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Abstract
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1 Introduction

Models for financial data involving a stochastic volatility and allowing for sample path discon-
tinuities in the volatility as well as in the underlying asset price (stock, index, exchange rate)
have become more and more popular in recent years. Since Merton’s paper [24] there is an in-
creasing number of publications showing empirical evidence of jumps in the asset prices: from
the distribution of log-returns viewpoint as in [1, 10, 11], or from a non-parametric statistical
viewpoint as in [4, 6, 14] using multipower variations, or with other methods as in [3, 22]; see
also the references in these papers.

Naturally, if the asset price process has jumps, one might suppose that the volatility process
also exhibits jumps, which is supported by empirical evidence; cf. [18]. Starting from the assump-
tion of jumps present in the price process as well as in the volatility process, it is important to
investigate in a next step a possible relation between price jumps and volatility jumps. In a first
statistical analysis [15] we have investigated, whether for such common jumps some functions of
the jump sizes are correlated.

However, many specific models which feature jumps in price and volatility exhibit much more
than correlated price and volatility jumps, they impose a functional relationship between these
jumps, when they occur at the same times. For example the following one-factor continuous-time
models, sometimes including a leverage term, exhibit such functional relationships:

(1) the Ornstein-Uhlenbeck or BNS (Barndorff-Nielsen Shephard) model [5];
(2) the CARMA models [7, 25];
(3) the COGARCH model [13, 19]; and
(4) the ECOGARCH model [12].

All such models fit into a semimartingale framework, and the aim of this paper is to investigate
the possibility of testing whether, in this general framework, a functional relationship occurs
between the jumps of price and volatility.

One problem, which immediately arises is then the structure of the data: the price is observed
at discrete times only, typically at times i∆n for all integers i, up to the final horizon T , and
where ∆n is a time lag, which is small. However, the price jumps are not really observed, although
“big” jumps are reasonably well known. For the volatility, the problem is much worse, because
it is never observed per se: we need a preliminary estimation, which unfortunately is not really
accurate in view of the typically available data. So, price jumps can only be detected, when they
are big enough, and even more so for volatility jumps. To tackle the problem of local volatility
estimation various methods have been proposed in different settings; see [2, 18] and references
therein.

On top of these “discretization” errors, we have another problem here: on the one hand,
checking for a given functional relationship can be done as soon as there are at least two (joint)
jumps, and this usually occurs in relatively short periods of time, if there are jumps at all.

Below, we propose a method for testing a (relatively) arbitrary functional relationship be-
tween price and volatility jumps, for those which occur simultaneously. As mentioned above,
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it has been shown in [18] that such common jumps are likely to happen. We then apply this
method to the four different stochastic volatility models above. These models allow for joint
upwards and (perhaps also) downwards jumps in the prices and the volatilities. This is done in
the natural discrete observation scheme mentioned above, in spite of the estimation problems
already mentioned.

The paper is organized as follows: In Section 2 we set the stage by formulating the (log)
price and stochastic volatility models in its full generality of a bivariate Itô semimartingale. We
also formulate the functional relationships we want to investigate in detail in this paper. We
introduce the discretized version of the process and recall the spot volatility estimator. Then we
present the relevant statistics and prove a central limit theorem. In Section 3 we present the four
model classes and their functional relationships between jump sizes in price and volatility. We
also explain the forms of the corresponding test statistics and the rejection mechanism. Finally,
the test itself is presented in Section 4.

2 The model framework

Our (non-parametric) stochastic volatility model is a “joint” model for (log) price X and volatil-
ity σ. All processes are 1-dimensional here, and we set ct = σ2

t , and the model is really for the
pair (X, c). We have a filtered probability space (Ω,F , (Ft)t≥0,P), on which

Xt = X0 +
∫ t

0
bsds+

∫ t

0
σs dWs

+
∫ t

0

∫
E

(δ(s, z)1{|δ(t,z)|≤1})(µ− ν)(ds, dz) +
∫ t

0

∫
E

(δ(s, z)1{|δ(t,z)|>1})µ(ds, dz)

ct = c0 +
∫ t

0
b̃sds+

∫ t

0
σ̃sdWs +

∫ t

0
σ̃′sdW

′
s

+
∫ t

0

∫
E

(δ̃(s, z)1{|δ̃(t,z)|≤1})(µ− ν)(ds, dz) +
∫ t

0

∫
E

(δ̃(s, z)1{|δ̃(t,z)|>1})µ(ds, dz)

Here, W and W ′ are two independent standard Brownian motions, µ = µ(ω, dt, dz) is a Poisson
random measure on R+×E, where (E, E) is an auxiliary Polish space, and the intensity measure
of µ is ν(dt, dx) = dt⊗λ(dz) for some σ-finite measure λ on (E, E) (there is a lot of freedom for
choosing µ and E and λ). The “coefficients” of the model are the two drifts bt and b̃t, the two
processes σ̃t and σ̃′t, and the two functions δ and δ̃ on Ω× R+ × E.

