delay in damping force feedback can be detected easiest, followed by time delay
in spring force feedback and inertial force.

Recollecting the model predictions for potential influence factors on the detection lim-
its for time delay in haptic feedback from Sections 4.3.1-4.3.3, none of the hypothesized
perception mechanism can account for all phenomena observed in experimental data. For
technical applications such as telepresence systems, however, a quantitative model for a per-
ceptual phenomenon which does not account for all observed phenomena is still valuable as
it allows an educated design choice for systems and control algorithms. As a consequence,
the model candidate explaining the experimental findings best, though not perfectly, is iden-
tified, before consequences from the findings for the design and control of telepresence
systems are discussed.

4.5.1 Model Predictions

To compare the prediction capabilities of each perception model candidate, specific param-
eterizations have to be found by fitting the predictions of each model to experimental data.
The chosen parameter identification procedure which is required for this purpose founds
on the minimization of the squared prediction error. The model fits of models from Sec-
tions 4.2.1-4.2.3 are summarized in Figure 4.7. As we used a different experimental method
in each study, predicted detection thresholds are calculated for each experiment individu-
ally. Furthermore, as not all participants performed all three experiments, only conclusions
about the mean detection thresholds can be drawn. The mean squared error (MSE) between
model predictions and experimental data is 127.34 ms2 for the feature comparison model,
96.0 ms2 for the matched filter model, 127.7 ms2 for the matched filter model with con-
sidering Weber’s Law, 98.3 ms2 for the state observer using the position error as decision
variable, and 85.7 ms2 for the state observer model with the limb velocity as decision vari-
able, respectively. In the following, the individual identification procedures and the models’
prediction characteristics are discussed more detailed.

Feature Comparison Model

The perceptual identification process for haptic environment features which is discussed
here is based on an estimation of the covariance matrix. For this representation, an accu-
rate estimate of the temporal relation between a dynamic system’s input and output signal
is achieved. Time delays in the environment are easily detectable by finding the peak in
the input-output cross-correlation, see Section 2.5.2. A perceptual threshold for time delay
detection could thus be explained by an uncertainty in identifying the corresponding lag
operator τ, or the peak detection. As there is no apparent reason why uncertainty in τ
should change with input amplitude, frequency, magnitude, or the type of environment, and
the peak in the cross-covariance of time-shifted sinusoids is symmetric (see Figure 4.2), the
predicted time delay detection threshold based a correlation model is constant. Finding the
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Figure 4.7: The three model candidates for the perceptual process combining motion and
force feedback together predict different mean detection thresholds for time
delay in the experimental conditions investigated in Sections 4.4.2-4.4.4. The
measured detection thresholds are depicted as the top bar. Below bars illus-
trate (from top to bottom) the feature comparison model, matched filter model,
matched filter model with Weber’s law, and the state observer model using errors
in position and velocity as threshold variable.
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covariance model that leads to the best predictions with respect to the mean squared error
corresponds to solving an optimization problem

argmin
Tθd,thresh

1

Ncond

Ncond∑
i=1

(Td,thresh,i − T θd,thresh)
2 (4.27)

where Ncond is the number of conditions in the respective experiment, and T θd,thresh is the
(constant) time delay detection threshold. The solution to this optimization problem is
the mean time delay over all conditions within one experiment. The individual detection
thresholds for time delay vary significantly within subjects, depending on the movement
and the environment, and the mean squared deviation of model predictions from the mean
detection thresholds is highest (127.34 ms2) in the assumption of a constant detection limit.
In this sense, the average time delay detection threshold is a baseline for evaluating the
other model candidates.

Matched Filter Model

The matched filter prediction gives an estimation of the motor signal which is required to
move the limb in a desired way, founding on the basis of an internal representation of a
haptic environment. A detection mechanism for time delay that is proportional to the error
between actual muscle force and the prediction is based on inverse models for human body
and environment dynamics. Indeed, the results of the movement variation experiment in
Section 4.4.2 support a force-based detection threshold, as the product between movement
amplitude and frequency, proportional to the maximum force error, is found to be a signifi-
cant influence factor. The detection thresholds for the conditions with equal maximum force
does not differ significantly.

The parameterization of a matched filter model on the basis of the experimental results
requires solving a nonlinear constrained optimization problem

arg min
Td,thresh,∆ fthresh

1

Ncond

Ncond∑
i=1

(Td,thresh,i − T f
d,thresh,i)

2 (4.28)

s.t.max∆ fm,res,i(t) =max | fm,res,i(t)− f̂m,res,i(t)|=∆ fthresh∀i ∈ (1, . . . , Ncond)

where ∆ fthresh is the (constant) detection threshold for the difference between the delayed
and non-delayed exerted force. The predicted motor action on the basis of the measured
state xh(t) is computed for each individual experimental condition, indexed by i, and de-
noted f̂m,res,i(t). A numeric optimization algorithm based on the interior-point method was
used to find the optimal parameterization fitting all experimental conditions [143]. Using
the dynamic inverse model to explain average detection thresholds for time delay percep-
tion results in lower prediction errors (96.7 ms2) compared to the feature comparison model
prediction. The mean force difference thresholds for the experiments are 1.4 N for the first,
1.2 N for the second, and 1.7 N for the third experiment. The differences between these
thresholds may be explained by the fact that different experimental paradigms were used:
While the first experiment relies on the discrimination of time delayed haptic feedback with-
out giving the reference of an non-delayed environment, the other two provide one or two
phases in each trial where the control condition is presented.
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Force difference perception for experiments with slowly-changing forces is known to fol-
low Weber’s Law, introduced in Section 2.4.2 [7]. The Weber fraction of ∆ fh(t) could be
an explaning model for the perception limits with changing environmental stiffness, as dis-
cussed in Section 4.4.3. The optimization problem to be solved is similar to equation (4.28)

arg min
TW

d,thresh,i ,W

Ncond∑
i=1

(Td,thresh,i − T W
d,thresh,i)

2 (4.29)

s.t.max
∆ fm,res,i(t)
fm,res,i(t)

=W ∀i ∈ (1, . . . , Ncond)

with W the Weber fraction. Indeed, the model fit for the experiment with different stiff-
ness levels is admittedly good, with a MSE of only 4.5 ms2, but the model performs poor
in all other conditions, yielding to a total MSE of 127.7 ms2. This makes the prediction
model based on a matched filter model and a threshold based on Weber’s Law about equally
successful as the thresholds predicted by a covariance model.

State Observer Model

In contrast to the matched filter perception model, the state observer model utilizes an esti-
mation of the body state for the decision about the environment time delay. The difference
between the observed state and actual state heavily depends on the choice of the feedback
matrix K , as discussed in Section 4.2.3. The model predicts perception limits based on a
threshold in the state estimation error. Because the state xh(t) consists of two components,
namely the limb position xh(t) and velocity ẋh(t), two versions of the optimization problem
of finding the minimum mean squared error between time delay detection threshold and the
model predictions are discussed:

argmin
T

x1
d,thresh,i ,∆xh,K

1

Ncond

Ncond∑
i=1

(Td,thresh,i − T x1
d,thresh,i)

2 (4.30)

s.t. max∆xh(t) =max |xh(t)− x̂h(t)|=∆xh,thresh∀i ∈ (1, . . . , Ncond)

and

argmin
T

x2
d,thresh,i ,∆xh,K

1

Ncond

Ncond∑
i=1

(Td,i − T x2
d,thresh,i)

2 (4.31)

s.t. max∆ ẋh(t) =max | ẋh(t)− ˆ̇xh(t)|=∆ ẋh,thresh∀i ∈ (1, . . . , Ncond).

The problems formulated in (4.30) and (4.31) have five free parameters which must be
optimized. Due to the comparably low number of experimental conditions which are avail-
able for model fitting, the solution can depend on the chosen initial values. Suitable values
are found from a simulation of the state space observer for a number of different feedback
matrices K and the computation of the state observation errors ∆xh(t) that result from the
experimentally obtained time delay detection thresholds. The matrix K that results in the
lowest variance for ∆xh(t) between all conditions of each experiment is taken as initial
values for the optimization problems stated in equations (4.30) and (4.31).
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As a result, the state observers with feedback matrix

K1 =

�
11.8 36.3
33.3 31.1

�
, and K2 =

�
0 9.8

9.4 11.4

�
(4.32)

for predictions based on xh and ẋh, respectively, make predictions with the lowest mean
squared error.

Synopsis

Comparing the predictions from all models introduced in Sections 4.2.1-4.2.3 leads to the
conclusion that the state observer model with a detection mechanism on the observation
error in limb velocity is most successful in capturing the observed perceptual behavior. It is
noteworthy that a state observer has the greatest number of degrees of freedom available
to fit the experimental data. A criticism frequently raised when searching for computational
models resembling a perceptual, or cognitive process is that "with 8 [...] parameters you
can fit any pattern of results" [68]. This argument is admittedly true and without further
experimental investigations, the capabilities of all models proposed here to predict percep-
tion thresholds for time delay in the combination process of movement and force feedback
are limited to the small, but practically relevant set of movement stimuli and haptic envi-
ronments presented here.

4.5.2 Implications for Telepresence Systems

Time delay is a critical issue for haptic telepresence systems operating over long distances.
Challenges to be dealt with include technical issues such as system instability and, on the
side of the human operator, impaired perception of the environment’s haptic properties.

The experiments presented in this chapter point towards important factors that must be
taken into consideration when designing a haptic telepresence system, or developing haptic
communication protocols: First of all, the operator’s movement must be taken into consider-
ation to evaluate whether a time delay in the communication channel is perceived or not. A
haptic task which requires only slow movements can tolerate longer delays in the feedback
than a highly dynamic task requiring fast movements. Not only the task can limit the velocity
and allowable movement frequency, but also the haptic interface. A smaller workspace on
the one hand, and high friction or uncompensated inertia on the other hand can influence
the detection thresholds. The workspace dimensions of the local haptic interface determine
the maximum movement amplitude, and detection thresholds increase. With larger iner-
tia and damping of the local haptic interface, the achievable human movement frequency
decreases – resulting in a higher detection threshold for time delay.

The finding that a scaling of the stiffness coefficient within the investigated range does not
influence the sensitivity of temporal perception is interesting for the application in a specific
telepresent application, namely micromanipulation. In this area, small forces arising in a
micro-scale environment must be augmented for the user to provide a perceptible haptic
impression [144]. For the case of delayed haptic feedback, our finding suggests that the
scaling factor can be chosen irrespective of haptic latency. Note, however, that we only
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validated this hypothesis for a limited range of stiffnesses. In extreme scenarios, such as
stiff contact with a rigid object, an infinitesimally small time delay may result in an unstable
system, which completely changes the characteristics of the system. The human operator
may then be able to infer the time delay from increasing oscillations in the force feedback.

The identification of dynamic models capturing the detection thresholds for time delay
in haptic feedback has direct application for the design of communication algorithms, or
haptic rendering systems as well: The greatest benefit of these models lies in the possibility
to consider the influence of interaction movements on the perceptual threshold explicitly. In
this way, more accurate predictions whether time delay in haptic feedback is perceived or not
can be utilized during the execution of a task, and appropriate measures can be taken. As
an example, communication quality control algorithms that provide the possibility to adjust
the transmission quality of a communication channel, e.g., the time delay, can be optimized
based on quantitative online-predictions from a perception model. For a more detailed view
on communication quality control, we refer to Chapter 6 where such techniques are utilized
to attenuate a drop in human task performance in a time-delayed simulated telepresence
task.

4.6 Conclusions and Open Problems

Humans do not possess senses for haptic environment properties such as stiffness, damp-
ing, or inertia. Instead, temporal and magnitude information from movement and force
feedback must be combined together to infer such measures. A dynamic model for the per-
ceptual process of combining movement and force feedback into a unified percept of a haptic
environment’s feature has been developed. In specific, the so far unknown temporal limits
of this process have been investigated. Taking together the results of six psychophysical
experiments on time delay perception thresholds, a dynamic model in the form of a state
observer is identified as the model capturing human discrimination performance best, when
movement and force feedback are temporally misaligned.

Although all model candidates have been tested for a number of different movements,
their shape was so far restricted to sinusoids of different amplitudes and frequencies. For
a more general applicability to haptic telepresence systems, other movements must be con-
sidered as well. Ultimately, perceptual responses for time-delayed feedback from arbitrary
voluntary explorations shall be predictable. Furthermore, the modeling performance in the
third experiment, considering time delay perception levels in stiff, damped and inertial envi-
ronments have not been captured well by either model proposed so far. Alternative models
with other decision criteria could further improve the prediction performance. Together with
a dynamic perception model for the influence of magnitude information on the combination
of movement and force, conclusions about perception mechanisms for abstract environmen-
tal features such as stiffness, damping and inertia could be drawn.
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Summary. Many practically relevant haptic environments can be approximated by
combining inertia, damping, and stiffness. It is largely unknown how differences in
the environmental properties are perceived by the operator of a telepresence system,
specifically how the perception of deviations in one property is influenced by the overall
environment composition. Such knowledge could though significantly enhance evalu-
ation techniques for haptic transparency. Identifying a dynamic perception model for
discriminating damping in a combination with inertia or stiffness, we find that

• the just noticeable difference of damping increases linearly with the magnitude
of the masking property,

• differences in damping may be judged by a change in force feedback magnitude,

• dynamic perception models with an accumulating behavior achieve a higher
modeling precision.

A large class of haptic environments can be modeled as a combination of inertia, damping,
and stiffness components. While the just noticeable difference (JND) for each component
is known [7, 11, 12, 14], the perception of environments with more than one integrant has
received little attention. Specifically, it is unknown how well differences in one component
are perceivable in the presence of other, potentially distracting parts. Knowledge of such
effects is though crucial for the design of perception-optimized haptic rendering algorithms,
mechanisms, or telepresence systems: In cases where haptic characteristics can not be ren-
dered exactly, due to, e.g., design or energy constraints, tolerances for the required accuracy
of the environment characteristics containing inertia, damping, and stiffness is required. In
the tactile and auditive modality, non-relevant signals are known to deteriorate the percep-
tion of a stimulus signal, which is known as masking effect. Two types of masking effects
are known in these domains: Simultaneous masking, meaning that a loud tone or vibration
enlarges the perceptual thresholds in sound and tactile perception, such that soft tones or
low vibrations are not detectable, but are perceivable if presented alone. In contrast, tem-
poral masking describes the phenomenon that stimuli can be perceived worse if an intense
vibration or sound is presented temporally close to it.

In this Chapter, masking effects in the perception of haptic environments are investigated.
The just noticeable difference of damping is measured under different masking conditions,
meaning, additional inertia or stiffness. It is found that the JND for damping is significantly
larger when a masking stimulus is present, compared to the discrimination of pure damp-
ing. Inspired from findings in auditive and tactile perception, different perception models
are tested for their ability to capture the discrimination thresholds under different masking
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conditions. A simultaneous masking model for the haptic domain based on Weber’s Law, and
a temporal masking model on the basis of a nonlinear filter algorithm temporally extend-
ing the masking stimulus are developed. In addition, and inspired from the structure of a
diffusion model which is able to capture perceptual phenomena in multiple domains others
than haptics, the inclusion of an information accumulation stage into the perception model
is investigated. Overall, six quantitative dynamic model candidates for the discrimination of
damping differences are evaluated and compared with respect to their internal and exter-
nal validity. While no temporal masking effect can be found in the experimental data, the
addition of an information accumulation stage into the perception model improves the pre-
diction capabilities significantly. The best model capturing the discrimination performance
of damping masked by stiffness or inertia consists of a simultaneous masking model and an
accumulating component.

The remainder of the Chapter is organized as follows: After reviewing fundamentals of
masking effects in other domains than haptics in Section 5.1, two experiments are presented.
In Section 5.2, a pilot study for selecting stimuli for the main experiment is performed. The
results from the main experiment, measuring damping JNDs in the presence of masking
stimuli in Section 5.3 are given in Section 5.4. Different dynamic haptic masking models are
motivated and developed in Section 5.5, and simulation results presented in Section 5.6. A
discussion of all results and application examples of the novel findings conclude the chapter
in Section 5.7.