Equivalently, the pair (X, c) is an Itô semimartingale, whose characteristics (B,C, ν) have
the form:

B1
t =

∫ t
0 bsds, B2

t =
∫ t

0 b̃sds

C11
t =

∫ t
0 csds, C12

t = C21
t =

∫ t
0 σs σ̃s ds, C22

t =
∫ t

0 (σ̃2
s + σ̃′2s )ds

ν(ω; dt, dx, dy) = dt Ft(ω; dx, dy), where Ft(ω; .) is the image
of λ by z 7→ (δ(ω, t, z), δ̃(ω, t, z)), restricted to R2\{0}.


(2.1)

This formulation is general enough to accommodate a large variety of situations:
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• Cases without or with leverage for the “continuous part”, according to whether σ̃t is
identically 0 or not.

• The case where X and σ do not jump together, if Ft is supported by the two axes R×{0}
and {0} × R.

• The case where X and σ have common jumps, when Ft puts some positive mass outside
of the two axes, including the case when they always jump together, when Ft does not
charge the two axes.

2.1 Functional relationships

The pair of processes (X, c) is of the form (2.1), where the processes bt, b̃t, σ̃t and σ̃′t should
be progressively measurable, and the functions δ and δ̃ should be predictable. All these terms
are “not too big”, so that all integrals make sense, and they should also be such that ct ≥ 0
identically. We refer to [17] for all unexplained, but classical, notions or notation.

In particular, we may have a functional relationship between the jumps of X and c, at least
when jumps of X belong to some subset A of R\{0} (with possibly A = R\{0}); this can be
expressed as

φ(ct−, ct) = γψ(Xt−, Xt) if ∆Xt ∈ A (2.2)

for some given (known) functions ψ and φ and a (usually unknown) parameter γ ∈ R. An
equivalent formulation of this property is that the restriction of Ft to the set A×R is supported
by the “curve” {(x, y) : φ(ct−, ct− + y) = γψ(Xt−, Xt− + x)}.

The specific assumption which we need is as follows, where r is a given number inside [0, 2):

Assumption (A-r) a) The processes bt, b̃t, σ̃t and σ̃′t are locally bounded.
b) There exist a locally bounded process Γt and a (non-random) function χ ≥ 0 such that

|δ(ω, t, z)| ≤ Γt(ω)χ(z) and |δ̃(ω, t, z)| ≤ Γt(ω)χ(z) and
∫
E(χ(z)r ∧ 1)λ(dz) <∞.

c) The processes ct and ct− do not vanish.

The (finite) time horizon T here is fixed. We want to investigate (2.2), in restriction to the
time interval [0, T ], and its consequences for a realistic modeling. In the examples of Section 3,
but also in most cases one can think of, the relation (2.2) should hold for all jumps of X, or for all
positive jumps, or for all negative ones, thus taking leverage between price and volatility jumps
into account. Since very small jumps of X cannot be realistically inferred, these considerations
lead us to take for A one of the following three sets:

A = (−∞,−ε), or A = (ε,∞), or A = (−∞,−ε) ∪ (ε,∞) (2.3)

for some given ε > 0. We make the following additional assumption:

X has a.s. no jump with size ∆Xt in the boundary ∂A of A. (2.4)
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This is quite weak: typically the first marginal Ft(dx,R) of the Lévy measures has a density,
implying that (2.4) is satisfied when A has the form (2.3), and otherwise it is satisfied for all
ε > 0 except countably many values.

As for the functions ψ and φ occurring in (2.2), and although weaker assumptions are possible
for parts of what follows, we will assume throughout the following (with obvious notation for
the derivatives or partial derivatives):

ψ and φ are C2 functions, with ψ(x, y) > 0 if x 6= y,
and |φ′1(x, y)|+ |φ′2(x, y)| > 0 for all x, y ∈ R.

(2.5)

Obviously (2.2) is meaningless if no jump of X before time T has size in A, and it is
automatically satisfied if there is a single such jump, say at time S, because it then holds with
γ = φ(cS−, cS)/ψ(XS−, XS). Therefore, we define

ΩA
T = {ω ∈ Ω :

∑
s≤T

1{∆Xs(ω)∈A} ≥ 2} (2.6)

as the set on which there are at least two jumps of X within [0, T ] with size in A. Furthermore,
define

Ω(A,γ)
T = {ω ∈ ΩA

T : there is some γ(ω) ∈ R such that, if s ∈ (0, T ] and
∆Xs(ω) ∈ A, then φ(σs−(ω), σs(ω)) = γ(ω)ψ(Xs−(ω), Xs(ω))}.

(2.7)

Being in Ω(A,γ)
T seems more general than having (2.2), because it allows for γ = γ(ω) to be

random; however in practice this is immaterial because, upon observing a single path of (X,σ),
it is of course impossible to decide whether γ is random or not.

2.2 The discretized process

For any process Y we write
∆n
i Y = Yi∆n − Y(i−1)∆n

, (2.8)

and refer to [16] for background reading. We choose two numbers $, ρ ∈ (0, 1/2) and two
sequences un > 0 and kn ≥ 1 such that for some constant C > 1,

∆$
n

C
≤ un ≤ C∆$

n ,
1

C∆ρ
n
≤ kn ≤

C

∆ρ
n
. (2.9)

The next variables serve as “local estimators” of the squared volatility ct = σ2
t , for a window

of size kn∆n starting at time i∆n (cf.[16], Eq. (9.3.1)):

ĉni =
1

kn∆n

kn∑
j=1

|∆n
i+jX|2 1{|∆n

i+jX|≤un}. (2.10)

It is always nonnegative, and even a.s. positive under (A-r)-(a), which implies ∆n
i X 6= 0 a.s. for

all i, n.
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The functions φ and ψ satisfying (2.5) and A satisfying (2.3) are given, and we assume (2.4).
For any two integers p, q ≥ 0 we set

U(p, q)T =
∑
s≤T

1A(∆Xs)ψ(Xs−, Xs)p φ(cs−, cs)q, (2.11)

ΦT = U(1, 1)2
T − U(2, 0)T U(0, 2)T , (2.12)

Being in Ω(A,γ)
T amounts to be in ΩA

T , plus having U(0, 2)T − 2γ U(1, 1)T + γ2 U(2, 0)T = 0
for some γ = γ(ω). Since γ 7→ U(0, 2)T − 2γ U(1, 1)T + γ2U(2, 0)T is quadratic and always
nonnegative, we thus have

Ω(A,γ)
T = ΩA

T ∩ {ΦT = 0}. (2.13)

This leads us to construct a sequence of statistics which converges to ΦT . For this, we set

Un(p, q)T =
[T/∆n]−kn∑
i=kn+1

1A(∆n
i X)ψ(X(i−1)∆n

, Xi∆n)p φ(ĉni−kn−1, ĉ
n
i )q (2.14)

and
Φn
T = Un(1, 1)2

T − Un(2, 0)T Un(0, 2)T . (2.15)

Observe that, by the Cauchy-Schwarz inequality, we necessarily have ΦT ≤ 0 and Φn
T ≤ 0.

2.3 Some limit theorems

We give the asymptotic behavior of Φn
T . The properties (2.5) are in force below, without special

mention. We have consistency (that is, Φn
T

P−→ ΦT , see Theorem 2.1 below), but also present a
Central Limit Theorem, and this necessitates some preparation.

We consider an auxiliary probability space (Ω′,F ′,P′), on which we have a double sequence
(V −m , V

+
m )m≥1 of i.i.d. N (0, 1) variables. We denote by S1, S2, . . . the successive times at which

a jump of X with size within A occurs, so this sequence increases to infinity. Then we define an
extension (Ω̃, F̃ , P̃) of (Ω,F ,P) by setting

Ω̃ = Ω× Ω′, F̃ = F ⊗ F ′, P̃ = P⊗ P′. (2.16)

Any variable or process defined on Ω or Ω′ is extended to Ω̃ in the usual way, without change
of notation.

We then recall the notion of stable convergence in law. This kind of convergence is slightly
stronger than convergence in law. For details and extensions see [16], Section 2.2.1. A formal
definition is as follows: let (Vn)n≥1 be random variables on (Ω,F ,P), and V be a variable
defined on the extension (Ω̃, F̃ , P̃) as defined in (2.16). Then Vn converges to V stably in law

(Vn
L−(s)−→ V ) if E[Y f(Vn)] → Ẽ[Y f(V )] as n → ∞ for all bounded F-measurable random

variables Y and all bounded Lipschitz functions f . In contrast with the usual convergence in
law, saying that Vn converges stably in law to V “in restriction to a set B” is meaningful, and
means that E[Y f(Vn)]→ Ẽ[Y f(V )] for all Y, f as above, with further Y = 0 outside B.
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We have (ψ, φ) satisfying (2.5), and A of the form (2.3) with ε > 0 satisfying (2.4). We denote
by (Tm)m≥1 the successive jump times of the counting process N ′t = µ((0, t]× {z : χ(z) > ε/2})
(a Poisson process with parameter λ({z : χ(z) > ε/2}), recall that the function χ is given in
Assumption (A-r)(b)). We introduce the notation:

i(n,m) is the unique (random) integer with (i(n,m)− 1)∆n < Tm ≤ i(n,m)∆n

ĉn(m−) = ĉni(n,m)−kn−1, ĉn(m+) = ĉni(n,m)