5.1 Background

The detection or discrimination of a physical stimulus can be influenced by the context it
is embedded into. So-called masking effects have been observed in tactile perception, as
well as the auditory domain: Superimposing a vibration signal to a target stimulus in the
tactile domain makes a discrimination of the target stimulus significantly harder [145,146].
In auditory research, two kinds of masking effects are known – simultaneous masking and
temporal masking [1, 124]. Simultaneous masking describes the changes in human ability
to discriminate a sound with a given intensity in the simultaneous presence or absence of a
masking sound. As an illustrative practical example, the sound of the doorbell is not heard
when the vacuum cleaner is turned on, even though the doorbell’s ring could be easily reg-
istered without additional noise. Due to the temporal masking phenomenon, sounds with a
low intensity can not be perceived even in the case of a masking stimulus with high inten-
sity being only in its temporal vicinity, although it is not present at the same time instance.
Interestingly, this masking effect is observable for a time interval before and after the mask-
ing stimulus. In the case of a masking stimulus preceding the target stimulus, the effect is
called forward masking, in the case of the masking stimulus following the target, the effect
is referred to as backward masking. Both, simultaneous and temporal masking effects are
widely used to reduce the amount of data to be stored in psychoacoustic lossy data storage
formats, e.g., MP3 [147]. To the best knowledge of the author, there are no findings on
masking phenomena when perceiving a haptic impedance such as combinations of inertia,
damping, and stiffness. However, force and torque were found to interact in perceptual dis-
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Figure 5.1: An interaction movement with a haptic environment consisting of a damping d
and stiffness k component results in an interaction force fh(t) which is composed
of a damping force fh,d(t) and stiffness component fh,k(t). A different damping
coefficient d∗ results in a change in force feedback.

crimination [148], indicating that unrelated stimuli can also affect discrimination abilities
in kinesthetic stimuli.

Knowing the perceptual limits of haptic environment properties can help to decide the
best alternative among different designs that introduce deviations from an ideal behavior.
In the field of telepresence systems, haptic perception limits have been taken into account
to analyze perceived transparency [24]. Hereby, the error between displayed and remote
environment is evaluated in a human-oriented way. In this context, interactions between
different environment parameters can be used to define perceptual limits more exactly. So
far, only pure inertia, damping, or stiffness have been considered. An extension to more
general telepresence architectures and environment impedances is the evaluation of telep-
resence systems based on transparency errors of environment parameters [35]. Additional
application examples are found in the area of haptic rendering algorithms.

Humans do not possess a dedicated sense for environment parameters. Instead, inertia,
damping, and stiffness must be inferred indirectly by perceiving movement and force feed-
back. For an intuitive understanding of the discrimination of a specific haptic environment
feature in the presence of one or multiple other features, an interaction with a linear, time-
invariant homogeneous haptic environment shall be discussed. In this example, the human
interacts with the environment using a specific trajectory.

Example 5.1. We consider a linear, time-invariant spatially homogeneous haptic environment
which is modeled by a stiffness k combined with a damping d. The environment is explored
by following a specific trajectory xh(t), resulting in an interaction force fh(t) which can be
decomposed into force components from the stiffness fh,k(t) and the damping fh,d(t), such
that fh(t) = fh,k(t) + fh,d(t). Exemplary forces from a sinusoidal interaction movement are
depicted in Figure 5.1. Keeping the interaction movement but changing one environmental
parameter, e.g., the damping d to another value d∗ results in a change in force feedback due
to damping, from fh,d(t) to fh,d∗(t), resulting in a force difference ∆ fh(t) = fh,d∗(t)− fh,d(t).
Perceiving this difference is crucial for the detection of differences in the damping, as the
interaction trajectory is held constant, thus does not contain relevant feedback information.
While the difference ∆ fh(t) only depends on the difference in damping, the role of the force
component related to stiffness fh,k(t) for the perception of ∆ fh(t) remains unclear. It seems
reasonable that a high force which is unrelated to the actual perception task can influence
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the discrimination capabilities of a human interacting with a haptic environment. In the
following, we will refer to this potential effect as haptic masking.

Remark 5.1. While position-controlled interactions have been discussed here, a similar ar-
gumentation for interactions with a constant force profile can be found.

We present two experiments to study masking effects in haptic environments [149]. As a
model for this environment, a mass-spring-damper system is considered. Measuring the JND
for each environment parameter masked by the other two environment parameters would
result in a huge number of conditions, thus we limit our view to the JND for damping.
Damping is chosen for two reasons: On the one hand, it can be assumed that the largest
masking effect between two stimuli is achieved if they are as similar as possible. The fre-
quency responses of stiffness and inertia differ from that of damping by a phase shift of
only ±90◦, whereas the phase shift between stiffness and inertia is 180◦. On the other hand,
damping is of significant importance for controller design, as higher damping can enlarge
stability margins, thereby guaranteeing safe operation of a system.

5.2 Pilot Study for Stimulus Selection

Two different damping levels d1 = 10 Ns/m and d2 = 20 Ns/m which are above the absolute
detection threshold and small enough to prevent fatigue were chosen. These stimuli are
easily discriminable, as JNDs for viscosity are reported between 13.6% [14] and 34% [12].
In this pilot study, we separately determine parameter values for stiffness and inertia that will
be used in the main experiment to mask damping. For each parameter, we further distinguish
between two cases: In the first case, humans should perceive the overall environment as a
combination of damping and stiffness or damping and inertia, where neither dominates
the other. For this case, the values for stiffness and inertia are denoted as k1 and m1. In
the second case, humans should perceive an environment consisting mainly of stiffness or
inertia. Damping should still be perceivable but should be subordinate. In this case, stiffness
and inertia are denoted as k2 and m2.

Participants

The study was performed by 10 subjects including the author. One of the subjects was
female and all were PhD students. Their mean age was 27.0 years. All gave their informed
consent to participate in the study. Prior to the experiment, all participants were familiarized
with the setup and the conditions by exploring environments consisting of pure inertia, pure
damping, and pure stiffness. All participants completed the experiment in less than 20
minutes.

Procedure

To find the values for k{1,2} and m{1,2}, participants were asked to modify an environment
consisting of damping and a minimal inertia m0 = 0.5 kg, which was necessary to ensure
system stability. The participants could add stiffness or inertia by using a turning knob.
In the conditions where stiffness had to be added, one full turn of the knob corresponded
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Figure 5.2: The magnitude of the masking stimulus conditions is identified using optimiza-
tion techniques, illustrated on the example of the environment stiffness k1 that
feel neither subordinate nor dominating over the damping impression. Different
cost functions J1...3 are associated with individual participants.

to 10 N/m; for inertia, one turn was equivalent to a change of 1 kg. Subjects were asked
to produce two different conditions: One, where the impression of stiffness or inertia was
slightly subordinate to damping (ksub, msub), and a second, where stiffness or inertia was the
slightly more dominating stimulus (kdom, mdom).

Experimental Setup

The haptic environments were rendered on the 1 DoF linear haptic interface described in
Appendix A.1, using a position-based admittance control scheme (see Section 2.2.2) with
a sample rate of 1 kHz. Participants’ ears were covered by EX-29 headphones playing pink
noise to cancel out the sound from the haptic device, and their sight was blocked by eye-
masks to eliminate visual cues.

5.2.1 Results and Stimulus Selection

The experimental conditions for the main experiment were determined from the recorded
dataset as follows: In principle, every value of stiffness in the interval

�
ksub, kdom

�
is per-

ceived as approximately equally dominating by the individual subject. Generally, it is not
possible to find one value k1 that is within

�
ksub, kdom

�
for all subjects due to the large

between-subject variance. Therefore, the number of participants that felt k1 as equally dom-
inating as damping is to be maximized. In addition, as this solution may not be unique,
we minimize the mean distance between k1 and the individual intervals

�
ksub, kdom

�
. The

corresponding optimization problem can be written as

arg min
k1

n∑
i=1

2∑
j=1

J i
k, j
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with

J i
k, j =





0 if k1 ∈
h

ki
sub, j, ki

dom, j

i

cstep + k1− ki
dom, j if k1 > ki

dom, j

cstep + ki
sub, j − k1 if k1 < ki

sub, j

is a cost function for determining the stiffness value k1 for participant i, given the damping
level d j and n denotes the number of participants. Subsequently, ki

sub, j and ki
dom, j are the

subordinate and dominant stiffness value that is chosen by the participant, and cstep is a
constant of large value to penalize solutions where k1 < ki

sub, j or k1 > ki
dom, j. By setting cstep

appropriately, it can be guaranteed that the optimization goal of choosing a value for k1

which is between ksub and kdom is prioritized over minimizing the distance of the “outliers”
in all cases. For our purpose, we identify cstep = 1000 as appropriate value. An analogous
problem can be formulated to determine the inertia m1. Examples of perceptual intervals
and the corresponding cost functions are depicted in Fig 5.2. Using this procedure, a stiff-
ness k1 = 19.0 N/m and an inertia m1 = 2.8 kg were determined.

For k2 and m2 the maximum value for kdom and mdom that were reported by the partic-
ipants was taken. One dataset was excluded for k2 as an outlier because it was outside a
band of two standard deviations around the mean. Following this procedure, k2 = 42.4 N/m
and m2 = 5.3 kg were determined.

5.3 Damping Discrimination Experiment

In the second experiment, discriminable differences of damping in haptic environments that
consist of damping along with inertia or stiffness is measured. The aim of this design is to
identify potential masking properties of those distractive stimuli. In total, 10 conditions are
tested: JNDs for the damping parameters d1,2 alone and with masking stimuli of either m1,2

or k1,2. To assure stability of the low-level position-based admittance controller, a minimum
inertia m0 of 0.5kg is always present.

Participants

The experiment was performed by 8 paid subjects from different disciplines with a mean age
of 28.5 years. All of them gave their informed consent before participation. Two of them had
experience with haptic devices, three were female and all were right-handed. Before starting
the main experiment, all participants were familiarized with the stimuli and procedure: pure
inertia, damping, stiffness, and combinations of damping together with inertia and stiffness
were presented, each followed by information about the specific environment.

Procedure

In each experimental trial, the control condition and a stimulus condition were presented for
4 seconds each. The order of the two conditions was randomized. The two conditions were
separated by a one-second break during which the device moved to the initial position. The
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Figure 5.3: Damping JNDs differ depending on (a) inertia and (b) stiffness.

participant was notified of the break by an audibly beep replayed over the headphones. The
subjects had to decide which condition was more damped. In addition, they were allowed to
respond that they did not know. Based on the participants’ answer, the stimulus was modified
after each trial using an adaptive-staircase threshold estimation procedure [60], discussed
in Section 2.4.1. The adaptive estimation of the damping JND for one control condition
took 20-30 trials. All 10 control conditions were presented twice, once starting the staircase
from below and once from above the control condition. The order of control conditions was
fully intermixed. Five staircase procedures were combined into one experimental session
which was completed in about 30 minutes. After three JND estimation procedures, a break
of five minutes was inserted. In total, four experimental sessions were performed, separated
by a break of at least 30 minutes to avoid fatigue. The experimental setup was the same as
described in Section 5.2.

After successful completion of all experimental conditions, participants were required to
answer five questions:

1. How did you judge about the environments? By differences in movement or differ-
ences in force?

2. Was there a sensory feature on which you based your judgment in the conditions with
inertia?

3. Was there a sensory feature on which you based your judgment in the conditions with
stiffness?

4. Please describe how damping felt to you.

5. Was the judgment easier in the stiffness conditions or the inertia conditions?

5.4 Results

Percentual damping JNDs (relative to the control conditions) for different masking stimuli
are depicted in Fig. 5.3. In order to determine effects of both types of masking stimuli, two 3-
factor, repeated-measures ANOVAs for r×d×m and r×d×k were performed, where r is the
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repetition (1,2). The main effect of inertia m shows a significant influence (F(2,14) = 5.37,
p < .05, ηp = .43) as does stiffness k (F(2, 14) = 6.26, p < .05, ηp = .47). The main
effect of d, Greenhouse-Geisser corrected for sphericity, is not significant in either ANOVA
(F(1.00,7.00) = 1.79, p = .22 and F(1.00,7.00) = 1.44, p = .27). The effect of repetitions,
also Greenhouse-Geisser corrected, is insignificant as well (F(1.00, 7.00) = 0.66, p = .45
and F(1.00, 7.00) = 1.74, p = .23). No interactions were found in either ANOVA.

Polynomial trend analyses showed significant linear trends relating the damping JND to
both inertia and stiffness while quadratic trends were not significant. For inertia, 85% of
the main effect was accounted for by the linear trend (SSm = 1017.9, SSm,linear = 862.9,
p < .05)1. For stiffness, 99% of the main effect was accounted for by linearity (SSk = 239.5,
SSk,linear = 236.9.9, p < .05).

Remark 5.2. As the different levels of inertia and stiffness are only approximately equally
spaced, the linear trend is approximate. The significant linear trend indicates at least a
monotonic relationship between damping JND and value of m/k. As linear regressions fit
to the exact values of m and k only minimally improved the fits, the noise introduced by
unequal spacing appears to be minimal.

The results indicate that damping JNDs depend on the overall composition of the envi-
ronment. In the cases where inertia or stiffness dominate the perception of the environment,
the discrimination of damping apparently becomes harder.

5.4.1 Analysis of Questionnaire Data

Only two participants reported that they were perceiving differences in movement, all oth-
ers felt as if they attended to differences in the force feedback. In conditions where inertia
was added as masking stimulus, all of the participants reported that they paid attention to
the higher force (or resistance) they needed to move the higher-damped environment. In
addition, three participants concretized that they only attended to the force when they felt
that the velocity was constant. For the stiffness conditions, five subjects reported similar
properties as for the inertia condition. Two participants responded that they were paying
more attention to the movement where the stiffness is pushing into the moving direction,
one was paying most attention to the onset force when he/she started to move. The feeling
of damping was specified as “force-demanding”, “breaking” and a “resistance” or “viscous
fluid”. All participants used terms expressing that damping was hindering them of perform-
ing their interaction unopposed. Only two participants felt it easier to discriminate damping
that was masked by stiffness rather than inertia, although the JND for d masked by m2 was
the largest of all conditions.

5.5 Towards a Model for Dynamic Haptic Masking

Quantitative knowledge about the performance of humans perceiving damping differences
during exploration of a haptic environment containing damping and stiffness, or damping
and inertia is of great practical relevance. Thus, a quantitative model of the masking effects

1SS stands for Type III Sum of Squares.
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5.5 Towards a Model for Dynamic Haptic Masking

observed in this experiment is formulated, founded on the dynamic perception and task
performance framework introduced in Chapter 3. The perception of mechanical damping d
is understood as a mapping

d 7→ yperc (5.1)

where the damping d ∈ Θphy is from the set of physical features and
yperc ∈ {"difference perceived" "no difference perceived" "I don’t know"}. With respect
to the dynamic perception framework (3.18)-(3.20), this mapping depends on the
closed-loop dynamics

ẋ�(t) =ψ�(x�(t),θ�(t),une(t),ξ�(t), t), x�(0) = x�,0 (5.2)

where x�(t) ∈ X� contains all states of the closed sensorimotor loop, including the physical
states of the environment xphy(t) ∈ Xphy ⊂ X�. Similarly, the physical features, including the
environment parameters inertia, damping, and stiffness are contained in the environment
feature vector θphy(t) ∈ Θphy ⊂ Θ�. Noise terms from, e.g., sensory, neural, cognitive, and
motor processes, are summarized in the noise vector ξ� ∈ χ�.

For the development of a concrete perceptual model, we discuss some assumptions that
help in reducing the model complexity.

Assumption 5.1. The cognitive mechanisms controlling the motor actions and the percep-
tion of environment movement and feedback force have accurate knowledge about the own
body configuration and dynamics.

By assuming accurate body knowledge, the control loop between the human operator
and the environment can be modeled in the coordinate system of the physical environment,
neglecting nonlinear transformations from each involved muscle to the interaction point and
back. On the control side, an inverse kinematic transformation is needed to calculate the
joint angles and muscle forces that allow reaching a certain location and exerting a specific
force. It is reasonable to assume that such a transformation is available to the human, as
body control to achieve a specific task in the world coordinate system is achieved without a
significant conscious effort. On the perceptual side, a forward kinematic transformation is
necessary to determine the position and force at the interaction point, based on the position
(muscle length) and force of the motor system. In return, the inverse kinematics are needed
when interactive forces, introduced by physical interaction with an environment shall be
determined based on the muscle tension of a group of muscles attached to the interacting
limb. The existence of internal representations of body dynamics in sensorimotor control is
widely accepted [84,96,98,111,122,123].

Assumption 5.2. The time constants in the sensory and neural system are small in compar-
ison to the mechanical time constants of body and environment.

We show the validity of this assumption by reconsidering that the motor system is able to
operate in a range of about 10 to 30 Hz [6,7], but the somatosensory system can recognize
vibrations and force changes up to a frequency of 1000 Hz [7], making perception much
faster in terms of response characteristics. The neural pathways simplify to a noisy trans-
mission channel in the case of neglecting their dynamics. As an additional simplification,
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5 Dynamic Masking in Haptic Discrimination

we neglect the influence of attention and all other information sources apart from haptics,
and furthermore assume all dynamic processes to be time-invariant. These assumptions are
warrantable by our careful experimental design.