κnm− =
√
kn
(
ĉn(m−)− cTm−

)
, κnm+ =

√
kn
(
ĉn(m+)− cTm

)
κ′nm− = 1√

∆n

(
XTm− −X(i(n,m)−1)∆n

)
, κ′nm+ = 1√

∆n

(
Xi(n,m)∆n

−XTm

)
κ′nm = κ′nm− + κ′nm+.


(2.17)

Then we first have:

each sequence (κ′nm±)m≥1 is bounded in probability (2.18)

Moreover, under (A-r) and if ρ in (2.9) satisfies

ρ ≤ 2− r
r

, (2.19)

then from Theorem 13.3.3 for β = 0 of [16] we know(
κnm−, κ

n
m+

)
m≥1

L−(s)−→
(
cTm−

√
2V −m , cTm

√
2V +

m

)
m≥1

. (2.20)

We also set
Nt =

∑
m≥1

1{Sm≤t} =
∑
t≤t

1{∆Xt∈A} (2.21)

for the number of jumps of X with size in A, up to time t. Recalling that A satisfies (2.3), by
Assumption (A-r)(b) we have Nt ≤ N ′t , and in fact every Sm equals some Tm′ (with usually a
random index m′).

Theorem 2.1. Assume (A-r) for some r ∈ [0, 2) and (2.4) and (2.5). Then for ΦT as in (2.12)
we have as n→∞

Φn
T

P−→ ΦT .

If further ρ in (2.9) satisfies (2.19), we have the following stable convergence in law, as n→∞:

knΦn
T
L−(s)−→ ΦT , in restriction to the set Ω(A,γ)

T ,

where

ΦT = 2
(∑NT

m=1 ψ(XSm−, XSm)
(
cSm−φ

′
1(cSm−, cSm)V −m + cSmφ

′
2(cSm−, cSm)V +

m

))2

−2
(∑NT

m=1 ψ(XSm−, XSm)2
)(∑NT

m=1

(
cSm− φ

′
1(cSm−, cSm)V −m +cSm φ

′
2(cSm−, cSm)V +

m

)2)
.

(2.22)
Moreover, ΦT < 0 a.s. on Ωε

T and ΦT = 0 a.s. on the complement (Ωε
T )c.
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Proof. 1) In view of (2.13) and (2.15), for Φn
T

P−→ ΦT it is enough to prove that for all integers
p, q ≥ 0 we have

Un(p, q)T
P−→ U(p, q)T . (2.23)

From (A-r) and the definition of the stopping times Tm, which imply that every s with
|∆Xs| > ε/2 is equal to some (unique) Tm, we see that for all n ≥ nT (ω) for some finite variable
nT we have (we use the fact that A is open and no jump of X lies on its boundary ∂A):

• T1 > 2kn∆n, TN ′T < T − 2kn∆n, 1 ≤ m ≤ N ′T ⇒ Tm − Tm−1 > 3kn∆n

• i ∈ {1, . . . , [T/∆n]}\{i(n, 1), . . . , i(n,N ′T )} ⇒ |∆n
i X| ≤ ε

• 1 ≤ m ≤ N ′T ⇒

{
∆n
i(n,m)X ∈ A if ∆XTm ∈ A

∆n
i(n,m)X /∈ A if ∆XTm /∈ A.

(2.24)

Hence if n ≥ nT all summands in (2.14) are 0 except those corresponding to i = i(n,m),
and those i(n,m) are all distinct. Since (2.18) and (2.20) imply ∆n

i(n,m)X
P−→ ∆XTm and

(ĉn(m−), ĉn(m+)) P−→ (cTm−, cTm), we readily deduce (2.23) because φ and ψ are continuous.

2) Next, we introduce the simplifying notation

vn = 1/
√
kn, ηm = (cTm−, cTm), η′m = (XTm−, XTm).

Using (2.24) again, we see that

n ≥ nT =⇒ Un(p, q)T =
∑N ′T

m=1 ζ(p, q)nm where

ζ(p, q)nm = 1A(∆XTm)ψ(XTm− −
√

∆n κ
′n
m−, XTm +

√
∆n κ

′n
m+)p

φ(cTm− + vnκ
n
m−, cTm + vnκ

n
m+)q

(2.25)

As seen before, we have

ζ(p, q)nm
P−→ ζ(p, q)m := 1A(∆XTm)ψ(η′m)p φ(ηm)q. (2.26)

3) We use the notation Yn = oP (an) for a sequence an of positive numbers if Yn/an
P−→ 0.