Considering assumptions 5.1 and 5.2, the state vector in the closed-loop dynamics (5.2),
normally considering states in the physical, sensory, neural, control, and motor sensorimotor
domain (see Section 3.1) simplifies to

x�(t) =
�

xphy(t) xmo(t) xcon(t)
�T

(5.3)

with the physical xphy(t), state motor state xmo(t), and controller state xcon(t). The
state variable describing the physical world is of specific importance for the devel-
opment of the dynamic masking model and consists of the limb position and veloc-
ity, xphy(t) =

�
xh(t) ẋh(t)

�T . The information that is available to the perceptual sys-
tem uperc(t) is based on the quantities the sensory system is capable to capture. Within
the sensorimotor framework, we propose

uperc(t) = ν�,perc(x�(t),θ�(t),une(t),ξ�(t))

=
�

xperc
h (t) ẋperc

h (t) f perc
h (t)

�T ∈ R3. (5.4)

The perceptual input quantities xperc
h (t), ẋperc

h (t) and f perc
h (t) are denoted as perceptual es-

timates of the (unidirectional) limb position xh(t) and velocity ẋh(t), and the interaction
force fh(t), respectively. Due to sensory, neural, and motor noise, uperc(t) is afflicted with
uncertainty. Apart from that, we assume

E{uperc(t)} ∼
�

xh(t) ẋh(t) fh(t)
�T

, (5.5)

where E{·} is the expected value operator.

Remark 5.3. We do not explicitly consider the time delays in the neural transmission of
information here, due to the fact that they are hardly measurable and can thus not be taken
into consideration for the development of quantitative perceptual models. Instead, it is
assumed that the human has sufficient experience with the control of his/her body and the
sensory observation of it that he/she can compensate internal delay processes and ensure
temporal consistency.

5.5.1 Model Candidates

The analysis of the questionnaire data in Section 5.4.1 shows that the majority of partici-
pants base their perceptual feedback on force instead of movement. Therefore, models of
damping discrimination based on interaction force as decision variable are considered here.
An additional reason for this choice is that the matched filter model introduced in Chapter 4
explains time delay discrimination performance with differences in force feedback reason-
ably well while requiring less tuning parameters than, e.g., the state observer model.

In order to detect differences in the physical damping of the environment based on force
feedback, the perceptual system must have access to an estimate of some kind of force ref-
erence to which the actual sensory signal can be related to. This reference can be produced
using an internal representation of body and environment dynamics.
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5.5 Towards a Model for Dynamic Haptic Masking

Assumption 5.3. The human haptic perceptual system can store dynamic descriptions of
his/her body and the environment he/she interacts with and use them for the generation of
reference signals.

The justification for this assumption is given in Section 4.2. With the procedure used in
the experiments for damping discrimination in mind where two stimuli s1 and s2 are sequen-
tially explored and compared, a perception model based on differences in force feedback
can be formulated as a sensorimotor observation

yperc(t) = φperc

�
ẏperc(t), . . . ,xperc(t), ẋperc(t), . . . ,θperc(t),uperc(t), u̇perc(t), . . . ,ξperc(t), t

�
.

Without loss of generality, we assume from now on that s1 starts at time t = 0 and contains
the stimulus with smaller damping. The decision which stimulus contains the larger damping
is made at a time instance t resp during the exploration of s2. A perceptual model for damping
discrimination is proposed as

yperc(t resp) =





“s1 greater” if ∃0≤ t ≤ t resp : δ( f perc
h (t), f̂h(t),θperc, t resp)< ε1,

“don’t know” if ∀0≤ t ≤ t resp : ε1 ≤ δ( f perc
h (t), f̂h(t),θperc, t resp)≤ ε2,

“s2 greater” if ∃0≤ t ≤ t resp : δ( f perc
h (t), f̂h(t),θperc, t resp)> ε2,

(5.6)

where δ(·) : R→ R, ε1,ε2 ∈ R, ε1 < ε2 and

f̂h(t) = m̂ẍperc
h (t) + d̂ ẋperc

h (t) + k̂xperc
h (t), (5.7)

is an estimate of the environment force that could be perceived if the stimulus condition s1

with the perceived environment inertia m̂, damping d̂, and stiffness k̂ was presented instead
of s2. The function δ( f perc

h (t), f̂h(t),θperc, t resp) extracts a criterion from the perceptual in-
put f perc

h (t) and f̂h(t) with the help of perception parameters θperc. Specific to verbal output,
the value of yperc is only available at the response time t resp. The parameters ε1 and ε2 are
thresholds that cause the decision for one of three response alternatives. Without loss of
generality, we assume that the thresholds are symmetric around 0, thus ε2 =−ε1 = ε.

Remark 5.4. Sensory feedback from the receptors within the muscles presumably contribute
significantly to the perception of environment force. The alternative sensory feedback fm

which is the force equivalent of all contributing muscles that lead to a movement in the
environment could instead be taken into consideration to formulate a force estimate with
the environment from stimulus s1 similar to (5.7) as

f̂m(t) = (mbod y + m̂) ẍperc
h (t) + (dbod y + d̂) ẋperc

h (t) + (kbod y + k̂)xperc
h (t). (5.8)

The body is approximated as a mass-spring-damper system with parameters mbod y , dbod y ,
and kbod y , as commonly done in the literature [49, 135, 136]. The tissue dynamics are ne-
glected, assuming a stiff coupling between body and the haptic device (e.g., by a tight grip).
Based on Assumption 5.1 that humans are aware of their body dynamics by sufficient expe-
rience in everyday-life situations, the additional terms in (5.8) are supposed to be internally
compensated, thus (5.7) and (5.8) can be considered to make identical predictions.
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∆ fh,thresh(t)

t

imperceivable force difference
(a)

fh(t)
f (t)

∆ fh,thresh(t)

t

fmask(t)

imperceivable force difference
temporal masking

(b)

Figure 5.4: Masking effects based on (a) simultaneous masking, and (b) a combination of
simultaneous and temporal masking.

Force Threshold Model

The simplest mechanism for the decision criterion δ(·) in the perception model (5.6) is based
on the deviation between the sensory feedback force f perc

h (t) and the internal estimate f̂h(t),
thus

δthresh( f
perc

h (t), f̂h(t)) = ∆ fh(t) = f perc
h (t)− f̂h(t) (5.9)

and

εthresh,1 =−∆ fh,thresh = const., εthresh,2 =∆ fh,thresh = const.. (5.10)

This model does not explicitly consider a masking mechanism that is due to additional en-
vironment components, such as stiffness, or inertia. However, masking effects could be
implicit due to, e.g., a change in the movement xh(t), ẋh(t) which itself determines the
environment force feedback fh(t), and the estimate thereof, f̂h(t).

Alternatives to this model candidate are motivated by known masking effects in the audi-
tory domain and the model structure of a diffusion process.

Simultaneous and Temporal Masking

A masking phenomenon similar to the simultaneous masking effect in auditory research de-
scribed in Section 5.1 for force discrimination is Weber’s law. It states that the just noticeable
force difference depends on the magnitude of the environmental force feedback. With re-
spect to the time-varying nature of the force profile and considering the fact that it can cross
zero, a correction for Weber’s law at low intensities is added, by increasing the denominator
by a quantity fsat [57]

∆ fh,thresh(t) =Wf (| f perc
h (t)|+ fsat) (5.11)
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fo
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Figure 5.5: For a model of simultaneous and temporal masking, a nonlinear filter algorithm
is applied to the masking stimulus fh (solid), extending fh in the temporal do-
main after a peak occurs (dash-dotted). In the case of a lowpass filtering proce-
dure as in [1], the simultaneous masking effect is decreased in an undesirable
way (dashed).

with Wf = const. the Weber coefficient for force. In this way, the masking stimulus is
the force magnitude, and the target stimulus is the force difference. An illustration of the
simultaneous masking effect based on Weber’s law is depicted in Figure 5.4a. An integration
of (5.11) into the perception model (5.6) as a second candidate can be formulated as

δsim( f
perc

h (t), f̂h(t),θperc) =
f perc
h (t)− f̂h(t)

| f perc
h (t)|+ fsat

, (5.12)

where fsat ∈ θperc, and

εsim,1 =−Wf = const., εsim,2 =Wf = const..

Temporal masking phenomena have not been investigated for the haptic modality so far.
In principle, the masking stimulus is stretched in time such that the simultaneous masking
effect for the perception of a difference in force feedback is extended to times before, and
after the time instance of a high masking stimulus intensity. We propose a temporal masking
model on the basis of a first-order lowpass filter, related to a model that can capture audi-
tory forward masking reasonably well [1]. For the moment, only forward masking will be
considered. The lowpass filter causes the magnitude of a high masking stimulus to decay
slower, which is a desired behavior when modeling temporal masking. On the other hand,
it counteracts the effect of simultaneous masking as the masking stimulus’ amplitude is de-
creased, as depicted in Figure 5.5. Thus, a nonlinear filter algorithm for forward masking is
suggested as

fmask(t) = | f perc
h (t)| −min(0, Tmask ḟmask(t)), (5.13)

realizing a temporal masking behavior without affecting the simultaneous masking effect
of Weber’s law. The effect of (5.13) on fh(t) is depicted in Figure 5.5. With fmask(t), the
perceptual threshold for force differences in equation (5.11) can be further extended to

δtemp( f
perc

h (t), f̂h(t)) =
f perc
h (t)− f̂h(t)

fmask(Tmask, t) + fsat(t)
, (5.14)
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5 Dynamic Masking in Haptic Discrimination

where fsat , Tmask ∈ θperc, and

εtemp,1 =−Wf = const., εtemp,2 =Wf = const.,

and serve as a third model candidate to capture human’s damping discrimination perfor-
mance. The combination of temporal masking and simultaneous masking is illustrated in
Figure 5.4b.

Accumulation Model Structure

Perceptual models in the form of diffusion processes successfully describe humans’ perfor-
mance in detection and discrimination tasks in other modalities than the haptic one [67–69],
as discussed in Section 2.4.3. The structure of these models is divided into three stages: an
information encoding function, followed by an accumulation stage and the decision pro-
cess, as depicted in Figure 2.7. The perception criteria in (5.9), (5.11) and (5.14) inhibit
an information extraction function δ( f perc

h (t), f̂h(t),θperc) and a decision process as formu-
lated in in (5.6) but lack the information accumulation stage. Three additional candidates
for δ(·) in (5.6) are proposed, based upon (5.9), (5.11), and (5.14) but completed with an
accumulation stage as

δacc,thresh( f
perc

h (t), f̂h(t),θperc, t resp) =

∫ tresp

0

sign
�

ẋperc
h (t)

��
f perc
h (t)− f̂h(t)

�
dt,

εacc,thresh,1 =−∆ facc,thresh = const., εacc,thresh,2 =∆ facc,thresh = const., (5.15)

δacc,sim( f
perc

h (t), f̂h(t),θperc, t resp) =

∫ tresp

0

sign
�

ẋperc
h (t)

��
f perc
h (t)− f̂h(t)

�

| f perc
h (t)|+ fsat(t)

dt,

εacc,sim,1 =−Wacc, f = const., εacc,sim,2 =Wacc, f = const., (5.16)

δacc,temp( f
perc

h (t), f̂h(t),θperc, t resp) =

∫ tresp

0

sign
�

ẋperc
h (t)

��
f perc
h (t)− f̂h(t)

�

fmask(t) + fsat(t)
dt,

εacc,temp,1 =−Wacc, f = const., εacc,temp,2 =Wacc, f = const.. (5.17)

All six model candidates for human damping discrimination performance are summarized
in Table 5.1.

Remark 5.5. The reason for considering the term sign
�

ẋperc
h (t)

�
in equations (5.15)-(5.17)

is the following: Consider the case that the sensory feedback f perc
h (t) comes from a haptic

environment with larger damping than the previously explored and now simulated force
reference f̂h(t), d > d̂. In this case, the difference f perc

h (t)− f̂h(t) = (d − d̂) ẋperc
h (t) has the

sign of ẋperc
h (t). Movements with positive and negative velocities thus cancel out when taking

the integral, in the extreme case it is zero in case the movement starts and stops at the same
location. A multiplication with sign

�
ẋperc

h (t)
�

results in a positive values for the integrand
in (5.15)-(5.17), regardless of the movement direction. Similarly, in the case d < d̂, the
integrand is all negative.
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f (t)

t

f (t)

t

f (t)

t





a1 if δ(·)< δ1

a2 if δ(·)> δ2

? else
δthresh(·) δsim(·) δtemp(·)





a1 if δacc (·)< δ1

a2 if δacc (·)> δ2

? else
δacc,thresh(·) δacc,sim(·) δacc,temp(·)

Tabular 5.1: Overview table of model candidates for human damping discrimination.

5.6 Model Predictions

With the introduction of dynamic perception model candidates on the basis of the dynamic
modeling framework introduced in Chapter 3, the problem of determining a damping thresh-
old is transformed into a threshold estimation on the basis of values for δ(·), as summarized
in Table 5.1. Because δ(·) depends not only on d, but on the perceived force feedback,
and the interaction movement which changes from trial to trial, the transformation does not
preserve the shape of a staircase, as can be seen from Figure 5.6. Thus, the threshold value
can not be estimated solely from the last four trials of the staircase which is the standard
procedure for this experimental method, as discussed in Section 2.4.1, but must be deter-
mined with respect to the complete dataset. As a consequence, the optimal threshold value
which divides the perceptual responses into "s1/s2 greater" and "don’t know" must be found
using an optimization procedure. In addition to those variables, the model parameters fsat

and Tmask are determined using a model identification procedure.

5.6.1 Parameter Identification

A perfect perception model predicts the actually given perceptual response whether s1 or s2

contains more damping, given the respective damping parameters, and the interaction move-
ment xh(t), ẋh(t) during the exploration of s2 where the judgment is made. Finding the op-
timal parametrization yielding to the best prediction performance for the perception models
summarized in Table 5.1 thus corresponds to minimizing the classification error rate

arg min
θperc,ε1,ε2

rmis, (5.18)

where

rmis =
N
�

yperc(t resp) = “s1 greater” |δ(·)> ε1

�
+ N

�
yperc(t resp) = “s2 greater” |δ(·)< ε2

�

N
�

yperc(t resp) = “s1 greater”
�
+ N

�
yperc(t resp) = “s2 greater”

� .

(5.19)
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Figure 5.6: The estimation of a perceptual threshold for damping utilizing a staircase esti-
mation procedure in (a) is transformed into a threshold estimation problem on
the basis of different judgment criteria summarized in (b). Correct answers are
marked as empty circles, “don’t know” answers gray, wrong answers black.

Here, N
�

yperc(t resp) = “s1 greater” |δ(·)> ε1

�
∈ N0 denotes the number of misclassified

trials where the actual response is “s1 contained more damping” given the decision cri-
terion δ(·) is above the threshold, thus predicting a “don’t know” or “s2 contained more
damping” answer. The other terms in numerator and denominator are defined accordingly.
Directly taking (5.19) as cost function in the minimization is infeasible for most optimization
algorithms as it can only attain discrete values and thus, no gradient can be determined.
Instead, an optimization criterion is based on the squared error from misclassified trials
(δ(·) > ε1 if the answer was “s1 greater” or δ(·) < ε2 if the answer was “s2 greater”). The
parameters for the perception model candidates in Table 5.1 are thus calculated by solving

arg min
θperc,ε1,ε2

∑
i∈ΩN1

�
δi(·)− ε1

�2
+
∑

i∈ΩN2

�
δi(·)− ε2

�2
(5.20)

where

ΩN1
=
¦

yperc(t resp) = “s1 greater” |δ(·)> ε1

©

ΩN2
=
¦

yperc(t resp) = “s2 greater” |δ(·)< ε2

©
.
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The notation δi(·) and y i
perc(t resp) denotes the values of δ(·) and yperc(t resp) in trial i, respec-

tively. Although (5.18) and (5.20) are not equivalent, the continuous squared distance in-
hibits similar behavior: Both optimization functions have a lower bound at 0, and their value
increases with the number of misclassified trials. However, the distance metric in (5.20) is
sensitive to large misclassification errors which can lead to an estimate of ε resulting in a
higher misclassification rate than the optimum with respect to (5.19). Due to the computa-
tional advantages of (5.20), the identification of model parameters θperc and ε are taken as
an approximation for the globally optimal solution of problem (5.18).

Leave-one-out Crossvalidation

If all data were taken into consideration to estimate θperc and ε, it would be unclear how well
the identified model can generalize to new trials, not contained in the dataset. This problem
is well-known in machine learning techniques as overfitting, and cross-validation techniques
have been developed to investigate the generalization capabilities of a learned model [150].
The available dataset is divided into training data and validation data. While training data is
used to find the optimal values for the model parameters and threshold, the validation data
is taken to assess the value of the optimization criterion, in our case the squared distance
of misclassified samples, calculated by the objective function in (5.20). In the case of a
high squared error using the validation data with the model parametrization identified with
the training data, the generalization ability of the model is poor. If the squared error with
training and validation data are approximately equal, the model can generalize well. In our
case, the dataset is limited to relatively few trials within one condition, thus we apply a
leave-one-out crossvalidation technique here. With this method, the validation data consists
of only one sample, and the model is trained with all remaining trials. This procedure is
repeated with every sample being the validation data once. The resulting value for the
objective function (5.20) is the mean over all validation rounds.

5.6.2 Results

Similar to the experimental evaluation in Section 5.3, individual thresholds for every condi-
tion are identified, applying the leave-one-out crossvalidation technique to the optimization
problem described in (5.20). The model parameters fsat and Tmask are though considered
to be inherent to the participant, thus only one value per subject is optimized. The quality
of the model fit is evaluated with respect to two metrics: The mean misclassification rate
within the experimental conditions is a measure for the internal validity of the model and
is depicted in Figure 5.7. Two 2-way ANOVAs found no significant effect of the decision
criterion δi(·) where i ∈ {thresh; acc,thresh; sim; acc,sim; temp; acc,temp} (F(5, 467) = 1.16,
p > .05 and F(1,471) = 3, 84, p > 0.05, respectively). It is interesting to mention that the
parameter identification for the temporal masking model with accumulation stage results in
an optimal estimate of Tmask = 0 for all participants, and otherwise in the same threshold
values and fsat as for the simultaneous masking model with accumulation stage. The tem-
poral masking model with Tmask = 0 thus simplifies to the simultaneous masking model. All
model parameters and threshold estimates are summarized in Table B.1 in the Appendix.
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Figure 5.7: The mean misclassification rate within each experimental condition.
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Figure 5.8: The mean misclassification rate between the experimental conditions is signifi-
cantly lower in the model candidates including an accumulation stage.

Thresholds models in the form of (5.6) which can be used in a human-centered design,
optimization, and evaluation of technical systems must not only explain single conditions
with individual threshold estimates, but must generalize over multiple conditions, such as
multiple masking stimuli. Thus, we test the different model candidates for their external va-
lidity, capturing the ability to predict the trial data of other conditions, given the threshold
of one condition. Similar to the internal validity estimation we apply a crossvalidation tech-
nique, where the set of all trials is divided into training set and validation set. Taking the
training data of one experimental condition results in one threshold criterion estimate ε as
discussed above. The classification error with all remaining trials from different conditions
is a measure for the external validity. Crossvalidation is done for all threshold estimates,
and the mean of all misclassification rates is reported in Figure 5.8. It can be concluded that
the error rate between conditions is significantly higher than within one condition (paired
t-test, p ≈ 0). The classification error rate is found to be significantly higher with damping
masked by k1 and m1 as in those conditions where k2 and m2 are used as masking stimuli
(paired t-test, p < .01). Furthermore, perception models including an accumulation stage
result in a significantly lower classification error rate compared to those without information
accumulation (paired t-test, p < 0.05). Overall, the simultaneous masking model with infor-
mation accumulation stage leads to the lowest classification error rate between conditions.
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5.7 Discussion

Masking effects exist not only in the tactile and auditory modality but also in the perception
of haptic environments. An addition of inertia or stiffness to a damping environment results
in a significant increase of damping JND. This finding further supports the conclusion of
Chapter 4 that static mappings from environmental parameters to the perceptual response
are insufficient for characterizing human perception of a physical feature. Furthermore,
the results indicate that perceptual thresholds for individual environment components are
of limited expressiveness when exploring a physical environment other than pure stiffness,
damping, or inertia.

Among the most important results of the experiment presented here is the improved
prediction accuracy in the cases where an accumulation stage is included in the model struc-
ture of computational damping discrimination models. The superior prediction quality can
be seen as an indicator of the applicability of diffusion models to capture haptic phenomena
as well.

The experimental conditions for all trials in the experiment for damping discrimination
were determined using a staircase method. In this way, the number of correctly recognized
conditions and false classifications is unequal, likewise is the number of conditions above
the detection threshold and below. For increasing validity of identification results, a sym-
metric distribution of stimulus conditions is desirable. The impact of biased distributions in
experimental conditions on the obtained results must be investigated in future research.

It was concluded from questionnaire data that participants control their limb movement
and attend to the resulting interaction force for making a perceptual judgment. Alternative
control strategies could also result in a perception mechanism which include the interaction
force in their decision criterion. The influence of a prior motor plan [84], based on the
dynamics of the internal environment model, and other hypothetical mechanisms such as
internal forward models in sensorimotor control during the exploration [88] are yet to be
examined.

5.7.1 Implications for Telepresence Systems

The current findings have major implications for a human-centered design, optimization,
and evaluation of teleoperation systems and other technical systems. In [24] the concept of
perceived transparency is introduced which extends the classical transparency evaluation in
a human-oriented way by including perceptual limits. Whether or not communication time
delay and control parameter changes in a two-channel teleoperation system are perceived by
the human user has been predicted over their effects for the operator, exploring an isolated
environment inertia, damping, and stiffness. Without considering masking effects in haptic
environment perception, such predictions about the perceptual state are overly conservative
if they are generalized to combinations of the basic building blocks. In a related way, per-
ceptual models considering masking effects can also extend a new method for the analysis of
four-channel teleoperation systems [35], which approximates the transparency error using
a mass-spring-damper model.

The design of mechanisms with multiple predefined haptic properties and haptic render-
ing algorithms are other applications to which our results can be applied. When developing
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a mechanism with large inertia or stiffness, a design-related deviation in damping from the
ideal value may be tolerable since it is not perceivable. Similarly, haptic rendering algo-
rithms cannot always reflect all environmental properties in sufficient accuracy. For stiff
environments, e.g., a certain amount of damping is necessary to assure stability. Therefore,
considering the obtained results, damping could be adjusted in a way that ensures stability
while not being perceivable to the operator.

The quantitative dynamic perceptual models developed here could be easily integrated
into an online-optimization of diverse haptic applications, such as model-mediated haptic
telepresence [151, 152]. In this example, a simple model of the remote environment is
identified on the teleoperator side, and model parameters instead of force and movement
are transmitted over the communication channel. On the human-system interface side, a
local model is parameterized with the identified parameters and rendered locally. In this
way, instabilities due to time delay could be overcome, and in the case of a perfectly known
environment, perfect transparency could be achieved. Changes in the environment must
be transmitted to update the local haptic model. The novel dynamic model developed for
environmental damping can help to determine which updates must be sent to the human-
system interface, and which ones can be left out, as they are not perceivable by the human
operator.

More generally, the finding that the perceptual process behind discriminating damping is
better approximated by including an information accumulation stage has a large potential
for enhancing a similar application: A perception-based haptic data reduction algorithm
can drastically reduce the amount of data to be sent over the communication channel in a
telepresence system. The algorithm discussed in [64, 105, 106] decides whether or not a
packet containing haptic data should be transmitted, based on whether or not the difference
to the previously transmitted packet is perceivable or not. In the past, this decision has
been based on the Weber Law, applied to each sample. With the finding that accumulative
processes reflect force-based difference perception better than instantaneous thresholds, this
approach may be overly conservative. A further reduction of the transmitted data can be
expected if short violations of the Weber threshold are tolerated, until the accumulated
decision variable reaches the perception threshold. For a successful application in such
advanced applications, further investigations into a potential accumulating behavior in other
haptic perception phenomena are strongly encouraged.

5.8 Conclusions and Open Problems

In this chapter, masking effects influencing the discrimination ability of haptic environmen-
tal features which are embedded into an environmental context with unrelated and poten-
tially disturbing features have been investigated. It could be shown that the JND of damping
increases linearly with the magnitude of additional inertia and stiffness “masking” the damp-
ing impression. Modeling this effect by means of a dynamic perception model reveals that
a model structure considering an accumulation of information performs significantly better
than a structure without such behavior.

So far, only the JND for damping has been investigated. It is interesting to see whether
the perceptual bounds for inertia and stiffness exhibit similar behavior or not. Furthermore,
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a fully crossed experimental design with masking stimuli containing a inertia and stiffness
component are an interesting open problem. The application of the experimental findings
to a real transparency evaluation is left for future research.
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6 Communication Quality Control Based on a
Dynamic Task Performance Model

Summary. Achieving a high task performance is among the main objectives in the
design and control of telepresence systems. With current static task performance mea-
sures, an optimization of the system with respect to task performance can only aim for
an average enhancement. On the methodological foundation of describing sensorimo-
tor processes dynamically, this Chapter demonstrates

• the development of a dynamic task performance model based on stochastic reach-
able sets,

• its optimal consideration in a novel communication quality control algorithm,

• a significantly improved task performance attributed to the new technique.

Telepresence systems are designed to serve a specific purpose, e.g., telesurgery systems for
accomplishing a medical procedure [47] or telepresence systems in space for maintenance
tasks [153]. Besides taking objectives such as achieving a high degree of presence or trans-
parency into account for the design of such systems, one key target of telepresence systems
is often to obtain a high task performance. Techniques for achieving this goal are until
now limited to a static optimization of design and control, allowing to achieve an improved
performance on average.

In this chapter, a novel dynamic task performance model for an abstracted visual-haptic
telepresence task is developed, founded on stochastic reachable sets. On this basis a com-
munication quality control algorithm is developed, regulating the transmission time delay
between the human-system interface and a virtual teleoperator online. In this way the task
performance can not only be optimized on average, but on a trial-by-trial basis, respecting
the operator’s system interactions. This is, to the knowledge of the author, the first time
that such a technique has been applied to telepresence systems. Two evaluation studies con-
sidering a navigation task through a course of obstacles show a significantly improved task
performance compared to the case without communication quality control, but at the same
time reveal limitations associated with the choice of performance criterion.

Existing static task performance measures for visual-haptic teleoperation and their appli-
cation in optimizing visual-haptic telepresence systems are discussed in Section 6.1. Meth-
ods for communication quality control and the development of a dynamic task performance
model on the basis of the methodological framework in Chapter 3 are in the focus of Sec-
tion 6.2. The development of an exemplary, task-specific performance model for a navigation
task with time-varying haptic and visual feedback properties is described in Section 6.3. The
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evaluation of the optimal quality control algorithm in two application examples with respect
to performance enhancement and cost savings are discussed in Sections 6.5 and 6.6. Meth-
ods utilized for the modeling of task performance based on the theory of stochastic reachable
sets are furthermore outlined in Appendix C.

6.1 Background

A human-centered design of technical system must take the perceptual capabilities into
consideration, as discussed in Chapters 4 and 5, but must not forget that apparatus
such as telepresence systems are usually designed to help humans in performing certain
tasks. Task performance considerations and usability issues have been taken into con-
sideration for the design of mechanisms, especially haptic human-system interfaces ear-
lier [7, 13, 154, 155], and task performance is often used as an evaluation criterion of de-
vices and algorithms [121, 156–158]. All of these optimization techniques influence either
the design of the system before task execution or serve as a benchmark criterion after task
completion. There are less approaches taking task performance into consideration for a sys-
tem optimization during the actual execution of a specific task, e.g., by adapting control
algorithms to the specific task situation. An online-adaptation has significant benefits com-
pared to an a priori optimization: While optimizing parameters or the design of a system
before task execution can only lead to an optimized average task performance over multiple
tasks and operators, online-optimization can take the current task situation into account and
adapt the system in an optimal way during every task execution.

An important factor affecting the task performance of a human operating a telepresence
system is the quality of feedback information. Communication between human-system in-
terface and teleoperator is of particular importance in this context. Real communication
channels involving wireless transmission channels in air, space and underwater suffer from
time delay and data loss [159]. The operator notices time delay by visually perceiving
the feedback from his/her performed movements later. In the haptic modality, stabilizing
techniques display the mechanical environment impedance and haptic events which occur
distorted, e.g., during impacts [8, 30, 49]. Stabilization is nevertheless inevitable since a
global control loop with the remote environment is closed via the haptic modality, where
time delay decreases the stability margins of the overall telepresence system, and packet
loss must be handled appropriately to avoid instability. Multiple studies report a consis-
tently lower task performance in many different conditions with visual [37, 160, 161] and
haptic [37,104] time delay than without, even though different experimental setups, perfor-
mance measures, and performed tasks were investigated. Lost packets are as well capable
of affecting the operator of a telepresence system: In the visual modality, rather smooth
movements can become unsmooth and jumpy. For haptics, the corruption of haptic feed-
back depends on the environment impedance, packet rate, and loss burst length [8]. The
perception of visual-haptic stimuli under the influence of dropped packets [162] has been
studied earlier. However, there are only very few studies investigating the impact of packet
loss on task performance, not coming to a consistent conclusion. While there is a notice-
able effect on movement time in certain cases where packets are lost due to time-varying
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Figure 6.1: Communication quality control in telepresence can consider various quality re-
quests from the operator and teleoperator.

delay [163], no significant influence of lost information on task performance is observable
in other cases [156,164].

Low task performance caused by communication artifacts can be addressed in several
ways. Assistive functions are developed to improve task performance, however, a priori
knowledge about the task is required [103, 165]. In general, this is in conflict with one
of the fundamental goals of telepresence of setting the human operator into full control
as his expert, presumably a priori unknown knowledge is needed to perform the specific
task. Other approaches utilize knowledge about the specific time delay of the communica-
tion channel, amongst them are predictive displays [41] and the predictive wave variable
transformation [33]. These predictions though require strong assumptions about the re-
mote environment in the form of computational models, imposing significant challenges in
the case of a dynamically changing and heterogeneous scenery.

In the present approach, communication quality control as a novel, conceptually different
approach to networked telepresence systems is introduced, see Figure 6.1 for an illustration.
Recent developments in communication protocols, e.g., IPv6 together with specialized hard-
ware provide the ability to regulate the quality of the communication channel on-line in
terms of transmission time delay and packet loss probability [166]. In telepresence systems,
quality requirements for visual and haptic data transmission can come from the operator’s
subjective solicitation or objective imminent threats such as a potential obstacle collision.

6.2 Methods

The advent of versatile applications requiring network resources with different needs of
network quality e.g. in terms of transmission latency, jitter, and packet loss rate, led to
the development of communication quality control techniques, also known as quality-of-
service (QoS) control. These techniques allow an adjustment of network parameters defining
the transmission quality. The easiest communication control mechanism is an agreement
with a network service provider offering a guaranteed quality-of-service [167] over a time
period. Alternatively, specific protocols and hardware e.g. in wireless communication have
been developed, allowing a quality control on shorter time scales, in the extreme case on a
packet-to-packet base [168]. This technique has the advantage that only the actually needed
resources have to be provided for the main purpose, giving the opportunity for additional
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services to use the same communication channel when the communication demand is low.
In the following, we will restrict our considerations to the latter case of a packet-by-packet
QoS control scheme.

An adjustment of communication parameters during the actual task execution process
can be understood as an adaptive controller, which was defined by Åström to be “a controller
with adjustable parameters and a mechanism for adjusting the parameters.” [169]. The
development of an adaptive control scheme can be divided into four steps:

• Determine the desired system behavior.

• Find a suitable control law with adjustable parameters.

• Develop a mechanism for adjusting the parameters.

• Implement the control law.

In the next Sections, these four steps will be discussed for communication quality control
during the usage of a telepresence system.

6.2.1 Optimal Performance/Cost Tradeoff

Enhancing human task performance in achieving a specific goal using a telepresence system
is amongst the ultimate goals targeted in this chapter. In most practical cases, however, task
performance can only be enhanced on charge of another, concurring goal which is keeping
the costs for such systems low. As an example, the usage of a dedicated communication
channel with low latency and data loss rate which allows the human operator to achieve high
task performance, but is costly compared to other, shared communication solutions (e.g., the
internet). The “desired system behavior” for telepresence systems helping humans to achieve
a high task performance while keeping costs to be spent to a minimum can be formulated as
a multi-objective optimization problem

max
�

yperf(t)
T − ycost(t)

T
�T

, 0≤ t ≤ tcom, (6.1)

where yperf(t) is a specific task performance criterion evaluated at time t, and ycost(t) is the
corresponding cost which has to be spent.