We recall once more that the variables
√

∆n κ
′n
m± and vnκnm± tend to 0 in probability. Then, with

obvious notation for the derivatives, and since
√

∆n = o(vn) by (2.9), we deduce from (2.25)
that

ζ(p, q)nm = ζ(p, q)m + 1A(∆XTm)
(
p
√

∆nψ(η′m)p−1φ(ηm)q
(
ψ′2(η′m)κ′nm+ − ψ′1(η′m)κ′nm−

)
+qvnψ(η′m)pφ(ηm)q−1

(
φ′1(ηm)κnm− + φ′2(ηm)κnm+

)
+ q(q−1)

2 v2
n ψ(η′m)pφ(ηm)q−2

(
φ′1(ηm)κnm− + φ′2(ηm)κnm+

)2
+ q

2 v
2
n ψ(η′m)pφ(ηm)q−1

(
φ′′11(ηm)(κnm−)2

+2φ′′12(ηm)κnm−κ
n
m+ + φ′′22(ηm)(κnm+)2

))
+ oP (v2

n).
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At this stage we set

Y j
n (p, q)T =



∑N ′T
m=1 1A(∆XTm)ψ(η′m)p φ(ηm)q

(
ψ′2(η′m)κ′nm+ − ψ′1(η′m)κ′nm−

)
if j = 1∑N ′T

m=1 1A(∆XTm)ψ(η′m)p φ(ηm)q
(
φ′1(ηm)κnm− + φ′2(ηm)κnm+

)
if j = 2

1
2

∑N ′T
m=1 1A(∆XTm)ψ(η′m)p φ(ηm)q

(
φ′1(ηm)κnm− + φ′2(ηm)κnm+

)2 if j = 3

1
2

∑N ′T
m=1 1A(∆XTm)ψ(η′m)p φ(ηm)q

(
φ′′11(ηm)(κnm−)2

+φ′′22(ηm)(κnm+)2 + 2φ′′12(ηm)κnm− κ
n
m+

)
if j = 4.

We use (2.25) to deduce that, for all n ≥ n0:

Un(p, q)T = U(p, q)T + p
√

∆n Y
1
n (p− 1, q)T + vn qY

2
n (p, q − 1)T

+v2
n q
(
(q − 1)Y 3

n (p, q − 2)T + Y 4
n (p, q − 1))T + oP (v2

n).
(2.27)

4) Now we turn to proving the stable convergence in law of Φn
T . For simplicity we write

U = U(2, 0)T and U ′ = U(0, 2)T and U ′′ = U(1, 1)T . Observe that on the set Ω(A,γ)
T there is a

(possibly random) number γ such that U ′ = γU ′′ = γ2U , and also Y j
n (p, q)T = γqY j

n (p + q, 0)T
for all j = 1, 2, 3, 4 and all n. Therefore, if Y j

n (p)T = Y j
n (p, 0)T , we deduce from (2.27):

Φn
T = (U ′′)2 + 2U ′′γ

√
∆n Y

1
n (1)T + 2U ′′vnY 2

n (1)T + v2
n(Y 2

n (1)T )2 + 2U ′′v2
nY

4
n (1)T

−UU ′ − 2
√

∆n U
′Y 1
n (2)T − 2vnγUY 2

n (1)− 2v2
nU
(
Y 3
n (0) + γY 4

n (1)
)

= ΦT + v2
n

(
(Y 2
n (1))2 − 2UY 3

n (0)
)

+ oP (v2
n). (2.28)

Applying (2.20), we obtain that in restriction to the set Ω(A,γ)
T the variables v−2

n Φn
T = knΦn

T

converge stably in law to

2
(∑N ′T

m=1 1A(∆XTm)ψ(XTm−, XTm)
(
cTm−φ

′
1(cTm−, cTm)V −m + cTmφ

′
2(cTm−, cTm)V +

m

))2

−2
(∑N ′T

m=1 1A(∆XTm)ψ(XTm−, XTm)2
)

(∑N ′T
m=1 1A(∆XTm)

(
cTm− φ

′
1(cTqm−, cTm)V −m + cTm φ

′
2(cTm−, cTm)V +

m

)2)
.

(2.29)
Now, the variables V ±m are independent of F , the F-conditional distribution of the right hand

side of (2.22) is the same as the F-conditional distribution of (2.29). Therefore, knΦn
T

L−(s)−→ ΦT

in restriction to Ω(A,γ)
T , with ΦT defined by (2.22).