6.2.2 Suitable Adaptive Control Law

The second step towards the development of a communication quality control scheme en-
hancing human task performance is to find a “suitable control law with adjustable parame-
ters” realizing this goal. In contrast to most technical control problems, the control mecha-
nism determining the interaction of the human operator with the telepresence system and
the remote environment can not be designed, but is a biological process within the human
brain, see Section 3.1. The cognitive control process is modeled to take the operator’s inten-
tion, sensory feedback and other factors into account to determine the neural signal une(t)
leading to the desired motor action. The dynamic system which is under control is charac-
terized by the state-space equation

ẋ�(t) =ψ�
�
x�(t),θ�(t),une(t),ξ�(t), t

�
, (6.2)
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where the state variable x�(t) contains all states in the closed sensorimotor loop, describing
physical, sensory, neural, cognitive, and motor processes. In the here considered case that
a telepresence system is part of the sensorimotor loop, dynamic processes in human-system
interface, communication, and remote environment are also contained. The parameter vec-
tor θ�(t) and the noise process ξ�(t) are defined accordingly.

Since there is no direct way of tuning the control parameters in the cognitive controller
itself, alternative ways of optimizing human task performance must be considered. It is clear
from (6.2), that the communication quality θC(t) ∈ θ�(t) has an influence on the closed-
loop dynamics. Instead of tuning the cognitive controller directly, the environment which
is to be moved is under control of the system designer. Considering the task is represented
by a set of task parameters θT (t) ∈ ΘT ⊂ Θ�, we define communication-independent pa-
rameters θ i

T (t) ⊂ ΘT , such as the distance from start to goal in a pick-and-place task, and
communication-dependent parameters θ d

T (θC(t), t) ⊂ ΘT , e.g., a change in the impedance
due to changes in time delay [18].

6.2.3 Parameter Adjustment Mechanism

Achieving the control goal formulated in (6.1) requires quantitative knowledge about the
behavior of yperf(t) and ycost(t). Taking the closed-loop dynamics and the control behav-
ior discussed above into consideration, yperf(t) is the output of a task performance model,
following the argumentation in Section 3.4

yperf(t) = φperf

�
xperf(t), . . . ,θperf(t),uperf(t), . . . , t

�
, (6.3)

where

uperf(t) = ν�,perf(x�,θ�,une,ξ�, t),

ẋperf(t) =ψperf

�
xperf(t),θperf(t),uperf(t), t

�
.

The consideration of a performance state vector xperf(t) is required for modeling cumulative
performance measures, among others. It is important to acknowledge that the relevant
parameters which can be adjusted by the communication quality control algorithm must be
contained in the performance model as well, thus θC(t) ∈ θperf . Similar to the description of
task performance, a cost model can be developed as

ycost(t) = φperf
�
xcost(t), . . . ,θcost(t),ucost(t), . . . , t

�
. (6.4)

Finding the optimal communication quality parameter vector θC(t) in the sense of equa-
tion (6.1) is formulated as a multi-objective, dynamic optimization problem,

arg max
θC (t)∈ΘC

�
yperf(t)

T − ycost(t)
T
�T

, 0≤ t ≤ tcom. (6.5)

The multi-objective nature of the optimization problem can be addressed using a variety
of approaches [170]. It can be distinguished between solutions resulting in a set of Pareto-
optimal values for θC(t) where one suitable solution is selected and applied to regulate
the communication quality. Alternatively, only a single compromise solution between the
concurring terms can be computed. For an overview of tangible solvers for both classes of
solutions, the interested reader is referred to [170].
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The globally optimal, time-varying communication parameters θ ∗C(t) can be determined
by using a dynamic programming algorithm and value iteration. The prerequisites for ap-
plying these methods are admittedly strong: All models, including the environment, task,
and the human behavior must be known exactly and a priori. These premises are often not
satisfiable in a telepresence scenario because the environment as well as the human oper-
ator inhibit unknown, and often stochastic behavior. Model predictive control (MPC) is a
promising alternative to dynamic programming [171], although the solution may not result
in the globally optimal solution. MPC approaches repeatedly solve the dynamic optimization
process in every time step but consider only a limited prediction horizon. The advantages
of using a model predictive approach are diverse: The environment as well as the future
behavior of system and human must only be known for a limited time horizon, making it
more robust to modeling uncertainties. Furthermore, MPC can handle higher-order system
dynamics while dynamic programming suffers from the “curse of dimensionality”, thus is
suitable only for low-dimensional systems. For an overview of different MPC algorithms, the
interested reader is referred to [171].

6.2.4 Implementation

A large class of algorithms solving (6.5) are operating in discrete time. Without an ex-
plicit proof, we will seamlessly switch between continuous-time models and discrete-time
models and assume their predictions and outputs to be equivalent. The prerequisite of this
equivalence is a sufficiently high sampling rate, approximating the continuous time t with
discrete time steps t, t + 1, . . . . As implementations are application-specific in all cases,
an illustrative example for an adaptive control scheme in telepresence systems, where task
performance is optimized shall be given here.

Example 6.1. A telepresent pick-and-place task with visual feedback and an adjustable com-
munication bandwidth bw(t) ∈ R+, directly affecting the resolution of the transmitted video
stream is considered. The task performance yperf(t) ∈ R+ in this task is the achieved posi-
tioning accuracy during the placement procedure when using the telepresence system. As a
scalar communication cost criterion ycost(t) ∈ R+, we want to consider the transmission cost
over one sample time of the dynamic task performance model. Assume that the following is
known about communication system, task, and human operator either from experimentation
or from prior knowledge:

• The cost ycost(t) for reserving communication bandwidth bw(t) for one time unit
is ycost = γ bw(t) where γ ∈ R+ is the (constant) parameter determining the network’s
cost policy.

• The operator task performance yperf(t) scales linearly with communication bandwidth.

• In the placing phase where it is important to achieve high task performance, the oper-
ator’s absolute velocity in one direction | ẋh(t)| ∈ R is low compared to his maximum
speed ẋh,max .

• Due to a large inertia of the object to be placed and a limited actuator force, the
velocity stays approximately constant within a prediction horizon of 100 time steps.
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Based on the experimental observations and considerations about the network quality, exem-
plary performance and cost models can be derived with the bandwidth as the only adjustable
control parameter θC(t) = bw(t) where bw(t) ∈ BW = [bwmin, bwmax].

yperf(t) = φperf(bw(t), ẋh(t)) = ( ẋh,max − | ẋh(t)|) bw(t),

ẋh(t + 1) = ẋh(t).

ycost(t) = φcost(bw(t)) = γ bw(t).

Resolving the multicriteria optimization problem by a weighted sum with weighting fac-
tors λ1,λ2 > 0, an exemplary MPC problem with a prediction horizon of 100 samples can be
formulated as

argmax
bw(t)∈BW

100∑
j=0

λ1φperf(bw(t + j), ẋh(t + j))−
100∑
j=0

λ2φcost(bw(t + j)). (6.6)

Because of the system dynamics

ẋh(t + 1) = ẋh(t + 2) = . . .= ẋh(t + 100) = ẋh(t)

the solution to the MPC problem posed in (6.6) is the simple control law

bw(t) =

(
bwmax if (λ1( ẋh,max − | ẋh(t)|)−λ2γ)> 0

bwmin otherwise

The choice of the performance model is the most challenging part in the development of
an optimal communication quality control scheme as it implicitly assumes the operator to
behave only based on velocity and video quality, and ignoring all other features. Because of
this uncertainty about the operator, any controller developed based on the model should be
iteratively evaluated and refined in subsequent experiments.

Over the next sections, we want to introduce a communication quality control algorithm
aiming at maximizing task performance in a simulated telepresence task over real commu-
nication channels, while keeping the cost to be spent for communication as low as possible.
The communication quality parameters under investigation are time delay and packet loss,
as these factors play an important role in the context of long-distance and wireless telepres-
ence applications. The approach of model development, algorithm design and implementa-
tion is maintained.

6.3 Dynamic Task Performance Model for Collision
Prediction

Because task performance is a quantity which is only meaningful in the context of a specific
assignment, a particular application scenario is introduced here. A navigation task through
a course of obstacles is considered, where visual and haptic feedback is provided. For the
ease of experimentation, evaluation and comparison of the results, the telepresence system
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Figure 6.2: The experimental setup, consisting of a 2DoF haptic interface with monitor for
visual feedback, and a virtual environment with emulated network character-
istics, wave variable transformation, and a virtual labyrinth. The experimental
task is going from start S to goal G without colliding with the walls while being
as fast as possible.

is abstracted by a virtual environment and the teleoperator replaced by a mass-less avatar,
represented by a circle in the visual feedback. Furthermore, the operator’s allowable mo-
tions are constrained to a plane by using a haptic interface with two degrees of freedom. The
obstacle course is represented by a labyrinth with an unique path similar to previous stud-
ies [101,102]. The virtual environment and the experimental setup is depicted in Figure 6.2.
Time delay Td(t) and packet loss are recognized as challenging problems for telepresence
systems operating over long distances [8, 30, 34, 36–38, 54, 55, 133]. As a consequence, we
examine a communication quality control algorithm capable of varying the communication
time delay Td(t) and the packet loss rate pl(t) in the communication quality parameter vec-
tor θC(t) = [Td(t) pl(t)]T . To guarantee stability also in the case of contact with an obstacle,
the haptic signal exchange between human-system interface and virtual environment is me-
diated by the wave variable transformation introduced in Section 2.3.2, ensuring stability
for arbitrary large time delays. Natural performance metrics yperf(t) for this task are [101]

1. the number of obstacle collisions Ncol at time t,

2. task completion time tcom.

In the following, we will focus on the reduction of obstacle collisions first and sketch an
extension for task completion time subsequently. Our professed goal is a task performance
model which can be used in a MPC algorithm for communication quality control. Thus, the
components φperf(·) and ψperf(·) and their dependency on communication-sensitive task pa-
rameters are derived explicitly to describe the collision probability as a prediction model for
obstacle collisions, calculated from stochastic reachable sets. To reduce the model complex-
ity, φperf(·) and φcost(·) are considered to exhibit no time-varying parameters.

6.3.1 Dynamic Performance Model

The minimization of obstacle collisions requires a model that is able to predict Ncol(t)
over a time horizon in the future. A particular problem in this context is the quantization
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of Ncol(t) ∈ N: Due to the fact that the prediction horizon in MPC algorithms is normally
reasonably short, the predicted collision count will be either 0 or 1 in most cases. This low
“resolution” of the objective function may lead to a control algorithm, similar to the bang-
bang control scheme discussed in Section 6.2.4. Instead of Ncol(t), the probability pcol(t)
capturing the momentary probability of a collision will be considered instead. This measure
can return continuous values, where a collision probability pcol(t) = 1 is equivalent to an
inevitable obstacle collision.

From intuition, multiple factors influence the collision probability at a given time: In sit-
uations where the operator maintains a small distance to an obstacle, or approaches it with
a high velocity increases the likelihood that a collision will occur. Furthermore, the system
dynamics influence the collision probability. As an example, if the telerobot’s avatar moves
rapidly towards an obstacle, it is easy to decelerate it and avoid a collision if its inertia is
low. In the case of a high inertia, the operator has to put a huge amount of effort into de-
celeration, making it more unlikely that a collision can be avoided. Relatedly, the operator’s
physical abilities, e.g., the maximum force he/she is able to exert, affects the collision prob-
ability. In addition to these factors in the haptic modality, time delay in the visual feedback
is known to influence human behavior as well [37, 160, 161]. Due to the high complexity
of the sensorimotor system coupled with the visual-haptic telepresence system, we propose
a drastically reduced sensorimotor model for the computation of collision probability here:
Utilizing nothing more than the maximum and minimum bound of the operator’s force exci-
tation capabilities which we assume to be independent of the communication parameters, a
purely mechanical model with bounded inputs is developed. The mechanics that the human
interacts with is modeled by its impedance Zh( jω) and includes the human-system interface
and the transmission of the remote environment. As an imperfect transmission of haptic
data affects haptic transparency, thus the system dynamics, an analysis of task parameters
affected by communication is performed first, before the dynamic model part ψperf(·) and
the performance output yperf(t) = φperf(·) are discussed.

Remark 6.1. Without considering any model of the human interaction strategy, but only
his/her physical abilities, the model is presumably conservative with respect to collision
probability. This is due to the fact that actions not helping for task completion (e.g., accel-
erating in a wrong direction, towards an obstacle), are considered being equally likely as
goal-directed actions. On the other side, the fact that task knowledge is unnecessary for the
prediction of task performance is a strength of this approach: Telepresence systems often
operate in highly unstructured environments without a predefined goal, at least none that is
easily quantifiable in an algorithm.

6.3.2 Communication-Sensitive Task Parameters θ d
T (θC(t))

The task of navigating through a course of obstacles is represented by a task-associated
feature vector θT (t), consisting of communication-independent factors θ i

T (t) and features
depending on communication θ d

T (t). Independent of time delay and packet loss are, e.g.,
the path length and obstacle position. Haptic transparency in contrast is affected by imper-
fect data transmission, and is analyzed here. We will discuss transparency in the case of a
time-delayed communication channel and the wave-variable transformation, introduced in
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Section 2.3.2 for guaranteeing stable closed-loop control, following an approach described
in [8].

Considering the definition of wave variables in equation (2.18) and the important special
cases of constant time delay, the impedance felt by the human operator is approximately

Zh( jω)≈ Zapp
h ( jω) = b

2Zenv( jω) + bTd jω

2b+ Td Zenv( jω) jω
. (6.7)

Note that this approximation holds only for frequencies ω < 1
3Td

. In the considered case,
we will assume for now and show later experimentally that this inequality holds and the
approximation is valid. As our task consists of free-space motion in a virtual environment
without a teleoperator having own dynamics, the environmental impedance is Zenv( jω) = 0.
Since an impact into the walls is considered as a failure in task execution and only happening
occasionally, it will not be analyzed any further. For free-space movement, equation (6.7)
simplifies to an inertia proportional to time delay,

mTd
=

bTd

2
. (6.8)

While there exists an analytic solution for the displayed impedance in the case of constant
time delay, the effect of packet loss is non-deterministic as packet dropouts generally are of
stochastic nature. Furthermore, their influence on system transparency strongly depends on
the reconstruction strategy for data loss. Replacing a lost package containing wave variable
information with zero values is able to preserve passivity, thus stability, but results in signifi-
cant position drift and decreases transparency drastically [8]. Opposing, a hold-last-sample
(HLS) technique repeating the last transmitted value in the case of missing information leads
to better transparency but provokes active, thus potentially unstable behavior. We consider
an energy supervising algorithm [8] here, ensuring passivity while preserving transparency
as much as possible.

6.3.3 State Dynamics ẋperf (t) =ψperf (·)
The first step in the development of a dynamic model for task performance is the definition of
the state vector xperf(t). Recalling that we base our considerations purely on the mechanical
properties of the human-system interface with 2 degrees of freedom and the transmitted
environment, the states

xperf(t) =
�

xh,x(t) ẋh,y(t) xh,y(t) ẋh,y(t)
�T

(6.9)

suffice for describing the dynamics of the system. Here, xh,x(t) and xh,y(t) denote the posi-
tions in the coordinate system of the haptic interface, the velocities ẋh,y(t) and ẋh,y(t) are
defined accordingly. The task of navigating through a course of obstacles considered here
can be abstracted as a free-space motion as long as no obstacle collision occurs. Due to the
necessity of knowing the collision probability before a collision occurs to have the ability of
regulating the communication parameters and prevent an impact, the performance model
must be most accurate in the free-space movement. Since the operator is in contact with
a real robotic device, the ideal case where no haptic feedback, thus Zh( jω) = 0 can often
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Figure 6.3: The probabilities pi([0, 500ms]) of being in a specific discrete state X i are pro-
jected to the x/y-plane. Four initial states X j with different initial velocities
ẋh,y(0) are depicted. Darker states are more likely to be reached.

not be achieved. Instead, uncompensated dynamics introduce a small remaining impedance
which is often modeled as a mass-damper model [8]. With the state variable given in (6.9),
the linear model determining the performance dynamics is

ẋperf(t) = Axperf(t) + Buperf(t) (6.10)

with

uperf(t) =

�
fh,x(t)
fh,y(t)

�
, A=




0 1 0 0
0 0 0 1
0 − d

m
0 0

0 0 0 − d
m


 , B =

�
0 1 0 0
0 0 0 1

�
. (6.11)

The input vector uperf(t) contains the operator’s force fh(t) in the two dimensions x and y .
The overall inertia m is determined on the one hand by the uncompensated dynamics from
the human-system interface mHSI , on the other hand by the communication-dependent in-
ertia mTd

as introduced in (6.8), m= mHSI +mTd
. The damping d = dHSI is only determined

by the interface dynamics, as the environment has no additional damping component.

6.3.4 Performance Output Function yperf = φperf (·)
The performance output function φperf(·) relates the state and relevant communication and
task parameters to the performance measure yperf(t) which is the probability to collide with
an obstacle within the next time step pcol([t, t + T]). We consider the probability over
the time interval [t, t + T] where t is the current time index and T is the sample time,
instead of a single time instance, such that collisions that occur between t and t+ T are not
missed. For the calculation pcol([t, t + T]), an approach based on probabilistic reachable
sets [172,173] is used. A reachable set denotes the set of states that can be reached from the
given initial state at time t within a time interval [t, t + T], considering certain bounds on
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Figure 6.4: The Gilbert-Elliot model is a 2-state Markov process and approximates the net-
work characteristics in packet-based data transmission networks. ‘N ’ and ‘L’
denote the states ‘no packet loss’ and ‘packet loss’ state, respectively.

the input. To calculate the probability of a collision with an obstacle, the probability of being
at a location within the reachable set must be furthermore known. This can be achieved by
a quantization of the state space, and the introduction of a Markov chain with the state
transition matrix Φ([t, t + T]), containing the probabilities of reaching specific (discrete)
states. Together with the known or measured positions of obstacles, the collision probability
can be calculated. Projections to the x − y plane of the probabilities to be in different states
within a time interval [0, 500ms] are depicted in Figure 6.3 for illustrative purposes. To
the knowledge of the author, a similar method has never been applied to human motion
prediction in telepresence systems before. To enhance readability, all side issues related
to the computation of reachable sets, collision probability, and the implementation issues
thereof are discussed in Appendix C. For a deeper methodological discussion of the principles
applied, the interested reader is referred to [172,173] and the references therein.

6.4 Experimental Evaluation

An experiment to evaluate the dynamic performance model developed in Section 6.3.1 is
performed. To limit the number of degrees-of-freedom in the experimental design, the com-
munication quality parameters are kept constant over time, thus θC is time-invariant. The
impact of different communication quality parameters levels θC = [Td pl]T are related to
the number of collisions as the original performance measure and the predictions from the
collision probability model.

6.4.1 Network Model

The network used in the experiment is emulated instead of using a real, time-delayed, and
lossy communication channel to ensure a reliable presentation of experimental conditions.
For simulating packet loss characteristics, either a Bernoulli process or the Gilbert-Elliot
model [174, 175] are popular choices where latter was chosen for the current experiment.
The Gilbert-Elliot model is a two-state Markov process and is depicted in Figure 6.4. In
contrast to a Bernoulli process where each sample is independent of all other samples, this
model can resemble specific characteristics of packet loss in packet-based networks such as
the Internet [176] because the probability of a packet being lost depends on the transmission
state of the previous packet. In this way, bursts of lost packets can be generated which are
indeed part of the observed real network characteristic. Lost packets must be reconstructed
on the receiving side of the telepresence system: Visual feedback does not affect system
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stability, therefor we choose a hold-last-sample reconstruction for the visual datastream.
This makes feedback freeze during loss bursts. In the haptic modality we take the energy-
supervised hold-last-sample algorithm as discussed in Section 6.3.2. The effects of loss bursts
on haptic feedback are hard to capture in general, but will be analyzed in the specific context
of the task considered here.

6.4.2 Experimental Design

The experimental setup is described in Appendix A.2. For the control of the haptic interface,
a position-based admittance controller was utilized, as described in Section 2.2.2. The in-
ertia mHSI was set to 9 kg, and a damping dHSI = 8 Ns

m
was present to increase the stability

margins.
Three levels of round-trip time delay Td = {0, 0.04,0.1}s and packet loss

rates pl = {0,0.1, 0.2} with a fixed mean burst length of 60 ms at a packet rate of 1000
packets/sec for the haptic modality and 60 frames/sec for the visual modality were tested in
an orthogonal experiment design. For simplicity reasons, we set time delays and loss rates
in the send- and receive channel to Td1 = Td2 = Td/2 and pl1 = pl2 = pl/2, respectively.
The wave impedance parameter b was set to b = 100 as a tradeoff between transparency
in free-space and oscillations in impact situations. These parameter choices result in an
inertia felt by the human operator of m = 9kg for Td = 0s, m = 11kg for Td = 0.04s,
and m = 14kg for Td = 0.1s, based on the inertia from the admittance controller and the
time delay-dependent inertia mTd

calculated from equation (6.8). All conditions were ran-
domly presented to a human operator with 20 repetitions, leading to a total of 180 trials per
subject where one trial was completed in approximately 45 seconds. The instruction for all
participants was to go through the labyrinth without touching any wall while being as fast
as possible. The instruction of not touching a wall was prioritized verbally over the speed of
the movement.

Six university students from different disciplines participated in the experiment. All were
right-handed and had normal or corrected-to-normal vision. Because of the large number of
conditions, the experiment was split into two sessions with 10 repetitions of each condition.
One session was completed in approximately one hour.

6.4.3 Results and Discussion

Influence of Communication Quality on θ d
T (θC)

In order to draw valid conclusions about the observed results, we validate the assumptions
made about the effect of time delay and packet loss on task parameters θT (θC), in our case
the time delay-dependent inertia mTd

. A mass-damper admittance model with estimated
inertia m̂ and estimated damping d̂

ˆ̇xh,x(t) =
1

d̂

�
fh,x − ˆ̂mẍh,x

�
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Figure 6.5: Predictions of human velocity ˆ̇xh from real force data and an identified mass-
damper model (solid), compared to the actual velocity ẋh (dashed) which was
obtained with a packet loss rate of 20%.

is identified using a system identification algorithm, minimizing the squared error between
the recorded velocity and model simulations,

arg min
m̂,d̂

( ẋh,x(t)− ˆ̇xh,x(t))
2.

A measure of fit for the identified model is calculated by

ξ= 1−

√√√√
∫ tcom

0
ẋh(t)− ˆ̇xh(t)dt

∫ tcom

0
ẋh(t)− ¯̇xh(t)dt

where ¯̇xh is the mean handle velocity, calculated over data taken from a whole trial of the
experimental procedure, respectively. A value of 1 for the fit measure ξ stands for a perfect
match between model predictions and actual data while 0 equals a simulation behavior that
is no better than simulating the mean value of all observations over a whole trial, regardless
of the input. Predictions from the model and real data with no time delay and a packet loss
rate of 20% are depicted in Figure 6.5.
In the case of pure time delay, the model fit with measured velocity and force data from

one experimental trial is ξ ≥ 0.98 over all trials and time delay conditions. The magnitude
of identified damping and mass for the different time delay conditions is consistent with the
values of the admittance controller and the additional inertia due to time delay and the wave
variable transformation as computed from equation (6.8). The identified models for the time
delay conditions are also capable of fitting data from trials with 20% of packet loss with a
goodness-of-fit measure of ξ ≥ 0.80. Deviations between measured and simulated handle
velocity in the time instances of packet loss bursts result from a change in the mechanical
impedance during lost packets which are responsible for the lower consilience of model and
data. The magnitude of this impedance change depends on the burst length, and the force
and velocity profiles during loss bursts.

Taking together the high goodness-of-fit for a mass-damper model in the case of time
delay and packet losses, we can confirm the model for time-delayed free-space motion telep-
resence in equation (6.8). Furthermore, these results qualify the mass-damper model in
equation (6.11) as suitable to compute the collision probability.
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(a) The number of collisions with an obstacle Ncol is significantly increased with time delay.
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(b) The experimentally observed completion time tcom depends nearly linearly on time delay Td and
packet loss rate pl .

Figure 6.6: Time delay has significant influence on the number of collisions Ncol and comple-
tion time tcom, whereas packet loss shows only significant impact on completion
time.

Influence of Communication Quality on Ncol(tcom) and tcom

The influence of time delay and packet loss rate on the total number of obstacle collisions
during task execution Ncol(tcom) is depicted in Figure 6.6. Findings on the task comple-
tion time tcom are reported for informative reasons as well. Two 2-way repeated-measure
ANOVAs were performed to reveal significant effects of packet loss rate and communica-
tion time delay on Ncol(tcom) and tcom, respectively. Packet loss rate shows no significant
influence on the number of obstacle collisions (F(2,8) = 2.8, p = 0.12) while time de-
lay is of significant influence (F(2, 8) = 17.03, p < 0.01). Contrast tests indicate that
only the largest time delay level Td = 0.1s results in significantly more collisions while
the collision count in the conditions Td = 0s and Td = 0.04s are not significantly differ-
ent (p = 0.13). Packet loss rate as well as time delay showed to influence completion time
significantly (F(2,8) = 18.51, p < 0.001 and F(2, 8) = 48.25, p < 0.001, respectively). The
relation of completion time and the communication effects Td and pl can be described by a
linear regression within the investigated range of parameters. The norm of residuals to the
regression model is 0.18, indicating a good fit.

These results confirm previous findings that time delay has negative influence on task
accuracy and completion time [37, 160, 161]. The negative influence of packet loss on
task completion time though contradicts the previous finding that video game players are
unaffected by information dropouts [177]. This can be explained by the differences in loss
burst length which was presumably longer in our experiment and the consequences of losses
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on the sensory feedback – while it is unknown how losses affect the game experience, in this
experiment they cause the visual feedback to freeze and change the mechanical impedance
in the instance of time delay.

Generally, humans are capable of adapting their control strategy to a variety of task situ-
ations [76,111,178]. Loss of task performance, however, indicates imperfect compensation
for the change in environment dynamics as accuracy (more obstacle collisions) degrades as
well as speed decreases (longer time for task completion). This can be partially explained by
the changed environment impedance discussed in Section 6.4.3: The time delay-dependent
inertia that must be moved by the human operator additionally to the inertia and damp-
ing from the position-based admittance controlled haptic interface requires more work to
be spent for acceleration. As humans’ natural behavior is known to exhibit energy-saving
properties [84], the task completion time tcom achievable with a control strategy using sim-
ilar energy levels with low inertia is lower than in the case of a high inertia. An equivalent
argument can be found for the number of collisions as the amount of energy to be spent for
deceleration in order to prevent a collision is also higher with a larger inertia.

The effect of the packet loss rate pl on task performance in terms of the number of colli-
sions and the task completion time can not be explained by changes in the impedance as pl

does not influence the mechanical properties, see Section 6.4.3. Recalling that corruption of
sensory feedback due to packet dropouts is manifested in a stagnation of visually perceived
motion, followed by a position jump and an instantaneous varying haptic impedance dur-
ing loss bursts, the system behavior may appear less predictable for the operator, thus the
risk to collide with an obstacle increases. Such unpredictable system behavior was found to
affect operator’s control strategy [179] in two possible ways: Operators using a risk-averse
control strategy are found to lower their control gain while risk-seeking participants adjust
their gain to rise with the amount of uncertainty in the sensory feedback. A risk-averse strat-
egy with respect to the number of collisions was induced in this experiment by the explicit
instruction to focus more on the avoidance of collisions than on execution speed. A lower
control gain lets the human operator react with smaller control inputs, e.g., smaller forces.
This fact can lead to a lower speed during navigation and thus to longer completion time.
This could explain why the task completion time is significantly affected by the packet loss
rate but not the number of collisions.

Influence of Communication Quality on pcol([t, t + T])

To serve as a dynamic task performance model, the relation between the collision probabil-
ity pcol([t, t+ T]) and the number of collisions Ncol(t) as the original performance measure
must be known. The sampling time T used for computing the collision probability must
be chosen in agreement with the dynamics of the input to the dynamic task performance
model, in our case the exerting force fh(t) in x and y-direction. This is due to the fact
that within one sampling interval [0, T] the input to the dynamic system is assumed to be
constant, see Appendix C.2. Human force exerting capabilities are known to be limited to
a bandwidth of about 10Hz [6], thus T is set to 100ms. For each time delay level, an in-
dividual state transition matrix Φ([0, 100ms])|Td

must be computed due to the change in
system dynamics. Intuitively, a higher time delay results in a higher inertia mTd

to be moved
by the operator. From a resting state, the reachable area around the initial position is thus
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Figure 6.7: An example for the raise in collision probability pcol([t, t + 100ms]) before a
collision occurs, indicated in gray.

smaller if only a limited force is available, compared to the case where the effective inertia
is small. The time-course of the collision probability pcol([t, t + 100ms]), computed off-line
for a trajectory recorded in the experiment, is exemplarily depicted in Figure 6.7.

A raise in collision probability can be noticed before the actual impact at collision
time t = 0. The fact that pcol([t, t + 100 ms]) does not increase to 1 is due to the fact
that the dynamic performance model solely relies on the system dynamics and the opera-
tor’s physical abilities. This makes it possible, though unlikely, that the collision could be
avoided. Nevertheless, the highly elevated value of the collision probability up to ≈ 0.7
in comparison to situations where no collision occurs indicates that pcol([t, t + 100 ms]) is
capable of predicting a collision within the next time step when it actually occurs.

In addition to the capability of predicting collisions in general, time delay and packet
loss rate must influence the collision probability pcol([t, t + 100 ms]) similarly to the num-
ber of collisions Ncol(t). We test this model property by computing the collision proba-
bility for different levels of time delay and packet loss, right before a collision actually
occurs. The difference in collision probability, calculated over all occurred collisions in
the dataset for multiple levels of time delay is depicted in Figure 6.8. It can be noted
that with an increasing time delay level, the rise in collision probability is highly signifi-
cant (F(6,49987) = 765.83, p < 0.001). On the other hand, packet loss rate shows no ef-
fect on the collision probability. This was expected as we did not include any other dynamics
than the mechanical impedance and assumed the force range to be unaffected by changes in
communication quality. Recalling from Section 6.4.3 that the influence of packet losses on
the impedance is negligible, the collision probability pcol([t, t + 100 ms]) does not depend
on pl .

6.5 Communication Quality Control for Improved Collision
Avoidance Performance

The main goal of the communication quality control scheme targeted here is the minimiza-
tion of collisions and network costs by an adjustment of network quality. Since the effect
of packet loss on the number of collisions is insignificant, only time delay will be taken into
consideration when developing a communication quality MPC algorithm.
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Figure 6.8: The difference in collision probability within the next sample
∆pcol([t, t + 100ms]) = pcol([t, t + 100ms])− pcol([t, t + 100ms])|Td=0 is
higher with larger time delay.

6.5.1 Model Predictive Control Algorithm

The original problem formulation for increasing task performance while keeping costs low
which was posed in equation 6.5 is a multi-objective dynamic optimization problem

arg max
θC (t)∈ΘC

�
yperf(t)

T − ycost(t)
T
�T

, 0≤ t ≤ tcom.

In the concrete example of aiming for a lower collision probability while maintaining a low
communication cost, we resolve the multi-objective nature of this problem by a weighted
sum, using weighting factors λ1 and λ2. A model predictive controller for solving this opti-
mization problem can be formulated as

argmin
Td ([t, t+tp])∈Γd

λ1pcol([t, t + tp]) +λ2φcost([t, t + tp])︸ ︷︷ ︸
J1

(6.12)

where tp is the prediction horizon, and Γd is a set of possible time delay values the control
algorithm can choose from.

Remark 6.2. The prediction horizon of the MPC algorithm proposed in equation (6.12) is
longer than the sample time of T = 100 ms in general. The collision probability prediction
can be extended over the whole horizon, by using an iterative procedure, as described in
Appendix C.2.2. In addition to this extension, modifications are necessary to make the
collision probability computation fast enough for a real-time application like communication
quality control. These modifications are summarized in Appendix C.2.3.

6.5.2 Communication Cost Model ycost(t) = φcost(·)
There are several possibilities defining network costs, amongst them the cost per packet
and the overall cost at task completion. For teleoperation, the task and thus its duration is
usually unknown, making a consideration of the overall cost unsuitable, thus we will use
the cost per packet. The relation between network cost and time delay is usually defined to
be monotonically decreasing with increasing time delay [180, 181], such as exponential or
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Figure 6.9: The cost for transmitting a packet is monotonically decreasing with communica-
tion time delay. In the current experiment, the relation is modeled to be linear.

rational functions. We set the cost function to a first-order rational function in agreement
with current literature [181],

ycost(t) = φcost(Td(t)) = cmax −
cmax

Td,max
Td(t) (6.13)

such that a time delay Td = 0 corresponds to a maximum cost cmax and the highest possible
time delay Td,max comes free-of-charge as illustrated in Figure 6.9. Without loss of generality,
we set the maximum cost cmax = 1. For the experiment, we will assume that enough net-
work resources are available such that every quality request can be fulfilled and is handled
immediately.