5) That ΦT = 0 when NT = 0 or NT = 1 is obvious, and that ΦT ≤ 0 everywhere follows
from the Cauchy-Schwarz inequality. Finally, let us introduce the simplifying notation

a−m = cSm− φ
′
1(cSm−, cSm), a+

m = cSm φ
′
2(cSm−, cSm), am = ψ(XSm−, XSm).

Then (2.22) rewrites as

ΦT = 2
( NT∑
m=1

am(a−mV
−
m + a+

mV
+
m )
)2
− 2
( NT∑
m=1

a2
m

)( NT∑
m=1

(a−mV
−
m + a+

mV
+
m )2

)
.
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Since am 6= 0 for all m, if ΦT = 0, we must have

a−m V
−
m + a+

m V
+
m

am
=
a−1 V

−
1 + a+

1 V
+

1

a1

for all m = 2, 3, . . . , NT . Since |a−m|+ |a+
m| > 0 for all m, whereas all V +

m and V −m are independent
and with a density, conditionally on (ap, a−p , a

+
p )p≥1, this property is almost never true on the

set {NT ≥ 2} = ΩA
T . Therefore, ΦT < 0 almost surely on ΩA)

T , and the proof is complete.

Note that, since ρ < 1
2 , (2.19) is always true when r ≤ 4

3 . Otherwise, and since the number r
is typically unknown, we need to know beforehand an upper bound on it: the closer r is to 2, the
more close to a Brownian motion the compensated sum of jumps is (apart from the “big” jumps,
of course). So in practice we should say that although r is unknown, we “know” (or, pretend)
that it is smaller than some prescribed value r0 < 2. Then we choose ρ = 2−r0

r0
if r0 >

4
3 , for

example.
The limit ΦT in (2.22) depends on the values XSm , XSm−, cSm and cSm−, which are not

observed. However, we can “approximate” this limit in the same way as for the consistency
above in the following sense. We endow the auxiliary space (Ω′,F ′,P′) with another double
sequence (Ṽ −m , Ṽ

+
m )m≥1 of variables, with the same description as the sequence (V −m , V

−
m ); if one

wants to, one can take the same two double sequences because only their laws do matter:

Theorem 2.2. Assume that the assumptions of Theorem 2.1 hold and define

Φn
T = 2

(∑[T/∆n]−kn

i=kn+1 1A(∆n
i X)ψ(X(i−1)∆n

, Xi∆n)(
ĉni−kn−1 φ

′
1(ĉni−kn−1, ĉ

n
i ) Ṽ −i + ĉni φ

′
2(ĉni−kn−1, ĉ

n
i ) Ṽ +

i

))2

−2
(∑[T/∆n]−kn

i=kn+1 1A(∆n
i X)ψ(X(i−1)∆n

, Xi∆n)2
)(∑[T/∆n]−kn

i=kn+1 1A(∆n
i X)(

ĉni−kn−1 φ
′
1(ĉni−kn−1, ĉ

n
i ) Ṽ −i + ĉni φ

′
2(ĉni−kn−1, ĉ

n
i ) Ṽ +

i

)2)
.

(2.30)

Then Φn
T are non-positive variables. Moreover, on the whole space Ω, and not only on Ω(A,γ)

T ,

Φn
T
L−(s)−→ ΦT .

Proof. The property Φn
T ≤ 0 again follows from the Cauchy-Schwarz inequality. The rest of

the proof is the same as for Theorem 2.1, upon observing that if (2.24) holds, the sequence
(Ṽ −i(n,m), Ṽ

+
i(n,m))m≥1 is independent of F and has the same distribution as the sequence (V −m , V

+
m )m≥1.

3 Examples

We shall investigate four model classes for the volatility as listed in the introduction: the Lévy-
driven Ornstein-Uhlenbeck model (also called BNS model in finance) [5], more general CARMA
models [7], with the CARMA(2,1) model as specific example (cf. [7, 25]), the COGARCH(1,1)
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model [19, 21] and its higher order versions [7, 8] and ECOGARCH models [12]. For readable
review papers on continuous-time volatility models we refer to [20, 23]. Lévy processes are the
natural driving processes in all continuous-time jump models.

In most models below the classical Gaussian semimartingale set-up for the price process has
been extended by a leverage term to allow for the possibility of an upwards jump in the price,
whenever there is a jump in the volatility (cf. [5], Eq. (8), [7], Eq. (1.2), [13], Eq. (5.1)). In
all these models all jumps of X and σ2 are common jumps, since they are caused by the same
driving Lévy process L.

Example 3.1. [Ornstein-Uhlenbeck or BNS model; cf. [5]]
The BNS model suggests a continuous-time semimartingale as pricing model, and an Ornstein-
Uhlenbeck or CAR(1) model driven by a subordinator L as stochastic volatility:

Xt = X0 +
∫ t

0
bsds+

∫ t

0
σsdBs + ρLt

σ2
t = σ2

0 +
∫ t

0
e−λ(t−s)dLt,

where λ > 0, and ρ ≤ 0. Here all price jumps are negative and coincide with a positive jump in
the volatility.

Example 3.2. [CARMA(p,q) model; cf. [7, 25]]
Motivated to obtain a more flexible autocorrelation function for the stochastic volatility process,
[7, 25] suggest a generalisation of the CAR(1) model to a general CARMA(p,q) model. Price
model can be the same as in Example 3.1 and volatility models are in the CARMA framework
given as

Xt = X0 +
∫ t

0
bsds+

∫ t

0
σsdBs + ρLt

σ2
t = Yt

where ρ ≤ 0, Lt is a subordinator and Yt is a CARMA(p,q) process driven by Lt.
Since volatility models have to be positive, not all CARMA models (even when driven by a

subordinator) can be chosen as volatility models. For certain sets of parameters a subordinator-
driven CARMA(2,1) model is non-negative, and has been suggested as volatility model in [25].

The resulting equation for the squared volatility is

σ2
t = σ2

0 +
∫ t

0
g(t− u)dL(u)

and the kernel g(u) can be given explicitly. The CARMA(2,1) process has for negative and
different roots ρ1, ρ2 of a(·) the kernel

g(h) =
1 + b1ρ1

ρ1 − ρ2
eρ1h +

1 + b1ρ2

ρ2 − ρ1
eρ2h, h ≥ 0.
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It is nonnegative if and only if 0 ≤ b1 ≤ max{−1/ρ1,−1/ρ2}. Hence for this set of parameters
the CARMA(2,1) model is a possible volatility model, which generalizes the CAR(1) model of
Example 3.1 in allowing for more flexible autocorrelation functions. Again all price jumps are
negative and coincide with a positive jump in the volatility.

Example 3.3. [COGARCH(p,q) process; cf. [13, 19]]
The COGARCH(1,1) model has been suggested as a continuous-time version of the GARCH(1,1)
model by replacing the discrete noise variables by the jumps of a Lévy process L. Introducing
a possible leverage term results in the following model, and we also include a drift in the price
process for completeness:

Xt = X0 +
∫ t

0
bsds+

∫ t

0
σs−dLs + ρ

∑
s≤t ,∆Ls<0

σ2
s−(∆Ls)2

σ2t = σ2
0 +

∫ t

0

(
β − ησ2

s

)
ds+ ϕ

∑
s≤t

σ2
s−(∆Ls)2,

where β > 0, η > 0, ϕ ≥ 0, and ρ ≥ 0. Extensions to higher order COGARCH models have
been suggested in [8], but this does not change the relation of the jumps in price and volatility
as given in Proposition 3.5 below. Here the price can have positive and negative jumps, but
negative jumps have a higher impact than positive ones by the leverage term.

Example 3.4. [ECOGARCH processes; cf. [12]]
Another model, which involves a CARMA model, but takes care of the necessary non-negativity
of the volatility, models log σ2 by a CARMA model:

Xt = X0 +
∫ t

0
bsds+

∫ t

0
σs−dLs

σ2
t = eYt ,

where Yt is a CARMA(q,p-1) process with mean µ. This model has a leverage effect in-built.

In COGARCH and ECOGARCH models it is immediate by the definition that the models
allow for common jumps in price and volatility.

Proposition 3.5. With these definitions we obtain the following functional relationships:
• In all linear models of Examples 3.1 and 3.2, (2.2) holds with A = R\{0} and

ψOU(x, y) = φOU(x, y) = y − x (3.1)

(in these models, the jumps of X are always negative and those of σ2 positive).
• In all COGARCH models, (2.2) holds with A = R\{0} and

ψCOG(x, y) = (y − x)2, φCOG(x, y) = y − x, (3.2)

and with A = (0,∞) and A = (−∞, 0), with two different values of the constant γ on those two
sets.
• for the ECOGARCH models, (2.2) holds with

ψECOG(x, y) = y − x, φECOG(x, y) =
√
x (log y − log x), (3.3)

12



and with A = (0,∞) and A = (−∞, 0), with two different values of the constant γ on those two
sets.

4 Test for a functional relationship

As mentioned before, we want to test whereas the observed outcome lies in the set Ω(A,γ)
T of (2.7),

for a given pair of functions (φ, ψ). The “natural” alternative is then ΩA
T \Ω

(A,γ)
T . This is not the

complementary set of Ω(A,γ)
T , since outside ΩA

T there is “always” a functional relationship, which
is in fact meaningless for the model.