6.5.3 Stability considering Time-varying Time Delay

The online-control of time delay poses problems for guaranteeing stability. The wave vari-
able transformation is known to provoke active, thus potentially unstable behavior of the
communication channel if time delay is time-varying. As a solution to this problem a time-
varying scaling factor

k(t) =
p

1− Ṫd(t)/2

is inserted into the communication channel [54] as shown in Figure 6.10. This factor de-
pends on the temporal derivative of time delay and can fully prohibit communication in the
case of a rapidly rising value of Td(t). Due to the large impact of this phenomenon on the
displayed impedance, the effect is attenuated by constraining the rate of the variable time
delay. This is achieved by pre-processing the time delay request using a first order lowpass
filter with cutoff frequency 5Hz.

6.5.4 Experimental Design

The network emulator described in Section 6.4.1 is complemented with the ability
to regulate the time delay online, furthermore a virtual environment with different
obstacle positions as depicted in Figure 6.10 is considered. The number of differ-
ent time delay levels the communication quality controller can choose from is set
to Γd =

¦
0 0.05 0.1 0.15 0.2

©
s. Multiple paths are freely decidable for the human
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Figure 6.10: The experimental setup used in Section 6.4 is complemented with a communi-
cation quality control mechanism and a time-varying gain to ensure stability.

operator, while all paths have the same length and structure, as they are symmetric. A
sampling rate of 25Hz on the same experimental PC that executed the haptic rendering can
be achieved. The weighting factors λ1 and λ2 in the MPC algorithm posed in equation (6.12)
is tuned to weight collision probability higher than network costs. This means that maxi-
mum latency is applied in non-critical situations but the time delay is lowered in the case of
an imminent collision where lower latency produces lower collision probability pcol([0, tp]).
The actual values for λ1 and λ2 have been found in piloting experiments.

After familiarization with the system and training of at least 5 trials with quality-
controlled time delay and 5 constant-delay trials, each participant had to perform 40 trials
with communication quality control using the cost function from equation (6.12) and 40 tri-
als using a cost function without considering the collision probability, resulting in a constant
time delay of Td = 0.2.

5 engineering students participated in this experiment, none of them participated in the
Experiment described in Section 6.4. All were right-handed. All experimental conditions,
quality-controlled and constant time delay conditions, were fully intermixed to avoid adap-
tation effects. The duration of one trial was less than 30 seconds, thus all 80 trials could be
finished within one hour.

The experiment was performed using the same hardware described in Appendix A.2.

6.5.5 Results and Discussion

Paired t-tests reveal that communication quality control has a significant positive effect on
the task performance in terms of the number of obstacle collisions (p < 0.05), as depicted
in Figure 6.11. On the other side, completion time is not significantly changed by active
control of time delay in the communication channel (p = 0.96). In Figure 6.12, the online-
control of communication quality using the developed model predictive controller is depicted
exemplary. In the case of no imminent collision, the time delay is on its maximum level. In
cases where a better cost/task performance tradeoff can be achieved with a lower time delay
level, the channel quality is switched accordingly. The success of the communication quality
control scheme can be explained by considering that in the case of an imminent collision,
the operator usually decelerates movement to not collide with the obstacle. Lowering the
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Figure 6.11: While completion time is not significantly affected by communication quality
control, the number of collisions with the walls are lower when time delay is
controlled according to the collision probability.

inertia during this phase leads to a shorter breaking distance, helping the operator to avoid
an impact.

It can be additionally noted that completion time is not significantly influenced by the
proposed quality adjustment algorithm. This is despite the fact that time-varying time delay
also causes packets to be lost [8] and data loss was found to increase task completion time,
see Section 6.4.3. The difference between the lost packets in the quality-controlled condition
and simulated packet dropout investigated earlier lies in the fact that time delay is lowered
not randomly, but only when the operator approaches an obstacle. Reconsidering that these
phases are generally dominated by breaking actions, the effect of the lost information on
completion time may be negligible.

6.6 Towards Communication Quality Control for Task
Completion Time Improvement

While the previous experiment showed improved task performance in the sense of avoiding
collisions, we aim to influence completion time as well as accuracy in the next step. For this
purpose, a prediction mechanism allowing to consider completion time in yperf(t) is needed.
Based on the reachability computation used to predict collisions, we propose a prediction
term rspeed([t, t + T]) similar to the collision probability pcol([t, t + T]). The term

rspeed([t, t + tp]) =
∑

i=1...N

ppos
i ([t, t + tp])

Æ
x2

h,x ,i + x2
h,y,i.

where ppos
i is the probability to be at a specific position xh,x ,i, xh,y,i and N is the number of

discrete state variables taken into consideration for the computation of the collision prob-
ability. The motivation for this definition of rspeed([0, tp]) is the following: Large values
of rspeed are achieved when the probability to reach far distances from the starting point is
high. This, in turn, can lead to a larger likelihood for making faster movements, capable of
leading to a smaller completion time. Extending the MPC problem in (6.12) to

argmin
Td∈Γd

J2 = arg min
Td∈Γd

λ1pcol([t, t + tp]) +λ2φcost([t, t + tp]) +λ3rspeed([t, t + tp]) (6.14)
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Figure 6.12: The value of the cost function J1(t) is displayed exemplarily for three time
delay levels (Td,max dotted, Td,min solid, Td,med dash-dotted). The optimal time
delay Td,opt with minimum value of J1(t) (dashed) is lowpass-filtered (solid)
and applied to the communication channel.

respects both collisions and completion time. The practical impact of quality control using
this specific cost function on the haptic properties of the system is ambiguous. Considering
the operator’s maximum force capabilities together with the environment dynamics chang-
ing with time delay can help for an intuitive understanding of the algorithm’s properties:
From a resting position, the reachable area around the initial point is symmetric in every
direction. Its width is reciprocal to the communication channel’s time delay as it affects the
inertia to be accelerated. With the same force exertion capabilities, a smaller inertia can be
moved further in the same time. The value for the objective function rspeed , can be maxi-
mized in this case with choosing small time delay. In contrast, when the initial velocity is
high, the inertial mass helps maintaining a high velocity which is reflected in high probabil-
ity values for locations in the movement direction, see Figure 6.3. In this case, rspeed is large
with large inertia, equivalent to large time delay.

The value of the weights λ1,2,3 have to be chosen carefully in order to let the collision
avoidance term overrule rspeed in the case of an imminent collision as both terms are working
in opposite directions. λ2 can be used to adjust the average time delay level as it makes it
more or less expensive to use the communication channel with small latency.

6.6.1 Apparatus and Procedure

The experiment for testing the effectiveness of the proposed communication quality control
algorithm was performed using the same setup and virtual environment as in Section 6.5.
All participants underwent the same training procedure with at least 5 quality-controlled
trials and 5 trials with constant time delay, followed by the main experiment consisting
of 40 trials with varying time delay and 40 trials with constant time delay. In contrast to
the previous experiment, conditions including communication quality control were paired
with constant time delay conditions that result in equal network costs. Corresponding to
the linear network cost model in (6.13), equal costs are produced by trials with equal mean
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Figure 6.13: Correlations of the change in completion time between trials with constant
velocity t const

com and with active communication quality control tQoS
com, over mean

time delay T̄d and time delay variance var(Td).

time delay, given that completion time is the same. Though completion time is not under
control of the experimenter, it stays within small bounds, making it reasonable to apply the
mean time delay in the constant time delay condition.

Each participant was tested with a different weighting factor of λ3 in cost func-
tion (6.14) – λ2 was fixed to assure that collision avoidance is able to overrule agility in
terms of an imminent collision. This experimental design resulted in different means and
variances of Td(t).

6.6.2 Results and Discussion

Performance Evaluation

There was no common trend between participants and conditions: Paired t-tests revealed
that two subjects showed significantly longer completion time (p < 0.05) compared to the
equal-cost condition with fixed time delay. One subject had less wall collisions with quality
control than without (p < 0.05). None of the participants showed a significant decrease in
completion time. To quantify the influence of mean time delay, a regression analysis was
performed using all trials from all subjects. The variance in time delay as a measure for the
number and magnitude of communication quality adjustments was analyzed similarly. The
change in completion time between constant time delay condition and the quality-controlled
channel is significantly lower with increasing mean time delay (F = 43.0, p < 0.001), and
higher with increasing variance in time delay (F = 8.00, p < 0.01) as depicted in Fig-
ure 6.13.
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6 Communication Quality Control Based on a Dynamic Task Performance Model

Discussion

While the communication quality control algorithm aiming for lowering the number of ob-
stacle collisions demonstrated a general benefit of controlling time delay on the basis of
predictions from a human task performance model, considering an additional term for im-
proving execution speed can neither consistently improve task completion time nor collision
avoidance. This applies for the case that the performance achieved with communication
quality control is compared to a equal-cost policy with constant time delay. An explana-
tion for the fact that both task performance indicators can not be improved by communi-
cation quality control can be searched in the difference between the optimization objective
of solely focusing on collision avoidance and the current objective, especially regarding the
movement phases when time delay is lowered and increased. Time delay is normally high
during regular, non-critical movements when using an algorithm with cost function J1 from
equation (6.12) and adjustments are made before imminent collisions only. Minimizing J2

from equation (6.14) instead results in a low time delay (inertia) during slow motions and
high delay (inertia) with high velocity. Thus, the change in time delay is noticeable during
the acceleration phase of the movement which has potential to disturb the operator. It is
furthermore known that humans are able to adjust their arm impedance to the actual load
condition in the sense that arm stiffness increases when the load on the hand is higher [182].
Together with the previous consideration it can be concluded that the arm stiffness is low
when a small inertia is to be accelerated from a resting state. When switching to a high in-
ertia during acceleration, the arm impedance is no longer appropriate, potentially impeding
the desired effect to speed up task completion.

Influence of the Communication Cost Policy

Performance evaluation heavily depends on the network cost policy. In our case where cost
are assumed to scale linearly with requested channel time delay, the effort of communication
quality control could not even pay off in terms of completion time benefits. Given that
network quality control produces less cost than average time delay and considering the
influence of time delay on completion time found in Section 6.4, a task performance benefit
of controlling the quality online compared to the equal-cost policy is expected.

6.7 Conclusions and Open Problems

A dynamic task performance model has been developed, founded on the dynamic sensori-
motor framework introduced in Chapter 3. The human motor capabilities have been taken
into consideration for a calculation of the probability to collide with an obstacle, based
on stochastic reachable sets. An innovative human-centered application of communication
quality control to haptic telepresence demonstrates a potential for improving task perfor-
mance in this way.

The fact that it was not possible to demonstrate a cost-effective adaptation of commu-
nication quality based on the current task performance model indicates room for further
improvements: First, a task performance model capturing more details of human behav-
ior, such as the control strategy, could be used to make predictions about future movements,
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thus collisions and speed metrics more accurate. In addition, the influence of visual feedback
and its impact on the human operator was neglected so far. By including, e.g., perceptual
knowledge about the discrimination of time delay into the parameter adaptation algorithm,
further improvements could be made.
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7 Conclusions and Future Directions

The focus of this thesis is on the development of dynamic models of human perception and
action and their application in telepresence. This interdisciplinary endeavor requires the
seamless integration of system theoretic modeling considerations into psychophysical exper-
imental techniques for the determination of perception properties on the one hand, and the
development of engineering methods that are optimized with respect to human sensorimotor
capabilities on the other hand. The question of haptic perception’s dynamic behavior, which
is addressed in this thesis for the first time, is a significant contribution to both disciplines
involved: Current haptic psychophysical models capture only the steady-state of perception,
loosing information about the transient reaction leading to it and are inaccurate as they do
not take time-varying influence factors such as the interaction movement into account. On
the other hand, today’s integration of quantitative human requirements into the design of
technical systems is still in its infancy.

A starting point towards a dynamic formulation of the complete sensorimotor loop is a
system theoretic analysis of the information exchange between the environment, the sensory,
neural, cognitive, and motor system which are involved in the haptic interaction with the
physical world. A mathematical framework, capable of capturing this information exchange
is developed in Chapter 3 on the basis of coupled dynamic systems in state-space form. With
this system theoretic view on the sensorimotor system, the development of quantitative
perception models for the dedicated purpose of being integrated into the design, control,
and evaluation of a technical system is possible in a systematic way. Besides a discussion of
phenomena which can be modeled using this framework, the relation to existing perceptual,
behavioral, and task performance models is discussed.

Due to the fact that little is known about the dynamic processes determining haptic per-
ception, the first steps in this new field must aim for a basic understanding of fundamental
mechanisms in haptic perception: One of these foundations is the combination of movement
and force feedback to a unified percept of environmental features, such as the feel of an ob-
ject’s inertia, or stiffness. In Chapter 4, experimental work on the temporal perception limits
in this combination process is presented. A model-based experimental design considering
three particular dynamic model candidates in the choice of conditions is the first innovation
in this context and demonstrates the usefulness of the dynamic modeling framework devel-
oped in Chapter 3. The resulting model, capturing the perception thresholds for temporal
inconsistencies between movement and force best is a state observer model, based on an
internal representation of body and environment dynamics. Remarkably, all models consid-
ering including a dynamic process result in a lower prediction error compared to a static
perception model for time delay. The obtained results are of significant importance for a
human-centered transparency evaluation, and the design of novel communication concepts.

A second example for the need of a dynamic formulation for human perceptual pro-
cesses is the modeling of haptic masking effects. In an experimental study on the perception
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of damping in Chapter 5, difference thresholds for the damping coefficient are measured.
These are found to be higher when additional features, such as inertia or stiffness, are com-
bined with the damping. Explaining such masking effects requires a consideration of the
movement’s and force feedback time-series data. A comparison between predictions from
different model candidates reveals that perception mechanisms exhibiting accumulating be-
havior resemble human perception better compared to models without an integrator. This
finding adds evidence to the need of a dynamic formulation in order to capture perceptual
effects accurately, and furthermore has an impact on the design, and evaluation of haptic
mechanisms and algorithms: As a certain amount of information must come together before
it can be perceived, algorithms which aim to keep distortions below the detection thresh-
old could allow short violations of “static” thresholds which avoids an overly conservative
design. In addition, the finding of high imperceptible damping differences in environments
containing additional stiffness or inertia can help in the development of stable haptic ren-
dering algorithms, and aid the design of haptic mechanism.

Besides perception, the ability to perform tasks with a high performance is an objective to
be taken into consideration in the design of telepresence systems. With static definitions of
task performance such as the collision count in a navigation task, systems can be optimized
to allow the operator achieve a higher task performance on average. The measures taken
to achieve this enhancement may though be overly expensive if their positive effect on
task performance is limited to only specific situations, e.g., before an imminent obstacle
collision, and unnecessary in the rest of the time. The usage of dynamic task performance
models on the basis of the mathematical sensorimotor framework presented in Chapter 3
allows a more accurate utilization of resources, by predicting the task performance online
during task execution. In Chapter 6, an parameter adaptation scheme is investigated
on the example of communication quality control. By lowering the time delay of the
communication channel in an abstracted telepresence task on the basis of predictions of the
collision probability from a dynamic task performance model, a significant improvement
of task performance could be observed. At the same time, the usage of costly, high-quality
communication has been minimized.

In summary, the introduction of dynamic models for the quantification of haptic percep-
tual and behavioral phenomena, allows for

• predictions of higher accuracy for perceptual limits compared to static perception laws,

• a simple possibility for integrating human knowledge into a technical system,

• dynamic optimization of haptic telepresence with respect to task performance.

7.1 Outlook

Dynamic modeling of haptic perception is still in its infancy. However, based on the first
promising results presented in this thesis, research directed towards the development and
identification of the system dynamics in human perception and sensorimotor control is ex-
pected to fall on fertile ground in the psychophysical and engineering domain. Some specific
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challenges and interesting research questions, directly deducted from the considerations pre-
sented in this thesis are discussed briefly in the following.

Haptic Diffusion Models

The dynamic properties of perceptual processes in other sensory domains than haptics have
been found to be captured reasonably well by a diffusion process. In the current exper-
iments, an increase in prediction accuracy can be observed when an accumulating stage
is included into the model structure for the discrimination of damping, see Section 5.6.
This structural similarity to the diffusion model motivates further investigation into a more
generic modeling of haptic perception on the basis of the three-stage diffusion process, cap-
turing information extraction, accumulation, and decision.

Dynamic Just Noticeable Differences

The JND of environment features as perceptual performance indicator has been successful
not least because technical applications can be optimized with respect to these properties,
without explicitly considering the human operator. The current model formulation of dy-
namic perceptual processes can be used to extend the classical JND to dynamic JND models.
A formal definition and intuitive forms of expression could make the new notion of dynamic
haptic perception accessible to a wider audience of researchers from the psychophysical and
system theoretic field.