We recall that testing a null hypothesis “we are in a subset Ω0” of Ω, against the alternative
“we are in a subset Ω1”, with of course Ω0 ∩ Ω1 = ∅, amounts to finding a critical (rejection)
region Cn ⊂ Ω at stage n. The asymptotic size for this sequence Cn of critical regions is the
number:

α = sup
{

lim sup
n→∞

P(Cn | A) : A ∈ F , A ⊂ Ω0, P(A) > 0
}
. (4.1)

Moreover we say that the sequence Cn is consistent for the alternative Ω1 if

P((Cn)c ∩ Ω1) → 0 (4.2)

(where (Cn)c is the complement of Cn in Ω). The latter also amounts to say that P(Cn | A)→ 1
as n→∞ for all A ⊂ Ω1 having P(A) > 0.

The previous limiting results allow us to construct a test with a given asymptotic level
α ∈ (0, 1) for the null hypothesis Ω(A,γ)

T . The procedure is as follows, at any given stage n. We
single out two cases:

(a) We have ∆n
i X /∈ A for all i ≤ [T/∆n] except perhaps one value of i: then, at stage n, it

”looks like” there is 0 or 1 jump of X with size in A, and we cannot perform the test at
all (asymptotically, as ∆n → 0, this cannot occur if we are inside ΩA

T ).

(b) We have ∆n
i X ∈ A for at least two values of i smaller than [T/∆n]. Then we proceed.

We simulate M copies of the variables (V −i , V
+
i ) and plug them into (2.30), always with the same

observed values of the increments ∆n
i X. This gives a sequence (Φn

T,j : j = 1, . . . ,M) of variables
which, conditionally on the partially observed path, is i.i.d. with the same (conditional) law as
Φn
T in (2.30). In particular, the simulated values Φn

T,j are all distinct (almost surely). We then
consider the empirical α-quantile

Ân,M (α) = Φn,([αM ]), where Φn
T,(1) < Φn

T,(2) < · · · < Φn
T,(M) is the increasing

re-ordering of the sequence (ΦT,j)n1≤j≤M .
(4.3)

Then Ân,M (α) converges to the (random, F-measurable) number An(α) satisfying, as M →∞,

P̃(Φn
T < An(α) | F) = α, (4.4)
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Doing this with a number of simulations M = Mn, we can take the critical region

Cn =
{

Φn
T <

Ân,Mn(α)
kn

}
. (4.5)

Theorem 4.1. Assume (A-r) for some r ∈ [0, 2) and (2.5) and (2.4). Then, and as soon as
Mn → ∞, the critical regions defined by (4.5) have the asymptotic level α for testing the null
hypothesis Ω(A,γ)

T , and are consistent for the (partial) alternative ΩA
T \Ω

(A,γ)
T .

Proof. First, An(α) converges in probability to the α-quantile A(α) of Φ knowing F , and this is
true under the null, and under the alternative as well. So, since by Theorem 2.1 knΦn

T converges
stably in law to ΦT under the null and to −∞ under the alternative (because Φn

P−→ Φ < 0 on
ΩA
T \Ω

(A,γ)
T )), the proof is the same as for Theorem 4.2 of [18] for example.

5 Conclusion

A simulation study has shown that the test procedure works reasonably well. However, a real
data analysis manifested that such a simple functional relationship cannot be found in the data.
For the COGARCH model the statistical analysis of [15], cf. Table 2, gave a partly positive
answer, where a test for non-correlation between common jumps in the price and the squared
volatility was not rejected even on a 2% level in case of the SPDR S&P 500 ETF (SPY), an
exchange traded fund that tracks the S&P 500 index. The possibility to test for a finite number
of factors or regimes γ is currently investigated.
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cesses. Ann. Stat. 35 355-392.

[3] Aı̈t-Sahalia, Y. and Jacod, J. (2009). Testing for jumps in a discretely observed process. Ann.
Stat. 37 184-222.

[4] Anderson, T.G., Bollerslev, T. and Diebold, F.X. (2003). Some like it smooth, and some like
it rough. Technical Report, Northwestern Univ.

14



[5] Barndorff-Nielsen, O.E. and Shephard, N. (2001). Non–Gaussian Ornstein–Uhlenbeck–based
models and some of their uses in financial economics (with discussion). J. R. Statist. Soc.
Ser. B 63 167–241.

[6] Barndorff-Nielsen, O.E. and Shephard, N. (2006). Econometrics of testing for jumps in fi-
nancial economics using bipower variation. J. Financial Econometrics 4 1–30.
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