Integration of Dynamic Perception Models into Telepresence Systems

While the success of dynamic models enhancing task performance in a telepresence task has
been demonstrated, an integration of dynamic haptic perception models into real applica-
tions have been only sketched so far. One innovative direction is the perceptual optimization
of time-delayed telepresence systems by means of a communication quality control algo-
rithms, as proposed in Section 6.5. In a similar way as the collision probability, a model of
perceptual fidelity with respect to time delay can be considered in the cost function taken
into consideration for determining the optimal time delay level.

Extension to Other Technical Systems

It has been mentioned on several occasions in the thesis that the developed models and ob-
tained results may be useful not only in the context of telepresence, but expendable to other
technical systems as well. Potential application fields include the stable and perception-
optimized rendering of virtual haptic environments, and the design of haptic mechanisms,
e.g., for the optimization of the perceived quality of automotive control elements such as
push buttons.
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A Apparatus

A.1 1 DoF Linear Actuator

haptic
interface

2× amplitude

movement direction

Figure A.1: A 1DoF linear actuator served as haptic device for experiments performed in
Chapters 4 and 5.

The experimental setups utilized in the experiments in Chapters 4 and 5 are principally
equivalent and base on a ServoTube linear motor module (Copley Controls Corp.). The
setup in Chapter 4, depicted in Figure A.1 has a rubber-coated handle for user interaction
mounted on top of a a 6 deegree-of-freedom (DoF) force-torque sensor (JR3, Inc.). The
other setup used in Chapter 5 has a wooden endeffector as interaction handle, and a linear
1DoF force sensor (Burster). The devices are controlled by a PC, equipped with a Sensoray
626 DAQ Card running Gentoo Linux in the case of all experiments in Chapter 4 and Ubuntu
Linux in the experiment presented in Chapter 5. The haptic environments are rendered in
real-time using the RealTime Application Interface (RTAI) [183] for Gentoo Linux and the
CONFIG_PREEMPT_RT kernel patch [184] for Ubuntu Linux.

For an evaluation of the actually presented impedances Zh( jω) =
Fh( jω)
Ẋ ( jω)

in the case of
the force control scheme utilized in Chapter 4, the haptic interface dynamics was identified
in the frequency domain [3]. The uncontrolled linear actuator dynamics were found to be
sufficiently well captured by a linear second-order system with the commanded force fc(t)
as input and the endeffector position xh(t) as output. To determine the specific parame-
ters, a standard least-squares system identification procedure was applied. By employing
the implemented controller Kp used in the experimental procedure and the environmental
dynamic equations in (4.13) as they were used in the actual experimental procedure, the
respective frequency responses for Zh( jω) were calculated – see Fig. A.2.
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Figure A.2: Amplitude (upper) and phase characteristics (lower) of the ideal environ-
ment impedances for stiffness Zk( jω), damping Zd( jω), and the mass-damper
Zm,d( jω) (from left to right, circle markers) in the experiments in Chapter 4 and
the actually rendered environmental characteristics (bold, without marker).

From the Bode diagrams, it can be deducted that inertia and damper were rendered
quite accurately around the movement frequencies that are in the range of the experiments
described in Chapter 4, both in terms of amplitude and phase characteristic. The influence
of the actuator’s inertia and friction, however, change the phase characteristic of the spring
to approximately -45◦ at the movement frequency of 2π rad/s, instead of an ideal phase
of -90◦.

The stimuli used in Chapter 5 were rendered using a position-based admittance con-
trol scheme. As this rendering method is known to be very reliable and accurate, the
impedances displayed to the human operator are almost exactly the desired characteris-
tics, Zh( jω)≈ Zenv( jω).
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A.2 2 DoF Linear Actuator

A.2 2 DoF Linear Actuator

Figure A.3: The haptic interface with two actuated degrees of freedom was used in the ex-
periments in Chapter 6.

The custom-made 2DoF experimental setup used in the experiments performed in Sec-
tion 6 consists of a Thrusttube module 2504 (Copley Controls Corp.), mounted on top of a
Thrusttube module 2510 in a right angle. Each actuator is equipped with an optical posi-
tion encoder with resolution 1 µm. A 6DoF JR3 force-torque sensor together with a handle
provides force feedback. The haptic interface is controlled in real-time at a sampling rate of
1kHz using a Quad-Core AMD Phenom desktop PC equipped with a Sensoray 626 DAQ card
running Gentoo Linux with the RTAI kernel patch for maximum timing reliability. Visual
stimuli are displayed on a 42inch flat screen TV at a refresh rate of 60Hz. The inherent time
delay between visual and haptic stimuli was measured using a luminance sensor to be within
one refresh cycle, thus varying between 0 and 16ms. A picture of the setup is provided in
Figure A.3

127



B Tables

B.1 Masking Thresholds and Model Parameters

model threshold values ε=−ε1 = ε2 fsat Tmask

d1 d2 d1 d1 d1 d1 d2 d2 d2 d2

m0 m0 m0 m0 m1 m2 m0 m0 m1 m2

0 0 k1 k2 0 0 0 k1 k2

δthresh(·) 3.5 6.3 2.9 7.2 4.1 4.3 2.0 6.0 6.6 6.7 n.a. n.a.
δacc,thresh(·) 5.7 10.6 4.1 10.6 6.8 6.0 3.0 9.0 10.5 11.3 n.a. n.a.
δsim(·) 2.9 5.2 1.0 1.8 3.2 3.3 1.1 1.9 5.4 5.5 1.00 n.a.
δacc,sim(·) 1.9 2.6 0.9 1.9 1.7 1.2 0.7 1.7 2.3 2.3 1.00 n.a.
δtemp(·) 2.7 4.4 1.0 1.8 3.0 2.9 1.1 1.9 4.7 4.9 0.99 0.01
δacc,temp(·) 1.9 2.6 0.9 1.9 1.7 1.2 0.7 1.7 2.3 2.3 1.00 0.00

Tabular B.1: Summary of indentified model parameters and threshold values of the dynamic
masking model developed in Section 5.5.
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C Collision Probability Computation Based on
Reachable Sets

C.1 Probabilistic Reachable Sets

Without loss of generality, we will constraint our considerations to the time interval [0, T].
We denote R([0, T]) ∈ R4 the reachable set of states from an initial set of states X within
the time interval [0, T] given that the system input is bounded between [u1, u2]. An il-
lustration of the reachable set is depicted in Figure C.1a. The exact reachable set can be
calculated analytically for this problem in principle [185], but only for a limited class of
input signals that are to be known in advance. This assumption is violated as our input
signal is determined by the (unknown) behavior of the human operator. Instead, an over-
approximation of the reachable set is calculated using zonotopes [172]. While information
about the reachability of a certain position at a certain velocity is binary (“yes”/“no”), we
are more interested in the probability of the avatar actually being in that specific state.
By abstracting the continuous dynamics with a discrete time Markov chain, these probabil-
ity distribution can be calculated. Discrete time Markov chains require, besides time dis-
cretization, state space and input discretization in order to calculate the entries Φαji([0, T])
of the transition matrix Φα([0, T]). The state space is discretized into NX equally-sized
discrete states X i, i = 1 . . . NX , X i ∈ R4 and the input space into Nu equally-sized in-
puts Uα, α = 1 . . . Nu, Uα ∈ R2. We denote Φαji([0, T]) as the transition probability of a
discrete state X j to a discrete state X i within the time interval [0, T], given the discrete
input Uα =const.. It is calculated as the volumetric fraction of the reachable set Rαi ([0, T])
intersecting with the cell X j as V (Rαi ([0, T])∩ X j)/V (X j), where V is the volumetric integral
operator, Rαi ([0, T]) denotes the reachable set, starting from xperf(0) ∈ X i under the effect
of u ∈ Uα.

An illustration of the reachable set and the corresponding Markov chain is shown in
Figure C.1.

C.2 Collision Probability Calculation

The probability for passing a state X i in the time interval [0, T] when starting from an initial
state X0 can be computed as

pi([0, T]) =
NX∑
j=1

Φαji([0, T]) p j(0)qi, (C.1)
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initial set

Cells

(a) 2D-projection of the reachable
set.

initial state

discrete
states

(b) Abstraction by a Markov chain.

Figure C.1: (a) A 2-dimensional projection of the 4D reachable set Rαi ([0, T]) for the dynam-
ical system in (6.10) under the influence of an input u ∈ Uα. (b) Abstraction by
a Markov chain with transition probabilities Φαji([0, T]). Darker states are more
probable to be reached from initial state X1.

where

p j(0) =

(
0 if X j 6= X0

1 if X j = X0

and qi =

(
0 if the obstacle intersects with pos(X i),

1 otherwise.
(C.2)

The pos(·) operator extracts the position components out of a discrete state. As the probabil-
ity to be in a state that intersects with an obstacle is 0 due to the definition of qi, the actual
collision probability within the time interval can be computed as

pcol([0, T]) = 1−
NX∑
i=1

pi([0, T]). (C.3)

To ensure that positions on the opposite of an obstacle are still recognized as resulting in a
collision if the predicted path goes through it, the size of the obstacles is virtually enlarged
in direction of movement using a raytracing algorithm. Note that the definition of qi results
in an overapproximation of the collision probability pcol([0, T]) as it considers the state X i

to result in a collision if the wall position intersects with the discrete state regardless of the
intersection area.

C.2.1 Parametrization

For the calculation of pcol([0, T]) in the experiments described in Sections 6.4, 6.5 and 6.6,
a concrete parametrization of the dynamic performance model is required: The position
space is discretized between the maximum and minimum reachable distance in x and y
direction into 41 intervals, respectively. The number of velocity states is set to 21 in each
direction, leading to a total number of 41× 41× 21× 21 = 741321 discrete states X . For
the input vector, consisting of the forces exerted by the operator in both directions, one
interval [− fh,max , fh,max] where fh,max = 8N is chosen based on an analysis of the maximum
force in the recorded datasets of all participants.
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C.2 Collision Probability Calculation

C.2.2 Collision Probability Computation over Larger Time Intervals

Within a prediction time interval [0, T] the force exerted by the human operator is assumed
to be constant. To allow for changing forces in the case of predictions beyond T , it is neces-
sary to make predictions over more than one sample time. Again, without loss of generality,
we restrict our considerations to the case t = 0. The prediction horizon tp is chosen to be a
multiple of T as tp = NpT . The probability that the human operator collides with an obstacle
within the prediction horizon [0, NpT] is computed over probabilities of being in a state X i

within a number of future time intervals [kT, (k+ 1)T] where k = 0 . . . Np − 1 as

pi([kT, (k+ 1)T])|Td ([0, kT]) =
NX∑
j=1

Φαji([0, T])|Td (kT ) p j(kT )|Td ([0, (k−1)T]) qi, (C.4)

pi((k+ 1)T )|Td ([0, kT]) =
NX∑
j=1

Φαji(T )|Td (kT ) p j(kT )|Td ([0, (k−1)T]) qi.

The probability qi is defined by equation (C.2). It can be noted that pi([kT, (k + 1)T])
does not only depend on the initial state but also on the time delay in all prior time inter-
vals Td([0, kT]). This is due to the fact that time delay changes the effective inertia and with
it the state transition matrix Φα([0, T]). The collision probability for future time intervals is
then

pcol([kT, (k+ 1)T])|Td ([0, kT]) = 1−
∑

i

pi([kT, (k+ 1)T])|Td ([0, kT]). (C.5)

C.2.3 Online-Computation

The state space is quantized as described in Section 6.4.3 and the set of possi-
ble time delay levels is defined as Γd =

¦
0 0.05 0.1 0.15 0.2

©
s. The resulting

size of the transition matrices Φα([0, T])|Td∈Γd
and Φα(T )|Td∈Γd

, and the number of
probability distributions p([kT, (k + 1)T]) required to compute all collision probabili-
ties pcol([kT, (k+ 1)T])|Td ([0, kT]) within the prediction horizon [0, tp] is too large to be fea-
sible for online-computation of the collision probability. Thus, a number of modifications
are made to the algorithm to provide pcol([0, t + tp]) fast enough for an online control of
network quality.

Constant Time Delay Td([0, tp]) = Td(0)

The time delay is constrained to be constant over the whole prediction hori-
zon: Td([0, tp]) = Td(0).

This modification reduces the number of probabilities pi([kT, (k + 1)T])|Td (0) by a fac-
tor (||Γd || − 1)Np where ||Γd || = 5 denotes the number of allowed time delay levels. This
simplification may though result in a suboptimal solution to the optimization problem posed
in equation (6.12). However, an offline-simulation of the experimental data recorded in the
experiment described in Section 6.4 with the original method from equations (C.4)-(C.5)
revealed that the optimal network quality control policy before an actual collision occurs is
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C Collision Probability Computation Based on Reachable Sets

applying the minimum time delay over all prediction steps. As this marginal case is included
into the reduced set of permissible delay conditions, suboptimal solutions may be primarily
computed in the case of no imminent collision, resulting in eventually higher network costs.

Precalculation of pi([kT, (k+ 1)T])|Td (0)

The probabilities pi([kT, (k+ 1)T])|Td (0) in equation (C.4) are precalculated for all possible
time delay levels Td(0) ∈ Γd , for all prediction intervals k = 0 . . . Np − 1, and for all possible
initial states leading to different distributions p(0). It is furthermore set that no obstacle is
within the reachable area qi = 1∀i = 1 . . . NX .

Precalculating the probability for being in a specific state while neglecting the environ-
ment and potential collisions brings the advantage that the large state transition matri-
ces Φ([0, T])|Td∈Γd

and Φ(T )|Td∈Γd
must not be known at runtime. Furthermore, the number

of initial probability distributions p(0) can be significantly reduced by considering only states
containing the origin of the x − y-plane, and those that have only velocity components in
positive y-direction. By choosing a coordinate system that is fixed to the inertial frame of
the telerobot moving in positive y-direction, all other initial conditions can be ignored. The
disadvantage of this procedure is that the real probability distribution considering obstacle
collisions can not be calculated exactly from the non-colliding probabilities. This is due to
the fact that qi influences the value for pi((k+1)T ) which determines all subsequent values
of pi([kT, (k+ 1)T])|Td (0).

Discarding Velocity Components

Velocities are not needed to detect a collision as we consider the collision speed as ir-
relevant. The probability to reach a specific position interval in a future time inter-
val ppos

i ([kT, (k + 1)T])|Td (0) is calculated, removing velocity components from the states
as they are extraneous for a collision. The probability to pass a specific position interval
within the time frame [kT, (k+ 1)T] is calculated as

ppos
i ([kT, (k+ 1)T])|Td (0) =

∑

j∈Ωpos
i

p j([kT, (k+ 1)T])|Td (0) (C.6)

where Ωpos
i contains all states X j that have the same range of position states x and y .

Approximation of pcol([kT, (k+ 1)T])

The collision probability is estimated based on the resulting distribu-
tion ppos([kT, (k+ 1)T])|Td (0), taking account of inaccuracies introduced by the modi-
fications above. The collision probability in a time interval is approximated by

pcol([kT, (k+ 1)T])|Td (0)∈Γd
≈ 1−

∑
i

ppos
i ([kT, (k+ 1)T])|Td (0)∈Γd

q̂pos
i (C.7)

132



C.2 Collision Probability Calculation

where q̂pos
i contains the position information of the obstacles within the reachable range,

similar to the definition in equation (C.2). The main difference to qi is, despite that only
position information is contained, that all obstacles are enlarged to compensate for the ap-
proximation inaccuracy introduced by the precalculation of ppos

i ([kT, (k+ 1)T]). The mag-
nitude of enlargement is estimated from a worst-case consideration, respecting the system
dynamics and the operator’s maximum force.

Estimation of pcol([0, NpT])

As we are only interested in the collision probability over the whole prediction horizon, we
can reduce the information to be taken into consideration for the minimization problem in
equation (6.12) by selecting the maximum value of pcol([kT, (k+1)T])|Td (0), k = 0 . . . Np−1.
This reduces the optimization problem to choosing the minimum of ||Γd ||= 5 values.

Taken all modifications together, the optimal communication quality parameter θC(t) for
each time instance t is calculated following these steps:

• Compute q̂pos by measurement of the obstacle location in the x−y-plane, discretization
and enlargement of the obstacles.

• Compute pcol([kT, (k+ 1)T]) for all values of Td ∈ Γd and all k = 0 . . . Np − 1, using
precalculated probability distributions ppos([kT, (k+ 1)T]).

• Compute pcol([0, tp]) =maxk=0...Np−1 pcol([kT, (k+ 1)T]) for all values of Td ∈ Γd .

• Solve the minimization problem in equation (6.12).
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